1
|
Yang M, You D, Liu G, Lu Y, Yang G, O'Brien T, Henshall DC, Hardiman O, Cai L, Liu M, Shen S. Polyethyleneimine facilitates the growth and electrophysiological characterization of iPSC-derived motor neurons. Sci Rep 2024; 14:26106. [PMID: 39478194 PMCID: PMC11525838 DOI: 10.1038/s41598-024-77710-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024] Open
Abstract
Induced pluripotent stem cell (iPSC) technology, in combination with electrophysiological characterization via multielectrode array (MEA), has facilitated the utilization of iPSC-derived motor neurons (iPSC-MNs) as highly valuable models for underpinning pathogenic mechanisms and developing novel therapeutic interventions for motor neuron diseases (MNDs). However, the challenge of MN adherence to the MEA plate and the heterogeneity presented in iPSC-derived cultures raise concerns about the reproducibility of the findings obtained from these cellular models. We discovered that one novel factor modulating the electrophysiological activity of iPSC-MNs is the extracellular matrix (ECM) used in the coating to support in vitro growth, differentiation and maturation of iPSC-MNs. The current study showed that two coating conditions, namely, Poly-L-ornithine/Matrigel (POM) and Polyethyleneimine (PEI) strongly promoted attachment of iPSC-MNs on MEA culture dishes compared to three other coating conditions, and both facilitated the maturation of iPSC-MNs as characterized by the detection of extensive electrophysiological activities from the MEA plates. POM coating accelerated the maturation of the iPSC-MNs for up to 5 weeks, which suits modeling of neurodevelopmental disorders. However, the application of PEI resulted in more even distribution of the MNs on the culture dish and reduced variability of electrophysiological signals from the iPSC-MNs in 7-week cultures, which permitted the detection of enhanced excitability in iPSC-MNs from patients with amyotrophic lateral sclerosis (ALS). This study provides a comprehensive comparison of five coating conditions and offers POM and PEI as favorable coatings for in vitro modeling of neurodevelopmental and neurodegenerative disorders, respectively.
Collapse
Affiliation(s)
- Meimei Yang
- Key Laboratory of Measurement and Evaluation in Exercise Bioinformation of Hebei Province, School of Physical Education, Hebei Normal University, Shijiazhuang, 050024, China.
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, H91 W2TY, Ireland.
- FutureNeuro SFI Research Centre for Chronic and Rare Neurological Diseases and Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland.
| | - Daofeng You
- Emergency Department, The First Hospital of Hebei Medical University, No. 89, Donggang Road, Shijiazhuang, China
| | - Gang Liu
- Department of Cardiology, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study; Hebei Key Laboratory of Heart and Metabolism, Hebei Engineering Research Center of Intelligent Medical Clinical Application, Hebei International Joint Research Center for Structural Heart Disease, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yin Lu
- College of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Guangming Yang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- Confucius Institute of Chinese and Regenerative Medicine, University of Galway, Galway, H91 W2TY, Ireland
| | - Timothy O'Brien
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, H91 W2TY, Ireland
- Confucius Institute of Chinese and Regenerative Medicine, University of Galway, Galway, H91 W2TY, Ireland
| | - David C Henshall
- FutureNeuro SFI Research Centre for Chronic and Rare Neurological Diseases and Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
- Department of Physiology and Medical Physics, RCSI University of Medicine & Health Sciences, Dublin, D02 YN77, Ireland
| | - Orla Hardiman
- FutureNeuro SFI Research Centre for Chronic and Rare Neurological Diseases and Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Li Cai
- Department of Ophthalmology, Shenzhen University General Hospital, Xueyuan Road 1098, Shenzhen, 518000, China.
| | - Min Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, H91 W2TY, Ireland.
- FutureNeuro SFI Research Centre for Chronic and Rare Neurological Diseases and Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland.
- Confucius Institute of Chinese and Regenerative Medicine, University of Galway, Galway, H91 W2TY, Ireland.
| |
Collapse
|
2
|
Cheng JL, Cook AL, Talbot J, Perry S. How is Excitotoxicity Being Modelled in iPSC-Derived Neurons? Neurotox Res 2024; 42:43. [PMID: 39405005 PMCID: PMC11480214 DOI: 10.1007/s12640-024-00721-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/11/2024] [Accepted: 09/29/2024] [Indexed: 10/19/2024]
Abstract
Excitotoxicity linked either to environmental causes (pesticide and cyanotoxin exposure), excitatory neurotransmitter imbalance, or to intrinsic neuronal hyperexcitability, is a pathological mechanism central to neurodegeneration in amyotrophic lateral sclerosis (ALS). Investigation of excitotoxic mechanisms using in vitro and in vivo animal models has been central to understanding ALS mechanisms of disease. In particular, advances in induced pluripotent stem cell (iPSC) technologies now provide human cell-based models that are readily amenable to environmental and network-based excitotoxic manipulations. The cell-type specific differentiation of iPSC, combined with approaches to modelling excitotoxicity that include editing of disease-associated gene variants, chemogenetics, and environmental risk-associated exposures make iPSC primed to examine gene-environment interactions and disease-associated excitotoxic mechanisms. Critical to this is knowledge of which neurotransmitter receptor subunits are expressed by iPSC-derived neuronal cultures being studied, how their activity responds to antagonists and agonists of these receptors, and how to interpret data derived from multi-parameter electrophysiological recordings. This review explores how iPSC-based studies have contributed to our understanding of ALS-linked excitotoxicity and highlights novel approaches to inducing excitotoxicity in iPSC-derived neurons to further our understanding of its pathological pathways.
Collapse
Affiliation(s)
- Jan L Cheng
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, 17 Liverpool Street, Hobart, TAS, Australia
| | - Anthony L Cook
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, 17 Liverpool Street, Hobart, TAS, Australia
| | - Jana Talbot
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, 17 Liverpool Street, Hobart, TAS, Australia
| | - Sharn Perry
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, 17 Liverpool Street, Hobart, TAS, Australia.
| |
Collapse
|
3
|
Xie M, Miller AS, Pallegar PN, Umpierre A, Liang Y, Wang N, Zhang S, Nagaraj NK, Fogarty ZC, Ghayal NB, Oskarsson B, Zhao S, Zheng J, Qi F, Nguyen A, Dickson DW, Wu LJ. Rod-shaped microglia interact with neuronal dendrites to regulate cortical excitability in TDP-43 related neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.30.601396. [PMID: 39005475 PMCID: PMC11244918 DOI: 10.1101/2024.06.30.601396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Motor cortical hyperexcitability is well-documented in the presymptomatic stage of amyotrophic lateral sclerosis (ALS). However, the mechanisms underlying this early dysregulation are not fully understood. Microglia, as the principal immune cells of the central nervous system, have emerged as important players in sensing and regulating neuronal activity. Here we investigated the role of microglia in the motor cortical circuits in a mouse model of TDP-43 neurodegeneration (rNLS8). Utilizing multichannel probe recording and longitudinal in vivo calcium imaging in awake mice, we observed neuronal hyperactivity at the initial stage of disease progression. Spatial and single-cell RNA sequencing revealed that microglia are the primary responders to motor cortical hyperactivity. We further identified a unique subpopulation of microglia, rod-shaped microglia, which are characterized by a distinct morphology and transcriptional profile. Notably, rod-shaped microglia predominantly interact with neuronal dendrites and excitatory synaptic inputs to attenuate motor cortical hyperactivity. The elimination of rod-shaped microglia through TREM2 deficiency increased neuronal hyperactivity, exacerbated motor deficits, and further decreased survival rates of rNLS8 mice. Together, our results suggest that rod-shaped microglia play a neuroprotective role by attenuating cortical hyperexcitability in the mouse model of TDP-43 related neurodegeneration.
Collapse
|
4
|
Yuan Y, Bailey JM, Rivera-Lopez GM, Atchison WD. Preferential potentiation of AMPA-mediated currents in brainstem hypoglossal motoneurons by subchronic exposure of mice expressing the human superoxide dismutase 1 G93A gene mutation to neurotoxicant methylmercury in vivo. Neurotoxicology 2024; 100:72-84. [PMID: 38065418 PMCID: PMC10877233 DOI: 10.1016/j.neuro.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023]
Abstract
The exact causes of Amyotrophic lateral sclerosis (ALS), a progressive and fatal neurological disorder due to loss of upper and/or lower motoneurons, remain elusive. Gene-environment interactions are believed to be an important factor in the development of ALS. We previously showed that in vivo exposure of mice overexpressing the human superoxide dismutase 1 (hSOD1) gene mutation (hSOD1G93A; G93A), a mouse model for ALS, to environmental neurotoxicant methylmercury (MeHg) accelerated the onset of ALS-like phenotype. Here we examined the time-course of effects of MeHg on AMPA receptor (AMPAR)-mediated currents in hypoglossal motoneurons in brainstem slices prepared from G93A, hSOD1wild-type (hWT) and non-carrier WT mice following in vivo exposure to MeHg. Mice were exposed daily to 3 ppm (approximately 0.7 mg/kg/day) MeHg via drinking water beginning at postnatal day 28 (P28) and continued until P47, 64 or 84, then acute brainstem slices were prepared, and spontaneous excitatory postsynaptic currents (sEPSCs) or AMPA-evoked currents were examined using whole cell patch-clamp recording technique. Brainstem slices of untreated littermates were prepared at the same time points to serve as control. MeHg exposure had no significant effect on either sEPSCs or AMPA-evoked currents in slices from hWT or WT mice during any of those exposure time periods under our experimental conditions. MeHg also did not cause any significant effect on sEPSCs or AMPA-currents in G93A hypoglossal motoneurons at P47 and P64. However, at P84, MeHg significantly increased amplitudes of both sEPSCs and AMPA-evoked currents in hypoglossal motineurons from G93A mice (p < 0.05), but not the sEPSC frequency, suggesting a postsynaptic action on AMPARs. MeHg exposure did not cause any significant effect on GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs). Therefore, MeHg exposure in vivo caused differential effects on AMPARs in hypoglossal motoneurons from mice with different genetic backgrounds. MeHg appears to preferentially stimulate the AMPAR-mediated currents in G93A hypoglossal motoneurons in an exposure time-dependent manner, which may contribute to the AMPAR-mediated motoneuron excitotoxicity, thereby facilitating development of ALS-like phenotype.
Collapse
Affiliation(s)
- Yukun Yuan
- Department of Pharmacology/Toxicology, Michigan State University, Life Sciences Building, 1355 Bogue Street, East Lansing, MI 48824-1317, USA.
| | - Jordan M Bailey
- Department of Pharmacology/Toxicology, Michigan State University, Life Sciences Building, 1355 Bogue Street, East Lansing, MI 48824-1317, USA
| | - Gretchen M Rivera-Lopez
- Department of Pharmacology/Toxicology, Michigan State University, Life Sciences Building, 1355 Bogue Street, East Lansing, MI 48824-1317, USA
| | - William D Atchison
- Department of Pharmacology/Toxicology, Michigan State University, Life Sciences Building, 1355 Bogue Street, East Lansing, MI 48824-1317, USA
| |
Collapse
|
5
|
Dyer MS, Odierna GL, Clark RM, Woodhouse A, Blizzard CA. Synaptic remodeling follows upper motor neuron hyperexcitability in a rodent model of TDP-43. Front Cell Neurosci 2023; 17:1274979. [PMID: 37941604 PMCID: PMC10628445 DOI: 10.3389/fncel.2023.1274979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is an incurable disease characterized by relentlessly progressive degeneration of the corticomotor system. Cortical hyperexcitability has been identified as an early pre-symptomatic biomarker of ALS. This suggests that hyperexcitability occurs upstream in the ALS pathological cascade and may even be part of the mechanism that drives development of symptoms or loss of motor neurons in the spinal cord. However, many studies also indicate a loss to the synaptic machinery that mediates synaptic input which raises the question of which is the driver of disease, and which is a homeostatic response. Herein, we used an inducible mouse model of TDP-43 mediated ALS that permits for the construction of detailed phenotypic timelines. Our work comprehensively describes the relationship between intrinsic hyperexcitability and altered synaptic input onto motor cortical layer 5 pyramidal neurons over time. As a result, we have constructed the most complete timeline of electrophysiological changes following induction of TDP-43 dysfunction in the motor cortex. We report that intrinsic hyperexcitability of layer 5 pyramidal neurons precedes changes to excitatory synaptic connections, which manifest as an overall loss of inputs onto layer 5 pyramidal neurons. This finding highlights the importance of hyperexcitability as a primary mechanism of ALS and re-contextualizes synaptic changes as possibly representing secondary adaptive responses. Recognition of the relationship between intrinsic hyperexcitability and reduced excitatory synaptic input has important implications for the development of useful therapies against ALS. Novel strategies will need to be developed that target neuronal output by managing excitability against synapses separately.
Collapse
Affiliation(s)
- Marcus S. Dyer
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
- Department of Pharmaceutical and Pharmacological Sciences, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - G. Lorenzo Odierna
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Rosemary M. Clark
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Adele Woodhouse
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Catherine A. Blizzard
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
6
|
Xie M, Pallegar PN, Parusel S, Nguyen AT, Wu LJ. Regulation of cortical hyperexcitability in amyotrophic lateral sclerosis: focusing on glial mechanisms. Mol Neurodegener 2023; 18:75. [PMID: 37858176 PMCID: PMC10585818 DOI: 10.1186/s13024-023-00665-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the loss of both upper and lower motor neurons, resulting in muscle weakness, atrophy, paralysis, and eventually death. Motor cortical hyperexcitability is a common phenomenon observed at the presymptomatic stage of ALS. Both cell-autonomous (the intrinsic properties of motor neurons) and non-cell-autonomous mechanisms (cells other than motor neurons) are believed to contribute to cortical hyperexcitability. Decoding the pathological relevance of these dynamic changes in motor neurons and glial cells has remained a major challenge. This review summarizes the evidence of cortical hyperexcitability from both clinical and preclinical research, as well as the underlying mechanisms. We discuss the potential role of glial cells, particularly microglia, in regulating abnormal neuronal activity during the disease progression. Identifying early changes such as neuronal hyperexcitability in the motor system may provide new insights for earlier diagnosis of ALS and reveal novel targets to halt the disease progression.
Collapse
Affiliation(s)
- Manling Xie
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Praveen N Pallegar
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Sebastian Parusel
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Aivi T Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- Department of Immunology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
7
|
Yang M, Liu M, Sánchez YF, Avazzadeh S, Quinlan LR, Liu G, Lu Y, Yang G, O'Brien T, Henshall DC, Hardiman O, Shen S. A novel protocol to derive cervical motor neurons from induced pluripotent stem cells for amyotrophic lateral sclerosis. Stem Cell Reports 2023; 18:1870-1883. [PMID: 37595581 PMCID: PMC10545486 DOI: 10.1016/j.stemcr.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/20/2023] Open
Abstract
Sporadic amyotrophic lateral sclerosis (sALS) is the majority of ALS, and the lack of appropriate disease models has hindered its research. Induced pluripotent stem cell (iPSC) technology now permits derivation of iPSCs from somatic cells of sALS patients to investigate disease phenotypes and mechanisms. Most existing differentiation protocols are time-consuming or low efficient in generating motor neurons (MNs). Here we report a rapid and simple protocol to differentiate MNs in monolayer culture using small molecules, which led to nearly pure neural stem cells in 6 days, robust OLIG2+ pMNs (73%-91%) in 12 days, enriched CHAT+ cervical spinal MNs (sMNs) (88%-97%) in 18 days, and functionally mature sMNs in 28 days. This simple and reproducible protocol permitted the identification of hyperexcitability phenotypes in our sALS iPSC-derived sMNs, and its application in neurodegenerative diseases should facilitate in vitro disease modeling, drug screening, and the development of cell therapy.
