1
|
Dewanjee S, Bhattacharya H, Bhattacharyya C, Chakraborty P, Fleishman J, Alexiou A, Papadakis M, Jha SK. Nrf2/Keap1/ARE regulation by plant secondary metabolites: a new horizon in brain tumor management. Cell Commun Signal 2024; 22:497. [PMID: 39407193 PMCID: PMC11476647 DOI: 10.1186/s12964-024-01878-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Brain cancer is regarded as one of the most life-threatening forms of cancer worldwide. Oxidative stress acts to derange normal brain homeostasis, thus is involved in carcinogenesis in brain. The Nrf2/Keap1/ARE pathway is an important signaling cascade responsible for the maintenance of redox homeostasis, and regulation of anti-inflammatory and anticancer activities by multiple downstream pathways. Interestingly, Nrf2 plays a somewhat, contradictory role in cancers, including brain cancer. Nrf2 has traditionally been regarded as a tumor suppressor since its cytoprotective functions are considered to be the principle cellular defense mechanism against exogenous and endogenous insults, such as xenobiotics and oxidative stress. However, hyperactivation of the Nrf2 pathway supports the survival of normal as well as malignant cells, protecting them against oxidative stress, and therapeutic agents. Plants possess a pool of secondary metabolites with potential chemotherapeutic/chemopreventive actions. Modulation of Nrf2/ARE and downstream activities in a Keap1-dependant manner, with the aid of plant-derived secondary metabolites exhibits promise in the management of brain tumors. Current article highlights the effects of Nrf2/Keap1/ARE cascade on brain tumors, and the potential role of secondary metabolites regarding the management of the same.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India.
| | - Hiranmoy Bhattacharya
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Chiranjib Bhattacharyya
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Joshua Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, 11741, Greece
- Department of Research & Development, AFNP Med, Wien, 1030, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, Delhi, 110008, India.
| |
Collapse
|
2
|
Zolnourian A, Garland P, Holton P, Arora M, Rhodes J, Uff C, Birch T, Howat D, Franklin S, Galea I, Bulters D. A Randomised Controlled Trial of SFX-01 After Subarachnoid Haemorrhage - The SAS Study. Transl Stroke Res 2024:10.1007/s12975-024-01278-1. [PMID: 39028412 DOI: 10.1007/s12975-024-01278-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
SFX-01 is a novel drug for clinical delivery of sulforaphane (SFN). SFN is a potent nuclear factor erythroid 2-related factor 2 activator that reduces inflammation and oxidation, improving outcomes after subarachnoid haemorrhage (SAH) in animal models. This was a multi-centre, double-blind, placebo-controlled, parallel-group randomised clinical trial to evaluate the safety, pharmacokinetics and efficacy of 28 days of SFX-01 300 mg BD in patients aged 18-80 with spontaneous SAH and high blood load on CT. Primary outcomes were (1) safety, (2) plasma and CSF SFN and metabolite levels and (3) vasospasm on transcranial doppler ultrasound. Secondary outcomes included CSF haptoglobin and malondialdehyde and clinical outcome on the modified Rankin Scale (mRS) and SAH outcome tool (SAHOT). A total of 105 patients were randomised (54 SFX-01, 51 placebo). There were no differences in adverse events other than nausea (9 SFX-01 (16.7%), 1 placebo (2.0%)). SFN, SFN-glutathione and SFN-N-acetyl-cysteine AUClast were 16.2, 277 and 415 h × ng/ml. Plasma SFN was higher in GSTT1 null individuals (t = 2.40, p = 0.023). CSF levels were low with many samples below the lower limit of quantification and predicted by the CSF/serum albumin ratio (R2 = 0.182, p = 0.039). There was no difference in CSF haptoglobin (1.981 95%CI 0.992-3.786, p = 0.052) or malondialdehyde (1.12 95%CI 0.7477-1.687, p = 0.572) or middle cerebral artery flow velocity (1.04 95%CI 0.903-1.211, p = 0.545) or functional outcome (mRS 1.647 95%CI 0.721-3.821, p = 0.237, SAHOT 1.082 95%CI 0.464-2.525, p = 0.855). SFX-01 is safe and effective for the delivery of SFN in acutely unwell patients. SFN penetrated CSF less than expected and did not reduce large vessel vasospasm or improve outcome. Trial registration: NCT02614742 clinicaltrials.gov.
Collapse
Affiliation(s)
| | - Patrick Garland
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Patrick Holton
- Neurosurgery, University Hospital Southampton, Southampton, UK
| | - Mukul Arora
- Neurosurgery, University Hospital Southampton, Southampton, UK
| | - Jonathan Rhodes
- Neuro Intensive Care, Royal Infirmary of Edinburgh, Edinburgh, UK
| | | | - Tony Birch
- Medical Physics, University Hospital Southampton, Southampton, UK
| | | | | | - Ian Galea
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Neurology, University Hospital Southampton, Southampton, UK
| | - Diederik Bulters
- Neurosurgery, University Hospital Southampton, Southampton, UK.
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
| |
Collapse
|
3
|
Park SH, Lee DH, Lee DH, Jung CH. Scientific evidence of foods that improve the lifespan and healthspan of different organisms. Nutr Res Rev 2024; 37:169-178. [PMID: 37469212 DOI: 10.1017/s0954422423000136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Age is a risk factor for numerous diseases. Although the development of modern medicine has greatly extended the human lifespan, the duration of relatively healthy old age, or 'healthspan', has not increased. Targeting the detrimental processes that can occur before the onset of age-related diseases can greatly improve health and lifespan. Healthspan is significantly affected by what, when and how much one eats. Dietary restriction, including calorie restriction, fasting or fasting-mimicking diets, to extend both lifespan and healthspan has recently attracted much attention. However, direct scientific evidence that consuming specific foods extends the lifespan and healthspan seems lacking. Here, we synthesized the results of recent studies on the lifespan and healthspan extension properties of foods and their phytochemicals in various organisms to confirm how far the scientific research on the effect of food on the lifespan has reached.
Collapse
Affiliation(s)
- So-Hyun Park
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, South Korea
| | - Da-Hye Lee
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Dae-Hee Lee
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon-do, South Korea
| | - Chang Hwa Jung
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, South Korea
- Department of Food Biotechnology, University of Science and Technology, Wanju-gun, Jeollabuk-do, South Korea
| |
Collapse
|
4
|
Khassafi N, Azami Tameh A, Mirzaei H, Rafat A, Barati S, Khassafi N, Vahidinia Z. Crosstalk between Nrf2 signaling pathway and inflammation in ischemic stroke: Mechanisms of action and therapeutic implications. Exp Neurol 2024; 373:114655. [PMID: 38110142 DOI: 10.1016/j.expneurol.2023.114655] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/03/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
One of the major causes of long-term disability and mortality is ischemic stroke that enjoys limited treatment approaches. On the one hand, oxidative stress, induced by excessive generation of reactive oxygen species (ROS), plays a critical role in post-stroke inflammatory response. Increased ROS generation is one of the basic factors in the progression of stroke-induced neuroinflammation. Moreover, intravenous (IV) thrombolysis using recombinant tissue plasminogen activator (rtPA) as the only medication approved for patients with acute ischemic stroke who suffer from some clinical restrictions it could not cover the complicated episodes that happen after stroke. Thus, identifying novel therapeutic targets is crucial for successful preparation of new medicines. Recent evidence indicates that the transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2) contributes significantly to regulating the antioxidant production in cytosol, which causes antiinflammatory effects on neurons. New findings have shown a relationship between activation of the Nrf2 and glial cells, nuclear factor kappa B (NF-κB) pathway, the nucleotide-binding domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome signaling, and expression of inflammatory markers, suggesting induction of Nrf2 activation can represent a promising therapeutic alternative as the modulators of Nrf2 dependent pathways for targeting inflammatory responses in neural tissue. Hence, this review addresses the relationship of Nrf2 signaling with inflammation and Nrf2 activators' potential as therapeutic agents. This review helps to improve required knowledge for focused therapy and the creation of modern and improved treatment choices for patients with ischemic stroke.
Collapse
Affiliation(s)
- Negar Khassafi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Abolfazl Azami Tameh
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Rafat
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Shirin Barati
- Department of Anatomy, Saveh University of Medical Sciences, Saveh, Iran
| | - Negin Khassafi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zeinab Vahidinia
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
5
|
Kishore M, Pradeep M, Narne P, Jayalakshmi S, Panigrahi M, Patil A, Babu PP. Regulation of Keap1-Nrf2 axis in temporal lobe epilepsy-hippocampal sclerosis patients may limit the seizure outcomes. Neurol Sci 2023; 44:4441-4450. [PMID: 37432566 DOI: 10.1007/s10072-023-06936-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/28/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND Accumulation of reactive oxygen species (ROS) exacerbates neuronal loss during seizure-induced excitotoxicity. Keap1 (Kelch-like ECH-associated protein1)-nuclear factor erythroid 2-related factor 2 (Nrf2) axis is one of the known active antioxidant response mechanisms. Our study focused on finding the factors influencing Keap1-Nrf2 axis regulation in temporal lobe epilepsy (TLE) associated with hippocampal sclerosis (HS) patients. METHODS Based on post-surgical follow-up data, patient samples (n = 26) were categorized into class 1 (completely seizure-free) and class 2 (only focal-aware seizures/auras), as suggested by International League Against Epilepsy (ILAE). For molecular analyses, double immunofluorescence assay and Western blot analysis were employed. RESULTS A significant decrease in expression of Nrf2 (p < 0.005), HO-1; p < 0.02) and NADPH Quinone oxidoreductase1 (NQO1; p < 0.02) was observed in ILAE class 2. Keap1 (p < 0.02) and histone methyltransferases (HMTs) like SetD7 (SET7/9; SET domain-containing 7 histone lysine methyltransferase) (p < 0.009) and enhancer of zeste homolog 2 (EZH2; p < 0.02) and methylated histones viz., H3K4me1 (p < 0.001), H3K9me3 (p < 0.001), and H3K27me3 (p < 0.001) was upregulated in ILAE class 2. Nrf2-interacting proteins viz., p21 (p < 0.001) and heat shock protein 90 (HSP90; p < 0.03) increased in class 1 compared to class 2 patients. CONCLUSION Upregulation of HMTs and methylated histones can limit phase II antioxidant enzyme expression. Also, HSP90 and p21 that interfere with Keap1-Nrf2 interaction could contribute to a marginal increase in HO-1 and NQO1 expression despite histone methylation and Keap1. Based on our findings, we conclude that TLE-HS patients prone to seizure recurrence were found to have dysfunctional antioxidant response, in part, owing to Keap1-Nrf2 axis. The significance of Keap1-Nrf2 signaling mechanism in generation of phase II antioxidant response. Keap1-Nrf2 controls antioxidant response through regulation of phase II antioxidant enzymes like HO-1 (heme oxygenase-1), NQO1 (NADPH-Quinone Oxidoreductase1), and glutathione S-transferase (GST). Release of Nrf2 from negative regulation by Keap1 causes its translocation into nucleus, forming a complex with cAMP response-element binding protein (CBP) and small Maf proteins (sMaf). This complex subsequently binds antioxidant response element (ARE) and elicits and antioxidant response involving expression of phase II antioxidant enzymes. Reactive oxygen species (ROS) modify Cysteine 151 residue, p62 (sequsetosome-1), and interacts with Nrf2- binding site in Keap 1. p21 and HSP90 prevent Nrf2 interaction with Keap1. At transcriptional level, histone methyltransferases like EZH2 (enhancer of zeste homologue2), and SetD7 (SET7/9; SET domain-containing 7 histone lysine methyltransferase) and corresponding histone targets viz., H3K27me3, H3K9me3, and H3K4me1 influence Nrf2 and Keap1 expression respectively.
