1
|
Yuan Z, Pavel MA, Hansen SB. GABA and astrocytic cholesterol determine the lipid environment of GABA AR in cultured cortical neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591395. [PMID: 38746110 PMCID: PMC11092523 DOI: 10.1101/2024.04.26.591395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The γ-aminobutyric acid (GABA) type A receptor (GABAAR), a GABA activated pentameric chloride channel, mediates fast inhibitory neurotransmission in the brain. The lipid environment is critical for GABAAR function. How lipids regulate the channel in the cell membrane is not fully understood. Here we employed super resolution imaging of lipids to demonstrate that the agonist GABA induces a rapid and reversible membrane translocation of GABAAR to phosphatidylinositol 4,5-bisphosphate (PIP2) clusters in mouse primary cortical neurons. This translocation relies on nanoscopic separation of PIP2 clusters and lipid rafts (cholesterol-dependent ganglioside clusters). In a resting state, the GABAAR associates with lipid rafts and this colocalization is enhanced by uptake of astrocytic secretions. These astrocytic secretions enhance endocytosis and delay desensitization. Our findings suggest intercellular signaling from astrocytes regulates GABAAR location based on lipid uptake in neurons. The findings have implications for treating mood disorders associated with altered neural excitability.
Collapse
Affiliation(s)
- Zixuan Yuan
- Department of Molecular Medicine, Department of Neuroscience, The Scripps Research Institute, Scripps, Jupiter, Florida 33458, USA
- Scripps Research Skaggs Graduate School of Chemical and Biological Science, The Scripps Research Institute, Scripps, Jupiter, Florida 33458, USA
| | - Mahmud Arif Pavel
- Department of Molecular Medicine, Department of Neuroscience, The Scripps Research Institute, Scripps, Jupiter, Florida 33458, USA
| | - Scott B. Hansen
- Department of Molecular Medicine, Department of Neuroscience, The Scripps Research Institute, Scripps, Jupiter, Florida 33458, USA
- Scripps Research Skaggs Graduate School of Chemical and Biological Science, The Scripps Research Institute, Scripps, Jupiter, Florida 33458, USA
- Department of Molecular Medicine, Department of Neuroscience, UF Scripps, Jupiter, Florida 33458, USA
| |
Collapse
|
2
|
Sibarov DA, Zhuravleva ZD, Ilina MA, Boikov SI, Stepanenko YD, Karelina TV, Antonov SM. Unveiling the Role of Cholesterol in Subnanomolar Ouabain Rescue of Cortical Neurons from Calcium Overload Caused by Excitotoxic Insults. Cells 2023; 12:2011. [PMID: 37566090 PMCID: PMC10417153 DOI: 10.3390/cells12152011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023] Open
Abstract
Na/K-ATPase maintains transmembrane ionic gradients and acts as a signal transducer when bound to endogenous cardiotonic steroids. At subnanomolar concentrations, ouabain induces neuroprotection against calcium overload and apoptosis of neurons during excitotoxic stress. Here, the role of lipid rafts in interactions between Na/K-ATPase, sodium-calcium exchanger (NCX), and N-methy-D-aspartate receptors (NMDARs) was investigated. We analyzed 0.5-1-nanometer ouabain's effects on calcium responses and miniature post-synaptic current (mEPSCs) frequencies of cortical neurons during the action of NMDA in rat primary culture and brain slices. In both objects, ouabain attenuated NMDA-evoked calcium responses and prevented an increase in mEPSC frequency, while the cholesterol extraction by methyl-β-cyclodextrin prevented the effects. The data support the conclusions that (i) ouabain-induced inhibition of NMDA-elicited calcium response involves both pre- and post-synapse, (ii) the presence of astrocytes in the tripartite synapse is not critical for the ouabain effects, which are found to be similar in cell cultures and brain slices, and (iii) ouabain action requires the integrity of cholesterol-rich membrane microdomains in which the colocalization and functional interaction of NMDAR-transferred calcium influx, calcium extrusion by NCX, and Na/K-ATPase modulation of the exchanger occur. This regulation of the molecules by cardiotonic steroids may influence synaptic transmission, prevent excitotoxic neuronal death, and interfere with the pharmacological actions of neurological medicines.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sergei M. Antonov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Torez pr. 44, 194223 Saint-Petersburg, Russia; (D.A.S.); (Z.D.Z.); (M.A.I.); (S.I.B.); (Y.D.S.); (T.V.K.)
| |
Collapse
|
3
|
Komatsuya K, Kikuchi N, Hirabayashi T, Kasahara K. The Regulatory Roles of Cerebellar Glycosphingolipid Microdomains/Lipid Rafts. Int J Mol Sci 2023; 24:ijms24065566. [PMID: 36982638 PMCID: PMC10058044 DOI: 10.3390/ijms24065566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Lipid rafts are dynamic assemblies of glycosphingolipids, sphingomyelin, cholesterol, and specific proteins which are stabilized into platforms involved in the regulation of vital cellular processes. Cerebellar lipid rafts are cell surface ganglioside microdomains for the attachment of GPI-anchored neural adhesion molecules and downstream signaling molecules such as Src-family kinases and heterotrimeric G proteins. In this review, we summarize our recent findings on signaling in ganglioside GD3 rafts of cerebellar granule cells and several findings by other groups on the roles of lipid rafts in the cerebellum. TAG-1, of the contactin group of immunoglobulin superfamily cell adhesion molecules, is a phosphacan receptor. Phosphacan regulates the radial migration signaling of cerebellar granule cells, via Src-family kinase Lyn, by binding to TAG-1 on ganglioside GD3 rafts. Chemokine SDF-1α, which induces the tangential migration of cerebellar granule cells, causes heterotrimeric G protein Goα translocation to GD3 rafts. Furthermore, the functional roles of cerebellar raft-binding proteins including cell adhesion molecule L1, heterotrimeric G protein Gsα, and L-type voltage-dependent calcium channels are discussed.
Collapse
|
4
|
Isik OA, Cizmecioglu O. Rafting on the Plasma Membrane: Lipid Rafts in Signaling and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1436:87-108. [PMID: 36648750 DOI: 10.1007/5584_2022_759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The plasma membrane is not a uniform phospholipid bilayer; it has specialized membrane nano- or microdomains called lipid rafts. Lipid rafts are small cholesterol and sphingolipid-rich plasma membrane islands. Although their existence was long debated, their presence in the plasma membrane of living cells is now well accepted with the advent of super-resolution imaging techniques. It is interesting to note that lipid rafts function to compartmentalize receptors and their regulators and substantially modulate cellular signaling. In this review, we will examine the role of lipid rafts and caveolae-lipid raft-like microdomains with a distinct 3D morphology-in cellular signaling. Moreover, we will investigate how raft compartmentalized signaling regulates diverse physiological processes such as proliferation, apoptosis, immune signaling, and development. Also, the deregulation of lipid raft-mediated signaling during tumorigenesis and metastasis will be explored.
Collapse
Affiliation(s)
- Ozlem Aybuke Isik
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Onur Cizmecioglu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.
| |
Collapse
|
5
|
Roy A, Patra SK. Lipid Raft Facilitated Receptor Organization and Signaling: A Functional Rheostat in Embryonic Development, Stem Cell Biology and Cancer. Stem Cell Rev Rep 2023; 19:2-25. [PMID: 35997871 DOI: 10.1007/s12015-022-10448-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2022] [Indexed: 01/29/2023]
Abstract
Molecular views of plasma membrane organization and dynamics are gradually changing over the past fifty years. Dynamics of plasma membrane instigate several signaling nexuses in eukaryotic cells. The striking feature of plasma membrane dynamics is that, it is internally transfigured into various subdomains of clustered macromolecules. Lipid rafts are nanoscale subdomains, enriched with cholesterol and sphingolipids, reside as floating entity mostly on the exoplasmic leaflet of the lipid bilayer. In terms of functionality, lipid rafts are unique among other membrane subdomains. Herein, advances on the roles of lipid rafts in cellular physiology and homeostasis are discussed, precisely, on how rafts dynamically harbor signaling proteins, including GPCRs, catalytic receptors, and ionotropic receptors within it and orchestrate multiple signaling pathways. In the developmental proceedings signaling are designed for patterning of overall organism and they differ from the somatic cell physiology and signaling of fully developed organisms. Some of the developmental signals are characteristic in maintenance of stemness and activated during several types of tumor development and cancer progression. The harmony between extracellular signaling and lineage specific transcriptional programs are extremely important for embryonic development. The roles of plasma membrane lipid rafts mediated signaling in lineage specificity, early embryonic development, stem cell maintenance are emerging. In view of this, we have highlighted and analyzed the roles of lipid rafts in receptor organization, cell signaling, and gene expression during embryonic development; from pre-implantation through the post-implantation phase, in stem cell and cancer biology.
Collapse
Affiliation(s)
- Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
6
|
Free Cholesterol Affects the Function and Localization of Human Na +/Taurocholate Cotransporting Polypeptide (NTCP) and Organic Cation Transporter 1 (OCT1). Int J Mol Sci 2022; 23:ijms23158457. [PMID: 35955590 PMCID: PMC9368832 DOI: 10.3390/ijms23158457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/15/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are associated with obesity. They are accompanied by increased levels of free cholesterol in the liver. Most free cholesterol resides within the plasma membrane. We assessed the impact of adding or removing free cholesterol on the function and localization of two hepatocellular uptake transporters: the Na+/taurocholate cotransporting polypeptide (NTCP) and the organic cation transporter 1 (OCT1). We used a cholesterol-MCD complex (cholesterol) to add cholesterol and methyl-β-cyclodextrin (MCD) to remove cholesterol. Our results demonstrate that adding cholesterol decreases NTCP capacity from 132 ± 20 to 69 ± 37 µL/mg/min and OCT1 capacity from 209 ± 66 to 125 ± 26 µL/mg/min. Removing cholesterol increased NTCP and OCT1 capacity to 224 ± 65 and 279 ± 20 µL/mg/min, respectively. In addition, adding cholesterol increased the localization of NTCP within lipid rafts, while adding or removing cholesterol increased OCT1 localization in lipid rafts. These results demonstrate that increased cholesterol levels can impair NTCP and OCT1 function, suggesting that the free cholesterol content of the liver can alter bile acid and drug uptake into the liver. This could explain the increased plasma bile acid levels in NAFLD and NASH patients and potentially lead to altered drug disposition.
