1
|
Vascello MGF, Pizzighello S, Spada MS, Martinuzzi A, Dalmaso M. Social face processing in chronic severe traumatic brain injury: Altered decoding of emotions and mental states but preserved gaze cueing of attention. Neuropsychologia 2024; 203:108975. [PMID: 39179200 DOI: 10.1016/j.neuropsychologia.2024.108975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/26/2024]
Abstract
The processing of social information transmitted by facial stimuli is altered in individuals with traumatic brain injury (TBI). This study investigated whether these alterations also affect the mechanisms underlying the orienting of visual attention in response to eye-gaze signals. TBI patients and a control group of healthy individuals matched on relevant criteria completed a spatial cueing task. In this task, a lateral visual target was presented along with a task-irrelevant face, with the gaze averted to the left or right. Arrows pointing towards the left or right were also used as non-social control stimuli. Social cognition abilities were further investigated through tests based on decoding emotional expressions and mental states conveyed by facial stimuli. The decoding of emotions and mental states was worse in the TBI group than in the control group. However, both groups demonstrated reliable and comparable orienting of attention to both eye-gaze and arrow stimuli. Despite impairments in certain aspects of social face processing among TBI patients, gaze cueing of attention appears to be preserved in this neuropsychological population.
Collapse
Affiliation(s)
| | | | - Maria S Spada
- Clinical Psychology Unit, Papa Giovanni XXIII Hospital, Bergamo, Italy.
| | | | - Mario Dalmaso
- Department of Developmental and Social Psychology, University of Padova, Padova, Italy.
| |
Collapse
|
2
|
Mata-Bermudez A, Trejo-Chávez R, Martínez-Vargas M, Pérez-Arredondo A, Martínez-Cardenas MDLÁ, Diaz-Ruiz A, Rios C, Navarro L. Dysregulation of the dopaminergic system secondary to traumatic brain injury: implications for mood and anxiety disorders. Front Neurosci 2024; 18:1447688. [PMID: 39176379 PMCID: PMC11338874 DOI: 10.3389/fnins.2024.1447688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Traumatic brain injury (TBI) represents a public health issue with a high mortality rate and severe neurological and psychiatric consequences. Mood and anxiety disorders are some of the most frequently reported. Primary and secondary damage can cause a loss of neurons and glial cells, leading to dysfunction of neuronal circuits, which can induce imbalances in many neurotransmitter systems. Monoaminergic systems, especially the dopaminergic system, are some of the most involved in the pathogenesis of neuropsychiatric and cognitive symptoms after TBI. In this work, we summarize the studies carried out in patients who have suffered TBI and describe alterations in the dopaminergic system, highlighting (1) dysfunction of the dopaminergic neuronal circuits caused by TBI, where modifications are shown in the dopamine transporter (DAT) and alterations in the expression of dopamine receptor 2 (D2R) in brain areas with dopaminergic innervation, thus establishing a hypodopaminergic state and (2) variations in the concentration of dopamine and its metabolites in biological fluids of post-TBI patients, such as elevated dopamine (DA) and alterations in homovanillic acid (HVA). On the other hand, we show a large number of reports of alterations in the dopaminergic system after a TBI in animal models, in which modifications in the levels of DA, DAT, and HVA have been reported, as well as alterations in the expression of tyrosine hydroxylase (TH). We also describe the biological pathways, neuronal circuits, and molecular mechanisms potentially involved in mood and anxiety disorders that occur after TBI and are associated with alterations of the dopaminergic system in clinical studies and animal models. We describe the changes that occur in the clinical picture of post-TBI patients, such as alterations in mood and anxiety associated with DAT activity in the striatum, the relationship between post-TBI major depressive disorders (MDD) with lower availability of the DA receptors D2R and D3R in the caudate and thalamus, as well as a decrease in the volume of the substantia nigra (SN) associated with anxiety symptoms. With these findings, we discuss the possible relationship between the disorders caused by alterations in the dopaminergic system in patients with TBI.
Collapse
Affiliation(s)
- Alfonso Mata-Bermudez
- Departamento de Fisiología Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ricardo Trejo-Chávez
- Departamento de Fisiología Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Doctorado en Ciencias Biomedicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Marina Martínez-Vargas
- Departamento de Fisiología Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Adán Pérez-Arredondo
- Departamento de Fisiología Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Araceli Diaz-Ruiz
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Ciudad de México, Mexico
| | - Camilo Rios
- Laboratorio de Neurofarmacología Molecular, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México, Mexico
- Dirección de Investigación, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra, Ciudad de México, Mexico
| | - Luz Navarro
- Departamento de Fisiología Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
3
|
Dekundy A, Pichler G, El Badry R, Scheschonka A, Danysz W. Amantadine for Traumatic Brain Injury-Supporting Evidence and Mode of Action. Biomedicines 2024; 12:1558. [PMID: 39062131 PMCID: PMC11274811 DOI: 10.3390/biomedicines12071558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Traumatic brain injury (TBI) is an important global clinical issue, requiring not only prevention but also effective treatment. Following TBI, diverse parallel and intertwined pathological mechanisms affecting biochemical, neurochemical, and inflammatory pathways can have a severe impact on the patient's quality of life. The current review summarizes the evidence for the utility of amantadine in TBI in connection to its mechanism of action. Amantadine, the drug combining multiple mechanisms of action, may offer both neuroprotective and neuroactivating effects in TBI patients. Indeed, the use of amantadine in TBI has been encouraged by several clinical practice guidelines/recommendations. Amantadine is also available as an infusion, which may be of particular benefit in unconscious patients with TBI due to immediate delivery to the central nervous system and the possibility of precise dosing. In other situations, orally administered amantadine may be used. There are several questions that remain to be addressed: can amantadine be effective in disorders of consciousness requiring long-term treatment and in combination with drugs approved for the treatment of TBI? Do the observed beneficial effects of amantadine extend to disorders of consciousness due to factors other than TBI? Well-controlled clinical studies are warranted to ultimately confirm its utility in the TBI and provide answers to these questions.
Collapse
Affiliation(s)
- Andrzej Dekundy
- Merz Therapeutics GmbH, Eckenheimer Landstraße 100, 60318 Frankfurt am Main, Germany; (A.D.); (A.S.)
| | - Gerald Pichler
- Department of Neurology, Albert-Schweitzer-Hospital Graz, Albert-Schweitzer-Gasse 36, 8020 Graz, Austria;
| | - Reda El Badry
- Department of Neurology and Psychiatry, Faculty of Medicine, Assiut University Hospital, Assiut University, Assiut 71526, Egypt;
| | - Astrid Scheschonka
- Merz Therapeutics GmbH, Eckenheimer Landstraße 100, 60318 Frankfurt am Main, Germany; (A.D.); (A.S.)
| | - Wojciech Danysz
- Danysz Pharmacology Consulting, Vor den Gärten 16, 61130 Nidderau, Germany
| |
Collapse
|
4
|
Takekawa T, Watanabe S, Yamada N, Abo M. Survey on diagnosis of post-brain injury "higher brain dysfunction" in patients with cognitive impairment. Family/caregiver response. APPLIED NEUROPSYCHOLOGY. ADULT 2024:1-12. [PMID: 38970821 DOI: 10.1080/23279095.2024.2360123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
In Japan, the diagnostic criteria for the higher brain dysfunction (HBD) emerged in 2005 in response to social needs for support for the patients and their families. The issue of cognitive dysfunction after brain trauma is not unique to Japan. The purpose of this study was to reveal the current status of family members of HBD patients from their perspective, focusing on the changes before and after the establishment of diagnostic criteria in Japan. We conducted a questionnaire survey for family members supporting the HBD patients. The questionnaire included the causative condition, explanation on HBD by health professionals, and problems/difficulties they encountered. This research involved family members of 278 HBD cases (males = 211, age 49 years). The major underlying cause was head injury (n = 139). Compared to patients diagnosed pre-2005, a significantly larger proportion of family members after 2005 received information on the condition during the acute phase (within one month) (p < 0.001), including that from physicians (p < 0.001). Nearly half of the families cited a lack of awareness of HBD among the professionals as a problem. In Japan, awareness of HBD in the society is gradually increasing especially after the current diagnostic criteria were implemented, and there has been a steady increase over time in early diagnosis. Yet, there still remain those not appropriately diagnosed. To salvage those patients and the families left behind, we are suggesting several recommendations to further augment clinical practice and the healthcare systems in Japan.
Collapse
Affiliation(s)
- Toru Takekawa
- Chiba Prefectural University of Health Sciences, Chiba, Japan
- Department of Rehabilitation Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Shu Watanabe
- Department of Rehabilitation Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Naoki Yamada
- Department of Rehabilitation Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Masahiro Abo
- Department of Rehabilitation Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Irvine KA, Shi XY, Ferguson AR, Clark JD. Designer Receptor Exclusively Activated by Designer Drug (DREADD)-Mediated Activation of the Periaqueductal Gray Restores Nociceptive Descending Inhibition After Traumatic Brain Injury in Rats. J Neurotrauma 2024; 41:e1761-e1779. [PMID: 38588130 PMCID: PMC11386998 DOI: 10.1089/neu.2024.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Traumatic brain injury (TBI) patients frequently experience chronic pain that can enhance their suffering and significantly impair rehabilitative efforts. Clinical studies suggest that damage to the periaqueductal gray matter (PAG) following TBI, a principal center involved in endogenous pain control, may underlie the development of chronic pain. We hypothesized that TBI would diminish the usual pain control functions of the PAG, but that directly stimulating this center using a chemogenetic approach would restore descending pain modulation. We used a well-characterized lateral fluid percussion model (1.3 ± 0.1 atm) of TBI in male rats (n = 271) and measured hindpaw mechanical nociceptive withdrawal thresholds using von Frey filaments. To investigate the role of the PAG in pain both before and after TBI, we activated the neurons of the PAG using a Designer Receptor Exclusively Activated by Designer Drug (DREADD) viral construct. Immunohistochemical analysis of brain tissue was used to assess the location and confirm the appropriate expression of the viral constructs in the PAG. Activation of the PAG DREADD using clozapine N-oxide (CNO) caused hindpaw analgesia that could be blocked using opioid receptor antagonist, naloxone, in uninjured but not TBI rats. Due to the importance of descending serotonergic signaling in modulating nociception, we ablated spinal serotonin signaling using 5,7-DHT. This treatment strongly reduced CNO-mediated anti-nociceptive effects in TBI but not uninjured rats. To define the serotonergic receptor(s) required for the CNO-stimulated effects in TBI rats, we administered 5-HT7 (SB-269970) and 5-HT1A (WAY-100635) receptor antagonists but observed no effects. The selective 5-HT2A receptor antagonist ketanserin, however, blocked CNO's effects in the DREADD expressing TBI but not DREADD expressing sham TBI animals. Blockade of alpha-1 adrenergic receptors with prazosin also had no effect after TBI. Descending pain control originating in the PAG is mediated through opioid receptors in uninjured rats. TBI, however, fundamentally alters the descending nociceptive control circuitry such that serotonergic influences predominate, and those are mediated by the 5-HT2A receptor. These results provide further evidence that the PAG is a key target for anti-nociception after TBI.
Collapse
Affiliation(s)
- Karen-Amanda Irvine
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California, USA
- Anesthesiology Service Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Xiao-You Shi
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California, USA
- Anesthesiology Service Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Adam R Ferguson
- Brain and Spinal Injury Center, Department of Neurosurgery, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA
- San Francisco Veterans Affairs Healthcare System, San Francisco, California, USA
| | - J David Clark
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California, USA
- Anesthesiology Service Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| |
Collapse
|
6
|
Cataford G, Monton LA, Karzon S, Livernoche-Leduc C, Saavedra-Mitjans M, Potvin MJ, Bernard F, Burry L, Arbour C, Williamson DR. Cognitive and Motor Function Effects of Antipsychotics in Traumatic Brain Injury: A Systematic Review of Pre-Clinical Studies. Neurotrauma Rep 2024; 5:181-193. [PMID: 38463417 PMCID: PMC10924062 DOI: 10.1089/neur.2023.0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
Traumatic brain injury (TBI) survivors often suffer from agitated behaviors and will most likely receive pharmacological treatments. Choosing an optimal and safe treatment that will not interfere with neurological recovery remains controversial. By interfering with dopaminergic circuits, antipsychotics may impede processes important to cognitive recovery. Despite their frequent use, there have been no large randomized controlled studies of antipsychotics for the management of agitated behaviors during the acute TBI recovery period. We conducted a systematic review and meta-analysis of pre-clinical studies evaluating the effects of antipsychotics post-TBI on both cognitive and motor recovery. MEDLINE and Embase databases were searched up to August 2, 2023. Pre-clinical studies evaluating the effects of antipsychotics on cognitive and motor functions post-TBI were considered. Risk of bias was evaluated with the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE) tool. We identified 15 studies including a total of 1188 rodents, mostly conducted in male Sprague-Dawley rats using cortical impact injury. The analysis revealed no consistent effect of haloperidol on motor functions, but risperidone was associated with a significant impairment in motor function on day 5 post-injury (7.05 sec; 95% confidence interval [CI]: 1.47, 12.62; I2 = 92%). Other atypical antipsychotics did not result in impaired motor function. When evaluating cognitive function, haloperidol- (23.00 sec; 95% CI: 17.42-28.59; I2 = 7%) and risperidone-treated rats (24.27 sec; 95% CI: 16.18-32.36; I2 = 0%) were consistently impaired when compared to controls. In studies evaluating atypical antipsychotics, no impairments were observed. Clinicians should avoid the regular use of haloperidol and risperidone, and future human studies should be conducted with atypical antipsychotics.
