1
|
An X, Zhong C, Han B, Chen E, Zhu Q, Yang Y, Li R, Yang R, Zha D, Han Y. Lysophosphatidic acid exerts protective effects on HEI-OC1 cells against cytotoxicity of cisplatin by decreasing apoptosis, excessive autophagy, and accumulation of ROS. Cell Death Discov 2023; 9:415. [PMID: 37968255 PMCID: PMC10651903 DOI: 10.1038/s41420-023-01706-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 10/22/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023] Open
Abstract
Lysophosphatidic acid (LPA) is an active phospholipid signaling molecule that binds to six specific G protein-coupled receptors (LPA1-6) on the cell surface and exerts a variety of biological functions, including cell migration and proliferation, morphological changes, and anti-apoptosis. The earliest study from our group demonstrated that LPA treatment could restore cochlear F-actin depolymerization induced by noise exposure, reduce hair cell death, and thus protect hearing. However, whether LPA could protect against cisplatin-induced ototoxicity and which receptors play the major role remain unclear. To this end, we integrated the HEI-OC1 mouse cochlear hair cell line and zebrafish model, and found that cisplatin exposure induced a large amount of reactive oxygen species accumulation in HEI-OC1 cells, accompanied by mitochondrial damage, leading to apoptosis and autophagy. LPA treatment significantly attenuated autophagy and apoptosis in HEI-OC1 cells after cisplatin exposure. Further investigation revealed that all LPA receptors except LPA3 were expressed in HEI-OC1 cells, and the mRNA expression level of LPA1 receptor was significantly higher than that of other receptors. When LPA1 receptor was silenced, the protective effect of LPA was reduced and the proportion of apoptosis cells was increased, indicating that LPA-LPA1 plays an important role in protecting HEI-OC1 cells from cisplatin-induced apoptosis. In addition, the behavioral trajectory and in vivo fluorescence imaging results showed that cisplatin exposure caused zebrafish to move more actively, and the movement speed and distance were higher than those of the control and LPA groups, while LPA treatment reduced the movement behavior. Cisplatin caused hair cell death and loss in zebrafish lateral line, and LPA treatment significantly protected against hair cell death and loss. LPA has a protective effect on hair cells in vitro and in vivo against the cytotoxicity of cisplatin, and its mechanism may be related to reducing apoptosis, excessive autophagy and ROS accumulation.
Collapse
Affiliation(s)
- Xiaogang An
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
- National Clinical Research Center for Otolaryngologic Diseases of Shaanxi sub center, Xi'an, 710032, Shaanxi Province, China
| | - Cuiping Zhong
- The 940th Hospital of Joint Logistics Support Force of People's Liberation Army, Lanzhou, 730050, Gansu Province, China
| | - Bang Han
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
- National Clinical Research Center for Otolaryngologic Diseases of Shaanxi sub center, Xi'an, 710032, Shaanxi Province, China
| | - Erfang Chen
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
- National Clinical Research Center for Otolaryngologic Diseases of Shaanxi sub center, Xi'an, 710032, Shaanxi Province, China
| | - Qingwen Zhu
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
- National Clinical Research Center for Otolaryngologic Diseases of Shaanxi sub center, Xi'an, 710032, Shaanxi Province, China
| | - Yang Yang
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
- National Clinical Research Center for Otolaryngologic Diseases of Shaanxi sub center, Xi'an, 710032, Shaanxi Province, China
| | - Rui Li
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
- National Clinical Research Center for Otolaryngologic Diseases of Shaanxi sub center, Xi'an, 710032, Shaanxi Province, China
| | - Runqin Yang
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
- National Clinical Research Center for Otolaryngologic Diseases of Shaanxi sub center, Xi'an, 710032, Shaanxi Province, China
| | - Dingjun Zha
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China.
- National Clinical Research Center for Otolaryngologic Diseases of Shaanxi sub center, Xi'an, 710032, Shaanxi Province, China.
| | - Yu Han
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China.
- National Clinical Research Center for Otolaryngologic Diseases of Shaanxi sub center, Xi'an, 710032, Shaanxi Province, China.
| |
Collapse
|
2
|
Zhao H, Li X, Zheng Y, Zhu X, Qi X, Huang X, Bai S, Wu C, Sun G. Fasudil may alleviate alcohol-induced astrocyte damage by modifying lipid metabolism, as determined by metabonomics analysis. PeerJ 2023; 11:e15494. [PMID: 37304877 PMCID: PMC10252813 DOI: 10.7717/peerj.15494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/11/2023] [Indexed: 06/13/2023] Open
Abstract
Alcohol dependence is a chronic, relapsing encephalopathy characterized by compulsive craving for alcohol, loss of control over alcohol use, and the presence of negative emotions and physical discomfort when alcohol is unavailable. Harmful use of alcohol is one of the greatest risk factors for death, illness, and disability. Rho kinase inhibitors have neuroprotective effects. This study used metabonomics analysis to assess untreated astrocytes, astrocytes exposed to 75 mmol/L of alcohol, and astrocytes exposed to 75 mmol/L of alcohol and treated with 15 µg/mL fasudil for 24 h. One of the clearest differences between the alcohol-exposed and fasudil-treated alcohol-exposed groups was the abundance of lipids and lipid-like molecules, although glycerophospholipid metabolism was comparable in both groups. Our findings show that fasudil may alleviate alcohol-induced astrocyte damage by modifying lipid metabolism, providing a new approach for preventing and treating alcohol dependence.
Collapse
Affiliation(s)
- Huiying Zhao
- Department of Neurology, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Xintong Li
- Department of Neurology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Yongqi Zheng
- Department of Internal Medicine, Yichun Forestry Administration Central Hospital, Yichun, Heilongjiang, China
| | - Xiaofeng Zhu
- Department of Neurology, Mudanjiang Medical College, Mudanjiang, Heilongjiang, China
| | - Xunzhong Qi
- Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Xinyan Huang
- Department of Neurology, The Second Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Shunjie Bai
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, Chongqing, China
| | - Chengji Wu
- Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Guangtao Sun
- Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| |
Collapse
|
3
|
Hunziker D, Reinehr S, Palmhof M, Wagner N, Biniasch T, Stute G, Mattei P, Schmitz P, DiGiorgio P, Hert J, Rudolph MG, Benz J, Stihle M, Gsell B, Müller S, Gasser R, Schonhoven N, Ullmer C, Joachim SC. Synthesis, Characterization, and in vivo Evaluation of a Novel Potent Autotaxin-Inhibitor. Front Pharmacol 2022; 12:699535. [PMID: 35126098 PMCID: PMC8807399 DOI: 10.3389/fphar.2021.699535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
The autotaxin-lysophosphatidic acid (ATX-LPA) signaling pathway plays a role in a variety of autoimmune diseases, such as rheumatoid arthritis or neurodegeneration. A link to the pathogenesis of glaucoma is suggested by an overactive ATX-LPA axis in aqueous humor samples of glaucoma patients. Analysis of such samples suggests that the ATX-LPA axis contributes to the fibrogenic activity and resistance to aqueous humor outflow through the trabecular meshwork. In order to inhibit or modulate this pathway, we developed a new series of ATX-inhibitors containing novel bicyclic and spirocyclic structural motifs. A potent lead compound (IC50 against ATX: 6 nM) with good in vivo PK, favorable in vitro property, and safety profile was generated. This compound leads to lowered LPA levels in vivo after oral administration. Hence, it was suitable for chronic oral treatment in two rodent models of glaucoma, the experimental autoimmune glaucoma (EAG) and the ischemia/reperfusion models. In the EAG model, rats were immunized with an optic nerve antigen homogenate, while controls received sodium chloride. Retinal ischemia/reperfusion (I/R) was induced by elevating the intraocular pressure (IOP) in one eye to 140 mmHg for 60 min, followed by reperfusion, while the other untreated eye served as control. Retinae and optic nerves were evaluated 28 days after EAG or 7 and 14 days after I/R induction. Oral treatment with the optimized ATX-inhibitor lead to reduced retinal ganglion cell (RGC) loss in both glaucoma models. In the optic nerve, the protective effect of ATX inhibition was less effective compared to the retina and only a trend to a weakened neurofilament distortion was detectable. Taken together, these results provide evidence that the dysregulation of the ATX-LPA axis in the aqueous humor of glaucoma patients, in addition to the postulated outflow impairment, might also contribute to RGC loss. The observation that ATX-inhibitor treatment in both glaucoma models did not result in significant IOP increases or decreases after oral treatment indicates that protection from RGC loss due to inhibition of the ATX-LPA axis is independent of an IOP lowering effect.
Collapse
Affiliation(s)
- Daniel Hunziker
- F. Hoffmann-La Roche Ltd., Pharma Research and Early Development, Therapeutic Modalities, Small Molecule Research, Roche Innovation Center Basel, Basel, Switzerland
| | - Sabrina Reinehr
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Marina Palmhof
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Natalie Wagner
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Thomas Biniasch
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Gesa Stute
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Patrizio Mattei
- F. Hoffmann-La Roche Ltd., Pharma Research and Early Development, Therapeutic Modalities, Small Molecule Research, Roche Innovation Center Basel, Basel, Switzerland
| | - Petra Schmitz
- F. Hoffmann-La Roche Ltd., Pharma Research and Early Development, Therapeutic Modalities, Small Molecule Research, Roche Innovation Center Basel, Basel, Switzerland
| | - Patrick DiGiorgio
- F. Hoffmann-La Roche Ltd., Pharma Research and Early Development, Therapeutic Modalities, Small Molecule Research, Roche Innovation Center Basel, Basel, Switzerland
| | - Jérôme Hert
- F. Hoffmann-La Roche Ltd., Pharma Research and Early Development, Therapeutic Modalities, Small Molecule Research, Roche Innovation Center Basel, Basel, Switzerland
| | - Markus G. Rudolph
- F. Hoffmann-La Roche Ltd., Pharma Research and Early Development, Therapeutic Modalities, Small Molecule Research, Roche Innovation Center Basel, Basel, Switzerland
| | - Joerg Benz
- F. Hoffmann-La Roche Ltd., Pharma Research and Early Development, Therapeutic Modalities, Small Molecule Research, Roche Innovation Center Basel, Basel, Switzerland
| | - Martine Stihle
- F. Hoffmann-La Roche Ltd., Pharma Research and Early Development, Therapeutic Modalities, Small Molecule Research, Roche Innovation Center Basel, Basel, Switzerland
| | - Bernard Gsell
- F. Hoffmann-La Roche Ltd., Pharma Research and Early Development, Therapeutic Modalities, Small Molecule Research, Roche Innovation Center Basel, Basel, Switzerland
| | - Stephan Müller
- F. Hoffmann-La Roche Ltd., Pharma Research and Early Development, Therapeutic Modalities, Small Molecule Research, Roche Innovation Center Basel, Basel, Switzerland
| | - Rodolfo Gasser
- F. Hoffmann-La Roche Ltd., Pharma Research and Early Development, Therapeutic Modalities, Small Molecule Research, Roche Innovation Center Basel, Basel, Switzerland
- F. Hoffmann-La Roche Ltd., Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Nina Schonhoven
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Christoph Ullmer
- F. Hoffmann-La Roche Ltd., Pharma Research and Early Development, Ophthalmology Discovery, Roche Innovation Center Basel, Basel, Switzerland
- *Correspondence: Christoph Ullmer, ; Stephanie C. Joachim,
| | - Stephanie C. Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
- *Correspondence: Christoph Ullmer, ; Stephanie C. Joachim,
| |
Collapse
|
4
|
Modulation of Neurolipid Signaling and Specific Lipid Species in the Triple Transgenic Mouse Model of Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms222212256. [PMID: 34830150 PMCID: PMC8620566 DOI: 10.3390/ijms222212256] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 01/13/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia in aging populations. Recently, the regulation of neurolipid-mediated signaling and cerebral lipid species was shown in AD patients. The triple transgenic mouse model (3xTg-AD), harboring βAPPSwe, PS1M146V, and tauP301L transgenes, mimics many critical aspects of AD neuropathology and progressively develops neuropathological markers. Thus, in the present study, 3xTg-AD mice have been used to test the involvement of the neurolipid-based signaling by endocannabinoids (eCB), lysophosphatidic acid (LPA), and sphingosine 1-phosphate (S1P) in relation to the lipid deregulation. [35S]GTPγS autoradiography was used in the presence of specific agonists WIN55,212-2, LPA and CYM5442, to measure the activity mediated by CB1, LPA1, and S1P1 Gi/0 coupled receptors, respectively. Consecutive slides were used to analyze the relative intensities of multiple lipid species by MALDI Mass spectrometry imaging (MSI) with microscopic anatomical resolution. The quantitative analysis of the astrocyte population was performed by immunohistochemistry. CB1 receptor activity was decreased in the amygdala and motor cortex of 3xTg-AD mice, but LPA1 activity was increased in the corpus callosum, motor cortex, hippocampal CA1 area, and striatum. Conversely, S1P1 activity was reduced in hippocampal areas. Moreover, the observed modifications on PC, PA, SM, and PI intensities in different brain areas depend on their fatty acid composition, including decrease of polyunsaturated fatty acid (PUFA) phospholipids and increase of species containing saturated fatty acids (SFA). The regulation of some lipid species in specific brain regions together with the modulation of the eCB, LPA, and S1P signaling in 3xTg-AD mice indicate a neuroprotective adaptation to improve neurotransmission, relieve the myelination dysfunction, and to attenuate astrocyte-mediated neuroinflammation. These results could contribute to identify new therapeutic strategies based on the regulation of the lipid signaling in familial AD patients.