Collapse
Affiliation(s)
- Madhamanchi Kishore
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Madhamanchi Pradeep
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
- Govt. Degree College for Men's, Srikakulam District, Srikakulam, Andhra Pradesh, 532001, India
| | - Parimala Narne
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Sita Jayalakshmi
- Department of Neurology, Krishna Institute of Medical Sciences (KIMS), Secunderabad, Telangana, India
| | - Manas Panigrahi
- Department of Neurology, Krishna Institute of Medical Sciences (KIMS), Secunderabad, Telangana, India
| | - Anuja Patil
- Department of Neurology, Krishna Institute of Medical Sciences (KIMS), Secunderabad, Telangana, India
| | - Phanithi Prakash Babu
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India.
| |
Collapse
|
6
|
Mercado-Gómez OF, Arriaga-Ávila VS, Vega-García A, Orozco-Suarez S, Pérez-Koldenkova V, Camarillo-Sánchez JJ, Álvarez-Herrera M, Guevara-Guzmán R. Daytime-Restricted Feeding Ameliorates Oxidative Stress by Increasing NRF2 Transcriptional Factor in the Rat Hippocampus in the Pilocarpine-Induced Acute Seizure Model. Brain Sci 2023; 13:1442. [PMID: 37891811 PMCID: PMC10605835 DOI: 10.3390/brainsci13101442] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Seizure-mediated oxidative stress is a crucial mechanism in the pathophysiology of epilepsy. This study evaluated the antioxidant effects of daytime-restricted feeding (DRF) and the role of the Nrf2 signaling pathway in a lithium-pilocarpine model seizure model that induces status epilepticus (SE). We performed a lipoperoxidation assay and dihydroethidium fluorescence to measure oxidative stress markers in the hippocampus (malondialdehyde and reactive oxygen species). The protein content of Nrf2 and its downstream protein SOD2 was evaluated using Western blotting. The cellular distribution of the Nrf2 and SOD2 proteins in the pyramidal cell layer of both the CA1 and CA3 hippocampal subfields and astrocytes (GFAP marker) were quantified using immunofluorescence and immunohistochemistry, respectively. Our results indicate that DRF reduced the malondialdehyde levels and the production of reactive oxygen species. Furthermore, a significant increase in Nrf2 and SOD2 protein content was observed in animals subjected to restrictive diet. In addition, DRF increased the relative intensity of the Nrf2 fluorescence in the perinuclear and nuclear compartments of pyramidal neurons in the CA1 subfield. Nrf2 immunoreactivity and the astrocyte marker GFAP also increased their colocalization under DRF conditions. Additionally, SOD2 immunoreactivity was increased in CA1 pyramidal neurons but not in the CA3 region. Our findings suggest that DRF partially prevents oxidative stress by increasing the Nrf2 transcriptional factor and the SOD2 enzyme during the development of SE.
Collapse
Affiliation(s)
- Octavio Fabián Mercado-Gómez
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (O.F.M.-G.); (V.S.A.-Á.); (A.V.-G.); (J.J.C.-S.); (M.Á.-H.)
| | - Virginia Selene Arriaga-Ávila
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (O.F.M.-G.); (V.S.A.-Á.); (A.V.-G.); (J.J.C.-S.); (M.Á.-H.)
| | - Angélica Vega-García
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (O.F.M.-G.); (V.S.A.-Á.); (A.V.-G.); (J.J.C.-S.); (M.Á.-H.)
| | - Sandra Orozco-Suarez
- Medical Research Unit in Neurological Diseases, National Medical Center XXI, Mexico City 06720, Mexico;
| | - Vadim Pérez-Koldenkova
- National Advanced Microscopy Laboratory, National Medical Center XXI, Mexico City 06720, Mexico
| | - Juan José Camarillo-Sánchez
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (O.F.M.-G.); (V.S.A.-Á.); (A.V.-G.); (J.J.C.-S.); (M.Á.-H.)
| | - Marcelino Álvarez-Herrera
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (O.F.M.-G.); (V.S.A.-Á.); (A.V.-G.); (J.J.C.-S.); (M.Á.-H.)
| | - Rosalinda Guevara-Guzmán
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (O.F.M.-G.); (V.S.A.-Á.); (A.V.-G.); (J.J.C.-S.); (M.Á.-H.)
| |
Collapse
|
7
|
Otoo RA, Allen AR. Sulforaphane's Multifaceted Potential: From Neuroprotection to Anticancer Action. Molecules 2023; 28:6902. [PMID: 37836745 PMCID: PMC10574530 DOI: 10.3390/molecules28196902] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 10/15/2023] Open
Abstract
Sulforaphane (SFN) is a naturally occurring compound found in cruciferous vegetables such as broccoli and cauliflower. It has been widely studied for its potential as a neuroprotective and anticancer agent. This review aims to critically evaluate the current evidence supporting the neuroprotective and anticancer effects of SFN and the potential mechanisms through which it exerts these effects. SFN has been shown to exert neuroprotective effects through the activation of the Nrf2 pathway, the modulation of neuroinflammation, and epigenetic mechanisms. In cancer treatment, SFN has demonstrated the ability to selectively induce cell death in cancer cells, inhibit histone deacetylase, and sensitize cancer cells to chemotherapy. SFN has also shown chemoprotective properties through inhibiting phase I metabolizing enzymes, modulating phase II xenobiotic-metabolizing enzymes, and targeting cancer stem cells. In addition to its potential as a therapeutic agent for neurological disorders and cancer treatment, SFN has shown promise as a potential treatment for cerebral ischemic injury and intracranial hemorrhage. Finally, the ongoing and completed clinical trials on SFN suggest potential therapeutic benefits, but more research is needed to establish its effectiveness. Overall, SFN holds significant promise as a natural compound with diverse therapeutic applications.
Collapse
Affiliation(s)
- Raymond A. Otoo
- Division of Radiation Health, University of Arkansas for Medical Sciences, 4301 West Markham, Suite 441B-2, Little Rock, AR 72205, USA;
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 West Markham, Suite 441B-2, Little Rock, AR 72205, USA
- Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, 4301 West Markham, Suite 441B-2, Little Rock, AR 72205, USA
| | - Antiño R. Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, 4301 West Markham, Suite 441B-2, Little Rock, AR 72205, USA;
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 West Markham, Suite 441B-2, Little Rock, AR 72205, USA
- Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, 4301 West Markham, Suite 441B-2, Little Rock, AR 72205, USA
| |
Collapse
|
8
|
Treasure K, Harris J, Williamson G. Exploring the anti-inflammatory activity of sulforaphane. Immunol Cell Biol 2023; 101:805-828. [PMID: 37650498 DOI: 10.1111/imcb.12686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/24/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023]
Abstract
Dysregulation of innate immune responses can result in chronic inflammatory conditions. Glucocorticoids, the current frontline therapy, are effective immunosuppressive drugs but come with a trade-off of cumulative and serious side effects. Therefore, alternative drug options with improved safety profiles are urgently needed. Sulforaphane, a phytochemical derived from plants of the brassica family, is a potent inducer of phase II detoxification enzymes via nuclear factor-erythroid factor 2-related factor 2 (NRF2) signaling. Moreover, a growing body of evidence suggests additional diverse anti-inflammatory properties of sulforaphane through interactions with mediators of key signaling pathways and inflammatory cytokines. Multiple studies support a role for sulforaphane as a negative regulator of nuclear factor kappa-light chain enhancer of activated B cells (NF-κB) activation and subsequent cytokine release, inflammasome activation and direct regulation of the activity of macrophage migration inhibitory factor. Significantly, studies have also highlighted potential steroid-sparing activity for sulforaphane, suggesting that it may have potential as an adjunctive therapy for some inflammatory conditions. This review discusses published research on sulforaphane, including proposed mechanisms of action, and poses questions for future studies that might help progress our understanding of the potential clinical applications of this intriguing molecule.
Collapse
Affiliation(s)
- Katie Treasure
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
- Victorian Heart Hospital, Monash University, Clayton, VIC, Australia
| | - James Harris
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, Australia
- Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Gary Williamson
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
- Victorian Heart Hospital, Monash University, Clayton, VIC, Australia
| |
Collapse
|
9
|
Mondal A, Sharma R, Abiha U, Ahmad F, Karan A, Jayaraj RL, Sundar V. A Spectrum of Solutions: Unveiling Non-Pharmacological Approaches to Manage Autism Spectrum Disorder. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1584. [PMID: 37763703 PMCID: PMC10536417 DOI: 10.3390/medicina59091584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
Autism spectrum disorder (ASD) is a developmental disorder that causes difficulty while socializing and communicating and the performance of stereotyped behavior. ASD is thought to have a variety of causes when accompanied by genetic disorders and environmental variables together, resulting in abnormalities in the brain. A steep rise in ASD has been seen regardless of the numerous behavioral and pharmaceutical therapeutic techniques. Therefore, using complementary and alternative therapies to treat autism could be very significant. Thus, this review is completely focused on non-pharmacological therapeutic interventions which include different diets, supplements, antioxidants, hormones, vitamins and minerals to manage ASD. Additionally, we also focus on complementary and alternative medicine (CAM) therapies, herbal remedies, camel milk and cannabiodiol. Additionally, we concentrate on how palatable phytonutrients provide a fresh glimmer of hope in this situation. Moreover, in addition to phytochemicals/nutraceuticals, it also focuses on various microbiomes, i.e., gut, oral, and vaginal. Therefore, the current comprehensive review opens a new avenue for managing autistic patients through non-pharmacological intervention.
Collapse
Affiliation(s)
- Arunima Mondal
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Ghudda 151401, India
| | - Rashi Sharma
- Department of Biotechnology, Delhi Technological University, Bawana, Delhi 110042, India
| | - Umme Abiha
- IDRP, Indian Institute of Technology, Jodhpur 342030, India
- All India Institute of Medical Sciences, Jodhpur 342005, India
| | - Faizan Ahmad
- Department of Medical Elementology and Toxicology, Jamia Hamdard University, Delhi 110062, India
| | | | - Richard L. Jayaraj
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Vaishnavi Sundar
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
10
|
Chen SY, Kannan M. Neural crest cells and fetal alcohol spectrum disorders: Mechanisms and potential targets for prevention. Pharmacol Res 2023; 194:106855. [PMID: 37460002 PMCID: PMC10528842 DOI: 10.1016/j.phrs.2023.106855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/23/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023]
Abstract
Fetal alcohol spectrum disorders (FASD) are a group of preventable and nongenetic birth defects caused by prenatal alcohol exposure that can result in a range of cognitive, behavioral, emotional, and functioning deficits, as well as craniofacial dysmorphology and other congenital defects. During embryonic development, neural crest cells (NCCs) play a critical role in giving rise to many cell types in the developing embryos, including those in the peripheral nervous system and craniofacial structures. Ethanol exposure during this critical period can have detrimental effects on NCC induction, migration, differentiation, and survival, leading to a broad range of structural and functional abnormalities observed in individuals with FASD. This review article provides an overview of the current knowledge on the detrimental effects of ethanol on NCC induction, migration, differentiation, and survival. The article also examines the molecular mechanisms involved in ethanol-induced NCC dysfunction, such as oxidative stress, altered gene expression, apoptosis, epigenetic modifications, and other signaling pathways. Furthermore, the review highlights potential therapeutic strategies for preventing or mitigating the detrimental effects of ethanol on NCCs and reducing the risk of FASD. Overall, this article offers a comprehensive overview of the current understanding of the impact of ethanol on NCCs and its role in FASD, shedding light on potential avenues for future research and intervention.