Collapse
|
7
|
Loh D, Reiter RJ. Melatonin: Regulation of Viral Phase Separation and Epitranscriptomics in Post-Acute Sequelae of COVID-19. Int J Mol Sci 2022; 23:8122. [PMID: 35897696 PMCID: PMC9368024 DOI: 10.3390/ijms23158122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/09/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
The relentless, protracted evolution of the SARS-CoV-2 virus imposes tremendous pressure on herd immunity and demands versatile adaptations by the human host genome to counter transcriptomic and epitranscriptomic alterations associated with a wide range of short- and long-term manifestations during acute infection and post-acute recovery, respectively. To promote viral replication during active infection and viral persistence, the SARS-CoV-2 envelope protein regulates host cell microenvironment including pH and ion concentrations to maintain a high oxidative environment that supports template switching, causing extensive mitochondrial damage and activation of pro-inflammatory cytokine signaling cascades. Oxidative stress and mitochondrial distress induce dynamic changes to both the host and viral RNA m6A methylome, and can trigger the derepression of long interspersed nuclear element 1 (LINE1), resulting in global hypomethylation, epigenetic changes, and genomic instability. The timely application of melatonin during early infection enhances host innate antiviral immune responses by preventing the formation of "viral factories" by nucleocapsid liquid-liquid phase separation that effectively blockades viral genome transcription and packaging, the disassembly of stress granules, and the sequestration of DEAD-box RNA helicases, including DDX3X, vital to immune signaling. Melatonin prevents membrane depolarization and protects cristae morphology to suppress glycolysis via antioxidant-dependent and -independent mechanisms. By restraining the derepression of LINE1 via multifaceted strategies, and maintaining the balance in m6A RNA modifications, melatonin could be the quintessential ancient molecule that significantly influences the outcome of the constant struggle between virus and host to gain transcriptomic and epitranscriptomic dominance over the host genome during acute infection and PASC.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA;
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
8
|
Mehrabian M, Wang X, Eid S, Yan BQ, Grinberg M, Siegner M, Sackmann C, Sulman M, Zhao W, Williams D, Schmitt-Ulms G. Cardiac glycoside-mediated turnover of Na, K-ATPases as a rational approach to reducing cell surface levels of the cellular prion protein. PLoS One 2022; 17:e0270915. [PMID: 35776750 PMCID: PMC9249225 DOI: 10.1371/journal.pone.0270915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 06/17/2022] [Indexed: 01/16/2023] Open
Abstract
It is widely anticipated that a reduction of brain levels of the cellular prion protein (PrPC) can prolong survival in a group of neurodegenerative diseases known as prion diseases. To date, efforts to decrease steady-state PrPC levels by targeting this protein directly with small molecule drug-like compounds have largely been unsuccessful. Recently, we reported Na,K-ATPases to reside in immediate proximity to PrPC in the brain, unlocking an opportunity for an indirect PrPC targeting approach that capitalizes on the availability of potent cardiac glycosides (CGs). Here, we report that exposure of human co-cultures of neurons and astrocytes to non-toxic nanomolar levels of CGs causes profound reductions in PrPC levels. The mechanism of action underpinning this outcome relies primarily on a subset of CGs engaging the ATP1A1 isoform, one of three α subunits of Na,K-ATPases expressed in brain cells. Upon CG docking to ATP1A1, the ligand receptor complex, and PrPC along with it, is internalized by the cell. Subsequently, PrPC is channeled to the lysosomal compartment where it is digested in a manner that can be rescued by silencing the cysteine protease cathepsin B. These data signify that the repurposing of CGs may be beneficial for the treatment of prion disorders.
Collapse
Affiliation(s)
- Mohadeseh Mehrabian
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, Toronto, Ontario, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Xinzhu Wang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, Toronto, Ontario, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Shehab Eid
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, Toronto, Ontario, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Bei Qi Yan
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, Toronto, Ontario, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Mark Grinberg
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, Toronto, Ontario, Canada
| | - Murdock Siegner
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, Toronto, Ontario, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Christopher Sackmann
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, Toronto, Ontario, Canada
| | - Muhammad Sulman
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, Toronto, Ontario, Canada
| | - Wenda Zhao
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, Toronto, Ontario, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Declan Williams
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, Toronto, Ontario, Canada
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, Toronto, Ontario, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
9
|
The cellular prion protein interacts with and promotes the activity of Na,K-ATPases. PLoS One 2021; 16:e0258682. [PMID: 34847154 PMCID: PMC8631662 DOI: 10.1371/journal.pone.0258682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 10/02/2021] [Indexed: 12/23/2022] Open
Abstract
The prion protein (PrP) is best known for its ability to cause fatal neurodegenerative diseases in humans and animals. Here, we revisited its molecular environment in the brain using a well-developed affinity-capture mass spectrometry workflow that offers robust relative quantitation. The analysis confirmed many previously reported interactions. It also pointed toward a profound enrichment of Na,K-ATPases (NKAs) in proximity to cellular PrP (PrPC). Follow-on work validated the interaction, demonstrated partial co-localization of the ATP1A1 and PrPC, and revealed that cells exposed to cardiac glycoside (CG) inhibitors of NKAs exhibit correlated changes to the steady-state levels of both proteins. Moreover, the presence of PrPC was observed to promote the ion uptake activity of NKAs in a human co-culture paradigm of differentiated neurons and glia cells, and in mouse neuroblastoma cells. Consistent with this finding, changes in the expression of 5’-nucleotidase that manifest in wild-type cells in response to CG exposure can also be observed in untreated PrPC-deficient cells. Finally, the endoproteolytic cleavage of the glial fibrillary acidic protein, a hallmark of late-stage prion disease, can also be induced by CGs, raising the prospect that a loss of NKA activity may contribute to the pathobiology of prion diseases.
Collapse
|
10
|
Unwin N. Protein-Lipid Interplay at the Neuromuscular Junction. Microscopy (Oxf) 2021; 71:i66-i71. [PMID: 34226930 PMCID: PMC8855523 DOI: 10.1093/jmicro/dfab023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 01/11/2023] Open
Abstract
Many new structures of membrane proteins have been determined over the last decade, yet the nature of protein–lipid interplay has received scant attention. The postsynaptic membrane of the neuromuscular junction and Torpedo electrocytes has a regular architecture, opening an opportunity to illuminate how proteins and lipids act together in a native membrane setting. Cryo electron microscopy (Cryo-EM) images show that cholesterol segregates preferentially around the constituent ion channel, the nicotinic acetylcholine receptor, interacting with specific sites in both leaflets of the bilayer. In addition to maintaining the transmembrane α-helical architecture, cholesterol forms microdomains – bridges of rigid sterol groups that link one channel to the next. This article discusses the whole protein–lipid organization of the cholinergic postsynaptic membrane, its physiological implications and how the observed details relate to our current concept of the membrane structure. I suggest that cooperative interactions, facilitated by the regular protein–lipid arrangement, help to spread channel activation into regions distant from the sites of neurotransmitter release, thereby enhancing the postsynaptic response.
Collapse
Affiliation(s)
- Nigel Unwin
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, CB2 0QH, Cambridge, UK
| |
Collapse
|
11
|
Mlinac-Jerkovic K, Ilic K, Zjalić M, Mandić D, Debeljak Ž, Balog M, Damjanović V, Maček Hrvat N, Habek N, Kalanj-Bognar S, Schnaar RL, Heffer M. Who's in, who's out? Re-evaluation of lipid raft residents. J Neurochem 2021; 158:657-672. [PMID: 34081780 PMCID: PMC8363533 DOI: 10.1111/jnc.15446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 01/01/2023]
Abstract
Lipid rafts, membrane microdomains enriched with (glyco)sphingolipids, cholesterol, and select proteins, act as cellular signalosomes. Various methods have been used to separate lipid rafts from bulk (non‐raft) membranes, but most often, non‐ionic detergent Triton X‐100 has been used in their isolation. However, Triton X‐100 is a reported disruptor of lipid rafts. Histological evidence confirmed raft disruption by Triton X‐100, but remarkably revealed raft stability to treatment with a related polyethylene oxide detergent, Brij O20. We report isolation of detergent‐resistant membranes from mouse brain using Brij O20 and its use to determine the distribution of major mammalian brain gangliosides, GM1, GD1a, GD1b and GT1b. A different distribution of gangliosides—classically used as a raft marker—was discovered using Brij O20 versus Triton X‐100. Immunohistochemistry and imaging mass spectrometry confirm the results. Use of Brij O20 results in a distinctive membrane distribution of gangliosides that is not all lipid raft associated, but depends on the ganglioside structure. This is the first report of a significant proportion of gangliosides outside raft domains. We also determined the distribution of proteins functionally related to neuroplasticity and known to be affected by ganglioside environment, glutamate receptor subunit 2, amyloid precursor protein and neuroplastin and report the lipid raft populations of these proteins in mouse brain tissue. This work will enable more accurate lipid raft analysis with respect to glycosphingolipid and membrane protein composition and lead to improved resolution of lipid–protein interactions within biological membranes.