Collapse
Affiliation(s)
- Meimei Yang
- Regenerative Medicine Institute, School of Medicine, University of Galway, H91 W2TY Galway, Ireland; FutureNeuro SFI Research Centre for Chronic and Rare Neurological Diseases and Department of Physiology & Medical Physics, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Min Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yajaira Feller Sánchez
- Cellular Physiology Research Laboratory and CÚRAM SFI Centre for Research in Medical Devices, School of Medicine, University of Galway, H91 TK33 Galway, Ireland
| | - Sahar Avazzadeh
- Cellular Physiology Research Laboratory and CÚRAM SFI Centre for Research in Medical Devices, School of Medicine, University of Galway, H91 TK33 Galway, Ireland
| | - Leo R Quinlan
- Cellular Physiology Research Laboratory and CÚRAM SFI Centre for Research in Medical Devices, School of Medicine, University of Galway, H91 TK33 Galway, Ireland
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Hebei Key Laboratory of Heart and Metabolism, Hebei Engineering Research Center of Intelligent Medical Clinical Application, Hebei International Joint Research Center for Structural Heart Disease, Shijiazhuang, Hebei, China
| | - Yin Lu
- College of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Guangming Yang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Timothy O'Brien
- Regenerative Medicine Institute, School of Medicine, University of Galway, H91 W2TY Galway, Ireland
| | - David C Henshall
- FutureNeuro SFI Research Centre for Chronic and Rare Neurological Diseases and Department of Physiology & Medical Physics, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland; Department of Physiology and Medical Physics, RCSI University of Medicine & Health Sciences, D02 YN77 Dublin, Ireland.
| | - Orla Hardiman
- FutureNeuro SFI Research Centre for Chronic and Rare Neurological Diseases and Department of Physiology & Medical Physics, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland; Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, University of Galway, H91 W2TY Galway, Ireland; FutureNeuro SFI Research Centre for Chronic and Rare Neurological Diseases and Department of Physiology & Medical Physics, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland.
| |
Collapse
|
8
|
Kulick D, Moon E, Riffe RM, Teicher G, Van Deursen S, Berson A, He W, Aaron G, Downes GB, Devoto S, O'Neil A. Amyotrophic Lateral Sclerosis-Associated Persistent Organic Pollutant cis-Chlordane Causes GABA A-Independent Toxicity to Motor Neurons, Providing Evidence toward an Environmental Component of Sporadic Amyotrophic Lateral Sclerosis. ACS Chem Neurosci 2022; 13:3567-3577. [PMID: 36511510 DOI: 10.1021/acschemneuro.2c00452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease characterized by the death of upper and lower motor neurons. While causative genes have been identified, 90% of ALS cases are not inherited and are hypothesized to result from the accumulation of genetic and environmental risk factors. While no specific causative environmental toxin has been identified, previous work has indicated that the presence of the organochlorine pesticide cis-chlordane in the blood is highly correlated with ALS incidence. Never before tested on the motor system, here, we show that cis-chlordane is especially toxic to motor neurons in vitro- and in vivo-independent of its known antagonism of the GABAA receptor. We find that human stem-cell-derived motor neurons are more sensitive to cis-chlordane than other cell types and their action potential dynamics are altered. Utilizing zebrafish larvae, we show that cis-chlordane induces motor neuron and neuromuscular junction degeneration and subsequent motor deficits in a touch-evoked escape response. Together, our work points to cis-chlordane as a potential sporadic ALS exacerbating environmental pollutant.
Collapse
Affiliation(s)
- Daniel Kulick
- Biology Department, Neuroscience and Behavior Program, Wesleyan University, Middletown, Connecticut06459, United States
| | - Emily Moon
- Biology Department, Neuroscience and Behavior Program, Wesleyan University, Middletown, Connecticut06459, United States
| | - R Madison Riffe
- Neuroscience and Behavior Graduate Program, Biology Department, University of Massachusetts Amherst, Amherst, Massachusetts01003, United States
| | - Gregory Teicher
- Molecular and Cellular Biology Graduate Program, Biology Department, University of Massachusetts Amherst, Amherst, Massachusetts01003, United States
| | - Simon Van Deursen
- Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, Connecticut06459, United States
| | - Aaron Berson
- Biology Department, Wesleyan University, Middletown, Connecticut06459, United States
| | - Wu He
- University of Connecticut Flow Cytometry Core, University of Connecticut, Storrs, Connecticut06269, United States
| | - Gloster Aaron
- Biology Department, Neuroscience and Behavior Program, Wesleyan University, Middletown, Connecticut06459, United States
| | - Gerald B Downes
- Neuroscience and Behavior Graduate Program, Molecular and Cellular Biology Graduate Program, Biology Department, University of Massachusetts Amherst, Amherst, Massachusetts01003, United States
| | - Stephen Devoto
- Biology Department, Wesleyan University, Middletown, Connecticut06459, United States
| | - Alison O'Neil
- Chemistry Department, Neuroscience and Behavior Program, Wesleyan University, Middletown, Connecticut06459, United States
| |
Collapse
|
9
|
Elbasiouny SM. Motoneuron excitability dysfunction in ALS: Pseudo-mystery or authentic conundrum? J Physiol 2022; 600:4815-4825. [PMID: 36178320 PMCID: PMC9669170 DOI: 10.1113/jp283630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/24/2022] [Indexed: 01/12/2023] Open
Abstract
In amyotrophic lateral sclerosis (ALS), abnormalities in motoneuronal excitability are seen in early pathogenesis and throughout disease progression. Fully understanding motoneuron excitability dysfunction may lead to more effective treatments. Yet decades of research have not produced consensus on the nature, role or underlying mechanisms of motoneuron excitability dysfunction in ALS. For example, contrary to Ca excitotoxicity theory, predictions of motoneuronal hyper-excitability, normal and hypo-excitability have also been seen at various disease stages and in multiple ALS lines. Accordingly, motoneuron excitability dysfunction in ALS is a disputed topic in the field. Specifically, the form (hyper, hypo or unchanged) and what role excitability dysfunction plays in the disease (pathogenic or downstream of other pathologies; neuroprotective or detrimental) are currently unclear. Although several motoneuron properties that determine cellular excitability change in the disease, some of these changes are pro-excitable, whereas others are anti-excitable, making dynamic fluctuations in overall 'net' excitability highly probable. Because various studies assess excitability via differing methods and at differing disease stages, the conflicting reports in the literature are not surprising. Hence, the overarching process of excitability degradation and motoneuron degeneration is not fully understood. Consequently, the discrepancies on motoneuron excitability dysfunction in the literature represent a substantial barrier to our understanding of the disease. Emerging studies suggest that biological variables, variations in experimental protocols, issues of rigor and sampling/analysis strategies are key factors that may underlie conflicting data in the literature. This review highlights potential confounding factors for researchers to consider and also offers ideas on avoiding pitfalls and improving robustness of data.
Collapse
Affiliation(s)
- Sherif M. Elbasiouny
- Department of NeuroscienceCell Biology, and PhysiologyBoonshoft School of Medicine and College of Science and MathematicsWright State UniversityDaytonOHUSA,Department of BiomedicalIndustrial, and Human Factors EngineeringCollege of Engineering and Computer ScienceWright State UniversityDaytonOHUSA
| |
Collapse
|
10
|
Liang B, Thapa R, Zhang G, Moffitt C, Zhang Y, Zhang L, Johnston A, Ruby HP, Barbera G, Wong PC, Zhang Z, Chen R, Lin DT, Li Y. Aberrant neural activity in prefrontal pyramidal neurons lacking TDP-43 precedes neuron loss. Prog Neurobiol 2022; 215:102297. [PMID: 35667630 PMCID: PMC9258405 DOI: 10.1016/j.pneurobio.2022.102297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/25/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022]
Abstract
Mislocalization of TAR DNA binding protein 43 kDa (TARDBP, or TDP-43) is a principal pathological hallmark identified in cases of neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). As an RNA binding protein, TDP-43 serves in the nuclear compartment to repress non-conserved cryptic exons to ensure the normal transcriptome. Multiple lines of evidence from animal models and human studies support the view that loss of TDP-43 leads to neuron loss, independent of its cytosolic aggregation. However, the underlying pathogenic pathways driven by the loss-of-function mechanism are still poorly defined. We employed a genetic approach to determine the impact of TDP-43 loss in pyramidal neurons of the prefrontal cortex (PFC). Using a custom-built miniscope imaging system, we performed repetitive in vivo calcium imaging from freely behaving mice for up to 7 months. By comparing calcium activity in PFC pyramidal neurons between TDP-43 depleted and TDP-43 intact mice, we demonstrated remarkably increased numbers of pyramidal neurons exhibiting hyperactive calcium activity after short-term TDP-43 depletion, followed by rapid activity declines prior to neuron loss. Our results suggest aberrant neural activity driven by loss of TDP-43 as the pathogenic pathway at early stage in ALS and FTD.
Collapse
Affiliation(s)
- Bo Liang
- School of Electrical Engineering & Computer Science, College of Engineering & Mines, University of North Dakota, 243 Centennial Drive Stop 7165, Grand Forks, ND 58202, USA.
| | - Rashmi Thapa
- Department of Zoology and Physiology, University of Wyoming, 1000 E University Avenue, Laramie, WY 82071, USA.
| | - Gracie Zhang
- Laramie High School, 1710 Boulder Drive, Laramie, WY 82070, USA.
| | - Casey Moffitt
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA.
| | - Yan Zhang
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA.
| | - Lifeng Zhang
- School of Electrical Engineering & Computer Science, College of Engineering & Mines, University of North Dakota, 243 Centennial Drive Stop 7165, Grand Forks, ND 58202, USA; Department of Zoology and Physiology, University of Wyoming, 1000 E University Avenue, Laramie, WY 82071, USA; Laramie High School, 1710 Boulder Drive, Laramie, WY 82070, USA; Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA; Department of Pathology, Johns Hopkins University School of Medicine, 725N. Wolfe Street, Baltimore, MD 21205, USA; Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 100N. Greene St., Baltimore, MD 21201, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725N. Wolfe Street, Baltimore, MD 21205, USA.
| | - Amanda Johnston
- Department of Zoology and Physiology, University of Wyoming, 1000 E University Avenue, Laramie, WY 82071, USA.
| | - Hyrum P Ruby
- Department of Zoology and Physiology, University of Wyoming, 1000 E University Avenue, Laramie, WY 82071, USA.
| | - Giovanni Barbera
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA.
| | - Philip C Wong
- Department of Pathology, Johns Hopkins University School of Medicine, 725N. Wolfe Street, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725N. Wolfe Street, Baltimore, MD 21205, USA.
| | - Zhaojie Zhang
- Department of Zoology and Physiology, University of Wyoming, 1000 E University Avenue, Laramie, WY 82071, USA.
| | - Rong Chen
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 100N. Greene St., Baltimore, MD 21201, USA.
| | - Da-Ting Lin
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725N. Wolfe Street, Baltimore, MD 21205, USA.
| | - Yun Li
- Department of Zoology and Physiology, University of Wyoming, 1000 E University Avenue, Laramie, WY 82071, USA.
| |
Collapse
|
11
|
Durand J, Filipchuk A. Electrical and Morphological Properties of Developing Motoneurons in Postnatal Mice and Early Abnormalities in SOD1 Transgenic Mice. ADVANCES IN NEUROBIOLOGY 2022; 28:353-373. [PMID: 36066832 DOI: 10.1007/978-3-031-07167-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this chapter, we review electrical and morphological properties of lumbar motoneurons during postnatal development in wild-type (WT) and transgenic superoxide dismutase 1 (SOD1) mice, models of amyotrophic lateral sclerosis. First we showed that sensorimotor reflexes do not develop normally in transgenic SOD1G85R pups. Fictive locomotor activity recorded in in vitro whole brainstem/spinal cord preparations was not induced in these transgenic SOD1G85R mice using NMDA and 5HT in contrast to WT mice. Further, abnormal electrical properties were detected as early as the second postnatal week in lumbar motoneurons of SOD1 mice while they develop clinical symptoms several months after birth. We compared two different strains of mice (G85R and G93A) at the same postnatal period using intracellular recordings and patch clamp recordings of WT and SOD1 motoneurons. We defined three types of motoneurons according to their discharge firing pattern (transient, sustained and delayed onset firing) when motor units are not yet mature. The delayed-onset firing motoneurons had the higher rheobase compared to the transient and sustained firing groups in the WT mice. We demonstrated hypoexcitability in the delayed onset-firing motoneurons of SOD1 mice. Intracellular staining of motoneurons revealed dendritic overbranching in SOD1 lumbar motoneurons that was more pronounced in the sustained firing motoneurons. We suggested that motoneuronal hypoexcitability is an early pathological sign affecting a subset of lumbar motoneurons in the spinal cord of SOD1 mice.
Collapse
Affiliation(s)
- Jacques Durand
- Institut de Neurosciences de la Timone (INT) P3M team, Aix Marseille Université, Marseille, cedex 05, France.
| | - Anton Filipchuk
- Department for Integrative and Computational Neuroscience (ICN), Paris-Saclay Institute of Neuroscience (NeuroPSI), Gif-sur-Yvette, France
| |
Collapse
|
12
|
Xie M, Zhao S, Bosco DB, Nguyen A, Wu LJ. Microglial TREM2 in amyotrophic lateral sclerosis. Dev Neurobiol 2022; 82:125-137. [PMID: 34874625 PMCID: PMC8898078 DOI: 10.1002/dneu.22864] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/12/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, is an aggressive motor neuron degenerative disease characterized by selective loss of both upper and lower motor neurons. The mechanisms underlying disease initiation and progression are poorly understood. The involvement of nonmotor neuraxis emphasizes the contribution of glial cells in disease progress. Microglia comprise a unique subset of glial cells and are the principal immune cells in the central nervous system (CNS). Triggering receptor expressed on myeloid cell 2 (TREM2) is a surface receptor that, within the CNS, is exclusively expressed on microglia and plays crucial roles in microglial proliferation, migration, activation, metabolism, and phagocytosis. Genetic evidence has linked TREM2 to neurodegenerative diseases including ALS, but its function in ALS pathogenesis is largely unknown. In this review, we summarize how microglial activation, with a specific focus on TREM2 function, affects ALS progression clinically and experimentally. Understanding microglial TREM2 function will help pinpoint the molecular target for ALS treatment.