Collapse
Affiliation(s)
- Shao-Yu Chen
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; University of Louisville Alcohol Research Center, Louisville, KY 40292, USA.
| | - Maharajan Kannan
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; University of Louisville Alcohol Research Center, Louisville, KY 40292, USA.
| |
Collapse
|
11
|
Boťanská B, Pecníková V, Fogarassyová M, Barančík M. The Role of Heat Shock Proteins and Autophagy in Mechanisms Underlying Effects of Sulforaphane on Doxorubicin-Induced Toxicity in HEK293 Cells. Physiol Res 2023; 72:S47-S59. [PMID: 37294118 DOI: 10.33549/physiolres.935107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023] Open
Abstract
Doxorubicin (DOX) is a cytostatic agent belonging to anthracycline group. Important role in mechanism associated with negative effects of DOX plays an oxidative stress. Heat shock proteins (HSPs) are part of mechanisms initiated in response to stressful stimuli and play an important role in cellular responses to oxidative stress through interaction with components of redox signaling. The present work was aimed to study the role of HSPs and autophagy in mechanisms underlying effects of sulforaphane (SFN), a potential activator of Nrf-2, on doxorubicin-induced toxicity in human kidney HEK293 cells. We investigated effects of SFN and DOX on proteins associated with regulation of heat shock response, redox signaling, and autophagy. Results show that SFN significantly reduced cytotoxic effects of DOX. The positive effects of SFN on DOX-induced changes were associated with up-regulation of Nrf-2 and HSP60 protein levels. In the case of another heat shock protein HSP40, SFN increased its levels when was administered alone but not in conditions when cells were exposed to the effects of DOX. Sulforaphane also reversed negative effects of DOX on activities of superoxide dismutases (SODs) and up-regulation of autophagy markers (LC3A/B-II, Atg5, and Atg12). In conclusion, the changes observed in HSP60 are of particular importance in terms of protecting cells from the effects of DOX. Finding that under conditions where SFN reduced cytotoxic effects of DOX were significantly increased protein levels of both Nrf-2 and HSP60 point to the role of HSP60 in mechanisms of redox signaling underlying effects of SFN on DOX-induced toxicity in HEK293 cells. Moreover, data confirmed an important role of autophagy in effects of SFN on DOX-induced toxicity.
Collapse
Affiliation(s)
- B Boťanská
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | | | |
Collapse
|
12
|
Mazhar M, Yang G, Xu H, Liu Y, Liang P, Yang L, Spáčil R, Shen H, Zhang D, Ren W, Yang S. Zhilong Huoxue Tongyu capsule attenuates intracerebral hemorrhage induced redox imbalance by modulation of Nrf2 signaling pathway. Front Pharmacol 2023; 14:1197433. [PMID: 37351503 PMCID: PMC10282143 DOI: 10.3389/fphar.2023.1197433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/24/2023] [Indexed: 06/24/2023] Open
Abstract
Background: One of the severely debilitating and fatal subtypes of hemorrhagic stroke is intracerebral hemorrhage (ICH), which lacks an adequate cure at present. The Zhilong Huoxue Tongyu (ZLHXTY) capsule has been utilized effectively since last decade to treat ICH, in some provinces of China but the scientific basis for its mechanism is lacking. Purpose: To investigate the neuroprotective role of ZLHXTY capsules for ICH-induced oxidative injury through the regulation of redox imbalance with the Nrf2 signaling pathway. Methods: Autologous blood injection model of ICH in C57BL/6J mice was employed. Three treatment groups received ZLHXTY once daily through oral gavage at doses 0.35 g/kg, 0.7 g/kg, and 1.4 g/kg, started after 2 h and continued for 72 h of ICH induction. The neurological outcome was measured using a balance beam test. Serum was tested for inflammatory markers IL-1β, IL-6, and TNF-α through ELISA, oxidative stress through hydrogen peroxide content assay, and antioxidant status by total antioxidant capacity (T-AOC) assay. Nuclear extract from brain tissue was assayed for Nrf2 transcriptional factor activity. RT-qPCR was performed for Nfe2l2, Sod1, Hmox1, Nqo1, and Mgst1; and Western blotting for determination of protein expression of Nrf2, p62, Pp62, Keap, HO1, and NQO1. Fluoro-jade C staining was also used to examine neuronal damage. Results: ZLHXTY capsule treatment following ICH demonstrated a protective effect against oxidative brain injury. Neurological scoring showed improvement in behavioral outcomes. ELISA-based identification demonstrated a significant decline in the expression of serum inflammatory markers. Hydrogen peroxide content in serum was found to be reduced. The total antioxidant capacity was also reduced in serum, but the ZLHXTY extract showed a concentration-dependent increase in T-AOC speculating at its intrinsic antioxidant potential. Nrf2 transcriptional factor activity, mRNA and protein expression analyses revealed normalization of Nrf2 and its downstream targets, which were previously elevated as a result of oxidative stress induced by ICH. Neuronal damage was also reduced markedly after ZLHXTY treatment as revealed by Fluoro-jade C staining. Conclusion: ZLHXTY capsules possess an intrinsic antioxidant potential that can modulate the ICH-induced redox imbalance in the brain as revealed by the normalization of Nrf2 and its downstream antioxidant targets.
Collapse
Affiliation(s)
- Maryam Mazhar
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine of Southwest Medical University, Luzhou, China
| | - Guoqiang Yang
- Research Center for Integrated Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Molecular Imaging and Therapy Research Unit, Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Houping Xu
- Preventive Treatment Center, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Yulin Liu
- Institute of Integrated Chinese and Western Medicine of Southwest Medical University, Luzhou, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Pan Liang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine of Southwest Medical University, Luzhou, China
| | - Luyin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine of Southwest Medical University, Luzhou, China
| | - Roman Spáčil
- The Czech Center for Traditional Chinese Medicine, Olomouc, Czechia
| | - Hongping Shen
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine of Southwest Medical University, Luzhou, China
| | - Dechou Zhang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine of Southwest Medical University, Luzhou, China
| | - Wei Ren
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine of Southwest Medical University, Luzhou, China
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine of Southwest Medical University, Luzhou, China
| |
Collapse
|
13
|
Beresewicz-Haller M. Hippocampal region-specific endogenous neuroprotection as an approach in the search for new neuroprotective strategies in ischemic stroke. Fiction or fact? Neurochem Int 2023; 162:105455. [PMID: 36410452 DOI: 10.1016/j.neuint.2022.105455] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Ischemic stroke is the leading cause of death and long-term disability worldwide, and, while considerable progress has been made in understanding its pathophysiology, the lack of effective treatments remains a major concern. In that context, receiving more and more consideration as a promising therapeutic method is the activation of natural adaptive mechanisms (endogenous neuroprotection) - an approach that seeks to enhance and/or stimulate the endogenous processes of plasticity and protection of the neuronal system that trigger the brain's intrinsic capacity for self-defence. Ischemic preconditioning is a classic example of endogenous neuroprotection, being the process by which one or more brief, non-damaging episodes of ischemia-reperfusion (I/R) induce tissue resistance to subsequent prolonged, damaging ischemia. Another less-known example is resistance to an I/R episode mounted by the hippocampal region consisting of CA2, CA3, CA4 and the dentate gyrus (here abbreviated to CA2-4, DG). This can be contrasted with the ischemia-vulnerable CA1 region. There is not yet a good understanding of these different sensitivities of the hippocampal regions, and hence of the endogenous neuroprotection characteristic of CA2-4, DG. However, this region is widely reported to have properties distinct from CA1, and capable of generating resistance to an I/R episode. These include activation of neurotrophic and neuroprotective factors, greater activation of anti-excitotoxic and anti-oxidant mechanisms, increased plasticity potential, a greater energy reserve and improved mitochondrial function. This review seeks to summarize properties of CA2-4, DG in the context of endogenous neuroprotection, and then to assess the potential utility of these properties to therapeutic approaches. In so doing, it appears to represent the first such addressing of the issue of ischemia resistance attributable to CA2-4, DG.
Collapse
|
14
|
Is Nrf2 Behind Endogenous Neuroprotection of the Hippocampal CA2-4,DG Region? Mol Neurobiol 2023; 60:1645-1658. [PMID: 36547847 PMCID: PMC9899192 DOI: 10.1007/s12035-022-03166-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
The transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2) is the master regulator of genes known to be involved in antioxidant, and anti-inflammatory processes, metabolic regulation, and other cellular functions. Here, we also hypothesize a core role for it in endogenous neuroprotection, i.e., the natural adaptive mechanisms protecting the brain from ischemia-reperfusion (I/R) episode. An example of endogenous neuroprotection is ischemia-resistance of the hippocampal regions comprising the CA2, CA3, CA4 and dentate gyrus subfields (here abbreviated to CA2-4,DG) which can be contrasted with the ischemia-vulnerable CA1 region. In the work detailed here, we used a gerbil model of transient cerebral ischemia to examined Nrf2 activation in CA1 and CA2-4,DG, in a control group, and post I/R episode. Data obtained indicate enhanced Nrf2 activity in CA2-4,DG as compared with CA1 in the control, with this difference seen to persist even after I/R. While I/R does indeed cause further activation of Nrf2 in CA2-4,DG, it is associated with slight and transient activation in CA1. Sub-regional differences in Nrf2 activity correlate with immunoreactivity of Keap1 (an Nrf2 suppressor) and Nrf2 target proteins, including heme oxygenase 1, the catalytic and modulatory sub-units of glutamate-cysteine ligase, and glutathione peroxidase 1. Pharmacological Nrf2 activation by sulforaphane results in protection of CA1 after I/R episode. Our results therefore suggest that high Nrf2 activity in CA2-4,DG may guarantee resistance of this region to I/R, potentially explaining the differential sensitivities of the hippocampal regions.
Collapse
|
15
|
Singh J, Thapliyal S, Kumar A, Paul P, Kumar N, Bisht M, Naithani M, Rao S, Handu SS. Dimethyl Fumarate Ameliorates Paclitaxel-Induced Neuropathic Pain in Rats. Cureus 2022; 14:e28818. [PMID: 36225395 PMCID: PMC9536397 DOI: 10.7759/cureus.28818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
Background Paclitaxel (PTX)-induced peripheral neuropathy (PIPN) is nonresponsive to the currently available analgesics. Previous studies have shown the role of oxidative stress and central sensitization in the development of peripheral neuropathy. Dimethyl fumarate (DMF) acts as a nuclear factor erythroid-2-related factor 2 (Nrf2) activator with neuroprotective benefits and is approved for use in multiple sclerosis. Materials and methods In the current research, we evaluated the efficacy of DMF on paclitaxel-induced peripheral neuropathy in rats. Every alternate day for one week, paclitaxel 2 mg/kg dose was injected to establish a rat model of PIPN. Animals were treated with 25 mg/kg and 50 mg/kg of DMF. All the animals were assessed for thermal hyperalgesia, cold allodynia, and mechanical allodynia once a week. The gene expression of Nrf2 and the levels of pro-inflammatory mediators (interleukin (IL)-6, tumor necrosis factor-alpha (TNF-α), and IL-1β) were quantified in the sciatic nerves of these rats. The levels of p38 mitogen-activated protein kinase (MAPK) and brain-derived neurotrophic factor (BDNF) were quantified in the dorsal horn of the spinal cord. Results DMF significantly attenuated paclitaxel-induced thermal hyperalgesia and cold/mechanical allodynia. A significant decrease in the levels of pro-inflammatory cytokines with the levels of p38 MAPK and BDNF was observed in the DMF-treated animals. DMF treatment significantly upregulated the gene expression of Nrf2 in the sciatic nerve. Conclusion These findings suggest that DMF prevented the development of PIPN in rats through the activation of Nrf2 and the inhibition of p38 MAPK and BDNF.
