1
|
Borges SDL, de Macedo EDS, da Silva FAV, Ataíde BJDA, Mendes NDSF, Passos ADCF, de Moraes SAS, Herculano AM, Oliveira KRHM, Bahia CP, Dolabella SS, Batista EDJO. Experimental Granulomatous Amebic Encephalitis Caused by Acanthamoeba castellanii. Trop Med Infect Dis 2024; 9:145. [PMID: 39058187 PMCID: PMC11281140 DOI: 10.3390/tropicalmed9070145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Acanthamoeba genus can affect humans with diseases such as granulomatous amebic encephalitis (GAE), a highly lethal neuroinfection. Several aspects of the disease still need to be elucidated. Animal models of GAE have advanced our knowledge of the disease. This work tested Wistar rats (Rattus norvegicus albinus) as an animal model of GAE. For this, 32 animals were infected with 1 × 106A. castellanii trophozoites of the T4 genotype. Ameba recovery tests were carried out using agar plates, vascular extravasation assays, behavioral tests, and histopathological technique with H/E staining. Data were subjected to linear regression analysis, one-way ANOVA, and Tukey's test, performed in the GraphPad Prism® 8.0 program, with a significance level of p < 0.05. The results revealed the efficiency of the model. Amebae were recovered from the liver, lungs, and brain of infected animals, and there were significant encephalic vascular extravasations and behavioral changes in these animals, but not in the control animals. However, not all infected animals showed positive histopathology for the analyzed organs. Nervous tissues were the least affected, demonstrating the role of the BBB in the defense of the CNS. Supported by the demonstrated evidence, we confirm the difficulties and the feasibilities of using rats as an animal model of GAE.
Collapse
Affiliation(s)
- Samuel da Luz Borges
- Laboratório de Protozoologia, Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém 66055-240, Brazil; (E.d.S.d.M.); (F.A.V.d.S.); (E.d.J.O.B.)
- Laboratório de Biologia, Campus Castanhal, Instituto Federal de Educação, Ciência e Tecnologia do Pará, Castanhal 68740-970, Brazil
| | - Eberson da Silva de Macedo
- Laboratório de Protozoologia, Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém 66055-240, Brazil; (E.d.S.d.M.); (F.A.V.d.S.); (E.d.J.O.B.)
| | - Felipe Alexandre Vinagre da Silva
- Laboratório de Protozoologia, Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém 66055-240, Brazil; (E.d.S.d.M.); (F.A.V.d.S.); (E.d.J.O.B.)
| | - Brenda Jaqueline de Azevedo Ataíde
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (B.J.d.A.A.); (N.d.S.F.M.); (A.d.C.F.P.); (S.A.S.d.M.); (A.M.H.); (K.R.H.M.O.)
| | - Nívia de Souza Franco Mendes
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (B.J.d.A.A.); (N.d.S.F.M.); (A.d.C.F.P.); (S.A.S.d.M.); (A.M.H.); (K.R.H.M.O.)
| | - Adelaide da Conceição Fonseca Passos
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (B.J.d.A.A.); (N.d.S.F.M.); (A.d.C.F.P.); (S.A.S.d.M.); (A.M.H.); (K.R.H.M.O.)
| | - Suellen Alessandra Soares de Moraes
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (B.J.d.A.A.); (N.d.S.F.M.); (A.d.C.F.P.); (S.A.S.d.M.); (A.M.H.); (K.R.H.M.O.)
| | - Anderson Manoel Herculano
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (B.J.d.A.A.); (N.d.S.F.M.); (A.d.C.F.P.); (S.A.S.d.M.); (A.M.H.); (K.R.H.M.O.)
| | - Karen Renata Herculano Matos Oliveira
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (B.J.d.A.A.); (N.d.S.F.M.); (A.d.C.F.P.); (S.A.S.d.M.); (A.M.H.); (K.R.H.M.O.)
| | - Carlomagno Pacheco Bahia
- Laboratório de Neuroplasticidade, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém 66055-240, Brazil;
| | - Silvio Santana Dolabella
- Laboratório de Entomologia e Parasitologia Tropical, Universidade Federal de Sergipe, Aracajú 49060-108, Brazil;
| | - Evander de Jesus Oliveira Batista
- Laboratório de Protozoologia, Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém 66055-240, Brazil; (E.d.S.d.M.); (F.A.V.d.S.); (E.d.J.O.B.)
| |
Collapse
|
2
|
Sola-Sevilla N, Mesa-Lombardo A, Aleixo M, Expósito S, Diaz-Perdigón T, Azqueta A, Zamani F, Suzuki T, Maioli S, Eroli F, Matton A, Ramírez MJ, Solas M, Tordera RM, Martín ED, Puerta E. SIRT2 Inhibition Rescues Neurodegenerative Pathology but Increases Systemic Inflammation in a Transgenic Mouse Model of Alzheimer's Disease. J Neuroimmune Pharmacol 2023; 18:529-550. [PMID: 37698780 PMCID: PMC10577113 DOI: 10.1007/s11481-023-10084-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 08/18/2023] [Indexed: 09/13/2023]
Abstract
Sirtuin 2 (SIRT2) has been proposed to have a central role on aging, inflammation, cancer and neurodegenerative diseases; however, its specific function remains controversial. Recent studies propose SIRT2 pharmacological inhibition as a therapeutic strategy for several neurodegenerative diseases including Alzheimer's disease (AD). Surprisingly, none of these published studies regarding the potential interest of SIRT2 inhibition has assessed the peripheral adverse side consequences of this treatment. In this study, we demonstrate that the specific SIRT2 inhibitor, the compound 33i, does not exhibit genotoxic or mutagenic properties. Moreover, pharmacological treatment with 33i, improved cognitive dysfunction and long-term potentiation, reducing amyloid pathology and neuroinflammation in the APP/PS1 AD mouse model. However, this treatment increased peripheral levels of the inflammatory cytokines IL-1β, TNF, IL-6 and MCP-1. Accordingly, peripheral SIRT2 inhibition with the blood brain barrier impermeable compound AGK-2, worsened the cognitive capacities and increased systemic inflammation. The analysis of human samples revealed that SIRT2 is increased in the brain but not in the serum of AD patients. These results suggest that, although SIRT2 pharmacological inhibition may have beneficial consequences in neurodegenerative diseases, its pharmacological inhibition at the periphery would not be recommended and the systemic adverse side effects should be considered. This information is essential to maximize the therapeutic potential of SIRT2 inhibition not only for AD but also for other neurodegenerative diseases.
Collapse
Affiliation(s)
- Noemi Sola-Sevilla
- Department of Pharmacology and Toxicology, University of Navarra, Navarra Institute for Health Research (IdiSNA), C/ Irunlarrea, 1, 31008, Pamplona, Spain
| | - Alberto Mesa-Lombardo
- Department of Pharmacology and Toxicology, University of Navarra, Navarra Institute for Health Research (IdiSNA), C/ Irunlarrea, 1, 31008, Pamplona, Spain
- Department of Anatomy, Histology and Neurosciences, Medical School, Autonoma University of Madrid, 28029, Madrid, Spain
| | - Mikel Aleixo
- Department of Pharmacology and Toxicology, University of Navarra, Navarra Institute for Health Research (IdiSNA), C/ Irunlarrea, 1, 31008, Pamplona, Spain
| | - Sara Expósito
- Laboratory of Neurophysiology and Synaptic Plasticity, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Teresa Diaz-Perdigón
- Department of Pharmacology and Toxicology, University of Navarra, Navarra Institute for Health Research (IdiSNA), C/ Irunlarrea, 1, 31008, Pamplona, Spain
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, University of Navarra, Navarra Institute for Health Research (IdiSNA), C/ Irunlarrea, 1, 31008, Pamplona, Spain
| | | | | | - Silvia Maioli
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Francesca Eroli
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Anna Matton
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Maria J Ramírez
- Department of Pharmacology and Toxicology, University of Navarra, Navarra Institute for Health Research (IdiSNA), C/ Irunlarrea, 1, 31008, Pamplona, Spain
| | - Maite Solas
- Department of Pharmacology and Toxicology, University of Navarra, Navarra Institute for Health Research (IdiSNA), C/ Irunlarrea, 1, 31008, Pamplona, Spain
| | - Rosa M Tordera
- Department of Pharmacology and Toxicology, University of Navarra, Navarra Institute for Health Research (IdiSNA), C/ Irunlarrea, 1, 31008, Pamplona, Spain
| | - Eduardo D Martín
- Laboratory of Neurophysiology and Synaptic Plasticity, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Elena Puerta
- Department of Pharmacology and Toxicology, University of Navarra, Navarra Institute for Health Research (IdiSNA), C/ Irunlarrea, 1, 31008, Pamplona, Spain.
| |
Collapse
|
3
|
Hyperoside alleviates toxicity of β-amyloid via endoplasmic reticulum-mitochondrial calcium signal transduction cascade in APP/PS1 double transgenic Alzheimer's disease mice. Redox Biol 2023; 61:102637. [PMID: 36821955 PMCID: PMC9975698 DOI: 10.1016/j.redox.2023.102637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Alzheimer's disease is a neurodegenerative disorder characterized by a decline in cognitive function. The β-amyloid (Aβ) hypothesis suggests that Aβ peptides can spontaneously aggregate into β-fragment-containing oligomers and protofibrils, and this activation of the amyloid pathway alters Ca2+ signaling in neurons, leading to neurotoxicity and thus apoptosis of neuronal cells. In our study, a blood-brain barrier crossing flavonol glycoside hyperoside was identified with anti-Aβ aggregation, BACE inhibitory, and neuroprotective effect in cellular or APP/PSEN1 double transgenic Alzheimer's disease mice model. While our pharmacokinetic data confirmed that intranasal administration of hyperoside resulted in a higher bio-availability in mice brain, further in vivo studies revealed that it improved motor deficit, spatial memory and learning ability of APP/PSEN1 mice with reducing level of Aβ plaques and GFAP in the cortex and hippocampus. Bioinformatics, computational docking and in vitro assay results suggested that hyperoside bind to Aβ and interacted with ryanodine receptors, then regulated cellular apoptosis via endoplasmic reticulum-mitochondrial calcium (Ca2+) signaling pathway. Consistently, it was confirmed that hyperoside increased Bcl2, decreased Bax and cyto-c protein levels, and ameliorated neuronal cell death in both in vitro and in vivo model. By regulating Aβ-induced cell death via regulation on Ca2+ signaling cascade and mitochondrial membrane potential, our study suggested that hyperoside may work as a potential therapeutic agent or preventive remedy for Alzheimer's disease.
Collapse
|
4
|
Williams E, Mutlu-Smith M, Alex A, Chin XW, Spires-Jones T, Wang SH. Mid-Adulthood Cognitive Training Improves Performance in a Spatial Task but Does Not Ameliorate Hippocampal Pathology in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2023; 93:683-704. [PMID: 37066912 DOI: 10.3233/jad-221185] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
BACKGROUND Prior experience in early life has been shown to improve performance in aging and mice with Alzheimer's disease (AD) pathology. However, whether cognitive training at a later life stage would benefit subsequent cognition and reduce pathology in AD mice needs to be better understood. OBJECTIVE This study aimed to verify if behavioral training in mid-adulthood would improve subsequent cognition and reduce AD pathology and astrogliosis. METHODS Mixed-sex APP/PS1 and wildtype littermate mice received a battery of behavioral training, composed of spontaneous alternation in the Y-maze, novel object recognition and location tasks, and spatial training in the water maze, or handling only at 7 months of age. The impact of AD genotype and prior training on subsequent learning and memory of aforementioned tasks were assessed at 9 months. RESULTS APP/PS1 mice made more errors than wildtype littermates in the radial-arm water maze (RAWM) task. Prior training prevented this impairment in APP/PS1 mice. Prior training also contributed to better efficiency in finding the escape platform in both APP/PS1 mice and wildtype littermates. Short-term and long-term memory of this RAWM task, of a reversal task, and of a transfer task were comparable among APP/PS1 and wildtype mice, with or without prior training. Amyloid pathology and astrogliosis in the hippocampus were also comparable between the APP/PS1 groups. CONCLUSION These data suggest that cognitive training in mid-adulthood improves subsequent accuracy in AD mice and efficiency in all mice in the spatial task. Cognitive training in mid-adulthood provides no clear benefit on memory or on amyloid pathology in midlife.