Collapse
Affiliation(s)
| | | | - Stephanie Karzon
- Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Camille Livernoche-Leduc
- Départment de psychologie, Université du Québec à Montréal, Montreal, Quebec, Canada
- Research center, CIUSSS-Nord-de-l'Île-de-Montréal, Hôpital du Sacré-Cœur de Montréal. Montreal, Quebec, Canada
| | - Mar Saavedra-Mitjans
- Faculté de pharmacie, Université de Montréal, Montreal, Quebec, Canada
- Research center, CIUSSS-Nord-de-l'Île-de-Montréal, Hôpital du Sacré-Cœur de Montréal. Montreal, Quebec, Canada
| | - Marie-Julie Potvin
- Départment de psychologie, Université du Québec à Montréal, Montreal, Quebec, Canada
- Research center, CIUSSS-Nord-de-l'Île-de-Montréal, Hôpital du Sacré-Cœur de Montréal. Montreal, Quebec, Canada
| | - Francis Bernard
- Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada
- Research center, CIUSSS-Nord-de-l'Île-de-Montréal, Hôpital du Sacré-Cœur de Montréal. Montreal, Quebec, Canada
| | - Lisa Burry
- Pharmacy Department, Mount Sinai Hospital. Toronto, Ontario, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Caroline Arbour
- Research center, CIUSSS-Nord-de-l'Île-de-Montréal, Hôpital du Sacré-Cœur de Montréal. Montreal, Quebec, Canada
- Faculté de sciences infirmières, Université de Montréal, Montreal, Quebec, Canada
| | - David R Williamson
- Faculté de pharmacie, Université de Montréal, Montreal, Quebec, Canada
- Research center, CIUSSS-Nord-de-l'Île-de-Montréal, Hôpital du Sacré-Cœur de Montréal. Montreal, Quebec, Canada
| |
Collapse
|
7
|
Vozzella VJ, Bittner RA, Ranellone TS, Grimm KM, Palmer KN, Carpio AN, Abel QC, Moschonas EH, Bondi CO, Kline AE. A bridge to recovery: Acute amantadine prior to environmental enrichment after brain trauma augments cognitive benefit. Exp Neurol 2024; 373:114648. [PMID: 38081352 DOI: 10.1016/j.expneurol.2023.114648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/20/2023] [Accepted: 12/04/2023] [Indexed: 12/22/2023]
Abstract
Environmental enrichment (EE) facilitates motor and cognitive recovery after traumatic brain injury (TBI). Historically, EE has been provided immediately and continuously after TBI, but this paradigm does not model the clinic where rehabilitation is typically not initiated until after critical care. Yet, treating TBI early may facilitate recovery. Hence, we sought to provide amantadine (AMT) as a bridge therapy before commencing EE. It was hypothesized that bridging EE with AMT would augment motor and cognitive benefits. Anesthetized adult male rats received a cortical impact (2.8 mm deformation at 4 m/s) or sham surgery and then were housed in standard (STD) conditions where they received intraperitoneal AMT (10 mg/kg or 20 mg/kg) or saline vehicle (VEH; 1 mL/kg) beginning 24 h after surgery and once daily during the 6-day bridge phase or once daily for 19 days for the non-bridge groups (i.e., continuously STD-housed) to compare the effects of acute AMT plus EE vs. chronic AMT alone. Abbreviated EE, which was presented to closer emulate clinical rehabilitation (e.g., 6 h/day), began on day 7 for the AMT bridge and chronic EE groups. Motor (beam-walking) and cognition (acquisition of spatial learning and memory) were assessed on days 7-11 and 14-19, respectively. Cortical lesion volume and hippocampal cell survival were quantified on day 21. EE, whether provided in combination with VEH or AMT, and AMT (20 mg/kg) + STD, benefitted motor and cognition vs. the STD-housed VEH and AMT (10 mg/kg) groups (p < 0.05). The AMT (20 mg/kg) + EE group performed better than the VEH + EE, AMT (10 mg/kg) + EE, and AMT (20 mg/kg) + STD groups in the acquisition of spatial learning (p < 0.05) but did not differ in motor function (p > 0.05). All groups receiving EE exhibited decreased cortical lesion volumes and increased CA3 neuron survival relative to the STD-housed groups (p < 0.05) but did not differ from one another (p > 0.05). The added cognitive benefit achieved by bridging EE with AMT (20 mg/kg) supports the hypothesis that the temporal separation of combinational therapies is more effective after TBI.
Collapse
Affiliation(s)
- Vincent J Vozzella
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Rachel A Bittner
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Tyler S Ranellone
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Kelsey M Grimm
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Kelsey N Palmer
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Anna N Carpio
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Quinn C Abel
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Eleni H Moschonas
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Corina O Bondi
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Anthony E Kline
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Psychology, University of Pittsburgh, Pittsburgh, PA 15213, United States of America.
| |
Collapse
|
8
|
Chen Q, Bharadwaj V, Irvine KA, Clark JD. Mechanisms and treatments of chronic pain after traumatic brain injury. Neurochem Int 2023; 171:105630. [PMID: 37865340 DOI: 10.1016/j.neuint.2023.105630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/23/2023]
Abstract
While pain after trauma generally resolves, some trauma patients experience pain for months to years after injury. An example, relevant to both combat and civilian settings, is chronic pain after traumatic brain injury (TBI). Headache as well as pain in the back and extremities are common locations for TBI-related chronic pain to be experienced. TBI-related pain can exist alone or can exacerbate pain from other injuries long after healing has occurred. Consequences of chronic pain in these settings include increased suffering, higher levels of disability, serious emotional problems, and worsened cognitive deficits. The current review will examine recent evidence regarding dysfunction of endogenous pain modulatory mechanisms, neuroplastic changes in the trigeminal circuitry and alterations in spinal nociceptive processing as contributors to TBI-related chronic pain. Key pain modulatory centers including the locus coeruleus, periaqueductal grey matter, and rostroventromedial medulla are vulnerable to TBI. Both the rationales and existing evidence for the use of monoamine reuptake inhibitors, CGRP antagonists, CXCR2 chemokine receptor antagonists, and interventional therapies will be presented. While consensus guidelines for the management of chronic post-traumatic TBI-related pain are lacking, several approaches to this clinically challenging situation deserve focused evaluation and may prove to be viable therapeutic options.
Collapse
Affiliation(s)
- QiLiang Chen
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA, 94305, USA
| | - Vimala Bharadwaj
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA, 94305, USA
| | - Karen-Amanda Irvine
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA, 94305, USA; Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave (E4-220), Palo Alto, CA, 94304, USA
| | - J David Clark
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA, 94305, USA; Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave (E4-220), Palo Alto, CA, 94304, USA.
| |
Collapse
|
9
|
Iannucci J, O’Neill K, Wang X, Mukherjee S, Wang J, Shapiro LA. Sex-Specific and Traumatic Brain Injury Effects on Dopamine Receptor Expression in the Hippocampus. Int J Mol Sci 2023; 24:16084. [PMID: 38003274 PMCID: PMC10671736 DOI: 10.3390/ijms242216084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/26/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Traumatic brain injury (TBI) is a major health concern. Each year, over 50 million individuals worldwide suffer from TBI, and this leads to a number of acute and chronic health issues. These include affective and cognitive impairment, as well as an increased risk of alcohol and drug use. The dopaminergic system, a key component of reward circuitry, has been linked to alcohol and other substance use disorders, and previous research indicates that TBI can induce plasticity within this system. Understanding how TBI modifies the dopaminergic system may offer insights into the heightened substance use and reward-seeking behavior following TBI. The hippocampus, a critical component of the reward circuit, is responsible for encoding and integrating the spatial and salient aspects of rewarding stimuli. This study explored TBI-related changes in neuronal D2 receptor expression within the hippocampus, examining the hypothesis that sex differences exist in both baseline hippocampal D2 receptor expression and its response to TBI. Utilizing D2-expressing tdTomato transgenic male and female mice, we implemented either a sham injury or the lateral fluid percussion injury (FPI) model of TBI and subsequently performed a region-specific quantification of D2 expression in the hippocampus. The results show that male mice exhibit higher baseline hippocampal D2 expression compared to female mice. Additionally, there was a significant interaction effect between sex and injury on the expression of D2 in the hippocampus, particularly in regions of the dentate gyrus. Furthermore, TBI led to significant reductions in hippocampal D2 expression in male mice, while female mice remained mostly unaffected. These results suggest that hippocampal D2 expression varies between male and female mice, with the female dopaminergic system demonstrating less susceptibility to TBI-induced plasticity.
Collapse
Affiliation(s)
- Jaclyn Iannucci
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX 77807, USA; (J.I.)
| | - Katherine O’Neill
- Department of Biological Science, Texas A&M University, College Station, TX 77843, USA
| | - Xuehua Wang
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX 77807, USA; (J.I.)
| | - Sanjib Mukherjee
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX 77807, USA; (J.I.)
| | - Jun Wang
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX 77807, USA; (J.I.)
| | - Lee A. Shapiro
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX 77807, USA; (J.I.)
| |
Collapse
|
10
|
Caloc'h T, Le Saout E, Litaneur S, Suarez A, Durand S, Lefaucheur JP, Nguyen JP. Treatment of cognitive and mood disorders secondary to traumatic brain injury by the association of bilateral occipital nerve stimulation and a combined protocol of multisite repetitive transcranial magnetic stimulation and cognitive training: A case report. Front Neurol 2023; 14:1195513. [PMID: 38020613 PMCID: PMC10662304 DOI: 10.3389/fneur.2023.1195513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Cognitive impairment secondary to traumatic brain injury (TBI) is difficult to treat and usually results in severe disability. Method A 48-year-old man presented with chronic refractory headaches and persistent disabling cognitive impairment after TBI. He was first treated with occipital nerve stimulation (ONS) implanted bilaterally to relieve headaches (8 years after the head trauma). Two years later, he was treated with a 6-week protocol combining repetitive transcranial magnetic stimulation (rTMS) delivered to multiple cortical sites (prefrontal cortex, language areas, and areas involved in visuo-spatial functions) and computerized cognitive training (CogT) (targeting memory, language, and visuo-spatial functions) to improve cognitive performance. Results Executive and cognitive functions (attention, ability to perform calculations, and verbal fluency) improved in association with pain relief after ONS (33-42% improvement) and then improved even more after the rTMS-CogT protocol with an additional improvement of 36-40% on apathy, depression, and anxiety, leading to a significant reduction in caregiver burden. The functional improvement persisted and even increased at 6 months after the end of the rTMS-CogT procedure (10 years after the onset of TBI and 2 years after ONS implantation). Conclusion This is the first observation describing sustained improvement in post-TBI refractory headache, depression, and cognitive impairment by the association of bilaterally implanted ONS and a combined procedure of multisite rTMS and CogT to target various brain functions.
Collapse
Affiliation(s)
- Tiphanie Caloc'h
- Unité de stimulation transcrânienne, Clinique Bretéché, Groupe Elsan, Nantes, France
| | - Estelle Le Saout
- Unité de stimulation transcrânienne, Clinique Bretéché, Groupe Elsan, Nantes, France
| | - Séverine Litaneur
- Unité de stimulation transcrânienne, Clinique Bretéché, Groupe Elsan, Nantes, France
| | - Alcira Suarez
- Unité de stimulation transcrânienne, Clinique Bretéché, Groupe Elsan, Nantes, France
| | - Sylvain Durand
- Unité de stimulation transcrânienne, Clinique Bretéché, Groupe Elsan, Nantes, France
| | - Jean-Pascal Lefaucheur
- EA 4391, équipe ENT (Excitabilité Nerveuse et Thérapeutique), Université Paris-Est Créteil, Créteil, France
- Unité de Neurophysiologie Clinique, Hôpital Henri Mondor, Assistance Publique - Hôpitaux de Paris, Créteil, France
| | - Jean-Paul Nguyen
- Unité de stimulation transcrânienne, Clinique Bretéché, Groupe Elsan, Nantes, France
| |
Collapse
|
11
|
Summaka M, Elias E, Zein H, Naim I, Daoud R, Fares Y, Nasser Z. Computed tomography findings as early predictors of long-term language impairment in patients with traumatic brain injury. APPLIED NEUROPSYCHOLOGY. ADULT 2023; 30:686-695. [PMID: 34487454 DOI: 10.1080/23279095.2021.1971982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study aims to assess the relationship between computed tomography (CT) findings, during the acute phase of hospitalization, and long-term language impairment in people with traumatic brain injury (TBI). Another aim was to assess the receptive and expressive abilities of subjects with TBI based on the location of the injury. This is a retrospective observational study including 49 participants with TBI due to war injuries. The Arabic Diagnostic Aphasia Battery (A-DAB-1) was administered to the participants and the Helsinki CT score was computed to quantify brain damage. The results showed that the Helsinki CT score was negatively correlated with the total score of the A-DAB-1 (r = -0.544, p-value < 0.0001). Simple linear regression supported such findings and reflected an inversely proportional relationship between both variables (p-value < 0.0001). When compared with subjects having right hemisphere damage, subjects with left hemisphere and bilateral brain damage performed more poorly on language tasks respectively as follows: A-DAB-1 overall score (92.08-66.08-70.28, p-value = 0.021), Content of descriptive speech (9.57-6.69-7.22, p-value = 0.034), Verbal fluency (6.57-3.54-3.89, p-value = 0.002), Auditory comprehension (9.71-7.54-7.78, p-value = 0.039), Complex auditory commands (9.71-7.65-7.56, p-value = 0.043), Repetition (9.75-7.08-7.61, p-value = 0.036), Naming (9.93-7.15-8.11, p-value = 0.046). Following TBI, CT findings on admission can significantly predict long-term language abilities, with left side lesions inducing poorer outcomes.