Collapse
Affiliation(s)
- Kristina Mlinac-Jerkovic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Katarina Ilic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Milorad Zjalić
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Dario Mandić
- Clinical Institute of Laboratory Diagnostics, Osijek University Hospital, Osijek, Croatia.,Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Željko Debeljak
- Clinical Institute of Laboratory Diagnostics, Osijek University Hospital, Osijek, Croatia.,Department of Pharmacology, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Marta Balog
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Vladimir Damjanović
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nikolina Maček Hrvat
- Biochemistry and Organic Analytical Chemistry Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Nikola Habek
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Svjetlana Kalanj-Bognar
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ronald L Schnaar
- Departments of Pharmacology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marija Heffer
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Osijek, Osijek, Croatia
| |
Collapse
|
12
|
Interaction of drugs with lipid raft membrane domains as a possible target. Drug Target Insights 2021; 14:34-47. [PMID: 33510571 PMCID: PMC7832984 DOI: 10.33393/dti.2020.2185] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/11/2020] [Indexed: 01/23/2023] Open
Abstract
Introduction Plasma membranes are not the homogeneous bilayers of uniformly distributed lipids but the lipid complex with laterally separated lipid raft membrane domains, which provide receptor, ion channel and enzyme proteins with a platform. The aim of this article is to review the mechanistic interaction of drugs with membrane lipid rafts and address the question whether drugs induce physicochemical changes in raft-constituting and raft-surrounding membranes. Methods Literature searches of PubMed/MEDLINE and Google Scholar databases from 2000 to 2020 were conducted to include articles published in English in internationally recognized journals. Collected articles were independently reviewed by title, abstract and text for relevance. Results The literature search indicated that pharmacologically diverse drugs interact with raft model membranes and cellular membrane lipid rafts. They could physicochemically modify functional protein-localizing membrane lipid rafts and the membranes surrounding such domains, affecting the raft organizational integrity with the resultant exhibition of pharmacological activity. Raft-acting drugs were characterized as ones to decrease membrane fluidity, induce liquid-ordered phase or order plasma membranes, leading to lipid raft formation; and ones to increase membrane fluidity, induce liquid-disordered phase or reduce phase transition temperature, leading to lipid raft disruption. Conclusion Targeting lipid raft membrane domains would open a new way for drug design and development. Since angiotensin-converting enzyme 2 receptors which are a cell-specific target of and responsible for the cellular entry of novel coronavirus are localized in lipid rafts, agents that specifically disrupt the relevant rafts may be a drug against coronavirus disease 2019.
Collapse
|
13
|
Differential expression of two ATPases revealed by lipid raft isolation from gills of euryhaline teleosts with different salinity preferences. Comp Biochem Physiol B Biochem Mol Biol 2021; 253:110562. [PMID: 33453387 DOI: 10.1016/j.cbpb.2021.110562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 12/29/2020] [Accepted: 01/10/2021] [Indexed: 12/12/2022]
Abstract
In euryhaline teleosts, Na+, K+-ATPase (NKA) and V-type H + -ATPase A (VHA A) are important ion-transporters located in cell membrane. Lipid rafts (LR) are plasma membrane microdomains enriched in cholesterol, sphingolipids, and proteins (e.g., flotillin). Flotillin is a LR-associated protein, commonly used as the LR marker. Previous mammalian studies showed that LR may play a crucial role in ion exchanges. Meanwhile, studies on mammals and rainbow trout showed that NKA were found to be present mainly in LR. However, little is known about LR in fish. Therefore, the present study aimed to investigate the involvement of branchial LR in osmoregulation of tilapia and milkfish, two euryhaline teleosts with different salinity preferences, by (i) extracting LR from the gills of euryhaline teleosts; (ii) detecting the abundance of LR marker protein (flotillin-2) and ion-transporters (NKA and VHA A) in branchial LR and non-LR of fresh water- and seawater-acclimated milkfish and tilapia. The results indicated that the protein abundance of LR marker, flotillin-2, changed with environmental salinities in branchial LR of tilapia. In addition, flotillin-2 and NKA were only found in LR in both tilapia and milkfish gills, while VHA A were mainly present in non-LR. Relative protein abundance of NKA was found to be significantly higher in gills of freshwater milkfish and seawater tilapia, while VHA A was significantly higher in gills of freshwater tilapia and milkfish. This study illustrated differential distribution and salinity-dependent expression of NKA and VHA A in cell membrane of gill tissues of euryhaline teleosts with different salinity preferences.
Collapse
|
14
|
Kurochkina N, Bhaskar M, Yadav SP, Pant HC. Phosphorylation, Dephosphorylation, and Multiprotein Assemblies Regulate Dynamic Behavior of Neuronal Cytoskeleton: A Mini-Review. Front Mol Neurosci 2018; 11:373. [PMID: 30349458 PMCID: PMC6186834 DOI: 10.3389/fnmol.2018.00373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 09/20/2018] [Indexed: 12/28/2022] Open
Abstract
Cellular localization, assembly and abnormal aggregation of neurofilaments depend on phosphorylation. Pathological processes associated with neurodegeneration exhibit aberrant accumulation of microtubule associated aggregated forms of hyperphosphorylated neuronal protein tau in cell bodies. These processes are critical for the disease progression in patients suffering from Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis. In healthy cells, tau is localized in axons. Topographic regulation suggests that whereas the sites of synthesis of kinases and neurofilaments are the cell bodies, and sites of their functional assemblies are axons, phosphorylation/dephosphorylation are the key processes that arrange the molecules at their precise locations. Phosphorylation sites in the dynamic developmental and degenerative processes differ. Not all these processes are well understood. New advancements identify epigenetic factors involved in AD which account for the influence of age-related environment/genome interactions leading to the disease. Progress in proteomics highlights previously found major proteins and adds more to the list of those involved in AD. New key elements of specificity provide determinants of molecular recognition important for the assembly of macromolecular complexes. In this review, we discuss aberrant spatial distribution of neuronal polypeptides observed in neuropathies: aggregation, association with proteins of the neuronal cytoskeleton, and phosphorylation dependent dynamics. Particularly, we emphasize recent advancements in understanding the function and determinants of specific association of molecules involved in Alzheimer's disease with respect to the topographic regulation of phosphorylation in neuronal cytoskeleton and implications for the design of new therapies. Further, we address the role of various filament systems in maintenance of the shape, rigidity and dynamics of the cytoskeleton.
Collapse
Affiliation(s)
- Natalya Kurochkina
- Department of Biophysics, The School of Theoretical Modeling, Washington, DC, United States
| | - Manju Bhaskar
- Neuronal Cytoskeletal Protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Sharda Prasad Yadav
- Neuronal Cytoskeletal Protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Harish C. Pant
- Neuronal Cytoskeletal Protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
15
|
Kotani N, Nakano T, Ida Y, Ito R, Hashizume M, Yamaguchi A, Seo M, Araki T, Hojo Y, Honke K, Murakoshi T. Analysis of lipid raft molecules in the living brain slices. Neurochem Int 2017; 119:140-150. [PMID: 28844489 DOI: 10.1016/j.neuint.2017.08.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/01/2017] [Accepted: 08/21/2017] [Indexed: 12/22/2022]
Abstract
Neuronal plasma membrane has been thought to retain a lot of lipid raft components which play important roles in the neural function. Although the biochemical analyses of lipid raft using brain tissues have been extensively carried out in the past 20 years, many of their experimental conditions do not coincide with those of standard neuroscience researches such as neurophysiology and neuropharmacology. Hence, the physiological methods for lipid raft analysis that can be compatible with general neuroscience have been required. Herein, we developed a system to physiologically analyze ganglioside GM1-enriched lipid rafts in brain tissues using the "Enzyme-Mediated Activation of Radical Sources (EMARS)" method that we reported (Kotani N. et al. Proc. Natl. Acad. Sci. U S A 105, 7405-7409 (2008)). The EMARS method was applied to acute brain slices prepared from mouse brains in aCSF solution using the EMARS probe, HRP-conjugated cholera toxin subunit B, which recognizes ganglioside GM1. The membrane molecules present in the GM1-enriched lipid rafts were then labeled with fluorescein under the physiological condition. The fluorescein-tagged lipid raft molecules called "EMARS products" distributed differentially among various parts of the brain. On the other hand, appreciable differences were not detected among segments along the longitudinal axis of the hippocampus. We further developed a device to label the lipid raft molecules in acute hippocampal slices under two different physiological conditions to detect dynamics of the lipid raft molecules during neural excitation. Using this device, several cell membrane molecules including Thy1, known as a lipid raft resident molecule in neurons, were confirmed by the EMARS method in living hippocampal slices.
Collapse
Affiliation(s)
- Norihiro Kotani
- Department of Biochemistry, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan.
| | - Takanari Nakano
- Department of Biochemistry, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Yui Ida
- Department of Biochemistry, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Rina Ito
- Department of Biochemistry, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Miki Hashizume
- Department of Biochemistry, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Arisa Yamaguchi
- Department of Biochemistry, Kochi University Medical School, Kohasu, Nankoku, Kochi 783-8505, Japan
| | - Makoto Seo
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 1 Sanzo, Gakuen-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - Tomoyuki Araki
- Department of Biochemistry, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Yasushi Hojo
- Department of Biochemistry, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Koichi Honke
- Department of Biochemistry, Kochi University Medical School, Kohasu, Nankoku, Kochi 783-8505, Japan
| | - Takayuki Murakoshi
- Department of Biochemistry, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| |
Collapse
|
16
|
Alcohol Regulates BK Surface Expression via Wnt/β-Catenin Signaling. J Neurosci 2017; 36:10625-10639. [PMID: 27733613 DOI: 10.1523/jneurosci.0491-16.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 07/27/2016] [Indexed: 12/26/2022] Open
Abstract
It has been suggested that drug tolerance represents a form of learning and memory, but this has not been experimentally established at the molecular level. We show that a component of alcohol molecular tolerance (channel internalization) from rat hippocampal neurons requires protein synthesis, in common with other forms of learning and memory. We identify β-catenin as a primary necessary protein. Alcohol increases β-catenin, and blocking accumulation of β-catenin blocks alcohol-induced internalization in these neurons. In transfected HEK293 cells, suppression of Wnt/β-catenin signaling blocks ethanol-induced internalization. Conversely, activation of Wnt/β-catenin reduces BK current density. A point mutation in a putative glycogen synthase kinase phosophorylation site within the S10 region of BK blocks internalization, suggesting that Wnt/β-catenin directly regulates alcohol-induced BK internalization via glycogen synthase kinase phosphorylation. These findings establish de novo protein synthesis and Wnt/β-catenin signaling as critical in mediating a persistent form of BK molecular alcohol tolerance establishing a commonality with other forms of long-term plasticity. SIGNIFICANCE STATEMENT Alcohol tolerance is a key step toward escalating alcohol consumption and subsequent dependence. Our research aims to make significant contributions toward novel, therapeutic approaches to prevent and treat alcohol misuse by understanding the molecular mechanisms of alcohol tolerance. In our current study, we identify the role of a key regulatory pathway in alcohol-induced persistent molecular changes within the hippocampus. The canonical Wnt/β-catenin pathway regulates BK channel surface expression in a protein synthesis-dependent manner reminiscent of other forms of long-term hippocampal neuronal adaptations. This unique insight opens the possibility of using clinically tested drugs, targeting the Wnt/β-catenin pathway, for the novel use of preventing and treating alcohol dependency.