Collapse
Affiliation(s)
- Manling Xie
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, 55905
| | - Shunyi Zhao
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
| | - Dale B. Bosco
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
| | - Aivi Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Cinic, Rochester, MN 55905
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
13
|
Bączyk M, Manuel M, Roselli F, Zytnicki D. From Physiological Properties to Selective Vulnerability of Motor Units in Amyotrophic Lateral Sclerosis. ADVANCES IN NEUROBIOLOGY 2022; 28:375-394. [PMID: 36066833 DOI: 10.1007/978-3-031-07167-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Spinal alpha-motoneurons are classified in several types depending on the contractile properties of the innervated muscle fibers. This diversity is further displayed in different levels of vulnerability of distinct motor units to neurodegenerative diseases such as Amyotrophic Lateral Sclerosis (ALS). We summarize recent data suggesting that, contrary to the excitotoxicity hypothesis, the most vulnerable motor units are hypoexcitable and experience a reduction in their firing prior to symptoms onset in ALS. We suggest that a dysregulation of activity-dependent transcriptional programs in these motoneurons alter crucial cellular functions such as mitochondrial biogenesis, autophagy, axonal sprouting capability and re-innervation of neuromuscular junctions.
Collapse
Affiliation(s)
- Marcin Bączyk
- Department of Neurobiology, Poznań University of Physical Education, Poznań, Poland
| | - Marin Manuel
- SPPIN - Saints-Pères Paris Institute for the Neurosciences, CNRS, Université de Paris, Paris, France.
| | - Francesco Roselli
- Department of Neurology, Ulm University, Ulm, Germany
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany
- Neurozentrum Ulm, Ulm, Germany
| | - Daniel Zytnicki
- SPPIN - Saints-Pères Paris Institute for the Neurosciences, CNRS, Université de Paris, Paris, France
| |
Collapse
|
14
|
Weddell T, Bashford J, Wickham A, Iniesta R, Chen M, Zhou P, Drakakis E, Boutelle M, Mills K, Shaw C. First-recruited motor units adopt a faster phenotype in amyotrophic lateral sclerosis. J Physiol 2021; 599:4117-4130. [PMID: 34261189 DOI: 10.1113/jp281310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/04/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disorder of motor neurons, carrying a short survival. High-density motor unit recordings permit analysis of motor unit size (amplitude) and firing behaviour (afterhyperpolarization duration and muscle fibre conduction velocity). Serial recordings from biceps brachii indicated that motor units fired faster and with greater amplitude as disease progressed. First-recruited motor units in the latter stages of ALS developed characteristics akin to fast-twitch motor units, possibly as a compensatory mechanism for the selective loss of this motor unit subset. This process may become maladaptive, highlighting a novel therapeutic target to reduce motor unit vulnerability. ABSTRACT Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder with a median survival of 3 years. We employed serial high-density surface electromyography (HDSEMG) to characterize voluntary and ectopic patterns of motor unit (MU) firing at different stages of disease. By distinguishing MU subtypes with variable vulnerability to disease, we aimed to evaluate compensatory neuronal adaptations that accompany disease progression. Twenty patients with ALS and five patients with benign fasciculation syndrome (BFS) underwent 1-7 assessments each. HDSEMG measurements comprised 30 min of resting muscle and 1 min of light voluntary activity from biceps brachii bilaterally. MU decomposition was performed by the progressive FastICA peel-off technique. Inter-spike interval, firing pattern, MU potential area, afterhyperpolarization duration and muscle fibre conduction velocity were determined. In total, 373 MUs (ALS = 287; BFS = 86) were identified from 182 recordings. Weak ALS muscles demonstrated a lower mean inter-spike interval (82.7 ms) than strong ALS muscles (96.0 ms; P = 0.00919) and BFS muscles (95.3 ms; P = 0.0039). Mean MU potential area (area under the curve: 487.5 vs. 98.7 μV ms; P < 0.0001) and muscle fibre conduction velocity (6.2 vs. 5.1 m/s; P = 0.0292) were greater in weak ALS muscles than in BFS muscles. Purely fasciculating MUs had a greater mean MU potential area than MUs also under voluntary command (area under the curve: 679.6 vs. 232.4 μV ms; P = 0.00144). These results suggest that first-recruited MUs develop a faster phenotype in the latter stages of ALS, likely driven by the preferential loss of vulnerable fast-twitch MUs. Inhibition of this potentially maladaptive phenotypic drift may protect the longevity of the MU pool, stimulating a novel therapeutic avenue.
Collapse
Affiliation(s)
- Thomas Weddell
- UK Dementia Research Institute, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - James Bashford
- UK Dementia Research Institute, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Aidan Wickham
- Department of Bioengineering, Imperial College London, London, UK
| | - Raquel Iniesta
- Department of Biostatistics and Health Informatics, King's College London, London, UK
| | - Maoqi Chen
- Institute of Rehabilitation Engineering, The University of Rehabilitation, Qingdao, China
| | - Ping Zhou
- Institute of Rehabilitation Engineering, The University of Rehabilitation, Qingdao, China
| | | | - Martyn Boutelle
- Department of Bioengineering, Imperial College London, London, UK
| | - Kerry Mills
- UK Dementia Research Institute, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Chris Shaw
- UK Dementia Research Institute, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
15
|
Huang X, Roet KCD, Zhang L, Brault A, Berg AP, Jefferson AB, Klug-McLeod J, Leach KL, Vincent F, Yang H, Coyle AJ, Jones LH, Frost D, Wiskow O, Chen K, Maeda R, Grantham A, Dornon MK, Klim JR, Siekmann MT, Zhao D, Lee S, Eggan K, Woolf CJ. Human amyotrophic lateral sclerosis excitability phenotype screen: Target discovery and validation. Cell Rep 2021; 35:109224. [PMID: 34107252 PMCID: PMC8209673 DOI: 10.1016/j.celrep.2021.109224] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/14/2020] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Drug development is hampered by poor target selection. Phenotypic screens using neurons differentiated from patient stem cells offer the possibility to validate known and discover novel disease targets in an unbiased fashion. To identify targets for managing hyperexcitability, a pathological feature of amyotrophic lateral sclerosis (ALS), we design a multi-step screening funnel using patient-derived motor neurons. High-content live cell imaging is used to evaluate neuronal excitability, and from a screen against a chemogenomic library of 2,899 target-annotated compounds, 67 reduce the hyperexcitability of ALS motor neurons carrying the SOD1(A4V) mutation, without cytotoxicity. Bioinformatic deconvolution identifies 13 targets that modulate motor neuron excitability, including two known ALS excitability modulators, AMPA receptors and Kv7.2/3 ion channels, constituting target validation. We also identify D2 dopamine receptors as modulators of ALS motor neuron excitability. This screen demonstrates the power of human disease cell-based phenotypic screens for identifying clinically relevant targets for neurological disorders. Motor neuron hyperexcitability is observed in both ALS patients and their iPSC-derived neurons. Combining a high-content live imaging excitability phenotypic assay, high-throughput screening against a cross-annotated chemogenomic library, and bioinformatic enrichment analysis, Huang et al. identify targets modulating the hyperexcitability of ALS patient-derived motor neurons in an unbiased manner.
Collapse
Affiliation(s)
- Xuan Huang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Kasper C D Roet
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Liying Zhang
- Medicine Design, Pfizer, Cambridge, MA 02139, USA
| | - Amy Brault
- Medicine Design, Pfizer, Groton, CT 06340, USA
| | - Allison P Berg
- Rare Disease Research Unit, Pfizer, Cambridge, MA 02139, USA
| | - Anne B Jefferson
- Pfizer Centers for Therapeutic Innovation (CTI), San Francisco, CA 94080, USA
| | | | - Karen L Leach
- Pfizer Centers for Therapeutic Innovation (CTI), Cambridge, MA 02139, USA
| | | | - Hongying Yang
- Pfizer Centers for Therapeutic Innovation (CTI), Cambridge, MA 02139, USA
| | - Anthony J Coyle
- Pfizer Centers for Therapeutic Innovation (CTI), Cambridge, MA 02139, USA
| | - Lyn H Jones
- Medicine Design, Pfizer, Cambridge, MA 02139, USA
| | - Devlin Frost
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Ole Wiskow
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Kuchuan Chen
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Rie Maeda
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Alyssa Grantham
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Mary K Dornon
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Joseph R Klim
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Marco T Siekmann
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Dongyi Zhao
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Seungkyu Lee
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Kevin Eggan
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Bączyk M, Alami NO, Delestrée N, Martinot C, Tang L, Commisso B, Bayer D, Doisne N, Frankel W, Manuel M, Roselli F, Zytnicki D. Synaptic restoration by cAMP/PKA drives activity-dependent neuroprotection to motoneurons in ALS. J Exp Med 2021; 217:151829. [PMID: 32484501 PMCID: PMC7398175 DOI: 10.1084/jem.20191734] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 03/03/2020] [Accepted: 05/01/2020] [Indexed: 12/26/2022] Open
Abstract
Excessive excitation is hypothesized to cause motoneuron (MN) degeneration in amyotrophic lateral sclerosis (ALS), but actual proof of hyperexcitation in vivo is missing, and trials based on this concept have failed. We demonstrate, by in vivo single-MN electrophysiology, that, contrary to expectations, excitatory responses evoked by sensory and brainstem inputs are reduced in MNs of presymptomatic mutSOD1 mice. This impairment correlates with disrupted postsynaptic clustering of Homer1b, Shank, and AMPAR subunits. Synaptic restoration can be achieved by activation of the cAMP/PKA pathway, by either intracellular injection of cAMP or DREADD-Gs stimulation. Furthermore, we reveal, through independent control of signaling and excitability allowed by multiplexed DREADD/PSAM chemogenetics, that PKA-induced restoration of synapses triggers an excitation-dependent decrease in misfolded SOD1 burden and autophagy overload. In turn, increased MN excitability contributes to restoring synaptic structures. Thus, the decrease of excitation to MN is an early but reversible event in ALS. Failure of the postsynaptic site, rather than hyperexcitation, drives disease pathobiochemistry.
Collapse
Affiliation(s)
- Marcin Bączyk
- Université de Paris, Saints-Pères Paris Institute for the Neurosciences (SPPIN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Najwa Ouali Alami
- Department of Neurology, Ulm University, Ulm, Germany.,International Graduate School in Molecular Medicine Ulm, Ulm University, Ulm, Germany
| | - Nicolas Delestrée
- Université de Paris, Saints-Pères Paris Institute for the Neurosciences (SPPIN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Clémence Martinot
- Université de Paris, Saints-Pères Paris Institute for the Neurosciences (SPPIN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Linyun Tang
- Department of Neurology, Ulm University, Ulm, Germany.,Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Barbara Commisso
- Department of Neurology, Ulm University, Ulm, Germany.,Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - David Bayer
- Department of Neurology, Ulm University, Ulm, Germany.,Cellular and Molecular Mechanisms in Aging Research Training Group, Ulm University, Ulm, Germany
| | - Nicolas Doisne
- Université de Paris, Saints-Pères Paris Institute for the Neurosciences (SPPIN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Wayne Frankel
- Department of Genetics & Development, Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY
| | - Marin Manuel
- Université de Paris, Saints-Pères Paris Institute for the Neurosciences (SPPIN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Francesco Roselli
- Department of Neurology, Ulm University, Ulm, Germany.,Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany.,German Center for Neurodegenerative Diseases, Ulm, Germany.,Neurozentrum Ulm, Ulm, Germany
| | - Daniel Zytnicki
- Université de Paris, Saints-Pères Paris Institute for the Neurosciences (SPPIN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| |
Collapse
|
17
|
Early Hypoexcitability in a Subgroup of Spinal Motoneurons in Superoxide Dismutase 1 Transgenic Mice, a Model of Amyotrophic Lateral Sclerosis. Neuroscience 2021; 463:337-353. [PMID: 33556455 DOI: 10.1016/j.neuroscience.2021.01.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/22/2021] [Accepted: 01/31/2021] [Indexed: 11/24/2022]
Abstract
In amyotrophic lateral sclerosis (ALS), large motoneurons degenerate first, causing muscle weakness. Transgenic mouse models with a mutation in the gene encoding the enzyme superoxide dismutase 1 (SOD1) revealed that motoneurons innervating the fast-fatigable muscular fibres disconnect very early. The cause of this peripheric disconnection has not yet been established. Early pathological signs were described in motoneurons during the postnatal period of SOD1 transgenic mice. Here, we investigated whether the early changes of electrical and morphological properties previously reported in the SOD1G85R strain also occur in the SOD1G93A-low expressor line with particular attention to the different subsets of motoneurons defined by their discharge firing pattern (transient, sustained, or delayed-onset firing). Intracellular staining and recording were performed in lumbar motoneurons from entire brainstem-spinal cord preparations of SOD1G93A-low transgenic mice and their WT littermates during the second postnatal week. Our results show that SOD1G93A-low motoneurons exhibit a dendritic overbranching similar to that described previously in the SOD1G85R strain at the same age. Further we found an hypoexcitability in the delayed-onset firing SOD1G93A-low motoneurons (lower gain and higher voltage threshold). We conclude that dendritic overbranching and early hypoexcitability are common features of both low expressor SOD1 mutants (G85R and G93A-low). In the high-expressor SOD1G93A line, we found hyperexcitability in the sustained firing motoneurons at the same period, suggesting a delay in compensatory mechanisms. Overall, our results suggest that the hypoexcitability indicate an early dysfunction of the delayed-onset motoneurons and could account as early pathological signs of the disease.
Collapse
|
18
|
Bączyk M, Krutki P, Zytnicki D. Is there hope that transpinal direct current stimulation corrects motoneuron excitability and provides neuroprotection in amyotrophic lateral sclerosis? Physiol Rep 2021; 9:e14706. [PMID: 33463907 PMCID: PMC7814489 DOI: 10.14814/phy2.14706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of largely unknown pathophysiology, characterized by the progressive loss of motoneurons (MNs). We review data showing that in presymptomatic ALS mice, MNs display reduced intrinsic excitability and impaired level of excitatory inputs. The loss of repetitive firing specifically affects the large MNs innervating fast contracting muscle fibers, which are the most vulnerable MNs in ALS. Interventions that aimed at restoring either the intrinsic excitability or the synaptic excitation result in a decrease of disease markers in MNs and delayed neuromuscular junction denervation. We then focus on trans‐spinal direct current stimulation (tsDCS), a noninvasive tool, since it modulates the activity of spinal neurons and networks. Effects of tsDCS depend on the polarity of applied current. Recent work shows that anodal tsDCS induces long‐lasting enhancement of MN excitability and synaptic excitation of spinal MNs. Moreover, we show preliminary results indicating that anodal tsDCS enhances the excitatory synaptic inputs to MNs in ALS mice. In conclusion, we suggest that chronic application of anodal tsDCS might be useful as a complementary method in the management of ALS patients.