Collapse
|
5
|
Inhibition of lysophosphatidic acid receptor 1-3 deteriorates experimental autoimmune encephalomyelitis by inducing oxidative stress. J Neuroinflammation 2021; 18:240. [PMID: 34666785 PMCID: PMC8527776 DOI: 10.1186/s12974-021-02278-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 09/20/2021] [Indexed: 11/10/2022] Open
Abstract
Background Lysophosphatidic acid receptors (LPARs) are G-protein-coupled receptors involved in many physiological functions in the central nervous system. However, the role of the LPARs in multiple sclerosis (MS) has not been clearly defined yet. Methods Here, we investigated the roles of LPARs in myelin oligodendrocyte glycoprotein peptides-induced experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Results Pre-inhibition with LPAR1–3 antagonist Ki16425 deteriorated motor disability of EAElow. Specifically, LPAR1–3 antagonist (intraperitoneal) deteriorated symptoms of EAElow associated with increased demyelination, chemokine expression, cellular infiltration, and immune cell activation (microglia and macrophage) in spinal cords of mice compared to the sham group. This LPAR1–3 antagonist also increased the infiltration of CD4+/IFN-γ+ (Th1) and CD4+/IL-17+ (Th17) cells into spinal cords of EAElow mice along with upregulated mRNA expression of IFN-γ and IL-17 and impaired blood–brain barrier (BBB) in the spinal cord. The underlying mechanism for negative effects of LPAR1–3 antagonist was associated with the overproduction of reactive oxygen species (ROS)-generating nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) 2 and NOX3. Interestingly, LPAR1/2 agonist 1-oleoyl-LPA (LPA 18:1) (intraperitoneal) ameliorated symptoms of EAEhigh and improved representative pathological features of spinal cords of EAEhigh mice. Conclusions Our findings strongly suggest that some agents that can
stimulate LPARs might have potential therapeutic implications for autoimmune demyelinating diseases such as MS.
Collapse
|
6
|
Rivera R, Williams NA, Kennedy GG, Sánchez-Pavón P, Chun J. Generation of an Lpar1-EGFP Fusion Knock-in Transgenic Mouse Line. Cell Biochem Biophys 2021; 79:619-627. [PMID: 34652685 PMCID: PMC8551097 DOI: 10.1007/s12013-021-01033-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 10/25/2022]
Abstract
Lysophosphatidic acid (LPA) is a lysophospholipid that acts as an extracellular signal through the activation of cognate G protein-coupled receptors (GPCRs). There are six known LPA receptors (LPA1-6). The first such receptor, LPA1, was identified in the embryonic brain and has been studied extensively for gene expression throughout the body, including through studies of receptor-null mice. However, identifying receptor protein expression in situ and in vivo within living cells and tissues has been difficult because of biologically low receptor expression and variable antibody specificity. To visualize native LPA1 receptor expression in situ, we generated a knock-in mouse produced by homologous recombination in murine embryonic stem (ES) cells to replace a wildtype Lpar1 allele with a mutant allele created by in-frame fusion of EGFP to the 4th exon of Lpar1 (Lpar1-EGFP knock-in allele). Homozygous knock-in mice appeared normal and the expected mendelian ratios of knock-in allele transmission were present in females and males. Histological assessments of the fetal and adult central nervous system (CNS) demonstrated expression patterns that were consistent with prior in situ hybridization studies. This new mouse line will be useful for studies of LPA1 in the developing and adult CNS, as well as other tissues, and for receptor assessments in living tissues and disease models.
Collapse
Affiliation(s)
- Richard Rivera
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Nyssa A Williams
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Grace G Kennedy
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Paloma Sánchez-Pavón
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jerold Chun
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
7
|
Critical Roles of Lysophospholipid Receptors in Activation of Neuroglia and Their Neuroinflammatory Responses. Int J Mol Sci 2021; 22:ijms22157864. [PMID: 34360625 PMCID: PMC8346064 DOI: 10.3390/ijms22157864] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Activation of microglia and/or astrocytes often releases proinflammatory molecules as critical pathogenic mediators that can promote neuroinflammation and secondary brain damages in diverse diseases of the central nervous system (CNS). Therefore, controlling the activation of glial cells and their neuroinflammatory responses has been considered as a potential therapeutic strategy for treating neuroinflammatory diseases. Recently, receptor-mediated lysophospholipid signaling, sphingosine 1-phosphate (S1P) receptor- and lysophosphatidic acid (LPA) receptor-mediated signaling in particular, has drawn scientific interest because of its critical roles in pathogenies of diverse neurological diseases such as neuropathic pain, systemic sclerosis, spinal cord injury, multiple sclerosis, cerebral ischemia, traumatic brain injury, hypoxia, hydrocephalus, and neuropsychiatric disorders. Activation of microglia and/or astrocytes is a common pathogenic event shared by most of these CNS disorders, indicating that lysophospholipid receptors could influence glial activation. In fact, many studies have reported that several S1P and LPA receptors can influence glial activation during the pathogenesis of cerebral ischemia and multiple sclerosis. This review aims to provide a comprehensive framework about the roles of S1P and LPA receptors in the activation of microglia and/or astrocytes and their neuroinflammatory responses in CNS diseases.
Collapse
|
8
|
Rosell-Valle C, Pedraza C, Manuel I, Moreno-Rodríguez M, Rodríguez-Puertas R, Castilla-Ortega E, Caramés JM, Gómez Conde AI, Zambrana-Infantes E, Ortega-Pinazo J, Serrano-Castro PJ, Chun J, Rodríguez De Fonseca F, Santín LJ, Estivill-Torrús G. Chronic central modulation of LPA/LPA receptors-signaling pathway in the mouse brain regulates cognition, emotion, and hippocampal neurogenesis. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110156. [PMID: 33152386 DOI: 10.1016/j.pnpbp.2020.110156] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 02/05/2023]
Abstract
Several studies have demonstrated that lysophosphatidic acid (LPA) acts through its LPA receptors in multiple biological and behavioral processes, including adult hippocampal neurogenesis, hippocampal-dependent memory, and emotional regulation. However, analyses of the effects have typically involved acute treatments, and there is no information available regarding the effect of the chronic pharmacological modulation of the LPA/LPA receptors-signaling pathway. Thus, we analyzed the effect of the chronic (21 days) and continuous intracerebroventricular (ICV) infusion of C18:1 LPA and the LPA1-3 receptor antagonist Ki16425 in behavior and adult hippocampal neurogenesis. Twenty-one days after continuous ICV infusions, mouse behaviors in the open field test, Y-maze test and forced swimming test were assessed. In addition, the hippocampus was examined for c-Fos expression and α-CaMKII and phospho-α-CaMKII levels. The current study demonstrates that chronic C18:1 LPA produced antidepressant effects, improved spatial working memory, and enhanced adult hippocampal neurogenesis. In contrast, chronic LPA1-3 receptor antagonism disrupted exploratory activity and spatial working memory, induced anxiety and depression-like behaviors and produced an impairment of hippocampal neurogenesis. While these effects were accompanied by an increase in neuronal activation in the DG of C18:1 LPA-treated mice, Ki16425-treated mice showed reduced neuronal activation in CA3 and CA1 hippocampal subfields. Treatment with the antagonist also induced an imbalance in the expression of basal/activated α-CaMKII protein forms. These outcomes indicate that the chronic central modulation of the LPA receptors-signaling pathway in the brain regulates cognition and emotion, likely comprising hippocampal-dependent mechanisms. The use of pharmacological modulation of this pathway in the brain may potentially be targeted for the treatment of several neuropsychiatric conditions.
Collapse
Affiliation(s)
- Cristina Rosell-Valle
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; Unidad de Gestión Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain; Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain; Unidad de Producción de Reprogramación Celular, Red Andaluza para el diseño y traslación de Terapias Avanzadas, Junta de Andalucía, Spain
| | - Carmen Pedraza
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain
| | - Iván Manuel
- Departamento de Farmacología, Facultad de Medicina y Enfermería, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Marta Moreno-Rodríguez
- Departamento de Farmacología, Facultad de Medicina y Enfermería, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Rafael Rodríguez-Puertas
- Departamento de Farmacología, Facultad de Medicina y Enfermería, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Estela Castilla-Ortega
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - José María Caramés
- Centre for Discovery Brain Sciences, Edinburgh Neuroscience, University of Edinburgh, Edinburgh, UK
| | - Ana I Gómez Conde
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; ECAI de Microscopía, Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - Emma Zambrana-Infantes
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain
| | - Jesús Ortega-Pinazo
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; Unidad de Gestión Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Pedro J Serrano-Castro
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; Unidad de Gestión Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Fernando Rodríguez De Fonseca
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Luis J Santín
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain.
| | - Guillermo Estivill-Torrús
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; Unidad de Gestión Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain.
| |
Collapse
|
9
|
Meduri B, Pujar GV, Durai Ananda Kumar T, Akshatha HS, Sethu AK, Singh M, Kanagarla A, Mathew B. Lysophosphatidic acid (LPA) receptor modulators: Structural features and recent development. Eur J Med Chem 2021; 222:113574. [PMID: 34126459 DOI: 10.1016/j.ejmech.2021.113574] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 02/08/2023]
Abstract
Lysophosphatidic acid (LPA) activates six LPA receptors (LPAR1-6) and regulates various cellular activities such as cell proliferation, cytoprotection, and wound healing. Many studies elucidated the pathological outcomes of LPA are due to the alteration in signaling pathways, which include migration and invasion of cancer cells, fibrosis, atherosclerosis, and inflammation. Current pathophysiological research on LPA and its receptors provides a means that LPA receptors are new therapeutic targets for disorders associated with LPA. Various chemical modulators are developed and are under investigation to treat a wide range of pathological complications. This review summarizes the physiological and pathological roles of LPA signaling, development of various LPA modulators, their structural features, patents, and their clinical outcomes.
Collapse
Affiliation(s)
- Bhagyalalitha Meduri
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015 India
| | - Gurubasavaraj Veeranna Pujar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015 India.
| | - T Durai Ananda Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015 India
| | - H S Akshatha
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015 India
| | - Arun Kumar Sethu
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015 India
| | - Manisha Singh
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015 India
| | - Abhinav Kanagarla
- Department of Pharmaceutical Chemistry, Andhra University, Visakhapatnam, Andhra Pradesh, 530003, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
10
|
Birgbauer E. Lysophosphatidic Acid Signalling in Nervous System Development and Function. Neuromolecular Med 2021; 23:68-85. [PMID: 33151452 PMCID: PMC11420905 DOI: 10.1007/s12017-020-08630-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023]
Abstract
One class of molecules that are now coming to be recognized as essential for our understanding of the nervous system are the lysophospholipids. One of the major signaling lysophospholipids is lysophosphatidic acid, also known as LPA. LPA activates a variety of G protein-coupled receptors (GPCRs) leading to a multitude of physiological responses. In this review, I describe our current understanding of the role of LPA and LPA receptor signaling in the development and function of the nervous system, especially the central nervous system (CNS). In addition, I highlight how aberrant LPA receptor signaling may underlie neuropathological conditions, with important clinical application.
Collapse
Affiliation(s)
- Eric Birgbauer
- Department of Biology, Winthrop University, Rock Hill, SC, USA.
| |
Collapse
|
11
|
Moriyama R, Fukushima N. Expression of lysophosphatidic acid receptor 1 in the adult female mouse pituitary gland. Neurosci Lett 2021; 741:135506. [PMID: 33220367 DOI: 10.1016/j.neulet.2020.135506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 11/19/2022]
Abstract
Lysophosphatidic acid receptor 1 (LPA1) is a receptor of lysophosphatidic acid (LPA). The present study investigated Lpar1 mRNA expression in the mouse pituitary gland by RT-PCR, in situ hybridization, and immunohistochemistry. Lpar1 mRNA was abundantly expressed in the pituitary gland. In situ hybridization and immunohistochemistry revealed over 90 % of a common glycoprotein α-subunit, luteinizing hormone β-subunit, and thyroid-stimulating hormone β-subunit immunoreactive cells co-expressed Lpar1 mRNA in the anterior pituitary gland, but few growth hormone, adrenocorticotropic hormone, and prolactin cells co-expressed Lpar1. Furthermore, Lpar1 mRNA levels in the pituitary gland were increased after ovariectomy and decreased after E2 administration. These results demonstrate that LPA1-mediated signaling may play physiological roles in gonadotropes and thyrotropes in the mouse pituitary gland.