Collapse
|
17
|
Yang CW, Chang HY, Hsu HY, Lee YZ, Chang HS, Chen IS, Lee SJ. Identification of anti-viral activity of the cardenolides, Na +/K +-ATPase inhibitors, against porcine transmissible gastroenteritis virus. Toxicol Appl Pharmacol 2017; 332:129-137. [PMID: 28438630 PMCID: PMC7103123 DOI: 10.1016/j.taap.2017.04.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/17/2017] [Accepted: 04/17/2017] [Indexed: 01/06/2023]
Abstract
A series of naturally occurring cardenolides that exhibit potent anti-transmissible gastroenteritis virus (TGEV) activity in swine testicular (ST) cells has been identified. In an immunofluorescence assay, these cardenolides were found to diminish the expressions of TGEV nucleocapsid and spike protein, which was used as an indication for viral replication; block TGEV infection induced apoptosis and cytopathic effects; and impart the same trend of inhibitory activity against Na+/K+-ATPase as for anti-TGEV activity. The viral titer inhibition was found to take place in a dose-dependent manner. Knocking down expression of Na+/K+-ATPase, the cellular receptor of cardenolides, in ST cells was found to significantly impair the susceptibility of ST cells to TGEV infectivity. Thus, we have identified Na+/K+-ATPase as an anti-viral drug target and its antagonists, cardenolides, a novel class of anti- TGEV agents.
Collapse
Affiliation(s)
- Cheng-Wei Yang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan, ROC
| | - Hsin-Yu Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan, ROC
| | - Hsing-Yu Hsu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan, ROC
| | - Yue-Zhi Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan, ROC
| | - Hsun-Shuo Chang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan, ROC
| | - Ih-Sheng Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan, ROC
| | - Shiow-Ju Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan, ROC.
| |
Collapse
|
18
|
Centanni SW, Teppen T, Risher ML, Fleming RL, Moss JL, Acheson SK, Mulholland PJ, Pandey SC, Chandler LJ, Swartzwelder HS. Adolescent alcohol exposure alters GABAA receptor subunit expression in adult hippocampus. Alcohol Clin Exp Res 2015; 38:2800-8. [PMID: 25421517 DOI: 10.1111/acer.12562] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/04/2014] [Indexed: 02/04/2023]
Abstract
BACKGROUND The long-term consequences of adolescent alcohol abuse that persist into adulthood are poorly understood and have not been widely investigated. We have shown that intermittent exposure to alcohol during adolescence decreased the amplitude of GABAA receptor (GABAA R)-mediated tonic currents in hippocampal dentate granule cells in adulthood. The aim of this study was to investigate the enduring effects of chronic intermittent alcohol exposure during adolescence or adulthood on the expression of hippocampal GABAA Rs. METHODS We used a previously characterized tissue fractionation method to isolate detergent resistant membranes and soluble fractions, followed by Western blots to measure GABAA R protein expression. We also measured mRNA levels of GABAA R subunits using quantitative real-time polymerase chain reaction. RESULTS Although the protein levels of α1-, α4-, and δ-GABAA R subunits remained stable between postnatal day (PD) 30 (early adolescence) and PD71 (adulthood), the α5-GABAA R subunit was reduced across that period. In rats that were subjected to adolescent intermittent ethanol (AIE) exposure between PD30 and PD46, there was a significant reduction in the protein levels of the δ-GABAA R, in the absence of any changes in mRNA levels, at 48 hours and 26 days after the last ethanol (EtOH) exposure. Protein levels of the α4-GABAA R subunit were significantly reduced, but mRNA levels were increased, 26 days (but not 48 hours) after the last AIE exposure. Protein levels of α5-GABAA R were not changed by AIE, but mRNA levels were reduced at 48 hours but normalized 26 days after AIE. In contrast to the effects of AIE, chronic intermittent ethanol (CIE) exposure during adulthood had no effect on expression of any of the GABAA R subunits examined. CONCLUSIONS AIE produced both short- and long-term alterations of GABAA R subunits mRNA and protein expression in the hippocampus, whereas CIE produced no long-lasting effects on those measures. The observed reduction of protein levels of the δ-GABAA R, specifically, is consistent with previously reported altered hippocampal GABAA R-mediated electrophysiological responses after AIE. The absence of effects of CIE underscores the emerging view of adolescence as a time of distinctive vulnerability to the enduring effects of repeated EtOH exposure.
Collapse
Affiliation(s)
- Samuel W Centanni
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Korinek M, Vyklicky V, Borovska J, Lichnerova K, Kaniakova M, Krausova B, Krusek J, Balik A, Smejkalova T, Horak M, Vyklicky L. Cholesterol modulates open probability and desensitization of NMDA receptors. J Physiol 2015; 593:2279-93. [PMID: 25651798 DOI: 10.1113/jphysiol.2014.288209] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/30/2015] [Indexed: 01/14/2023] Open
Abstract
NMDA receptors (NMDARs) are glutamate-gated ion channels that mediate excitatory neurotransmission in the CNS. Although these receptors are in direct contact with plasma membrane, lipid-NMDAR interactions are little understood. In the present study, we aimed at characterizing the effect of cholesterol on the ionotropic glutamate receptors. Whole-cell current responses induced by fast application of NMDA in cultured rat cerebellar granule cells (CGCs) were almost abolished (reduced to 3%) and the relative degree of receptor desensitization was increased (by seven-fold) after acute cholesterol depletion by methyl-β-cyclodextrin. Both of these effects were fully reversible by cholesterol repletion. By contrast, the responses mediated by AMPA/kainate receptors were not affected by cholesterol depletion. Similar results were obtained in CGCs after chronic inhibition of cholesterol biosynthesis by simvastatin and acute enzymatic cholesterol degradation to 4-cholesten-3-one by cholesterol oxidase. Fluorescence anisotropy measurements showed that membrane fluidity increased after methyl-β-cyclodextrin pretreatment. However, no change in fluidity was observed after cholesterol enzymatic degradation, suggesting that the effect of cholesterol on NMDARs is not mediated by changes in membrane fluidity. Our data show that diminution of NMDAR responses by cholesterol depletion is the result of a reduction of the open probability, whereas the increase in receptor desensitization is the result of an increase in the rate constant of entry into the desensitized state. Surface NMDAR population, agonist affinity, single-channel conductance and open time were not altered in cholesterol-depleted CGCs. The results of our experiments show that cholesterol is a strong endogenous modulator of NMDARs.
Collapse
Affiliation(s)
| | | | - Jirina Borovska
- Institute of Physiology AS CR, v.v.i, Prague, Czech Republic
| | - Katarina Lichnerova
- Institute of Physiology AS CR, v.v.i, Prague, Czech Republic.,Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | | | - Barbora Krausova
- Institute of Physiology AS CR, v.v.i, Prague, Czech Republic.,Second Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Jan Krusek
- Institute of Physiology AS CR, v.v.i, Prague, Czech Republic
| | - Ales Balik
- Institute of Physiology AS CR, v.v.i, Prague, Czech Republic
| | | | - Martin Horak
- Institute of Physiology AS CR, v.v.i, Prague, Czech Republic
| | | |
Collapse
|
20
|
Madsen KK, Hansen GH, Danielsen EM, Schousboe A. The subcellular localization of GABA transporters and its implication for seizure management. Neurochem Res 2014; 40:410-9. [PMID: 25519681 DOI: 10.1007/s11064-014-1494-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 11/27/2014] [Accepted: 12/01/2014] [Indexed: 10/24/2022]
Abstract
The ability to modulate the synaptic GABA levels has been demonstrated by using the clinically effective and selective GAT1 inhibitor tiagabine [(R)-N-[4,4-bis(3-methyl-2-thienyl)-3-butenyl]nipecotic acid]. N-[4,4-bis(3-methyl-2-thienyl)-3-butenyl]-3-hydroxy-4-(methylamino)-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol (EF1502) which not only inhibits GAT1 like tiagabine but also BGT1 has been shown to modulate extrasynaptic GABA levels. The simultaneous inhibition of synaptic and extrasynaptic GABA transporters using tiagabine and EF1502, respectively has been demonstrated to exert a synergistic anticonvulsant effect in several seizure models in mice. The pharmacological profile of these and similar compounds has been thoroughly investigated in in vitro systems, comparing the GAT subtype selectivity with the ability to inhibit GABA uptake in primary cultures of neurons and astrocytes. However, an exact explanation has not yet been found. In the present study, the ability of GATs to form homo and/or heterodimers was investigated as well as to which membrane micro environment the GATs reside. To investigate dimerization of GATs, fusion proteins of GATs tagged with either yellow fluorescent protein or cerulean fluorescent protein were made and fluorescence resonance energy transfer (FRET) was measured. It was found that GATs form both homo- and hetero-dimers in N2A and HEK-293 cells. Microdomain localization of GATs as investigated by detergent resistant membrane fractions after treatment of tissue with Brij-98 or Triton X-100 revealed that BGT1 and GAT1 mostly localize to non-membrane rafts independent of the detergent used. However, GAT3 localizes to membrane rafts when using Brij-98. Taken together, these results suggest that the observed hetero dimerization of GATs in the FRET study is unlikely to have functional implications since the GATs are located to very different cellular compartments and cell types.