Collapse
Affiliation(s)
- Elizabeth Williams
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Menekşe Mutlu-Smith
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Ashli Alex
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Xi Wei Chin
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Tara Spires-Jones
- Centre for Discovery Brain Sciences, UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Szu-Han Wang
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
5
|
Oroszi T, Geerts E, Rajadhyaksha R, Nyakas C, van Heuvelen MJG, van der Zee EA. Whole-body vibration ameliorates glial pathological changes in the hippocampus of hAPP transgenic mice, but does not affect plaque load. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2023; 19:5. [PMID: 36941713 PMCID: PMC10026461 DOI: 10.1186/s12993-023-00208-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/02/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the core cause of dementia in elderly populations. One of the main hallmarks of AD is extracellular amyloid beta (Aβ) accumulation (APP-pathology) associated with glial-mediated neuroinflammation. Whole-Body Vibration (WBV) is a passive form of exercise, but its effects on AD pathology are still unknown. METHODS Five months old male J20 mice (n = 26) and their wild type (WT) littermates (n = 24) were used to investigate the effect of WBV on amyloid pathology and the healthy brain. Both J20 and WT mice underwent WBV on a vibration platform or pseudo vibration treatment. The vibration intervention consisted of 2 WBV sessions of 10 min per day, five days per week for five consecutive weeks. After five weeks of WBV, the balance beam test was used to assess motor performance. Brain tissue was collected to quantify Aβ deposition and immunomarkers of astrocytes and microglia. RESULTS J20 mice have a limited number of plaques at this relatively young age. Amyloid plaque load was not affected by WBV. Microglia activation based on IBA1-immunostaining was significantly increased in the J20 animals compared to the WT littermates, whereas CD68 expression was not significantly altered. WBV treatment was effective to ameliorate microglia activation based on morphology in both J20 and WT animals in the Dentate Gyrus, but not so in the other subregions. Furthermore, GFAP expression based on coverage was reduced in J20 pseudo-treated mice compared to the WT littermates and it was significantly reserved in the J20 WBV vs. pseudo-treated animals. Further, only for the WT animals a tendency of improved motor performance was observed in the WBV group compared to the pseudo vibration group. CONCLUSION In accordance with the literature, we detected an early plaque load, reduced GFAP expression and increased microglia activity in J20 mice at the age of ~ 6 months. Our findings indicate that WBV has beneficial effects on the early progression of brain pathology. WBV restored, above all, the morphology of GFAP positive astrocytes to the WT level that could be considered the non-pathological and hence "healthy" level. Next experiments need to be performed to determine whether WBV is also affective in J20 mice of older age or other AD mouse models.
Collapse
Affiliation(s)
- Tamas Oroszi
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
- Research Center for Molecular Exercise Science, Hungarian University of Sports Science, Budapest, Hungary.
| | - Eva Geerts
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Reuben Rajadhyaksha
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Csaba Nyakas
- Research Center for Molecular Exercise Science, Hungarian University of Sports Science, Budapest, Hungary
- Department of Morphology and Physiology, Health Science Faculty, Semmelweis Univesity, Budapest, Hungary
| | - Marieke J G van Heuvelen
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Eddy A van der Zee
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
6
|
Xiao QY, Ye TY, Wang XL, Qi DM, Cheng XR. Effects of Qi-Fu-Yin on aging of APP/PS1 transgenic mice by regulating the intestinal microbiome. Front Cell Infect Microbiol 2023; 12:1048513. [PMID: 36710967 PMCID: PMC9880330 DOI: 10.3389/fcimb.2022.1048513] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/23/2022] [Indexed: 01/14/2023] Open
Abstract
Introduction Alzheimer's disease is the most common form of dementia and closely related to aging. Qi-Fu-Yin is widely used to treat dementia, but its anti-aging effects is unknown. Methods We used 11-month-old APP/PS1 transgenic mice for behavioral tests to observe the changes in cognitive function and age-related symptoms after Qi-Fu-Yin treatment. Fecal samples were collected for 16sRNA sequencing and metagenomic sequencing. Differences among the groups of intestinal microbiota and the associations with aging and intestinal microbiota were analyzed based on the results. Results Here we found that Qi-Fu-Yin improved the ability of motor coordination, raised survival rate and prolonged the survival days under cold stress stimulation in aged APP/ PS1 transgenic mice. Our data from 16sRNA and metagenomic sequencing showed that at the Family level, the intestinal microbiota was significantly different among wild-type mice, APP/PS1 transgenic mice and the Qi-Fu-Yin group by PCA analysis. Importantly, Qi-Fu-Yin improved the functional diversity of the major KEGG pathways, carbohydrate-active enzymes, and major virulence factors in the intestinal flora of APP/PS1 transgenic mice. Among them, the functions of eight carbohydrate-active enzymes (GT2_Glycos_transf_2, GT4, GT41, GH2, CE1, CE10, CE3, and GH24) and the functions of top three virulence factors (defensive virulence factors, offensive virulence factors and nonspecific virulence factors) were significantly and positively correlated with the level of grasping ability. We further indicated that the Qi-Fu-Yin significantly reduced the plasma levels of IL-6. Conclusion Our results indicated that the effects of Qi-Fu-Yin anti-aging of APP/PS1 transgenic mice might be through the regulation of intestinal flora diversity, species richness and the function of major active enzymes.
Collapse
Affiliation(s)
- Qiu-yue Xiao
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tian-yuan Ye
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao-long Wang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dong-mei Qi
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao-rui Cheng
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
7
|
Luxem K, Mocellin P, Fuhrmann F, Kürsch J, Miller SR, Palop JJ, Remy S, Bauer P. Identifying behavioral structure from deep variational embeddings of animal motion. Commun Biol 2022; 5:1267. [PMID: 36400882 PMCID: PMC9674640 DOI: 10.1038/s42003-022-04080-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 10/06/2022] [Indexed: 11/19/2022] Open
Abstract
Quantification and detection of the hierarchical organization of behavior is a major challenge in neuroscience. Recent advances in markerless pose estimation enable the visualization of high-dimensional spatiotemporal behavioral dynamics of animal motion. However, robust and reliable technical approaches are needed to uncover underlying structure in these data and to segment behavior into discrete hierarchically organized motifs. Here, we present an unsupervised probabilistic deep learning framework that identifies behavioral structure from deep variational embeddings of animal motion (VAME). By using a mouse model of beta amyloidosis as a use case, we show that VAME not only identifies discrete behavioral motifs, but also captures a hierarchical representation of the motif's usage. The approach allows for the grouping of motifs into communities and the detection of differences in community-specific motif usage of individual mouse cohorts that were undetectable by human visual observation. Thus, we present a robust approach for the segmentation of animal motion that is applicable to a wide range of experimental setups, models and conditions without requiring supervised or a-priori human interference.
Collapse
Affiliation(s)
- Kevin Luxem
- Leibniz Institute for Neurobiology (LIN), Department of Cellular Neuroscience, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Petra Mocellin
- Leibniz Institute for Neurobiology (LIN), Department of Cellular Neuroscience, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Falko Fuhrmann
- Leibniz Institute for Neurobiology (LIN), Department of Cellular Neuroscience, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Johannes Kürsch
- Leibniz Institute for Neurobiology (LIN), Department of Cellular Neuroscience, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Stephanie R Miller
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Jorge J Palop
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Stefan Remy
- Leibniz Institute for Neurobiology (LIN), Department of Cellular Neuroscience, Magdeburg, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
- German Center for Mental Health (DZPG), Magdeburg, Germany.
| | - Pavol Bauer
- Leibniz Institute for Neurobiology (LIN), Department of Cellular Neuroscience, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| |
Collapse
|
8
|
Castillo-Mariqueo L, Giménez-Llort L. Clasping, ledge-score coordination and early gait impairments as primary behavioural markers of functional impairment in Alzheimer's disease. Behav Brain Res 2022; 435:114054. [PMID: 35961538 DOI: 10.1016/j.bbr.2022.114054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/23/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022]
Abstract
Motor performance facilitates the understanding of the functional state related to the progression of Alzheimer's disease (AD). At the translational level, this brief report refines the characterization of the motor dysfunction of the 3xTg-AD mouse model in different motor tasks, focusing on the abnormal clasping reflex and coordination impairments measured through the Phenotype Scoring System four items screening originally developed for models of ataxia. We studied male 3xTg-AD mice at 6, 12, and 16 months of age (mimicking the early, advanced, and late stages of the disease, respectively) and their age-matched non-transgenic counterparts with normal aging. According to the score, incidence, or severity of the four items and the total score, the 3xTg-AD mice showed deficiencies in all score elements. Clasping was increased independently of age, and its severity worsened with repeated testing. In contrast, the impairment of coordination worsened with the progress of the disease. The gait score was sensitive to genotype since early stages, and the worse ledge score was evident at 16 months. Kyphosis and ledge scores were sensitive to age. The impairments and functional limitations of male 3xTg-AD mice related to the stages of AD provide a scenario that allows understanding the heterogeneity of non-cognitive symptoms.
Collapse
Affiliation(s)
- Lidia Castillo-Mariqueo
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
9
|
Tag SH, Kim B, Bae J, Chang KA, Im HI. Neuropathological and behavioral features of an APP/PS1/MAPT (6xTg) transgenic model of Alzheimer’s disease. Mol Brain 2022; 15:51. [PMID: 35676711 PMCID: PMC9175339 DOI: 10.1186/s13041-022-00933-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 05/14/2022] [Indexed: 11/30/2022] Open
Abstract
Alzheimer's disease is associated with various brain dysfunctions, including memory impairment, neuronal loss, astrocyte activation, amyloid-β plaques, and neurofibrillary tangles. Transgenic animal models of Alzheimer's disease have proven to be invaluable for the basic research of Alzheimer's disease. However, Alzheimer's disease mouse models developed so far do not fully recapitulate the pathological and behavioral features reminiscent of Alzheimer's disease in humans. Here, we investigated the neurobehavioral sequelae in the novel 6xTg mouse model of Alzheimer's disease, which was developed by incorporating human tau containing P301L mutation in the widely used 5xFAD mouse model of Alzheimer's disease. At 11-months-old, 6xTg mice displayed the core pathological processes found in Alzheimer's disease, including accumulation of amyloid-β plaque, extensive neuronal loss, elevated level of astrocyte activation, and abnormal tau phosphorylation in the brain. At 9 to 11-months-old, 6xTg mice exhibited both cognitive and non-cognitive behavioral impairments relevant to Alzheimer’s disease, including memory loss, hyperlocomotion, anxiety-like behavior, depression-like behavior, and reduced sensorimotor gating. Our data suggest that the aged 6xTg mouse model of Alzheimer's disease presents pathological and cognitive-behavioral features reminiscent of Alzheimer's disease in humans. Thus, the 6xTg mouse model of Alzheimer's disease may be a valuable model for studying Alzheimer’s disease-relevant non-cognitive behaviors.
Collapse
|
10
|
Wirianto M, Wang CY, Kim E, Koike N, Gomez-Gutierrez R, Nohara K, Escobedo G, Choi JM, Han C, Yagita K, Jung SY, Soto C, Lee HK, Morales R, Yoo SH, Chen Z. The clock modulator Nobiletin mitigates astrogliosis-associated neuroinflammation and disease hallmarks in an Alzheimer's disease model. FASEB J 2022; 36:e22186. [PMID: 35120261 PMCID: PMC8887996 DOI: 10.1096/fj.202101633r] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/30/2021] [Accepted: 01/18/2022] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder, and there is a pressing need to identify disease‐modifying factors and devise interventional strategies. The circadian clock, our intrinsic biological timer, orchestrates various cellular and physiological processes including gene expression, sleep, and neuroinflammation; conversely, circadian dysfunctions are closely associated with and/or contribute to AD hallmarks. We previously reported that the natural compound Nobiletin (NOB) is a clock‐enhancing modulator that promotes physiological health and healthy aging. In the current study, we treated the double transgenic AD model mice, APP/PS1, with NOB‐containing diets. NOB significantly alleviated β‐amyloid burden in both the hippocampus and the cortex, and exhibited a trend to improve cognitive function in these mice. While several systemic parameters for circadian wheel‐running activity, sleep, and metabolism were unchanged, NOB treatment showed a marked effect on the expression of clock and clock‐controlled AD gene expression in the cortex. In accordance, cortical proteomic profiling demonstrated circadian time‐dependent restoration of the protein landscape in APP/PS1 mice treated with NOB. More importantly, we found a potent efficacy of NOB to inhibit proinflammatory cytokine gene expression and inflammasome formation in the cortex, and immunostaining further revealed a specific effect to diminish astrogliosis, but not microgliosis, by NOB in APP/PS1 mice. Together, these results underscore beneficial effects of a clock modulator to mitigate pathological and cognitive hallmarks of AD, and suggest a possible mechanism via suppressing astrogliosis‐associated neuroinflammation.
