1
|
Reichlmeir M, Duecker RP, Röhrich H, Key J, Schubert R, Abell K, Possemato AP, Stokes MP, Auburger G. The ataxia-telangiectasia disease protein ATM controls vesicular protein secretion via CHGA and microtubule dynamics via CRMP5. Neurobiol Dis 2024; 203:106756. [PMID: 39615799 DOI: 10.1016/j.nbd.2024.106756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/16/2024] Open
Abstract
The autosomal recessive disease ataxia-telangiectasia (A-T) presents with cerebellar degeneration, immunodeficiency, radiosensitivity, capillary dilatations, and pulmonary infections. Most symptoms outside the nervous system can be explained by failures of the disease protein ATM as a Ser/Thr-kinase to coordinate DNA damage repair. However, ATM in adult neurons has cytoplasmic localization and vesicle association, where its roles remain unclear. Here, we defined novel ATM protein targets in human neuroblastoma cells, and filtered initial pathogenesis events in ATM-null mouse cerebellum. Profiles of global proteome and phosphoproteomics - both direct ATM/ATR substrates and overall phosphorylation changes - confirmed previous findings for NBN, MRE11, MDC1, CHEK1, EIF4EBP1, AP3B2, PPP2R5C, SYN1 and SLC2A1. Even stronger downregulation of ATM/ATR substrate phosphopeptides after ATM-depletion was documented for CHGA, EXPH5, NBEAL2 and CHMP6 as key factors of protein secretion and endosome dynamics, as well as for CRMP5, DISP2, PHACTR1, PLXNC1, INA and TPX2 as neurite extension factors. Prominent effects on semaphorin-CRMP5-microtubule signals and ATM association with CRMP5 were validated. As a functional consequence, microtubules were stabilized, and neurite retraction ensued. The impact of ATM on secretory granules confirms previous ATM-null cerebellar transcriptome findings. This study provides the first link of A-T neural atrophy to growth cone collapse and aberrant microtubule dynamics.
Collapse
Affiliation(s)
- Marina Reichlmeir
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany.
| | - Ruth Pia Duecker
- Division for Allergy, Pneumatology and Cystic Fibrosis, Department for Children and Adolescence, Goethe-University, Frankfurt am Main, Germany.
| | - Hanna Röhrich
- Institute for Experimental Pediatric Hematology and Oncology, Medical Faculty, Goethe-University Frankfurt, Komturstrasse 3a, 60528 Frankfurt am Main, Germany.
| | - Jana Key
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany.
| | - Ralf Schubert
- Division for Allergy, Pneumatology and Cystic Fibrosis, Department for Children and Adolescence, Goethe-University, Frankfurt am Main, Germany.
| | - Kathryn Abell
- Cell Signaling Technology, Inc., Danvers, MA 01923, USA.
| | | | | | - Georg Auburger
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
2
|
Zhang L, Bai W, Peng Y, Lin Y, Tian M. Role of O-GlcNAcylation in Central Nervous System Development and Injuries: A Systematic Review. Mol Neurobiol 2024; 61:7075-7091. [PMID: 38367136 DOI: 10.1007/s12035-024-04045-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
The development of central nervous system (CNS) can form perceptual, memory, and cognitive functions, while injuries to CNS often lead to severe neurological dysfunction and even death. As one of the prevalent post-translational modifications (PTMs), O-GlcNAcylation has recently attracted great attentions due to its functions in regulating the activity, subcellular localization, and stability of target proteins. It has been indicated that O-GlcNAcylation could interact with phosphorylation, ubiquitination, and methylation to jointly regulate the function and activity of proteins. Furthermore, a growing number of studies have suggested that O-GlcNAcylation played an important role in the CNS. During development, O-GlcNAcylation participated in the neurogenesis, neuronal development, and neuronal function. In addition, O-GlcNAcylation was involved in the progress of CNS injuries including ischemic stroke, subarachnoid hemorrhage (SAH), and intracerebral hemorrhage (ICH) and played a crucial role in the improvement of brain damage such as attenuating cognitive impairment, inhibiting neuroinflammation, suppressing endoplasmic reticulum (ER) stress, and maintaining blood-brain barrier (BBB) integrity. Therefore, O-GlcNAcylation showed great promise as a potential target in CNS development and injuries. In this article, we presented a review highlighting the role of O-GlcNAcylation in CNS development and injuries. Hence, on the basis of these properties and effects, intervention with O-GlcNAcylation may be developed as therapeutic agents for CNS diseases.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu Province, Nanjing, People's Republic of China
| | - Wanshan Bai
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu Province, Nanjing, People's Republic of China
| | - Yaonan Peng
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu Province, Nanjing, People's Republic of China
| | - Yixing Lin
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu Province, Nanjing, People's Republic of China
| | - Mi Tian
- Department of Anesthesiology, Affiliated Zhongda Hospital of Southeast University, Jiangsu Province, Nanjing, People's Republic of China.