Collapse
Affiliation(s)
- Ryutaro Moriyama
- Department of Life Science, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan.
| | - Nobuyuki Fukushima
- Department of Life Science, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan
| |
Collapse
|
12
|
Arun P, Rossetti F, DeMar JC, Wang Y, Batuure AB, Wilder DM, Gist ID, Morris AJ, Sabbadini RA, Long JB. Antibodies Against Lysophosphatidic Acid Protect Against Blast-Induced Ocular Injuries. Front Neurol 2020; 11:611816. [PMID: 33384658 PMCID: PMC7769950 DOI: 10.3389/fneur.2020.611816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/24/2020] [Indexed: 01/18/2023] Open
Abstract
Exposure to blast overpressure waves is implicated as the major cause of ocular injuries and resultant visual dysfunction in veterans involved in recent combat operations. No effective therapeutic strategies have been developed so far for blast-induced ocular dysfunction. Lysophosphatidic acid (LPA) is a bioactive phospholipid generated by activated platelets, astrocytes, choroidal plexus cells, and microglia and is reported to play major roles in stimulating inflammatory processes. The levels of LPA in the cerebrospinal fluid have been reported to increase acutely in patients with traumatic brain injury (TBI) as well as in a controlled cortical impact (CCI) TBI model in mice. In the present study, we have evaluated the efficacy of a single intravenous administration of a monoclonal LPA antibody (25 mg/kg) given at 1 h post-blast for protection against injuries to the retina and associated ocular dysfunctions. Our results show that a single 19 psi blast exposure significantly increased the levels of several species of LPA in blood plasma at 1 and 4 h post-blast. The anti-LPA antibody treatment significantly decreased glial cell activation and preserved neuronal cell morphology in the retina on day 8 after blast exposure. Optokinetic measurements indicated that anti-LPA antibody treatment significantly improved visual acuity in both eyes on days 2 and 6 post-blast exposure. Anti-LPA antibody treatment significantly increased rod photoreceptor and bipolar neuronal cell signaling in both eyes on day 7 post-blast exposure. These results suggest that blast exposure triggers release of LPAs, which play a major role promoting blast-induced ocular injuries, and that a single early administration of anti-LPA antibodies provides significant protection.
Collapse
Affiliation(s)
- Peethambaran Arun
- Blast-Induced Neurotrauma Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Franco Rossetti
- Blast-Induced Neurotrauma Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - James C DeMar
- Blast-Induced Neurotrauma Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Ying Wang
- Blast-Induced Neurotrauma Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Andrew B Batuure
- Blast-Induced Neurotrauma Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Donna M Wilder
- Blast-Induced Neurotrauma Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Irene D Gist
- Blast-Induced Neurotrauma Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Andrew J Morris
- Division of Cardiovascular Medicine, Lexington VA Medical Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Roger A Sabbadini
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Joseph B Long
- Blast-Induced Neurotrauma Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
13
|
Hisaoka-Nakashima K, Yokoe T, Watanabe S, Nakamura Y, Kajitani N, Okada-Tsuchioka M, Takebayashi M, Nakata Y, Morioka N. Lysophosphatidic acid induces thrombospondin-1 production in primary cultured rat cortical astrocytes. J Neurochem 2020; 158:849-864. [PMID: 33118159 DOI: 10.1111/jnc.15227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/09/2020] [Accepted: 10/25/2020] [Indexed: 11/25/2022]
Abstract
Lysophosphatidic acid (LPA), a brain membrane-derived lipid mediator, plays important roles including neural development, function, and behavior. In the present study, the effects of LPA on astrocyte-derived synaptogenesis factor thrombospondins (TSPs) production were examined by real-time PCR and western blotting, and the mechanism underlying this event was examined by pharmacological approaches in primary cultured rat cortical astrocytes. Treatment of astrocytes with LPA increased TSP-1 mRNA, and TSP-2 mRNA, but not TSP-4 mRNA expression. TSP-1 protein expression and release were also increased by LPA. LPA-induced TSP-1 production were inhibited by AM966 a LPA1 receptor antagonist, and Ki16425, LPA1/3 receptors antagonist, but not by H2L5146303, LPA2 receptor antagonist. Pertussis toxin, Gi/o inhibitor, but not YM-254890, Gq inhibitor, and NF499, Gs inhibitor, inhibited LPA-induced TSP-1 production, indicating that LPA increases TSP-1 production through Gi/o-coupled LPA1 and LPA3 receptors. LPA treatment increased phosphorylation of extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK). LPA-induced TSP-1 mRNA expression was inhibited by U0126, MAPK/ERK kinase (MEK) inhibitor, but not SB202190, p38 MAPK inhibitor, or SP600125, JNK inhibitor. However, LPA-induced TSP-1 protein expression was diminished with inhibition of all three MAPKs, indicating that these signaling molecules are involved in TSP-1 protein production. Treatment with antidepressants, which bind to astrocytic LPA1 receptors, increased TSP-1 mRNA and protein production. The current findings show that LPA/LPA1/3 receptors signaling increases TSP-1 production in astrocytes, which could be important in the pathogenesis of affective disorders and could potentially be a target for the treatment of affective disorders.
Collapse
Affiliation(s)
- Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Toshiki Yokoe
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shintaro Watanabe
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Naoto Kajitani
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.,Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Mami Okada-Tsuchioka
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Minoru Takebayashi
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.,Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Yoshihiro Nakata
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
14
|
Lee D, Kim YH, Kim JH. The Role of Lysophosphatidic Acid in Adult Stem Cells. Int J Stem Cells 2020; 13:182-191. [PMID: 32587135 PMCID: PMC7378901 DOI: 10.15283/ijsc20035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/24/2020] [Accepted: 05/21/2020] [Indexed: 01/06/2023] Open
Abstract
Stem cells are undifferentiated multipotent precursor cells that are capable both of perpetuating themselves as stem cells (self-renewal) and of undergoing differentiation into one or more specialized types of cells. And these stem cells have been reported to reside within distinct anatomic locations termed “niches”. The long-term goals of stem cell biology range from an understanding of cell-lineage determination and tissue organization to cellular therapeutics for degenerative diseases. Stem cells maintain tissue function throughout an organism’s lifespan by replacing differentiated cells. To perform this function, stem cells provide a unique combination of multilineage developmental potential and the capacity to undergo self-renewing divisions. The loss of self-renewal capacity in stem cells underlies certain degenerative diseases and the aging process. This self-renewal regulation must balance the regenerative needs of tissues that persist throughout life. Recent evidence suggests lysophosphatidic acid (LPA) signaling pathway plays an important role in the regulation of a variety of stem cells. In this review, we summarize the evidence linking between LPA and stem cell regulation. The LPA-induced signaling pathway regulates the proliferation and survival of stem cells and progenitors, and thus are likely to play a role in the maintenance of stem cell population in the body. This lipid mediator regulatory system can be a novel potential therapeutics for stem cell maintenance.
Collapse
Affiliation(s)
- Dongjun Lee
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan, Korea
| | - Yun Hak Kim
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, Korea.,Department of Biomedical Informatics, Pusan National University School of Medicine, Yangsan, Korea
| | - Jae Ho Kim
- Department of Physiology, Pusan National University School of Medicine, Yangsan, Korea
| |
Collapse
|
15
|
Hao Y, Guo M, Feng Y, Dong Q, Cui M. Lysophospholipids and Their G-Coupled Protein Signaling in Alzheimer's Disease: From Physiological Performance to Pathological Impairment. Front Mol Neurosci 2020; 13:58. [PMID: 32351364 PMCID: PMC7174595 DOI: 10.3389/fnmol.2020.00058] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/24/2020] [Indexed: 12/21/2022] Open
Abstract
Lysophospholipids (LPLs) are bioactive signaling lipids that are generated from phospholipase-mediated hydrolyzation of membrane phospholipids (PLs) and sphingolipids (SLs). Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are two of the best-characterized LPLs which mediate a variety of cellular physiological responses via specific G-protein coupled receptor (GPCR) mediated signaling pathways. Considerable evidence now demonstrates the crucial role of LPA and S1P in neurodegenerative diseases, especially in Alzheimer’s disease (AD). Dysfunction of LPA and S1P metabolism can lead to aberrant accumulation of amyloid-β (Aβ) peptides, the formation of neurofibrillary tangles (NFTs), neuroinflammation and ultimately neuronal death. Summarizing LPA and S1P signaling profile may aid in profound health and pathological processes. In the current review, we will introduce the metabolism as well as the physiological roles of LPA and S1P in maintaining the normal functions of the nervous system. Given these pivotal functions, we will further discuss the role of dysregulation of LPA and S1P in promoting AD pathogenesis.
Collapse
Affiliation(s)
- Yining Hao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Min Guo
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiwei Feng
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Mei Cui
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Xiang H, Lu Y, Shao M, Wu T. Lysophosphatidic Acid Receptors: Biochemical and Clinical Implications in Different Diseases. J Cancer 2020; 11:3519-3535. [PMID: 32284748 PMCID: PMC7150451 DOI: 10.7150/jca.41841] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/25/2020] [Indexed: 12/21/2022] Open
Abstract
Lysophosphatidic acid (LPA, 1-acyl-2-hemolytic-sn-glycerol-3-phosphate) extracted from membrane phospholipid is a kind of simple bioactive glycophospholipid, which has many biological functions such as stimulating cell multiplication, cytoskeleton recombination, cell survival, drug-fast, synthesis of DNA and ion transport. Current studies have shown that six G-coupled protein receptors (LPAR1-6) can be activated by LPA. They stimulate a variety of signal transduction pathways through heterotrimeric G-proteins (such as Gα12/13, Gαq/11, Gαi/o and GαS). LPA and its receptors play vital roles in cancers, nervous system diseases, cardiovascular diseases, liver diseases, metabolic diseases, etc. In this article, we discussed the structure of LPA receptors and elucidated their functions in various diseases, in order to better understand them and point out new therapeutic schemes for them.
Collapse
Affiliation(s)
- Hongjiao Xiang
- Center of Chinese Medical Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yifei Lu
- Center of Chinese Medical Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mingmei Shao
- Center of Chinese Medical Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tao Wu
- Center of Chinese Medical Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
17
|
The Novel Perspectives of Adipokines on Brain Health. Int J Mol Sci 2019; 20:ijms20225638. [PMID: 31718027 PMCID: PMC6887733 DOI: 10.3390/ijms20225638] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
First seen as a fat-storage tissue, the adipose tissue is considered as a critical player in the endocrine system. Precisely, adipose tissue can produce an array of bioactive factors, including cytokines, lipids, and extracellular vesicles, which target various systemic organ systems to regulate metabolism, homeostasis, and immune response. The global effects of adipokines on metabolic events are well defined, but their impacts on brain function and pathology remain poorly defined. Receptors of adipokines are widely expressed in the brain. Mounting evidence has shown that leptin and adiponectin can cross the blood–brain barrier, while evidence for newly identified adipokines is limited. Significantly, adipocyte secretion is liable to nutritional and metabolic states, where defective circuitry, impaired neuroplasticity, and elevated neuroinflammation are symptomatic. Essentially, neurotrophic and anti-inflammatory properties of adipokines underlie their neuroprotective roles in neurodegenerative diseases. Besides, adipocyte-secreted lipids in the bloodstream can act endocrine on the distant organs. In this article, we have reviewed five adipokines (leptin, adiponectin, chemerin, apelin, visfatin) and two lipokines (palmitoleic acid and lysophosphatidic acid) on their roles involving in eating behavior, neurotrophic and neuroprotective factors in the brain. Understanding and regulating these adipokines can lead to novel therapeutic strategies to counteract metabolic associated eating disorders and neurodegenerative diseases, thus promote brain health.