Collapse
Affiliation(s)
- Marvin Wirianto
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| | - Chih-Yen Wang
- Department of Pediatrics, Baylor College of Medicine, Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
| | - Eunju Kim
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| | - Nobuya Koike
- Department of Physiology and Systems Bioscience, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ruben Gomez-Gutierrez
- Department of Neurology, The University of Texas Health Science Center (UTHealth), Houston, Texas, USA.,Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Malaga, Malaga, Spain
| | - Kazunari Nohara
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| | - Gabriel Escobedo
- Department of Neurology, The University of Texas Health Science Center (UTHealth), Houston, Texas, USA
| | - Jong Min Choi
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Chorong Han
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| | - Kazuhiro Yagita
- Department of Physiology and Systems Bioscience, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Sung Yun Jung
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Claudio Soto
- Department of Neurology, The University of Texas Health Science Center (UTHealth), Houston, Texas, USA
| | - Hyun Kyoung Lee
- Department of Pediatrics, Baylor College of Medicine, Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center (UTHealth), Houston, Texas, USA.,Centro Integrativo de Biologia Y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| |
Collapse
|
11
|
Hulshof LA, Frajmund LA, van Nuijs D, van der Heijden DC, Middeldorp J, Hol EM. Both male and female APPswe/PSEN1dE9 mice are impaired in spatial memory and cognitive flexibility at 9 months of age. Neurobiol Aging 2022; 113:28-38. [DOI: 10.1016/j.neurobiolaging.2021.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/23/2021] [Accepted: 12/26/2021] [Indexed: 12/29/2022]
|
12
|
van Heusden FC, Palacín I Bonsón S, Stiedl O, Smit AB, van Kesteren RE. Longitudinal Assessment of Working Memory Performance in the APPswe/PSEN1dE9 Mouse Model of Alzheimer's Disease Using an Automated Figure-8-Maze. Front Behav Neurosci 2021; 15:655449. [PMID: 34054444 PMCID: PMC8155296 DOI: 10.3389/fnbeh.2021.655449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/29/2021] [Indexed: 01/09/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder, with a long preclinical and prodromal phase. To enable the study of disease mechanisms, AD has been modeled in many transgenic animal lines and cognitive functioning has been tested using several widely used behavioral tasks. These tasks, however, are not always suited for repeated longitudinal testing and are often associated with acute stress such as animal transfer, handling, novelty, or stress related to the task itself. This makes it challenging to relate cognitive dysfunction in animal models to cognitive decline observed in AD patients. Here, we designed an automated figure-8-maze (F8M) to test mice in a delayed alternation task (DAT) in a longitudinal manner. Mice were rewarded when they entered alternate sides of the maze on subsequent trials. Automation as well as connection of the F8M set-up with a home cage reduces experimenter interference and minimizes acute stress, thus making it suitable for longitudinal testing and facilitating clinical translation. In the present study, we monitored cognitive functioning of 2-month-old APPswe/PSEN1dE9 (APP/PS1) mice over a period of 4 months. The percentage of correct responses in the DAT did not differ between wild-type and transgenic mice from 2 to 6 months of age. However, 6-month-old mice displayed an increase in the number of consecutive incorrect responses. These results demonstrate the feasibility of longitudinal testing using an automated F8M and suggest that APP/PS1 mice are not impaired at delayed spatial alternation until 6 months of age under the current experimental conditions.
Collapse
Affiliation(s)
- Fran C van Heusden
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sara Palacín I Bonsón
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Oliver Stiedl
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ronald E van Kesteren
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
13
|
Pentkowski NS, Rogge-Obando KK, Donaldson TN, Bouquin SJ, Clark BJ. Anxiety and Alzheimer's disease: Behavioral analysis and neural basis in rodent models of Alzheimer's-related neuropathology. Neurosci Biobehav Rev 2021; 127:647-658. [PMID: 33979573 DOI: 10.1016/j.neubiorev.2021.05.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/28/2021] [Accepted: 05/05/2021] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD) pathology is commonly associated with cognitive decline but is also composed of neuropsychiatric symptoms including psychological distress and alterations in mood, including anxiety and depression. Emotional dysfunction in AD is frequently modeled using tests of anxiety-like behavior in transgenic rodents. These tests often include the elevated plus-maze, light/dark test and open field test. In this review, we describe prototypical behavioral paradigms used to examine emotional dysfunction in transgenic models of AD, specifically anxiety-like behavior. Next, we summarize the results of studies examining anxiety-like behavior in transgenic rodents, noting that the behavioral outcomes using these paradigms have produced inconsistent results. We suggest that future research will benefit from using a battery of tests to examine emotional behavior in transgenic AD models. We conclude by discussing putative, overlapping neurobiological mechanisms underlying AD-related neuropathology, stress and anxiety-like behavior reported in AD models.
Collapse
Affiliation(s)
- Nathan S Pentkowski
- Department of Psychology, University of New Mexico, Albuquerque, NM, 87109, Mexico.
| | | | - Tia N Donaldson
- Department of Psychology, University of New Mexico, Albuquerque, NM, 87109, Mexico
| | - Samuel J Bouquin
- Department of Psychology, University of New Mexico, Albuquerque, NM, 87109, Mexico
| | - Benjamin J Clark
- Department of Psychology, University of New Mexico, Albuquerque, NM, 87109, Mexico.
| |
Collapse
|
14
|
Chaudhari K, Wang L, Kruse J, Winters A, Sumien N, Shetty R, Prah J, Liu R, Shi J, Forster M, Yang SH. Early loss of cerebellar Purkinje cells in human and a transgenic mouse model of Alzheimer's disease. Neurol Res 2021; 43:570-581. [PMID: 33688799 DOI: 10.1080/01616412.2021.1893566] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND The cerebellum's involvement in AD has been under-appreciated by historically labeling as a normal control in AD research. METHODS We determined the involvement of the cerebellum in AD progression. Postmortem human and APPswe/PSEN1dE9 mice cerebellums were used to assess the cerebellar Purkinje cells (PC) by immunohistochemistry. The locomotor and spatial cognitive functions were assessed in 4- to 5-month-old APPswe/PSEN1dE9 mice. Aβ plaque and APP processing were determined in APPswe/PSEN1dE9 mice at different age groups by immunohistochemistry and Western blot. RESULTS We observed loss of cerebellar PC in mild cognitive impairment and AD patients compared with cognitively normal controls. A strong trend towards PC loss was found in AD mice as early as 5 months. Impairment of balance beam and rotorod performance, but no spatial learning and memory dysfunction was observed in AD mice at 4-5 months. Aβ plaque in the cerebral cortex was evidenced in AD mice at 2 months and dramatically increased at 6 months. Less and smaller Aβ plaques were observed in the cerebellum than in the cerebrum of AD mice. Similar intracellular APP staining was observed in the cerebellum and cerebrum of AD mice at 2 to 10 months. Similar expression of full-length APP and C-terminal fragments were indicated in the cerebrum and cerebellum of AD mice during aging. DISCUSSION Our study in post-mortem human brains and transgenic AD mice provided neuropathological and functional evidence that cerebellar dysfunction may occur at the early stage of AD and likely independent of Aβ plaque.
Collapse
Affiliation(s)
- Kiran Chaudhari
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX USA
| | - Linshu Wang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX USA
| | - Jonas Kruse
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX USA
| | - Ali Winters
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX USA
| | - Nathalie Sumien
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX USA
| | - Ritu Shetty
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX USA
| | - Jude Prah
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX USA
| | - Ran Liu
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX USA
| | - Jiong Shi
- Lou Ruvo Center for Brain Health, Cleveland Clinic Nevada, 888 W Bonneville Avenue, Las Vegas, NV USA
| | - Michael Forster
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX USA
| | - Shao-Hua Yang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX USA
| |
Collapse
|
15
|
Coles M, Watt G, Kreilaus F, Karl T. Medium-Dose Chronic Cannabidiol Treatment Reverses Object Recognition Memory Deficits of APP Swe /PS1ΔE9 Transgenic Female Mice. Front Pharmacol 2021; 11:587604. [PMID: 33424597 PMCID: PMC7789874 DOI: 10.3389/fphar.2020.587604] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 09/25/2020] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that causes behavioral and cognitive impairments. The phytocannabinoid cannabidiol (CBD) has anti-inflammatory, antioxidant, and neuroprotective properties, and in vitro and limited in vivo evidence suggests that CBD possesses therapeutic-like properties for the treatment of AD. Cannabinoids are known to have dose-dependent effects and the therapeutic potential of medium-dose CBD for AD transgenic mice has not been assessed in great detail yet. 12-month-old control and APP Swe /PS1ΔE9 (APPxPS1) transgenic female mice were treated daily via intraperitoneal injection with 5 mg/kg bodyweight CBD (or vehicle) commencing three weeks prior to the assessment of behavioral domains including anxiety, exploration, locomotion, motor functions, cognition, and sensorimotor gating. APPxPS1 mice exhibited a hyperlocomotive and anxiogenic-like phenotype and had wild type-like motor and spatial learning abilities, although AD transgenic mice took generally longer to complete the cheeseboard training (due to a lower locomotion speed). Furthermore spatial learning and reversal learning was delayed by one day in APPxPS1 mice compared to control mice. All mice displayed intact spatial memory and retrieval memory, but APPxPS1 mice showed reduced levels of perseverance in the cheeseboard probe trial. Importantly, vehicle-treated APPxPS1 mice were characterized by object recognition deficits and delayed spatial learning, which were reversed by CBD treatment. Finally, impairments in sensorimotor gating of APPxPS1 mice were not affected by CBD. In conclusion, medium-dose CBD appears to have therapeutic value for the treatment of particular behavioral impairments present in AD patients. Future research should consider the molecular mechanisms behind CBD's beneficial properties for AD transgenic mice.
Collapse
Affiliation(s)
- Madilyn Coles
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Georgia Watt
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Fabian Kreilaus
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Tim Karl
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia.,Neuroscience Research Australia, Randwick, NSW, Australia
| |
Collapse
|
16
|
Karunakaran S. Unraveling Early Signs of Navigational Impairment in APPswe/PS1dE9 Mice Using Morris Water Maze. Front Neurosci 2021; 14:568200. [PMID: 33384577 PMCID: PMC7770143 DOI: 10.3389/fnins.2020.568200] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Mild behavioral deficits, which are part of normal aging, can be early indicators of an impending Alzheimer's disease. Using the APPswe/PS1dE9 (APP/PS1) mouse model of Alzheimer's disease, we utilized the Morris water maze spatial learning paradigm to systematically evaluate mild behavioral deficits that occur during the early stages of disease pathogenesis. Conventional behavioral analysis using this model indicates that spatial memory is intact at 2 months of age. In this study, we used an alternative method to analyze the behavior of mice, aiming to gain a better understanding of the nature of cognitive deficits by focusing on the unsuccessful trials during water maze learning rather than on the successful ones. APP/PS1 mice displayed a higher number of unsuccessful trials during the initial days of training, unlike their wild-type counterparts. However, with repeated trial and error, learning in APP/PS1 reached levels comparable to that of the wild-type mice during the later days of training. Individual APP/PS1 mice preferred a non-cognitive search strategy called circling, which led to abrupt learning transitions and an increased number of unsuccessful trials. These findings indicate the significance of subtle intermediate readouts as early indicators of conditions such as Alzheimer's disease.
Collapse
Affiliation(s)
- Smitha Karunakaran
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
| |
Collapse
|
17
|
Van den Broeck L, Sierksma A, Hansquine P, Thonnard D, Callaerts-Vegh Z, D'Hooge R. Comparison between touchscreen operant chambers and water maze to detect early prefrontal dysfunction in mice. GENES BRAIN AND BEHAVIOR 2020; 20:e12695. [PMID: 32812350 DOI: 10.1111/gbb.12695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 11/30/2022]
Abstract
The relative lack of sensitive and clinically valid tests of rodent behavior might be one of the reasons for the limited success of the clinical translation of preclinical Alzheimer's disease (AD) research findings. There is a general interest in innovative behavioral methodology, and protocols have been proposed for touchscreen operant chambers that might be superior to existing cognitive assessment methods. We assessed and analyzed touchscreen performance in several novel ways to examine the possible occurrence of early signs of prefrontal (PFC) functional decline in the APP/PS1 mouse model of AD. Touchscreen learning performance was compared between APP/PS1-21 mice and wildtype littermates on a C57BL/6J background at 3, 6 and 12 months of age in parallel to the assessment of spatial learning, memory and cognitive flexibility in the Morris water maze (MWM). We found that older mice generally needed more training sessions to complete the touchscreen protocol than younger ones. Older mice also displayed defects in MWM working memory performance, but touchscreen protocols detected functional changes beginning at 3 months of age. Histological changes in PFC of APP/PS1 mice indeed occurred as early as 3 months. Our results suggest that touchscreen operant protocols are more sensitive to PFC dysfunction, which is of relevance to the use of these tasks and devices in preclinical AD research and experimental pharmacology.