| |
Collapse
|
3
|
Kim K, Nan G, Bak H, Kim HY, Kim J, Cha M, Lee BH. Insular cortex stimulation alleviates neuropathic pain through changes in the expression of collapsin response mediator protein 2 involved in synaptic plasticity. Neurobiol Dis 2024; 194:106466. [PMID: 38471625 DOI: 10.1016/j.nbd.2024.106466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
In recent studies, brain stimulation has shown promising potential to alleviate chronic pain. Although studies have shown that stimulation of pain-related brain regions can induce pain-relieving effects, few studies have elucidated the mechanisms of brain stimulation in the insular cortex (IC). The present study was conducted to explore the changes in characteristic molecules involved in pain modulation mechanisms and to identify the changes in synaptic plasticity after IC stimulation (ICS). Following ICS, pain-relieving behaviors and changes in proteomics were explored. Neuronal activity in the IC after ICS was observed by optical imaging. Western blotting was used to validate the proteomics data and identify the changes in the expression of glutamatergic receptors associated with synaptic plasticity. Experimental results showed that ICS effectively relieved mechanical allodynia, and proteomics identified specific changes in collapsin response mediator protein 2 (CRMP2). Neuronal activity in the neuropathic rats was significantly decreased after ICS. Neuropathic rats showed increased expression levels of phosphorylated CRMP2, alpha amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR), and N-methyl-d-aspartate receptor (NMDAR) subunit 2B (NR2B), which were inhibited by ICS. These results indicate that ICS regulates the synaptic plasticity of ICS through pCRMP2, together with AMPAR and NR2B, to induce pain relief.
Collapse
Affiliation(s)
- Kyeongmin Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Guanghai Nan
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyeji Bak
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hee Young Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Junesun Kim
- Rehabilitation Science Program, Department of Health Science, Graduate School, Korea University, Seoul 02841, Republic of Korea; Department of Health and Environment Science, College of Health Science, Korea University, Seoul 02841, Republic of Korea
| | - Myeounghoon Cha
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Bae Hwan Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| |
Collapse
|
4
|
Lossi L, Castagna C, Merighi A. An Overview of the Epigenetic Modifications in the Brain under Normal and Pathological Conditions. Int J Mol Sci 2024; 25:3881. [PMID: 38612690 PMCID: PMC11011998 DOI: 10.3390/ijms25073881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Epigenetic changes are changes in gene expression that do not involve alterations to the DNA sequence. These changes lead to establishing a so-called epigenetic code that dictates which and when genes are activated, thus orchestrating gene regulation and playing a central role in development, health, and disease. The brain, being mostly formed by cells that do not undergo a renewal process throughout life, is highly prone to the risk of alterations leading to neuronal death and neurodegenerative disorders, mainly at a late age. Here, we review the main epigenetic modifications that have been described in the brain, with particular attention on those related to the onset of developmental anomalies or neurodegenerative conditions and/or occurring in old age. DNA methylation and several types of histone modifications (acetylation, methylation, phosphorylation, ubiquitination, sumoylation, lactylation, and crotonylation) are major players in these processes. They are directly or indirectly involved in the onset of neurodegeneration in Alzheimer's or Parkinson's disease. Therefore, this review briefly describes the roles of these epigenetic changes in the mechanisms of brain development, maturation, and aging and some of the most important factors dynamically regulating or contributing to these changes, such as oxidative stress, inflammation, and mitochondrial dysfunction.
Collapse
Affiliation(s)
| | | | - Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy; (L.L.); (C.C.)
| |
Collapse
|
5
|
Tsai YC, Huang SM, Peng HH, Lin SW, Lin SR, Chin TY, Huang SM. Imbalance of synaptic and extrasynaptic NMDA receptors induced by the deletion of CRMP1 accelerates age-related cognitive decline in mice. Neurobiol Aging 2024; 135:48-59. [PMID: 38176125 DOI: 10.1016/j.neurobiolaging.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Collapsin response mediator protein 1 (CRMP1) is involved in semaphorin 3A signaling pathway, promoting neurite extension and growth cone collapse. It is highly expressed in the nervous system, especially the hippocampus. The crmp1 knockout (KO) mice display impaired spatial learning and memory, and this phenomenon seemingly tends to deteriorate with age. Here we investigated whether CRMP1 is involved in age-related cognitive decline in WT and crmp1 KO mice at adult, middle-aged and older stages. The results revealed that cognitive dysfunction in the Morris water maze task became more severe and decreased glutamate and glutamine level in middle-aged crmp1 KO mice. Additionally, increasing levels of extrasynaptic NMDA receptors and phosphorylation of Tau were observed in middle-aged crmp1 KO mice, leading to synaptic and neuronal loss in the CA3 regions of hippocampus. These findings suggest that deletion of CRMP1 accelerates age-related cognitive decline by disrupting the balance between synaptic and extrasynaptic NMDA receptors, resulting in the loss of synapses and neurons.
Collapse
Affiliation(s)
- Yun-Chieh Tsai
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Sheng-Min Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Hsu-Hsia Peng
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Rung Lin
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, Taiwan.
| | - Ting-Yu Chin
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, Taiwan.