Collapse
|
16
|
The Role of Concomitant Nrf2 Targeting and Stem Cell Therapy in Cerebrovascular Disease. Antioxidants (Basel) 2022; 11:antiox11081447. [PMID: 35892653 PMCID: PMC9332234 DOI: 10.3390/antiox11081447] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
Despite the reality that a death from cerebrovascular accident occurs every 3.5 min in the United States, there are few therapeutic options which are typically limited to a narrow window of opportunity in time for damage mitigation and recovery. Novel therapies have targeted pathological processes secondary to the initial insult, such as oxidative damage and peripheral inflammation. One of the greatest challenges to therapy is the frequently permanent damage within the CNS, attributed to a lack of sufficient neurogenesis. Thus, recent use of cell-based therapies for stroke have shown promising results. Unfortunately, stroke-induced inflammatory and oxidative damage limit the therapeutic potential of these stem cells. Nuclear factor erythroid 2-related factor 2 (Nrf2) has been implicated in endogenous antioxidant and anti-inflammatory activity, thus presenting an attractive target for novel therapeutics to enhance stem cell therapy and promote neurogenesis. This review assesses the current literature on the concomitant use of stem cell therapy and Nrf2 targeting via pharmaceutical and natural agents, highlighting the need to elucidate both upstream and downstream pathways in optimizing Nrf2 treatments in the setting of cerebrovascular disease.
Collapse
|
17
|
Kamal RM, Abdull Razis AF, Mohd Sukri NS, Perimal EK, Ahmad H, Patrick R, Djedaini-Pilard F, Mazzon E, Rigaud S. Beneficial Health Effects of Glucosinolates-Derived Isothiocyanates on Cardiovascular and Neurodegenerative Diseases. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030624. [PMID: 35163897 PMCID: PMC8838317 DOI: 10.3390/molecules27030624] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/17/2022]
Abstract
Neurodegenerative diseases (NDDs) and cardiovascular diseases (CVDs) are illnesses that affect the nervous system and heart, all of which are vital to the human body. To maintain health of the human body, vegetable diets serve as a preventive approach and particularly Brassica vegetables have been associated with lower risks of chronic diseases, especially NDDs and CVDs. Interestingly, glucosinolates (GLs) and isothiocyanates (ITCs) are phytochemicals that are mostly found in the Cruciferae family and they have been largely documented as antioxidants contributing to both cardio- and neuroprotective effects. The hydrolytic breakdown of GLs into ITCs such as sulforaphane (SFN), phenylethyl ITC (PEITC), moringin (MG), erucin (ER), and allyl ITC (AITC) has been recognized to exert significant effects with regards to cardio- and neuroprotection. From past in vivo and/or in vitro studies, those phytochemicals have displayed the ability to mitigate the adverse effects of reactive oxidation species (ROS), inflammation, and apoptosis, which are the primary causes of CVDs and NDDs. This review focuses on the protective effects of those GL-derived ITCs, featuring their beneficial effects and the mechanisms behind those effects in CVDs and NDDs.
Collapse
Affiliation(s)
- Ramla Muhammad Kamal
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Department of Pharmacology, Federal University Dutse, Dutse 720101, Jigawa State, Nigeria
| | - Ahmad Faizal Abdull Razis
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence:
| | - Nurul Syafuhah Mohd Sukri
- Faculty of Applied Science and Technology, Universiti Tun Hussein Onn Malaysia, Batu Pahat 86400, Johor, Malaysia;
| | - Enoch Kumar Perimal
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Hafandi Ahmad
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Rollin Patrick
- Université d’Orléans et CNRS, ICOA, UMR 7311, BP 6759, CEDEX 02, F-45067 Orléans, France;
| | - Florence Djedaini-Pilard
- LG2A UMR 7378, Université de Picardie Jules Verne, 33 rue Saint Leu—UFR des Sciences, F-80000 Amiens, France; (F.D.-P.); (S.R.)
| | - Emanuela Mazzon
- Laboratorio di Neurologia Sperimentale, IRCCS Centro Neurolesi "Bonino Pulejo", 98124 Messina, Italy;
| | - Sébastien Rigaud
- LG2A UMR 7378, Université de Picardie Jules Verne, 33 rue Saint Leu—UFR des Sciences, F-80000 Amiens, France; (F.D.-P.); (S.R.)
| |
Collapse
|
18
|
Mata A, Cadenas S. The Antioxidant Transcription Factor Nrf2 in Cardiac Ischemia-Reperfusion Injury. Int J Mol Sci 2021; 22:11939. [PMID: 34769371 PMCID: PMC8585042 DOI: 10.3390/ijms222111939] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/30/2021] [Indexed: 12/25/2022] Open
Abstract
Nuclear factor erythroid-2 related factor 2 (Nrf2) is a transcription factor that controls cellular defense responses against toxic and oxidative stress by modulating the expression of genes involved in antioxidant response and drug detoxification. In addition to maintaining redox homeostasis, Nrf2 is also involved in various cellular processes including metabolism and inflammation. Nrf2 activity is tightly regulated at the transcriptional, post-transcriptional and post-translational levels, which allows cells to quickly respond to pathological stress. In the present review, we describe the molecular mechanisms underlying the transcriptional regulation of Nrf2. We also focus on the impact of Nrf2 in cardiac ischemia-reperfusion injury, a condition that stimulates the overproduction of reactive oxygen species. Finally, we analyze the protective effect of several natural and synthetic compounds that induce Nrf2 activation and protect against ischemia-reperfusion injury in the heart and other organs, and their potential clinical application.
Collapse
Affiliation(s)
- Ana Mata
- Centro de Biología Molecular “Severo Ochoa” (CSIC/UAM), 28049 Madrid, Spain;
- Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006 Madrid, Spain
| | - Susana Cadenas
- Centro de Biología Molecular “Severo Ochoa” (CSIC/UAM), 28049 Madrid, Spain;
- Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006 Madrid, Spain
| |
Collapse
|
19
|
Inhibitory effects of sulforaphane on NLRP3 inflammasome activation. Mol Immunol 2021; 140:175-185. [PMID: 34717147 DOI: 10.1016/j.molimm.2021.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/27/2021] [Accepted: 10/19/2021] [Indexed: 01/01/2023]
Abstract
SFN, a dietary phytochemical, is a significant member of isothiocyanates present in cruciferous vegetables at high levels in broccoli. It is a well-known activator of the Nrf2/ARE antioxidant pathway. Long since, the therapeutic effects of SFN have been widely studied in several different diseases. Other than the antioxidant effect, SFN also exhibits an anti-inflammatory effect through suppression of various mechanisms, including inflammasome activation. Considerably, SFN has been demonstrated to inhibit multiple inflammasomes, including NLRP3 inflammasome. NLRP3 inflammasome induces secretion of pro-inflammatory cytokines and promotes inflammatory cell death. The release of pro-inflammatory cytokines enhances the inflammatory response, in turn leading to tissue damage. These self-propelling inflammatory responses would need modulation with exogenous therapeutic agents to suppress them. SFN is a promising candidate molecule for the mitigation of NLRP3 inflammasome activation, which has been related to the pathogenesis of numerous disorders. In this review, we have provided fundamental knowledge about Sulforaphane, elaborated its characteristics, and evidentially focused on its mechanisms of action with regard to its anti-inflammatory, anti-oxidative, and neuroprotective features. Thereafter, we have summarized both in vitro and in vivo studies regarding SFN effect on NLRP3 inflammasome activation.
Collapse
|
20
|
Yang K, Zeng L, Ge A, Cao C, Zhang H, Bao T, Yi Y, Ge J. Systems Biology and Chemoinformatics-Based Strategies to Explore the Biological Mechanism of Fugui Wenyang Decoction in Treating Vascular Dementia Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6693955. [PMID: 34659639 PMCID: PMC8517630 DOI: 10.1155/2021/6693955] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 08/24/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To explore the biological mechanism of Fugui Wenyang Decoction (FGWYD) in treating vascular dementia (VD) rats based on systems pharmacology, proteomics, and a multidirectional pharmacology integration strategy. METHODS Chemoinformatics was utilized to construct and analyze the FGWYD-VD protein-protein interaction (PPI) network. Then, the total protein in the brain tissue of the infarcted side of the rat was extracted for protein identification, pattern identification, and protein quantitative analysis. The differentially expressed proteins are analyzed by bioinformatics. Finally, the important proteins in the oxidative stress-related biological process proteins and indicators were detected through experimental pharmacology to verify the findings of systems biology and chemoinformatics. RESULTS There were a total of 73 FGWYD components with 245 FGWYD and 145 VD genes. The results of GO enrichment analysis and pathway enrichment analysis showed that MBHD may regulate the inflammation module, oxidative stress, the synaptic plasticity regulation module, and the neuronal apoptosis section module. Compared with the sham operation group, there were 23 upregulated proteins and 17 downregulated proteins in the model group (P < 0.05). Compared with the model group, there were 16 upregulated proteins and 10 downregulated proteins in the FGWYD group (P < 0.05). Bioinformatics analysis shows that those proteins were closely related to processes such as inflammation, oxidative stress, neuronal apoptosis, neuronal growth and differentiation, signaling pathways, and transcriptional regulation. Multidirectional pharmacology further verified the neuroprotective mechanism of the Nrf2/HO-1 pathway in FGWYD treatment of VD. CONCLUSION The mechanism of FGWYD in the treatment of VD may be related to inflammation, oxidative stress, angiogenesis, and neuronal apoptosis.
Collapse
Affiliation(s)
- Kailin Yang
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Liuting Zeng
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Anqi Ge
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Chuandong Cao
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Haiyan Zhang
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Tingting Bao
- Beijing University of Chinese Medicine, Beijing, China
| | - Yaqiao Yi
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Jinwen Ge
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| |
Collapse
|
21
|
Kyyriäinen J, Kajevu N, Bañuelos I, Lara L, Lipponen A, Balosso S, Hämäläinen E, Das Gupta S, Puhakka N, Natunen T, Ravizza T, Vezzani A, Hiltunen M, Pitkänen A. Targeting Oxidative Stress with Antioxidant Duotherapy after Experimental Traumatic Brain Injury. Int J Mol Sci 2021; 22:10555. [PMID: 34638900 PMCID: PMC8508668 DOI: 10.3390/ijms221910555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 01/23/2023] Open
Abstract
We assessed the effect of antioxidant therapy using the Food and Drug Administration-approved respiratory drug N-acetylcysteine (NAC) or sulforaphane (SFN) as monotherapies or duotherapy in vitro in neuron-BV2 microglial co-cultures and validated the results in a lateral fluid-percussion model of TBI in rats. As in vitro measures, we assessed neuronal viability by microtubule-associated-protein 2 immunostaining, neuroinflammation by monitoring tumor necrosis factor (TNF) levels, and neurotoxicity by measuring nitrite levels. In vitro, duotherapy with NAC and SFN reduced nitrite levels to 40% (p < 0.001) and neuroinflammation to -29% (p < 0.001) compared with untreated culture. The treatment also improved neuronal viability up to 72% of that in a positive control (p < 0.001). The effect of NAC was negligible, however, compared with SFN. In vivo, antioxidant duotherapy slightly improved performance in the beam walking test. Interestingly, duotherapy treatment decreased the plasma interleukin-6 and TNF levels in sham-operated controls (p < 0.05). After TBI, no treatment effect on HMGB1 or plasma cytokine levels was detected. Also, no treatment effects on the composite neuroscore or cortical lesion area were detected. The robust favorable effect of duotherapy on neuroprotection, neuroinflammation, and oxidative stress in neuron-BV2 microglial co-cultures translated to modest favorable in vivo effects in a severe TBI model.
Collapse
Affiliation(s)
- Jenni Kyyriäinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland; (J.K.); (N.K.); (I.B.); (L.L.); (A.L.); (E.H.); (S.D.G.); (N.P.)
| | - Natallie Kajevu
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland; (J.K.); (N.K.); (I.B.); (L.L.); (A.L.); (E.H.); (S.D.G.); (N.P.)
| | - Ivette Bañuelos
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland; (J.K.); (N.K.); (I.B.); (L.L.); (A.L.); (E.H.); (S.D.G.); (N.P.)
| | - Leonardo Lara
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland; (J.K.); (N.K.); (I.B.); (L.L.); (A.L.); (E.H.); (S.D.G.); (N.P.)
| | - Anssi Lipponen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland; (J.K.); (N.K.); (I.B.); (L.L.); (A.L.); (E.H.); (S.D.G.); (N.P.)