Collapse
Affiliation(s)
- Lore Van den Broeck
- Laboratory of Biological Psychology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Annerieke Sierksma
- Laboratory for the Research of Neurodegenerative Diseases, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Pierre Hansquine
- Laboratory of Biological Psychology, University of Leuven (KU Leuven), Leuven, Belgium
| | - David Thonnard
- Laboratory of Biological Psychology, University of Leuven (KU Leuven), Leuven, Belgium
| | | | - Rudi D'Hooge
- Laboratory of Biological Psychology, University of Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
18
|
Sato H, Tsukamoto-Yasui M, Takado Y, Kawasaki N, Matsunaga K, Ueno S, Kanda M, Nishimura M, Karakawa S, Isokawa M, Suzuki K, Nagao K, Higuchi M, Kitamura A. Protein Deficiency-Induced Behavioral Abnormalities and Neurotransmitter Loss in Aged Mice Are Ameliorated by Essential Amino Acids. Front Nutr 2020; 7:23. [PMID: 32219097 PMCID: PMC7079559 DOI: 10.3389/fnut.2020.00023] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/25/2020] [Indexed: 12/11/2022] Open
Abstract
Nutritional epidemiology shows that insufficient protein intake is related to senile dementia. The levels of protein intake in aged people are positively associated with memory function, and elderly people with high protein intake have a low risk of mild cognitive impairment. Although the beneficial roles of protein nutrition in maintaining brain function in aged people are well demonstrated, little is known about the mechanism by which dietary intake of protein affects memory and brain conditions. We fed aged mice a low protein diet (LPD) for 2 months, which caused behavioral abnormalities, and examined the nutritional effect of essential amino acid administration under LPD conditions. The passive avoidance test revealed that LPD mice demonstrated learning and memory impairment. Similarly, the LPD mice showed agitation and hyperactive behavior in the elevated plus maze test. Moreover, LPD mice exhibited decreased concentrations of gamma-aminobutyric acid (GABA), glutamate, glycine, dopamine, norepinephrine, serotonin and aspartate in the brain. Interestingly, oral administration of seven essential amino acids (EAAs; valine, leucine, isoleucine, lysine, phenylalanine, histidine, and tryptophan) to LPD mice, which can be a source of neurotransmitters, reversed those behavioral changes. The oral administration of EAAs restored the brain concentration of glutamate, which is involved in learning and memory ability and may be associated with the observed behavioral changes. Although the details of the link between decreased amino acid and neurotransmitter concentrations and behavioral abnormalities must be examined in future studies, these findings suggest the importance of dietary protein and essential amino acids for maintaining brain function.
Collapse
Affiliation(s)
- Hideaki Sato
- Ajinomoto Co., Inc., Kawasaki, Japan.,Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba, Japan
| | | | - Yuhei Takado
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | - Makoto Higuchi
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba, Japan
| | - Akihiko Kitamura
- Ajinomoto Co., Inc., Kawasaki, Japan.,Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba, Japan
| |
Collapse
|
19
|
Krivinko JM, Koppel J, Savonenko A, Sweet RA. Animal Models of Psychosis in Alzheimer Disease. Am J Geriatr Psychiatry 2020; 28:1-19. [PMID: 31278012 PMCID: PMC6858948 DOI: 10.1016/j.jagp.2019.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/29/2019] [Accepted: 05/13/2019] [Indexed: 12/13/2022]
Abstract
Psychosis in Alzheimer Disease (AD) represents a distinct clinicopathologic variant associated with increased cognitive and functional morbidity and an accelerated disease course. To date, extant treatments offer modest benefits with significant risks. The development of new pharmacologic treatments for psychosis in AD would be facilitated by validated preclinical models with which to test candidate interventions. The current review provides a brief summary of the process of validating animal models of human disease together with a critical analysis of the challenges posed in attempting to apply those standards to AD-related behavioral models. An overview of phenotypic analogues of human cognitive and behavioral impairments, with an emphasis on those relevant to psychosis, in AD-related mouse models is provided, followed by an update on recent progress in efforts to translate findings in the pathophysiology of psychotic AD into novel models. Finally, some future directions are suggested to expand the catalogue of psychosis-relevant phenotypes that may provide a sturdier framework for model development and targets for preclinical treatment outcomes.
Collapse
Affiliation(s)
- Josh M. Krivinko
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jeremy Koppel
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institute for Medical Research, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
| | - Alena Savonenko
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Robert A. Sweet
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA,Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA
| |
Collapse
|
20
|
Luo R, Su LY, Li G, Yang J, Liu Q, Yang LX, Zhang DF, Zhou H, Xu M, Fan Y, Li J, Yao YG. Activation of PPARA-mediated autophagy reduces Alzheimer disease-like pathology and cognitive decline in a murine model. Autophagy 2020; 16:52-69. [PMID: 30898012 PMCID: PMC6984507 DOI: 10.1080/15548627.2019.1596488] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 02/13/2019] [Accepted: 02/26/2019] [Indexed: 02/08/2023] Open
Abstract
Alzheimer disease (AD) is the most common neurodegenerative disease. An imbalance between the production and clearance of Aβ (amyloid beta) is considered to be actively involved in AD pathogenesis. Macroautophagy/autophagy is a major cellular pathway leading to the removal of aggregated proteins, and upregulation of autophagy represents a plausible therapeutic strategy to combat overproduction of neurotoxic Aβ. PPARA/PPARα (peroxisome proliferator activated receptor alpha) is a transcription factor that regulates genes involved in fatty acid metabolism and activates hepatic autophagy. We hypothesized that PPARA regulates autophagy in the nervous system and PPARA-mediated autophagy affects AD. We found that pharmacological activation of PPARA by the PPARA agonists gemfibrozil and Wy14643 induces autophagy in human microglia (HM) cells and U251 human glioma cells stably expressing the human APP (amyloid beta precursor protein) mutant (APP-p.M671L) and this effect is PPARA-dependent. Administration of PPARA agonists decreases amyloid pathology and reverses memory deficits and anxiety symptoms in APP-PSEN1ΔE9 mice. There is a reduced level of soluble Aβ and insoluble Aβ in hippocampus and cortex tissues from APP-PSEN1ΔE9 mice after treatment with either gemfibrozil or Wy14643, which promoted the recruitment of microglia and astrocytes to the vicinity of Aβ plaques and enhanced autophagosome biogenesis. These results indicated that PPARA is an important factor regulating autophagy in the clearance of Aβ and suggested gemfibrozil be assessed as a possible treatment for AD.Abbreviation: Aβ: amyloid beta; ACTB: actin beta; ADAM10: ADAM metallopeptidase domain 10; AD: Alzheimer disease; AIF1/IBA1: allograft inflammatory factor 1; ANOVA: analysis of variance; APOE: apolipoprotein E; APP: amyloid beta precursor protein; APP-PSEN1ΔE9: APPswe/PSEN1dE9; BAFA1: bafilomycin A1; BDNF: brain derived neurotrophic factor; BECN1: beclin 1; CD68: CD68 molecule; CREB1: cAMP responsive element binding protein 1; DAPI: 4',6-diamidino-2-phenylindole; DLG4/PSD-95: discs large MAGUK scaffold protein 4; DMSO: dimethyl sulfoxide; ELISA: enzyme linked immunosorbent assay; FDA: U.S. Food and Drug Administration; FKBP5: FK506 binding protein 5; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; gemfibrozil: 5-(2,5-dimethylphenoxy)-2,2-dimethylpentanoic acid; GFAP: glial fibrillary acidic protein; GLI2/THP1: GLI family zinc finger 2; HM: human microglia; IL6: interleukin 6; LAMP1: lysosomal associated membrane protein 1; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; NC: negative control; OQ: opposite quadrant; PPARA/PPARα, peroxisome proliferator activated receptor alpha; PSEN1/PS1: presenilin 1; SEM: standard error of the mean; SQSTM1: sequestosome 1; SYP: synaptophysin; TFEB: transcription factor EB; TNF/TNF-α: tumor necrosis factor; TQ: target quadrant; WT: wild type; Wy14643: 2-[4-chloro-6-(2,3-dimethylanilino)pyrimidin-2-yl]sulfanylacetic acid.
Collapse
Affiliation(s)
- Rongcan Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ling-Yan Su
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Guiyu Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jing Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Qianjin Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Lu-Xiu Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Deng-Feng Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Hejiang Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Min Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yu Fan
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Jiali Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
21
|
Hickman SE, Allison EK, Coleman U, Kingery-Gallagher ND, El Khoury J. Heterozygous CX3CR1 Deficiency in Microglia Restores Neuronal β-Amyloid Clearance Pathways and Slows Progression of Alzheimer's Like-Disease in PS1-APP Mice. Front Immunol 2019; 10:2780. [PMID: 31849963 PMCID: PMC6900980 DOI: 10.3389/fimmu.2019.02780] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/13/2019] [Indexed: 02/03/2023] Open
Abstract
CX3CR1 is a chemokine receptor expressed on microglia that binds Fractalkine (CX3CL1) and regulates microglial recruitment to sites of neuroinflammation. Full deletion of CX3CR1 in mouse models of Alzheimer's disease have opposing effects on amyloid-β and tau pathologies raising concerns about the benefits of targeting CX3CR1 for treatment of this disease. Since most therapies achieve only partial blockade of their targets, we investigated the effects of partial CX3CR1 deficiency on the development and progression of amyloid-β deposition in the PS1-APP Alzheimer's mouse model. We generated PS1-APP mice heterozygous for CX3CR1 (PS1-APP-CX3CR1+/−) and analyzed these mice for Alzheimer's-like pathology. We found that partial CX3CR1 deficiency was associated with a significant reduction in Aβ levels and in senile-like plaque load in the brain as compared with age-matched PS1-APP mice. Reduced Aβ level in the brain was associated with improved cognitive function. Levels of the neuronal-expressed Aβ-degrading enzymes insulysin and matrix metalloproteinase 9, which are reduced in the brains of regular PS1-APP mice, were significantly higher in PS1-APP-CX3CR1+/− mice. Our data indicate that lowering CX3CR1 levels or partially inhibiting its activity in the brain may be a therapeutic strategy to increase neuronal Aβ clearance, reduce Aβ levels and delay progression of Alzheimer's-Like disease. Our findings also suggest a novel pathway where microglial CX3CR1 can regulates gene expression in neurons.
Collapse
Affiliation(s)
- Suzanne E Hickman
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Elizabeth K Allison
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Uwanda Coleman
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Nathan D Kingery-Gallagher
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Joseph El Khoury
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States.,Division of Infectious Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|
22
|
O'Connell KMS, Ouellette AR, Neuner SM, Dunn AR, Kaczorowski CC. Genetic background modifies CNS-mediated sensorimotor decline in the AD-BXD mouse model of genetic diversity in Alzheimer's disease. GENES, BRAIN, AND BEHAVIOR 2019; 18:e12603. [PMID: 31381246 PMCID: PMC6899779 DOI: 10.1111/gbb.12603] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/17/2019] [Accepted: 07/31/2019] [Indexed: 12/14/2022]
Abstract
Many patients with Alzheimer's dementia (AD) also exhibit noncognitive symptoms such as sensorimotor deficits, which can precede the hallmark cognitive deficits and significantly impact daily activities and an individual's ability to live independently. However, the mechanisms underlying sensorimotor dysfunction in AD and their relationship with cognitive decline remains poorly understood, due in part to a lack of translationally relevant animal models. To address this, we recently developed a novel model of genetic diversity in Alzheimer's disease, the AD-BXD genetic reference panel. In this study, we investigated sensorimotor deficits in the AD-BXDs and the relationship to cognitive decline in these mice. We found that age- and AD-related declines in coordination, balance and vestibular function vary significantly across the panel, indicating genetic background strongly influences the expressivity of the familial AD mutations used in the AD-BXD panel and their impact on motor function. Although young males and females perform comparably regardless of genotype on narrow beam and inclined screen tasks, there were significant sex differences in aging- and AD-related decline, with females exhibiting worse decline than males of the same age and transgene status. Finally, we found that AD motor decline is not correlated with cognitive decline, suggesting that sensorimotor deficits in AD may occur through distinct mechanisms. Overall, our results suggest that AD-related sensorimotor decline is strongly dependent on background genetics and is independent of dementia and cognitive deficits, suggesting that effective therapeutics for the entire spectrum of AD symptoms will likely require interventions targeting each distinct domain involved in the disease.