Collapse
Affiliation(s)
- Karsten K Madsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen Ø, Denmark,
| | | | | | | |
Collapse
|
21
|
Investigation of membrane protein-protein interactions using correlative FRET-PLA. Biotechniques 2014; 57:188-91, 193-8. [PMID: 25312088 DOI: 10.2144/000114215] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 09/05/2014] [Indexed: 11/23/2022] Open
Abstract
Fluorescence resonance energy transfer (FRET) analysis and the recently developed proximity ligation assay (PLA) are widely used to study protein-protein interactions in situ. We have developed correlative FRET-PLA to monitor interactions between membrane proteins that frequently cause problems in confirmatory co-immunoprecipitation assays. Correlative FRET-PLA is particularly aimed at delivering robust and reliable results and is useful for investigating protein-protein interactions.
Collapse
|
22
|
Wu J, Gao J, Qi M, Wang J, Cai M, Liu S, Hao X, Jiang J, Wang H. High-efficiency localization of Na(+)-K(+) ATPases on the cytoplasmic side by direct stochastic optical reconstruction microscopy. NANOSCALE 2013; 5:11582-6. [PMID: 24113832 DOI: 10.1039/c3nr03665k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We describe a concise and effective strategy towards precisely mapping Na(+)-K(+) ATPases on the cytoplasmic side of cell membranes by direct stochastic optical reconstruction microscopy (dSTORM). We found that most Na(+)-K(+) ATPases are localized in different sizes of clusters on human red blood cell (hRBC) membranes, revealed by Ripley's K-function analysis. Further evidence that cholesterol depletion causes the dispersion of Na(+)-K(+) ATPase clusters indicates that such clusters could be localized in cholesterol-enriched domains. Our results suggest that Na(+)-K(+) ATPases might aggregate within the lipid rafts to fulfill their functions.
Collapse
Affiliation(s)
- Jiazhen Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lipid raft integrity affects GABAA receptor, but not NMDA receptor modulation by psychopharmacological compounds. Int J Neuropsychopharmacol 2013; 16:1361-71. [PMID: 23217923 DOI: 10.1017/s146114571200140x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Lipid rafts have been shown to play an important role for G-protein mediated signal transduction and the function of ligand-gated ion channels including their modulation by psychopharmacological compounds. In this study, we investigated the functional significance of the membrane distribution of NMDA and GABAA receptor subunits in relation to the accumulation of the tricyclic antidepressant desipramine (DMI) and the benzodiazepine diazepam (Diaz). In the presence of Triton X-100, which allowed proper separation of the lipid raft marker proteins caveolin-1 and flotillin-1 from the transferrin receptor, all receptor subunits were shifted to the non-raft fractions. In contrast, under detergent-free conditions, NMDA and GABAA receptor subunits were detected both in raft and non-raft fractions. Diaz was enriched in non-raft fractions without Triton X-100 in contrast to DMI, which preferentially accumulated in lipid rafts. Impairment of lipid raft integrity by methyl-β-cyclodextrine (MβCD)-induced cholesterol depletion did not change the inhibitory effect of DMI at the NMDA receptor, whereas it enhanced the potentiating effect of Diaz at the GABAA receptor at non-saturating concentrations of GABA. These results support the hypothesis that the interaction of benzodiazepines with the GABAA receptor likely occurs outside of lipid rafts while the antidepressant DMI acts on ionotropic receptors both within and outside these membrane microdomains.
Collapse
|
24
|
Polley A, Vemparala S. Partitioning of ethanol in multi-component membranes: Effects on membrane structure. Chem Phys Lipids 2013; 166:1-11. [DOI: 10.1016/j.chemphyslip.2012.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 11/23/2012] [Accepted: 11/24/2012] [Indexed: 12/12/2022]
|
25
|
Haanes KA, Schwab A, Novak I. The P2X7 receptor supports both life and death in fibrogenic pancreatic stellate cells. PLoS One 2012; 7:e51164. [PMID: 23284663 PMCID: PMC3524122 DOI: 10.1371/journal.pone.0051164] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/30/2012] [Indexed: 12/29/2022] Open
Abstract
The pancreatic stellate cells (PSCs) have complex roles in pancreas, including tissue repair and fibrosis. PSCs surround ATP releasing exocrine cells, but little is known about purinergic receptors and their function in PSCs. Our aim was to resolve whether PSCs express the multifunctional P2X7 receptor and elucidate how it regulates PSC viability. The number of PSCs isolated from wild type (WT) mice was 50% higher than those from the Pfizer P2X7 receptor knock out (KO) mice. The P2X7 receptor protein and mRNA of all known isoforms were expressed in WT PSCs, while KO PSCs only expressed truncated versions of the receptor. In culture, the proliferation rate of the KO PSCs was significantly lower. Inclusion of apyrase reduced the proliferation rate in both WT and KO PSCs, indicating importance of endogenous ATP. Exogenous ATP had a two-sided effect. Proliferation of both WT and KO cells was stimulated with ATP in a concentration-dependent manner with a maximum effect at 100 µM. At high ATP concentration (5 mM), WT PSCs, but not the KO PSCs died. The intracellular Ca2+ signals and proliferation rate induced by micromolar ATP concentrations were inhibited by the allosteric P2X7 receptor inhibitor az10606120. The P2X7 receptor-pore inhibitor A438079 partially prevented cell death induced by millimolar ATP concentrations. This study shows that ATP and P2X7 receptors are important regulators of PSC proliferation and death, and therefore might be potential targets for treatments of pancreatic fibrosis and cancer.
Collapse
Affiliation(s)
| | - Albrecht Schwab
- Institut für Physiologie II, Universität Münster, Münster, Germany
| | - Ivana Novak
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
26
|
Drastichova Z, Novotny J. Identification and subcellular localization of molecular complexes of Gq/11α protein in HEK293 cells. Acta Biochim Biophys Sin (Shanghai) 2012; 44:641-9. [PMID: 22710260 DOI: 10.1093/abbs/gms050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Heterotrimeric G-proteins localized in the plasma membrane convey the signals from G-protein-coupled receptors (GPCRs) to different effectors. At least some types of G-protein α subunits have been shown to be partly released from plasma membranes and to move into the cytosol after receptor activation by the agonists. However, the mechanism underlying subcellular redistribution of trimeric G-proteins is not well understood and no definitive conclusions have been reached regarding the translocation of Gα subunits between membranes and cytosol. Here we used subcellular fractionation and clear-native polyacrylamide gel electrophoresis to identify molecular complexes of G(q/11)α protein and to determine their localization in isolated fractions and stability in naïve and thyrotropin-releasing hormone (TRH)-treated HEK293 cells expressing high levels of TRH receptor and G(11)α protein. We identified two high-molecular-weight complexes of 300 and 140 kDa in size comprising the G(q/11) protein, which were found to be membrane-bound. Both of these complexes dissociated after prolonged treatment with TRH. Still other G(q/11)α protein complexes of lower molecular weight were determined in the cytosol. These 70 kDa protein complexes were barely detectable under control conditions but their levels markedly increased after prolonged (4-16 h) hormone treatment. These results support the notion that a portion of G(q/11)α can undergo translocation from the membrane fraction into soluble fraction after a long-term activation of TRH receptor. At the same time, these findings indicate that the redistribution of G(q/11)α is brought about by the dissociation of high-molecular-weight complexes and concomitant formation of low-molecular-weight complexes containing the G(q/11)α protein.
Collapse
Affiliation(s)
- Zdenka Drastichova
- Department of Physiology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague 2, Czech Republic
| | | |
Collapse
|
27
|
Sebastião AM, Colino-Oliveira M, Assaife-Lopes N, Dias RB, Ribeiro JA. Lipid rafts, synaptic transmission and plasticity: impact in age-related neurodegenerative diseases. Neuropharmacology 2012; 64:97-107. [PMID: 22820274 DOI: 10.1016/j.neuropharm.2012.06.053] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 06/23/2012] [Accepted: 06/26/2012] [Indexed: 10/28/2022]
Abstract
The synapse is a crowded area. In the last years, the concept that proteins can be organized in different membrane domains according to their structure has emerged. Cholesterol-rich membrane domains, or lipid rafts, form an organized portion of the membrane that is thought to concentrate signaling molecules. Accumulating evidence has shown that both the pre-synaptic and post-synaptic sites are highly enriched in lipid rafts, which are likely to organize and maintain synaptic proteins in their precise localization. Here we review recent studies highlighting the importance of lipid rafts for synaptic function and plasticity, as well as their relevance for age or disease-related cognitive impairment. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
Collapse
Affiliation(s)
- Ana M Sebastião
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisbon, Portugal.
| | | | | | | | | |
Collapse
|
28
|
Ito T, Mishima Y, Ito A, Kameyama N, Harada H, Iwata O, Watanabe S, Ushijima K. Propofol protects against anandamide-induced injury in human umbilical vein endothelial cells. Kurume Med J 2012; 58:15-20. [PMID: 22027193 DOI: 10.2739/kurumemedj.58.15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Endocannabinoid anandamide, arachidonylethanolamine (AEA), is considered to be a causative mediator of hemorrhagic or septic shock, inducing death of several types of cells by producing free radicals such as reactive oxygen species (ROS). Propofol contains a phenolic hydroxyl group that donates electrons to the free radicals, and thus functions as an antioxidant. The purpose of this study was to investigate the protective effect of propofol against AEA-induced cell injury. After incubation with propofol at concentrations of 10, 50 or 100 µM, human umbilical vein endothelial cells (HUVECs) were stimulated with 10 µM of AEA for 24 h. ROS production, caspase-3 activity, and cell viability were evaluated 1, 8, and 24 h after the administration of 10 µM of AEA, respectively. Propofol (50 µM) significantly attenuated cell death induced by AEA, showing a protective effect against ROS production and caspase-3 activity. These results suggest that propofol at concentrations used during clinical anesthesia protects HUVECs against AEA-induced injury, in part by suppressing apoptosis.