| | - Shih-Ming Huang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan; Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
6
|
Madugalle SU, Liau WS, Zhao Q, Li X, Gong H, Marshall PR, Periyakaruppiah A, Zajaczkowski EL, Leighton LJ, Ren H, Musgrove MRB, Davies JWA, Kim G, Rauch S, He C, Dickinson BC, Fulopova B, Fletcher LN, Williams SR, Spitale RC, Bredy TW. Synapse-Enriched m 6A-Modified Malat1 Interacts with the Novel m 6A Reader, DPYSL2, and Is Required for Fear-Extinction Memory. J Neurosci 2023; 43:7084-7100. [PMID: 37669863 PMCID: PMC10601377 DOI: 10.1523/jneurosci.0943-23.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
The RNA modification N6-methyladenosine (m6A) regulates the interaction between RNA and various RNA binding proteins within the nucleus and other subcellular compartments and has recently been shown to be involved in experience-dependent plasticity, learning, and memory. Using m6A RNA-sequencing, we have discovered a distinct population of learning-related m6A- modified RNAs at the synapse, which includes the long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (Malat1). RNA immunoprecipitation and mass spectrometry revealed 12 new synapse-specific learning-induced m6A readers in the mPFC of male C57/BL6 mice, with m6A-modified Malat1 binding to a subset of these, including CYFIP2 and DPYSL2. In addition, a cell type- and synapse-specific, and state-dependent, reduction of m6A on Malat1 impairs fear-extinction memory; an effect that likely occurs through a disruption in the interaction between Malat1 and DPYSL2 and an associated decrease in dendritic spine formation. These findings highlight the critical role of m6A in regulating the functional state of RNA during the consolidation of fear-extinction memory, and expand the repertoire of experience-dependent m6A readers in the synaptic compartment.SIGNIFICANCE STATEMENT We have discovered that learning-induced m6A-modified RNA (including the long noncoding RNA, Malat1) accumulates in the synaptic compartment. We have identified several new m6A readers that are associated with fear extinction learning and demonstrate a causal relationship between m6A-modified Malat1 and the formation of fear-extinction memory. These findings highlight the role of m6A in regulating the functional state of an RNA during memory formation and expand the repertoire of experience-dependent m6A readers in the synaptic compartment.
Collapse
Affiliation(s)
| | - Wei-Siang Liau
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Qiongyi Zhao
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China 430071
- Medical Research Institute, Wuhan University, Wuhan, China 430014
| | - Hao Gong
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Paul R Marshall
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Ambika Periyakaruppiah
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Esmi L Zajaczkowski
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Laura J Leighton
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Haobin Ren
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Mason R B Musgrove
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Joshua W A Davies
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Gwangmin Kim
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Simone Rauch
- Department of Chemistry, University of Chicago, Chicago, Illinois 60607
| | - Chuan He
- Department of Chemistry, University of Chicago, Chicago, Illinois 60607
| | - Bryan C Dickinson
- Department of Chemistry, University of Chicago, Chicago, Illinois 60607
| | - Barbora Fulopova
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Lee N Fletcher
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Stephen R Williams
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, California 92697
| | - Timothy W Bredy
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| |
Collapse
|
7
|
Matrone C, Ferretti G. Semaphorin 3A influences neuronal processes that are altered in patients with autism spectrum disorder: Potential diagnostic and therapeutic implications. Neurosci Biobehav Rev 2023; 153:105338. [PMID: 37524141 DOI: 10.1016/j.neubiorev.2023.105338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Autism spectrum disorder (ASD) is a pervasive disorder that most frequently manifests in early childhood and lasts for their entire lifespan. Several behavioural traits characterise the phenotype of patients with ASD, including difficulties in reciprocal social communication as well as compulsive/repetitive stereotyped verbal and non-verbal behaviours. Although multiple hypotheses have been proposed to explain the aetiology of ASD and many resources have been used to improve our understanding of ASD, several aspects remain largely unexplored. Class 3 semaphorins (SEMA3) are secreted proteins involved in the organisation of structural and functional connectivity in the brain that regulate synaptic and dendritic development. Alterations in brain connectivity and aberrant neuronal development have been described in some patients with ASD. Mutations and polymorphisms in SEMA3A and alterations in its receptors and signalling have been associated with some neurological disorders such as schizophrenia and epilepsy, which are comorbidities in ASD, but also with ASD itself. In addition, SEMA3A is a key regulator of the immune response and neuroinflammatory processes, which have been found to be dysregulated in mothers of children who develop ASD and in affected patients. In this review, we highlight neurodevelopmental-related processes in which SEMA3A is involved, which are altered in ASD, and provide a viewpoint emphasising the development of strategies targeting changes in the SEMA3A signal to identify patterns of anomalies distinctive of ASD or to predict the prognosis of affected patients.
Collapse
Affiliation(s)
- Carmela Matrone
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy.
| | - Gabriella Ferretti
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
8
|
Ramirez-Celis A, Croen LA, Yoshida CK, Alexeeff SE, Schauer J, Yolken RH, Ashwood P, Van de Water J. Maternal autoantibody profiles as biomarkers for ASD and ASD with co-occurring intellectual disability. Mol Psychiatry 2022; 27:3760-3767. [PMID: 35618885 PMCID: PMC9708563 DOI: 10.1038/s41380-022-01633-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 02/08/2023]
Abstract
Maternal autoantibody-related ASD (MAR ASD) is a subtype of autism in which pathogenic maternal autoantibodies (IgG) cross the placenta, access the developing brain, and cause neurodevelopmental alterations and behaviors associated with autism in the exposed offspring. We previously reported maternal IgG response to eight proteins (CRMP1, CRMP2, GDA LDHA, LDHB, NSE, STIP1, and YBOX) and that reactivity to nine specific combinations of these proteins (MAR ASD patterns) was predictive of ASD risk. The aim of the current study was to validate the previously identified MAR ASD patterns (CRMP1 + GDA, CRMP1 + CRMP2, NSE + STIP1, CRMP2 + STIP1, LDHA + YBOX, LDHB + YBOX, GDA + YBOX, STIP1 + YBOX, and CRMP1 + STIP1) and their accuracy in predicting ASD risk in a prospective cohort employing maternal samples collected prior to parturition. We used prenatal plasma from mothers of autistic children with or without co-occurring intellectual disability (ASD = 540), intellectual disability without autism (ID = 184) and general population controls (GP = 420) collected by the Early Markers for Autism (EMA) study. We found reactivity to one or more of the nine previously identified MAR ASD patterns in 10% of the ASD group compared with 4% of the ID group and 1% of the GP controls (ASD vs GP: Odds Ratio (OR) = 7.81, 95% Confidence Interval (CI) 3.32 to 22.43; ASD vs ID: OR = 2.77, 95% CI (1.19-7.47)) demonstrating that the MAR ASD patterns are strongly associated with the ASD group and could be used to assess ASD risk prior to symptom onset. The pattern most strongly associated with ASD was CRMP1 + CRMP2 and increased the odds for an ASD diagnosis 16-fold (3.32 to >999.99). In addition, we found that several of these specific MAR ASD patterns were strongly associated with ASD with intellectual disability (ASD + ID) and others associated with ASD without ID (ASD-no ID). Prenatal screening for these MAR patterns may lead to earlier identification of ASD and facilitate access to the appropriate early intervention services based on each child's needs.