Collapse
Affiliation(s)
| | | | - Sarah M. Neuner
- The Jackson LaboratoryBar HarborMaine
- Department of Anatomy and NeurobiologyThe University of Tennessee Health Science CenterMemphisTennessee
| | | | | |
Collapse
|
23
|
Lesuis SL, Lucassen PJ, Krugers HJ. Early life stress amplifies fear responses and hippocampal synaptic potentiation in the APPswe/PS1dE9 Alzheimer mouse model. Neuroscience 2019; 454:151-161. [PMID: 31302265 DOI: 10.1016/j.neuroscience.2019.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/25/2019] [Accepted: 07/02/2019] [Indexed: 01/04/2023]
Abstract
Cognitive deficits and alterations in emotional behaviour are typical features of Alzheimer's disease (AD). Moreover, exposure to stress or adversity during the early life period has been associated with an acceleration of cognitive deficits and increased AD pathology in transgenic AD mouse models. Whether and how early life adversity affects fear memory in AD mice remains elusive. We therefore investigated whether exposure to early life stress (ELS) alters fear learning in APPswe/PS1dE9 mice, a classic mouse model for AD, and whether this is accompanied by alterations in hippocampal synaptic potentiation, an important cellular substrate for learning and memory. Transgenic APPswe/PS1dE9 mice were subjected to ELS by housing the dams and her pups with limited nesting and bedding material from postnatal days 2-9. Following a fear conditioning paradigm, 12-month-old ELS-exposed APPswe/PS1dE9 mice displayed enhanced contextual freezing behaviour, both in the conditioning context and in a novel context. ELS-exposed APPswe/PS1dE9 mice also displayed enhanced hippocampal synaptic potentiation, even in the presence of the GluN2B antagonist Ro25-6981 (which prevented synaptic potentiation in control mice). No differences in the level of PSD-95 or synaptophysin were observed between the groups. We conclude that in APPswe/PS1dE9 mice, ELS increases fear memory in the conditioning context as well as a novel context, which is accompanied by aberrant hippocampal synaptic potentiation. These results may help to understand how individual differences in the vulnerability to develop AD arise and emphasise the importance of the early postnatal time window in these differences. This article is part of Special Issue entitled: Lifestyle and Brain Metaplasticity.
Collapse
Affiliation(s)
- Sylvie L Lesuis
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, the Netherlands.
| | - Paul J Lucassen
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, the Netherlands
| | - Harm J Krugers
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, the Netherlands
| |
Collapse
|
24
|
Shepherd A, May C, Churilov L, Adlard PA, Hannan AJ, Burrows EL. Evaluation of attention in APP/PS1 mice shows impulsive and compulsive behaviours. GENES BRAIN AND BEHAVIOR 2019; 20:e12594. [PMID: 31177612 DOI: 10.1111/gbb.12594] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 12/20/2022]
Abstract
While Alzheimer's disease (AD) is traditionally associated with deficits in episodic memory, early changes in other cognitive domains, such as attention, have been gaining interest. In line with clinical observations, some animal models of AD have been shown to develop attentional deficits, but this is not consistent across all models. The APPswe/PS1ΔE9 (APP/PS1) mouse is one of the most commonly used AD models and attention has not yet been scrutinised in this model. We set out to assess attention using the 5-choice serial reaction time task (5CSRTT) early in the progression of cognitive symptoms in APP/PS1 mice, using clinically translatable touchscreen chambers. APP/PS1 mice showed no attentional changes across 5CSRTT training or any probes from 9 to 11 months of age. Interestingly, APP/PS1 mice showed increased impulsive and compulsive responding when task difficulty was high. This suggests that while the APP/PS1 mouse model may not be a good model of attentional changes in AD, it may be useful to study the early changes in impulsive and compulsive behaviour that have been identified in patient studies. As these changes have not previously been reported without attentional deficits in the clinic, the APP/PS1 mouse model may provide a unique opportunity to study these specific behavioural changes seen in AD, including their mechanistic underpinnings and therapeutic implications.
Collapse
Affiliation(s)
- Amy Shepherd
- Florey Institute of Neuroscience and Mental Health, Kenneth Myer Building, University of Melbourne, Parkville, Victoria, Australia
| | - Carlos May
- Florey Institute of Neuroscience and Mental Health, Kenneth Myer Building, University of Melbourne, Parkville, Victoria, Australia
| | - Leonid Churilov
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, Victoria, Australia
| | - Paul A Adlard
- Florey Institute of Neuroscience and Mental Health, Kenneth Myer Building, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Kenneth Myer Building, University of Melbourne, Parkville, Victoria, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Emma L Burrows
- Florey Institute of Neuroscience and Mental Health, Kenneth Myer Building, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
25
|
Wagner JM, Sichler ME, Schleicher EM, Franke TN, Irwin C, Löw MJ, Beindorff N, Bouter C, Bayer TA, Bouter Y. Analysis of Motor Function in the Tg4-42 Mouse Model of Alzheimer's Disease. Front Behav Neurosci 2019; 13:107. [PMID: 31156407 PMCID: PMC6533559 DOI: 10.3389/fnbeh.2019.00107] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/02/2019] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder and the most common form of dementia. Hallmarks of AD are memory impairments and cognitive deficits, but non-cognitive impairments, especially motor dysfunctions are also associated with the disease and may even precede classic clinical symptoms. With an aging society and increasing hospitalization of the elderly, motor deficits are of major interest to improve independent activities in daily living. Consistent with clinical findings, a variety of AD mouse models develop motor deficits as well. We investigated the motor function of 3- and 7-month-old Tg4-42 mice in comparison to wild-type controls and 5XFAD mice and discuss the results in context with several other AD mouse model. Our study shows impaired balance and motor coordination in aged Tg4-42 mice in the balance beam and rotarod test, while general locomotor activity and muscle strength is not impaired at 7 months. The cerebellum is a major player in the regulation and coordination of balance and locomotion through practice. Particularly, the rotarod test is able to detect cerebellar deficits. Furthermore, supposed cerebellar impairment was verified by 18F-FDG PET/MRI. Aged Tg4-42 mice showed reduced cerebellar glucose metabolism in the 18F-FDG PET. Suggesting that, deficits in coordination and balance are most likely due to cerebellar impairment. In conclusion, Tg4-42 mice develop motor deficits before memory deficits, without confounding memory test. Thus, making the Tg4-42 mouse model a good model to study the effects on cognitive decline of therapies targeting motor impairments.
Collapse
Affiliation(s)
- Jannek M. Wagner
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Marius E. Sichler
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Eva M. Schleicher
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Timon N. Franke
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Caroline Irwin
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Maximilian Johannes Löw
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Nicola Beindorff
- Berlin Experimental Radionuclide Imaging Center, Charité – University Medicine Berlin, Berlin, Germany
| | - Caroline Bouter
- Department of Nuclear Medicine, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Thomas A. Bayer
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Yvonne Bouter
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| |
Collapse
|
26
|
Stajic D, Selakovic D, Jovicic N, Joksimovic J, Arsenijevic N, Lukic ML, Rosic G. The role of galectin-3 in modulation of anxiety state level in mice. Brain Behav Immun 2019; 78:177-187. [PMID: 30682502 DOI: 10.1016/j.bbi.2019.01.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 01/16/2019] [Accepted: 01/19/2019] [Indexed: 01/19/2023] Open
Abstract
Galectin-3 (Gal-3), a member of lectin family that binds to oligosaccharides, is involved in several biological processes, including maturation and function of nervous system. It had been reported that Gal-3 regulates oligodendrocytes differentiation and that Gal-3/Toll-like receptor-4 (TLR4) axis is involved in neuroinflammation. As both, central nervous system (CNS) maturation and neuroinflammation may affect behavior, the principle aim of this study was to examine the effects of Gal-3 gene deletion on behavior. Here we provide the evidence that Gal-3 deficiency shows clear anxiogenic effect in mature untreated animals (basal conditions). This was accompanied with lower interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) relative gene expression and hippocampal content, with no effect on TLR4 expression. Gal-3 deficiency was also accompanied with lower brain-derived neurotrophic factor (BDNF) relative gene expression and immunoreactivity in hippocampus (predominantly in CA1 region). Besides, the Gal-3 gene deletion resulted in attenuation of the hippocampal relative gene expression of GABA-A receptor subunits 2 and 5 (GABA-AR2S and GABA-AR5S), On the other hand, Gal-3 deficiency attenuates LPS-induced neuroinflammation. The anxiogenic effect of acute neuroinflammation was accompanied with increased hippocampal IL-6, TNF-α and TLR4 gene expression, as well as decreased gene and immunohistochemical BDNF expression in hippocampus, with significant decline in GABA-AR2S in wild type (WT) mice in comparison to basal conditions. Gal-3 gene deletion prevented the increase in IL-6, the decline in BDNF gene expression and immunoreactivity, and reduction in hippocampal GABA-AR2S, and therefore attenuated the anxiogenic effect of neuroinflammation. In summary, our data demonstrate that apparently opposite effects of Gal-3 deficiency on anxiety levels (anxiogenic effect under basal conditions and anxiolytic action during neuroinflammation) seem to be related to the shift in IL-6, TNF-α and hippocampal BDNF.
Collapse
Affiliation(s)
- Dalibor Stajic
- Department of Hygiene and Ecology, Faculty of Medical Sciences, University of Kragujevac, Serbia; Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Serbia
| | - Dragica Selakovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Serbia
| | - Nemanja Jovicic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Serbia
| | - Jovana Joksimovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Serbia
| | - Miodrag L Lukic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Serbia.
| | - Gvozden Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Serbia.
| |
Collapse
|
27
|
O'Leary TP, Mantolino HM, Stover KR, Brown RE. Age-related deterioration of motor function in male and female 5xFAD mice from 3 to 16 months of age. GENES BRAIN AND BEHAVIOR 2018; 19:e12538. [PMID: 30426678 DOI: 10.1111/gbb.12538] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that leads to age-related cognitive and sensori-motor dysfunction. There is an increased understanding that motor dysfunction contributes to overall AD severity, and a need to ameliorate these impairments. The 5xFAD mouse develops the neuropathology, cognitive and motor impairments observed in AD, and thus may be a valuable animal model to study motor deficits in AD. Therefore, we assessed age-related changes in motor ability of male and female 5xFAD mice from 3 to 16 months of age, using a battery of behavioral tests. At 9-10 months, 5xFAD mice showed reduced body weight, reduced rearing in the open-field and impaired performance on the rotarod compared to wild-type controls. At 12-13 months, 5xFAD mice showed reduced locomotor activity on the open-field, and impaired balance on the balance beam. At 15-16 months, impairments were also seen in grip strength. Although sex differences were observed at specific ages, the development of motor dysfunction was similar in male and female mice. Given the 5xFAD mouse is commonly on a C57BL/6 × SJL hybrid background, a subset of mice may be homozygous recessive for the Dysf im mutant allele, which leads to muscular weakness in SJL mice and may exacerbate motor dysfunction. We found small effects of Dysf im on motor function, suggesting that Dysf im contributes little to motor dysfunction in 5xFAD mice. We conclude that the 5xFAD mouse may be a useful model to study mechanisms that produce motor dysfunction in AD, and to assess the efficacy of therapeutics on ameliorating motor impairment.