Collapse
Affiliation(s)
- Marcin Bączyk
- Department of Neurobiology, Poznan University of Physical Education, Poznań, Poland
| | - Piotr Krutki
- Department of Neurobiology, Poznan University of Physical Education, Poznań, Poland
| | - Daniel Zytnicki
- Université de Paris, Centre National de la Recherche Scientifique (CNRS), Saints-Pères Paris Institute for the Neurosciences (SPPIN), Paris, France
| |
Collapse
|
19
|
Jørgensen HS, Jensen DB, Dimintiyanova KP, Bonnevie VS, Hedegaard A, Lehnhoff J, Moldovan M, Grondahl L, Meehan CF. Increased Axon Initial Segment Length Results in Increased Na + Currents in Spinal Motoneurones at Symptom Onset in the G127X SOD1 Mouse Model of Amyotrophic Lateral Sclerosis. Neuroscience 2020; 468:247-264. [PMID: 33246068 DOI: 10.1016/j.neuroscience.2020.11.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/22/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease preferentially affecting motoneurones. Transgenic mouse models have been used to investigate the role of abnormal motoneurone excitability in this disease. Whilst an increased excitability has repeatedly been demonstrated in vitro in neonatal and embryonic preparations from SOD1 mouse models, the results from the only studies to record in vivo from spinal motoneurones in adult SOD1 models have produced conflicting findings. Deficits in repetitive firing have been reported in G93A SOD1(high copy number) mice but not in presymptomatic G127X SOD1 mice despite shorter motoneurone axon initial segments (AISs) in these mice. These discrepancies may be due to the earlier disease onset and prolonged disease progression in G93A SOD1 mice with recordings potentially performed at a later sub-clinical stage of the disease in this mouse. To test this, and to explore how the evolution of excitability changes with symptom onset we performed in vivo intracellular recording and AIS labelling in G127X SOD1 mice immediately after symptom onset. No reductions in repetitive firing were observed showing that this is not a common feature across all ALS models. Immunohistochemistry for the Na+ channel Nav1.6 showed that motoneurone AISs increase in length in G127X SOD1 mice at symptom onset. Consistent with this, the rate of rise of AIS components of antidromic action potentials were significantly faster confirming that this increase in length represents an increase in AIS Na+ channels occurring at symptom onset in this model.
Collapse
Affiliation(s)
- H S Jørgensen
- Department of Neuroscience, University of Copenhagen, Denmark
| | - D B Jensen
- Department of Neuroscience, University of Copenhagen, Denmark
| | | | - V S Bonnevie
- Department of Neuroscience, University of Copenhagen, Denmark
| | - A Hedegaard
- Department of Neuroscience, University of Copenhagen, Denmark
| | - J Lehnhoff
- Department of Neuroscience, University of Copenhagen, Denmark
| | - M Moldovan
- Department of Neuroscience, University of Copenhagen, Denmark
| | - L Grondahl
- Department of Neuroscience, University of Copenhagen, Denmark
| | - C F Meehan
- Department of Neuroscience, University of Copenhagen, Denmark.
| |
Collapse
|
20
|
Reichenstein I, Eitan C, Diaz-Garcia S, Haim G, Magen I, Siany A, Hoye ML, Rivkin N, Olender T, Toth B, Ravid R, Mandelbaum AD, Yanowski E, Liang J, Rymer JK, Levy R, Beck G, Ainbinder E, Farhan SMK, Lennox KA, Bode NM, Behlke MA, Möller T, Saxena S, Moreno CAM, Costaguta G, van Eijk KR, Phatnani H, Al-Chalabi A, Başak AN, van den Berg LH, Hardiman O, Landers JE, Mora JS, Morrison KE, Shaw PJ, Veldink JH, Pfaff SL, Yizhar O, Gross C, Brown RH, Ravits JM, Harms MB, Miller TM, Hornstein E. Human genetics and neuropathology suggest a link between miR-218 and amyotrophic lateral sclerosis pathophysiology. Sci Transl Med 2020; 11:11/523/eaav5264. [PMID: 31852800 DOI: 10.1126/scitranslmed.aav5264] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 07/11/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022]
Abstract
Motor neuron-specific microRNA-218 (miR-218) has recently received attention because of its roles in mouse development. However, miR-218 relevance to human motor neuron disease was not yet explored. Here, we demonstrate by neuropathology that miR-218 is abundant in healthy human motor neurons. However, in amyotrophic lateral sclerosis (ALS) motor neurons, miR-218 is down-regulated and its mRNA targets are reciprocally up-regulated (derepressed). We further identify the potassium channel Kv10.1 as a new miR-218 direct target that controls neuronal activity. In addition, we screened thousands of ALS genomes and identified six rare variants in the human miR-218-2 sequence. miR-218 gene variants fail to regulate neuron activity, suggesting the importance of this small endogenous RNA for neuronal robustness. The underlying mechanisms involve inhibition of miR-218 biogenesis and reduced processing by DICER. Therefore, miR-218 activity in motor neurons may be susceptible to failure in human ALS, suggesting that miR-218 may be a potential therapeutic target in motor neuron disease.
Collapse
Affiliation(s)
- Irit Reichenstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Chen Eitan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.,Project MinE ALS Sequencing Consortium
| | | | - Guy Haim
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Iddo Magen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Aviad Siany
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mariah L Hoye
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Natali Rivkin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Beata Toth
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Revital Ravid
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Amitai D Mandelbaum
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Eran Yanowski
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jing Liang
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jeffrey K Rymer
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Rivka Levy
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gilad Beck
- Stem Cell Core and Advanced Cell Technologies Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Elena Ainbinder
- Stem Cell Core and Advanced Cell Technologies Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sali M K Farhan
- Analytic and Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kimberly A Lennox
- Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA 52241, USA
| | - Nicole M Bode
- Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA 52241, USA
| | - Mark A Behlke
- Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA 52241, USA
| | - Thomas Möller
- Department of Neurology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Smita Saxena
- Department of Neurology, Inselspital University Hospital, University of Bern, Freiburgstrasse 16, CH-3010 Bern, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Murtenstrasse 40, CH-3008 Bern, Switzerland
| | | | - Giancarlo Costaguta
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Kristel R van Eijk
- Project MinE ALS Sequencing Consortium.,Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, 3584 CG, The Netherlands
| | - Hemali Phatnani
- Center for Genomics of Neurodegenerative Disease (CGND) and New York Genome Center (NYGC) ALS Consortium, New York, NY 10013, USA
| | - Ammar Al-Chalabi
- Project MinE ALS Sequencing Consortium.,Maurice Wohl Clinical Neuroscience Institute and United Kingdom Dementia Research Institute, Department of Basic and Clinical Neuroscience, Department of Neurology, King's College London, London SE5 9RX, UK.,Department of Neurology, King's College Hospital, London SE5 9RS, UK
| | - A Nazli Başak
- Project MinE ALS Sequencing Consortium.,Koç University Translational Medicine Research Center, NDAL, Istanbul 34010, Turkey
| | - Leonard H van den Berg
- Project MinE ALS Sequencing Consortium.,Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, 3584 CG, The Netherlands
| | - Orla Hardiman
- Project MinE ALS Sequencing Consortium.,Academic Unit of Neurology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin 2, Republic of Ireland.,Department of Neurology, Beaumont Hospital, Dublin 2, Republic of Ireland
| | - John E Landers
- Project MinE ALS Sequencing Consortium.,Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jesus S Mora
- Project MinE ALS Sequencing Consortium.,ALS Unit, Hospital San Rafael, Madrid 28016, Spain
| | - Karen E Morrison
- Project MinE ALS Sequencing Consortium.,Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Pamela J Shaw
- Project MinE ALS Sequencing Consortium.,Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, UK
| | - Jan H Veldink
- Project MinE ALS Sequencing Consortium.,Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, 3584 CG, The Netherlands
| | - Samuel L Pfaff
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ofer Yizhar
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Christina Gross
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Robert H Brown
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - John M Ravits
- Department of Neurosciences, UC San Diego, La Jolla, CA 92093, USA
| | - Matthew B Harms
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Timothy M Miller
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eran Hornstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel. .,Project MinE ALS Sequencing Consortium
| |
Collapse
|
21
|
Dong W, Ma Y, Guan F, Zhang X, Chen W, Zhang L, Zhang L. Ablation of C9orf72 together with excitotoxicity induces ALS in rats. FEBS J 2020; 288:1712-1723. [PMID: 32745320 DOI: 10.1111/febs.15501] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 05/19/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022]
Abstract
Pathogenesis of familial amyotrophic lateral sclerosis (ALS) linked to expansion of the chromosome 9 open reading frame 72 (C9orf72) hexanucleotide repeat that impairs C9orf72 expression. Loss of function of the C9orf72 protein is one of the three main proposed C9orf72-related ALS mechanisms. However, C9orf72 loss of function, by itself, is insufficient to cause severe phenotypes in mice. Excitotoxicity is another major disease mechanism of ALS. We speculate that loss of C9orf72 protein might cause ALS in combination with excitotoxicity. To date, the effect of C9orf72 deficiency in the background of SD rat has not been examined. To test our hypothesis, we generated a line of rat with a deletion of part of the C9orf72 gene ablating the encoded protein. These animals did not develop any ALS phenotypes; however, when they were treated with kainic acid, an excitotoxicity inducer, the rats developed motor deficits and showed loss of motor neurons (MNs), Golgi complex fragmentation, and abnormal vesicle trafficking. RNA sequencing revealed profound changes in the gene profiles that were primarily associated with neural activity. Our results demonstrated that C9orf72 ablation alone was not enough to cause ALS pathogenesis in rat; but the ablation sensitized MNs to other risk factors that synergistically caused the ALS. These results support a loss of function of C9orf72 mechanism of ALS.
Collapse
Affiliation(s)
- Wei Dong
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China.,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuanwu Ma
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Feifei Guan
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xu Zhang
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Chen
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Li Zhang
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lianfeng Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China.,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
22
|
Gunes ZI, Kan VWY, Ye X, Liebscher S. Exciting Complexity: The Role of Motor Circuit Elements in ALS Pathophysiology. Front Neurosci 2020; 14:573. [PMID: 32625051 PMCID: PMC7311855 DOI: 10.3389/fnins.2020.00573] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease, characterized by the degeneration of both upper and lower motor neurons. Despite decades of research, we still to date lack a cure or disease modifying treatment, emphasizing the need for a much-improved insight into disease mechanisms and cell type vulnerability. Altered neuronal excitability is a common phenomenon reported in ALS patients, as well as in animal models of the disease, but the cellular and circuit processes involved, as well as the causal relevance of those observations to molecular alterations and final cell death, remain poorly understood. Here, we review evidence from clinical studies, cell type-specific electrophysiology, genetic manipulations and molecular characterizations in animal models and culture experiments, which argue for a causal involvement of complex alterations of structure, function and connectivity of different neuronal subtypes within the cortical and spinal cord motor circuitries. We also summarize the current knowledge regarding the detrimental role of astrocytes and reassess the frequently proposed hypothesis of glutamate-mediated excitotoxicity with respect to changes in neuronal excitability. Together, these findings suggest multifaceted cell type-, brain area- and disease stage- specific disturbances of the excitation/inhibition balance as a cardinal aspect of ALS pathophysiology.
Collapse
Affiliation(s)
- Zeynep I Gunes
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig Maximilians University Munich, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig Maximilians University Munich, Munich, Germany.,Biomedical Center, Ludwig Maximilians University Munich, Munich, Germany
| | - Vanessa W Y Kan
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig Maximilians University Munich, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig Maximilians University Munich, Munich, Germany.,Biomedical Center, Ludwig Maximilians University Munich, Munich, Germany
| | - XiaoQian Ye
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig Maximilians University Munich, Munich, Germany.,Biomedical Center, Ludwig Maximilians University Munich, Munich, Germany
| | - Sabine Liebscher
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig Maximilians University Munich, Munich, Germany.,Biomedical Center, Ludwig Maximilians University Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
23
|
Excessive Homeostatic Gain in Spinal Motoneurons in a Mouse Model of Amyotrophic Lateral Sclerosis. Sci Rep 2020; 10:9049. [PMID: 32493926 PMCID: PMC7271238 DOI: 10.1038/s41598-020-65685-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 05/05/2020] [Indexed: 02/08/2023] Open
Abstract
In the mSOD1 model of ALS, the excitability of motoneurons is poorly controlled, oscillating between hyperexcitable and hypoexcitable states during disease progression. The hyperexcitability is mediated by excessive activity of voltage-gated Na+ and Ca2+ channels that is initially counteracted by aberrant increases in cell size and conductance. The balance between these opposing actions collapses, however, at the time that the denervation of muscle fibers begins at about P50, resulting in a state of hypo-excitability and cell death. We propose that this process of neurodegeneration ensues from homeostatic dysregulation of excitability and have tested this hypothesis by perturbing a signal transduction pathway that plays a major role in controlling biogenesis and cell size. Our 『homeostatic dysregulation hypothesis' predicted that neonatal mSOD1 motoneurons would be much more sensitive to such perturbations than wild type controls and our results strongly support this hypothesis. Our results have important implications for therapeutic approaches to ALS.
Collapse
|
24
|
Bursch F, Kalmbach N, Naujock M, Staege S, Eggenschwiler R, Abo-Rady M, Japtok J, Guo W, Hensel N, Reinhardt P, Boeckers TM, Cantz T, Sterneckert J, Van Den Bosch L, Hermann A, Petri S, Wegner F. Altered calcium dynamics and glutamate receptor properties in iPSC-derived motor neurons from ALS patients with C9orf72, FUS, SOD1 or TDP43 mutations. Hum Mol Genet 2020; 28:2835-2850. [PMID: 31108504 DOI: 10.1093/hmg/ddz107] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/02/2019] [Accepted: 05/14/2019] [Indexed: 12/13/2022] Open
Abstract
The fatal neurodegenerative disease amyotrophic lateral sclerosis (ALS) is characterized by a profound loss of motor neurons (MNs). Until now only riluzole minimally extends life expectancy in ALS, presumably by inhibiting glutamatergic neurotransmission and calcium overload of MNs. Therefore, the aim of this study was to investigate the glutamate receptor properties and key aspects of intracellular calcium dynamics in induced pluripotent stem cell (iPSC)-derived MNs from ALS patients with C9orf72 (n = 4 cell lines), fused in sarcoma (FUS) (n = 9), superoxide dismutase 1 (SOD1) (n = 3) or transactive response DNA-binding protein 43 (TDP43) (n = 3) mutations as well as healthy (n = 7 cell lines) and isogenic controls (n = 3). Using calcium imaging, we most frequently observed spontaneous transients in mutant C9orf72 MNs. Basal intracellular calcium levels and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-induced signal amplitudes were elevated in mutant TDP43 MNs. Besides, a majority of mutant TDP43 MNs responded to 3.5-dihydroxyphenylglycine as metabotropic glutamate receptor agonist. Quantitative real-time PCR demonstrated significantly increased expression levels of AMPA and kainate receptors in mutant FUS cells compared to healthy and isogenic controls. Furthermore, the expression of kainate receptors and voltage gated calcium channels in mutant C9orf72 MNs as well as metabotropic glutamate receptors in mutant SOD1 cells was markedly elevated compared to controls. Our data of iPSC-derived MNs from familial ALS patients revealed several mutation-specific alterations in glutamate receptor properties and calcium dynamics that could play a role in ALS pathogenesis and may lead to future translational strategies with individual stratification of neuroprotective ALS treatments.