- Department of Health Security, Finnish Institute for Health and Welfare, FI-70701 Kuopio, Finland
| | - Silvia Balosso
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milano, Italy; (S.B.); (T.R.); (A.V.)
| | - Elina Hämäläinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland; (J.K.); (N.K.); (I.B.); (L.L.); (A.L.); (E.H.); (S.D.G.); (N.P.)
| | - Shalini Das Gupta
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland; (J.K.); (N.K.); (I.B.); (L.L.); (A.L.); (E.H.); (S.D.G.); (N.P.)
| | - Noora Puhakka
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland; (J.K.); (N.K.); (I.B.); (L.L.); (A.L.); (E.H.); (S.D.G.); (N.P.)
| | - Teemu Natunen
- Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland; (T.N.); (M.H.)
| | - Teresa Ravizza
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milano, Italy; (S.B.); (T.R.); (A.V.)
| | - Annamaria Vezzani
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milano, Italy; (S.B.); (T.R.); (A.V.)
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland; (T.N.); (M.H.)
| | - Asla Pitkänen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland; (J.K.); (N.K.); (I.B.); (L.L.); (A.L.); (E.H.); (S.D.G.); (N.P.)
| |
Collapse
|
22
|
Farina M, Vieira LE, Buttari B, Profumo E, Saso L. The Nrf2 Pathway in Ischemic Stroke: A Review. Molecules 2021; 26:5001. [PMID: 34443584 PMCID: PMC8399750 DOI: 10.3390/molecules26165001] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke, characterized by the sudden loss of blood flow in specific area(s) of the brain, is the leading cause of permanent disability and is among the leading causes of death worldwide. The only approved pharmacological treatment for acute ischemic stroke (intravenous thrombolysis with recombinant tissue plasminogen activator) has significant clinical limitations and does not consider the complex set of events taking place after the onset of ischemic stroke (ischemic cascade), which is characterized by significant pro-oxidative events. The transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2), which regulates the expression of a great number of antioxidant and/or defense proteins, has been pointed as a potential pharmacological target involved in the mitigation of deleterious oxidative events taking place at the ischemic cascade. This review summarizes studies concerning the protective role of Nrf2 in experimental models of ischemic stroke, emphasizing molecular events resulting from ischemic stroke that are, in parallel, modulated by Nrf2. Considering the acute nature of ischemic stroke, we discuss the challenges in using a putative pharmacological strategy (Nrf2 activator) that relies upon transcription, translation and metabolically active cells in treating ischemic stroke patients.
Collapse
Affiliation(s)
- Marcelo Farina
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil;
| | - Leonardo Eugênio Vieira
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil;
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.)
| | - Elisabetta Profumo
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
23
|
The Role of Supplementation with Natural Compounds in Post-Stroke Patients. Int J Mol Sci 2021; 22:ijms22157893. [PMID: 34360658 PMCID: PMC8348438 DOI: 10.3390/ijms22157893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/07/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Malnutrition is a serious problem in post-stroke patients. Importantly, it intensifies with hospitalization, and is related to both somatic and psychological reasons, as well as is associated with the insufficient knowledge of people who accompany the patient. Malnutrition is a negative prognostic factor, leading to a reduction in the quality of life. Moreover, this condition significantly extends hospitalization time, increases the frequency of treatment in intensive care units, and negatively affects the effectiveness of rehabilitation. Obtaining growing data on the therapeutic effectiveness of new compounds of natural origin is possible through the use of pharmacodynamic and analytical methods to assess their therapeutic properties. The proper supply of nutrients, as well as compounds of natural origin, is an important element of post-stroke therapy, due to their strong antioxidant, anti-inflammatory, neuroprotective and neuroplasticity enhancing properties. Taking the above into account, in this review we present the current state of knowledge on the benefits of using selected substances of natural origin in patients after cerebral stroke.
Collapse
|
24
|
Imai T, Matsubara H, Hara H. Potential therapeutic effects of Nrf2 activators on intracranial hemorrhage. J Cereb Blood Flow Metab 2021; 41:1483-1500. [PMID: 33444090 PMCID: PMC8221764 DOI: 10.1177/0271678x20984565] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracranial hemorrhage (ICH) is a devastating disease which induces high mortality and poor outcomes including severe neurological dysfunctions. ICH pathology is divided into two types: primary brain injury (PBI) and secondary brain injury (SBI). Although there are numerous preclinical studies documenting neuroprotective agents in experimental ICH models, no effective drugs have been developed for clinical use due to complicated ICH pathology. Oxidative and inflammatory stresses play central roles in the onset and progression of brain injury after ICH, especially SBI. Nrf2 is a crucial transcription factor in the anti-oxidative stress defense system. Under normal conditions, Nrf2 is tightly regulated by the Keap1. Under ICH pathological conditions, such as overproduction of reactive oxygen species (ROS), Nrf2 is translocated into the nucleus where it up-regulates the expression of several anti-oxidative phase II enzymes such as heme oxygenase-1 (HO-1). Recently, many reports have suggested the therapeutic potential of Nrf2 activators (including natural or synthesized compounds) for treating neurodegenerative diseases. Moreover, several Nrf2 activators attenuate ischemic stroke-induced brain injury in several animal models. This review summarizes the efficacy of several Nrf2 activators in ICH animal models. In the future, Nrf2 activators might be approved for the treatment of ICH patients.
Collapse
Affiliation(s)
- Takahiko Imai
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Hirofumi Matsubara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan.,Department of Neurosurgery, School of Medicine, Gifu University, Gifu, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
25
|
Reyes-Corral M, Sola-Idígora N, de la Puerta R, Montaner J, Ybot-González P. Nutraceuticals in the Prevention of Neonatal Hypoxia-Ischemia: A Comprehensive Review of their Neuroprotective Properties, Mechanisms of Action and Future Directions. Int J Mol Sci 2021; 22:2524. [PMID: 33802413 PMCID: PMC7959318 DOI: 10.3390/ijms22052524] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/22/2022] Open
Abstract
Neonatal hypoxia-ischemia (HI) is a brain injury caused by oxygen deprivation to the brain due to birth asphyxia or reduced cerebral blood perfusion, and it often leads to lifelong limiting sequelae such as cerebral palsy, seizures, or mental retardation. HI remains one of the leading causes of neonatal mortality and morbidity worldwide, and current therapies are limited. Hypothermia has been successful in reducing mortality and some disabilities, but it is only applied to a subset of newborns that meet strict inclusion criteria. Given the unpredictable nature of the obstetric complications that contribute to neonatal HI, prophylactic treatments that prevent, rather than rescue, HI brain injury are emerging as a therapeutic alternative. Nutraceuticals are natural compounds present in the diet or used as dietary supplements that have antioxidant, anti-inflammatory, or antiapoptotic properties. This review summarizes the preclinical in vivo studies, mostly conducted on rodent models, that have investigated the neuroprotective properties of nutraceuticals in preventing and reducing HI-induced brain damage and cognitive impairments. The natural products reviewed include polyphenols, omega-3 fatty acids, vitamins, plant-derived compounds (tanshinones, sulforaphane, and capsaicin), and endogenous compounds (melatonin, carnitine, creatine, and lactate). These nutraceuticals were administered before the damage occurred, either to the mothers as a dietary supplement during pregnancy and/or lactation or to the pups prior to HI induction. To date, very few of these nutritional interventions have been investigated in humans, but we refer to those that have been successful in reducing ischemic stroke in adults. Overall, there is a robust body of preclinical evidence that supports the neuroprotective properties of nutraceuticals, and these may represent a safe and inexpensive nutritional strategy for the prevention of neonatal HI encephalopathy.
Collapse
Affiliation(s)
- Marta Reyes-Corral
- Neurodevelopment Research Group, Institute of Biomedicine of Seville, IBIS/HUVR/CSIC/US, 41013 Seville, Spain; (M.R.-C.); (N.S.-I.); (P.Y.-G.)
| | - Noelia Sola-Idígora
- Neurodevelopment Research Group, Institute of Biomedicine of Seville, IBIS/HUVR/CSIC/US, 41013 Seville, Spain; (M.R.-C.); (N.S.-I.); (P.Y.-G.)
| | - Rocío de la Puerta
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - Joan Montaner
- Neurovascular Research Lab, Institute of Biomedicine of Seville, IBIS/HUVR/CSIC/US, 41013 Seville, Spain
- Department of Neurology and Neurophysiology, Hospital Universitario Virgen Macarena, 41009 Seville, Spain
| | - Patricia Ybot-González
- Neurodevelopment Research Group, Institute of Biomedicine of Seville, IBIS/HUVR/CSIC/US, 41013 Seville, Spain; (M.R.-C.); (N.S.-I.); (P.Y.-G.)
- Department of Neurology and Neurophysiology, Hospital Universitario Virgen Macarena, 41009 Seville, Spain
| |
Collapse
|
26
|
Abstract
The transcription factor NRF2 (nuclear factor erythroid 2-related factor 2) triggers homeostatic responses against a plethora of environmental or endogenous deviations in redox metabolism, inflammation, proteostasis, etc. Therefore, pharmacological activation of NRF2 is a promising therapeutic strategy for several chronic diseases that are underlined by low-grade oxidative inflammation and dysregulation of redox metabolism, such as neurodegenerative, cardiovascular, and metabolic diseases. While NRF2 activation is useful in inhibiting carcinogenesis, its inhibition is needed in constituted tumors where NRF2 provides a survival advantage in the challenging tumor niche. This review describes the electrophilic and non-electrophilic NRF2 activators with clinical projection in various chronic diseases. We also analyze the status of NRF2 inhibitors, which are for the moment in a proof-of-concept stage. Advanced in silico screening and medicinal chemistry are expected to provide new or repurposing small molecules with increased potential for fostering the development of targeted NRF2 modulators. The nuclear factor erythroid 2 (NFE2)-related factor 2 (NRF2) is rapidly degraded by proteasomes under a basal condition in a Keap1-dependent manner. ROS oxidatively modifies Keap1 to release NRF2 and allow its nuclear translocation. Here it binds to the antioxidant response element to regulate gene transcription. An alternative mechanism controlling NRF2 stability is glycogen synthase kinase 3 (GSK-3)-induced phosphorylation. Indicated in blue are NRF2-activating and NRF2-inhibiting drugs.
Collapse
|
27
|
Wang B, Kulikowicz E, Lee JK, Koehler RC, Yang ZJ. Sulforaphane Protects Piglet Brains from Neonatal Hypoxic-Ischemic Injury. Dev Neurosci 2020; 42:124-134. [PMID: 33302269 DOI: 10.1159/000511888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/22/2020] [Indexed: 12/30/2022] Open
Abstract
The striatal, primary sensorimotor cortical, and thalamic neurons are highly vulnerable to hypoxia-ischemia (HI) in term newborns. In a piglet model of HI that exhibits similar selective regional vulnerability, we tested the hypothesis that early treatment with sulforaphane, an activator of the Nrf2 transcription factor, protects vulnerable neurons from HI injury. Anesthetized piglets (aged 3-7 days) were subjected to 45 min of hypoxia and 7 min of airway occlusion. At 15 min after resuscitation, the piglets received intravenous vehicle or sulforaphane. At 4 days of recovery, the density of viable neurons in the putamen of vehicle-treated piglets was 31 ± 34% (±SD) that of sham-operated controls. Treatment with sulforaphane significantly increased viability to 77 ± 31%. In the sensorimotor cortex, neuronal viability was also increased; it was 59 ± 35% in the vehicle-treated and 89 ± 15% in the sulforaphane-treated animals. Treatment with sulforaphane increased the nuclear Nrf2 and γ-glu-tamylcysteine synthetase expression at 6 h of recovery in these regions. We conclude that systemic administration of sulforaphane 15 min after HI can induce the translocation of Nrf2 to the nucleus, increase expression of an enzyme involved in glutathione synthesis, and salvage neurons in the highly vulnerable putamen and sensorimotor cortex in a large-animal model of HI. Therefore, targeting Nrf2 activation soon after recovery from HI is a feasible approach for neuroprotection in the newborn brain.