Collapse
Affiliation(s)
- Timothy P O'Leary
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Hector M Mantolino
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kurt R Stover
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
28
|
Aβ dimers induce behavioral and neurochemical deficits of relevance to early Alzheimer's disease. Neurobiol Aging 2018; 69:1-9. [DOI: 10.1016/j.neurobiolaging.2018.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 03/26/2018] [Accepted: 04/10/2018] [Indexed: 11/23/2022]
|
29
|
O'Leary TP, Hussin AT, Gunn RK, Brown RE. Locomotor activity, emotionality, sensori-motor gating, learning and memory in the APPswe/PS1dE9 mouse model of Alzheimer's disease. Brain Res Bull 2018; 140:347-354. [PMID: 29870778 DOI: 10.1016/j.brainresbull.2018.05.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 05/11/2018] [Accepted: 05/31/2018] [Indexed: 02/06/2023]
Abstract
The APPswe/PS1dE9 mouse (line 85) is a double transgenic model of Alzheimer's disease (AD) with familial amyloid precursor protein and presenilin-1 mutations. These mice develop age-related behavioral changes reflective of the neuropsychiatric symptoms (altered anxiety-like behaviour, hyperactivity) and cognitive dysfunction (impaired learning and memory) observed in AD. The APPswe/PS1dE9 mouse has been used to examine the efficacy of therapeutic interventions on behaviour, despite previous difficulties in replicating behavioural phenotypes. Therefore, the purpose of this study was to establish the reliability of these phenotypes by further characterizing the behaviour of male APPswe/PS1dE9 and wild-type mice between 7 and 14 months of age. Mice were tested on the open-field over 5-days to examine emotionality, locomotor activity and inter-session habituation. Mice were also tested on the repeated-reversal water maze task and spontaneous alternation on the Y-maze to assess working memory. Sensori-motor gating was examined with acoustic startle and pre-pulse inhibition. Lastly contextual and cued (trace) memory was assessed with fear conditioning. The results show that among non-cognitive behaviours, APPswe/PS1dE9 mice have normal locomotor activity, anxiety-like behavior, habituation and sensori-motor gating. However, APPswe/PS1dE9 mice show impaired working memory on the repeated-reversal water-maze and impaired memory in contextual but not trace-cued fear conditioning. These results indicate that the APPswe/PS1dE9 (line 85) mice have deficits in some types of hippocampal-dependent learning and memory and, at the ages tested, APPswe/PS1dE9 mice model cognitive dysfunction but not neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Timothy P O'Leary
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Ahmed T Hussin
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Rhian K Gunn
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.
| |
Collapse
|
30
|
Heiss JK, Barrett J, Yu Z, Haas LT, Kostylev MA, Strittmatter SM. Early Activation of Experience-Independent Dendritic Spine Turnover in a Mouse Model of Alzheimer's Disease. Cereb Cortex 2018; 27:3660-3674. [PMID: 27365298 DOI: 10.1093/cercor/bhw188] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Synaptic loss is critical in Alzheimer's disease (AD), but the dynamics of synapse turnover are poorly defined. We imaged dendritic spines in transgenic APPswe/PSen1∆E9 (APP/PS1) cerebral cortex. Dendritic spine turnover is increased far from plaque in aged APP/PS1 mice, and in young APP/PS1 mice prior to plaque formation. Dysregulation occurs in the presence of soluble Aβ oligomer and requires cellular prion protein (PrPC). APP/PS1 mice lack responsiveness of spine turnover to sensory stimulation. Critically, enhanced spine turnover is coupled with the loss of persistent spines starting early and continuing with age. To evaluate mechanisms of experience-independent supranormal spine turnover, we analyzed the transcriptome of young APP/PS1 mouse brain when turnover is altered but synapse density and memory are normal, and plaque and inflammation are absent. Early PrPC-dependent expression changes occur in synaptic and lipid-metabolizing genes. Thus, pathologic synaptic dysregulation underlying AD begins at a young age prior to Aβ plaque.
Collapse
Affiliation(s)
- Jacqueline K Heiss
- Program in Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT 06536, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven CT 06520, USA
| | - Joshua Barrett
- Program in Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Zizi Yu
- Program in Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Laura T Haas
- Program in Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Mikhail A Kostylev
- Program in Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Stephen M Strittmatter
- Program in Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT 06536, USA.,Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
31
|
Lopez-Noguerola JS, Giessen NME, Ueberück M, Meißner JN, Pelgrim CE, Adams J, Wirths O, Bouter Y, Bayer TA. Synergistic Effect on Neurodegeneration by N-Truncated Aβ 4-42 and Pyroglutamate Aβ 3-42 in a Mouse Model of Alzheimer's Disease. Front Aging Neurosci 2018; 10:64. [PMID: 29568268 PMCID: PMC5852075 DOI: 10.3389/fnagi.2018.00064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/23/2018] [Indexed: 01/09/2023] Open
Abstract
The N-terminally truncated pyroglutamate Aβ3-42 (AβpE3-42) and Aβ4-42 peptides are known to be highly abundant in the brain of Alzheimer's disease (AD) patients. Both peptides show enhanced aggregation and neurotoxicity in comparison to full-length Aβ, suggesting that these amyloid peptides may play an important role in the pathogenesis of AD. The aim of the present work was to study the direct effect of the combination of AβpE3-42 and Aβ4-42 on ongoing AD-related neuron loss, pathology, and neurological deficits in transgenic mice. Bigenic mice were generated by crossing the established TBA42 and Tg4-42 mouse models expressing the N-truncated Aβ peptides AβpE3-42 and Aβ4-42, respectively. After generation of the bigenic mice, detailed phenotypical characterization was performed using either immunostainings to evaluate amyloid pathology or quantification of neuron numbers using design-based stereology. The elevated plus maze was used to study anxiety levels. In order to evaluate sensori-motor deficits, the inverted grid, the balance beam and the string suspension tasks were applied. We could demonstrate that co-expression of AβpE3-42 and Aβ4-42 accelerates neuron loss in the CA1 pyramidal layer of young bigenic mice as seen by reduced neuron numbers in comparison to single transgenic homozygous mice expressing either AβpE3-42 or Aβ4-42. This observation coincides with the robust intraneuronal Aβ accumulation observed in the bigenic mice. In addition, loss of anxiety and motor deficits were enhanced in an age-dependent manner. The sensori-motor deficits correlate with the abundant spinal cord pathology, as demonstrated by robust intracellular Aβ accumulation within motor neurons and extracellular Aβ deposition. Our observations demonstrate that a combination of AβpE3-42 and Aβ4-42 has a stronger effect on ongoing AD pathology than the peptides alone. Therefore, AβpE3-42 and Aβ4-42 might represent excellent potential therapeutic targets and diagnostic markers for AD.
Collapse
Affiliation(s)
- Jose S Lopez-Noguerola
- Division of Molecular Psychiatry, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Nicolai M E Giessen
- Division of Molecular Psychiatry, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Maximilian Ueberück
- Division of Molecular Psychiatry, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Julius N Meißner
- Division of Molecular Psychiatry, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Charlotte E Pelgrim
- Division of Molecular Psychiatry, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Johnathan Adams
- Division of Molecular Psychiatry, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Oliver Wirths
- Division of Molecular Psychiatry, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Yvonne Bouter
- Division of Molecular Psychiatry, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Thomas A Bayer
- Division of Molecular Psychiatry, University Medical Center, Georg-August-University, Goettingen, Germany
| |
Collapse
|
32
|
Matsuda T, Hisatsune T. Cholinergic Modification of Neurogenesis and Gliosis Improves the Memory of AβPPswe/PSEN1dE9 Alzheimer's Disease Model Mice Fed a High-Fat Diet. J Alzheimers Dis 2018; 56:1-23. [PMID: 27911310 DOI: 10.3233/jad-160761] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We previously reported that neuroinflammation contributes to the amnesia of AβPPswe/PSEN1dE9 Alzheimer's disease model mice fed a high-fat diet to induce type-2 diabetes (T2DM-AD mice), but the underlying mechanism for the memory decline remained unclear. Recent studies have suggested that cholinergic modulation is involved in neuroinflammatory cellular reactions including neurogenesis and gliosis, and in memory improvement. In this study, we administered a broad-spectrum cholinesterase inhibitor, rivastigmine (2 mg/kg/day, s.c.), into T2DM-AD mice for 6 weeks, and evaluated their memory performance, neurogenesis, and neuroinflammatory reactions. By two hippocampal-dependent memory tests, the Morris water maze and contextual fear conditioning, rivastigmine improved the memory deterioration of the T2DM-AD mice (n = 8, p < 0.01). The number of newborn neurons in the hippocampal dentate gyrus was 1138±324 (Ave±SEM) in wild-type littermates, 2573±442 in T2DM-AD-Vehicle, and 2165±300 in T2DM-AD-Rivastigmine mice, indicating that neurogenesis was accelerated in the two T2DM-AD groups (n = 5, p < 0.05). The dendritic maturation of new neurons in T2DM-AD-Vehicle mice was severely abrogated, and rivastigmine treatment reversed this retarded maturation. In addition, the hippocampus of T2DM-AD-Vehicle mice showed increased proinflammatory cytokines IL-1β and TNF-α and gliosis, and rivastigmine treatment blocked these inflammatory reactions. Rivastigmine did not change the insulin abnormality or amyloid pathology in these mice. Thus, cholinergic modulation by rivastigmine treatment led to enhanced neurogenesis and the suppression of gliosis, which together ameliorated the memory decline in T2DM-AD model mice.
Collapse
|
33
|
Justice NJ. The relationship between stress and Alzheimer's disease. Neurobiol Stress 2018; 8:127-133. [PMID: 29888308 PMCID: PMC5991350 DOI: 10.1016/j.ynstr.2018.04.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/03/2018] [Accepted: 04/19/2018] [Indexed: 12/04/2022] Open
Abstract
Stress is critically involved in the development and progression of disease. From the stress of undergoing treatments to facing your own mortality, the physiological processes that stress drives have a serious detrimental effect on the ability to heal, cope and maintain a positive quality of life. This is becoming increasingly clear in the case of neurodegenerative diseases. Neurodegenerative diseases involve the devastating loss of cognitive and motor function which is stressful in itself, but can also disrupt neural circuits that mediate stress responses. Disrupting these circuits produces aberrant emotional and aggressive behavior that causes long-term care to be especially difficult. In addition, added stress drives progression of the disease and can exacerbate symptoms. In this review, I describe how neural and endocrine pathways activated by stress interact with ongoing neurodegenerative disease from both a clinical and experimental perspective.
Collapse
Affiliation(s)
- Nicholas J. Justice
- Institute of Molecular Medicine, University of Texas Health Sciences Center, Houston, TX, 77030, USA
| |
Collapse
|
34
|
Motor function deficits in the 12 month-old female 5xFAD mouse model of Alzheimer's disease. Behav Brain Res 2017; 337:256-263. [PMID: 28890389 DOI: 10.1016/j.bbr.2017.09.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 08/29/2017] [Accepted: 09/04/2017] [Indexed: 11/22/2022]
Abstract
Motor problems occur early in some patients with Alzheimer's disease (AD) and as the disease progresses many patients develop motor dysfunction. Motor dysfunction has been reported in some mouse models of AD, including the 5xFAD mouse, thus this model may be particularly useful for studying motor dysfunction in AD. In order to determine the extent of motor dysfunction in these mice, we tested 11-13 month old female 5xFAD and wildtype (WT) control mice in a battery of motor behaviour tasks. The 5xFAD mice showed hind limb clasping, weighed less and had slower righting reflexes than WT mice. In the open field, the 5xFAD mice travelled a shorter distance than the WT mice, spent less time moving and had a slower movement speed. The 5xFAD mice fell faster than the WT mice from the balance beam, wire suspension, grid suspension and rotarod tasks, indicating dysfunctions in balance, grip strength, motor co-ordination and motor learning. The 5xFAD mice had a short, shuffling gait with a shorter stride length than WT mice and had a slower swim speed. The 5xFAD mice also failed to show an acoustic startle response, likely due to motor dysfunction and previously reported hearing impairment. The 5xFAD mice did not show deficits in the ability of peripheral motor nerves to drive muscle output, suggesting that motor impairments are not due to dysfunction in peripheral motor nerves. These results indicate that the aged 5xFAD mice are deficient in numerous motor behaviours, and suggest that these mice may prove to be a good model for studying the mechanisms of motor dysfunction in AD, and motor behaviour might prove useful for assessing the efficacy of AD therapeutics. Motor dysfunction in 5xFAD mice must also be considered in behavioural tests of sensory and cognitive function so that performance is not confounded by impaired locomotor or swimming behaviour.
Collapse
|
35
|
Neuron and neuroblast numbers and cytogenesis in the dentate gyrus of aged APP swe /PS1 dE9 transgenic mice: Effect of long-term treatment with paroxetine. Neurobiol Dis 2017; 104:50-60. [DOI: 10.1016/j.nbd.2017.04.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/07/2017] [Accepted: 04/27/2017] [Indexed: 11/20/2022] Open
|
36
|
Early postnatal handling reduces hippocampal amyloid plaque formation and enhances cognitive performance in APPswe/PS1dE9 mice at middle age. Neurobiol Learn Mem 2017; 144:27-35. [PMID: 28579367 DOI: 10.1016/j.nlm.2017.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/03/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
In rodents, fragmented and low levels of maternal care have been implicated in age-related cognitive decline and the incidence and progression of Alzheimer's pathology. In contrast, enhancing early postnatal maternal care has been associated with improved cognitive function later in life. Here we examined whether early postnatal handling of mouse pups from postnatal days 2-9 enhanced maternal care and whether this affected cognition and Alzheimer pathology at 5 and 11months of age in the APPswe/PS1dE9 mouse model for Alzheimer's disease. Brief, 15min daily episodes of separating offspring from their dams from postnatal days 2-9 (early handling, EH) increased maternal care of the dam towards her pups upon reunion. At 11 (but not 5) months of age, EH APPswe/PS1dE1 mice displayed significantly reduced amyloid plaque pathology in the hippocampus. At this age, EH also prevented short-term working memory deficits while restoring impairments in contextual fear memory formation in APPswe/PS1dE9 mice. EH did not modulate amyloid pathology in the amygdala, nor did it affect auditory fear conditioning deficits in APPswe/PS1dE9 mice. We conclude that increased levels of maternal care during the early life period delays amyloid accumulation and cognitive decline in an Alzheimer's mouse model, involving the hippocampus, but not to the amygdala. These studies highlight the importance of the early postnatal period in modulating resilience to develop Alzheimer's pathology later in life.