Collapse
Affiliation(s)
- Marwa Summaka
- Faculty of Medical Sciences, Neuroscience Research Center, Lebanese University, Hadath, Lebanon
| | - Elias Elias
- Department of Complex and minimally invasive spine surgery, Swedish Neuroscience Institute, Seattle, WA, USA
| | - Hiba Zein
- Faculty of Medical Sciences, Neuroscience Research Center, Lebanese University, Hadath, Lebanon
| | - Ibrahim Naim
- Health, Rehabilitation, Iintegration and Research Center (HRIR), Beirut, Lebanon
| | - Rama Daoud
- Faculty of Medical Sciences, Lebanese University, Hadath, Lebanon
| | - Youssef Fares
- Faculty of Medical Sciences, Neuroscience Research Center, Lebanese University, Hadath, Lebanon
| | - Zeina Nasser
- Faculty of Medical Sciences, Neuroscience Research Center, Lebanese University, Hadath, Lebanon
| |
Collapse
|
12
|
Shimia M, Iranmehr A, Valizadeh A, Mirzaei F, Namvar M, Rafiei E, Rahimi A, Khadivi A, Aeinfar K. A placebo-controlled randomized clinical trial of amantadine hydrochloride for evaluating the functional improvement of patients following severe acute traumatic brain injury. J Neurosurg Sci 2023; 67:598-604. [PMID: 34114429 DOI: 10.23736/s0390-5616.21.05266-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Considering the known derangements in the dopaminergic neurotransmitter systems following traumatic brain injury (TBI), dopamine agonists are used as a pharmacologic option. In this study, we evaluate the effects of amantadine hydrochloride on the functional improvement of severe TBI patients. METHODS Within a triple-blinded (patients, intervention administrators, and outcome assessors) placebo-controlled randomized clinical trial, we evaluated the effects of amantadine (100 mg BD (twice a day) for 14 days, then 150 mg BD for another 7 days, and 200 mg BD for another 21 days) on outcome measurements of weekly mean Glasgow Outcome Scale (GOS) and Disability Rating Scale (DRS), through six weeks of trial for 57 patients (29 amantadine, 28 placeboes) with severe TBI admitted in our hospital. RESULTS Although both groups had improvement in their DRS, the change from baseline was significantly better in the amantadine group (10.88±5.24 for amantadine vs. 8.04±4.07 for placebo, P=0.015). No significant difference was observed between groups for GOS (1.04±0.55 for amantadine vs. 1.12±1.05 for placebo, P=0.966). CONCLUSIONS Based on our findings, amantadine hydrochloride might improve the speed of functional ability improvement in severe TBI patients, evaluated by DRS, and is also well tolerated by patients. Although, there were some limitations in this study, including small sample size, short time interval, not providing a wash-off period and invalidity of GOS for measuring recovery rates in short-term periods.
Collapse
Affiliation(s)
- Mohammad Shimia
- Department of Neurosurgery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arad Iranmehr
- Department of Neurosurgery, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Valizadeh
- Department of Neurosurgery, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Mirzaei
- Department of Neurosurgery, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohamad Namvar
- Department of Neurosurgery, Tehran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Rafiei
- Department of Neurosurgery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahsan Rahimi
- Department of Neurosurgery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aida Khadivi
- Department of Neurosurgery, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamkar Aeinfar
- Department of Neurosurgery, Tehran University of Medical Sciences, Tehran, Iran -
| |
Collapse
|
13
|
Vas A, Luedtke A, Ortiz E, Mackie N, Gonzalez S. Cognitive Rehabilitation: Mild Traumatic Brain Injury and Relevance of OTPF. Occup Ther Int 2023; 2023:8135592. [PMID: 37283959 PMCID: PMC10241584 DOI: 10.1155/2023/8135592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 06/08/2023] Open
Abstract
There is increased awareness of the long-term cognitive sequelae of mild traumatic brain injury (mTBI). Therefore, researchers and clinicians have developed and tested cognitive training protocols to address these challenges. The current review summarized literature that examined existing cognitive rehabilitation/training programs. Specifically, the review listed the impact of these programs on functional domains informed by the Occupational Therapy Practice Framework (OTPF). Literature between the years 2008 and 2022 was gathered from nine databases. Results indicate that several cognitive rehabilitation programs have proven to positively influence domains of occupation, client factors, performance, and context. Occupational therapy practitioners have an opportunity to engage in mTBI management. Furthermore, adopting domains of OTPF may guide assessments, treatment planning, and long-term follow-up.
Collapse
Affiliation(s)
- Asha Vas
- School of Occupational Therapy, Texas Woman's University, Dallas, TX 75235, USA
| | - Anna Luedtke
- Baylor Scott & White Medical Center, Dallas, Texas, USA
| | - Eryn Ortiz
- Thrive Skilled Pediatric Care, Dallas, Texas, USA
| | - Natalie Mackie
- School of Occupational Therapy, Texas Woman's University, Dallas, TX 75235, USA
| | - Samantha Gonzalez
- School of Occupational Therapy, Texas Woman's University, Dallas, TX 75235, USA
| |
Collapse
|
14
|
De Luca R, Bonanno M, Marra A, Rifici C, Pollicino P, Caminiti A, Castorina MV, Santamato A, Quartarone A, Calabrò RS. Can Virtual Reality Cognitive Rehabilitation Improve Executive Functioning and Coping Strategies in Traumatic Brain Injury? A Pilot Study. Brain Sci 2023; 13:brainsci13040578. [PMID: 37190543 DOI: 10.3390/brainsci13040578] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023] Open
Abstract
Executive dysfunction is among the most common and disabling facets of cognitive impairment following traumatic brain injury (TBI), and may include deficits in reasoning, planning, mental flexibility, some aspects of attention and orientation, awareness and behavior. Rehabilitation programs based on cognitive-behavioral approaches to retrain planning and problem-solving and other executive deficits may improve such cognitive dysfunction. The purpose of this study is to investigate the effects of non-immersive virtual reality-based training to improve executive abilities and to reduce anxiety and depression symptoms in patients with TBI. Twenty patients with moderate to severe TBI were enrolled at our Neurorehabilitation Unit and divided to receive either the standard cognitive training or the virtual reality (VR) based cognitive training using the virtual reality rehabilitation system (VRRS-Evo). Each group received the same amount of rehabilitative training, including ROT (Reality Orientation Therapy) and Executive Training (ET), but using a different approach, i.e., a paper and pencil and an advanced approach. All patients were evaluated with a specific psychometric battery before (T0) and after the end (T1) of each program. Comparing pre- and post- treatment scores, in the VR-CT group, we found statistically significant differences in all administered outcome measures for cognitive and executive functioning, i.e., MoCA (p < 0.005), FAB (p < 0.005), TMT-A (p < 0.005), TMT-B (p < 0.005), TMT-BA (p < 0.001), and mood, i.e., HRS-D (p < 0.008). In the Conventional cognitive training (C-CT) group, we found a significant improvement only in MoCA (p < 0.03), FAB (p < 0.02) and in TMT-BA (p < 0.01). Coping strategies also improved, with better results in the VR-CT group. Our results suggest that VR rehabilitation, using the VRRS system, may be a valuable and motivational approach to improve visuo-executive abilities and coping strategies as well as mood in chronic TBI patients.
Collapse
Affiliation(s)
- Rosaria De Luca
- IRCCS Centro Neurolesi "Bonino Pulejo", 98123 Messina, Italy
| | - Mirjam Bonanno
- IRCCS Centro Neurolesi "Bonino Pulejo", 98123 Messina, Italy
| | - Angela Marra
- IRCCS Centro Neurolesi "Bonino Pulejo", 98123 Messina, Italy
| | - Carmela Rifici
- IRCCS Centro Neurolesi "Bonino Pulejo", 98123 Messina, Italy
| | | | - Angelo Caminiti
- IRCCS Centro Neurolesi "Bonino Pulejo", 98123 Messina, Italy
| | | | - Andrea Santamato
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | | | | |
Collapse
|
15
|
Aychman MM, Goldman DL, Kaplan JS. Cannabidiol's neuroprotective properties and potential treatment of traumatic brain injuries. Front Neurol 2023; 14:1087011. [PMID: 36816569 PMCID: PMC9932048 DOI: 10.3389/fneur.2023.1087011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Cannabidiol (CBD) has numerous pharmacological targets that initiate anti-inflammatory, antioxidative, and antiepileptic properties. These neuroprotective benefits have generated interest in CBD's therapeutic potential against the secondary injury cascade from traumatic brain injury (TBI). There are currently no effective broad treatment strategies for combating the damaging mechanisms that follow the primary injury and lead to lasting neurological consequences or death. However, CBD's effects on different neurotransmitter systems, the blood brain barrier, oxidative stress mechanisms, and the inflammatory response provides mechanistic support for CBD's clinical utility in TBI. This review describes the cascades of damage caused by TBI and CBD's neuroprotective mechanisms to counter them. We also present challenges in the clinical treatment of TBI and discuss important future clinical research directions for integrating CBD in treatment protocols. The mechanistic evidence provided by pre-clinical research shows great potential for CBD as a much-needed improvement in the clinical treatment of TBI. Upcoming clinical trials sponsored by major professional sport leagues are the first attempts to test the efficacy of CBD in head injury treatment protocols and highlight the need for further clinical research.
Collapse
|
16
|
Irvine KA, Peters CM, Vazey EM, Ferguson AR, Clark JD. Activation of the Locus Coeruleus Mediated by Designer Receptor Exclusively Activated by Designer Drug Restores Descending Nociceptive Inhibition after Traumatic Brain Injury in Rats. J Neurotrauma 2022; 39:964-978. [PMID: 35412843 PMCID: PMC9467637 DOI: 10.1089/neu.2021.0485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Disruption of endogenous pain control mechanisms including descending pain inhibition has been linked to several forms of pain including chronic pain after traumatic brain injury (TBI). The locus coeruleus (LC) is the principal noradrenergic (NA) nucleus participating in descending pain inhibition. We therefore hypothesized that selectively stimulating LC neurons would reduce nociception after TBI. All experiments used a well-characterized rat lateral fluid percussion model of TBI. NA neurons were stimulated by administering clozapine N-oxide (CNO) to rats selectively expressing a designer receptor exclusively activated by designer drug (DREADD) viral construct in their LC's. Mechanical nociceptive thresholds were measured using von Frey fibers. The efficacy of diffuse noxious inhibitory control (DNIC), a critical endogenous pain control mechanism, was assessed using the hindpaw administration of capsaicin. Immunohistochemical analyses demonstrated the selective expression of the DREADD construct in LC neurons after stereotactic injection. During the 1st week after TBI, when rats demonstrated hindlimb (HL) nociceptive sensitization, CNO administration provided transient anti-allodynia in DREADD-expressing rats but not in rats injected with control virus. Seven weeks after TBI we observed a complete loss of DNIC in response to capsaicin. However, CNO administration largely restored DNIC in TBI DREADD-expressing rats but not those injected with control virus. Unexpectedly, the effects of LC activation in the DREADD-expressing rats were blocked by the α-1 adrenergic receptor antagonist prazosin, but not the α-2 adrenergic receptor antagonist atipamezole. These results suggest that directly stimulating the LC after TBI can reduce both early and late manifestations of dysfunctional endogenous pain regulation. Clinical approaches to activating descending pain circuits may reduce suffering in those with pain after TBI.
Collapse
Affiliation(s)
- Karen-Amanda Irvine
- Department of Anesthesiology, Perioperative and Pain Medicine; Stanford University, School of Medicine, Stanford, California, USA.,Anesthesiology Service; Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA.,Address correspondence to: Karen-Amanda Irvine, PhD, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA 94305, USA
| | - Christopher M. Peters
- Department of Anesthesiology, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, USA
| | - Elena M. Vazey
- Department of Biology, University of Massachusetts Amherst, Amherst Massachusetts, USA
| | - Adam R. Ferguson
- University of California San Francisco, Brain and Spinal Injury Center, Department of Neurosurgery, San Francisco, California, USA
| | - J. David Clark
- Department of Anesthesiology, Perioperative and Pain Medicine; Stanford University, School of Medicine, Stanford, California, USA.,Anesthesiology Service; Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| |
Collapse
|
17
|
Vonder Haar C, Frankot MA, Reck AM, Milleson V, Martens KM. Large-N Rat Data Enables Phenotyping of Risky Decision-Making: A Retrospective Analysis of Brain Injury on the Rodent Gambling Task. Front Behav Neurosci 2022; 16:837654. [PMID: 35548692 PMCID: PMC9084609 DOI: 10.3389/fnbeh.2022.837654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/18/2022] [Indexed: 11/29/2022] Open
Abstract
Decision-making is substantially altered after brain injuries. Patients and rats with brain injury are more likely to make suboptimal, and sometimes risky choices. Such changes in decision-making may arise from alterations in how sensitive individuals are to outcomes. To assess this, we compiled and harmonized a large dataset from four studies of TBI, each of which evaluated behavior on the Rodent Gambling Task (RGT). We then determined whether the following were altered: (1) sensitivity to overall contingencies, (2) sensitivity to immediate outcomes, or (3) general choice phenotypes. Overall sensitivity was evaluated using the matching law, immediate sensitivity by looking at the probability of switching choices given a win or loss, and choice phenotypes by k-means clustering. We found significant reductions in sensitivity to the overall outcomes and a bias toward riskier alternatives in TBI rats. However, the substantial individual variability led to poor overall fits in matching analyses. We also found that TBI caused a significant reduction in the tendency to repeatedly choose a given option, but no difference in win- or loss-specific sensitivity. Finally, clustering revealed 5 distinct decision-making phenotypes and TBI reduced membership in the "optimal" type. The current findings support a hypothesis that TBI reduces sensitivity to contingencies. However, in the case of tasks such as the RGT, this is not a simple shift to indiscriminate or less discriminate responding. Rather, TBI rats are more likely to develop suboptimal preferences and frequently switch choices. Treatments will have to consider how this behavior might be corrected.