Collapse
Affiliation(s)
- Franziska Bursch
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany.,Center of Systems Neuroscience, Hannover, Germany
| | - Norman Kalmbach
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany
| | - Maximilian Naujock
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany
| | - Selma Staege
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany.,Center of Systems Neuroscience, Hannover, Germany
| | - Reto Eggenschwiler
- Research Group Translational Hepatology and Stem Cell Biology, Cluster of Excellence REBIRTH, Hannover Medical School, 30625 Hannover, Germany
| | | | - Julia Japtok
- Division for Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany
| | - Wenting Guo
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, BE-3000 Leuven, Belgium.,Laboratory of Neurobiology, VIB-Center for Brain & Disease Research, BE-3000 Leuven, Belgium
| | - Niko Hensel
- Institute of Neuroanatomy, Hannover Medical School, 30625 Hanover, Germany
| | | | - Tobias M Boeckers
- Institute of Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Tobias Cantz
- Research Group Translational Hepatology and Stem Cell Biology, Cluster of Excellence REBIRTH, Hannover Medical School, 30625 Hannover, Germany
| | | | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, BE-3000 Leuven, Belgium.,Laboratory of Neurobiology, VIB-Center for Brain & Disease Research, BE-3000 Leuven, Belgium
| | - Andreas Hermann
- Division for Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany.,Center of Systems Neuroscience, Hannover, Germany
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany.,Center of Systems Neuroscience, Hannover, Germany
| |
Collapse
|
25
|
Weskamp K, Tank EM, Miguez R, McBride JP, Gómez NB, White M, Lin Z, Gonzalez CM, Serio A, Sreedharan J, Barmada SJ. Shortened TDP43 isoforms upregulated by neuronal hyperactivity drive TDP43 pathology in ALS. J Clin Invest 2020; 130:1139-1155. [PMID: 31714900 PMCID: PMC7269575 DOI: 10.1172/jci130988] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
Cortical hyperexcitability and mislocalization of the RNA-binding protein TDP43 are highly conserved features in amyotrophic lateral sclerosis (ALS). Nevertheless, the relationship between these phenomena remains poorly defined. Here, we showed that hyperexcitability recapitulates TDP43 pathology by upregulating shortened TDP43 (sTDP43) splice isoforms. These truncated isoforms accumulated in the cytoplasm and formed insoluble inclusions that sequestered full-length TDP43 via preserved N-terminal interactions. Consistent with these findings, sTDP43 overexpression was toxic to mammalian neurons, suggesting neurodegeneration arising from complementary gain- and loss-of-function mechanisms. In humans and mice, sTDP43 transcripts were enriched in vulnerable motor neurons, and we observed a striking accumulation of sTDP43 within neurons and glia of ALS patients. Collectively, these studies uncover a pathogenic role for alternative TDP43 isoforms in ALS, and implicate sTDP43 as a key contributor to the susceptibility of motor neurons in this disorder.
Collapse
Affiliation(s)
| | | | | | - Jonathon P. McBride
- Department of Neurology
- Cellular and Molecular Biology Program, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicolás B. Gómez
- Department of Neurology
- Cellular and Molecular Biology Program, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Ziqiang Lin
- Department of Basic and Clinical Neuroscience and
| | - Carmen Moreno Gonzalez
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
| | - Andrea Serio
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
| | | | - Sami J. Barmada
- Department of Neurology
- Neuroscience Graduate Program, and
- Cellular and Molecular Biology Program, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
26
|
Zhao C, Devlin AC, Chouhan AK, Selvaraj BT, Stavrou M, Burr K, Brivio V, He X, Mehta AR, Story D, Shaw CE, Dando O, Hardingham GE, Miles GB, Chandran S. Mutant C9orf72 human iPSC-derived astrocytes cause non-cell autonomous motor neuron pathophysiology. Glia 2019; 68:1046-1064. [PMID: 31841614 PMCID: PMC7078830 DOI: 10.1002/glia.23761] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022]
Abstract
Mutations in C9orf72 are the most common genetic cause of amyotrophic lateral sclerosis (ALS). Accumulating evidence implicates astrocytes as important non‐cell autonomous contributors to ALS pathogenesis, although the potential deleterious effects of astrocytes on the function of motor neurons remains to be determined in a completely humanized model of C9orf72‐mediated ALS. Here, we use a human iPSC‐based model to study the cell autonomous and non‐autonomous consequences of mutant C9orf72 expression by astrocytes. We show that mutant astrocytes both recapitulate key aspects of C9orf72‐related ALS pathology and, upon co‐culture, cause motor neurons to undergo a progressive loss of action potential output due to decreases in the magnitude of voltage‐activated Na+ and K+ currents. Importantly, CRISPR/Cas‐9 mediated excision of the C9orf72 repeat expansion reverses these phenotypes, confirming that the C9orf72 mutation is responsible for both cell‐autonomous astrocyte pathology and non‐cell autonomous motor neuron pathophysiology.
Collapse
Affiliation(s)
- Chen Zhao
- Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh, UK.,Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Anna-Claire Devlin
- Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh, UK.,School of Psychology and Neuroscience, University of St Andrews, St Andrews, Fife, UK
| | - Amit K Chouhan
- Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh, UK.,School of Psychology and Neuroscience, University of St Andrews, St Andrews, Fife, UK
| | - Bhuvaneish T Selvaraj
- Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh, UK.,Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.,Dementia Research Institute at the University of Edinburgh, Edinburgh, UK
| | - Maria Stavrou
- Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh, UK.,Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.,Dementia Research Institute at the University of Edinburgh, Edinburgh, UK
| | - Karen Burr
- Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh, UK.,Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.,Dementia Research Institute at the University of Edinburgh, Edinburgh, UK
| | - Veronica Brivio
- Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh, UK.,School of Psychology and Neuroscience, University of St Andrews, St Andrews, Fife, UK
| | - Xin He
- Dementia Research Institute at the University of Edinburgh, Edinburgh, UK.,Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Arpan R Mehta
- Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh, UK.,Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.,Dementia Research Institute at the University of Edinburgh, Edinburgh, UK
| | - David Story
- Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh, UK.,Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.,Dementia Research Institute at the University of Edinburgh, Edinburgh, UK
| | - Christopher E Shaw
- MRC Centre for Neurodegeneration Research, King's College London, Institute of Psychiatry, London, UK.,Dementia Research Institute at Kings College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Owen Dando
- Dementia Research Institute at the University of Edinburgh, Edinburgh, UK.,Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Giles E Hardingham
- Dementia Research Institute at the University of Edinburgh, Edinburgh, UK.,Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Gareth B Miles
- Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh, UK.,School of Psychology and Neuroscience, University of St Andrews, St Andrews, Fife, UK
| | - Siddharthan Chandran
- Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh, UK.,Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.,Dementia Research Institute at the University of Edinburgh, Edinburgh, UK.,Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
| |
Collapse
|
27
|
Marchand‐Pauvert V, Peyre I, Lackmy‐Vallee A, Querin G, Bede P, Lacomblez L, Debs R, Pradat P. Absence of hyperexcitability of spinal motoneurons in patients with amyotrophic lateral sclerosis. J Physiol 2019; 597:5445-5467. [DOI: 10.1113/jp278117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/06/2019] [Indexed: 12/18/2022] Open
Affiliation(s)
| | - Iseline Peyre
- Sorbonne Université Inserm, CNRS, Laboratoire d'Imagerie Biomédicale LIB Paris France
| | | | - Giorgia Querin
- Sorbonne Université Inserm, CNRS, Laboratoire d'Imagerie Biomédicale LIB Paris France
- Neurologie, AP‐HP Hôpital Pitié‐Salpêtrière Paris France
| | - Peter Bede
- Sorbonne Université Inserm, CNRS, Laboratoire d'Imagerie Biomédicale LIB Paris France
- Neurologie, AP‐HP Hôpital Pitié‐Salpêtrière Paris France
- Computational Neuroimaging Group Trinity College Dublin Dublin Ireland
| | | | - Rabab Debs
- Neurologie, AP‐HP Hôpital Pitié‐Salpêtrière Paris France
| | - Pierre‐François Pradat
- Sorbonne Université Inserm, CNRS, Laboratoire d'Imagerie Biomédicale LIB Paris France
- Neurologie, AP‐HP Hôpital Pitié‐Salpêtrière Paris France
| |
Collapse
|
28
|
Circuit-Specific Early Impairment of Proprioceptive Sensory Neurons in the SOD1 G93A Mouse Model for ALS. J Neurosci 2019; 39:8798-8815. [PMID: 31530644 DOI: 10.1523/jneurosci.1214-19.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/24/2019] [Accepted: 09/02/2019] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which motor neurons degenerate, resulting in muscle atrophy, paralysis, and fatality. Studies using mouse models of ALS indicate a protracted period of disease development with progressive motor neuron pathology, evident as early as embryonic and postnatal stages. Key missing information includes concomitant alterations in the sensorimotor circuit essential for normal development and function of the neuromuscular system. Leveraging unique brainstem circuitry, we show in vitro evidence for reflex circuit-specific postnatal abnormalities in the jaw proprioceptive sensory neurons in the well-studied SOD1G93A mouse. These include impaired and arrhythmic action potential burst discharge associated with a deficit in Nav1.6 Na+ channels. However, the mechanoreceptive and nociceptive trigeminal ganglion neurons and the visual sensory retinal ganglion neurons were resistant to excitability changes in age-matched SOD1G93A mice. Computational modeling of the observed disruption in sensory patterns predicted asynchronous self-sustained motor neuron discharge suggestive of imminent reflexive defects, such as muscle fasciculations in ALS. These results demonstrate a novel reflex circuit-specific proprioceptive sensory abnormality in ALS.SIGNIFICANCE STATEMENT Neurodegenerative diseases have prolonged periods of disease development and progression. Identifying early markers of vulnerability can therefore help devise better diagnostic and treatment strategies. In this study, we examined postnatal abnormalities in the electrical excitability of muscle spindle afferent proprioceptive neurons in the well-studied SOD1G93A mouse model for neurodegenerative motor neuron disease, amyotrophic lateral sclerosis. Our findings suggest that these proprioceptive sensory neurons are exclusively afflicted early in the disease process relative to sensory neurons of other modalities. Moreover, they presented Nav1.6 Na+ channel deficiency, which contributed to arrhythmic burst discharge. Such sensory arrhythmia could initiate reflexive defects, such as muscle fasciculations in amyotrophic lateral sclerosis, as suggested by our computational model.
Collapse
|
29
|
Sp1-regulated expression of p11 contributes to motor neuron degeneration by membrane insertion of TASK1. Nat Commun 2019; 10:3784. [PMID: 31439839 PMCID: PMC6706379 DOI: 10.1038/s41467-019-11637-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 07/25/2019] [Indexed: 01/18/2023] Open
Abstract
Disruption in membrane excitability contributes to malfunction and differential vulnerability of specific neuronal subpopulations in a number of neurological diseases. The adaptor protein p11, and background potassium channel TASK1, have overlapping distributions in the CNS. Here, we report that the transcription factor Sp1 controls p11 expression, which impacts on excitability by hampering functional expression of TASK1. In the SOD1-G93A mouse model of ALS, Sp1-p11-TASK1 dysregulation contributes to increased excitability and vulnerability of motor neurons. Interference with either Sp1 or p11 is neuroprotective, delaying neuron loss and prolonging lifespan in this model. Nitrosative stress, a potential factor in human neurodegeneration, stimulated Sp1 expression and human p11 promoter activity, at least in part, through a Sp1-binding site. Disruption of Sp1 or p11 also has neuroprotective effects in a traumatic model of motor neuron degeneration. Together our work suggests the Sp1-p11-TASK1 pathway is a potential target for treatment of degeneration of motor neurons. The adaptor protein p11 and K+ channel TASK1 have overlapping distributions in the CNS. Here, the authors demonstrate that the transcription factor Sp1 regulates p11 levels, which in turn affects intrinsic membrane properties and can contribute to degeneration of motor neurons in disease and injury models.
Collapse
|
30
|
Quinlan KA, Reedich EJ, Arnold WD, Puritz AC, Cavarsan CF, Heckman CJ, DiDonato CJ. Hyperexcitability precedes motoneuron loss in the Smn2B/- mouse model of spinal muscular atrophy. J Neurophysiol 2019; 122:1297-1311. [PMID: 31365319 DOI: 10.1152/jn.00652.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Spinal motoneuron dysfunction and loss are pathological hallmarks of the neuromuscular disease spinal muscular atrophy (SMA). Changes in motoneuron physiological function precede cell death, but how these alterations vary with disease severity and motoneuron maturational state is unknown. To address this question, we assessed the electrophysiology and morphology of spinal motoneurons of presymptomatic Smn2B/- mice older than 1 wk of age and tracked the timing of motor unit loss in this model using motor unit number estimation (MUNE). In contrast to other commonly used SMA mouse models, Smn2B/- mice exhibit more typical postnatal development until postnatal day (P)11 or 12 and have longer survival (~3 wk of age). We demonstrate that Smn2B/- motoneuron hyperexcitability, marked by hyperpolarization of the threshold voltage for action potential firing, was present at P9-10 and preceded the loss of motor units. Using MUNE studies, we determined that motor unit loss in this mouse model occurred 2 wk after birth. Smn2B/- motoneurons were also larger in size, which may reflect compensatory changes taking place during postnatal development. This work suggests that motoneuron hyperexcitability, marked by a reduced threshold for action potential firing, is a pathological change preceding motoneuron loss that is common to multiple models of severe SMA with different motoneuron maturational states. Our results indicate voltage-gated sodium channel activity may be altered in the disease process.NEW & NOTEWORTHY Changes in spinal motoneuron physiologic function precede cell death in spinal muscular atrophy (SMA), but how they vary with maturational state and disease severity remains unknown. This study characterized motoneuron and neuromuscular electrophysiology from the Smn2B/- model of SMA. Motoneurons were hyperexcitable at postnatal day (P)9-10, and specific electrophysiological changes in Smn2B/- motoneurons preceded functional motor unit loss at P14, as determined by motor unit number estimation studies.