Collapse
Affiliation(s)
- Alexandra Ramirez-Celis
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, One Shields Avenue, University of California, Davis, CA, 95616, USA
| | - Lisa A Croen
- Kaiser Permanente Division of Research, 2000 Broadway, Oakland, CA, 94612, USA
| | - Cathleen K Yoshida
- Kaiser Permanente Division of Research, 2000 Broadway, Oakland, CA, 94612, USA
| | - Stacey E Alexeeff
- Kaiser Permanente Division of Research, 2000 Broadway, Oakland, CA, 94612, USA
| | - Joseph Schauer
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, One Shields Avenue, University of California, Davis, CA, 95616, USA
| | - Robert H Yolken
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Paul Ashwood
- UC Davis MIND Institute, 2825 50th St, Sacramento, CA, 95817, USA
- Department of Medical Microbiology and Immunology, One Shields Avenue, University of California, Davis, CA, 95616, USA
| | - Judy Van de Water
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, One Shields Avenue, University of California, Davis, CA, 95616, USA.
- UC Davis MIND Institute, 2825 50th St, Sacramento, CA, 95817, USA.
| |
Collapse
|
9
|
Xie M, Li Z, Li X, Ai L, Jin M, Jia N, Yang Y, Li W, Xue F, Zhang M, Yu Q. Identifying crucial biomarkers in peripheral blood of schizophrenia and screening therapeutic agents by comprehensive bioinformatics analysis. J Psychiatr Res 2022; 152:86-96. [PMID: 35716513 DOI: 10.1016/j.jpsychires.2022.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/25/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022]
Abstract
Schizophrenia (SCZ) is a sophisticated neurodevelopmental disorder, but the mechanisms remain ambiguous. Thus, we analyzed the transcriptomic datasets to investigate the molecular mechanisms of SCZ to pinpoint novel biomarkers and suggest treatment agents. Four peripheral blood datasets were retrieved from the Gene Expression Omnibus (GEO) database, altogether 27 robust Differentially Expressed Genes (DEGs) were ascertained by robust rank aggregation (RRA) methodology. Enrichment analysis, which performed by Enrichr platform, demonstrated that DEGs are predominantly engaged in immune and inflammatory. Protein-protein interaction (PPI) network was constructed by STRING then visualized by Cytoscape. Hub genes identified by cytohubba plug-in were CXCL2, TLR9, SLPI, LY96, G0S2, EGR2, SELENBP1, NDUFA4, GNLY, CCL22. CIBERSORT algorithm was applied to evaluate the situation of immune infiltration, which revealed differences in T-cell CD8, T-cell CD4 memory resting and macrophage M0. The NetworkAnalyst platform was adopted to detect transcription factors (TFs), microRNAs (miRNAs), diseases and chemicals that interact with DEGs, while drugs interacted with DEGs were detected by Enrichr. TFs such as FOXC1, GATA2, NFIC, USF2, E2F1, miRNAs like mir-16-5p, mir-1-3p, mir-124-3p, mir-155-5p, mir-27a-3p are essential in the regulation of DEGs. mir-367-SMAD7-EGR1, mir-367-SMAD7-ARNT, mir-21-SMAD7-EGR1 may be promising biomarkers for SCZ. DEGs were intimately associated with Myocardial Ischemia, Inflammation, Reperfusion Injury. Chemicals such as VPA, cyclosporine, Aflatoxin B1, arsenic trioxide, drugs like diphenylpyraline, trimethoprim, 4-Aminobenzohydrazide, lanatoside C, may have significant implications for treatment of SCZ. These results would shed light on the molecular mechanisms of SCZ and suggest promising diagnostic biomarkers in peripheral blood and therapeutic tactics.