Collapse
Affiliation(s)
- Cole Vonder Haar
- Department of Psychology, West Virginia University, Morgantown, WV, United States
- Department of Neuroscience, Ohio State University, Columbus, OH, United States
| | - Michelle A. Frankot
- Department of Psychology, West Virginia University, Morgantown, WV, United States
| | - A. Matthew Reck
- Department of Psychology, West Virginia University, Morgantown, WV, United States
| | - Virginia Milleson
- Department of Psychology, West Virginia University, Morgantown, WV, United States
| | - Kris M. Martens
- Department of Psychology, West Virginia University, Morgantown, WV, United States
- Department of Neuroscience, Ohio State University, Columbus, OH, United States
| |
Collapse
|
18
|
Best KM, Mojena MM, Barr GA, Schmidt HD, Cohen AS. Endogenous Opioid Dynorphin Is a Potential Link between Traumatic Brain Injury, Chronic Pain, and Substance Use Disorder. J Neurotrauma 2022; 39:1-19. [PMID: 34751584 PMCID: PMC8978570 DOI: 10.1089/neu.2021.0063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Traumatic brain injury (TBI) is a serious public health problem associated with numerous physical and neuropsychiatric comorbidities. Chronic pain is prevalent and interferes with post-injury functioning and quality of life, whereas substance use disorder (SUD) is the third most common neuropsychiatric diagnosis after TBI. Neither of these conditions has a clear mechanistic explanation based on the known pathophysiology of TBI. Dynorphin is an endogenous opioid neuropeptide that is significantly dysregulated after TBI. Both dynorphin and its primary receptor, the ĸ-opioid receptor (KOR), are implicated in the neuropathology of chronic pain and SUD. Here, we review the known roles of dynorphin and KORs in chronic pain and SUDs. We synthesize this information with our current understanding of TBI and highlight potential mechanistic parallels between and across conditions that suggest a role for dynorphin in long-term sequelae after TBI. In pain studies, dynorphin/KOR activation has either antinociceptive or pro-nociceptive effects, and there are similarities between the signaling pathways influenced by dynorphin and those underlying development of chronic pain. Moreover, the dynorphin/KOR system is considered a key regulator of the negative affective state that characterizes drug withdrawal and protracted abstinence in SUD, and molecular and neurochemical changes observed during the development of SUD are mirrored by the pathophysiology of TBI. We conclude by proposing hypotheses and directions for future research aimed at elucidating the potential role of dynorphin/KOR in chronic pain and/or SUD after TBI.
Collapse
Affiliation(s)
- Kaitlin M. Best
- Department of Nursing and Clinical Care Services, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marissa M. Mojena
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Gordon A. Barr
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Psychology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Heath D. Schmidt
- Department of Biobehavioral Health Sciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Akiva S. Cohen
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Address correspondence to: Akiva S. Cohen, PhD, Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Room 816-I, Philadelphia, PA 19104, USA
| |
Collapse
|
19
|
Cai X, Harding IC, Sadaka AH, Colarusso B, Kulkarni P, Ebong E, Qiao J, O'Hare NR, Ferris CF. Mild repetitive head impacts alter perivascular flow in the midbrain dopaminergic system in awake rats. Brain Commun 2021; 3:fcab265. [PMID: 34806002 PMCID: PMC8600963 DOI: 10.1093/braincomms/fcab265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 11/24/2022] Open
Abstract
Head injury is a known risk factor for Parkinson's disease. Disruption in the perivascular clearance of metabolic waste and unwanted proteins is thought to be a contributing factor to disease progression. We hypothesized that repetitive mild head impacts, without evidence of structural brain damage, would increase microgliosis and AQP4 expression and depolarization and alter perivascular flow in the midbrain dopaminergic system. Adult male rats were subjected to sham, or two mild head impacts separated by 48 h. Three weeks later, fully awake rats were imaged using dynamic, contrast-enhanced MRI to follow the distribution of intraventricular gadobenate dimeglumine contrast agent. Images were registered to and analysed using a 3D MRI rat atlas providing site-specific data on 171 different brain areas. Following imaging, rats were tested for cognitive function using the Barnes maze assay. Histological analyses of tyrosine hydroxylase, microglia activation and AQP4 expression and polarization were performed on a parallel cohort of head impacted rats at 20 days post insult to coordinate with the time of imaging. There was no change in the global flux of contrast agent between sham and head impacted rats. The midbrain dopaminergic system showed a significant decrease in the influx of contrast agent as compared to sham controls together with a significant increase in microgliosis, AQP4 expression and depolarization. There were no deficits in cognitive function. The histology showed a significant level of neuroinflammation in the midbrain dopaminergic system 3 weeks post mild repetitive head impact but no loss in tyrosine hydroxylase. MRI revealed no structural brain damage emphasizing the potential serious consequences of mild head impacts on sustained brain neuroinflammation in this area critical to the pathophysiology of Parkinson's.
Collapse
Affiliation(s)
- Xuezhu Cai
- Department of Psychology, Center for Translational NeuroImaging, Northeastern University, Boston, MA 02115, USA
| | - Ian C Harding
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Aymen H Sadaka
- Department of Psychology, Center for Translational NeuroImaging, Northeastern University, Boston, MA 02115, USA
| | - Bradley Colarusso
- Department of Psychology, Center for Translational NeuroImaging, Northeastern University, Boston, MA 02115, USA
| | - Praveen Kulkarni
- Department of Psychology, Center for Translational NeuroImaging, Northeastern University, Boston, MA 02115, USA
| | - Eno Ebong
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Ju Qiao
- Department of Psychology, Center for Translational NeuroImaging, Northeastern University, Boston, MA 02115, USA
| | - Nick R O'Hare
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Craig F Ferris
- Department of Psychology, Center for Translational NeuroImaging, Northeastern University, Boston, MA 02115, USA
- Department of Psychology, Northeastern University, Boston, MA 02115, USA
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
20
|
Li J, Zhang P, Liu Y, Wu S, Yi X, Zhang S, Wang C, Liu M. Early amantadine treatment reduces the risk of death in patients with large hemisphere infarctions:a Chinese hospital-based study. BMC Neurol 2021; 21:419. [PMID: 34711177 PMCID: PMC8554877 DOI: 10.1186/s12883-021-02444-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/12/2021] [Indexed: 02/08/2023] Open
Abstract
Background Amantadine hydrochloride is one of the most frequently prescribed drugs for patients with severe traumatic brain injury in restoring consciousness and accelerating the pace of functional recovery. However, there is a paucity of studies on the effectiveness of amantadine in patients with severe stroke especially large hemisphere infarction (LHI). The present study aimed to investigate whether amantadine treatment is associated with better clinical outcomes in conservatively treated LHI patients. Methods We retrospectively collected conservatively treated LHI patients according to inclusion/exclusion criteria. The patients were divided into two groups based on the treatment regimen, whether they did receive amantadine hydrochloride in addition to standard therapy (ST) or not. The primary outcomes were in-hospital death, 3-month mortality, and unfavorable outcome (defined as modified Rankin Scale score of 4 to 6). All outcomes were compared between the two groups before and after propensity score matching (PSM). Multivariate logistic regression was performed to identify the association between early amantadine hydrochloride treatment and clinical outcomes in LHI patients. Results Thirty-one LHI patients treated with amantadine combined with ST and 127 patients treated with ST were enrolled. Amantadine group had a shorter prehospital delay (median: 2 vs. 10 h), a higher baseline NIHSS score (21.71 ± 4.76 vs. 17.49 ± 5.84), and a higher rate of dominant hemisphere involvement (67.74% vs. 45.67%). After PSM, amantadine treatment significantly reduced the risk of in-hospital death (7.41% vs. 31.11%, p=0.019) and 3-month mortality (25.93% vs. 55.56%, p=0.008). Amantadine treatment yielded a significant decrease in death in-hospital (before PSM: OR 0.143, 95% CI 0.034 to 0.605; after PSM: OR 0.113, 95% CI 0.020 to 0.635) and 3-month mortality (before PSM: OR 0.214, 95% CI 0.077 to 0.598; after PSM: OR 0.176, 95% CI 0.053 to 0.586) in unmatched and matched multivariate analyses. Conclusion The results of our study provide initial evidence that early amantadine treatment was associated with a decrease in death in conservatively treated LHI patients. Considering the limitations of observational study, randomized controlled trials with a large sample size may help provide a clearer picture of the utility of amantadine in LHI patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-021-02444-w.
Collapse
Affiliation(s)
- Jie Li
- Department of Neurology, People's Hospital of Deyang City, No.173, North Taishan Road, Deyang, 618000, Sichuan Province, PR China.,Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, No. 37 GuoXue Xiang, Chengdu, Sichuan Province, 610041, PR China
| | - Ping Zhang
- Department of Neurology, People's Hospital of Deyang City, No.173, North Taishan Road, Deyang, 618000, Sichuan Province, PR China
| | - Yingying Liu
- Department of Neurology, People's Hospital of Deyang City, No.173, North Taishan Road, Deyang, 618000, Sichuan Province, PR China
| | - Simiao Wu
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, No. 37 GuoXue Xiang, Chengdu, Sichuan Province, 610041, PR China
| | - Xingyang Yi
- Department of Neurology, People's Hospital of Deyang City, No.173, North Taishan Road, Deyang, 618000, Sichuan Province, PR China
| | - Shihong Zhang
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, No. 37 GuoXue Xiang, Chengdu, Sichuan Province, 610041, PR China
| | - Chun Wang
- Department of Neurology, People's Hospital of Deyang City, No.173, North Taishan Road, Deyang, 618000, Sichuan Province, PR China.
| | - Ming Liu
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, No. 37 GuoXue Xiang, Chengdu, Sichuan Province, 610041, PR China.
| |
Collapse
|
21
|
A Pilot Trial Examining the Merits of Combining Amantadine and Repetitive Transcranial Magnetic Stimulation as an Intervention for Persons With Disordered Consciousness After TBI. J Head Trauma Rehabil 2021; 35:371-387. [PMID: 33165151 DOI: 10.1097/htr.0000000000000634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Report pilot findings of neurobehavioral gains and network changes observed in persons with disordered consciousness (DoC) who received repetitive transcranial magnetic stimulation (rTMS) or amantadine (AMA), and then rTMS+AMA. PARTICIPANTS Four persons with DoC 1 to 15 years after traumatic brain injury (TBI). DESIGN Alternate treatment-order, within-subject, baseline-controlled trial. MAIN MEASURES For group and individual neurobehavioral analyses, predetermined thresholds, based on mixed linear-effects models and conditional minimally detectable change, were used to define meaningful neurobehavioral change for the Disorders of Consciousness Scale-25 (DOCS) total and Auditory-Language measures. Resting-state functional connectivity (rsFC) of the default mode and 6 other networks was examined. RESULTS Meaningful gains in DOCS total measures were observed for 75% of treatment segments and auditory-language gains were observed after rTMS, which doubled when rTMS preceded rTMS+AMA. Neurobehavioral changes were reflected in rsFC for language, salience, and sensorimotor networks. Between networks interactions were modulated, globally, after all treatments. CONCLUSIONS For persons with DoC 1 to 15 years after TBI, meaningful neurobehavioral gains were observed after provision of rTMS, AMA, and rTMS+AMA. Sequencing and combining of treatments to modulate broad-scale neural activity, via differing mechanisms, merits investigation in a future study powered to determine efficacy of this approach to enabling neurobehavioral recovery.
Collapse
|
22
|
Dopamine-Related Genes Moderate the Association Between Family Environment and Executive Function Following Pediatric Traumatic Brain Injury: An Exploratory Study. J Head Trauma Rehabil 2021; 35:262-269. [PMID: 32108714 PMCID: PMC7485582 DOI: 10.1097/htr.0000000000000564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE This study examined whether carrying dopamine-related "risk" genes-either the dopamine transporter (DAT1) 10-repeat allele or dopamine receptor-4 (DRD4) 7-repeat allele-moderated the association of family environment and executive function (EF) following traumatic brain injury (TBI) in early childhood. METHODS Caregivers of children with TBI or orthopedic injury (OI) completed the Behavior Rating Inventory of Executive Function (BRIEF) at postinjury visits. General linear models examined gene by environment interactions as moderators of the effects of TBI on EF at 12 months and 7 years postinjury. RESULTS At 12 months, we did not find any significant gene by environment interactions. At 7 years, we found a significant 3-way interaction among combined carrier status, level of permissive parenting, and injury type. For children exposed to more optimal parenting, carriers of DAT1 and/or DRD4 risk alleles with TBI showed significantly worse parent-reported EF than carriers with OI. In those with less optimal parenting, carriers and noncarriers with TBI, as well as carriers with OI, showed significantly worse parent-reported EF than noncarriers with OI, with medium to large effect sizes. CONCLUSIONS The findings highlight the importance of considering polygenetic and environmental factors in future studies of recovery following TBI and other injuries in childhood.