Collapse
|
18
|
Gaire BP, Sapkota A, Song MR, Choi JW. Lysophosphatidic acid receptor 1 (LPA 1) plays critical roles in microglial activation and brain damage after transient focal cerebral ischemia. J Neuroinflammation 2019; 16:170. [PMID: 31429777 PMCID: PMC6701099 DOI: 10.1186/s12974-019-1555-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/05/2019] [Indexed: 12/29/2022] Open
Abstract
Background Lysophosphatidic acid receptor 1 (LPA1) is in the spotlight because its synthetic antagonist has been under clinical trials for lung fibrosis and psoriasis. Targeting LPA1 might also be a therapeutic strategy for cerebral ischemia because LPA1 triggers microglial activation, a core pathogenesis in cerebral ischemia. Here, we addressed this possibility using a mouse model of transient middle cerebral artery occlusion (tMCAO). Methods To address the role of LPA1 in the ischemic brain damage, we used AM095, a selective LPA1 antagonist, as a pharmacological tool and lentivirus bearing a specific LPA1 shRNA as a genetic tool. Brain injury after tMCAO challenge was accessed by determining brain infarction and neurological deficit score. Role of LPA1 in tMCAO-induced microglial activation was ascertained by immunohistochemical analysis. Proinflammatory responses in the ischemic brain were determined by qRT-PCR and immunohistochemical analyses, which were validated in vitro using mouse primary microglia. Activation of MAPKs and PI3K/Akt was determined by Western blot analysis. Results AM095 administration immediately after reperfusion attenuated brain damage such as brain infarction and neurological deficit at 1 day after tMCAO, which was reaffirmed by LPA1 shRNA lentivirus. AM095 administration also attenuated brain infarction and neurological deficit at 3 days after tMCAO. LPA1 antagonism attenuated microglial activation; it reduced numbers and soma size of activated microglia, reversed their morphology into less toxic one, and reduced microglial proliferation. Additionally, LPA1 antagonism reduced mRNA expression levels of proinflammatory cytokines and suppressed NF-κB activation, demonstrating its regulatory role of proinflammatory responses in the ischemic brain. Particularly, these LPA1-driven proinflammatory responses appeared to occur in activated microglia because NF-κB activation occurred mainly in activated microglia in the ischemic brain. Regulatory role of LPA1 in proinflammatory responses of microglia was further supported by in vitro findings using lipopolysaccharide-stimulated cultured microglia, showing that suppressing LPA1 activity reduced mRNA expression levels of proinflammatory cytokines. In the ischemic brain, LPA1 influenced PI3K/Akt and MAPKs; suppressing LPA1 activity decreased MAPK activation and increased Akt phosphorylation. Conclusion This study demonstrates that LPA1 is a new etiological factor for cerebral ischemia, strongly indicating that its modulation can be a potential strategy to reduce ischemic brain damage. Electronic supplementary material The online version of this article (10.1186/s12974-019-1555-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bhakta Prasad Gaire
- Laboratory of Neuropharmacology, College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Yeonsu-gu, Incheon, 406-799, Republic of Korea
| | - Arjun Sapkota
- Laboratory of Neuropharmacology, College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Yeonsu-gu, Incheon, 406-799, Republic of Korea
| | - Mi-Ryoung Song
- School of Life Sciences, Gwangju Institute of Science and Technology, Buk-gu, Gwangju, 500-712, Republic of Korea.
| | - Ji Woong Choi
- Laboratory of Neuropharmacology, College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Yeonsu-gu, Incheon, 406-799, Republic of Korea.
| |
Collapse
|
19
|
Roza C, Campos-Sandoval JA, Gómez-García MC, Peñalver A, Márquez J. Lysophosphatidic Acid and Glutamatergic Transmission. Front Mol Neurosci 2019; 12:138. [PMID: 31191247 PMCID: PMC6546900 DOI: 10.3389/fnmol.2019.00138] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/10/2019] [Indexed: 11/29/2022] Open
Abstract
Signaling through bioactive lipids regulates nervous system development and functions. Lysophosphatidic acid (LPA), a membrane-derived lipid mediator particularly enriched in brain, is able to induce many responses in neurons and glial cells by affecting key processes like synaptic plasticity, neurogenesis, differentiation and proliferation. Early studies noted sustained elevations of neuronal intracellular calcium, a primary response to LPA exposure, suggesting functional modifications of NMDA and AMPA glutamate receptors. However, the crosstalk between LPA signaling and glutamatergic transmission has only recently been shown. For example, stimulation of presynaptic LPA receptors in hippocampal neurons regulates glutamate release from the presynaptic terminal, and excess of LPA induce seizures. Further evidence indicating a role of LPA in the modulation of neuronal transmission has been inferred from animal models with deficits on LPA receptors, mainly LPA1 which is the most prevalent receptor in human and mouse brain tissue. LPA1 null-mice exhibit cognitive and attention deficits characteristic of schizophrenia which are related with altered glutamatergic transmission and reduced neuropathic pain. Furthermore, silencing of LPA1 receptor in mice induced a severe down-regulation of the main glutaminase isoform (GLS) in cerebral cortex and hippocampus, along with a parallel sharp decrease on active matrix-metalloproteinase 9. The downregulation of both enzymes correlated with an altered morphology of glutamatergic pyramidal cells dendritic spines towards a less mature phenotype, indicating important implications of LPA in synaptic excitatory plasticity which may contribute to the cognitive and memory deficits shown by LPA1-deficient mice. In this review, we present an updated account of current evidence pointing to important implications of LPA in the modulation of synaptic excitatory transmission.
Collapse
Affiliation(s)
- Carolina Roza
- Departamento de Biología de Sistemas, Edificio de Medicina Universidad de Alcalá, Alcalá de Henares, Spain
| | - José A Campos-Sandoval
- Laboratorio de Química de Proteínas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Campus de Teatinos, Málaga, Spain
| | - María C Gómez-García
- Laboratorio de Química de Proteínas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Campus de Teatinos, Málaga, Spain
| | - Ana Peñalver
- Laboratorio de Química de Proteínas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Campus de Teatinos, Málaga, Spain
| | - Javier Márquez
- Laboratorio de Química de Proteínas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Campus de Teatinos, Málaga, Spain
| |
Collapse
|
20
|
López-Serrano C, Santos-Nogueira E, Francos-Quijorna I, Coll-Miro M, Chun J, López-Vales R. Lysophosphatidic acid receptor type 2 activation contributes to secondary damage after spinal cord injury in mice. Brain Behav Immun 2019; 76:258-267. [PMID: 30550929 PMCID: PMC6348147 DOI: 10.1016/j.bbi.2018.12.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/05/2018] [Accepted: 12/10/2018] [Indexed: 01/08/2023] Open
Abstract
Lysophosphatidic acid (LPA) is an extracellular lipid mediator involved in many physiological functions by signaling through six known G-protein-coupled receptors (LPA1-LPA6). In the central nervous system (CNS), LPA mediates a wide range of effects, including neural progenitor cell physiology, astrocyte and microglia activation, neuronal cell death, axonal retraction, and contributions to pain, schizophrenia and hydrocephalus. We recently reported that LPA-LPA1 signaling mediates functional deficits and myelin loss after spinal cord injury (SCI). Here, we provide clear evidence on the deleterious contribution of another LPA receptor, LPA2, to myelin loss after SCI. We found that LPA2 is constitutively expressed in the spinal cord parenchyma and its transcripts were up-regulated after contusion injury, in part, by microglial cells. We also found that the demyelinating lesion triggered by intraspinal injection of LPA into the undamaged spinal cord was markedly reduced in the lack of LPA2. Similarly, LPA2 deficient mice showed enhanced motor skills and myelin sparing after SCI. To gain insights into the detrimental actions of LPA2 in spinal cord we performed cell culture studies. These experiments revealed that, similar to LPA1, activation of microglia LPA2 led to oligodendrocyte cell death. Moreover, we also found that the cytotoxic effects underlaying microglial LPA-LPA2 axis were mediated by the release of purines by microglia and the activation of P2X7 receptor on oligodendrocytes. Overall, this study provides new mechanistic insights into how LPA contributes to SCI physiopathology, and suggest that targeting LPA2 could be a novel therapeutic approach for the treatment of acute SCI.
Collapse
Affiliation(s)
- Clara López-Serrano
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain 08193
| | - Eva Santos-Nogueira
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain 08193
| | - Isaac Francos-Quijorna
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain 08193
| | - Marina Coll-Miro
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain 08193
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA 92037
| | - Rubèn López-Vales
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Bellaterra, Catalonia 08193, Spain.
| |
Collapse
|
21
|
McDonald WS, Jones EE, Wojciak JM, Drake RR, Sabbadini RA, Harris NG. Matrix-Assisted Laser Desorption Ionization Mapping of Lysophosphatidic Acid Changes after Traumatic Brain Injury and the Relationship to Cellular Pathology. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1779-1793. [PMID: 30037420 PMCID: PMC6099387 DOI: 10.1016/j.ajpath.2018.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 05/07/2018] [Accepted: 05/16/2018] [Indexed: 12/29/2022]
Abstract
Lysophosphatidic acid (LPA) levels increase in the cerebrospinal fluid and blood within 24 hours after traumatic brain injury (TBI), indicating it may be a biomarker for subsequent cellular pathology. However, no data exist that document this association after TBI. We, therefore, acquired matrix-assisted laser desorption ionization imaging mass spectrometry data of LPA, major LPA metabolites, and hemoglobin from adult rat brains at 1 and 3 hours after controlled cortical impact injury. Data were semiquantitatively assessed by signal intensity analysis normalized to naïve rat brains acquired concurrently. Gray and white matter pathology was assessed on adjacent sections using immunohistochemistry for cell death, axonal injury, and intracellular LPA, to determine the spatiotemporal patterning of LPA corresponding to pathology. The results revealed significant increases in LPA and LPA precursors at 1 hour after injury and robust enhancement in LPA diffusively throughout the brain at 3 hours after injury. Voxel-wise analysis of LPA by matrix-assisted laser desorption ionization and β-amyloid precursor protein by immunohistochemistry in adjacent sections showed significant association, raising the possibility that LPA is linked to secondary axonal injury. Total LPA and metabolites were also present in remotely injured areas, including cerebellum and brain stem, and in particular thalamus, where intracellular LPA is associated with cell death. LPA may be a useful biomarker of cellular pathology after TBI.
Collapse
Affiliation(s)
- Whitney S McDonald
- UCLA Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Elizabeth E Jones
- Medical University of South Carolina Proteomics Center, Charleston, South Carolina
| | | | - Richard R Drake
- Medical University of South Carolina Proteomics Center, Charleston, South Carolina
| | | | - Neil G Harris
- UCLA Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
22
|
Ramesh S, Govindarajulu M, Suppiramaniam V, Moore T, Dhanasekaran M. Autotaxin⁻Lysophosphatidic Acid Signaling in Alzheimer's Disease. Int J Mol Sci 2018; 19:ijms19071827. [PMID: 29933579 PMCID: PMC6073975 DOI: 10.3390/ijms19071827] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/12/2018] [Accepted: 06/18/2018] [Indexed: 12/14/2022] Open
Abstract
The brain contains various forms of lipids that are important for maintaining its structural integrity and regulating various signaling cascades. Autotaxin (ATX) is an ecto-nucleotide pyrophosphatase/phosphodiesterase-2 enzyme that hydrolyzes extracellular lysophospholipids into the lipid mediator lysophosphatidic acid (LPA). LPA is a major bioactive lipid which acts through G protein-coupled receptors (GPCRs) and plays an important role in mediating cellular signaling processes. The majority of synthesized LPA is derived from membrane phospholipids through the action of the secreted enzyme ATX. Both ATX and LPA are highly expressed in the central nervous system. Dysfunctional expression and activity of ATX with associated changes in LPA signaling have recently been implicated in the pathogenesis of Alzheimer’s disease (AD). This review focuses on the current understanding of LPA signaling, with emphasis on the importance of the autotaxin–lysophosphatidic acid (ATX–LPA) pathway and its alterations in AD and a brief note on future therapeutic applications based on ATX–LPA signaling.
Collapse
Affiliation(s)
- Sindhu Ramesh
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA.
| | - Manoj Govindarajulu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA.
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA.
| | - Timothy Moore
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA.
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
23
|
Choi SH, Kim HJ, Cho HJ, Park SD, Lee NE, Hwang SH, Rhim H, Kim HC, Cho IH, Nah SY. Gintonin-mediated release of astrocytic vascular endothelial growth factor protects cortical astrocytes from hypoxia-induced cell damages. J Ginseng Res 2018; 43:305-311. [PMID: 30976168 PMCID: PMC6437663 DOI: 10.1016/j.jgr.2018.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 05/28/2018] [Indexed: 01/15/2023] Open
Abstract
Background Gintonin is a ginseng-derived exogenous ligand of the G protein-coupled lysophosphatidic acid (LPA) receptor. We previously reported that gintonin stimulates gliotransmitter release in primary cortical astrocytes. Astrocytes play key roles in the functions of neurovascular systems. Although vascular endothelial growth factor (VEGF) is known to influence the normal growth and maintenance of cranial blood vessels and the nervous system, there is little information about the effect of gintonin on VEGF regulation in primary astrocytes, under normal and hypoxic conditions. Methods Using primary cortical astrocytes of mice, the effects of gintonin on the release, expression, and distribution of VEGF were examined. We further investigated whether the gintonin-mediated VEGF release protects astrocytes from hypoxia. Results Gintonin administration stimulated the release and expression of VEGF from astrocytes in a concentration- and time-dependent manner. The gintonin-mediated increase in the release of VEGF was inhibited by the LPA1/3 receptor antagonist, Ki16425; phospholipase C inhibitor, U73122; inositol 1,4,5-triphosphate receptor antagonist, 2-APB; and intracellular Ca2+ chelator, BAPTA. Hypoxia further stimulated astrocytic VEGF release. Gintonin treatment stimulated additional VEGF release and restored cell viability that had decreased due to hypoxia, via the VEGF receptor pathway. Altogether, the regulation of VEGF release and expression and astrocytic protection mediated by gintonin under hypoxia are achieved via the LPA receptor–VEGF signaling pathways. Conclusion The present study shows that the gintonin-mediated regulation of VEGF in cortical astrocytes might be neuroprotective against hypoxic insults and could explain the molecular basis of the beneficial effects of ginseng on the central nervous system.