Collapse
Affiliation(s)
- Takahiko Ito
- Department of Anesthesiology, Kurume University School of Medicine, Kurume, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Turina AV, Schreier S, Perillo MA. Coupling between GABA(A)-R ligand-binding activity and membrane organization in β-cyclodextrin-treated synaptosomal membranes from bovine brain cortex: new insights from EPR experiments. Cell Biochem Biophys 2012; 63:17-33. [PMID: 22311134 DOI: 10.1007/s12013-012-9338-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Correlations between GABA(A) receptor (GABA(A)-R) activity and molecular organization of synaptosomal membranes (SM) were studied along the protocol for cholesterol (Cho) extraction with β-cyclodextrin (β-CD). The mere pre-incubation (PI) at 37°C accompanying the β-CD treatment was an underlying source of perturbations increasing [(3)H]-FNZ maximal binding (70%) and K (d) (38%), plus a stiffening of SMs' hydrocarbon core region. The latter was inferred from an increased compressibility modulus (K) of SM-derived Langmuir films, a blue-shifted DPH fluorescence emission spectrum and the hysteresis in DPH fluorescence anisotropy (A (DPH)) in SMs submitted to a heating-cooling cycle (4-37-4°C) with A (DPH,heating) < A (DPH,cooling). Compared with PI samples, the β-CD treatment reduced B (max) by 5% which correlated with a 45%-decrement in the relative Cho content of SM, a decrease in K and in the order parameter in the EPR spectrum of a lipid spin probe labeled at C5 (5-SASL), and significantly increased A (TMA-DPH). PI, but not β-CD treatment, could affect the binding affinity. EPR spectra of 5-SASL complexes with β-CD-, SM-partitioned, and free in solution showed that, contrary to what is usually assumed, β-CD is not completely eliminated from the system through centrifugation washings. It was concluded that β-CD treatment involves effects of at least three different types of events affecting membrane organization: (a) effect of PI on membrane annealing, (b) effect of residual β-CD on SM organization, and (c) Cho depletion. Consequently, molecular stiffness increases within the membrane core and decreases near the polar head groups, leading to a net increase in GABA(A)-R density, relative to untreated samples.
Collapse
Affiliation(s)
- Anahí V Turina
- IIBYT, CONICET - Biofísica-Química, Departamento de Química, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | | | | |
Collapse
|
30
|
Grage SL, Keleshian AM, Turdzeladze T, Battle AR, Tay WC, May RP, Holt SA, Contera SA, Haertlein M, Moulin M, Pal P, Rohde PR, Forsyth VT, Watts A, Huang KC, Ulrich AS, Martinac B. Bilayer-mediated clustering and functional interaction of MscL channels. Biophys J 2011; 100:1252-60. [PMID: 21354398 DOI: 10.1016/j.bpj.2011.01.023] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 12/15/2010] [Accepted: 01/04/2011] [Indexed: 01/23/2023] Open
Abstract
Mechanosensitive channels allow bacteria to respond to osmotic stress by opening a nanometer-sized pore in the cellular membrane. Although the underlying mechanism has been thoroughly studied on the basis of individual channels, the behavior of channel ensembles has yet to be elucidated. This work reveals that mechanosensitive channels of large conductance (MscL) exhibit a tendency to spatially cluster, and demonstrates the functional relevance of clustering. We evaluated the spatial distribution of channels in a lipid bilayer using patch-clamp electrophysiology, fluorescence and atomic force microscopy, and neutron scattering and reflection techniques, coupled with mathematical modeling of the mechanics of a membrane crowded with proteins. The results indicate that MscL forms clusters under a wide range of conditions. MscL is closely packed within each cluster but is still active and mechanosensitive. However, the channel activity is modulated by the presence of neighboring proteins, indicating membrane-mediated protein-protein interactions. Collectively, these results suggest that MscL self-assembly into channel clusters plays an osmoregulatory functional role in the membrane.
Collapse
Affiliation(s)
- Stephan L Grage
- Karlsruhe Institute of Technology, Institute of Biological Interfaces (IBG-2), Karlsruhe, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Multiple plasma membrane proteins such as ion transporters and ion channels are involved in electrogenesis by setting resting membrane potentials and triggering/propagating action potentials. Recent findings strongly suggest that some of these membrane proteins are selectively transported into membrane microdomains termed lipid rafts. There appear to be multiple mechanisms for the specific protein translocation to lipid rafts, and many of these proteins exhibit distinct properties when inserted into the raft microdomains. Here the authors review the plasma membrane ion channels specifically localized at membrane lipid rafts in neurons. The mechanisms to selectively translocate these molecules to the lipid rafts and the consequences of the trafficking are also discussed.
Collapse
Affiliation(s)
- Alessandro Pristerá
- Division of Cell & Molecular Biology, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Kenji Okuse
- Division of Cell & Molecular Biology, Faculty of Natural Sciences, Imperial College London, London, UK
| |
Collapse
|
32
|
Presence of phosphatidylserine synthesizing enzymes in triton insoluble floating fractions from cerebrocortical plasma membranes: do phosphatidylserine synthesizing enzymes in plasma membrane microdomains play a role in signal transduction? Neurochem Res 2011; 36:774-82. [PMID: 21229309 DOI: 10.1007/s11064-011-0399-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2011] [Indexed: 10/18/2022]
Abstract
Mammals synthesize phosphatidylserine (PS), a binding PKC molecule, by exchanging the nitrogen base of phosphatidylethanolamine or phosphatidylcholine with free serine. Serine base exchange enzyme (SBEE) was found in Triton insoluble floating fractions (TIFFs) from rat cerebellum which contained PKC. Consequently, SBEE might modulate PS levels in the PKC binding area (Buratta et al., J Neurochem 103:942-951, 2007). In the present study, we determined whether SBEE and PKC were localised in rat cerebral cortex TIFFs (cx-TIFFs) and in rat cerebrocortical plasma membrane-TIFFs (PM-TIFFs) which are more directly involved in signal transduction than intracellular membranes. Cx-and PM-TIFFs expressed SBEE activity and contained PKC. SBEE used ethanolamine as free exchanging base which may modulate PS level in the PKC binding area, transforming PS into PE and vice versa. The slight decrease in [(14)C]serine incorporation in the presence of choline indicated the existence of a SBEE isoform which may play a peculiar role in this brain area.
Collapse
|
33
|
Yang H, Xu Y, Gao Z, Mao Y, Du Y, Jiang H. Effects of Na+, K+, and Ca2+ on the Structures of Anionic Lipid Bilayers and Biological Implication. J Phys Chem B 2010; 114:16978-88. [DOI: 10.1021/jp1091569] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huaiyu Yang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yechun Xu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Zhaobing Gao
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yanyan Mao
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yun Du
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Hualiang Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| |
Collapse
|
34
|
|
35
|
MLC1 trafficking and membrane expression in astrocytes: Role of caveolin-1 and phosphorylation. Neurobiol Dis 2010; 37:581-95. [DOI: 10.1016/j.nbd.2009.11.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 10/23/2009] [Accepted: 11/12/2009] [Indexed: 12/19/2022] Open
|
36
|
Borisova T, Krisanova N, Sivko R, Borysov A. Cholesterol depletion attenuates tonic release but increases the ambient level of glutamate in rat brain synaptosomes. Neurochem Int 2010; 56:466-78. [DOI: 10.1016/j.neuint.2009.12.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 12/07/2009] [Accepted: 12/11/2009] [Indexed: 10/20/2022]
|
37
|
Suppression of human prostate tumor growth by a unique prostate-specific monoclonal antibody F77 targeting a glycolipid marker. Proc Natl Acad Sci U S A 2009; 107:732-7. [PMID: 20080743 DOI: 10.1073/pnas.0911397107] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In our effort to find diagnostic markers and to develop therapeutic approaches for prostate cancer, we have identified an mAb that is capable of binding to a cell surface antigen specifically expressed on both androgen-dependent and androgen-independent prostate cancer cells. Immunohistological studies revealed that this mAb, called F77, stained 112 of 116 primary and 29 of 34 metastatic human prostate cancer specimens. Although the mAb F77 alone directly promotes prostate cancer cell death, it also mediates complement-dependent cytotoxicity and antibody-dependent cellular cytotoxicity. In addition, mAb F77 can significantly inhibit androgen-independent PC3 and Du145 tumor growth in nude mice. Antigen characterization revealed that mAb F77 recognizes a very small molecular species with glycolipid properties. F77 antigen is concentrated in the lipid-raft microdomains, which serve as platforms for the assembly of associating protein complexes. Thus, the present study indicates that mAb F77 defines a unique prostate cancer marker and shows promising potential for diagnosis and treatment of prostate cancer, especially for androgen-independent metastatic prostate cancer.