Collapse
|
23
|
Dobryakova E, Zuckerman S, Sandry J. Neural correlates of extrinsic and intrinsic outcome processing during learning in individuals with TBI: a pilot investigation. Brain Imaging Behav 2021; 16:344-354. [PMID: 34406636 DOI: 10.1007/s11682-021-00508-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
Outcome processing, the ability to learn from feedback, is an important component of adaptive behavior and rehabilitation. Evidence from healthy adults implicates the striatum and dopamine in outcome processing. Animal research shows that damage to dopaminergic pathways in the brain can lead to a disruption of dopamine tone and transmission. Such evidence thus suggests that persons with TBI experience deficits in outcome processing. However, no research has directly investigated outcome processing and associated neural mechanisms in TBI. Here, we examine outcome processing in individuals with TBI during learning. Given that TBI negatively impacts striatal and dopaminergic systems, we hypothesize that individuals with TBI exhibit deficits in learning from outcomes. To test this hypothesis, individuals with moderate-to-severe TBI and healthy adults were presented with a declarative paired-associate word learning task. Outcomes indicating performance accuracy were presented immediately during task performance and in the form of either monetary or performance-based feedback. Two types of feedback provided the opportunity to test whether extrinsic and intrinsic motivational aspects of outcome presentation play a role during learning and outcome processing. Our results show that individuals with TBI exhibited impaired learning from feedback compared to healthy participants. Additionally, individuals with TBI exhibited increased activation in the striatum during outcome processing. The results of this study suggest that outcome processing and learning from immediate outcomes is impaired in individuals with TBI and might be related to inefficient use of neural resources during task performance as reflected by increased activation of the striatum.
Collapse
Affiliation(s)
- Ekaterina Dobryakova
- Center for Traumatic Brain Injury Research, Kessler Foundation, 120 Eagle Rock Ave., East Hanover, NJ, 07936, USA. .,Department of Physical Medicine and Rehabilitation, Rutgers-New Jersey Medical School, Newark, NJ, USA.
| | - Suzanne Zuckerman
- Center for Traumatic Brain Injury Research, Kessler Foundation, 120 Eagle Rock Ave., East Hanover, NJ, 07936, USA
| | - Joshua Sandry
- Psychology Department, Montclair State University, 1 Normal Ave., Montclair, NJ, USA
| |
Collapse
|
24
|
Kumar RG, Ornstein KA, Corrigan JD, Sayko Adams R, Dams-O'Connor K. Association between Lifetime History of Traumatic Brain Injury, Prescription Opioid Use, and Persistent Pain: A Nationally Representative Study. J Neurotrauma 2021; 38:2284-2290. [PMID: 33567980 PMCID: PMC8672103 DOI: 10.1089/neu.2020.7496] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pain is common among adults with traumatic brain injury (TBI), yet little data exist regarding prevalence of opioid use in this population. The objective of this retrospective cohort study was to evaluate the association between lifetime TBI exposure, opioid use, and pain in a nationally representative sample of 1022 adults aged 50+ who participated in the Health and Retirement Study (HRS). Our primary exposure was lifetime TBI history measured via the Ohio State University TBI Identification Method. We evaluated three alternate TBI exposures (years since most recent TBI, age at first TBI, and number of lifetime TBIs) in sensitivity analyses. We evaluated two outcomes: recent opioid medication use, and moderate-to-severe pain measured over two HRS waves. We classified three pain groups (persistent, intermittent, and no pain). Prevalences of opioid use among individuals with and without TBI were 19.7% and 13.6%, respectively. After adjustment for age, sex, and race, individuals with TBI had a 52% increased risk for opioid use compared with individuals without TBI (relative risk = 1.52, 95% confidence interval: 1.11, 2.04). Individuals with recent TBI (1-10 years ago), first TBI after age 40+, and 2+ lifetime TBIs had greatest risk for opioid use. Compared with individuals without TBI, individuals with TBI had 4.9-times increased odds for persistent versus no pain, and 1.9-times increased odds of intermittent versus no pain. Persistent pain among adults with lifetime TBI is elevated compared with the general population, which may contribute to increased opioid use among persons with TBI, particularly those with recent injuries or multiple lifetime TBIs.
Collapse
Affiliation(s)
- Raj G. Kumar
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Katherine A. Ornstein
- Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Medicine, Division of General Internal Medicine, and Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John D. Corrigan
- Department of Physical Medicine and Rehabilitation, Ohio State University, Columbus, Ohio, USA
| | - Rachel Sayko Adams
- Heller School, Institute for Behavioral Health, Brandeis University, Waltham, Massachusetts, USA
- Rocky Mountain Mental Illness Research Education and Clinical Center, Veterans Health Administration, Aurora, Colorado, USA
| | - Kristen Dams-O'Connor
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
25
|
Rahmani E, Lemelle TM, Samarbafzadeh E, Kablinger AS. Pharmacological Treatment of Agitation and/or Aggression in Patients With Traumatic Brain Injury: A Systematic Review of Reviews. J Head Trauma Rehabil 2021; 36:E262-E283. [PMID: 33656478 DOI: 10.1097/htr.0000000000000656] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To systematically review the available literature on the pharmacological management of agitation and/or aggression in patients with traumatic brain injury (TBI), synthesize the available data, and provide guidelines. DESIGN Systematic review of systematic reviews. MAIN MEASURES A literature review of the following websites was performed looking for systematic reviews on the treatment of agitation and/or aggression among patients with TBI: PubMed, CINAHL, DynaMed, Health Business Elite, and EBSCO (Psychology and behavioral sciences collection). Two researchers independently assessed articles for meeting inclusion/exclusion criteria. Data were extracted on year of publication, reviewed databases, dates of coverage, search limitations, pharmacological agents of interest, and a list of all controlled studies included. The included controlled studies were then examined to determine potential reasons for any difference in recommendations. RESULTS The literature review led to 187 citations and 67 unique publications after removing the duplicates. Following review of the title/abstracts and full texts, a total of 11 systematic reviews were included. The systematic reviews evaluated the evidence for safety and efficacy of the following medications: amantadine, amphetamines, methylphenidate, antiepileptics, atypical and typical antipsychotics, benzodiazepines, β-blockers, and sertraline. CONCLUSIONS On the basis of the results of this literature review, the authors recommend avoiding benzodiazepines and haloperidol for treating agitation and/or aggression in the context of TBI. Atypical antipsychotics (olanzapine in particular) can be considered as practical alternatives for the as-needed management of agitation and/or aggression in lieu of benzodiazepines and haloperidol. Amantadine, β-blockers (propranolol and pindolol), antiepileptics, and methylphenidate can be considered for scheduled treatment of agitation and/or aggression in patients with TBI.
Collapse
Affiliation(s)
- Elham Rahmani
- Department of Psychiatry and Behavioral Medicine, Brody School of Medicine, East Carolina University, Greenville, North Carolina (Dr Rahmani); Georgetown University Hospital, Washington, District of Columbia (Dr Lemelle); Department of Psychiatry and Behavioral Medicine, Carilion Clinic-Virginia Tech Carilion School of Medicine, Raonoke, Virginia (Drs Kablinger and Samarbafzadeh)
| | | | | | | |
Collapse
|
26
|
Verduzco-Mendoza A, Carrillo-Mora P, Avila-Luna A, Gálvez-Rosas A, Olmos-Hernández A, Mota-Rojas D, Bueno-Nava A. Role of the Dopaminergic System in the Striatum and Its Association With Functional Recovery or Rehabilitation After Brain Injury. Front Neurosci 2021; 15:693404. [PMID: 34248494 PMCID: PMC8264205 DOI: 10.3389/fnins.2021.693404] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/03/2021] [Indexed: 01/06/2023] Open
Abstract
Disabilities are estimated to occur in approximately 2% of survivors of traumatic brain injury (TBI) worldwide, and disability may persist even decades after brain injury. Facilitation or modulation of functional recovery is an important goal of rehabilitation in all patients who survive severe TBI. However, this recovery tends to vary among patients because it is affected by the biological and physical characteristics of the patients; the types, doses, and application regimens of the drugs used; and clinical indications. In clinical practice, diverse dopaminergic drugs with various dosing and application procedures are used for TBI. Previous studies have shown that dopamine (DA) neurotransmission is disrupted following moderate to severe TBI and have reported beneficial effects of drugs that affect the dopaminergic system. However, the mechanisms of action of dopaminergic drugs have not been completely clarified, partly because dopaminergic receptor activation can lead to restoration of the pathway of the corticobasal ganglia after injury in brain structures with high densities of these receptors. This review aims to provide an overview of the functionality of the dopaminergic system in the striatum and its roles in functional recovery or rehabilitation after TBI.
Collapse
Affiliation(s)
- Antonio Verduzco-Mendoza
- Ph.D. Program in Biological and Health Sciences, Universidad Autónoma Metropolitana, Mexico City, Mexico
- Division of Biotechnology-Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Paul Carrillo-Mora
- Division of Neurosciences, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Alberto Avila-Luna
- Division of Neurosciences, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Arturo Gálvez-Rosas
- Division of Neurosciences, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology-Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Antonio Bueno-Nava
- Division of Neurosciences, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| |
Collapse
|
27
|
Progressive Neurodegeneration Across Chronic Stages of Severe Traumatic Brain Injury. J Head Trauma Rehabil 2021; 37:E144-E156. [PMID: 34145157 DOI: 10.1097/htr.0000000000000696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To examine the trajectory of structural gray matter changes across 2 chronic periods of recovery in individuals who have sustained severe traumatic brain injury (TBI), adding to the growing literature indicating that neurodegenerative processes occur in the months to years postinjury. PARTICIPANTS Patients who experienced posttraumatic amnesia of 1 hour or more, and/or scored 12 or less on the Glasgow Coma Scale at the emergency department or the scene of the accident, and/or had positive brain imaging findings were recruited while receiving inpatient care, resulting in 51 patients with severe TBI. METHODS Secondary analyses of gray matter changes across approximately 5 months, 1 year, and 2.5 years postinjury were undertaken, using an automated segmentation protocol with improved accuracy in populations with morphological anomalies. We compared patients and matched controls on regions implicated in poorer long-term clinical outcome (accumbens, amygdala, brainstem, hippocampus, thalamus). To model brain-wide patterns of change, we then conducted an exploratory principal component analysis (PCA) on the linear slopes of all regional volumes across the 3 time points. Finally, we assessed nonlinear trends across earlier (5 months-1 year) versus later (1-2.5 years) time-windows with PCA to compare degeneration rates across time. Chronic degeneration was predicted cortically and subcortically brain-wide, and within specific regions of interest. RESULTS (1) From 5 months to 1 year, patients showed significant degeneration in the accumbens, and marginal degeneration in the amygdala, brainstem, thalamus, and the left hippocampus when examined unilaterally, compared with controls. (2) PCA components representing subcortical and temporal regions, and regions from the basal ganglia, significantly differed from controls in the first time-window. (3) Progression occurred at the same rate across both time-windows, suggesting neither escalation nor attenuation of degeneration across time. CONCLUSION Localized yet progressive decline emphasizes the necessity of developing interventions to offset degeneration and improve long-term functioning.
Collapse
|
28
|
Danysz W, Dekundy A, Scheschonka A, Riederer P. Amantadine: reappraisal of the timeless diamond-target updates and novel therapeutic potentials. J Neural Transm (Vienna) 2021; 128:127-169. [PMID: 33624170 PMCID: PMC7901515 DOI: 10.1007/s00702-021-02306-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/13/2021] [Indexed: 12/30/2022]
Abstract
The aim of the current review was to provide a new, in-depth insight into possible pharmacological targets of amantadine to pave the way to extending its therapeutic use to further indications beyond Parkinson's disease symptoms and viral infections. Considering amantadine's affinities in vitro and the expected concentration at targets at therapeutic doses in humans, the following primary targets seem to be most plausible: aromatic amino acids decarboxylase, glial-cell derived neurotrophic factor, sigma-1 receptors, phosphodiesterases, and nicotinic receptors. Further three targets could play a role to a lesser extent: NMDA receptors, 5-HT3 receptors, and potassium channels. Based on published clinical studies, traumatic brain injury, fatigue [e.g., in multiple sclerosis (MS)], and chorea in Huntington's disease should be regarded potential, encouraging indications. Preclinical investigations suggest amantadine's therapeutic potential in several further indications such as: depression, recovery after spinal cord injury, neuroprotection in MS, and cutaneous pain. Query in the database http://www.clinicaltrials.gov reveals research interest in several further indications: cancer, autism, cocaine abuse, MS, diabetes, attention deficit-hyperactivity disorder, obesity, and schizophrenia.
Collapse
Affiliation(s)
- Wojciech Danysz
- Merz Pharmaceuticals GmbH., Eckenheimer Landstraße 100, 60318, Frankfurt am Main, Germany
| | - Andrzej Dekundy
- Merz Pharmaceuticals GmbH., Eckenheimer Landstraße 100, 60318, Frankfurt am Main, Germany
| | - Astrid Scheschonka
- Merz Pharmaceuticals GmbH., Eckenheimer Landstraße 100, 60318, Frankfurt am Main, Germany
| | - Peter Riederer
- Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany.