Collapse
Affiliation(s)
- Mengtong Xie
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Zhijun Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Xinwei Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Lizhe Ai
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Mengdi Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Ningning Jia
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yuqing Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Weizhen Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Fengyu Xue
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Min Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Qiong Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
10
|
Long Y, Cheng Y, Yang J, Yang T, Lai Y. Abeta-induced Presynaptic Release of UBC9 through Extracellular Vesicles involves SNAP23. Neurosci Lett 2022; 785:136771. [DOI: 10.1016/j.neulet.2022.136771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022]
|
11
|
Lins ÉM, Oliveira NCM, Reis O, Ferrasa A, Herai R, Muotri AR, Massirer KB, Bengtson MH. Genome-wide translation control analysis of developing human neurons. Mol Brain 2022; 15:55. [PMID: 35706057 PMCID: PMC9199153 DOI: 10.1186/s13041-022-00940-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/29/2022] [Indexed: 11/25/2022] Open
Abstract
During neuronal differentiation, neuroprogenitor cells become polarized, change shape, extend axons, and form complex dendritic trees. While growing, axons are guided by molecular cues to their final destination, where they establish synaptic connections with other neuronal cells. Several layers of regulation are integrated to control neuronal development properly. Although control of mRNA translation plays an essential role in mammalian gene expression, how it contributes temporarily to the modulation of later stages of neuronal differentiation remains poorly understood. Here, we investigated how translation control affects pathways and processes essential for neuronal maturation, using H9-derived human neuro progenitor cells differentiated into neurons as a model. Through Ribosome Profiling (Riboseq) combined with RNA sequencing (RNAseq) analysis, we found that translation control regulates the expression of critical hub genes. Fundamental synaptic vesicle secretion genes belonging to SNARE complex, Rab family members, and vesicle acidification ATPases are strongly translationally regulated in developing neurons. Translational control also participates in neuronal metabolism modulation, particularly affecting genes involved in the TCA cycle and glutamate synthesis/catabolism. Importantly, we found translation regulation of several critical genes with fundamental roles regulating actin and microtubule cytoskeleton pathways, critical to neurite generation, spine formation, axon guidance, and circuit formation. Our results show that translational control dynamically integrates important signals in neurons, regulating several aspects of its development and biology.
Collapse
Affiliation(s)
- Érico Moreto Lins
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas-UNICAMP, Campinas, SP, 13083-970, Brazil.,Graduate Program in Genetics and Molecular Biology (PGBM), UNICAMP, Campinas, SP, 13083-886, Brazil
| | - Natássia Cristina Martins Oliveira
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas-UNICAMP, Campinas, SP, 13083-970, Brazil.,Center of Medicinal Chemistry-CQMED, Structural Genomics Consortium-SGC, University of Campinas-UNICAMP, Campinas, SP, 13083-886, Brazil
| | - Osvaldo Reis
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas-UNICAMP, Campinas, SP, 13083-970, Brazil
| | - Adriano Ferrasa
- School of Medicine, Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, PR, 80215-901, Brazil.,Department of Computer Science, State University of Ponta Grossa-UEPG, Ponta Grossa, PR, 84030-900, Brazil
| | - Roberto Herai
- School of Medicine, Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, PR, 80215-901, Brazil
| | - Alysson R Muotri
- Department of Pediatrics and Cellular and Molecular Medicine, School of Medicine, UC San Diego, La Jolla, CA, 92037, Brazil
| | - Katlin Brauer Massirer
- Center for Molecular Biology and Genetic Engineering-CBMEG, University of Campinas-UNICAMP, Campinas, SP, 13083-875, Brazil.,Center of Medicinal Chemistry-CQMED, Structural Genomics Consortium-SGC, University of Campinas-UNICAMP, Campinas, SP, 13083-886, Brazil
| | - Mário Henrique Bengtson
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas-UNICAMP, Campinas, SP, 13083-970, Brazil. .,Center of Medicinal Chemistry-CQMED, Structural Genomics Consortium-SGC, University of Campinas-UNICAMP, Campinas, SP, 13083-886, Brazil.
| |
Collapse
|
12
|
Wu J, Zhu S, Zhao C, Xu X. Comprehensive investigation of molecular signatures and pathways linking Alzheimer's disease and Epilepsy via bioinformatic approaches. Curr Alzheimer Res 2022; 19:146-160. [PMID: 35114922 DOI: 10.2174/1567205019666220202120638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/22/2021] [Accepted: 12/03/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Epileptic activity is frequent in patients with Alzheimer's disease (AD), and this may accelerate AD progression; however, the relationship between AD and epilepsy remains unclear. OBJECTIVE We aimed to investigate the molecular pathways and genes linking AD and epilepsy using bioinformatics approaches. METHODS Gene expression profiles of AD (GSE1297) and epilepsy (GSE28674) were derived from the Gene Expression Omnibus (GEO) database. The top 50% expression variants were subjected to weighted gene co-expression network analysis (WGCNA) to identify key modules associated with these diseases. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) for the key modules were performed, and the intersected terms of functional enrichment and common genes within the key modules were selected. The overlapping genes were subjected to analyses of protein-protein interaction (PPI) network, transcription factor (TF)-mRNA network, microRNA (miRNA)-mRNA network, and drug prediction. RESULTS We identified 229 and 1187 genes in the AD-associated purple and epilepsy-associated blue modules, respectively. Six shared functional terms between the two modules included "calcium ion binding" and "calcium signaling pathway." According to 17 common genes discovered, 130 TF-mRNA pairs and 56 miRNA-mRNA pairs were established. The topological analyses of the constructed regulatory networks suggested that TF - FOXC1 and miRNA - hsa-mir-335-5p might be vital co-regulators of gene expression in AD and epilepsy. In addition, CXCR4 was identified as a hub gene, becoming the putative target for 20 drugs. CONCLUSION Our study provided novel insights into the molecular connection between AD and epilepsy, which might be beneficial for exploring shared mechanisms and designing disease-modifying therapies.