Collapse
Affiliation(s)
- Sun-Hye Choi
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Hyeon-Joong Kim
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Hee-Jung Cho
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Sang-Deuk Park
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Na-Eun Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Sung-Hee Hwang
- Department of Pharmaceutical Engineering, College of Health Sciences, Sangji University, Wonju, Republic of Korea
| | - Hyewon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology Seoul, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Oriental Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
24
|
Loskutov YV, Griffin CL, Marinak KM, Bobko A, Margaryan NV, Geldenhuys WJ, Sarkaria JN, Pugacheva EN. LPA signaling is regulated through the primary cilium: a novel target in glioblastoma. Oncogene 2018; 37:1457-1471. [PMID: 29321663 PMCID: PMC5854509 DOI: 10.1038/s41388-017-0049-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/06/2017] [Accepted: 09/24/2017] [Indexed: 01/23/2023]
Abstract
The primary cilium is a ubiquitous organelle presented on most human cells. It is a crucial signaling hub for multiple pathways including growth factor and G-protein coupled receptors. Loss of primary cilia, observed in various cancers, has been shown to affect cell proliferation. Primary cilia formation is drastically decreased in glioblastoma (GBM), however, the role of cilia in normal astrocyte or glioblastoma proliferation has not been explored. Here, we report that loss of primary cilia in human astrocytes stimulates growth rate in a lysophosphatidic acid (LPA)-dependent manner. We show that lysophosphatidic acid receptor 1 (LPAR1) is accumulated in primary cilia. LPAR1 signaling through Gα12/Gαq was previously reported to be responsible for cancer cell proliferation. We found that in ciliated cells, Gα12 and Gαq are excluded from the cilium, creating a barrier against unlimited proliferation, one of the hallmarks of cancer. Upon loss of primary cilia, LPAR1 redistributes to the plasma membrane with a concomitant increase in LPAR1 association with Gα12 and Gαq. Inhibition of LPA signaling with the small molecule compound Ki16425 in deciliated highly proliferative astrocytes or glioblastoma patient-derived cells/xenografts drastically suppresses their growth both in vitro and in vivo. Moreover, Ki16425 brain delivery via PEG-PLGA nanoparticles inhibited tumor progression in an intracranial glioblastoma PDX model. Overall, our findings establish a novel mechanism by which primary cilium restricts proliferation and indicate that loss of primary cilia is sufficient to increase mitogenic signaling, and is important for the maintenance of a highly proliferative phenotype. Clinical application of LPA inhibitors may prove beneficial to restrict glioblastoma growth and ensure local control of disease.
Collapse
Affiliation(s)
- Yuriy V Loskutov
- WVU Cancer Institute, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Caryn L Griffin
- WVU Cancer Institute, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Kristina M Marinak
- WVU Cancer Institute, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Andrey Bobko
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Naira V Margaryan
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Werner J Geldenhuys
- Department of Pharmaceutical Sciences, West Virginia University School of Medicine, Morgantown, WV, USA
| | | | - Elena N Pugacheva
- WVU Cancer Institute, West Virginia University School of Medicine, Morgantown, WV, USA.
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV, USA.
- Department of Radiation Oncology, West Virginia University School of Medicine, Morgantown, WV, USA.
| |
Collapse
|
25
|
Nakajima S, Gotoh M, Fukasawa K, Murofushi H, Murakami-Murofushi K. 2-O-Carba-oleoyl cyclic phosphatidic acid induces glial proliferation through the activation of lysophosphatidic acid receptor. Brain Res 2017; 1681:44-51. [PMID: 29278716 DOI: 10.1016/j.brainres.2017.12.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 01/20/2023]
Abstract
Lysophosphatidic acid (LPA) and cyclic phosphatidic acid (cPA) are one of the lipid mediators regulating cell proliferation and differentiation through the activation of LPA receptors. An LPA receptor-mediated signal is important for the development of the central nervous system, while it has been demonstrated that LPA caused microglial activation and astroglial dysfunction. Previously, we have reported that cPA and carba analog of cPA, 2-O-carba-cPA (2ccPA), protected neural damage caused by transient ischemia. However, little is known about the target cell of cPA/2ccPA in the central nervous systems. Here, we examined the effect of 2ccPA on glial proliferation and differentiation using the primary astrocytes and oligodendrocyte precursor cells (OPCs) cultures. 2ccPA increased the DNA synthesis of astrocytes and OPCs, but it did not reduce the formazan production in the mitochondria. Further, 2ccPA increased the cell number and cell survival against oxidative stress. The inhibition of LPA receptors by ki16425 abolished 2ccPA-induced DNA synthesis. Extracellular signal-regulated kinase (ERK) was activated by 2ccPA, which contributed to the astroglial DNA synthesis. These results suggest that 2ccPA is a beneficial regulator of glial population through the activation of LPA receptor without reduction of mitochondrial activity.
Collapse
Affiliation(s)
- Shingo Nakajima
- Endowed Research Division of Human Welfare Sciences, Ochanomizu University, Tokyo, Japan
| | - Mari Gotoh
- Institute for Human Life Innovation, Ochanomizu University, Tokyo, Japan
| | - Keiko Fukasawa
- Endowed Research Division of Human Welfare Sciences, Ochanomizu University, Tokyo, Japan
| | - Hiromu Murofushi
- Endowed Research Division of Human Welfare Sciences, Ochanomizu University, Tokyo, Japan
| | | |
Collapse
|
26
|
Olianas MC, Dedoni S, Onali P. LPA 1 is a key mediator of intracellular signalling and neuroprotection triggered by tetracyclic antidepressants in hippocampal neurons. J Neurochem 2017; 143:183-197. [PMID: 28815598 DOI: 10.1111/jnc.14150] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/02/2017] [Accepted: 08/10/2017] [Indexed: 11/29/2022]
Abstract
Both lysophosphatidic acid (LPA) and antidepressants have been shown to affect neuronal survival and differentiation, but whether LPA signalling participates in the action of antidepressants is still unknown. In this study, we examined the role of LPA receptors in the regulation of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) activity and neuronal survival by the tetracyclic antidepressants, mianserin and mirtazapine in hippocampal neurons. In HT22 immortalized hippocampal cells, antidepressants and LPA induced a time- and concentration-dependent stimulation of ERK1/2 phosphorylation. This response was inhibited by either LPA1 and LPA1/3 selective antagonists or siRNA-induced LPA1 down-regulation, and enhanced by LPA1 over-expression. Conversely, the selective LPA2 antagonist H2L5186303 had no effect. Antidepressants induced cyclic AMP response element binding protein phosphorylation and this response was prevented by LPA1 blockade. ERK1/2 stimulation involved pertussis toxin-sensitive G proteins, Src tyrosine kinases and fibroblast growth factor receptor (FGF-R) activity. Tyrosine phosphorylation of FGF-R was enhanced by antidepressants through LPA1 . Serum withdrawal induced apoptotic death, as indicated by increased annexin V staining, caspase activation and cleavage of poly-ADP-ribose polymerase. Antidepressants inhibited the apoptotic cascade and this protective effect was curtailed by blockade of either LPA1 , ERK1/2 or FGF-R activity. Moreover, in primary mouse hippocampal neurons, mianserin acting through LPA1 increased phospho-ERK1/2 and protected from apoptosis induced by removal of growth supplement. These data indicate that in neurons endogenously expressed LPA1 receptors mediate intracellular signalling and neuroprotection by tetracyclic antidepressants.
Collapse
Affiliation(s)
- Maria C Olianas
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Simona Dedoni
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Pierluigi Onali
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
27
|
Peñalver A, Campos-Sandoval JA, Blanco E, Cardona C, Castilla L, Martín-Rufián M, Estivill-Torrús G, Sánchez-Varo R, Alonso FJ, Pérez-Hernández M, Colado MI, Gutiérrez A, de Fonseca FR, Márquez J. Glutaminase and MMP-9 Downregulation in Cortex and Hippocampus of LPA 1 Receptor Null Mice Correlate with Altered Dendritic Spine Plasticity. Front Mol Neurosci 2017; 10:278. [PMID: 28928633 PMCID: PMC5591874 DOI: 10.3389/fnmol.2017.00278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/17/2017] [Indexed: 12/03/2022] Open
Abstract
Lysophosphatidic acid (LPA) is an extracellular lipid mediator that regulates nervous system development and functions acting through G protein-coupled receptors (GPCRs). Here we explore the crosstalk between LPA1 receptor and glutamatergic transmission by examining expression of glutaminase (GA) isoforms in different brain areas isolated from wild-type (WT) and KOLPA1 mice. Silencing of LPA1 receptor induced a severe down-regulation of Gls-encoded long glutaminase protein variant (KGA) (glutaminase gene encoding the kidney-type isoforms, GLS) protein expression in several brain regions, particularly in brain cortex and hippocampus. Immunohistochemical assessment of protein levels for the second type of glutaminase (GA) isoform, glutaminase gene encoding the liver-type isoforms (GLS2), did not detect substantial differences with regard to WT animals. The regional mRNA levels of GLS were determined by real time RT-PCR and did not show significant variations, except for prefrontal and motor cortex values which clearly diminished in KO mice. Total GA activity was also significantly reduced in prefrontal and motor cortex, but remained essentially unchanged in the hippocampus and rest of brain regions examined, suggesting activation of genetic compensatory mechanisms and/or post-translational modifications to compensate for KGA protein deficit. Remarkably, Golgi staining of hippocampal regions showed an altered morphology of glutamatergic pyramidal cells dendritic spines towards a less mature filopodia-like phenotype, as compared with WT littermates. This structural change correlated with a strong decrease of active matrix-metalloproteinase (MMP) 9 in cerebral cortex and hippocampus of KOLPA1 mice. Taken together, these results demonstrate that LPA signaling through LPA1 influence expression of the main isoenzyme of glutamate biosynthesis with strong repercussions on dendritic spines maturation, which may partially explain the cognitive and learning defects previously reported for this colony of KOLPA1 mice.
Collapse
Affiliation(s)
- Ana Peñalver
- Canceromics Laboratory, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de TeatinosMálaga, Spain
| | - José A Campos-Sandoval
- Canceromics Laboratory, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de TeatinosMálaga, Spain
| | - Eduardo Blanco
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de MálagaMálaga, Spain
| | - Carolina Cardona
- Canceromics Laboratory, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de TeatinosMálaga, Spain
| | - Laura Castilla
- Canceromics Laboratory, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de TeatinosMálaga, Spain
| | - Mercedes Martín-Rufián
- Canceromics Laboratory, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de TeatinosMálaga, Spain
| | - Guillermo Estivill-Torrús
- Unidad de Gestión Clínica de Neurociencias, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de MálagaMálaga, Spain
| | - Raquel Sánchez-Varo
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Instituto de Investigación Biomédica de Málaga (IBIMA), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universidad de Málaga, Campus de TeatinosMálaga, Spain
| | - Francisco J Alonso
- Canceromics Laboratory, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de TeatinosMálaga, Spain
| | - Mercedes Pérez-Hernández
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de OctubreMadrid, Spain
| | - María I Colado
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de OctubreMadrid, Spain
| | - Antonia Gutiérrez
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Instituto de Investigación Biomédica de Málaga (IBIMA), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universidad de Málaga, Campus de TeatinosMálaga, Spain
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de MálagaMálaga, Spain
| | - Javier Márquez
- Canceromics Laboratory, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de TeatinosMálaga, Spain
| |
Collapse
|
28
|
Choi SH, Jung SW, Lee BH, Kim HJ, Hwang SH, Kim HK, Nah SY. Ginseng pharmacology: a new paradigm based on gintonin-lysophosphatidic acid receptor interactions. Front Pharmacol 2015; 6:245. [PMID: 26578955 PMCID: PMC4621423 DOI: 10.3389/fphar.2015.00245] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/12/2015] [Indexed: 01/21/2023] Open
Abstract
Ginseng, the root of Panax ginseng, is used as a traditional medicine. Despite the long history of the use of ginseng, there is no specific scientific or clinical rationale for ginseng pharmacology besides its application as a general tonic. The ambiguous description of ginseng pharmacology might be due to the absence of a predominant active ingredient that represents ginseng pharmacology. Recent studies show that ginseng abundantly contains lysophosphatidic acids (LPAs), which are phospholipid-derived growth factor with diverse biological functions including those claimed to be exhibited by ginseng. LPAs in ginseng form a complex with ginseng proteins, which can bind and deliver LPA to its cognate receptors with a high affinity. As a first messenger, gintonin produces second messenger Ca2+ via G protein-coupled LPA receptors. Ca2+ is an intracellular mediator of gintonin and initiates a cascade of amplifications for further intercellular communications by activation of Ca2+-dependent kinases, receptors, gliotransmitter, and neurotransmitter release. Ginsenosides, which have been regarded as primary ingredients of ginseng, cannot elicit intracellular [Ca2+]i transients, since they lack specific cell surface receptor. However, ginsenosides exhibit non-specific ion channel and receptor regulations. This is the key characteristic that distinguishes gintonin from ginsenosides. Although the current discourse on ginseng pharmacology is focused on ginsenosides, gintonin can definitely provide a mode of action for ginseng pharmacology that ginsenosides cannot. This review article introduces a novel concept of ginseng ligand-LPA receptor interaction and proposes to establish a paradigm that shifts the focus from ginsenosides to gintonin as a major ingredient representing ginseng pharmacology.