- Department Psychiatry, University of Southern Denmark Odense, Vinslows Vey 18, 5000, Odense, Denmark.
| |
Collapse
|
29
|
Gallagher VT, Murthy P, Stocks J, Vesci B, Colegrove D, Mjaanes J, Chen Y, Breiter H, LaBella C, Herrold AA, Reilly JL. Differential Change in Oculomotor Performance among Female Collegiate Soccer Players versus Non-Contact Athletes from Pre- to Post-Season. Neurotrauma Rep 2020; 1:169-180. [PMID: 33274345 PMCID: PMC7703496 DOI: 10.1089/neur.2020.0051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Sensitive and reliable tools are needed to evaluate potential behavioral and cognitive changes following head impact exposure in contact and collision sport participation. We evaluated change in oculomotor testing performance among female, varsity, collegiate athletes following variable exposure to head impacts across a season. Female, collegiate, contact sport (soccer, CONT) and non-contact sport (NON-CONT) athletes were assessed pre-season and post-season. Soccer athletes were grouped according to total season game headers into low dose (≤40 headers; CONT-Low Dose) or high dose (>40 headers; CONT-High Dose) groups. Performance on pro-saccade (reflexive visual response), anti-saccade (executive inhibition), and memory-guided saccade (MGS, spatial working memory) computer-based laboratory tasks were assessed. Primary saccade measures included latency/reaction time, inhibition error rate (anti-saccade only), and spatial accuracy (MGS only). NON-CONT (n = 20), CONT-Low Dose (n = 17), and CONT-High Dose (n = 7) groups significantly differed on pre-season versus post-season latency on tasks with executive functioning demands (anti-saccade and MGS, p ≤ 0.001). Specifically, NON-CONT and CONT-Low Dose demonstrated shorter (i.e., faster) anti-saccade (1.84% and 2.68%, respectively) and MGS (5.74% and 2.76%, respectively) latencies from pre-season to post-season, whereas CONT-High Dose showed 1.40% average longer anti-saccade, and 0.74% shorter MGS, latencies. NON-CONT and CONT-Low Dose demonstrated reduced (i.e., improved) inhibition error rate on the anti-saccade task at post-season versus pre-season, whereas CONT-High Dose demonstrated relative stability (p = 0.021). The results of this study suggest differential exposure to subconcussive head impacts in collegiate female athletes is associated with differential change in reaction time and inhibitory control performances on executive saccadic oculomotor testing.
Collapse
Affiliation(s)
- Virginia T Gallagher
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Prianka Murthy
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jane Stocks
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Brian Vesci
- Department of Sports Medicine, Northwestern University, Evanston, Illinois, USA
| | - Danielle Colegrove
- Department of Sports Medicine, Northwestern University, Evanston, Illinois, USA
| | - Jeffrey Mjaanes
- Department of Sports Medicine, Northwestern University, Evanston, Illinois, USA
| | - Yufen Chen
- Center for Translational Imaging, Northwestern University, Chicago, Illinois, USA
| | - Hans Breiter
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Cynthia LaBella
- Division of Orthopedics and Sports Medicine, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Amy A Herrold
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Edward Hines, Jr. VA Hospital, Hines, Illinois, USA
| | - James L Reilly
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
30
|
Womack KB, Dubiel R, Callender L, Dunklin C, Dahdah M, Harris TS, Devous MD, Juengst SB, Bell K, Diaz-Arrastia R, Ding K. 123I-Iofluopane Single-Photon Emission Computed Tomography as an Imaging Biomarker of Pre-Synaptic Dopaminergic System after Moderate-to-Severe Traumatic Brain Injury. J Neurotrauma 2020; 37:2113-2119. [PMID: 32216525 DOI: 10.1089/neu.2019.6892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Dopaminergic (DA) system function is frequently disrupted after traumatic brain injury (TBI). However, published interventions that target the DA system with the hope of enhancing functional outcomes are inconclusive, partially because of the lack of DA signaling biomarkers that can be used to select patients likely to benefit from DA-directed therapies or to monitor treatment efficacy. The aim of this study was to evaluate the feasibility of using 123I-iofluopane single-photon emission computerized tomography (SPECT) to assess pre-synaptic DA system dysfunction after severe TBI. Eighteen patients with severe TBI were enrolled in this study. 123I-iofluopane SPECT imaging was performed at baseline and again 2.5 h after a single dose of methylphenidate (MP) administered enterally. DA transporter (DAT) specific binding ratio (SBR) before and after MP was measured. Functional outcomes included the Disability Rating Scale, JFK Coma Recovery Scale-Revised, Functional Independence Measure, and Functional Assessment Measure. Thirteen of 18 patients completed the study. Average time from injury to SPECT scan was 48 days (standard deviation [SD], 24 days; median, 31). Baseline ioflupane striatal SBR was 1.51 ± 0.46 (median, 1.67). A 43.1% (SD, 16; median, 46.5) displacement of ioflupane from pre-synaptic DAT was observed after MP administration. Baseline SBR positively correlated with functional status at baseline and 4 weeks after completion of the study. Serum MP levels correlated with relative change in SBR (rs = 0.60; p = 0.04). Our findings suggest that 123I-iofluopane SPECT is a promising tool to determine the severity of pre-synaptic DA terminal disruption and for monitoring pharmacokinetics and pharmacodynamics of therapeutic interventions targeting the DA system.
Collapse
Affiliation(s)
- Kyle B Womack
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rosemary Dubiel
- Baylor Scott & White Institute for Rehabilitation, Dallas, Texas, USA.,Baylor Scott & White Health, Dallas, Texas, USA
| | - Librada Callender
- Baylor Scott & White Institute for Rehabilitation, Dallas, Texas, USA.,Baylor Scott & White Health, Dallas, Texas, USA
| | - Cynthia Dunklin
- Baylor Scott & White Institute for Rehabilitation, Dallas, Texas, USA.,Baylor Scott & White Health, Dallas, Texas, USA
| | | | - Thomas S Harris
- Avid Radiopharmaceuticals Inc, Philadelphia, Pennsylvania, USA
| | | | - Shannon B Juengst
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kathleen Bell
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kan Ding
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
31
|
Modrak CG, Giesler LP, Vonder Haar C. Traumatic brain injury substantially reduces the conditioned reinforcing effects of environmental cues in rats. Brain Res 2020; 1748:147084. [PMID: 32871136 DOI: 10.1016/j.brainres.2020.147084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/22/2022]
Abstract
Traumatic brain injury affects millions of people each year and is an established risk factor for addiction. Recent animal studies have causally demonstrated that injuries can increase drug self-administration across a variety of substances. One potential behavioral mediator for this finding is an increased responsivity to drug-associated cues. This endophenotype can be identified by profiling non-drug-related behaviors. The current study evaluated several paradigms (conditioned approach, conditioned reinforcement, extinction from variable interval responding, conditioned facilitation) to determine how rats with a frontal TBI differed in their response to Pavlovian conditioning in response to food-paired cues. Surprisingly, rats with a TBI demonstrated increased goal-tracking in a conditioned approach paradigm and exerted less effort for a conditioned reinforcer. Moreover, they had slightly facilitated extinction (as demonstrated by significantly larger interresponse times) in the face of reinforcer-associated cues. Despite these effects, TBI rats still demonstrated conditioned facilitation to an auditory stimulus. Together, these effects suggest a phenotype in the opposite direction of what might be anticipated. Cues still served a strong discriminative function and altered behavior; however, they did not function as strong conditioned reinforcers for TBI animals. One potential reason for this is that substantial changes to the dopamine system after TBI may reduce the conditioned reinforcing effects of cues, but sensitize the brain to potent drugs of abuse. More research will be needed to determine whether this is the case.
Collapse
Affiliation(s)
- Cassandra G Modrak
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, USA
| | - Lauren P Giesler
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, USA
| | - Cole Vonder Haar
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, USA; Department of Neuroscience, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
32
|
Kheyrkhah H, Soltani Zangbar H, Salimi O, Shahabi P, Alaei H. Prefrontal dopaminergic system and its role in working memory and cognition in spinal cord‐injured rats. Exp Physiol 2020; 105:1579-1587. [DOI: 10.1113/ep088537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/09/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Hasan Kheyrkhah
- Department of PhysiologyFaculty of MedicineIsfahan University of Medical Sciences Isfahan Iran
| | - Hamid Soltani Zangbar
- Department of Neuroscience and CognitionFaculty of Advanced Medical SciencesTabriz University of Medical Sciences Tabriz Iran
| | - Omid Salimi
- Neurosciences Research CenterTabriz University of Medical Sciences Tabriz Iran
| | - Parviz Shahabi
- Neurosciences Research CenterTabriz University of Medical Sciences Tabriz Iran
| | - HojjatAllah Alaei
- Department of PhysiologyFaculty of MedicineIsfahan University of Medical Sciences Isfahan Iran
| |
Collapse
|
33
|
Irvine KA, Sahbaie P, Ferguson AR, Clark JD. Loss of diffuse noxious inhibitory control after traumatic brain injury in rats: A chronic issue. Exp Neurol 2020; 333:113428. [PMID: 32745472 DOI: 10.1016/j.expneurol.2020.113428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 02/07/2023]
Abstract
Chronic pain is one of the most challenging and debilitating symptoms to manage after traumatic brain injury (TBI), yet the underlying mechanisms remain elusive. The disruption of normal endogenous pain control mechanisms has been linked to several forms of chronic pain and may play a role in pain after TBI. We hypothesized therefore that dysfunctional descending noradrenergic and serotonergic pain control circuits may contribute to the loss of diffuse noxious inhibitory control (DNIC), a critical endogenous pain control mechanism, weeks to months after TBI. For these studies, the rat lateral fluid percussion model of mild TBI was used along with a DNIC paradigm involving a capsaicin-conditioning stimulus. We observed sustained failure of the DNIC response up to 180-days post injury. We confirmed, that descending α2 adrenoceptor-mediated noradrenergic signaling was critical for endogenous pain inhibition in uninjured rats. However, augmenting descending noradrenergic signaling using reboxetine, a selective noradrenaline reuptake inhibitor, failed to restore DNIC after TBI. Furthermore, blocking serotonin-mediated descending signaling using selective spinal serotonergic fiber depletion with 5, 7-dihydroxytryptamine was also unsuccessful at restoring endogenous pain modulation after TBI. Unexpectedly, increasing descending serotonergic signaling using the selective serotonin reuptake inhibitor escitalopram and the serotonin-norepinephrine reuptake inhibitor duloxetine restored the DNIC response in TBI rats at both 49- and 180- days post injury. Consistent with these observations, spinal serotonergic fiber depletion with 5, 7-dihydroxytryptamine eliminated the effects of escitalopram. Intact α2 adrenoceptor signaling, however, was not required for the serotonin-mediated restoration of DNIC after TBI. These results suggest that TBI causes maladaptation of descending nociceptive signaling mechanisms and changes in the function of both adrenergic and serotonergic circuits. Such changes could predispose those with TBI to chronic pain.
Collapse
Affiliation(s)
- Karen-Amanda Irvine
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA 94305, USA; Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave (E4-220), Palo Alto, CA 94304, USA.
| | - Peyman Sahbaie
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA 94305, USA; Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave (E4-220), Palo Alto, CA 94304, USA
| | - Adam R Ferguson
- University of California San Francisco, Brain and Spinal Injury Center, Department Neurosurgery, 1001 Potrero Ave, San Francisco, CA 94110, USA
| | - J David Clark
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA 94305, USA; Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave (E4-220), Palo Alto, CA 94304, USA
| |
Collapse
|
34
|
McNamara EH, Grillakis AA, Tucker LB, McCabe JT. The closed-head impact model of engineered rotational acceleration (CHIMERA) as an application for traumatic brain injury pre-clinical research: A status report. Exp Neurol 2020; 333:113409. [PMID: 32692987 DOI: 10.1016/j.expneurol.2020.113409] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 06/18/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023]
Abstract
Closed-head traumatic brain injury (TBI) is a worldwide concern with increasing prevalence and cost to society. Rotational acceleration is a primary mechanism in TBI that results from tissue strains that give rise to diffuse axonal injury. The Closed-Head Impact Model of Engineered Rotational Acceleration (CHIMERA) was recently introduced as a method for the study of impact acceleration effects in pre-clinical TBI research. This review provides a survey of the published literature implementing the CHIMERA device and describes pathological, imaging, neurophysiological, and behavioral findings. Findings show CHIMERA inflicts damage in white matter tracts as a key area of injury. Behaviorally, repeated studies have shown motor deficits and more chronic cognitive effects after CHIMERA injury. Good progress with model application has been accomplished by investigators attending to what is required for model validation. However, the majority of CHIMERA studies only utilize adult male mice. To further establish this model, more work with female animals and various age groups need to be performed, as well as studies to further establish and standardize methodologies for validation of the models for clinical relevance. Common data elements to standardize the reporting methodology for the CHIMERA literature are suggested.