Collapse
Affiliation(s)
- Jiao Wu
- Department of Neurology, the First Hospital of China Medical University, Shenyang, China
- Department of Neurology, The People's Hospital of China Medical University, Shenyang, China
- Department of Neurology, The People's Hospital of Liaoning Province, Shenyang, China
| | - Shu Zhu
- Department of Pediatric Dentistry, School of Stomatology, China Medical University, Shenyang, China
| | - Chenyang Zhao
- Department of Neurology, the First Hospital of China Medical University, Shenyang, China
| | - Xiaoxue Xu
- Department of Neurology, the First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
13
|
Qin K, Xu S, Han Y, Wang S, Yan J, Shao X. Research Progress of Collapse Response Mediator Proteins in Neurodegenerative Diseases. Dev Neurosci 2022; 44:429-437. [PMID: 35249012 DOI: 10.1159/000523875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/16/2022] [Indexed: 11/19/2022] Open
Abstract
Collapse response mediator proteins (CRMPs) are a family of cytoplasmic phosphorylated proteins, and the mechanism of action has always been the research focus of neurological diseases. Previous studies on the CRMPs family have revealed that CRMPs mediate the growth and development of neuronal cytoskeleton through different signaling pathways in the body. It plays an important role in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and spinocerebellar ataxia, which has attracted the attention of researchers. This article reviews the recent literature on the biological characteristics and mechanisms of CRMPs in different neurodegenerative diseases.
Collapse
Affiliation(s)
- Kun Qin
- Department of Human Anatomy, Guilin Medical University, Guilin, China
| | - Shaoye Xu
- Scientific Experiment Center, Guilin Medical University, Guilin, China
| | - Yu Han
- Department of Human Anatomy, Guilin Medical University, Guilin, China
| | - Songhao Wang
- Department of Human Anatomy, Guilin Medical University, Guilin, China
| | - Jianguo Yan
- Department of Physiology, Guilin Medical University, Guilin, China
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
| | - Xiaoyun Shao
- Department of Human Anatomy, Guilin Medical University, Guilin, China
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
| |
Collapse
|
14
|
Boulan B, Ravanello C, Peyrel A, Bosc C, Delphin C, Appaix F, Denarier E, Kraut A, Jacquier-Sarlin M, Fournier A, Andrieux A, Gory-Fauré S, Deloulme JC. CRMP4-mediated fornix development involves Semaphorin-3E signaling pathway. eLife 2021; 10:e70361. [PMID: 34860155 PMCID: PMC8683083 DOI: 10.7554/elife.70361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 12/02/2021] [Indexed: 12/25/2022] Open
Abstract
Neurodevelopmental axonal pathfinding plays a central role in correct brain wiring and subsequent cognitive abilities. Within the growth cone, various intracellular effectors transduce axonal guidance signals by remodeling the cytoskeleton. Semaphorin-3E (Sema3E) is a guidance cue implicated in development of the fornix, a neuronal tract connecting the hippocampus to the hypothalamus. Microtubule-associated protein 6 (MAP6) has been shown to be involved in the Sema3E growth-promoting signaling pathway. In this study, we identified the collapsin response mediator protein 4 (CRMP4) as a MAP6 partner and a crucial effector in Sema3E growth-promoting activity. CRMP4-KO mice displayed abnormal fornix development reminiscent of that observed in Sema3E-KO mice. CRMP4 was shown to interact with the Sema3E tripartite receptor complex within detergent-resistant membrane (DRM) domains, and DRM domain integrity was required to transduce Sema3E signaling through the Akt/GSK3 pathway. Finally, we showed that the cytoskeleton-binding domain of CRMP4 is required for Sema3E's growth-promoting activity, suggesting that CRMP4 plays a role at the interface between Sema3E receptors, located in DRM domains, and the cytoskeleton network. As the fornix is affected in many psychiatric diseases, such as schizophrenia, our results provide new insights to better understand the neurodevelopmental components of these diseases.