Collapse
Affiliation(s)
- Sun-Hye Choi
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine, Konkuk University , Seoul, South Korea
| | - Seok-Won Jung
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine, Konkuk University , Seoul, South Korea
| | - Byung-Hwan Lee
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine, Konkuk University , Seoul, South Korea
| | - Hyeon-Joong Kim
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine, Konkuk University , Seoul, South Korea
| | - Sung-Hee Hwang
- Department of Pharmaceutical Engineering, Sangji University , Wonju, South Korea
| | - Ho-Kyoung Kim
- Mibyeong Research Center, Korea Institute of Oriental Medicine , Daejeon, South Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine, Konkuk University , Seoul, South Korea
| |
Collapse
|
29
|
Activation of Lysophosphatidic Acid Receptor Type 1 Contributes to Pathophysiology of Spinal Cord Injury. J Neurosci 2015; 35:10224-35. [PMID: 26180199 DOI: 10.1523/jneurosci.4703-14.2015] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Lysophosphatidic acid (LPA) is an extracellular lipid mediator involved in many physiological functions that signals through six known G-protein-coupled receptors (LPA1-LPA6). A wide range of LPA effects have been identified in the CNS, including neural progenitor cell physiology, astrocyte and microglia activation, neuronal cell death, axonal retraction, and development of neuropathic pain. However, little is known about the involvement of LPA in CNS pathologies. Herein, we demonstrate for the first time that LPA signaling via LPA1 contributes to secondary damage after spinal cord injury. LPA levels increase in the contused spinal cord parenchyma during the first 14 d. To model this potential contribution of LPA in the spinal cord, we injected LPA into the normal spinal cord, revealing that LPA induces microglia/macrophage activation and demyelination. Use of a selective LPA1 antagonist or mice lacking LPA1 linked receptor-mediated signaling to demyelination, which was in part mediated by microglia. Finally, we demonstrate that selective blockade of LPA1 after spinal cord injury results in reduced demyelination and improvement in locomotor recovery. Overall, these results support LPA-LPA1 signaling as a novel pathway that contributes to secondary damage after spinal cord contusion in mice and suggest that LPA1 antagonism might be useful for the treatment of acute spinal cord injury. SIGNIFICANCE STATEMENT This study reveals that LPA signaling via LPA receptor type 1 activation causes demyelination and functional deficits after spinal cord injury.
Collapse
|
30
|
Kim H, Lee BH, Choi SH, Kim HJ, Jung SW, Hwang SH, Rhim H, Kim HC, Cho IH, Nah SY. Gintonin stimulates gliotransmitter release in cortical primary astrocytes. Neurosci Lett 2015; 603:19-24. [PMID: 26191656 DOI: 10.1016/j.neulet.2015.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 12/29/2022]
Abstract
Lysophosphatidic acid (LPA) is a simple and minor phospholipid, but serves as a lipid-derived neurotransmitter via activation of G protein-coupled LPA receptors. Astrocytes abundantly express LPA receptors and contain gliotransmitters that modulate astrocyte-neuron interactions. Gintonin is a novel ginseng-derived G protein-coupled LPA receptor ligand. Gintonin induces [Ca(2+)]i transients in neuronal and non-neuronal cells via activation of LPA receptors, which regulate calcium-dependent ion channels and receptors. A line of evidence shows that neurotransmitter-mediated [Ca(2+)]i elevations in astrocytes are coupled with gliotransmitter release. However, little is known about whether gintonin-mediated [Ca(2+)]i transients are coupled to gliotransmitter release in astrocytes. In the present study, we examined the effects of gintonin on adenosine triphosphate (ATP) and glutamate release in mouse cortical primary astrocytes. Application of gintonin to astrocytes induced [Ca(2+)]i transients in a concentration-dependent and reversible manner. However, ginsenosides, other active ingredients in ginseng, had no effect on [Ca(2+)]i transients. The induction of gintonin-mediated [Ca(2+)]i transients was attenuated/blocked by the LPA1/3 receptor antagonist Ki16425, a phospholipase C inhibitor, an inositol 1,4,5-triphosphate receptor antagonist, and an intracellular Ca(2+) chelator. Gintonin treatment on astrocytes increased ATP and glutamate release in a concentration- and time-dependent manner. BAPTA and Ki16425 attenuated gintonin-mediated ATP and glutamate release in astrocytes. The present study shows that gintonin-mediated [Ca(2+)]i transients are coupled to gliotransmitter release via LPA receptor activation. Finally, gintonin-mediated [Ca(2+)]i transients and gliotransmitter release from astrocytes via LPA receptor activation might explain one mechanism of gintonin-mediated neuromodulation in the central nervous system.
Collapse
Affiliation(s)
- Hyunsook Kim
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine Konkuk University, Seoul 143-701, South Korea
| | - Byung-Hwan Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine Konkuk University, Seoul 143-701, South Korea
| | - Sun-Hye Choi
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine Konkuk University, Seoul 143-701, South Korea
| | - Hyeon-Joong Kim
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine Konkuk University, Seoul 143-701, South Korea
| | - Suk-Won Jung
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine Konkuk University, Seoul 143-701, South Korea
| | - Sung-Hee Hwang
- Department of Pharmaceutical Engineering, College of Health Sciences, Sangji University, Wonju 220-702, South Korea
| | - Hyewon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 139-791,South Korea
| | - Hyung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon 200-701, South Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Oriental Korean Medicine, Kyung Hee University, Seoul 130-701, South Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine Konkuk University, Seoul 143-701, South Korea.
| |
Collapse
|
31
|
Abstract
Lysophosphatidic acid (LPA) is a bioactive phospholipid that is present in all tissues examined to date. LPA signals extracellularly via cognate G protein-coupled receptors to mediate cellular processes such as survival, proliferation, differentiation, migration, adhesion and morphology. These LPA-influenced processes impact many aspects of organismal development. In particular, LPA signalling has been shown to affect fertility and reproduction, formation of the nervous system, and development of the vasculature. Here and in the accompanying poster, we review the developmentally related features of LPA signalling.
Collapse
Affiliation(s)
- Xiaoyan Sheng
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yun C Yung
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Allison Chen
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jerold Chun
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
32
|
Tabuchi S. The autotaxin-lysophosphatidic acid-lysophosphatidic acid receptor cascade: proposal of a novel potential therapeutic target for treating glioblastoma multiforme. Lipids Health Dis 2015; 14:56. [PMID: 26084470 PMCID: PMC4477515 DOI: 10.1186/s12944-015-0059-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 06/12/2015] [Indexed: 12/29/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant tumor of the central nervous system (CNS). Its prognosis is one of the worst among all cancer types, and it is considered a fatal malignancy, incurable with conventional therapeutic strategies. As the bioactive multifunctional lipid mediator lysophosphatidic acid (LPA) is well recognized to be involved in the tumorigenesis of cancers by acting on G-protein-coupled receptors, LPA receptor (LPAR) antagonists and LPA synthesis inhibitors have been proposed as promising drugs for cancer treatment. Six LPARs, named LPA1-6, are currently recognized. Among them, LPA1 is the dominant LPAR in the CNS and is highly expressed in GBM in combination with the overexpression of autotaxin (ATX), the enzyme (a phosphodiesterase, which is a potent cell motility-stimulating factor) that produces LPA.Invasion is a defining hallmark of GBM. LPA is significantly related to cell adhesion, cell motility, and invasion through the Rho family GTPases Rho and Rac. LPA1 is responsible for LPA-driven cell motility, which is attenuated by LPA4. GBM is among the most vascular human tumors. Although anti-angiogenic therapy (through the inhibition of vascular endothelial growth factor (VEGF)) was established, sufficient results have not been obtained because of the increased invasiveness triggered by anti-angiogenesis. As both ATX and LPA play a significant role in angiogenesis, similar to VEGF, inhibition of the ATX/LPA axis may be beneficial as a two-pronged therapy that includes anti-angiogenic and anti-invasion therapy. Conventional approaches to GBM are predominantly directed at cell proliferation. Recurrent tumors regrow from cells that have invaded brain tissues and are less proliferative, and are thus quite resistant to conventional drugs and radiation, which preferentially kill rapidly proliferating cells. A novel approach that targets this invasive subpopulation of GBM cells may improve the prognosis of GBM. Patients with GBM that contacts the subventricular zone (SVZ) have decreased survival. A putative source of GBM cells is the SVZ, the largest area of neurogenesis in the adult human brain. GBM stem cells in the SVZ that are positive for the neural stem cell surface antigen CD133 are highly tumorigenic and enriched in recurrent GBM. LPA1 expression appears to be increased in these cells. Here, the author reviews research on the ATX/LPAR axis, focusing on GBM and an ATX/LPAR-targeted approach.
Collapse
Affiliation(s)
- Sadaharu Tabuchi
- Department of Neurosurgery, Tottori Prefectural Central Hospital, 730 Ezu, Tottori, 680-0901, Japan.
| |
Collapse
|
33
|
Choi SH, Jung SW, Kim HS, Kim HJ, Lee BH, Kim JY, Kim JH, Hwang SH, Rhim H, Kim HC, Nah SY. A brief method for preparation of gintonin-enriched fraction from ginseng. J Ginseng Res 2015; 39:398-405. [PMID: 26869834 PMCID: PMC4593782 DOI: 10.1016/j.jgr.2015.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/07/2015] [Accepted: 05/10/2015] [Indexed: 11/28/2022] Open
Abstract
Background Ginseng has been used as a tonic for invigoration of the human body. In a previous report, we identified a novel candidate responsible for the tonic role of ginseng, designated gintonin. Gintonin induces [Ca2+]i transient in animal cells via lysophosphatidic acid receptor activation. Gintonin-mediated [Ca2+]i transient is linked to anti-Alzheimer's activity in transgenic Alzheimer's disease animal model. The previous method for gintonin preparation included multiple steps. The aim of this study is to develop a simple method of gintonin fraction with a high yield. Methods We developed a brief method to obtain gintonin using ethanol and water. We extracted ginseng with fermentation ethanol and fractionated the extract with water to obtain water-soluble and water-insoluble fractions. The water-insoluble precipitate, rather than the water-soluble supernatant, induced a large [Ca2+]i transient in primary astrocytes. We designated this fraction as gintonin-enriched fraction (GEF). Results The yield of GEF was approximately 6-fold higher than that obtained in the previous gintonin preparation method. The apparent molecular weight of GEF, determined using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was equivalent to that obtained in the previous gintonin preparation method. GEF induced [Ca2+]i transient in cortical astrocytes. The effective dose (ED50) was 0.3 ± 0.09 μg/mL. GEF used the same signal transduction pathway as gintonin during [Ca2+]i transient induction in mouse cortical astrocytes. Conclusion Because GEF can be prepared through water precipitation of ginseng ethanol extract and is easily reproducible with high yield, it could be commercially utilized for the development of gintonin-derived functional health food and natural medicine.