Collapse
|
37
|
Ahuja M, Buabeid M, Abdel-Rahman E, Majrashi M, Parameshwaran K, Amin R, Ramesh S, Thiruchelvan K, Pondugula S, Suppiramaniam V, Dhanasekaran M. Immunological alteration & toxic molecular inductions leading to cognitive impairment & neurotoxicity in transgenic mouse model of Alzheimer's disease. Life Sci 2017; 177:49-59. [PMID: 28286225 DOI: 10.1016/j.lfs.2017.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 02/27/2017] [Accepted: 03/08/2017] [Indexed: 01/08/2023]
Abstract
AIMS Inflammation is considered to be one of the crucial pathological factors associated with the development of Alzheimer's disease, although supportive experimental evidence remains undiscovered. Therefore, the current study was carried out to better understand and establish the pathophysiological involvement of chronic inflammation in a double transgenic mouse model of Alzheimer's disease. MAIN METHODS We analyzed amyloid-beta deposition, oxidative stress, biochemical, neurochemical and immunological markers in a 10month old (APΔE9) mouse model. Memory functions were assessed by behavioral testing followed by measurement of synaptic plasticity via extracellular field recordings. KEY FINDINGS Substantial increases in amyloid-beta levels, beta-secretase activity, and oxidative stress, along with significant neurochemical alterations in glutamate and GABA levels were detected in the brain of APΔE9 mice. Interestingly, marked elevations of pro-inflammatory cytokines in whole brain lysate of APΔE9 mice were observed. Flow cytometric analysis revealed a higher frequency of CD4+ IL-17a and IFN-γ secreting T-cells in APΔE9 brain, indicating a robust T-cell infiltration and activation. Behavioral deficits in learning and memory tasks, along with impairment in long-term potentiation and associated biochemical changes in the expression of glutamatergic receptor subunits were evident. SIGNIFICANCE Thus, this study establishes the role by which oxidative stress, alterations in glutamate and GABA levels and inflammation increases hippocampal and cortical neurotoxicity resulting in the cognitive deficits associated with Alzheimer's disease.
Collapse
Affiliation(s)
- Manuj Ahuja
- Department of Drug Discovery and Development, Harrison School of Pharmacy (HSOP), Auburn University, AL 36849, USA
| | - Manal Buabeid
- Department of Drug Discovery and Development, Harrison School of Pharmacy (HSOP), Auburn University, AL 36849, USA
| | - Engy Abdel-Rahman
- Department of Drug Discovery and Development, Harrison School of Pharmacy (HSOP), Auburn University, AL 36849, USA; Center for Aging and Associated Diseases, Helmy Institute of Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Mohammed Majrashi
- Department of Drug Discovery and Development, Harrison School of Pharmacy (HSOP), Auburn University, AL 36849, USA
| | - Kodeeswaran Parameshwaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy (HSOP), Auburn University, AL 36849, USA
| | - Rajesh Amin
- Department of Drug Discovery and Development, Harrison School of Pharmacy (HSOP), Auburn University, AL 36849, USA
| | - Sindhu Ramesh
- Department of Drug Discovery and Development, Harrison School of Pharmacy (HSOP), Auburn University, AL 36849, USA
| | - Kariharan Thiruchelvan
- Department of Drug Discovery and Development, Harrison School of Pharmacy (HSOP), Auburn University, AL 36849, USA
| | - Satyanarayana Pondugula
- Department of Anatomy and Physiology, College of Veterinary Science, Auburn University, AL 36849, USA
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Harrison School of Pharmacy (HSOP), Auburn University, AL 36849, USA
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy (HSOP), Auburn University, AL 36849, USA.
| |
Collapse
|
38
|
Wiesmann M, Zerbi V, Jansen D, Lütjohann D, Veltien A, Heerschap A, Kiliaan AJ. Hypertension, cerebrovascular impairment, and cognitive decline in aged AβPP/PS1 mice. Theranostics 2017; 7:1277-1289. [PMID: 28435465 PMCID: PMC5399593 DOI: 10.7150/thno.18509] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 01/18/2017] [Indexed: 11/05/2022] Open
Abstract
Cardiovascular risk factors, especially hypertension, are also major risk factors for Alzheimer's disease (AD). To elucidate the underlying vascular origin of neurodegenerative processes in AD, we investigated the relation between systolic blood pressure (SBP) cerebral blood flow (CBF) and vasoreactivity with brain structure and function in a 16-18 months old double transgenic AβPPswe/PS1dE9 (AβPP/PS1) mouse model for AD. These aging AβPP/PS1 mice showed an increased SBP linked to a declined regional CBF. Furthermore, using advanced MRI techniques, decline of functional and structural connectivity was revealed in the AD-like mice coupled to impaired cognition, increased locomotor activity, and anxiety-related behavior. Post mortem analyses demonstrated also increased neuroinflammation, and both decreased synaptogenesis and neurogenesis in the AβPP/PS1 mice. Additionally, deviant levels of fatty acids and sterols were present in the brain tissue of the AβPP/PS1 mice indicating maladapted brain fatty acid metabolism. Our findings suggest a link between increased SBP, decreased cerebral hemodynamics and connectivity in an AD mouse model during aging, leading to behavioral and cognitive impairments. As these results mirror the complex clinical symptomatology in the prodromal phase of AD, we suggest that this AD-like murine model could be used to investigate prevention and treatment strategies for early AD patients. Moreover, this study helps to develop more efficient therapies and diagnostics for this very early stage of AD.
Collapse
|
39
|
Behavioural Phenotyping of APPswe/PS1δE9 Mice: Age-Rrelated Changes and Effect of Long-Term Paroxetine Treatment. PLoS One 2016; 11:e0165144. [PMID: 27814403 PMCID: PMC5096719 DOI: 10.1371/journal.pone.0165144] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 10/09/2016] [Indexed: 12/20/2022] Open
Abstract
Alzheimer’s disease (AD) is a devastating illness characterized by a progressive loss of cognitive, social, and emotional functions, including memory impairments and more global cognitive deficits. Clinical-epidemiological evidence suggests that neuropsychiatric symptoms precede the onset of cognitive symptoms both in humans with early and late onset AD. The behavioural profile promoted by the AD pathology is believed to associate with degeneration of the serotonergic system. Using the APPswe/PS1δE9 model of AD-like pathology starting with 9 months old mice, we characterised long term non-cognitive behavioural changes measured at 9, 12, 15, and 18 months of age and applied principal component analysis on data obtained from open field, elevated plus maze, and social interaction tests. Long-term treatment with the selective serotonin reuptake inhibitor (SSRI) paroxetine was applied to assess the role of 5-HT on the behavioural profile; duration of treatment was 9 months, initiated when mice were 9 months of age. Treatment with paroxetine delays the decline in locomotion, in exploration and risk assessment behaviour, found in the APP/PS1 mice. APP/PS1 mice also exhibit low social activity and less aggressiveness, both of which are not affected by treatment with paroxetine. The APP/PS1 behavioural phenotype, demonstrated in this study, only begins to manifest itself from 12 months of age. Our results indicate that treatment with SSRI might ameliorate some of the behavioural deficits found in aged APP/PS1 mice.
Collapse
|
40
|
Mao Y, Guo Z, Zheng T, Jiang Y, Yan Y, Yin X, Chen Y, Zhang B. Intranasal insulin alleviates cognitive deficits and amyloid pathology in young adult APPswe/PS1dE9 mice. Aging Cell 2016; 15:893-902. [PMID: 27457264 PMCID: PMC5013027 DOI: 10.1111/acel.12498] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2016] [Indexed: 11/26/2022] Open
Abstract
Brain insulin signaling deficits contribute to multiple pathological features of Alzheimer's disease (AD). Although intranasal insulin has shown efficacy in patients with AD, the underlying mechanisms remain largely unillustrated. Here, we demonstrate that intranasal insulin improves cognitive deficits, ameliorates defective brain insulin signaling, and strongly reduces β‐amyloid (Aβ) production and plaque formation after 6 weeks of treatment in 4.5‐month‐old APPswe/PS1dE9 (APP/PS1) mice. Furthermore, c‐Jun N‐terminal kinase activation, which plays a pivotal role in insulin resistance and AD pathologies, is significantly inhibited. The alleviation of amyloid pathology by intranasal insulin results mainly from enhanced nonamyloidogenic processing and compromised amyloidogenic processing of amyloid precursor protein (APP), and from a reduction in apolipoprotein E protein which is involved in Aβ metabolism. In addition, intranasal insulin effectively promotes hippocampal neurogenesis in APP/PS1 mice. This study, exploring the mechanisms underlying the beneficial effects of intranasal insulin on Aβ pathologies in vivo for the first time, highlights important preclinical evidence that intranasal insulin is potentially an effective therapeutic method for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Yan‐Fang Mao
- Department of Neurology the Second Affiliated Hospital College of Medicine Zhejiang University Hangzhou Zhejiang China
| | - Zhangyu Guo
- Department of Neurology the Second Affiliated Hospital College of Medicine Zhejiang University Hangzhou Zhejiang China
| | - Tingting Zheng
- Department of Neurology the Second Affiliated Hospital College of Medicine Zhejiang University Hangzhou Zhejiang China
| | - Yasi Jiang
- Department of Neurology the Second Affiliated Hospital College of Medicine Zhejiang University Hangzhou Zhejiang China
| | - Yaping Yan
- Department of Neurology the Second Affiliated Hospital College of Medicine Zhejiang University Hangzhou Zhejiang China
| | - Xinzhen Yin
- Department of Neurology the Second Affiliated Hospital College of Medicine Zhejiang University Hangzhou Zhejiang China
| | - Yanxing Chen
- Department of Neurology the Second Affiliated Hospital College of Medicine Zhejiang University Hangzhou Zhejiang China
| | - Baorong Zhang
- Department of Neurology the Second Affiliated Hospital College of Medicine Zhejiang University Hangzhou Zhejiang China
| |
Collapse
|
41
|
Translational Assays for Assessment of Cognition in Rodent Models of Alzheimer’s Disease and Dementia. J Mol Neurosci 2016; 60:371-382. [DOI: 10.1007/s12031-016-0837-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 08/31/2016] [Indexed: 02/06/2023]
|
42
|
Huang H, Nie S, Cao M, Marshall C, Gao J, Xiao N, Hu G, Xiao M. Characterization of AD-like phenotype in aged APPSwe/PS1dE9 mice. AGE (DORDRECHT, NETHERLANDS) 2016; 38:303-322. [PMID: 27439903 PMCID: PMC5061676 DOI: 10.1007/s11357-016-9929-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/12/2016] [Indexed: 05/28/2023]
Abstract
Transgenic APPSwe/PS1dE9 (APP/PS1) mice that overproduce amyloid beta (Aβ) are extensively used in the studies of pathogenesis and experimental therapeutics and new drug screening for Alzheimer's disease (AD). However, most of the current literature uses young or adult APP/PS1 mice. In order to provide a broader view of AD-like phenotype of this animal model, in this study, we systematically analyzed behavioral and pathological profiles of 24-month-old male APP/PS1 mice. Aged APP/PS1 mice had reference memory deficits as well as anxiety, hyperactivity, and social interaction impairment. Consistently, there was obvious deposition of amyloid plaques in the dorsal hippocampus with decreased expression of insulin-degrading enzyme, a proteolytic enzyme responsible for degradation of intracellular Aβ. Furthermore, decreases in hippocampal volume, neuronal number and synaptophysin expression, and astrocyte atrophy were also observed in aged APP/PS1 mice. This finding suggests that aged APP/PS1 mice can well replicate cognitive and noncognitive behavioral abnormalities, hippocampal atrophy, and neuronal and astrocyte degeneration in AD patients, to enable more objective and refined preclinical evaluation of therapeutic drugs and strategies for AD treatment.