Collapse
Affiliation(s)
- Benoît Boulan
- Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut NeurosciencesGrenobleFrance
| | - Charlotte Ravanello
- Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut NeurosciencesGrenobleFrance
| | - Amandine Peyrel
- Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut NeurosciencesGrenobleFrance
| | - Christophe Bosc
- Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut NeurosciencesGrenobleFrance
| | - Christian Delphin
- Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut NeurosciencesGrenobleFrance
| | - Florence Appaix
- Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut NeurosciencesGrenobleFrance
| | - Eric Denarier
- Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut NeurosciencesGrenobleFrance
| | - Alexandra Kraut
- Univ. Grenoble Alpes, Inserm, CEA, UMR BioSanté U1292, CNRS, CEAGrenobleFrance
| | | | - Alyson Fournier
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill UniversityMontréalCanada
| | - Annie Andrieux
- Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut NeurosciencesGrenobleFrance
| | - Sylvie Gory-Fauré
- Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut NeurosciencesGrenobleFrance
| | | |
Collapse
|
15
|
Jeanne M, Demory H, Moutal A, Vuillaume ML, Blesson S, Thépault RA, Marouillat S, Halewa J, Maas SM, Motazacker MM, Mancini GMS, van Slegtenhorst MA, Andreou A, Cox H, Vogt J, Laufman J, Kostandyan N, Babikyan D, Hancarova M, Bendova S, Sedlacek Z, Aldinger KA, Sherr EH, Argilli E, England EM, Audebert-Bellanger S, Bonneau D, Colin E, Denommé-Pichon AS, Gilbert-Dussardier B, Isidor B, Küry S, Odent S, Redon R, Khanna R, Dobyns WB, Bézieau S, Honnorat J, Lohkamp B, Toutain A, Laumonnier F. Missense variants in DPYSL5 cause a neurodevelopmental disorder with corpus callosum agenesis and cerebellar abnormalities. Am J Hum Genet 2021; 108:951-961. [PMID: 33894126 DOI: 10.1016/j.ajhg.2021.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/01/2021] [Indexed: 12/21/2022] Open
Abstract
The collapsin response mediator protein (CRMP) family proteins are intracellular mediators of neurotrophic factors regulating neurite structure/spine formation and are essential for dendrite patterning and directional axonal pathfinding during brain developmental processes. Among this family, CRMP5/DPYSL5 plays a significant role in neuronal migration, axonal guidance, dendrite outgrowth, and synapse formation by interacting with microtubules. Here, we report the identification of missense mutations in DPYSL5 in nine individuals with brain malformations, including corpus callosum agenesis and/or posterior fossa abnormalities, associated with variable degrees of intellectual disability. A recurrent de novo p.Glu41Lys variant was found in eight unrelated patients, and a p.Gly47Arg variant was identified in one individual from the first family reported with Ritscher-Schinzel syndrome. Functional analyses of the two missense mutations revealed impaired dendritic outgrowth processes in young developing hippocampal primary neuronal cultures. We further demonstrated that these mutations, both located in the same loop on the surface of DPYSL5 monomers and oligomers, reduced the interaction of DPYSL5 with neuronal cytoskeleton-associated proteins MAP2 and βIII-tubulin. Our findings collectively indicate that the p.Glu41Lys and p.Gly47Arg variants impair DPYSL5 function on dendritic outgrowth regulation by preventing the formation of the ternary complex with MAP2 and βIII-tubulin, ultimately leading to abnormal brain development. This study adds DPYSL5 to the list of genes implicated in brain malformation and in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Médéric Jeanne
- UMR 1253, iBrain, Université de Tours, Inserm, 37032 Tours, France; Service de Génétique, Centre Hospitalier Universitaire, 37044 Tours, France
| | - Hélène Demory
- UMR 1253, iBrain, Université de Tours, Inserm, 37032 Tours, France
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Marie-Laure Vuillaume
- UMR 1253, iBrain, Université de Tours, Inserm, 37032 Tours, France; Service de Génétique, Centre Hospitalier Universitaire, 37044 Tours, France
| | - Sophie Blesson
- Service de Génétique, Centre Hospitalier Universitaire, 37044 Tours, France
| | | | | | - Judith Halewa
- UMR 1253, iBrain, Université de Tours, Inserm, 37032 Tours, France
| | - Saskia M Maas
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - M Mahdi Motazacker
- Department of Clinical Genetics, Laboratory of Genome Diagnostics, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus MC University Medical Center, 30125 CN Rotterdam, the Netherlands
| | - Marjon A van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC University Medical Center, 30125 CN Rotterdam, the Netherlands
| | - Avgi Andreou
- West Midlands Regional Clinical Genetics Service, Birmingham Women's and Children's Hospital, National Health Service Foundation Trust, Birmingham BT15 2TG, UK; Birmingham Health Partners, Birmingham Women's and Children's Hospital, National Health Service Foundation Trust, Birmingham BT15 2TG, UK
| | - Helene Cox
- West Midlands Regional Clinical Genetics Service, Birmingham Women's and Children's Hospital, National Health Service Foundation Trust, Birmingham BT15 2TG, UK; Birmingham Health Partners, Birmingham Women's and Children's Hospital, National Health Service Foundation Trust, Birmingham BT15 2TG, UK
| | - Julie Vogt
- West Midlands Regional Clinical Genetics Service, Birmingham Women's and Children's Hospital, National Health Service Foundation Trust, Birmingham BT15 2TG, UK; Birmingham Health Partners, Birmingham Women's and Children's Hospital, National Health Service Foundation Trust, Birmingham BT15 2TG, UK
| | - Jason Laufman
- Department of Clinical Genetics, Akron Children's Hospital, Akron, OH 44308-1062, USA
| | - Natella Kostandyan
- Department of Medical Genetics, Yerevan State Medical University after Mkhitar Heratsi, and Center of Medical Genetics and Primary Health Care, Yerevan 0001, Armenia
| | - Davit Babikyan
- Department of Medical Genetics, Yerevan State Medical University after Mkhitar Heratsi, and Center of Medical Genetics and Primary Health Care, Yerevan 0001, Armenia
| | - Miroslava Hancarova
- Department of Biology and Medical Genetics, Charles University 2(nd) Faculty of Medicine and University Hospital Motol, Charles University, Prague 15006, Czech Republic
| | - Sarka Bendova