Collapse
Affiliation(s)
- Eileen H McNamara
- Neuroscience Graduate Program, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20817-4799, USA; Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20817-4799, USA
| | - Antigone A Grillakis
- Neuroscience Graduate Program, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20817-4799, USA; Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20817-4799, USA
| | - Laura B Tucker
- Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20817-4799, USA; Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20817-4799, USA
| | - Joseph T McCabe
- Neuroscience Graduate Program, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20817-4799, USA; Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20817-4799, USA; Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20817-4799, USA.
| |
Collapse
|
35
|
Gao Y, Ma L, Liang F, Zhang Y, Yang L, Liu X, Yang J. The use of amantadine in patients with unresponsive wakefulness syndrome after severe cerebral hemorrhage. Brain Inj 2020; 34:1084-1088. [PMID: 32552090 DOI: 10.1080/02699052.2020.1780315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Amantadine is currently recommended for use in patients of post-traumatic brain injury with unresponsive wakefulness syndrome (UWS). However, the application of amantadine in UWS after cerebral hemorrhage has only been rarely reported. This allows for a further exploration of the role of amantadine in the treatment of UWS resulting from a severe cerebral hemorrhage. METHODS We observed the changes of seven patients with UWS of intracerebral hemorrhage after taking amantadine. We also carried out a detailed neurological examination of the patient with disorders of consciousness to include or exclude subjects for the study. CRS-R score was used to evaluate the neurological recovery. RESULTS An improvement in consciousness was observed within 3-6 days after the start of amantadine administration in all seven cases (n = 7/7; 100%). Five patients recovered conscious and left aphasia, hemiplegia and other sequelae, and two patients recovered from UWS to minimally conscious state (MCS). CONCLUSIONS In this study, amantadine administration showed substantial positive effects on recovery following severe cerebral hemorrhage. We recommend further randomized controlled studies to determine the efficacy of amantadine.
Collapse
Affiliation(s)
- Yu Gao
- Department of Hyperbaric Oxygen Medicine, Beijing Chao-Yang Hospital, Capital Medical University , Beijing, China
| | - Linlin Ma
- Department of Hyperbaric Oxygen Medicine, Beijing Chao-Yang Hospital, Capital Medical University , Beijing, China
| | - Fang Liang
- Department of Hyperbaric Oxygen Medicine, Beijing Chao-Yang Hospital, Capital Medical University , Beijing, China
| | - Yi Zhang
- Department of Hyperbaric Oxygen Medicine, Beijing Chao-Yang Hospital, Capital Medical University , Beijing, China
| | - Lin Yang
- Department of Hyperbaric Oxygen Medicine, Beijing Chao-Yang Hospital, Capital Medical University , Beijing, China
| | - Xuehua Liu
- Department of Hyperbaric Oxygen Medicine, Beijing Chao-Yang Hospital, Capital Medical University , Beijing, China
| | - Jing Yang
- Department of Hyperbaric Oxygen Medicine, Beijing Chao-Yang Hospital, Capital Medical University , Beijing, China
| |
Collapse
|
36
|
Ozga-Hess JE, Whirtley C, O'Hearn C, Pechacek K, Vonder Haar C. Unilateral parietal brain injury increases risk-taking on a rat gambling task. Exp Neurol 2020; 327:113217. [PMID: 32014440 DOI: 10.1016/j.expneurol.2020.113217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/03/2020] [Accepted: 01/30/2020] [Indexed: 11/28/2022]
Abstract
Traumatic brain injury (TBI) affects millions of individuals every year. Many of these injuries lead to lasting effects, particularly impairments in domains broadly classified as executive functions, such as impulse control and decision-making. While these impairments have been historically associated with frontal brain damage, other injuries such as concussion or parietal injury also contribute to similar dysfunction. However, it is unknown whether animal models of TBI would replicate these broad effects that are observed in human patients. In the current study, we delivered a unilateral parietal controlled cortical impact injury and assessed the performance of rats on a motoric task (rotarod) and a test of decision-making and impulsivity (rodent gambling task). TBI rats demonstrated significant motor impairments on the rotarod task; however, this did not extend to difficulties inhibiting motor actions (impulsivity). In addition, TBI caused chronic alterations to risk-based decision-making, extending out to 12 weeks post-injury. Specifically, rats with TBI preferred the riskiest, and most suboptimal option over all others. The current data suggest that models of unilateral TBI are sufficient for replicating some aspects of executive dysfunction (risky decision-making), while others are limited to frontal damage (impulsivity). These models may be used to develop therapeutics targeted at the chronic post-injury period when these symptoms often manifest in patients, a critically understudied area in preclinical TBI research.
Collapse
Affiliation(s)
- Jenny E Ozga-Hess
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, USA
| | - Cory Whirtley
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, USA
| | - Christopher O'Hearn
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, USA
| | - Kristen Pechacek
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, USA
| | - Cole Vonder Haar
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, USA; Department of Neuroscience, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
37
|
Reward presentation reduces on-task fatigue in traumatic brain injury. Cortex 2020; 126:16-25. [PMID: 32062140 DOI: 10.1016/j.cortex.2020.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/10/2019] [Accepted: 01/07/2020] [Indexed: 11/22/2022]
Abstract
While cognitive fatigue is experienced by up to 80% of individuals with traumatic brain injury (TBI), little is known about its neural underpinnings. We previously hypothesized that presentation of rewarding outcomes leads to cognitive fatigue reduction and activation of the striatum, a brain region shown to be associated with cognitive fatigue in clinical populations and processing of rewarding outcomes. We have demonstrated this in individuals with multiple sclerosis. Here, we tested this hypothesis in individuals with TBI. Twenty-one individuals with TBI and 24 healthy participants underwent functional magnetic resonance imaging. Participants performed a task during which they were presented with 1) the Outcome condition where they were exposed to monetary rewards, and 2) the No Outcome condition that served as the control condition and was not associated with monetary rewards. In accordance with our hypothesis, results showed that attainment of rewarding outcomes leads to cognitive fatigue reduction in individuals with TBI, as well as activation of the striatum. Specifically, we observed a significant group by condition interaction on fatigue scores driven by the TBI group reporting lower levels of fatigue after the Outcome condition. fMRI data revealed a significant main-effect of condition in regions previously implicated in outcome processing, while a significant group by condition interaction was observed in the left ventral striatum as revealed by a priori region of interest analysis. Results suggest that a salient motivator can significantly reduce fatigue and that outcome presentation leads to increased activation of the ventral striatum in TBI. These findings can inform the development of future non-pharmacological cognitive fatigue treatment methods and contribute to the growing body of evidence showing the association between cognitive fatigue and the striatum.
Collapse
|
38
|
Krishna G, Beitchman JA, Bromberg CE, Currier Thomas T. Approaches to Monitor Circuit Disruption after Traumatic Brain Injury: Frontiers in Preclinical Research. Int J Mol Sci 2020; 21:ijms21020588. [PMID: 31963314 PMCID: PMC7014469 DOI: 10.3390/ijms21020588] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/03/2020] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
Mild traumatic brain injury (TBI) often results in pathophysiological damage that can manifest as both acute and chronic neurological deficits. In an attempt to repair and reconnect disrupted circuits to compensate for loss of afferent and efferent connections, maladaptive circuitry is created and contributes to neurological deficits, including post-concussive symptoms. The TBI-induced pathology physically and metabolically changes the structure and function of neurons associated with behaviorally relevant circuit function. Complex neurological processing is governed, in part, by circuitry mediated by primary and modulatory neurotransmitter systems, where signaling is disrupted acutely and chronically after injury, and therefore serves as a primary target for treatment. Monitoring of neurotransmitter signaling in experimental models with technology empowered with improved temporal and spatial resolution is capable of recording in vivo extracellular neurotransmitter signaling in behaviorally relevant circuits. Here, we review preclinical evidence in TBI literature that implicates the role of neurotransmitter changes mediating circuit function that contributes to neurological deficits in the post-acute and chronic phases and methods developed for in vivo neurochemical monitoring. Coupling TBI models demonstrating chronic behavioral deficits with in vivo technologies capable of real-time monitoring of neurotransmitters provides an innovative approach to directly quantify and characterize neurotransmitter signaling as a universal consequence of TBI and the direct influence of pharmacological approaches on both behavior and signaling.
Collapse
Affiliation(s)
- Gokul Krishna
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA; (G.K.); (J.A.B.); (C.E.B.)
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Joshua A. Beitchman
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA; (G.K.); (J.A.B.); (C.E.B.)
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
- College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Caitlin E. Bromberg
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA; (G.K.); (J.A.B.); (C.E.B.)
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Theresa Currier Thomas
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA; (G.K.); (J.A.B.); (C.E.B.)
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
- Phoenix VA Healthcare System, Phoenix, AZ 85012, USA
- Correspondence: ; Tel.: +1-602-827-2348
| |
Collapse
|
39
|
Yousefzadeh-Chabok S, Kapourchali FR, Ramezani S. Determinants of long-term health-related quality of life in adult patients with mild traumatic brain injury. Eur J Trauma Emerg Surg 2019; 47:839-846. [DOI: 10.1007/s00068-019-01252-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/22/2019] [Indexed: 10/25/2022]
|
40
|
Boukrina O, Kucukboyaci NE, Dobryakova E. Considerations of power and sample size in rehabilitation research. Int J Psychophysiol 2019; 154:6-14. [PMID: 31655185 DOI: 10.1016/j.ijpsycho.2019.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 05/22/2019] [Accepted: 08/23/2019] [Indexed: 01/26/2023]
Abstract
With the current emphasis on power and reproducibility, pressures are rising to increase sample sizes in rehabilitation research in order to reflect more accurate effect estimation and generalizable results. The conventional way of increasing power by enrolling more participants is less feasible in some fields of research. In particular, rehabilitation research faces considerable challenges in achieving this goal. We describe the specific challenges to increasing power by recruiting large sample sizes and obtaining large effects in rehabilitation research. Specifically, we discuss how variability within clinical populations, lack of common standards for selecting appropriate control groups; potentially reduced reliability of measurements of brain function in individuals recovering from a brain injury; biases involved in a priori effect size estimation, and higher budgetary and staffing requirements can influence considerations of sample and effect size in rehabilitation. We also describe solutions to these challenges, such as increased sampling per participant, improving experimental control, appropriate analyses, transparent result reporting and using innovative ways of harnessing the inherent variability of clinical populations. These solutions can improve statistical power and produce reliable and valid results even in the face of limited availability of large samples.
Collapse
Affiliation(s)
- Olga Boukrina
- Center for Stroke Rehabilitation Research, Kessler Foundation, West Orange, NJ, USA; Department of Physical Medicine and Rehabilitation, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - N Erkut Kucukboyaci
- Center for Traumatic Brain Injury Research, Kessler Foundation, East Hanover, NJ, USA; Department of Physical Medicine and Rehabilitation, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Ekaterina Dobryakova
- Center for Traumatic Brain Injury Research, Kessler Foundation, East Hanover, NJ, USA; Department of Physical Medicine and Rehabilitation, Rutgers-New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
41
|
Broussard JI, Redell JB, Zhao J, Maynard ME, Kobori N, Perez A, Hood KN, Zhang XO, Moore AN, Dash PK. Mild Traumatic Brain Injury Decreases Spatial Information Content and Reduces Place Field Stability of Hippocampal CA1 Neurons. J Neurotrauma 2019; 37:227-235. [PMID: 31530217 DOI: 10.1089/neu.2019.6766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Both clinical and experimental studies have reported that mild traumatic brain injury (mTBI) can result in cognitive impairments in the absence of overt brain damage. Whether these impairments result from neuronal dysfunction/altered plasticity is an area that has received limited attention. In this study, we recorded activity of neurons in the cornu Ammonis (CA)1 subfield of the hippocampus in sham and mild lateral fluid percussion injured (mFPI) rats while these animals were performing an object location task. Electrophysiology results showed that the number of excitatory neurons encoding spatial information (i.e., place cells) was reduced in mFPI rats, and that these cells had broader and less stable place fields. Additionally, the in-field firing rate of place cells in sham operated, but not in mFPI, animals increased when objects within the testing arena were moved. Immunostaining indicated no visible damage or overall neuronal loss in mFPI brain sections. However, a reduction in the number of parvalbumin-positive inhibitory neurons in the CA1 subfield of mFPI animals was observed, suggesting that this reduction could have influenced place cell physiology. Alterations in spatial information content, place cell stability, and activity in mFPI rats coincided with poor performance in the object location task. These results indicate that altered place cell physiology may underlie the hippocampus-dependent cognitive impairments that result from mTBI.
Collapse
Affiliation(s)
- John I Broussard
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas
| | - John B Redell
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas
| | - Jing Zhao
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas
| | - Mark E Maynard
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas
| | - Nobuhide Kobori
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas
| | - Alec Perez
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas
| | - Kimberly N Hood
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas
| | - Xu O Zhang
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas
| | - Anthony N Moore
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas
| | - Pramod K Dash
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas
| |
Collapse
|
42
|
Bader F, Kochen WR, Kraus M, Wiener M. The dissociation of temporal processing behavior in concussion patients: Stable motor and dynamic perceptual timing. Cortex 2019; 119:215-230. [DOI: 10.1016/j.cortex.2019.04.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 03/07/2019] [Accepted: 04/25/2019] [Indexed: 02/07/2023]
|
43
|
Enhanced descending pain facilitation in acute traumatic brain injury. Exp Neurol 2019; 320:112976. [PMID: 31185197 DOI: 10.1016/j.expneurol.2019.112976] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/25/2019] [Accepted: 06/06/2019] [Indexed: 01/23/2023]
Abstract
Acute and persistent pain are recognized consequences of TBI that can enhance suffering and significantly impair rehabilitative efforts. Both experimental models and clinical studies suggest that TBI may result in an imbalance between descending pain facilitatory and inhibitory pathways. The aim of this study was to assess the role of enhanced descending serotonin-mediated pain facilitation in a rat TBI model using selective spinal serotonergic fiber depletion with 5, 7-dihydroxytryptamine (DHT). We observed significant hindpaw allodynia in TBI rats that was reduced after DHT but not vehicle treatment. Immunohistochemical studies demonstrated profound spinal serotonin depletion in DHT-treated rats. Furthermore, lumbar intrathecal administration of the 5-HT3 receptor antagonist ondansetron at 7 days post-injury (DPI), when hindpaw allodynia was maximal, also attenuated nociceptive sensitization. Additional immunohistochemical analyses of the lumbar spinal cord at 7 DPI revealed a robust bilateral microglial response in the superficial dorsal horns that was significantly reduced with DHT treatment. Furthermore, serotonin depletion also prevented the TBI-induced bilateral increase in c-Fos positive cells within the Rexed laminae I and II of the dorsal horns. These results indicate that in the weeks following TBI, pain may be responsive to 5-HT3 receptor antagonists or other measures which rebalance descending pain modulation.