Collapse
Affiliation(s)
- Huang Huang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, 211166, China
- Department of Neurology, Sir Run Run Shaw Hospital, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Sipei Nie
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, 211166, China
| | - Min Cao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, 211166, China
| | - Charles Marshall
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, 211166, China
- Department of Rehabilitation Sciences, University of Kentucky Center of Excellence in Rural Health, Hazard, KY, 41701, USA
| | - Junying Gao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, 211166, China
| | - Na Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, 211166, China
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, 211166, China
| | - Ming Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
43
|
Montgomery KS, Edwards G, Levites Y, Kumar A, Myers CE, Gluck MA, Setlow B, Bizon JL. Deficits in hippocampal-dependent transfer generalization learning accompany synaptic dysfunction in a mouse model of amyloidosis. Hippocampus 2016; 26:455-71. [PMID: 26418152 PMCID: PMC4803574 DOI: 10.1002/hipo.22535] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/11/2015] [Accepted: 09/17/2015] [Indexed: 11/08/2022]
Abstract
Elevated β-amyloid and impaired synaptic function in hippocampus are among the earliest manifestations of Alzheimer's disease (AD). Most cognitive assessments employed in both humans and animal models, however, are insensitive to this early disease pathology. One critical aspect of hippocampal function is its role in episodic memory, which involves the binding of temporally coincident sensory information (e.g., sights, smells, and sounds) to create a representation of a specific learning epoch. Flexible associations can be formed among these distinct sensory stimuli that enable the "transfer" of new learning across a wide variety of contexts. The current studies employed a mouse analog of an associative "transfer learning" task that has previously been used to identify risk for prodromal AD in humans. The rodent version of the task assesses the transfer of learning about stimulus features relevant to a food reward across a series of compound discrimination problems. The relevant feature that predicts the food reward is unchanged across problems, but an irrelevant feature (i.e., the context) is altered. Experiment 1 demonstrated that C57BL6/J mice with bilateral ibotenic acid lesions of hippocampus were able to discriminate between two stimuli on par with control mice; however, lesioned mice were unable to transfer or apply this learning to new problem configurations. Experiment 2 used the APPswe PS1 mouse model of amyloidosis to show that robust impairments in transfer learning are evident in mice with subtle β-amyloid-induced synaptic deficits in the hippocampus. Finally, Experiment 3 confirmed that the same transfer learning impairments observed in APPswePS1 mice were also evident in the Tg-SwDI mouse, a second model of amyloidosis. Together, these data show that the ability to generalize learned associations to new contexts is disrupted even in the presence of subtle hippocampal dysfunction and suggest that, across species, this aspect of hippocampal-dependent learning may be useful for early identification of AD-like pathology.
Collapse
Affiliation(s)
- Karienn S. Montgomery
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX
| | - George Edwards
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Health Science Center in Houston, Houston, TX
| | - Yona Levites
- Department of Neuroscience, University of Florida, Gainesville, FL
| | - Ashok Kumar
- Department of Neuroscience, University of Florida, Gainesville, FL
| | - Catherine E. Myers
- VA New Jersey Health Care System, East Orange, NJ 07018
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ
| | - Mark A. Gluck
- Center for Molecular & Behavioral Neuroscience, Rutgers University, Newark, NJ
| | - Barry Setlow
- Department of Psychiatry, University of Florida, Gainesville, FL
| | | |
Collapse
|
44
|
Lazarov O, Hollands C. Hippocampal neurogenesis: Learning to remember. Prog Neurobiol 2016; 138-140:1-18. [PMID: 26855369 DOI: 10.1016/j.pneurobio.2015.12.006] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 12/15/2015] [Accepted: 12/30/2015] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease, the most prevalent form of dementia in the elderly, is characterized by progressive memory loss and cognitive dysfunction. It has become increasingly clear that while neuronal cell loss in the entorhinal cortex and hippocampus occurs in Alzheimer's disease, it is preceded by a long period of deficits in the connectivity of the hippocampal formation that contributes to the vulnerability of these circuits. Hippocampal neurogenesis plays a role in the maintenance and function of the dentate gyrus and hippocampal circuitry. This review will examine the evidence suggesting that hippocampal neurogenesis plays a role in cognitive function that is affected in Alzheimer's disease, will discuss the cognitive assessments used for the detection of Alzheimer's disease in humans and rodent models of familial Alzheimer's disease, and their value for unraveling the mechanism underlying the development of cognitive impairments and dementia.
Collapse
Affiliation(s)
- Orly Lazarov
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA.
| | - Carolyn Hollands
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
45
|
Neuroinflammation impairs adaptive structural plasticity of dendritic spines in a preclinical model of Alzheimer's disease. Acta Neuropathol 2016; 131:235-246. [PMID: 26724934 PMCID: PMC4713725 DOI: 10.1007/s00401-015-1527-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 11/27/2015] [Accepted: 12/16/2015] [Indexed: 12/17/2022]
Abstract
To successfully treat Alzheimer's disease (AD), pathophysiological events in preclinical stages need to be identified. Preclinical AD refers to the stages that exhibit amyloid deposition in the brain but have normal cognitive function, which are replicated in young adult APPswe/PS1deltaE9 (deltaE9) mice. By long-term in vivo two-photon microscopy, we demonstrate impaired adaptive spine plasticity in these transgenic mice illustrated by their failure to increase dendritic spine density and form novel neural connections when housed in enriched environment (EE). Decrease of amyloid plaques by reducing BACE1 activity restores the gain of spine density upon EE in deltaE9 mice, but not the remodeling of neural networks. On the other hand, anti-inflammatory treatment with pioglitazone or interleukin 1 receptor antagonist in deltaE9 mice successfully rescues the impairments in increasing spine density and remodeling of neural networks during EE. Our data suggest that neuroinflammation disrupts experience-dependent structural plasticity of dendritic spines in preclinical stages of AD.
Collapse
|
46
|
Tong Y, Sun Y, Tian X, Zhou T, Wang H, Zhang T, Zhan R, Zhao L, Kuerban B, Li Z, Wang Q, Jin Y, Fan D, Guo X, Han H, Qin S, Chui D. Phospholipid transfer protein (PLTP) deficiency accelerates memory dysfunction through altering amyloid precursor protein (APP) processing in a mouse model of Alzheimer's disease. Hum Mol Genet 2015; 24:5388-403. [DOI: 10.1093/hmg/ddv262] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/06/2015] [Indexed: 01/19/2023] Open
|
47
|
Zou C, Montagna E, Shi Y, Peters F, Blazquez-Llorca L, Shi S, Filser S, Dorostkar MM, Herms J. Intraneuronal APP and extracellular Aβ independently cause dendritic spine pathology in transgenic mouse models of Alzheimer's disease. Acta Neuropathol 2015; 129:909-20. [PMID: 25862638 PMCID: PMC4436699 DOI: 10.1007/s00401-015-1421-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/01/2015] [Accepted: 04/01/2015] [Indexed: 12/28/2022]
Abstract
Alzheimer’s disease (AD) is thought to be caused by accumulation of amyloid-β protein (Aβ), which is a cleavage product of amyloid precursor protein (APP). Transgenic mice overexpressing APP have been used to recapitulate amyloid-β pathology. Among them, APP23 and APPswe/PS1deltaE9 (deltaE9) mice are extensively studied. APP23 mice express APP with Swedish mutation and develop amyloid plaques late in their life, while cognitive deficits are observed in young age. In contrast, deltaE9 mice with mutant APP and mutant presenilin-1 develop amyloid plaques early but show typical cognitive deficits in old age. To unveil the reasons for different progressions of cognitive decline in these commonly used mouse models, we analyzed the number and turnover of dendritic spines as important structural correlates for learning and memory. Chronic in vivo two-photon imaging in apical tufts of layer V pyramidal neurons revealed a decreased spine density in 4–5-month-old APP23 mice. In age-matched deltaE9 mice, in contrast, spine loss was only observed on cortical dendrites that were in close proximity to amyloid plaques. In both cases, the reduced spine density was caused by decreased spine formation. Interestingly, the patterns of alterations in spine morphology differed between these two transgenic mouse models. Moreover, in APP23 mice, APP was found to accumulate intracellularly and its content was inversely correlated with the absolute spine density and the relative number of mushroom spines. Collectively, our results suggest that different pathological mechanisms, namely an intracellular accumulation of APP or extracellular amyloid plaques, may lead to spine abnormalities in young adult APP23 and deltaE9 mice, respectively. These distinct features, which may represent very different mechanisms of synaptic failure in AD, have to be taken into consideration when translating results from animal studies to the human disease.
Collapse
|
48
|
Trypanosoma evansi infection impairs memory, increases anxiety behaviour and alters neurochemical parameters in rats. Parasitology 2015; 140:1432-41. [PMID: 23965823 DOI: 10.1017/s003118201300108x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The aim of this study was to investigate neurochemical and enzymatic changes in rats infected with Trypanosoma evansi, and their interference in the cognitive parameters. Behavioural assessment (assessment of cognitive performance), evaluation of cerebral L-[3H]glutamate uptake, acetylcholinesterase (AChE) activity and Ca+2 and Na+, K+-ATPase activity were evaluated at 5 and 30 days post infection (dpi). This study demonstrates a cognitive impairment in rats infected with T. evansi. At 5 dpi memory deficit was demonstrated by an inhibitory avoidance test. With the chronicity of the disease (30 dpi) animals showed anxiety symptoms. It is possible the inhibition of cerebral Na+, K+-ATPase activity, AChE and synaptosomal glutamate uptake are involved in cognitive impairment in infected rats by T. evansi. The understanding of cerebral host–parasite relationship may shed some light on the cryptic symptoms of animals and possibly human infection where patients often present with other central nervous system (CNS) disorders.
Collapse
|
49
|
Taniuchi N, Niidome T, Sugimoto H. [Fundamental study of memory impairment and non-cognitive behavioral alterations in APPswe/PS1dE9 mice]. YAKUGAKU ZASSHI 2015; 135:323-9. [PMID: 25747232 DOI: 10.1248/yakushi.14-00226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In addition to cognitive decline, Alzheimer's disease patients also exhibit non-cognitive symptoms commonly referred to as behavioral and psychological symptoms of dementia, or BPSD. These symptoms have a serious impact on the quality of life of these patients, as well as that of their caregivers, but there are currently no effective therapies. The amyloid β-peptide (Aβ) is suspected to play a central role in the cascade leading to Alzheimer's disease, but the precise mechanisms are still incompletely known. To assess the influence of Aβ pathology on cognitive and non-cognitive behaviors, we examined locomotor activity, motor coordination, and spatial memory in male and female APPswePS1dE9 mice (Alzheimer's disease model, double transgenic mice expressing an amyloid precursor protein with Swedish mutation and a presenilin-1 with deletion of exon 9) at 5 months of age, when the mice had subtle Aβ deposits, and again at 9 months of age, when the mice had numerous Aβ deposits. Compared to wild-type mice, the male and female APPswe/PS1dE9 mice showed normal motor coordination in the rotarod test at both 5 and 9 months. In the Morris water maze test, male and female APPswe/PS1dE9 mice showed impaired spatial memory at 9 months; however, no such deficits were found at 5 months. In a locomotor activity test, male APPswe/PS1dE9 mice exhibited locomotor hyperactivity at 9 months, while females exhibited locomotor hyperactivity at both 5 and 9 months compared to the control mice. Together, these results indicate that APPswe/PS1dE9 mice developed spatial memory impairment and BPSD-like behavioral alterations resulting from Aβ accumulation.
Collapse
Affiliation(s)
- Nobuhiko Taniuchi
- Department of Neuroscience for Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University
| | | | | |
Collapse
|
50
|
Cong L, Jia J, Qin W, Ren Y, Sun Y. Genome-wide analysis of DNA methylation in an APP/PS1 mouse model of Alzheimer's disease. Acta Neurol Belg 2014; 114:195-206. [PMID: 24347181 DOI: 10.1007/s13760-013-0267-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/29/2013] [Indexed: 12/16/2022]
Abstract
To investigate aberrant genome-wide CpG methylation patterns in cortex brain tissue of APP/PS1 mice and as compared to controls, which allows for identification of novel disease-associated genes. This study investigates the genome-wide DNA methylation profiles of the cortex from APP/PS1 transgenic mice and control mice using the Roche NimbleGen chip platform. Functional analysis was then conducted by Ingenuity Pathways Analysis system. The methylated DNA fragments in the genome of each sample were enriched by MeDIP and the whole-genome interrogations were hybridized to the Roche NimbleGen Human DNA Methylation 3x720 K CpG Island Plus RefSeq Promoter Array that cover 15,980 CpG islands and 20,404 reference gene promoter regions of the entire human genome. Analysis reveals 2346 CpG sites representing 485 unique genes as potentially associated with AD disease status pending confirmation in additional study. At the same time, these hyper-methylated genes display familial aggregation. An impairment of the transforming growth factor-β1 (TGF-β1) signaling pathway has been demonstrated to be specific to the AD brain and, particularly, to the early phase of the disease, supporting a role for epigenetic change of TGF-β1 in AD pathology. In future research, we will focus on TGF-β1, as it appeared to be the most promising candidate for AD.
Collapse
|