Collapse
|
38
|
Watanabe M, Wake H, Moorhouse AJ, Nabekura J. Clustering of neuronal K+-Cl- cotransporters in lipid rafts by tyrosine phosphorylation. J Biol Chem 2009; 284:27980-27988. [PMID: 19679663 PMCID: PMC2788850 DOI: 10.1074/jbc.m109.043620] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 08/11/2009] [Indexed: 02/02/2023] Open
Abstract
The neuronal K(+)-Cl(-) cotransporter (KCC2) is a membrane transport protein that extrudes Cl(-) from neurons and helps maintain low intracellular [Cl(-)] and hyperpolarizing GABAergic synaptic potentials. Depolarizing gamma-aminobutyric acid (GABA) responses in neonatal neurons and following various forms of neuronal injury are associated with reduced levels of KCC2 expression. Despite the importance for plasticity of inhibitory transmission, less is known about cellular mechanisms involved in more dynamic changes in KCC2 function. In this study, we investigated the role of tyrosine phosphorylation in KCC2 localization and function in hippocampal neurons and in cultured GT1-7 cells. Mutation to the putative tyrosine phosphorylation site within the long intracellular carboxyl terminus of KCC2(Y1087D) or application of the tyrosine kinase inhibitor genistein shifted the GABA reversal potential (E(GABA)) to more depolarized values, indicating reduced KCC2 function. This was associated with a change in the expression pattern of KCC2 from a punctate distribution to a more uniform distribution, suggesting that functional tyrosine-phosphorylated KCC2 forms clusters in restricted membrane domains. Sodium vanadate, a tyrosine phosphatase inhibitor, increased the proportion of KCC2 associated with lipid rafts membrane domains. Loss of tyrosine phosphorylation also reduced oligomerization of KCC2. A loss of the punctuate distribution and oligomerization of KCC2 and a more depolarized E(GABA) were seen when the 28-amino-acid carboxyl terminus of KCC2 was deleted. These results indicate that direct tyrosine phosphorylation of KCC2 results in membrane clusters and functional transport activity, suggesting a mechanism by which intracellular Cl(-) concentrations and GABA responses can be rapidly modulated.
Collapse
Affiliation(s)
- Miho Watanabe
- Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Hiroaki Wake
- Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan; Core Research for the Evolutionary Science and Technology, Japan Science and Technology Corporation, Saitama 333-0012, Japan
| | - Andrew J Moorhouse
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Junichi Nabekura
- Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan; Core Research for the Evolutionary Science and Technology, Japan Science and Technology Corporation, Saitama 333-0012, Japan; Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), Hayama 240-0193, Japan.
| |
Collapse
|
39
|
Huo JZ, Cortez MA, Snead III OC. GABA receptor proteins within lipid rafts in the AY-9944 model of atypical absence seizures. Epilepsia 2009; 50:776-88. [DOI: 10.1111/j.1528-1167.2008.01903.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Tam P, Mahfoud R, Nutikka A, Khine AA, Binnington B, Paroutis P, Lingwood C. Differential intracellular transport and binding of verotoxin 1 and verotoxin 2 to globotriaosylceramide-containing lipid assemblies. J Cell Physiol 2008; 216:750-63. [PMID: 18446787 DOI: 10.1002/jcp.21456] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Although verotoxin-1 (VT1) and verotoxin-2 (VT2) share a common receptor, globotriaosyl ceramide (Gb(3)), VT2 induces distinct animal pathology and is preferentially associated with human disease. Moreover VT2 cytotoxicity in vitro is less than VT1. We therefore investigated whether these toxins similarly traffic within cells via similar Gb(3) assemblies. At 4 degrees C, fluorescent-VT1 and VT2 bound both coincident and distinct punctate surface Gb(3) microdomains. After 10 min at 37 degrees C, similar distinct/coincident micropunctate intracellular localization was observed. Most internalized VT2, but not VT1, colocalized with transferrin. After 1 h, VT1 and VT2 coalesced during retrograde transport to the Golgi. During prolonged incubation (3-6 h), VT1, and VT2 (more slowly), exited the Golgi to reach the ER/nuclear envelope. At this time, VT2 induced a previously unreported, retrograde transport-dependent vacuolation. Cell surface and intracellular VT1 showed greater detergent resistance than VT2, suggesting differential 'raft' association. >90% (125)I-VT1 cell surface bound, or added to detergent-resistant cell membrane extracts (DRM), was in the Gb(3)-containing sucrose gradient 'insoluble' fraction, whereas only 30% (125)I-VT2 was similarly DRM-associated. VT1 bound more efficiently to Gb(3)/cholesterol DRMs generated in vitro. Only VT1 binding was inhibited by high cholesterol/Gb(3) ratios. VT2 competed less effectively for (125)I-VT1/Gb(3) DRM-binding but only VT2-Gb(3)/cholesterol DRM-binding was augmented by sphingomyelin. Differential VT1/VT2 Gb(3) raft-binding may mediate differential cell binding/intracellular trafficking and cytopathology.
Collapse
Affiliation(s)
- Patty Tam
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
41
|
Frank C, Rufini S, Tancredi V, Forcina R, Grossi D, D'Arcangelo G. Cholesterol depletion inhibits synaptic transmission and synaptic plasticity in rat hippocampus. Exp Neurol 2008; 212:407-14. [DOI: 10.1016/j.expneurol.2008.04.019] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 04/07/2008] [Accepted: 04/17/2008] [Indexed: 01/20/2023]
|
42
|
Quinlan CL, Costa ADT, Costa CL, Pierre SV, Dos Santos P, Garlid KD. Conditioning the heart induces formation of signalosomes that interact with mitochondria to open mitoKATP channels. Am J Physiol Heart Circ Physiol 2008; 295:H953-H961. [PMID: 18621853 DOI: 10.1152/ajpheart.00520.2008] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Perfusion of the heart with bradykinin triggers cellular signaling events that ultimately cause opening of mitochondrial ATP-sensitive K+ (mitoKATP) channels, increased H2O2 production, inhibition of the mitochondrial permeability transition (MPT), and cardioprotection. We hypothesized that the interaction of bradykinin with its receptor induces the assembly of a caveolar signaling platform (signalosome) that contains the enzymes of the signaling pathway and that migrates to mitochondria to induce mitoKATP channel opening. We developed a novel method for isolating and purifying signalosomes from Langendorff-perfused rat hearts treated with bradykinin. Fractions containing the signalosomes were found to open mitoKATP channels in mitochondria isolated from untreated hearts via the activation of mitochondrial PKC-epsilon. mitoKATP channel opening required signalosome-dependent phosphorylation of an outer membrane protein. Immunodetection analysis revealed the presence of the bradykinin B2 receptor only in the fraction isolated from bradykinin-treated hearts. Immunodetection and immunogold labeling of caveolin-3, as well as sensitivity to cholesterol depletion and resistance to Triton X-100, attested to the caveolar nature of the signalosomes. Ischemic preconditioning, ischemic postconditioning, and perfusion with ouabain also led to active signalosome fractions that opened mitoKATP channels in mitochondria from untreated hearts. These results provide initial support for a novel mechanism for signal transmission from a plasma membrane receptor to mitoKATP channels.
Collapse
Affiliation(s)
- Casey L Quinlan
- Department of Biology, Portland State University, PO Box 751, Portland, OR 97201-0751, USA
| | | | | | | | | | | |
Collapse
|
43
|
Bradley CA, Taghibiglou C, Collingridge GL, Wang YT. Mechanisms involved in the reduction of GABAA receptor alpha1-subunit expression caused by the epilepsy mutation A322D in the trafficking-competent receptor. J Biol Chem 2008; 283:22043-50. [PMID: 18534981 DOI: 10.1074/jbc.m801708200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A mutation in the alpha1-subunit (A322D) of GABA(A)Rs is responsible for juvenile myoclonic epilepsy in a large Canadian family. Previous work has identified that this mutant affects the cell expression and function of recombinant GABA(A)Rs, expressed in HEK293 cells. Here we have extended these observations by showing that the mutation promotes association with the endoplasmic reticulum chaperone calnexin and accelerates the degradation rate of the subunits approximately 2.5-fold. We also find that the mutation causes the subunit to be degraded largely by a lysosomal-dependent process. Furthermore, we find that the mutation results in receptors that are inserted into the plasma membrane but are more rapidly endocytosed by a dynamin and caveolin1-dependent mechanism. These results suggest that the mutant subunit can form functional receptors, but that these have a shorter lifetime on the plasma membrane.
Collapse
Affiliation(s)
- Clarrisa A Bradley
- Brain Research Centre, University of British Columbia, Vancouver V6T 1Z3, Canada
| | | | | | | |
Collapse
|
44
|
Foster JD, Adkins SD, Lever JR, Vaughan RA. Phorbol ester induced trafficking-independent regulation and enhanced phosphorylation of the dopamine transporter associated with membrane rafts and cholesterol. J Neurochem 2008; 105:1683-99. [PMID: 18248623 PMCID: PMC8981492 DOI: 10.1111/j.1471-4159.2008.05262.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We examined the mechanisms involved in protein kinase C (PKC)-dependent down-regulation of dopamine transporter (DAT) activity and cell surface expression by treating heterologously expressing cells with the clathrin-mediated endocytosis inhibitor concanavalin A (Con A) or the cholesterol depleter/membrane raft disrupter methyl-beta-cyclodextrin (MbetaC) prior to treatment with the PKC activator phorbol 12-myristate, 13-acetate (PMA). Con A blocked PMA-induced surface reductions of DAT but only partially inhibited down-regulation, while MbetaC partially blocked down-regulation but did not inhibit loss of cell surface DAT, demonstrating that PKC-induced DAT down-regulation occurs by a combination of trafficking and non-trafficking processes. Using density-gradient centrifugation, we found that DATs are distributed approximately equally between Triton-insoluble, cholesterol-rich membrane rafts and Triton-soluble non-raft membranes. DATs in both populations are present at the cell surface and are active for dopamine and cocaine binding. PMA-induced loss of cell surface DAT occurred only from non-raft populations, demonstrating that non-raft DATs are regulated by trafficking events and indicating the likelihood that the cholesterol-dependent non-trafficking regulatory mechanism occurs in rafts. PMA did not affect the DAT raft-non-raft distribution but stimulated the phosphorylation of DAT to a substantially greater level in rafts than non-rafts. These findings reveal a previously unknown role for cholesterol in DAT function and demonstrate the presence of distinct subcellular DAT populations that possess multiple regulatory differences that may impact dopaminergic neurotransmission.