Collapse
Affiliation(s)
- K A Quinlan
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island.,George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island.,Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - E J Reedich
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Human Molecular Genetics Program, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital, Chicago, Illinois
| | - W D Arnold
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Department of Physical Medicine and Rehabilitation, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - A C Puritz
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - C F Cavarsan
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island.,George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island
| | - C J Heckman
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - C J DiDonato
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Human Molecular Genetics Program, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital, Chicago, Illinois
| |
Collapse
|
31
|
Saba L, Viscomi MT, Martini A, Caioli S, Mercuri NB, Guatteo E, Zona C. Modified age-dependent expression of NaV1.6 in an ALS model correlates with motor cortex excitability alterations. Neurobiol Dis 2019; 130:104532. [PMID: 31302244 DOI: 10.1016/j.nbd.2019.104532] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/28/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
Cortical hyperexcitability is an early and intrinsic feature of Amyotrophic Lateral Sclerosis (ALS), but the mechanisms underlying this critical neuronal dysfunction are poorly understood. Recently, we have demonstrated that layer V pyramidal neurons (PNs) in the primary motor cortex (M1) of one-month old (P30) G93A ALS mice display an early hyperexcitability status compared to Control mice. In order to investigate the time-dependent evolution of the cortical excitability in the G93A ALS model, here we have performed an electrophysiological and immunohistochemical study at three different mouse ages. M1 PNs from 14-days old (P14) G93A mice have shown no excitability alterations, while M1 PNs from 3-months old (P90) G93A mice have shown a hypoexcitability status, compared to Control mice. These age-dependent cortical excitability dysfunctions correlate with a similar time-dependent trend of the persistent sodium current (INaP) amplitude alterations, suggesting that INaP may play a crucial role in the G93A cortical excitability aberrations. Specifically, immunohistochemistry experiments have indicated that the expression level of the NaV1.6 channel, one of the voltage-gated Na+ channels mainly distributed within the central nervous system, varies in G93A primary motor cortex during disease progression, according to the excitability and INaP alterations, but not in other cortical areas. Microfluorometry experiments, combined with electrophysiological recordings, have verified that P30 G93A PNs hyperexcitability is associated to a greater accumulation of intracellular calcium ([Ca2+]i) compared to Control PNs, and that this difference is still present when G93A and Control PNs fire action potentials at the same frequency. These results suggest that [Ca2+]i de-regulation in G93A PNs may contribute to neuronal demise and that the NaV1.6 channels could be a potential therapeutic target to ameliorate ALS disease progression.
Collapse
Affiliation(s)
- Luana Saba
- Department of Systems Medicine, University of Rome "Tor Vergata" via Montpellier 1, Rome 00133, Italy
| | - Maria Teresa Viscomi
- Università Cattolica del Sacro Cuore, Istituto di Istologia ed Embriologia, Fondazione Policlinico Universitario A. Gemelli, Largo F. Vito 1, Rome 00168, Italy
| | - Alessandro Martini
- IRCCS Fondazione Santa Lucia, via del Fosso di Fiorano 64, Rome 00143, Italy
| | - Silvia Caioli
- IRCCS Fondazione Santa Lucia, via del Fosso di Fiorano 64, Rome 00143, Italy
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome "Tor Vergata" via Montpellier 1, Rome 00133, Italy; IRCCS Fondazione Santa Lucia, via del Fosso di Fiorano 64, Rome 00143, Italy
| | - Ezia Guatteo
- IRCCS Fondazione Santa Lucia, via del Fosso di Fiorano 64, Rome 00143, Italy; Department of Motor Science and Wellness, University of Naples 'Parthenope', Via Medina 40, Naples 80133, Italy
| | - Cristina Zona
- Department of Systems Medicine, University of Rome "Tor Vergata" via Montpellier 1, Rome 00133, Italy; IRCCS Fondazione Santa Lucia, via del Fosso di Fiorano 64, Rome 00143, Italy.
| |
Collapse
|
32
|
Petel Légaré V, Harji ZA, Rampal CJ, Allard-Chamard X, Rodríguez EC, Armstrong GAB. Augmentation of spinal cord glutamatergic synaptic currents in zebrafish primary motoneurons expressing mutant human TARDBP (TDP-43). Sci Rep 2019; 9:9122. [PMID: 31235725 PMCID: PMC6591224 DOI: 10.1038/s41598-019-45530-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/06/2019] [Indexed: 12/12/2022] Open
Abstract
Though there is compelling evidence that de-innervation of neuromuscular junctions (NMJ) occurs early in amyotrophic lateral sclerosis (ALS), defects arising at synapses in the spinal cord remain incompletely understood. To investigate spinal cord synaptic dysfunction, we took advantage of a zebrafish larval model and expressed either wild type human TARDBP (wtTARDBP) or the ALS-causing G348C variant (mutTARDBP). The larval zebrafish is ideally suited to examine synaptic connectivity between descending populations of neurons and spinal cord motoneurons as a fully intact spinal cord is preserved during experimentation. Here we provide evidence that the tail-beat motor pattern is reduced in both frequency and duration in larvae expressing mutTARDBP. In addition, we report that motor-related synaptic depolarizations in primary motoneurons of the spinal cord are shorter in duration and fewer action potentials are evoked in larvae expressing mutTARDBP. To more thoroughly examine spinal cord synaptic dysfunction in our ALS model, we isolated AMPA/kainate-mediated glutamatergic miniature excitatory post-synaptic currents in primary motoneurons and found that in addition to displaying a larger amplitude, the frequency of quantal events was higher in larvae expressing mutTARDBP when compared to larvae expressing wtTARDBP. In a final series of experiments, we optogenetically drove neuronal activity in the hindbrain and spinal cord population of descending ipsilateral glutamatergic interneurons (expressing Chx10) using the Gal4-UAS system and found that larvae expressing mutTARDBP displayed abnormal tail-beat patterns in response to optogenetic stimuli and augmented synaptic connectivity with motoneurons. These findings indicate that expression of mutTARDBP results in functionally altered glutamatergic synapses in the spinal cord.
Collapse
Affiliation(s)
- Virginie Petel Légaré
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Canada
| | - Ziyaan A Harji
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Canada
| | - Christian J Rampal
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Canada
| | - Xavier Allard-Chamard
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Canada
| | - Esteban C Rodríguez
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Canada
| | - Gary A B Armstrong
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Canada.
| |
Collapse
|
33
|
Jiang T, Handley E, Brizuela M, Dawkins E, Lewis KEA, Clark RM, Dickson TC, Blizzard CA. Amyotrophic lateral sclerosis mutant TDP-43 may cause synaptic dysfunction through altered dendritic spine function. Dis Model Mech 2019; 12:dmm.038109. [PMID: 31036551 PMCID: PMC6550035 DOI: 10.1242/dmm.038109] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/12/2019] [Indexed: 12/12/2022] Open
Abstract
Altered cortical excitability and synapse dysfunction are early pathogenic events in amyotrophic lateral sclerosis (ALS) patients and animal models. Recent studies propose an important role for TAR DNA-binding protein 43 (TDP-43), the mislocalization and aggregation of which are key pathological features of ALS. However, the relationship between ALS-linked TDP-43 mutations, excitability and synaptic function is not fully understood. Here, we investigate the role of ALS-linked mutant TDP-43 in synapse formation by examining the morphological, immunocytochemical and excitability profile of transgenic mouse primary cortical pyramidal neurons that over-express human TDP-43A315T. In TDP-43A315T cortical neurons, dendritic spine density was significantly reduced compared to wild-type controls. TDP-43A315T over-expression increased the total levels of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropinionic acid (AMPA) glutamate receptor subunit GluR1, yet the localization of GluR1 to the dendritic spine was reduced. These postsynaptic changes were coupled with a decrease in the amount of the presynaptic marker synaptophysin that colocalized with dendritic spines. Interestingly, action potential generation was reduced in TDP-43A315T pyramidal neurons. This work reveals a crucial effect of the over-expression mutation TDP-43A315T on the formation of synaptic structures and the recruitment of GluR1 to the synaptic membrane. This pathogenic effect may be mediated by cytoplasmic mislocalization of TDP-43A315T. Loss of synaptic GluR1, and reduced excitability within pyramidal neurons, implicates hypoexcitability and attenuated synaptic function in the pathogenic decline of neuronal function in TDP-43-associated ALS. Further studies into the mechanisms underlying AMPA receptor-mediated excitability changes within the ALS cortical circuitry may yield novel therapeutic targets for treatment of this devastating disease. Summary: Loss of synaptic GluR1, and reduced excitability within pyramidal neurons, implicates hypoexcitability and attenuated synaptic function in the pathogenic decline of neuronal function in TDP-43-associated ALS.
Collapse
Affiliation(s)
- Tongcui Jiang
- Menzies Institute for Medical Research, University of Tasmania, Medical Sciences Precinct, 17 Liverpool Street, Hobart, TAS 7000, Australia
| | - Emily Handley
- Menzies Institute for Medical Research, University of Tasmania, Medical Sciences Precinct, 17 Liverpool Street, Hobart, TAS 7000, Australia
| | - Mariana Brizuela
- Menzies Institute for Medical Research, University of Tasmania, Medical Sciences Precinct, 17 Liverpool Street, Hobart, TAS 7000, Australia
| | - Edgar Dawkins
- Menzies Institute for Medical Research, University of Tasmania, Medical Sciences Precinct, 17 Liverpool Street, Hobart, TAS 7000, Australia
| | - Katherine E A Lewis
- Menzies Institute for Medical Research, University of Tasmania, Medical Sciences Precinct, 17 Liverpool Street, Hobart, TAS 7000, Australia
| | - Rosemary M Clark
- Menzies Institute for Medical Research, University of Tasmania, Medical Sciences Precinct, 17 Liverpool Street, Hobart, TAS 7000, Australia
| | - Tracey C Dickson
- Menzies Institute for Medical Research, University of Tasmania, Medical Sciences Precinct, 17 Liverpool Street, Hobart, TAS 7000, Australia
| | - Catherine A Blizzard
- Menzies Institute for Medical Research, University of Tasmania, Medical Sciences Precinct, 17 Liverpool Street, Hobart, TAS 7000, Australia
| |
Collapse
|
34
|
Henstridge CM, Tzioras M, Paolicelli RC. Glial Contribution to Excitatory and Inhibitory Synapse Loss in Neurodegeneration. Front Cell Neurosci 2019; 13:63. [PMID: 30863284 PMCID: PMC6399113 DOI: 10.3389/fncel.2019.00063] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/08/2019] [Indexed: 12/12/2022] Open
Abstract
Synapse loss is an early feature shared by many neurodegenerative diseases, and it represents the major correlate of cognitive impairment. Recent studies reveal that microglia and astrocytes play a major role in synapse elimination, contributing to network dysfunction associated with neurodegeneration. Excitatory and inhibitory activity can be affected by glia-mediated synapse loss, resulting in imbalanced synaptic transmission and subsequent synaptic dysfunction. Here, we review the recent literature on the contribution of glia to excitatory/inhibitory imbalance, in the context of the most common neurodegenerative disorders. A better understanding of the mechanisms underlying pathological synapse loss will be instrumental to design targeted therapeutic interventions, taking in account the emerging roles of microglia and astrocytes in synapse remodeling.
Collapse
Affiliation(s)
- Christopher M Henstridge
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom.,Dementia Research Institute UK, The University of Edinburgh, Edinburgh, United Kingdom
| | - Makis Tzioras
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom.,Dementia Research Institute UK, The University of Edinburgh, Edinburgh, United Kingdom
| | - Rosa C Paolicelli
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
35
|
Nana AL, Sidhu M, Gaus SE, Hwang JHL, Li L, Park Y, Kim EJ, Pasquini L, Allen IE, Rankin KP, Toller G, Kramer JH, Geschwind DH, Coppola G, Huang EJ, Grinberg LT, Miller BL, Seeley WW. Neurons selectively targeted in frontotemporal dementia reveal early stage TDP-43 pathobiology. Acta Neuropathol 2019; 137:27-46. [PMID: 30511086 PMCID: PMC6339592 DOI: 10.1007/s00401-018-1942-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 12/26/2022]
Abstract
TAR DNA-binding protein 43 (TDP-43) aggregation is the most common pathological hallmark in frontotemporal dementia (FTD) and characterizes nearly all patients with motor neuron disease (MND). The earliest stages of TDP-43 pathobiology are not well-characterized, and whether neurodegeneration results from TDP-43 loss-of-function or aggregation remains unclear. In the behavioral variant of FTD (bvFTD), patients undergo selective dropout of von Economo neurons (VENs) and fork cells within the frontoinsular (FI) and anterior cingulate cortices. Here, we examined TDP-43 pathobiology within these vulnerable neurons in the FI across a clinical spectrum including 17 patients with sporadic bvFTD, MND, or both. In an exploratory analysis based on our initial observations, we further assessed ten patients with C9orf72-associated bvFTD/MND. VENs and fork cells showed early, disproportionate TDP-43 aggregation that correlated with anatomical and clinical severity, including loss of emotional empathy. The presence of a TDP-43 inclusion was associated with striking nuclear and somatodendritic atrophy. An intriguing minority of neurons lacked detectable nuclear TDP-43 despite the apparent absence of a cytoplasmic TDP-43 inclusion. These cells showed neuronal atrophy comparable to inclusion-bearing neurons, suggesting that the loss of nuclear TDP-43 function promotes neurodegeneration, even when TDP-43 aggregation is inconspicuous or absent.
Collapse
Affiliation(s)
- Alissa L Nana
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Manu Sidhu
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Stephanie E Gaus
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Ji-Hye L Hwang
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Libo Li
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychopharmacology, Qiqihar Medical University, Qiqihar, China
| | - Youngsoon Park
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Eun-Joo Kim
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Lorenzo Pasquini
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Isabel E Allen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Katherine P Rankin
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Gianina Toller
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Joel H Kramer
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel H Geschwind
- Neurogenetics Program, Department of Neurology and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Giovanni Coppola
- Neurogenetics Program, Department of Neurology and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Eric J Huang
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Lea T Grinberg
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce L Miller
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - William W Seeley
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
36
|
Driven to decay: Excitability and synaptic abnormalities in amyotrophic lateral sclerosis. Brain Res Bull 2018; 140:318-333. [PMID: 29870780 DOI: 10.1016/j.brainresbull.2018.05.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/26/2018] [Accepted: 05/31/2018] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron (MN) disease and is clinically characterised by the death of corticospinal motor neurons (CSMNs), spinal and brainstem MNs and the degeneration of the corticospinal tract. Degeneration of CSMNs and MNs leads inexorably to muscle wastage and weakness, progressing to eventual death within 3-5 years of diagnosis. The CSMNs, located within layer V of the primary motor cortex, project axons constituting the corticospinal tract, forming synaptic connections with brainstem and spinal cord interneurons and MNs. Clinical ALS may be divided into familial (∼10% of cases) or sporadic (∼90% of cases), based on apparent random incidence. The emergence of transgenic murine models, expressing different ALS-associated mutations has accelerated our understanding of ALS pathogenesis, although precise mechanisms remain elusive. Multiple avenues of investigation suggest that cortical electrical abnormalities have pre-eminence in the pathophysiology of ALS. In addition, glutamate-mediated functional and structural alterations in both CSMNs and MNs are present in both sporadic and familial forms of ALS. This review aims to promulgate debate in the field with regard to the common aetiology of sporadic and familial ALS. A specific focus on a nexus point in ALS pathogenesis, namely, the synaptic and intrinsic hyperexcitability of CSMNs and MNs and alterations to their structure are comprehensively detailed. The association of extramotor dysfunction with neuronal structural/functional alterations will be discussed. Finally, the implications of the latest research on the dying-forward and dying-back controversy are considered.