Collapse
Affiliation(s)
- Sun-Hye Choi
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, South Korea
| | - Seok-Won Jung
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, South Korea
| | - Hyun-Sook Kim
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, South Korea
| | - Hyeon-Joong Kim
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, South Korea
| | - Byung-Hwan Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, South Korea
| | | | | | - Sung Hee Hwang
- Department of Pharmaceutical Engineering, Sangji University, Wonju, South Korea
| | - Hyewon Rhim
- Life Science Division, Korea Institute of Science and Technology, Seoul, South Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, South Korea
| |
Collapse
|
34
|
González de San Román E, Manuel I, Giralt MT, Chun J, Estivill-Torrús G, Rodríguez de Fonseca F, Santín LJ, Ferrer I, Rodríguez-Puertas R. Anatomical location of LPA1 activation and LPA phospholipid precursors in rodent and human brain. J Neurochem 2015; 134:471-85. [PMID: 25857358 DOI: 10.1111/jnc.13112] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/02/2015] [Accepted: 03/31/2015] [Indexed: 12/29/2022]
Abstract
Lysophosphatidic acid (LPA) is a signaling molecule that binds to six known G protein-coupled receptors: LPA1 -LPA6 . LPA evokes several responses in the CNS, including cortical development and folding, growth of the axonal cone and its retraction process. Those cell processes involve survival, migration, adhesion proliferation, differentiation, and myelination. The anatomical localization of LPA1 is incompletely understood, particularly with regard to LPA binding. Therefore, we have used functional [(35) S]GTPγS autoradiography to verify the anatomical distribution of LPA1 binding sites in adult rodent and human brain. The greatest activity was observed in myelinated areas of the white matter such as corpus callosum, internal capsule and cerebellum. MaLPA1 -null mice (a variant of LPA1 -null) lack [(35) S]GTPγS basal binding in white matter areas, where the LPA1 receptor is expressed at high levels, suggesting a relevant role of the activity of this receptor in the most myelinated brain areas. In addition, phospholipid precursors of LPA were localized by MALDI-IMS in both rodent and human brain slices identifying numerous species of phosphatides and phosphatidylcholines. Both phosphatides and phosphatidylcholines species represent potential LPA precursors. The anatomical distribution of these precursors in rodent and human brain may indicate a metabolic relationship between LPA and LPA1 receptors. Lysophosphatidic acid (LPA) is a signaling molecule that binds to six known G protein-coupled receptors (GPCR), LPA1 to LPA6 . LPA evokes several responses in the central nervous system (CNS), including cortical development and folding, growth of the axonal cone and its retraction process. We used functional [(35) S]GTPγS autoradiography to verify the anatomical distribution of LPA1 -binding sites in adult rodent and human brain. The distribution of LPA1 receptors in rat, mouse and human brains show the highest activity in white matter myelinated areas. The basal and LPA-evoked activities are abolished in MaLPA1 -null mice. The phospholipid precursors of LPA are localized by MALDI-IMS. The anatomical distribution of LPA precursors in rodent and human brain suggests a relationship with functional LPA1 receptors.
Collapse
Affiliation(s)
| | - Iván Manuel
- Department of Pharmacology, Faculty of Medicine and Odontology, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - María Teresa Giralt
- Department of Pharmacology, Faculty of Medicine and Odontology, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Jerold Chun
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California, USA
| | - Guillermo Estivill-Torrús
- UGC Intercentros de Neurociencias y UGC de Salud Mental, Instituto de Investigación Biomédica de Malaga (IBIMA), Hospitales Universitarios Regional de Málaga y Virgen de la Victoria, Universidad de Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- UGC Intercentros de Neurociencias y UGC de Salud Mental, Instituto de Investigación Biomédica de Malaga (IBIMA), Hospitales Universitarios Regional de Málaga y Virgen de la Victoria, Universidad de Málaga, Spain
| | - Luis Javier Santín
- Departmento de Psicobiología y Metodología de las Ciencias del Comportamiento. Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad of Málaga, Málaga, Spain
| | - Isidro Ferrer
- Institute of Neuropathology, University Hospital Bellvitge, University of Barcelona, Ciberned, Spain
| | - Rafael Rodríguez-Puertas
- Department of Pharmacology, Faculty of Medicine and Odontology, University of the Basque Country, UPV/EHU, Leioa, Spain
| |
Collapse
|
35
|
Olianas MC, Dedoni S, Onali P. Antidepressants activate the lysophosphatidic acid receptor LPA(1) to induce insulin-like growth factor-I receptor transactivation, stimulation of ERK1/2 signaling and cell proliferation in CHO-K1 fibroblasts. Biochem Pharmacol 2015; 95:311-23. [PMID: 25888927 DOI: 10.1016/j.bcp.2015.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 04/02/2015] [Indexed: 12/20/2022]
Abstract
Different lines of evidence indicate that the lysophosphatidic acid (LPA) receptor LPA1 is involved in neurogenesis, synaptic plasticity and anxiety-related behavior, but little is known on whether this receptor can be targeted by neuropsychopharmacological agents. The present study investigated the effects of different antidepressants on LPA1 signaling. We found that in Chinese hamster ovary (CHO)-K1 fibroblasts expressing endogenous LPA1 tricyclic and tetracyclic antidepressants and fluoxetine induced the phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2) and CREB. This response was antagonized by either LPA1 blockade with Ki16425 and AM966 or knocking down LPA1 with siRNA. Antidepressants induced ERK1/2 phosphorylation in human embryonic kidney (HEK)-293 cells overexpressing LPA1, but not in wild-type cells. In PathHunter™ assay measuring receptor-β-arrestin interaction, amitriptyline, mianserin and fluoxetine failed to induce activation of LPA2 and LPA3 stably expressed in CHO-K1 cells. ERK1/2 stimulation by antidepressants and LPA was suppressed by pertussis toxin and inhibition of Src, phosphatidylinositol-3 kinase and insulin-like growth factor-I receptor (IGF-IR) activities. Antidepressants and LPA induced tyrosine phosphorylation of IGF-IR and insulin receptor-substrate-1 through LPA1 and Src. Prolonged exposure of CHO-K1 fibroblasts to either mianserin, mirtazapine or LPA enhanced cell proliferation as indicated by increased [(3)H]-thymidine incorporation and Ki-67 immunofluorescence. This effect was inhibited by blockade of LPA1- and ERK1/2 activity. These data provide evidence that different antidepressants induce LPA1 activation, leading to receptor tyrosine kinase transactivation, stimulation of ERK1/2 signaling and enhanced cell proliferation.
Collapse
Affiliation(s)
- Maria C Olianas
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato Cagliari, Italy
| | - Simona Dedoni
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato Cagliari, Italy
| | - Pierluigi Onali
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato Cagliari, Italy.
| |
Collapse
|
36
|
Abstract
The brain is composed of many lipids with varied forms that serve not only as structural components but also as essential signaling molecules. Lysophosphatidic acid (LPA) is an important bioactive lipid species that is part of the lysophospholipid (LP) family. LPA is primarily derived from membrane phospholipids and signals through six cognate G protein-coupled receptors (GPCRs), LPA1-6. These receptors are expressed on most cell types within central and peripheral nervous tissues and have been functionally linked to many neural processes and pathways. This Review covers a current understanding of LPA signaling in the nervous system, with particular focus on the relevance of LPA to both physiological and diseased states.
Collapse
Affiliation(s)
- Yun C Yung
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicole C Stoddard
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Biomedical Sciences Graduate Program, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA
| | - Hope Mirendil
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jerold Chun
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
37
|
Mirendil H, Thomas EA, De Loera C, Okada K, Inomata Y, Chun J. LPA signaling initiates schizophrenia-like brain and behavioral changes in a mouse model of prenatal brain hemorrhage. Transl Psychiatry 2015; 5:e541. [PMID: 25849980 PMCID: PMC4462599 DOI: 10.1038/tp.2015.33] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 01/15/2015] [Accepted: 02/09/2015] [Indexed: 12/13/2022] Open
Abstract
Genetic, environmental and neurodevelopmental factors are thought to underlie the onset of neuropsychiatric disorders such as schizophrenia. How these risk factors collectively contribute to pathology is unclear. Here, we present a mouse model of prenatal intracerebral hemorrhage--an identified risk factor for schizophrenia--using a serum-exposure paradigm. This model exhibits behavioral, neurochemical and schizophrenia-related gene expression alterations in adult females. Behavioral alterations in amphetamine-induced locomotion, prepulse inhibition, thigmotaxis and social interaction--in addition to increases in tyrosine hydroxylase-positive dopaminergic cells in the substantia nigra and ventral tegmental area and decreases in parvalbumin-positive cells in the prefrontal cortex--were induced upon prenatal serum exposure. Lysophosphatidic acid (LPA), a lipid component of serum, was identified as a key molecular initiator of schizophrenia-like sequelae induced by serum. Prenatal exposure to LPA alone phenocopied many of the schizophrenia-like alterations seen in the serum model, whereas pretreatment with an antagonist against the LPA receptor subtype LPA1 prevented many of the behavioral and neurochemical alterations. In addition, both prenatal serum and LPA exposure altered the expression of many genes and pathways related to schizophrenia, including the expression of Grin2b, Slc17a7 and Grid1. These findings demonstrate that aberrant LPA receptor signaling associated with fetal brain hemorrhage may contribute to the development of some neuropsychiatric disorders.
Collapse
Affiliation(s)
- H Mirendil
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - E A Thomas
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - C De Loera
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - K Okada
- Advanced Medical Research Laboratories, Research Division, Mitsubishi Tanabe Pharma Corporation, Toda-shi, Saitama, Japan
| | - Y Inomata
- Pharmacology Research Laboratories I, Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | - J Chun
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
38
|
Kihara Y, Maceyka M, Spiegel S, Chun J. Lysophospholipid receptor nomenclature review: IUPHAR Review 8. Br J Pharmacol 2014; 171:3575-94. [PMID: 24602016 PMCID: PMC4128058 DOI: 10.1111/bph.12678] [Citation(s) in RCA: 253] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/03/2014] [Accepted: 02/12/2014] [Indexed: 12/11/2022] Open
Abstract
Lysophospholipids encompass a diverse range of small, membrane-derived phospholipids that act as extracellular signals. The signalling properties are mediated by 7-transmembrane GPCRs, constituent members of which have continued to be identified after their initial discovery in the mid-1990s. Here we briefly review this class of receptors, with a particular emphasis on their protein and gene nomenclatures that reflect their cognate ligands. There are six lysophospholipid receptors that interact with lysophosphatidic acid (LPA): protein names LPA1 - LPA6 and italicized gene names LPAR1-LPAR6 (human) and Lpar1-Lpar6 (non-human). There are five sphingosine 1-phosphate (S1P) receptors: protein names S1P1 -S1P5 and italicized gene names S1PR1-S1PR5 (human) and S1pr1-S1pr5 (non-human). Recent additions to the lysophospholipid receptor family have resulted in the proposed names for a lysophosphatidyl inositol (LPI) receptor - protein name LPI1 and gene name LPIR1 (human) and Lpir1 (non-human) - and three lysophosphatidyl serine receptors - protein names LyPS1 , LyPS2 , LyPS3 and gene names LYPSR1-LYPSR3 (human) and Lypsr1-Lypsr3 (non-human) along with a variant form that does not appear to exist in humans that is provisionally named LyPS2L . This nomenclature incorporates previous recommendations from the International Union of Basic and Clinical Pharmacology, the Human Genome Organization, the Gene Nomenclature Committee, and the Mouse Genome Informatix.
Collapse
Affiliation(s)
- Yasuyuki Kihara
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research InstituteLa Jolla, CA, USA
| | - Michael Maceyka
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, School of Medicine, Virginia Commonwealth UniversityRichmond, VA, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, School of Medicine, Virginia Commonwealth UniversityRichmond, VA, USA
| | - Jerold Chun
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research InstituteLa Jolla, CA, USA
| |
Collapse
|
39
|
Yung YC, Stoddard NC, Chun J. LPA receptor signaling: pharmacology, physiology, and pathophysiology. J Lipid Res 2014; 55:1192-214. [PMID: 24643338 DOI: 10.1194/jlr.r046458] [Citation(s) in RCA: 530] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Indexed: 12/18/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a small ubiquitous lipid found in vertebrate and nonvertebrate organisms that mediates diverse biological actions and demonstrates medicinal relevance. LPA's functional roles are driven by extracellular signaling through at least six 7-transmembrane G protein-coupled receptors. These receptors are named LPA1-6 and signal through numerous effector pathways activated by heterotrimeric G proteins, including Gi/o, G12/13, Gq, and Gs LPA receptor-mediated effects have been described in numerous cell types and model systems, both in vitro and in vivo, through gain- and loss-of-function studies. These studies have revealed physiological and pathophysiological influences on virtually every organ system and developmental stage of an organism. These include the nervous, cardiovascular, reproductive, and pulmonary systems. Disturbances in normal LPA signaling may contribute to a range of diseases, including neurodevelopmental and neuropsychiatric disorders, pain, cardiovascular disease, bone disorders, fibrosis, cancer, infertility, and obesity. These studies underscore the potential of LPA receptor subtypes and related signaling mechanisms to provide novel therapeutic targets.