Collapse
Affiliation(s)
- Bing Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ewa Kulikowicz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jennifer K Lee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Zeng-Jin Yang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA,
| |
Collapse
|
28
|
Calabrese EJ, Kozumbo WJ. The phytoprotective agent sulforaphane prevents inflammatory degenerative diseases and age-related pathologies via Nrf2-mediated hormesis. Pharmacol Res 2020; 163:105283. [PMID: 33160067 DOI: 10.1016/j.phrs.2020.105283] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022]
Abstract
In numerous experimental models, sulforaphane (SFN) is shown herein to induce hormetic dose responses that are not only common but display endpoints of biomedical and clinical relevance. These hormetic responses are mediated via the activation of nuclear factor erythroid- derived 2 (Nrf2) antioxidant response elements (AREs) and, as such, are characteristically biphasic, well integrated, concentration/dose dependent, and specific with regard to the targeted cell type and the temporal profile of response. In experimental disease models, the SFN-induced hormetic activation of Nrf2 was shown to effectively reduce the occurrence and severity of a wide range of human-related pathologies, including Parkinson's disease, Alzheimer's disease, stroke, age-related ocular damage, chemically induced brain damage, and renal nephropathy, amongst others, while also enhancing stem cell proliferation. Although SFN was broadly chemoprotective within an hormetic dose-response context, it also enhanced cell proliferation/cell viability at low concentrations in multiple tumor cell lines. Although the implications of the findings in tumor cells are largely uncertain at this time and warrant further consideration, the potential utility of SFN in cancer treatment has not been precluded. This assessment of SFN complements recent reports of similar hormesis-based chemoprotections by other widely used dietary supplements, such as curcumin, ginkgo biloba, ginseng, green tea, and resveratrol. Interestingly, the mechanistic profile of SFN is similar to that of numerous other hormetic agents, indicating that activation of the Nrf2/ARE pathway is probably a central, integrative, and underlying mechanism of hormesis itself. The Nrf2/ARE pathway provides an explanation for how large numbers of agents that both display hormetic dose responses and activate Nrf2 can function to limit age-related damage, the progression of numerous disease processes, and chemical- and radiation- induced toxicities. These findings extend the generality of the hormetic dose response to include SFN and many other chemical activators of Nrf2 that are cited in the biomedical literature and therefore have potentially important public health and clinical implications.
Collapse
Affiliation(s)
- Edward J Calabrese
- Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, United States.
| | | |
Collapse
|
29
|
Kang TC. Nuclear Factor-Erythroid 2-Related Factor 2 (Nrf2) and Mitochondrial Dynamics/Mitophagy in Neurological Diseases. Antioxidants (Basel) 2020; 9:antiox9070617. [PMID: 32679689 PMCID: PMC7402121 DOI: 10.3390/antiox9070617] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/01/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondria play an essential role in bioenergetics and respiratory functions for cell viability through numerous biochemical processes. To maintain mitochondria quality control and homeostasis, mitochondrial morphologies change rapidly in response to external insults and changes in metabolic status through fusion and fission (so called mitochondrial dynamics). Furthermore, damaged mitochondria are removed via a selective autophagosomal process, referred to as mitophagy. Although mitochondria are one of the sources of reactive oxygen species (ROS), they are themselves vulnerable to oxidative stress. Thus, endogenous antioxidant defense systems play an important role in cell survival under physiological and pathological conditions. Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a redox-sensitive transcription factor that maintains redox homeostasis by regulating antioxidant-response element (ARE)-dependent transcription and the expression of antioxidant defense enzymes. Although the Nrf2 system is positively associated with mitochondrial biogenesis and mitochondrial quality control, the relationship between Nrf2 signaling and mitochondrial dynamics/mitophagy has not been sufficiently addressed in the literature. This review article describes recent clinical and experimental observations on the relationship between Nrf2 and mitochondrial dynamics/mitophagy in various neurological diseases.
Collapse
Affiliation(s)
- Tae-Cheon Kang
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; ; Tel.: +82-33-248-2524; Fax: +82-33-248-2525
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
30
|
The Influence of Reactive Oxygen Species in the Immune System and Pathogenesis of Multiple Sclerosis. Autoimmune Dis 2020; 2020:5793817. [PMID: 32789026 PMCID: PMC7334772 DOI: 10.1155/2020/5793817] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/14/2020] [Accepted: 05/22/2020] [Indexed: 02/08/2023] Open
Abstract
Multiple roles have been indicated for reactive oxygen species (ROS) in the immune system in recent years. ROS have been extensively studied due to their ability to damage DNA and other subcellular structures. Noticeably, they have been identified as a pivotal second messenger for T-cell receptor signaling and T-cell activation and participate in antigen cross-presentation and chemotaxis. As an agent with direct toxic effects on cells, ROS lead to the initiation of the autoimmune response. Moreover, ROS levels are regulated by antioxidant systems, which include enzymatic and nonenzymatic antioxidants. Enzymatic antioxidants include superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase. Nonenzymatic antioxidants contain vitamins C, A, and E, glutathione, and thioredoxin. Particularly, cellular antioxidant systems have important functions in maintaining the redox system homeostasis. This review will discuss the significant roles of ROS generation and antioxidant systems under normal conditions, in the immune system, and pathogenesis of multiple sclerosis.
Collapse
|
31
|
Tang L, Ren X, Han Y, Chen L, Meng X, Zhang C, Chu H, Kong L, Ma H. Sulforaphane attenuates apoptosis of hippocampal neurons induced by high glucose via regulating endoplasmic reticulum. Neurochem Int 2020; 136:104728. [DOI: 10.1016/j.neuint.2020.104728] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/27/2020] [Accepted: 03/16/2020] [Indexed: 12/27/2022]
|
32
|
Zolnourian AH, Franklin S, Galea I, Bulters DO. Study protocol for SFX-01 after subarachnoid haemorrhage (SAS): a multicentre randomised double-blinded, placebo controlled trial. BMJ Open 2020; 10:e028514. [PMID: 32217557 PMCID: PMC7170552 DOI: 10.1136/bmjopen-2018-028514] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Subarachnoid haemorrhage (SAH) from a ruptured cerebral aneurysm carries high morbidity and mortality. Despite huge advances in techniques to secure the aneurysm, there has been little progress in the treatment of the deleterious effects of the haemorrhage.Sulforaphane is an Nrf2 inducer with anti-oxidant and anti-inflammatory properties. It has been shown to improve clinical outcome in experimental models of SAH, but is unstable. SFX-01 (Evgen Pharma) is a novel composition comprised of synthetic sulforaphane stabilised within an α-cyclodextrin complex. On ingestion, the complex releases sulforaphane making SFX-01 an ideal vehicle for delivery of sulforaphane. METHODS AND ANALYSIS The objective of the study is to assess the safety, pharmacokinetics and efficacy of SFX-01. This is a prospective, multicentre, randomised, double-blind placebo-controlled trial in patients aged 18-80 years with aneurysmal subarachnoid haemorrhage in the previous 48 hours. 90 patients will be randomised to receive SFX-01 (300 mg) or placebo two times per day for up to 28 days.Safety will be assessed using blood tests and adverse event reporting.Pharmacokinetics will be assessed based on paired blood and cerebrospinal fluid (CSF) sulforaphane levels on day 7. A subgroup will have hourly samples taken during 6 hours post-dosing on days 1 and 7. Pharmacodynamics will be assessed by haptoglobin and malondialdehyde levels, and maximum flow velocity of middle cerebral artery will be measured by transcranial Doppler ultrasound.Clinical outcomes will be assessed at days 28, 90 and 180 with modified Rankin Scale, Glasgow Outcome Score, SAH Outcome Tool, Short Form-36, Brain Injury Community Rehabilitation Outcome Scales and Check List for Cognitive and Emotional consequences following stroke. MRI at 6 months including quantitative susceptibility mapping and volumetric T1 will measure iron deposition and cortical volume.Safety, CSF sulforaphane concentration and middle cerebral artery flow velocity will be primary outcomes and all others secondary. ETHICS AND DISSEMINATION Ethical approval was obtained from South Central Hampshire A committee. Outcomes of the trial will be submitted for publication in a peer-reviewed journal. TRIAL REGISTRATION NUMBER NCT02614742.
Collapse
Affiliation(s)
- Ardalan H Zolnourian
- Department of Clinical Neurosciences, University of Southampton, Southampton, UK
- Department of Neurosurgery, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | | - Ian Galea
- Department of Clinical Neurosciences, University of Southampton, Southampton, UK
- Department of Experimental Neurology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Diederik Oliver Bulters
- Department of Clinical Neurosciences, University of Southampton, Southampton, UK
- Department of Neurosurgery, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
33
|
Uddin MS, Mamun AA, Jakaria M, Thangapandiyan S, Ahmad J, Rahman MA, Mathew B, Abdel-Daim MM, Aleya L. Emerging promise of sulforaphane-mediated Nrf2 signaling cascade against neurological disorders. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:135624. [PMID: 31784171 DOI: 10.1016/j.scitotenv.2019.135624] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
Neurological disorders represent a great challenge and are the leading cause of death and disability globally. Although numerous complicated mechanisms are involved in the progressions of chronic and acute neurodegenerative disorders, most of the diseases share mutual pathogenic features such as oxidative stress, mitochondrial dysfunction, neuroinflammation, protein misfolding, excitotoxicity, and neuronal damage, all of these are the common targets of nuclear factor erythroid 2 related factor 2 (Nrf2) signaling cascade. No cure has yet been discovered to tackle these disorders, so, intervention approaches targeting phytochemicals have been recommended as an alternative form of treatment. Sulforaphane is a sulfur-rich dietary phytochemical which has several activities such as antioxidant, anti-inflammatory, and anti-tumor via multiple targets and various mechanisms. Given its numerous actions, sulforaphane has drawn considerable attention for neurological disorders in recent years. Nrf2 is one of the most crucial targets of sulforaphane which has potential in regulating the series of cytoprotective enzyme expressions that have neuroprotective, antioxidative, and detoxification actions. Neurological disorders are auspicious candidates for Nrf2-targeted treatment strategy. Sulforaphane protects various neurological disorders by regulating the Nrf2 pathway. In this article, we recapitulate current studies of sulforaphane-mediated Nrf2 activation in the treatment of various neurological disorders.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| | - Abdullah Al Mamun
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Md Jakaria
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | | | - Jamil Ahmad
- Department of Human Nutrition, The University of Agriculture Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Md Ataur Rahman
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Mohamed M Abdel-Daim
- Department of Zoology, Science College, King Saud University, Riyadh 11451, Saudi Arabia; Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France.
| |
Collapse
|
34
|
Transcriptional activation of antioxidant gene expression by Nrf2 protects against mitochondrial dysfunction and neuronal death associated with acute and chronic neurodegeneration. Exp Neurol 2020; 328:113247. [PMID: 32061629 DOI: 10.1016/j.expneurol.2020.113247] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/04/2020] [Accepted: 02/11/2020] [Indexed: 02/07/2023]
Abstract
Mitochondria are both a primary source of reactive oxygen species (ROS) and a sensitive target of oxidative stress; damage to mitochondria can result in bioenergetic dysfunction and both necrotic and apoptotic cell death. These relationships between mitochondria and cell death are particularly strong in both acute and chronic neurodegenerative disorders. ROS levels are affected by both the production of superoxide and its toxic metabolites and by antioxidant defense mechanisms. Mitochondrial antioxidant activities include superoxide dismutase 2, glutathione peroxidase and reductase, and intramitochondrial glutathione. When intracellular conditions disrupt the homeostatic balance between ROS production and detoxification, a net increase in ROS and an oxidized shift in cellular redox state ensues. Cells respond to this imbalance by increasing the expression of genes that code for proteins that protect against oxidative stress and inhibit cytotoxic oxidation of proteins, DNA, and lipids. If, however, the genomic response to mitochondrial oxidative stress is insufficient to maintain homeostasis, mitochondrial bioenergetic dysfunction and release of pro-apoptotic mitochondrial proteins into the cytosol initiate a variety of cell death pathways, ultimately resulting in potentially lethal damage to vital organs, including the brain. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a translational activating protein that enters the nucleus in response to oxidative stress, resulting in increased expression of numerous cytoprotective genes, including genes coding for mitochondrial and non-mitochondrial antioxidant proteins. Many experimental and some FDA-approved drugs promote this process. Since mitochondria are targets of ROS, it follows that protection against mitochondrial oxidative stress by the Nrf2 pathway of gene expression contributes to neuroprotection by these drugs. This document reviews the evidence that Nrf2 activation increases mitochondrial antioxidants, thereby protecting mitochondria from dysfunction and protecting neural cells from damage and death. New experimental results are provided demonstrating that post-ischemic administration of the Nrf2 activator sulforaphane protects against hippocampal neuronal death and neurologic injury in a clinically-relevant animal model of cardiac arrest and resuscitation.