Collapse
|
37
|
Cerebrospinal Fluid from Patients with Sporadic Amyotrophic Lateral Sclerosis Induces Degeneration of Motor Neurons Derived from Human Embryonic Stem Cells. Mol Neurobiol 2018; 56:1014-1034. [PMID: 29858777 DOI: 10.1007/s12035-018-1149-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 05/23/2018] [Indexed: 12/15/2022]
Abstract
Disease modeling has become challenging in the context of amyotrophic lateral sclerosis (ALS), as obtaining viable spinal motor neurons from postmortem patient tissue is an unlikely possibility. Limitations in the animal models due to their phylogenetic distance from human species hamper the success of translating possible findings into therapeutic options. Accordingly, there is a need for developing humanized models as a lead towards identifying successful therapeutic possibilities. In this study, human embryonic stem cells-BJNHem20-were differentiated into motor neurons expressing HB9, Islet1, and choline acetyl transferase using retinoic acid and purmorphamine. These motor neurons discharged spontaneous action potentials with two different frequencies (< 5 and > 5 Hz), and majority of them were principal neurons firing with < 5 Hz. Exposure to cerebrospinal fluid from ALS patients for 48 h induced several degenerative changes in the motor neurons as follows: cytoplasmic changes such as beading of neurites and vacuolation; morphological alterations, viz., dilation and vacuolation of mitochondria, curled and closed Golgi architecture, dilated endoplasmic reticulum, and chromatin condensation in the nucleus; lowered activity of different mitochondrial complex enzymes; reduced expression of brain-derived neurotrophic factor; up-regulated neurofilament phosphorylation and hyperexcitability represented by increased number of spikes. All these changes along with the enhanced expression of pro-apoptotic proteins-Bax and caspase 9-culminated in the death of motor neurons.
Collapse
|
38
|
Riehm JJ, Wang L, Ghadge G, Teng M, Correa AM, Marks JD, Roos RP, Allen MJ. Poloxamer 188 decreases membrane toxicity of mutant SOD1 and ameliorates pathology observed in SOD1 mouse model for ALS. Neurobiol Dis 2018; 115:115-126. [PMID: 29627580 DOI: 10.1016/j.nbd.2018.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/06/2018] [Accepted: 03/28/2018] [Indexed: 01/28/2023] Open
Abstract
Here we report a gain in function for mutant (mt) superoxide dismutase I (SOD1), a cause of familial amyotrophic lateral sclerosis (FALS), wherein small soluble oligomers of mtSOD1 acquire a membrane toxicity. Phosphatidylglycerol (PG) lipid domains are selectively targeted, which could result in membrane damage or "toxic channels" becoming active in the bilayer. This PG-selective SOD1-mediated membrane toxicity is largely reversible in vitro by a widely-available FDA-approved surfactant and membrane-stabilizer P188. Treatment of G93ASOD1 transgenic mice with P188 significantly delayed symptoms onset, extended survival and decreased motoneuron death. The use of P188 or an analogue, which targets mtSOD1 misfolding-induced membrane toxicity, may provide a new direction for ALS treatment.
Collapse
Affiliation(s)
- Jacob J Riehm
- Department of Medicine, Section of Pulmonary Critical Care, The University of Chicago, Chicago, IL, USA
| | - Lijun Wang
- Department of Neurology, The University of Chicago, Chicago, IL, USA
| | - Ghanashyam Ghadge
- Department of Neurology, The University of Chicago, Chicago, IL, USA
| | - Michael Teng
- Department of Medicine, Section of Pulmonary Critical Care, The University of Chicago, Chicago, IL, USA
| | - Ana M Correa
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Jeremy D Marks
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Raymond P Roos
- Department of Neurology, The University of Chicago, Chicago, IL, USA.
| | - Michael J Allen
- Department of Medicine, Section of Pulmonary Critical Care, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
39
|
Martínez-Silva MDL, Imhoff-Manuel RD, Sharma A, Heckman CJ, Shneider NA, Roselli F, Zytnicki D, Manuel M. Hypoexcitability precedes denervation in the large fast-contracting motor units in two unrelated mouse models of ALS. eLife 2018; 7:30955. [PMID: 29580378 PMCID: PMC5922970 DOI: 10.7554/elife.30955] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 03/14/2018] [Indexed: 12/17/2022] Open
Abstract
Hyperexcitability has been suggested to contribute to motoneuron degeneration in amyotrophic lateral sclerosis (ALS). If this is so, and given that the physiological type of a motor unit determines the relative susceptibility of its motoneuron in ALS, then one would expect the most vulnerable motoneurons to display the strongest hyperexcitability prior to their degeneration, whereas the less vulnerable should display a moderate hyperexcitability, if any. We tested this hypothesis in vivo in two unrelated ALS mouse models by correlating the electrical properties of motoneurons with their physiological types, identified based on their motor unit contractile properties. We found that, far from being hyperexcitable, the most vulnerable motoneurons become unable to fire repetitively despite the fact that their neuromuscular junctions were still functional. Disease markers confirm that this loss of function is an early sign of degeneration. Our results indicate that intrinsic hyperexcitability is unlikely to be the cause of motoneuron degeneration. Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, is a fatal disorder of the nervous system. Early symptoms include muscle weakness, unsteadiness and slurred speech. These symptoms arise because the neurons that control muscles – the motoneurons – lose their ability to make the muscles contract. Eventually, the muscles become paralyzed, with more and more muscles affected over time. Most patients die within a few years of diagnosis when the disease destroys the muscles that control breathing. Muscles are made up of muscle fibers. Each motoneuron controls a bundle of muscle fibers, and the motoneuron and its muscle fibers together make up a motor unit. A single muscle contains hundreds of motor units. These consist of several different types, which differ in how many muscle fibers they contain, how fast those muscle fibers can contract, and how fatigable the muscle fibers are. In ALS, motoneurons become detached from their muscle fibers, causing motor units to break down. But what triggers this process? One long-standing idea is that motoneurons begin to respond excessively to commands from the brain and spinal cord. In other words, they become hyperexcitable, which ultimately leads to their death. But some more recent studies of ALS suggest the opposite, namely that motoneurons become less active, or hypoexcitable. To distinguish between these possibilities, Martinez-Silva et al. took advantage of the fact that different types of motor unit break down at different rates in ALS. Large motor units containing fast-contracting muscle fibers break down before smaller motor units. By measuring the activity of motor units in two mouse models of ALS, Martinez-Silva et al. showed that large motoneurons are hypoexcitable. In other words, the motoneurons that are most vulnerable to ALS respond too little to commands from the nervous system, rather than too much. Studies of specific proteins inside the cells confirmed that hypoexcitable motoneurons are further along in the disease process than other motoneurons. Hypoexcitability is thus a key player in the ALS disease process. Developing drugs to target this hypoexcitability may be a promising strategy for the future of this condition.
Collapse
Affiliation(s)
| | - Rebecca D Imhoff-Manuel
- Centre de Neurophysique, Physiologie et Pathologie, CNRS, Université Paris Descartes, Paris, France
| | - Aarti Sharma
- Center for Motor Neuron Biology and Disease, Department of Neurology, Columbia University, New York, United States
| | - C J Heckman
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, United States.,Department of Physical Medicine and Rehabilitation, Northwestern University, Feinberg School of Medicine, Chicago, United States.,Department of Physical Therapy and Human Movement Science, Northwestern University, Feinberg School of Medicine, Chicago, United States
| | - Neil A Shneider
- Center for Motor Neuron Biology and Disease, Department of Neurology, Columbia University, New York, United States
| | | | - Daniel Zytnicki
- Centre de Neurophysique, Physiologie et Pathologie, CNRS, Université Paris Descartes, Paris, France
| | - Marin Manuel
- Centre de Neurophysique, Physiologie et Pathologie, CNRS, Université Paris Descartes, Paris, France.,Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, United States
| |
Collapse
|
40
|
Selvaraj BT, Livesey MR, Zhao C, Gregory JM, James OT, Cleary EM, Chouhan AK, Gane AB, Perkins EM, Dando O, Lillico SG, Lee YB, Nishimura AL, Poreci U, Thankamony S, Pray M, Vasistha NA, Magnani D, Borooah S, Burr K, Story D, McCampbell A, Shaw CE, Kind PC, Aitman TJ, Whitelaw CBA, Wilmut I, Smith C, Miles GB, Hardingham GE, Wyllie DJA, Chandran S. C9ORF72 repeat expansion causes vulnerability of motor neurons to Ca 2+-permeable AMPA receptor-mediated excitotoxicity. Nat Commun 2018; 9:347. [PMID: 29367641 PMCID: PMC5783946 DOI: 10.1038/s41467-017-02729-0] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/21/2017] [Indexed: 12/13/2022] Open
Abstract
Mutations in C9ORF72 are the most common cause of familial amyotrophic lateral sclerosis (ALS). Here, through a combination of RNA-Seq and electrophysiological studies on induced pluripotent stem cell (iPSC)-derived motor neurons (MNs), we show that increased expression of GluA1 AMPA receptor (AMPAR) subunit occurs in MNs with C9ORF72 mutations that leads to increased Ca2+-permeable AMPAR expression and results in enhanced selective MN vulnerability to excitotoxicity. These deficits are not found in iPSC-derived cortical neurons and are abolished by CRISPR/Cas9-mediated correction of the C9ORF72 repeat expansion in MNs. We also demonstrate that MN-specific dysregulation of AMPAR expression is also present in C9ORF72 patient post-mortem material. We therefore present multiple lines of evidence for the specific upregulation of GluA1 subunits in human mutant C9ORF72 MNs that could lead to a potential pathogenic excitotoxic mechanism in ALS. Repeat expansion mutation in C9ORF72 is the most common cause of familial ALS. Here, the authors generate motor neurons from cells of patients with C9ORF72 mutations, and characterize changes in gene expression in these motor neurons compared to genetically corrected lines, which suggest that glutamate receptor subunit GluA1 is dysregulated in this form of ALS.
Collapse
Affiliation(s)
- Bhuvaneish T Selvaraj
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK.,Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Matthew R Livesey
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Chen Zhao
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK.,Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Jenna M Gregory
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Owain T James
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Elaine M Cleary
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK.,Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Amit K Chouhan
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,School of Psychology and Neuroscience, University of St Andrews, St Andrews, KY16 9JP, UK
| | - Angus B Gane
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK.,Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Emma M Perkins
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Owen Dando
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK.,Centre for Brain Development and Repair, inStem, Bangalore, 560065, India
| | - Simon G Lillico
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Youn-Bok Lee
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 8AF, UK
| | - Agnes L Nishimura
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 8AF, UK
| | - Urjana Poreci
- Global Biomarker and Drug Discovery, Biogen, Cambridge, MA, 02142, USA
| | - Sai Thankamony
- Global Biomarker and Drug Discovery, Biogen, Cambridge, MA, 02142, USA
| | - Meryll Pray
- Global Biomarker and Drug Discovery, Biogen, Cambridge, MA, 02142, USA
| | - Navneet A Vasistha
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Brain Development and Repair, inStem, Bangalore, 560065, India
| | - Dario Magnani
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK.,Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Shyamanga Borooah
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Karen Burr
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK.,Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - David Story
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK.,Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | | | - Christopher E Shaw
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 8AF, UK
| | - Peter C Kind
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK.,Centre for Brain Development and Repair, inStem, Bangalore, 560065, India
| | - Timothy J Aitman
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - C Bruce A Whitelaw
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Ian Wilmut
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Colin Smith
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Gareth B Miles
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,School of Psychology and Neuroscience, University of St Andrews, St Andrews, KY16 9JP, UK
| | - Giles E Hardingham
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK.,UK DRI Institute at Edinburgh, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - David J A Wyllie
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK. .,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK. .,Centre for Brain Development and Repair, inStem, Bangalore, 560065, India.
| | - Siddharthan Chandran
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK. .,Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK. .,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK. .,Centre for Brain Development and Repair, inStem, Bangalore, 560065, India. .,UK DRI Institute at Edinburgh, University of Edinburgh, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
41
|
SOD1 Mutations Causing Familial Amyotrophic Lateral Sclerosis Induce Toxicity in Astrocytes: Evidence for Bystander Effects in a Continuum of Astrogliosis. Neurochem Res 2018; 43:166-179. [DOI: 10.1007/s11064-017-2385-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 12/18/2022]
|
42
|
Membrane cholesterol depletion in cortical neurons highlights altered NMDA receptor functionality in a mouse model of amyotrophic lateral sclerosis. Biochim Biophys Acta Mol Basis Dis 2017; 1864:509-519. [PMID: 29154925 DOI: 10.1016/j.bbadis.2017.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/16/2017] [Accepted: 11/13/2017] [Indexed: 12/25/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a chronic neurodegenerative disease affecting upper and lower motor neurons, with unknown aetiology. Lipid rafts, cholesterol enriched microdomains of the plasma membrane, have been linked to neurodegenerative disorders like ALS. The NMDA-receptor subcellular localization in lipid rafts is known to play many roles, from modulating memory strength to neurotoxicity. In this study, performed on the widely used G93A mouse model of ALS, we have shown an equal content of total membrane cholesterol in Control and G93A cortical cultures. Moreover, by electrophysiological studies, we have recorded NMDA- and AMPA-evoked currents which were not significantly different between the two neuronal populations. To study the role of membrane cholesterol on glutamate receptor functionality, we have analysed NMDA and AMPA receptors following cholesterol membrane depletion by methyl-β-cyclodextrin (MβCD). Interestingly, MβCD chronic treatment has provoked a significant reduction of NMDA-evoked currents in both cellular populations which was dose- and time-dependent but significantly higher in ALS neurons compared to Control. The different MβCD effect on NMDA-evoked currents was not due to a different membrane receptor subunit composition but seemed to cause in both neuronal populations a NMDA receptor membrane redistribution. MβCD treatment effect was receptor-specific since no alterations in the two neuronal populations were detected on AMPA receptors. These results lead us to speculate for an altered proteomic composition of lipid rafts in cortical mutated neurons and suggest the need for further studies on the lipid rafts composition and on their interaction with membrane receptors in ALS cortices.
Collapse
|
43
|
Arumugam S, Garcera A, Soler RM, Tabares L. Smn-Deficiency Increases the Intrinsic Excitability of Motoneurons. Front Cell Neurosci 2017; 11:269. [PMID: 28928636 PMCID: PMC5591959 DOI: 10.3389/fncel.2017.00269] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/21/2017] [Indexed: 12/13/2022] Open
Abstract
During development, motoneurons experience significant changes in their size and in the number and strength of connections that they receive, which requires adaptive changes in their passive and active electrical properties. Even after reaching maturity, motoneurons continue to adjust their intrinsic excitability and synaptic activity for proper functioning of the sensorimotor circuit in accordance with physiological demands. Likewise, if some elements of the circuit become dysfunctional, the system tries to compensate for the alterations to maintain appropriate function. In Spinal Muscular Atrophy (SMA), a severe motor disease, spinal motoneurons receive less excitation from glutamatergic sensory fibers and interneurons and are electrically hyperexcitable. Currently, the origin and relationship among these alterations are not completely established. In this study, we investigated whether Survival of Motor Neuron (SMN), the ubiquitous protein defective in SMA, regulates the excitability of motoneurons before and after the establishment of the synaptic contacts. To this end, we performed patch-clamp recordings in embryonic spinal motoneurons forming complex synaptic networks in primary cultures, and in differentiated NSC-34 motoneuron-like cells in the absence of synaptic contacts. Our results show that in both conditions, Smn-deficient cells displayed lower action potential threshold, greater action potential amplitudes, and larger density of voltage-dependent sodium currents than cells with normal Smn-levels. These results indicate that Smn participates in the regulation of the cell-autonomous excitability of motoneurons at an early stage of development. This finding may contribute to a better understanding of motoneuron excitability in SMA during the development of the disease.