Collapse
Affiliation(s)
- James D. Foster
- Department of Biochemistry and Molecular Biology, University of North Dakota School of Medicine and Health Sciences, North Dakota, USA
| | - Steven D. Adkins
- Department of Biochemistry and Molecular Biology, University of North Dakota School of Medicine and Health Sciences, North Dakota, USA
| | - John R. Lever
- Departments of Radiology, and Medical Pharmacology and Physiology, University of Missouri-Columbia and Harry S. Truman Veterans Administration Medical Center, Columbia, Missouri, USA
| | - Roxanne A. Vaughan
- Department of Biochemistry and Molecular Biology, University of North Dakota School of Medicine and Health Sciences, North Dakota, USA
| |
Collapse
|
45
|
Identification of proteins associating with glycosylphosphatidylinositol- anchored T-cadherin on the surface of vascular endothelial cells: role for Grp78/BiP in T-cadherin-dependent cell survival. Mol Cell Biol 2008; 28:4004-17. [PMID: 18411300 DOI: 10.1128/mcb.00157-08] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
There is scant knowledge regarding how cell surface lipid-anchored T-cadherin (T-cad) transmits signals through the plasma membrane to its intracellular targets. This study aimed to identify membrane proteins colocalizing with atypical glycosylphosphatidylinositol (GPI)-anchored T-cad on the surface of endothelial cells and to evaluate their role as signaling adaptors for T-cad. Application of coimmunoprecipitation from endothelial cells expressing c-myc-tagged T-cad and high-performance liquid chromatography revealed putative association of T-cad with the following proteins: glucose-related protein GRP78, GABA-A receptor alpha1 subunit, integrin beta3, and two hypothetical proteins, LOC124245 and FLJ32070. Association of Grp78 and integrin beta3 with T-cad on the cell surface was confirmed by surface biotinylation and reciprocal immunoprecipitation and by confocal microscopy. Use of anti-Grp78 blocking antibodies, Grp78 small interfering RNA, and coexpression of constitutively active Akt demonstrated an essential role for surface Grp78 in T-cad-dependent survival signal transduction via Akt in endothelial cells. The findings herein are relevant in the context of both the identification of transmembrane signaling partners for GPI-anchored T-cad as well as the demonstration of a novel mechanism whereby Grp78 can influence endothelial cell survival as a cell surface signaling receptor rather than an intracellular chaperone.
Collapse
|
46
|
Abstract
Glycosphingolipids (GSLs) and glycoproteins are ubiquitous components of mammalian cell membranes. GSLs are especially enriched in the nervous system and significantly contribute to membrane organization and a variety of cellular functions. Current body of evidence suggests that GSLs along with cholesterol are enriched in discrete membrane domains that associate specific proteins. Current notion of membrane organization is that, the GSL-cholesterol-enriched membrane domains known as 'lipid rafts' float in the phospholipid-enriched bulk of the membrane and regulate the cell signaling by facilitating the lipid-protein/protein-protein interactions. The sizeable literature accumulated during the last decade has provided some insight into the organization and function of rafts; however, they still remain perplexing. In recent years, an appealing concept of lipid raft heterogeneity has emerged. GSL- and glycosylphosphatidylinositol-anchored proteins are considered as the crucial pivots of heterogeneous rafts. This review deals with the enigma of organizational and functional heterogeneity of lipid rafts and discusses the dynamic coalescence of heterogeneous rafts during signaling that can explain the specificity of raft-regulated cellular signaling events.
Collapse
Affiliation(s)
- Sudha Mishra
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore, India
| | | |
Collapse
|
47
|
Johansson E, Jonson I, Bosaeus M, Jennische E. Identification of flotillin-1 as an interacting protein for antisecretory factor. ACTA ACUST UNITED AC 2007; 146:303-9. [PMID: 18164080 DOI: 10.1016/j.regpep.2007.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 11/16/2007] [Accepted: 11/19/2007] [Indexed: 10/22/2022]
Abstract
Antisecretory factor (AF) also named S5a/Rpn10 was originally identified through its capacity to inhibit intestinal hypersecretion and was later shown to be a component in the proteasome complex. AF is also a potent anti-inflammatory agent and can act as a neuromodulator. In this study we used yeast two-hybrid screens, with yeast strain PJ692A transformed with the bait vector pGBKT7 (AF aa 1-105) against yeast strain Y187 pretransformed with human brain or placenta cDNA libraries, to identify AF-binding proteins. Flotillin-1 was identified as a specific interacting factor with AF. Immunohistochemistry showed co-localization of AF and flotillin-1 in nervous tissue. Flotillin-1 is an integral membrane protein and a component of lipid rafts, a membrane specialization involved in transport processes. Intracellular AF may affect secretory processes by regulating the localization of signal proteins to lipid rafts.
Collapse
Affiliation(s)
- Ewa Johansson
- Institute of Biomedicine, Department of Infectious Diseases, Section of Clinical Bacteriology, Göteborg University, Göteborg, Sweden
| | | | | | | |
Collapse
|
48
|
Buratta S, Felicetti M, Mozzi R. Synthesis of phosphatidylserine by base exchange in Triton-insoluble floating fractions from rat cerebellum. J Neurochem 2007; 103:942-51. [PMID: 17696990 DOI: 10.1111/j.1471-4159.2007.04783.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Phosphatidylserine (PS), which is synthesized in mammalian tissues by the exchange between free serine and the nitrogen bases present in membrane glycerophospholipids, is strictly required for protein kinase C (PKC) activity. PKC, as other molecules involved in signal transduction, is present in lipid rafts, considered as a platform for molecular signaling. Membrane microdomains enriched in components of rafts can be isolated on the basis of their insolubility in Triton X-100 at 4 degrees C and their low density in sucrose density gradient. This study demonstrates the existence of serine base exchange enzyme (SBEE) in Triton-insoluble floating fractions containing associated PKC. Using two fractions of detergent-resistant membranes from rat cerebellum, we observed a correlation between the level of SBEE activity and that of membrane-associated PKC. This suggests that SBEE, synthesizing PS in the binding area for PKC, participates to signal transduction. The capability of SBEE to utilize not only serine but also ethanolamine, as free exchanging base, suggests a mechanism for modulating in loco PS concentration.
Collapse
Affiliation(s)
- Sandra Buratta
- Department of Internal Medicine, Biochemistry Section, University of Perugia, Perugia, Italy
| | | | | |
Collapse
|
49
|
Beevers AJ, Kukol A. Phospholemman Transmembrane Structure Reveals Potential Interactions with Na+/K+-ATPase. J Biol Chem 2007; 282:32742-8. [PMID: 17698851 DOI: 10.1074/jbc.m703676200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospholemman (PLM) is a 72-residue bitopic cardiac transmembrane protein, which acts as a modulator of the Na(+)/K(+)-ATPase and the Na(+)/Ca(2+) exchanger and possibly forms taurine channels in nonheart tissue. This work presents a high resolution structural model obtained from a combination of site-specific infrared spectroscopy and experimentally constrained high throughput molecular dynamics (MD) simulations. Altogether, 37 experimental constraints, including nine long range orientational constraints, have been used during MD simulations in an explicit lipid bilayer/water system. The resulting tetrameric alpha-helical bundle has an average helix tilt of 7.3 degrees and a crossing angle close to 0 degrees . It does not reveal a hydrophilic pore, but instead strong interactions between various residues occlude any pore. The helix-helix packing is unusual, with Gly(19) and Gly(20) pointing to the outside of the helical bundle, facilitating potential interaction with other transmembrane proteins, thus providing a structural basis for the modulatory effect of PLM on the Na(+)/K(+)-ATPase. A two-stage model of interaction between PLM and the Na(+)/K(+)-ATPase is discussed involving PLM-ATPase interaction and subsequent formation of an unstable PLM trimer, which readily interacts with surrounding ATPase molecules. Further unconstrained MD simulations identified other packing models of PLM, one of which could potentially undergo a conformational transition to an open pore.
Collapse
Affiliation(s)
- Andrew J Beevers
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | | |
Collapse
|
50
|
Li X, Serwanski DR, Miralles CP, Bahr BA, De Blas AL. Two pools of Triton X-100-insoluble GABA(A) receptors are present in the brain, one associated to lipid rafts and another one to the post-synaptic GABAergic complex. J Neurochem 2007; 102:1329-45. [PMID: 17663755 PMCID: PMC2766244 DOI: 10.1111/j.1471-4159.2007.04635.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rat forebrain synaptosomes were extracted with Triton X-100 at 4 degrees C and the insoluble material, which is enriched in post-synaptic densities (PSDs), was subjected to sedimentation on a continuous sucrose gradient. Two pools of Triton X-100-insoluble gamma-aminobutyric acid type-A receptors (GABA(A)Rs) were identified: (i) a higher-density pool (rho = 1.10-1.15 mg/mL) of GABA(A)Rs that contains the gamma2 subunit (plus alpha and beta subunits) and that is associated to gephyrin and the GABAergic post-synaptic complex and (ii) a lower-density pool (rho = 1.06-1.09 mg/mL) of GABA(A)Rs associated to detergent-resistant membranes (DRMs) that contain alpha and beta subunits but not the gamma2 subunit. Some of these GABA(A)Rs contain the delta subunit. Two pools of GABA(A)Rs insoluble in Triton X-100 at 4 degrees C were also identified in cultured hippocampal neurons: (i) a GABA(A)R pool that forms clusters that co-localize with gephyrin and remains Triton X-100-insoluble after cholesterol depletion and (ii) a GABA(A)R pool that is diffusely distributed at the neuronal surface that can be induced to form GABA(A)R clusters by capping with an anti-alpha1 GABA(A)R subunit antibody and that becomes solubilized in Triton X-100 at 4 degrees C after cholesterol depletion. Thus, there is a pool of GABA(A)Rs associated to lipid rafts that is non-synaptic and that has a subunit composition different from that of the synaptic GABA(A)Rs. Some of the lipid raft-associated GABA(A)Rs might be involved in tonic inhibition.
Collapse
Affiliation(s)
- Xuejing Li
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269, USA
| | - David R. Serwanski
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Celia P. Miralles
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Ben A. Bahr
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Angel L. De Blas
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269, USA
| |
Collapse
|