Collapse
|
35
|
Brandes MS, Gray NE. NRF2 as a Therapeutic Target in Neurodegenerative Diseases. ASN Neuro 2020; 12:1759091419899782. [PMID: 31964153 PMCID: PMC6977098 DOI: 10.1177/1759091419899782] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022] Open
Abstract
Increased reactive oxygen species production and oxidative stress have been implicated in the pathogenesis of numerous neurodegenerative conditions including among others Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, Friedrich’s ataxia, multiple sclerosis, and stroke. The endogenous antioxidant response pathway protects cells from oxidative stress by increasing the expression of cytoprotective enzymes and is regulated by the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2). In addition to regulating the expression of antioxidant genes, NRF2 has also been shown to exert anti-inflammatory effects and modulate both mitochondrial function and biogenesis. This is because mitochondrial dysfunction and neuroinflammation are features of many neurodegenerative diseases as well NRF2 has emerged as a promising therapeutic target. Here, we review evidence for a beneficial role of NRF2 in neurodegenerative conditions and the potential of specific NRF2 activators as therapeutic agents.
Collapse
Affiliation(s)
- Mikah S. Brandes
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Nora E. Gray
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
36
|
Dietary Phytochemicals as Neurotherapeutics for Autism Spectrum Disorder: Plausible Mechanism and Evidence. ADVANCES IN NEUROBIOLOGY 2020; 24:615-646. [DOI: 10.1007/978-3-030-30402-7_23] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
37
|
Yang T, Sun Y, Li Q, Li S, Shi Y, Leak RK, Chen J, Zhang F. Ischemic preconditioning provides long-lasting neuroprotection against ischemic stroke: The role of Nrf2. Exp Neurol 2019; 325:113142. [PMID: 31812555 DOI: 10.1016/j.expneurol.2019.113142] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/03/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND PURPOSE A major gap in the field of ischemic preconditioning (IPC) is whether or not long-lasting neuroprotection can be achieved. Moreover, the specific mechanisms underlying IPC and how they can be translated into the clinic remain uncertain. To fill these gaps, we tested the hypothesis that IPC exerts long-lasting structural and functional neuroprotection against ischemic stroke through the master gatekeeper of antioxidant defenses, nuclear factor erythroid 2-related factor 2 (Nrf2). We also tested whether the brain could be pharmaceutically preconditioned with a potent and blood-brain barrier-permeable Nrf2 activator, 2-cyano-3,12-dioxo-oleana-1,9(11)-dien-28-trifluoethyl amide (CDDO-TFEA). METHODS IPC was induced by transient middle cerebral artery occlusion (MCAO) for 12 min, and ischemic stroke was generated by MCAO for 60 min in wild-type (WT) or Nrf2 knockout (KO) mice. Sensorimotor function, learning/memory skills, and brain tissue loss were measured up to 35 days after stroke. Primary rodent cortical neurons from wildtype (WT) and Nrf2 KO mice were subjected to lethal oxygen-glucose deprivation (OGD) or a brief OGD episode as a preconditioning (PC) stimulus before OGD. Cell viability/death, lipid electrophile generation, and Nrf2 activation were measured. CDDO-TFEA or its vehicle was administered in vivo for three consecutive days before MCAO. Tissue loss and neurological tests were performed 35 days after stroke. RESULTS IPC significantly reduced sensorimotor deficits, post-stroke cognitive impairments, and brain tissue loss, 35 days after MCAO in WT mice. These enduring protective effects of IPC were inhibited in Nrf2 KO mice. In neuronal cultures, PC also endowed primary neurons with ischemic tolerance against OGD-induced cell death, an effect that was abolished by loss of Nrf2 expression in KO neurons. PC induced the generation of low levels of lipid electrophiles and led to activation of the Nrf2 pathway. The mechanism underlying IPC may be translatable, as exogenous administration of the Nrf2 activator CDDO-TFEA significantly reduced neurological dysfunction and ischemic brain damage after MCAO. CONCLUSIONS IPC provides long-lasting neuroprotection against ischemic brain injury and post-stroke cognitive dysfunction. Nrf2 activation plays a key role in this beneficial outcome and is a promising therapeutic target for the attenuation of ischemic brain injury.
Collapse
Affiliation(s)
- Tuo Yang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yang Sun
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qianqian Li
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Senmiao Li
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yejie Shi
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Jun Chen
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, PA, USA
| | - Feng Zhang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
38
|
Li C, Fan K, Qu Y, Zhai W, Huang A, Sun X, Xing S. Deregulation of UCA1 expression may be involved in the development of chemoresistance to cisplatin in the treatment of non‐small‐cell lung cancer via regulating the signaling pathway of microRNA‐495/NRF2. J Cell Physiol 2019; 235:3721-3730. [PMID: 31583720 DOI: 10.1002/jcp.29266] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/03/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Chaoyi Li
- Department of Thoracic Surgery Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei China
| | - Kai Fan
- Department of Thoracic Surgery Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei China
| | - Yue Qu
- Department of Thoracic Surgery Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei China
| | - Wei Zhai
- Department of Thoracic Surgery Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei China
| | - Ai Huang
- Department of Thoracic Surgery Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei China
| | - Xiangfu Sun
- Department of Thoracic Surgery Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei China
| | - Shijie Xing
- Department of Thoracic Surgery Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei China
| |
Collapse
|
39
|
Time-dependent hemeoxygenase-1, lipocalin-2 and ferritin induction after non-contusion traumatic brain injury. Brain Res 2019; 1725:146466. [PMID: 31539545 DOI: 10.1016/j.brainres.2019.146466] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/22/2019] [Accepted: 09/16/2019] [Indexed: 12/18/2022]
Abstract
Traumatic brain injury (TBI) often presents with focal contusion and parenchymal bleeds, activating heme oxygenase (HO) to degrade released hemoglobin. Here we show that diffuse, midline fluid percussion injury causes time-dependent induction of HO-1 and iron binding proteins within both hemorrhagic neocortex and non-hemorrhagic hippocampus. Rats subjected to midline fluid percussion injury (FPI) survived 1-15d postinjury and tissue was collected for Western blot and immunohistochemical assays. HO-1 was elevated 1d after FPI, peaked at 3d, and returned to control baseline 7-15d. Iron management proteins lipocalin 2 (LCN2) and ferritin (FTL) exhibited distinct postinjury time courses, where peak LCN2 response preceded, and FTL followed that of HO-1. LCN2 elevation supported not only its role in iron transport, but also mediation of matrix metalloproteinase 9 (MMP9) activity. Upregulation of FTL for intracellular iron sequestration was delayed relative to both HO-1 and LCN2 induction. In the neocortex IBA-1+ microglia around the injury core expressed HO-1, but astrocytes co-localized with HO-1 in perilesional parenchyma. Non-hemorrhagic dentate gyrus showed predominant HO-1 labeling in hilar microglia and in molecular layer astrocytes. At 1d postinjury, LCN2 and HO-1 co-localized in a subpopulation of reactive glia within both brain regions. Notably, FTL was distributed within cells around injured vessels, damaged subcortical white matter, and along vessels of the hippocampal fissure. Together these results confirm that even the moderate, non-contusional insult of diffuse midline FPI can significantly activate postinjury HO-1 heme processing pathways and iron management proteins. Moreover, this activation is time-dependent and occurs in the absence of overt hemorrhage.
Collapse
|
40
|
Activators and Inhibitors of NRF2: A Review of Their Potential for Clinical Development. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9372182. [PMID: 31396308 PMCID: PMC6664516 DOI: 10.1155/2019/9372182] [Citation(s) in RCA: 344] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/26/2019] [Accepted: 04/16/2019] [Indexed: 02/07/2023]
Abstract
The transcription factor NRF2 (nuclear factor erythroid 2-related factor 2) triggers the first line of homeostatic responses against a plethora of environmental or endogenous deviations in redox metabolism, proteostasis, inflammation, etc. Therefore, pharmacological activation of NRF2 is a promising therapeutic approach for several chronic diseases that are underlined by oxidative stress and inflammation, such as neurodegenerative, cardiovascular, and metabolic diseases. A particular case is cancer, where NRF2 confers a survival advantage to constituted tumors, and therefore, NRF2 inhibition is desired. This review describes the electrophilic and nonelectrophilic NRF2 activators with clinical projection in various chronic diseases. We also analyze the status of NRF2 inhibitors, which at this time provide proof of concept for blocking NRF2 activity in cancer therapy.
Collapse
|
41
|
Neuroprotective Role of the Nrf2 Pathway in Subarachnoid Haemorrhage and Its Therapeutic Potential. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6218239. [PMID: 31191800 PMCID: PMC6525854 DOI: 10.1155/2019/6218239] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/17/2019] [Accepted: 03/20/2019] [Indexed: 12/11/2022]
Abstract
The mechanisms underlying poor outcome following subarachnoid haemorrhage (SAH) are complex and multifactorial. They include early brain injury, spreading depolarisation, inflammation, oxidative stress, macroscopic cerebral vasospasm, and microcirculatory disturbances. Nrf2 is a global promoter of the antioxidant and anti-inflammatory response and has potential protective effects against all of these mechanisms. It has been shown to be upregulated after SAH, and Nrf2 knockout animals have poorer functional and behavioural outcomes after SAH. There are many agents known to activate the Nrf2 pathway. Of these, the actions of sulforaphane, curcumin, astaxanthin, lycopene, tert-butylhydroquinone, dimethyl fumarate, melatonin, and erythropoietin have been studied in SAH models. This review details the different mechanisms of injury after SAH including the contribution of haemoglobin (Hb) and its breakdown products. It then summarises the evidence that the Nrf2 pathway is active and protective after SAH and finally examines the evidence supporting Nrf2 upregulation as a therapy after SAH.