Collapse
Affiliation(s)
- Saravanan Arumugam
- Department of Medical Physiology and Biophysics, School of Medicine University of SevilleSeville, Spain
| | - Ana Garcera
- Unitat de Senyalització Neuronal, Departament de Medicina Experimental, Universitat de Lleida-IRBLLEIDALleida, Spain
| | - Rosa M Soler
- Unitat de Senyalització Neuronal, Departament de Medicina Experimental, Universitat de Lleida-IRBLLEIDALleida, Spain
| | - Lucía Tabares
- Department of Medical Physiology and Biophysics, School of Medicine University of SevilleSeville, Spain
| |
Collapse
|
44
|
Jiang MC, Adimula A, Birch D, Heckman CJ. Hyperexcitability in synaptic and firing activities of spinal motoneurons in an adult mouse model of amyotrophic lateral sclerosis. Neuroscience 2017; 362:33-46. [PMID: 28844763 DOI: 10.1016/j.neuroscience.2017.08.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/14/2017] [Accepted: 08/21/2017] [Indexed: 10/19/2022]
Abstract
Hyperexcitability is hypothesized to contribute to the degeneration of spinal motoneurons (MNs) in amyotrophic lateral sclerosis (ALS). Studies, thus far, have not linked hyperexcitability to the intrinsic properties of MNs in the adult ALS mouse model with the G93A-mutated SOD1 protein (mSOD1G93A). In this study, we obtained two types of measurements: ventral root recordings to assess motor output and intracellular recordings to assess synaptic properties of individual MNs. All studies were carried out in an in vitro preparation of the sacral spinal cords of mSOD1G93A mice and their non-transgenic (NT) littermates, both in the age range of 50-90days. Ventral root recordings revealed that maximum compound action potentials (coAPs) evoked by a short-train stimulation of corresponding dorsal roots were similar between the two types of mice. Although the progressive depression of coAPs was present during the train stimulation in all recordings, the coAP depression in mSOD1G93A mice was to a lesser extent, which suggests an increased firing tendency in mSOD1G93A MNs. Intracellular recordings showed no changes in fast excitatory postsynaptic potentials (EPSPs) in mSOD1G93A MNs. However, recording did show that oscillating EPSPs (oEPSPs) were induced by poly-EPSPs at a higher frequency and by less-intense electrical stimulation in mSOD1G93A MNs. These oEPSPs were dependent upon the activities of spinal network and N-methyl-d-aspartate receptors (NMDARs), and were subjected to riluzole modulation. Taken together, these findings revealed abnormal electrophysiology in mSOD1G93A MNs that could underlie ALS excitotoxicity.
Collapse
Affiliation(s)
- Mingchen C Jiang
- Department of Physiology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA.
| | - Adesoji Adimula
- Department of Biomedical Engineering, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Derin Birch
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Charles J Heckman
- Department of Physiology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA; Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA; Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| |
Collapse
|
45
|
Changes in the Excitability of Neocortical Neurons in a Mouse Model of Amyotrophic Lateral Sclerosis Are Not Specific to Corticospinal Neurons and Are Modulated by Advancing Disease. J Neurosci 2017; 37:9037-9053. [PMID: 28821643 PMCID: PMC5597984 DOI: 10.1523/jneurosci.0811-17.2017] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/22/2017] [Accepted: 08/06/2017] [Indexed: 12/13/2022] Open
Abstract
Cell type-specific changes in neuronal excitability have been proposed to contribute to the selective degeneration of corticospinal neurons in amyotrophic lateral sclerosis (ALS) and to neocortical hyperexcitability, a prominent feature of both inherited and sporadic variants of the disease, but the mechanisms underlying selective loss of specific cell types in ALS are not known. We analyzed the physiological properties of distinct classes of cortical neurons in the motor cortex of hSOD1G93A mice of both sexes and found that they all exhibit increases in intrinsic excitability that depend on disease stage. Targeted recordings and in vivo calcium imaging further revealed that neurons adapt their functional properties to normalize cortical excitability as the disease progresses. Although different neuron classes all exhibited increases in intrinsic excitability, transcriptional profiling indicated that the molecular mechanisms underlying these changes are cell type specific. The increases in excitability in both excitatory and inhibitory cortical neurons show that selective dysfunction of neuronal cell types cannot account for the specific vulnerability of corticospinal motor neurons in ALS. Furthermore, the stage-dependent alterations in neuronal function highlight the ability of cortical circuits to adapt as disease progresses. These findings show that both disease stage and cell type must be considered when developing therapeutic strategies for treating ALS.SIGNIFICANCE STATEMENT It is not known why certain classes of neurons preferentially die in different neurodegenerative diseases. It has been proposed that the enhanced excitability of affected neurons is a major contributor to their selective loss. We show using a mouse model of amyotrophic lateral sclerosis (ALS), a disease in which corticospinal neurons exhibit selective vulnerability, that changes in excitability are not restricted to this neuronal class and that excitability does not increase monotonically with disease progression. Moreover, although all neuronal cell types tested exhibited abnormal functional properties, analysis of their gene expression demonstrated cell type-specific responses to the ALS-causing mutation. These findings suggest that therapies for ALS may need to be tailored for different cell types and stages of disease.
Collapse
|
46
|
Opposite Synaptic Alterations at the Neuromuscular Junction in an ALS Mouse Model: When Motor Units Matter. J Neurosci 2017; 37:8901-8918. [PMID: 28821658 DOI: 10.1523/jneurosci.3090-16.2017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 06/29/2017] [Accepted: 08/02/2017] [Indexed: 12/13/2022] Open
Abstract
Denervation of the neuromuscular junction (NMJ) precedes the loss of motor neurons (MNs) in amyotrophic lateral sclerosis (ALS). ALS is characterized by a motor unit (MU)-dependent vulnerability where MNs with fast-fatigable (FF) characteristics are lost first, followed by fast fatigue-resistant (FR) and slow (S) MNs. However, changes in NMJ properties as a function of MU types remain debated. We hypothesized that NMJ synaptic functions would be altered precociously in an MU-specific manner, before structural alterations of the NMJ. Synaptic transmission and morphological changes of NMJs have been explored in two nerve-muscle preparations of male SOD1G37R mice and their wild-type (WT) littermates: the soleus (S and FR MU); and the extensor digitorum longus (FF MU). S, FR, and FF NMJs of WT mice showed distinct synaptic properties from which we build an MU synaptic profile (MUSP) that reports MU-dependent NMJ synaptic properties. At postnatal day 180 (P180), FF and S NMJs of SOD1 already showed, respectively, lower and higher quantal content compared with WT mice, before signs of MN death and before NMJ morphological alterations. Changes persisted in both muscles until preonset (P380), while denervation was frequent in the mutant mouse. MN death was evident at this stage. Additional changes occurred at clinical disease onset (P450) for S and FR MU. As a whole, our results reveal a reversed MUSP in SOD1 mutants and highlight MU-specific synaptic changes occurring in a precise temporal sequence. Importantly, changes in synaptic properties appear to be good predictors of vulnerability to neurodegeneration.SIGNIFICANCE STATEMENT The inadequate excitability of motor neurons and their output, the neuromuscular junctions (NMJs), has been considered a key factor in the detrimental outcome of the motor function in amyotrophic lateral sclerosis. However, a conundrum persists at the NMJ whereby persistent but incoherent opposite neurotransmission changes have been reported to take place. This article untangles this conundrum by systematically analyzing the changes in synaptic properties over the course of the disease progression as a function of the motor unit type. This temporal analysis reveals that early synaptic alterations evolve with disease progression but precede NMJ neurodegeneration. These data provide a novel framework of analysis and comparison of synaptic transmission alterations in neurodegenerative disorders.
Collapse
|
47
|
Clark RM, Blizzard CA, Young KM, King AE, Dickson TC. Calretinin and Neuropeptide Y interneurons are differentially altered in the motor cortex of the SOD1 G93A mouse model of ALS. Sci Rep 2017; 7:44461. [PMID: 28294153 PMCID: PMC5353592 DOI: 10.1038/srep44461] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/08/2017] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence indicates an excitatory/inhibitory imbalance may have a critical role in the pathogenesis of amyotrophic lateral sclerosis (ALS). Impaired inhibitory circuitry is consistently reported in the motor cortex of both familial and sporadic patients, closely associated with cortical hyperexcitability and ALS onset. Inhibitory network dysfunction is presumably mediated by intra-cortical inhibitory interneurons, however, the exact cell types responsible are yet to be identified. In this study we demonstrate dynamic changes in the number of calretinin- (CR) and neuropeptide Y-expressing (NPY) interneurons in the motor cortex of the familial hSOD1G93A ALS mouse model, suggesting their potential involvement in motor neuron circuitry defects. We show that the density of NPY-populations is significantly decreased by ~17% at symptom onset (8 weeks), and by end-stage disease (20 weeks) is significantly increased by ~30%. Conversely, the density of CR-populations is progressively reduced during later symptomatic stages (~31%) to end-stage (~36%), while CR-expressing interneurons also show alteration of neurite branching patterns at symptom onset. We conclude that a differential capacity for interneurons exists in the ALS motor cortex, which may not be a static phenomenon, but involves early dynamic changes throughout disease, implicating specific inhibitory circuitry.
Collapse
Affiliation(s)
- Rosemary M Clark
- Menzies Institute for Medical Research, University of Tasmania, Hobart, 7000, Australia
| | - Catherine A Blizzard
- Menzies Institute for Medical Research, University of Tasmania, Hobart, 7000, Australia
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, 7000, Australia
| | - Anna E King
- Wicking Dementia Research &Education Centre2, University of Tasmania, Hobart, 7000, Australia
| | - Tracey C Dickson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, 7000, Australia
| |
Collapse
|
48
|
Mancuso R, Navarro X. Sigma-1 Receptor in Motoneuron Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 964:235-254. [PMID: 28315275 DOI: 10.1007/978-3-319-50174-1_16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS ) is a neurodegenerative disease affecting spinal cord and brain motoneurons , leading to paralysis and early death. Multiple etiopathogenic mechanisms appear to contribute in the development of ALS , including glutamate excitotoxicity, oxidative stress , protein misfolding, mitochondrial defects, impaired axonal transport, inflammation and glial cell alterations. The Sigma-1 receptor is highly expressed in motoneurons of the spinal cord, particularly enriched in the endoplasmic reticulum (ER) at postsynaptic cisternae of cholinergic C-terminals. Several evidences point to participation of Sigma-1R alterations in motoneuron degeneration. Thus, mutations of the transmembrane domain of the Sigma-1R have been described in familial ALS cases. Interestingly, Sigma-1R KO mice display muscle weakness and motoneuron loss. On the other hand, Sigma-1R agonists promote neuroprotection and neurite elongation through activation of protein kinase C on motoneurons in vitro and in vivo after ventral root avulsion. Remarkably, treatment of SOD1 mice, the most usual animal model of ALS , with Sigma-1R agonists resulted in significantly enhanced motoneuron function and preservation, and increased animal survival. Sigma-1R activation also reduced microglial reactivity and increased the glial expression of neurotrophic factors. Two main interconnected mechanisms seem to underlie the effects of Sigma-1R manipulation on motoneurons: modulation of neuronal excitability and regulation of calcium homeostasis. In addition, Sigma-1R also contributes to regulating protein degradation, and reducing oxidative stress. Therefore, the multi-functional nature of the Sigma-1R represents an attractive target for treating aspects of ALS and other motoneuron diseases .
Collapse
Affiliation(s)
- Renzo Mancuso
- Center for Biological Sciences, University of Southampton, Southampton General Hospital, SO16 6YD, Southampton, UK
| | - Xavier Navarro
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain.
| |
Collapse
|
49
|
Arbour D, Vande Velde C, Robitaille R. New perspectives on amyotrophic lateral sclerosis: the role of glial cells at the neuromuscular junction. J Physiol 2016; 595:647-661. [PMID: 27633977 DOI: 10.1113/jp270213] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/12/2016] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a disease leading to the death of motor neurons (MNs). It is also recognized as a non-cell autonomous disease where glial cells in the CNS are involved in its pathogenesis and progression. However, although denervation of neuromuscular junctions (NMJs) represents an early and major event in ALS, the importance of glial cells at this synapse receives little attention. An interesting possibility is that altered relationships between glial cells and MNs in the spinal cord in ALS may also take place at the NMJ. Perisynaptic Schwann cells (PSCs), which are glial cells at the NMJ, show great morphological and functional adaptability to ensure NMJ stability, maintenance and repair. More specifically, PSCs change their properties according to the state of innervation. Hence, abnormal changes or lack of changes can have detrimental effects on NMJs in ALS. This review will provide an overview of known and hypothesized interactions between MN nerve terminals and PSCs at NMJs during development, aging and ALS-induced denervation. These neuron-PSC interactions may be crucial to the understanding of how degenerative changes begin and progress at NMJs in ALS, and represent a novel therapeutic target.
Collapse
Affiliation(s)
- Danielle Arbour
- Département de neurosciences, Université de Montréal, Montréal, Québec, Canada, H3C 3J7.,Groupe de recherche sur le système nerveux central, Université de Montréal, Montréal, Québec, Canada, H3C 3J7
| | - Christine Vande Velde
- Département de neurosciences, Université de Montréal, Montréal, Québec, Canada, H3C 3J7.,Groupe de recherche sur le système nerveux central, Université de Montréal, Montréal, Québec, Canada, H3C 3J7.,Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada, H2X 0A9
| | - Richard Robitaille
- Département de neurosciences, Université de Montréal, Montréal, Québec, Canada, H3C 3J7.,Groupe de recherche sur le système nerveux central, Université de Montréal, Montréal, Québec, Canada, H3C 3J7
| |
Collapse
|
50
|
Cortical synaptic and dendritic spine abnormalities in a presymptomatic TDP-43 model of amyotrophic lateral sclerosis. Sci Rep 2016; 6:37968. [PMID: 27897242 PMCID: PMC5126629 DOI: 10.1038/srep37968] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/31/2016] [Indexed: 12/11/2022] Open
Abstract
Layer V pyramidal neurons (LVPNs) within the motor cortex integrate sensory cues and co-ordinate voluntary control of motor output. In amyotrophic lateral sclerosis (ALS) LVPNs and spinal motor neurons degenerate. The pathogenesis of neural degeneration is unknown in ALS; 10% of cases have a genetic cause, whereas 90% are sporadic, with most of the latter showing TDP-43 inclusions. Clinical and experimental evidence implicate excitotoxicity as a prime aetiological candidate. Using patch clamp and dye-filling techniques in brain slices, combined with high-resolution confocal microscopy, we report increased excitatory synaptic inputs and dendritic spine densities in early presymptomatic mice carrying a TDP-43Q331K mutation. These findings demonstrate substantive alterations in the motor cortex neural network, long before an overt degenerative phenotype has been reported. We conclude that increased excitatory neurotransmission is a common pathophysiology amongst differing genetic cases of ALS and may be of relevance to the 95% of sporadic ALS cases that exhibit TDP-43 inclusions.
Collapse
|