Collapse
|
44
|
Gallant C, Good D. Alcohol misuse and traumatic brain injury: a review of the potential roles of dopaminergic dysfunction and physiological underarousal post-injury. APPLIED NEUROPSYCHOLOGY-ADULT 2019; 28:501-511. [PMID: 31561716 DOI: 10.1080/23279095.2019.1670181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although many researchers have demonstrated an increase in alcohol use following traumatic brain injury (TBI), there is also a body of research indicating that alcohol misuse predisposes one to injury and precedes TBI. Accordingly, various mechanisms have been proposed (e.g., self-medication, dampened levels of arousal, dopaminergic dysfunction, etc.) and variable results have emerged. This paper reviews the empirical evidence, for and against, TBI as a risk factor for alcohol misuse. In particular, this paper focuses on the brain-behavior relationships involved and examines the roles of physiological underarousal and dopaminergic dysfunction in the development of alcohol misuse after injury. Alcohol misuse impedes community reintegration among TBI survivors and creates additional rehabilitative challenges. Thus, in order to inform and improve treatment outcomes among this vulnerable population, a deeper understanding of the neural mechanisms implicated is needed.
Collapse
Affiliation(s)
- Caitlyn Gallant
- Department of Psychology, Brock University, St. Catharines, ON, Canada
| | - Dawn Good
- Department of Psychology, Brock University, St. Catharines, ON, Canada.,Centre for Neuroscience, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
45
|
Vonder Haar C, O'Hearn CM, Winstanley CA. Exposure to uncertainty mediates the effects of traumatic brain injury on probabilistic decision-making in rats. Brain Inj 2019; 34:140-148. [PMID: 31532706 DOI: 10.1080/02699052.2019.1669073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Primary Objective: Traumatic brain injury (TBI) is associated with numerous psychiatric comorbidities, and subclinical psychiatric symptoms. While many symptoms have been replicated in animal models of brain injury, a vast majority of studies utilize naïve rats as subjects, which fail to mimic the complex learning history of human patients.Methods and Procedures: In the current study, we evaluated the effects of a brain injury in animals with early exposure to uncertainty on post-injury decision-making in a probabilistic task, the rodent gambling task (RGT).Main Outcomes and Results: Exposure to uncertainty resulted in a heterogeneous sample relative to prior publications, and brain-injured rats showed no deficits in choice behavior compared to shams which contrasts with large, pervasive deficits in previously published work. However, TBI increased impulsivity and caused transient changes in behavioral variables indicative of initial motivational deficits (pellets earned, omitted responses). Notably, effects of amphetamine were similar on this heterogeneous sample of rats relative to a number of other published reports, suggesting consistent effects of gross monoaminergic manipulations on choice behavior, independent of experience.Conclusions: Going forward, translational studies need to consider the heterogeneity that exists at the clinical level and account for these problems when modeling diseases in animals.
Collapse
Affiliation(s)
- Cole Vonder Haar
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, USA.,Department of Neuroscience, West Virginia University, Morgantown, WV, USA.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Christopher M O'Hearn
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, USA
| | - Catharine A Winstanley
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
46
|
Ko IG, Kim CJ, Kim H. Treadmill exercise improves memory by up-regulating dopamine and down-regulating D 2 dopamine receptor in traumatic brain injury rats. J Exerc Rehabil 2019; 15:504-511. [PMID: 31523669 PMCID: PMC6732546 DOI: 10.12965/jer.1938316.158] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/16/2019] [Indexed: 12/22/2022] Open
Abstract
Traumatic brain injury (TBI) causes a variety of neuropathological manifestations including cognitive, emotional, physiological and psychological deficits. Physical exercise is known to ameliorate neurological impairments induced by various brain injuries. We investigated the effects of treadmill exercise on memory impairments due to TBI in relation to dopamine and D2 dopamine receptor. TBI was induced with an electromagnetic-controlled cortical impact device. The rats in the exercise groups were scheduled to run on a treadmill for 30 min once a day for 28 days after TBI induction. Then, step-down avoidance task, radial 8-arm maze test, immunohistochemistry for tyrosine hydroxylase (TH), and western blot for D2 dopamine receptor were performed. TBI impaired short-term and spatial learning memories. TBI decreased TH expressions in the prefrontal cortex (PFC), striatum, hippocampus dentate gyrus, and substantia nigra (SN). By contrast, the expressions of D2 dopamine receptor in the PFC, striatum, hippocampus, and SN were increased by TBI. Treadmill exercise alleviated the impairments of short-term and spatial learning memories observed in TBI rats. TH expression was decreased and D2 dopamine receptor expression was increased in TBI rats. Treadmill exercise enhanced TH expression and suppressed D2 dopamine receptor expression in TBI rats. TBI deteriorated short-term and spatial learning memories, in contrast, treadmill exercise alleviated the TBI-induced memory impairments by up-regulating dopamine level and down-regulating D2 dopamine receptor expression.
Collapse
Affiliation(s)
- Il-Gyu Ko
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Chang-Ju Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Hong Kim
- Department of Oriental Sports Medicine, College of Biomedical Science, Daegu Haany University, Gyeongsan, Korea
| |
Collapse
|
47
|
Kulkarni P, Morrison TR, Cai X, Iriah S, Simon N, Sabrick J, Neuroth L, Ferris CF. Neuroradiological Changes Following Single or Repetitive Mild TBI. Front Syst Neurosci 2019; 13:34. [PMID: 31427931 PMCID: PMC6688741 DOI: 10.3389/fnsys.2019.00034] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 07/10/2019] [Indexed: 11/13/2022] Open
Abstract
Objectives To test the hypothesis that there are differences in neuroradiological measures between single and repeated mild traumatic brain injury using multimodal MRI. Methods A closed-head momentum exchange model was used to produce one or three mild head injuries in young adult male rats compared to non-injured, age and weight-matched controls. Six-seven weeks post-injury, rats were studied for deficits in cognitive and motor function. Seven-eight weeks post-injury changes in brain anatomy and function were evaluated through analysis of high resolution T2 weighted images, resting-state BOLD functional connectivity, and diffusion weighted imaging with quantitative anisotropy. Results Head injuries occurred without skull fracture or signs of intracranial bleeding or contusion. There were no significant differences in cognitive or motors behaviors between experimental groups. With a single mild hit, the affected areas were limited to the caudate/putamen and central amygdala. Rats hit three times showed altered diffusivity in white matter tracts, basal ganglia, central amygdala, brainstem, and cerebellum. Comparing three hits to one hit showed a similar pattern of change underscoring a dose effect of repeated head injury on the brainstem and cerebellum. Disruption of functional connectivity was pronounced with three mild hits. The midbrain dopamine system, hippocampus, and brainstem/cerebellum showed hypoconnectivity. Interestingly, rats exposed to one hit showed enhanced functional connectivity (or hyperconnectivity) across brain sites, particularly between the olfactory system and the cerebellum. Interpretation Neuroradiological evidence of altered brain structure and function, particularly in striatal and midbrain dopaminergic areas, persists long after mild repetitive head injury. These changes may serve as biomarkers of neurodegeneration and risk for dementia later in life.
Collapse
Affiliation(s)
- Praveen Kulkarni
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Thomas R Morrison
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Xuezhu Cai
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Sade Iriah
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Neal Simon
- Azevan Pharmaceuticals, Bethlehem, PA, United States.,Department of Biological Sciences, College of Arts and Sciences, Lehigh University, Bethlehem, PA, United States
| | - Julia Sabrick
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Lucas Neuroth
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Craig F Ferris
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| |
Collapse
|
48
|
Executive (dys)function after traumatic brain injury: special considerations for behavioral pharmacology. Behav Pharmacol 2019; 29:617-637. [PMID: 30215621 PMCID: PMC6155367 DOI: 10.1097/fbp.0000000000000430] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Executive function is an umbrella term that includes cognitive processes such as decision-making, impulse control, attention, behavioral flexibility, and working memory. Each of these processes depends largely upon monoaminergic (dopaminergic, serotonergic, and noradrenergic) neurotransmission in the frontal cortex, striatum, and hippocampus, among other brain areas. Traumatic brain injury (TBI) induces disruptions in monoaminergic signaling along several steps in the neurotransmission process - synthesis, distribution, and breakdown - and in turn, produces long-lasting deficits in several executive function domains. Understanding how TBI alters monoamingeric neurotransmission and executive function will advance basic knowledge of the underlying principles that govern executive function and potentially further treatment of cognitive deficits following such injury. In this review, we examine the influence of TBI on the following measures of executive function - impulsivity, behavioral flexibility, and working memory. We also describe monoaminergic-systems changes following TBI. Given that TBI patients experience alterations in monoaminergic signaling following injury, they may represent a unique population with regard to pharmacotherapy. We conclude this review by discussing some considerations for pharmacotherapy in the field of TBI.
Collapse
|
49
|
Jolly AE, Raymont V, Cole JH, Whittington A, Scott G, De Simoni S, Searle G, Gunn RN, Sharp DJ. Dopamine D2/D3 receptor abnormalities after traumatic brain injury and their relationship to post-traumatic depression. NEUROIMAGE-CLINICAL 2019; 24:101950. [PMID: 31352218 PMCID: PMC6664227 DOI: 10.1016/j.nicl.2019.101950] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 06/20/2019] [Accepted: 07/19/2019] [Indexed: 11/18/2022]
Abstract
Objective To investigate dopamine D2/D3 receptor availability following traumatic brain injury (TBI) and their relationship to the presence of DSM-IV Major Depressive Disorder (MDD) and patterns of axonal injury. Methods Twelve moderate-severe TBI patients and 26 controls were imaged using [11C]PHNO positron emission tomography (PET) and structural magnetic resonance imaging (MRI). TBI patients and a second group of 32 controls also underwent diffusion tensor imaging (DTI) and neuropsychological assessment. Patients included six with post-injury MDD (TBI-MDD) and six without (TBI-NON). Non-displaceable binding potential (BPND) [11C]PHNO values were used to index D2/D3 receptor availability, and were calculated using a reference region procedure. Differences in BPND were examined using voxelwise and region-of-interest analyses. White matter microstructure integrity, quantified by fractional anisotropy (FA), was assessed and correlated with BPND. Results Lower [11C]PHNO BPND was found in the caudate across all TBI patients when compared to controls. Lower [11C]PHNO BPND was observed in the caudate of TBI-MDD patients and increased [11C]PHNO BPND in the Amygdala of TBI-NON patients compared to controls. There were no significant differences in [11C]PHNO BPND between TBI-MDD and TBI-NON patients. Furthermore, DTI provided evidence of axonal injury following TBI. The uncinate fasciculus and cingulum had abnormally low FA, with the uncinate particularly affected in TBI-MDD patients. Caudate [11C]PHNO BPND correlated with FA within the nigro-caudate tract. Conclusions [11C]PHNO BPND is abnormal following TBI, which indicates post-traumatic changes in D2/D3 receptors. Patterns of [11C]PHNO BPND seen in patients with and without MDD suggest that further research would be beneficial to determine whether the use of dopaminergic treatment might be effective in the treatment of post-traumatic depression. [11C]PHNO PET is used for the first time in traumatic brain injury (TBI) patients. Post-traumatic changes in dopamine D2/D3 receptors were observed. Patients with major depression showed more prominent reductions in [11C]PHNO BPND. Non-depressed TBI patients had greater [11C]PHNO BPND in the Amygdala. These findings suggest a potential role of D2/D3 changes in post-TBI depression.
Collapse
Affiliation(s)
- Amy E Jolly
- Division of Brain Sciences, Department of Medicine, Imperial College London, UK.
| | - Vanessa Raymont
- Division of Brain Sciences, Department of Medicine, Imperial College London, UK; Centre of Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, UK; Department of Psychiatry, University of Oxford, UK.
| | - James H Cole
- Division of Brain Sciences, Department of Medicine, Imperial College London, UK.
| | - Alex Whittington
- Invicro, Centre for Imaging Sciences, Imperial College London, UK.
| | - Gregory Scott
- Division of Brain Sciences, Department of Medicine, Imperial College London, UK.
| | - Sara De Simoni
- Division of Brain Sciences, Department of Medicine, Imperial College London, UK.
| | - Graham Searle
- Invicro, Centre for Imaging Sciences, Imperial College London, UK.
| | - Roger N Gunn
- Invicro, Centre for Imaging Sciences, Imperial College London, UK.
| | - David J Sharp
- Division of Brain Sciences, Department of Medicine, Imperial College London, UK.
| |
Collapse
|
50
|
Vonder Haar C, Martens KM, Bashir A, McInnes KA, Cheng WH, Cheung H, Stukas S, Barron C, Ladner T, Welch KA, Cripton PA, Winstanley CA, Wellington CL. Repetitive closed-head impact model of engineered rotational acceleration (CHIMERA) injury in rats increases impulsivity, decreases dopaminergic innervation in the olfactory tubercle and generates white matter inflammation, tau phosphorylation and degeneration. Exp Neurol 2019; 317:87-99. [DOI: 10.1016/j.expneurol.2019.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 01/20/2023]
|