- Department of Biology and Medical Genetics, Charles University 2(nd) Faculty of Medicine and University Hospital Motol, Charles University, Prague 15006, Czech Republic
| | - Zdenek Sedlacek
- Department of Biology and Medical Genetics, Charles University 2(nd) Faculty of Medicine and University Hospital Motol, Charles University, Prague 15006, Czech Republic
| | - Kimberly A Aldinger
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Elliott H Sherr
- Departments of Neurology and Pediatrics, Weill Institute of Neuroscience and Institute of Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Emanuela Argilli
- Departments of Neurology and Pediatrics, Weill Institute of Neuroscience and Institute of Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Eleina M England
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Séverine Audebert-Bellanger
- Service de Génétique Médicale et de Biologie de la Reproduction, Centre Hospitalier Régional Universitaire, 29200 Brest, France
| | - Dominique Bonneau
- Department of Biochemistry and Genetics, Angers University Hospital and UMR CNRS 6015-INSERM 1083, University of Angers, 49933 Angers, France
| | - Estelle Colin
- Department of Biochemistry and Genetics, Angers University Hospital and UMR CNRS 6015-INSERM 1083, University of Angers, 49933 Angers, France
| | - Anne-Sophie Denommé-Pichon
- Centre Hospitalier Universitaire de Dijon, UMR Inserm 1231, Team Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, 21070 Dijon, France
| | - Brigitte Gilbert-Dussardier
- Service de Génétique, Centre Hospitalier Universitaire, 86021 Poitiers, France; Equipe d'Accueil 3808, Université de Poitiers, 86034 Poitiers, France
| | - Bertrand Isidor
- Service de Génétique Médicale, Centre Hospitalier Universitaire, 44093 Nantes, France; Université de Nantes, CHU Nantes, CNRS, INSERM, l'Institut du Thorax, 44007 Nantes, France
| | - Sébastien Küry
- Service de Génétique Médicale, Centre Hospitalier Universitaire, 44093 Nantes, France; Université de Nantes, CHU Nantes, CNRS, INSERM, l'Institut du Thorax, 44007 Nantes, France
| | - Sylvie Odent
- Service de Génétique Clinique, Centre Référence Déficiences Intellectuelles de Causes Rares, Centre de Référence Anomalies du Développement, Centre Labellisé pour les Anomalies du Développement Ouest, Centre Hospitalier Universitaire de Rennes, 35203 Rennes, France; Institut de Génétique et Développement de Rennes, CNRS, UMR 6290, Université de Rennes, 35043 Rennes, France
| | - Richard Redon
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'Institut du Thorax, 44007 Nantes, France
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - William B Dobyns
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington, Seattle, WA 98015, USA
| | - Stéphane Bézieau
- Service de Génétique Médicale, Centre Hospitalier Universitaire, 44093 Nantes, France; Université de Nantes, CHU Nantes, CNRS, INSERM, l'Institut du Thorax, 44007 Nantes, France
| | - Jérôme Honnorat
- French Reference Center on Autoimmune Encephalitis, Hospices Civils de Lyon, Institut NeuroMyoGene, Inserm U1217/CNRS UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France
| | - Bernhard Lohkamp
- Division of Molecular Structural Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Annick Toutain
- UMR 1253, iBrain, Université de Tours, Inserm, 37032 Tours, France; Service de Génétique, Centre Hospitalier Universitaire, 37044 Tours, France
| | - Frédéric Laumonnier
- UMR 1253, iBrain, Université de Tours, Inserm, 37032 Tours, France; Service de Génétique, Centre Hospitalier Universitaire, 37044 Tours, France.
| |
Collapse
|
16
|
Zheng L, Xie C, Zheng J, Dong Q, Si T, Zhang J, Hou ST. An imbalanced ratio between PC(16:0/16:0) and LPC(16:0) revealed by lipidomics supports the role of the Lands cycle in ischemic brain injury. J Biol Chem 2021; 296:100151. [PMID: 33288676 PMCID: PMC7900749 DOI: 10.1074/jbc.ra120.016565] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/01/2020] [Accepted: 12/06/2020] [Indexed: 12/31/2022] Open
Abstract
Promoting brain recovery after stroke is challenging as a plethora of inhibitory molecules are produced in the brain preventing it from full healing. Moreover, the full scope of inhibitory molecules produced is not well understood. Here, using a high-sensitivity UPLC-MS-based shotgun lipidomics strategy, we semiquantitively measured the differential lipid contents in the mouse cerebral cortex recovering from a transient middle cerebral artery occlusion (MCAO). The lipidomic data were interrogated using the soft independent modeling of class analogy (SIMCA) method involving principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). Statistics of the 578 confirmed lipids revealed 84 species were differentially changed during MCAO/reperfusion. The most dynamic changes in lipids occurred between 1 and 7 days post-MCAO, whereas concentrations had subsided to the Sham group level at 14 and 28 days post-MCAO. Quantitative analyses revealed a strong monotonic relationship between the reduction in phosphatidylcholine (PC)(16:0/16:0) and the increase in lysophosphatidylcholine (LPC)(16:0) levels (Spearman's Rs = -0.86) during the 1 to 7 days reperfusion period. Inhibition of cPLA2 prevented changes in the ratio between PC(16:0/16:0) and LPC(16:0), indicating altered Land's cycle of PC. A series of in vitro studies showed that LPC(16:0), but not PC(16:0/16:0), was detrimental to the integrity of neuronal growth cones and neuronal viability through evoking intracellular calcium influx. In contrast, PC(16:0/16:0) significantly suppressed microglial secretion of IL-1β and TNF-α, limiting neuroinflammation pathways. Together, these data support the role of the imbalanced ratio between PC(16:0/16:0) and LPC(16:0), maintained by Lands' cycle, in neuronal damage and microglia-mediated inflammatory response during ischemic recovery.
Collapse
Affiliation(s)
- Lifeng Zheng
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Chengbin Xie
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Ju Zheng
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Qiangrui Dong
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Tengxiao Si
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Jing Zhang
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Sheng-Tao Hou
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong Province, China; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|