Collapse
Affiliation(s)
- Yun C Yung
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037
| | - Nicole C Stoddard
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037 Biomedical Sciences Graduate Program, University of California, San Diego School of Medicine, La Jolla, CA 92037
| | - Jerold Chun
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
40
|
Panchatcharam M, Miriyala S, Salous A, Wheeler J, Dong A, Mueller P, Sunkara M, Escalante-Alcalde D, Morris AJ, Smyth SS. Lipid phosphate phosphatase 3 negatively regulates smooth muscle cell phenotypic modulation to limit intimal hyperplasia. Arterioscler Thromb Vasc Biol 2012; 33:52-9. [PMID: 23104851 DOI: 10.1161/atvbaha.112.300527] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The lipid phosphate phosphatase 3 (LPP3) degrades bioactive lysophospholipids, including lysophosphatidic acid and sphingosine-1-phosphate, and thereby terminates their signaling effects. Although emerging evidence links lysophosphatidic acid to atherosclerosis and vascular injury responses, little is known about the role of vascular LPP3. The goal of this study was to determine the role of LPP3 in the development of vascular neointima formation and smooth muscle cells (SMC) responses. METHODS AND RESULTS We report that LPP3 is expressed in vascular SMC after experimental arterial injury. Using gain- and loss-of-function approaches, we establish that a major function of LPP3 in isolated SMC cells is to attenuate proliferation (extracellular signal-regulated kinases) activity, Rho activation, and migration in response to serum and lysophosphatidic acid. These effects are at least partially a consequence of LPP3-catalyzed lysophosphatidic acid hydrolysis. Mice with selective inactivation of LPP3 in SMC display an exaggerated neointimal response to injury. CONCLUSIONS Our observations suggest that LPP3 serves as an intrinsic negative regulator of SMC phenotypic modulation and inflammation after vascular injury, in part, by regulating lysophospholipid signaling. These findings may provide a mechanistic link to explain the association between a PPAP2B polymorphism and coronary artery disease risk.
Collapse
Affiliation(s)
- Manikandan Panchatcharam
- Division of Cardiovascular Medicine, The Gill Heart Institute, 255 BBRSB, 741 S. Limestone St, Lexington, KY 40536-0200, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Choi JW, Chun J. Lysophospholipids and their receptors in the central nervous system. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:20-32. [PMID: 22884303 DOI: 10.1016/j.bbalip.2012.07.015] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 07/17/2012] [Accepted: 07/18/2012] [Indexed: 02/05/2023]
Abstract
Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P), two of the best-studied lysophospholipids, are known to influence diverse biological events, including organismal development as well as function and pathogenesis within multiple organ systems. These functional roles are due to a family of at least 11 G protein-coupled receptors (GPCRs), named LPA(1-6) and S1P(1-5), which are widely distributed throughout the body and that activate multiple effector pathways initiated by a range of heterotrimeric G proteins including G(i/o), G(12/13), G(q) and G(s), with actual activation dependent on receptor subtypes. In the central nervous system (CNS), a major locus for these signaling pathways, LPA and S1P have been shown to influence myriad responses in neurons and glial cell types through their cognate receptors. These receptor-mediated activities can contribute to disease pathogenesis and have therapeutic relevance to human CNS disorders as demonstrated for multiple sclerosis (MS) and possibly others that include congenital hydrocephalus, ischemic stroke, neurotrauma, neuropsychiatric disorders, developmental disorders, seizures, hearing loss, and Sandhoff disease, based upon the experimental literature. In particular, FTY720 (fingolimod, Gilenya, Novartis Pharma, AG) that becomes an analog of S1P upon phosphorylation, was approved by the FDA in 2010 as a first oral treatment for MS, validating this class of receptors as medicinal targets. This review will provide an overview and update on the biological functions of LPA and S1P signaling in the CNS, with a focus on results from studies using genetic null mutants for LPA and S1P receptors. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
Collapse
Affiliation(s)
- Ji Woong Choi
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
42
|
Frisca F, Sabbadini RA, Goldshmit Y, Pébay A. Biological Effects of Lysophosphatidic Acid in the Nervous System. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY VOLUME 296 2012; 296:273-322. [DOI: 10.1016/b978-0-12-394307-1.00005-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
43
|
Blaho VA, Hla T. Regulation of mammalian physiology, development, and disease by the sphingosine 1-phosphate and lysophosphatidic acid receptors. Chem Rev 2011; 111:6299-320. [PMID: 21939239 PMCID: PMC3216694 DOI: 10.1021/cr200273u] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Victoria A. Blaho
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY 10065
| | - Timothy Hla
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY 10065
| |
Collapse
|
44
|
E Spohr TCLDS, Dezonne RS, Rehen SK, Gomes FCA. Astrocytes treated by lysophosphatidic acid induce axonal outgrowth of cortical progenitors through extracellular matrix protein and epidermal growth factor signaling pathway. J Neurochem 2011; 119:113-23. [PMID: 21834854 DOI: 10.1111/j.1471-4159.2011.07421.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lysophosphatidic acid (LPA) plays important roles in many biological processes, such as brain development, oncogenesis and immune functions, via its specific receptors. We previously demonstrated that LPA-primed astrocytes induce neuronal commitment of cerebral cortical progenitors (Spohr et al. 2008). In the present study, we analyzed neurite outgrowth induced by LPA-treated astrocytes and the molecular mechanism underlying this event. LPA-primed astrocytes increase neuronal differentiation, arborization and neurite outgrowth of developing cortical neurons. Treatment of astrocytes with epidermal growth factor (EGF) ligands yielded similar results, suggesting that members of the EGF family might mediate LPA-induced neuritogenesis. Furthermore, treatment of astrocytes with LPA or EGF ligands led to an increase in the levels of the extracellular matrix molecule, laminin (LN), thus enhancing astrocyte permissiveness to neurite outgrowth. This event was reversed by pharmacological inhibitors of the MAPK signaling pathway and of the EGF receptor. Our data reveal an important role of astrocytes and EGF receptor ligands pathway as mediators of bioactive lipids action in brain development, and implicate the LN and MAPK pathway in this process.
Collapse
|
45
|
López-Juárez A, Morales-Lázaro S, Sánchez-Sánchez R, Sunkara M, Lomelí H, Velasco I, Morris AJ, Escalante-Alcalde D. Expression of LPP3 in Bergmann glia is required for proper cerebellar sphingosine-1-phosphate metabolism/signaling and development. Glia 2011; 59:577-89. [PMID: 21319224 PMCID: PMC3196773 DOI: 10.1002/glia.21126] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 11/22/2010] [Indexed: 02/02/2023]
Abstract
Bioactive lipids serve as intracellular and extracellular mediators in cell signaling in normal and pathological conditions. Here we describe that an important regulator of some of these lipids, the lipid phosphate phosphatase-3 (LPP3), is abundantly expressed in specific plasma membrane domains of Bergmann glia (BG), a specialized type of astrocyte with key roles in cerebellum development and physiology. Mice selectively lacking expression of LPP3/Ppap2b in the nervous system are viable and fertile but exhibit defects in postnatal cerebellum development and modifications in the cytoarchitecture and arrangement of BG with a mild non-progressive motor coordination defect. Lipid and gene profiling studies in combination with pharmacological treatments suggest that most of these effects are associated with alterations in sphingosine-1-phosphate (S1P) metabolism and signaling. Altogether our data indicate that LPP3 participates in several aspects of neuron-glia communication required for proper cerebellum development.
Collapse
Affiliation(s)
- Alejandro López-Juárez
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México
| | - Sara Morales-Lázaro
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México
| | - Roberto Sánchez-Sánchez
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México
| | | | - Hilda Lomelí
- Instituto de Biotecnología, Universidad Nacional Autónoma de México
| | - Iván Velasco
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México
| | | | - Diana Escalante-Alcalde
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México
| |
Collapse
|
46
|
Sato K, Horiuchi Y, Jin Y, Malchinkhuu E, Komachi M, Kondo T, Okajima F. Unmasking of LPA1 receptor-mediated migration response to lysophosphatidic acid by interleukin-1β-induced attenuation of Rho signaling pathways in rat astrocytes. J Neurochem 2011; 117:164-74. [PMID: 21244430 DOI: 10.1111/j.1471-4159.2011.07188.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Action mechanism of lipopolysaccharide (LPS), interleukin-1β (IL-1β), and lysophosphatidic acid (LPA) to regulate motility, an important process of astrogliosis, was investigated in rat astrocytes. While LPA exerted no significant effect on the cell migration, the prior treatment of the cells with LPS or IL-1β resulted in the appearance of migration activity in response to LPA. The LPS induction of the migration response to LPA was associated with the production of IL-1β precursor protein and inhibited by the IL-1 receptor antagonist. The IL-1β treatment also allowed LPA to activate Rac1. The LPA-induced Rac1 activation and migration were inhibited by pertussis toxin, a small interfering RNA specific to LPA(1) receptors, and LPA(1) receptor antagonists, including Ki16425. However, the IL-1β treatment had no appreciable effect on LPA(1) receptor mRNA expression and LPA-induced activation of ERK, Akt, and proliferation. The induction of the migration response to LPA by IL-1β was inhibited by a constitutively active RhoA. Moreover, LPA significantly activated RhoA through the LPA(1) receptor in the control cells but not in the IL-1β-treated cells. These results suggest that IL-1β inhibits the LPA(1) receptor-mediated Rho signaling through the IL-1 receptor, thereby disclosing the LPA(1) receptor-mediated G(i) protein/Rac/migration pathway.
Collapse
Affiliation(s)
- Koichi Sato
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan.
| | | | | | | | | | | | | |
Collapse
|
47
|
Goldshmit Y, Munro K, Leong SY, Pébay A, Turnley AM. LPA receptor expression in the central nervous system in health and following injury. Cell Tissue Res 2010; 341:23-32. [PMID: 20495828 DOI: 10.1007/s00441-010-0977-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 04/06/2010] [Indexed: 11/30/2022]
Abstract
Lysophosphatidic acid (LPA) is released from platelets following injury and also plays a role in neural development but little is known about its effects in the adult central nervous system (CNS). We have examined the expression of LPA receptors 1-3 (LPA(1-3)) in intact mouse spinal cord and cortical tissues and following injury. In intact and injured tissues, LPA(1) was expressed by ependymal cells in the central canal of the spinal cord and was upregulated in reactive astrocytes following spinal cord injury. LPA(2) showed low expression in intact CNS tissue, on grey matter astrocytes in spinal cord and in ependymal cells lining the lateral ventricle. Following injury, its expression was upregulated on astrocytes in both cortex and spinal cord. LPA(3) showed low expression in intact CNS tissue, viz. on cortical neurons and motor neurons in the spinal cord, and was upregulated on neurons in both regions after injury. Therefore, LPA(1-3) are differentially expressed in the CNS and their expression is upregulated in response to injury. LPA release following CNS injury may have different consequences for each cell type because of this differential expression in the adult nervous system.
Collapse
Affiliation(s)
- Yona Goldshmit
- Centre for Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
48
|
Choi JW, Herr DR, Noguchi K, Yung YC, Lee CW, Mutoh T, Lin ME, Teo ST, Park KE, Mosley AN, Chun J. LPA receptors: subtypes and biological actions. Annu Rev Pharmacol Toxicol 2010; 50:157-86. [PMID: 20055701 DOI: 10.1146/annurev.pharmtox.010909.105753] [Citation(s) in RCA: 649] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lysophosphatidic acid (LPA) is a small, ubiquitous phospholipid that acts as an extracellular signaling molecule by binding to and activating at least five known G protein-coupled receptors (GPCRs): LPA(1)-LPA(5). They are encoded by distinct genes named LPAR1-LPAR5 in humans and Lpar1-Lpar5 in mice. The biological roles of LPA are diverse and include developmental, physiological, and pathophysiological effects. This diversity is mediated by broad and overlapping expression patterns and multiple downstream signaling pathways activated by cognate LPA receptors. Studies using cloned receptors and genetic knockout mice have been instrumental in uncovering the significance of this signaling system, notably involving basic cellular processes as well as multiple organ systems such as the nervous system. This has further provided valuable proof-of-concept data to support LPA receptors and LPA metabolic enzymes as targets for the treatment of medically important diseases that include neuropsychiatric disorders, neuropathic pain, infertility, cardiovascular disease, inflammation, fibrosis, and cancer.
Collapse
Affiliation(s)
- Ji Woong Choi
- Department of Molecular Biology, Helen L. Dorris Institute for Neurological and Psychiatric Disorders, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ishii S, Noguchi K, Yanagida K. Non-Edg family lysophosphatidic acid (LPA) receptors. Prostaglandins Other Lipid Mediat 2009; 89:57-65. [DOI: 10.1016/j.prostaglandins.2009.06.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Accepted: 06/03/2009] [Indexed: 12/23/2022]
|
50
|
Abstract
One of the major lipid biology discoveries in last decade was the broad range of physiological activities of lysophospholipids that have been attributed to the actions of lysophospholipid receptors. The most well characterized lysophospholipids are lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P). Documented cellular effects of these lipid mediators include growth-factor-like effects on cells, such as proliferation, survival, migration, adhesion, and differentiation. The mechanisms for these actions are attributed to a growing family of 7-transmembrane, G protein-coupled receptors (GPCRs). Their pathophysiological actions include immune modulation, neuropathic pain modulation, platelet aggregation, wound healing, vasopressor activity, and angiogenesis. Here we provide a brief introduction to receptor-mediated lysophospholipid signaling and physiology, and then discuss potential therapeutic roles in human diseases.
Collapse
|