Collapse
|
42
|
Maynard ME, Underwood EL, Redell JB, Zhao J, Kobori N, Hood KN, Moore AN, Dash PK. Carnosic Acid Improves Outcome after Repetitive Mild Traumatic Brain Injury. J Neurotrauma 2019; 36:2147-2152. [PMID: 30672378 DOI: 10.1089/neu.2018.6155] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the majority of cases, the cognitive and behavioral impairments resulting from a mild traumatic brain injury (TBI) (also referred to as concussion) wane within days to weeks. In contrast, these impairments can persist for months to years after repetitive mild TBI (rmTBI). The cellular and molecular mechanisms underlying these impairments are not well understood. In the present study, we examined the consequences of rmTBI (three weight drops each separated by 72 h) on brain tissue respiration, pathology, and cognitive performance in mice. The transcription factor nuclear factor-erythroid 2-realted factor 2 (Nrf2) has been demonstrated to enhance the expression of numerous cytoprotective genes. Carnosic acid (CA) has been shown to activate Nrf2 and suppress the proinflammatory transcription factor nuclear factor kappa B (NF-κB). Because contemporaneous activation of cytoprotective genes and inhibition of proinflammatory genes can be beneficial, we questioned whether CA can be used to mitigate the pathobiology of rmTBI. The rmTBI increased hippocampal adenosine triphosphate-linked tissue respiration and proton leak that were unaffected by CA treatment. The rmTBI also caused significant motor and cognitive dysfunction, as tested using the foot fault, Barnes maze, and novel object recognition tasks. These impairments occurred in the absence of visible neuronal or dendritic loss. Post-rmTBI administration of CA significantly improved motor and cognitive function, and decreased Gfap and Iba1 immunoreactivities within white matter tracks. Taken together, these results show that rmTBI can cause cognitive impairments in the absence of overt neuronal pathologies, and post-injury treatment with CA can lessen some of these impairments.
Collapse
Affiliation(s)
- Mark E Maynard
- Department of Neurobiology and Anatomy, the University of Texas McGovern Medical School, Houston, Texas
| | - Erica L Underwood
- Department of Neurobiology and Anatomy, the University of Texas McGovern Medical School, Houston, Texas
| | - John B Redell
- Department of Neurobiology and Anatomy, the University of Texas McGovern Medical School, Houston, Texas
| | - Jing Zhao
- Department of Neurobiology and Anatomy, the University of Texas McGovern Medical School, Houston, Texas
| | - Nobuhide Kobori
- Department of Neurobiology and Anatomy, the University of Texas McGovern Medical School, Houston, Texas
| | - Kimberly N Hood
- Department of Neurobiology and Anatomy, the University of Texas McGovern Medical School, Houston, Texas
| | - Anthony N Moore
- Department of Neurobiology and Anatomy, the University of Texas McGovern Medical School, Houston, Texas
| | - Pramod K Dash
- Department of Neurobiology and Anatomy, the University of Texas McGovern Medical School, Houston, Texas
| |
Collapse
|
43
|
Huang C, Wu J, Chen D, Jin J, Wu Y, Chen Z. Effects of sulforaphane in the central nervous system. Eur J Pharmacol 2019; 853:153-168. [PMID: 30858063 DOI: 10.1016/j.ejphar.2019.03.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 12/12/2022]
Abstract
Sulforaphane (SFN) is an active component extracted from vegetables like cauliflower and broccoli. Activation of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signaling is a common mechanism for the anti-oxidative and anti-inflammatory activity of some herb-derived compounds, such as icariin and berberine. However, due to its peculiar ability in Nrf2 activation, SFN is recognized as an activator of Nrf2 and recommended as a supplementation for prevention and/or treatment of disorders like neoplasm and heart failure. In the central nervous system (CNS), the prophylactic and/or therapeutic effects of SFN have been revealed in recent years. For example, it has been reported to prevent the progression of Alzheimer's disease, Parkinson's disease, cerebral ischemia, Huntington's disease, multiple sclerosis, epilepsy, and psychiatric disorders via promotion of neurogenesis or inhibition of oxidative stress and neuroinflammation. SFN is also implicated in reversing cognition, learning, and memory impairment in rodents induced by scopolamine, lipopolysaccharide, okadaic acid, and diabetes. In models of neurotoxicity, SFN has been shown to suppress neurotoxicity induced by a wide range of toxic factors, such as hydrogen peroxide, prion protein, hyperammonemia, and methamphetamine. To date, no consolidated source of knowledge about the pharmacological effects of SFN in the CNS has been presented in the literature. In this review, we summarize and discuss the pharmacological effects of SFN as well as their possible mechanisms in prevention and/or therapy of disorders afflicting the CNS, aiming to get a further insight into how SFN affects the pathophysiological process of CNS disorders.
Collapse
Affiliation(s)
- Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Jingjing Wu
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, #118 Wansheng Street, Suzhou 215021, Jiangsu, China
| | - Dongjian Chen
- Invasive Technology Department, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong 226001, Jiangsu, China
| | - Jie Jin
- Invasive Technology Department, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong 226001, Jiangsu, China
| | - Yue Wu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Zhuo Chen
- Invasive Technology Department, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong 226001, Jiangsu, China.
| |
Collapse
|
44
|
Mao L, Yang T, Li X, Lei X, Sun Y, Zhao Y, Zhang W, Gao Y, Sun B, Zhang F. Protective effects of sulforaphane in experimental vascular cognitive impairment: Contribution of the Nrf2 pathway. J Cereb Blood Flow Metab 2019; 39. [PMID: 29533123 PMCID: PMC6365596 DOI: 10.1177/0271678x18764083] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The major pathophysiological process of vascular cognitive impairment (VCI) is chronic cerebral ischemia, which causes disintegration of the blood-brain barrier (BBB), neuronal death, and white matter injury. This study aims to test whether sulforaphane (Sfn), a natural activator of nuclear factor erythroid 2-related factor 2 (Nrf2), reduces the chronic ischemic injury and cognitive dysfunction after VCI. Experimental VCI was induced in rats by permanent occlusion of both common carotid arteries for six weeks. This procedure caused notable neuronal death in the cortex and hippocampal CA1, myelin loss in the corpus callosum and hippocampal fimbria, accumulation of myelin debris in the corpus callosum, and remarkable cognitive impairment. Sfn treatment alleviated these ischemic injuries and the cognitive dysfunction. Sfn-mediated neuroprotection was associated with enhanced activation of Nrf2 and upregulation of heme oxygenase 1. Sfn also reduced neuronal and endothelial death and maintained the integrity of BBB after oxygen-glucose deprivation in vitro in an Nrf2 dependent manner. Furthermore, Nrf2 knockdown in endothelial cells decreased claudin-5 protein expression with downregulated claudin-5 promoter activity, suggesting that claudin-5 might be a target gene of Nrf2. Our results demonstrate that Sfn provides robust neuroprotection against chronic brain ischemic injury and may be a promising agent for VCI treatment.
Collapse
Affiliation(s)
- Leilei Mao
- 1 Department of Neurology, School of Medicine, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA.,2 Key Laboratory of Cerebral Microcirculation, Taishan Medical University, Tai'an, Shandong, China
| | - Tuo Yang
- 1 Department of Neurology, School of Medicine, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xin Li
- 2 Key Laboratory of Cerebral Microcirculation, Taishan Medical University, Tai'an, Shandong, China
| | - Xia Lei
- 2 Key Laboratory of Cerebral Microcirculation, Taishan Medical University, Tai'an, Shandong, China
| | - Yang Sun
- 1 Department of Neurology, School of Medicine, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yongfang Zhao
- 3 State Key Laboratory of Medical Neurobiology and Institute of Brain Science, Fudan University, Shanghai, China
| | - Wenting Zhang
- 3 State Key Laboratory of Medical Neurobiology and Institute of Brain Science, Fudan University, Shanghai, China
| | - Yanqin Gao
- 1 Department of Neurology, School of Medicine, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA.,3 State Key Laboratory of Medical Neurobiology and Institute of Brain Science, Fudan University, Shanghai, China
| | - Baoliang Sun
- 2 Key Laboratory of Cerebral Microcirculation, Taishan Medical University, Tai'an, Shandong, China
| | - Feng Zhang
- 1 Department of Neurology, School of Medicine, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA.,2 Key Laboratory of Cerebral Microcirculation, Taishan Medical University, Tai'an, Shandong, China
| |
Collapse
|
45
|
Abstract
Glutamate is the most abundant excitatory neurotransmitter, present at the bulk of cortical synapses, and participating in many physiologic and pathologic processes ranging from learning and memory to stroke. The tripeptide, glutathione, is one-third glutamate and present at up to low millimolar intracellular concentrations in brain, mediating antioxidant defenses and drug detoxification. Because of the substantial amounts of brain glutathione and its rapid turnover under homeostatic control, we hypothesized that glutathione is a relevant reservoir of glutamate and could influence synaptic excitability. We find that drugs that inhibit generation of glutamate by the glutathione cycle elicit decreases in cytosolic glutamate and decreased miniature excitatory postsynaptic potential (mEPSC) frequency. In contrast, pharmacologically decreasing the biosynthesis of glutathione leads to increases in cytosolic glutamate and enhanced mEPSC frequency. The glutathione cycle can compensate for decreased excitatory neurotransmission when the glutamate-glutamine shuttle is inhibited. Glutathione may be a physiologic reservoir of glutamate neurotransmitter.
Collapse
|
46
|
Arita Y, Jeong Park H, Cantillon A, Verma K, Menon R, Getahun D, Peltier MR. Pro- and anti-inflammatory effects of sulforaphane on placental cytokine production. J Reprod Immunol 2018; 131:44-49. [PMID: 30641297 DOI: 10.1016/j.jri.2018.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/21/2018] [Accepted: 12/28/2018] [Indexed: 12/24/2022]
Abstract
Placental inflammation increases the risk of adverse pregnancy outcomes and possibly neurodevelopmental disorders in the offspring. Previous research suggests it may be possible to modulate the placental immune response to bacteria to favor an anti-inflammatory phenotype with dietary factors. Sulforaphane (SFN) is a dietary supplement with known anti-inflammatory activities, however, its effects on placental cytokine production are unclear. Therefore, we evaluated the effects of SFN on biomarkers of inflammation and neurodevelopment under basal conditions and a setting of mild infection. Placental explant cultures were established and treated with up to 10 μM SFN in the presence and absence of 107 CFU/ml heat-killed E. coli. Concentrations of IL-1β, TNF-α, IL-6, sgp130, HO-1 and BDNF in conditioned medium were quantified by immunoassay. SFN increased antioxidant HO-1 expression in the absence, but not the presence, of infection. SFN inhibited IL-1β and IL-10, but tended to promote, TNF-α production by bacteria-stimulated cultures. IL-6 and BDNF were inhibited by SFN irrespective of co-treatment with E.coli. A negative regulator of IL-6 signaling, sgp130, was increased by SFN under basal conditions, but not in E. coli-stimulated cultures. These results suggest that SFN has mixed effects on the placenta inhibiting both pro-inflammatory (IL-1β) and anti-inflammatory factors (IL-10) but promoting regulators of oxidative stress and inflammation (HO-1 and sgp130) in an infection-dependent manner.
Collapse
Affiliation(s)
- Yuko Arita
- Department of Biomedical Research, Winthrop University Hospital, Mineola, NY, United States
| | - Hyeon Jeong Park
- Department of Biomedical Research, Winthrop University Hospital, Mineola, NY, United States
| | - Aisling Cantillon
- Department of Biomedical Research, Winthrop University Hospital, Mineola, NY, United States
| | - Kavita Verma
- Department of Biomedical Research, Winthrop University Hospital, Mineola, NY, United States
| | - Ramkumar Menon
- Department of Obstetrics and Gynecology, UTMB-Galveston, Galveston, TX, United States
| | - Darios Getahun
- Department of Research and Evaluation, Kaiser-Permenante Southern California, Pasadena, CA, United States
| | - Morgan R Peltier
- Department of Biomedical Research, Winthrop University Hospital, Mineola, NY, United States; Department of Obstetrics and Gynecology, Winthrop University Hospital, Mineola, NY, United States.
| |
Collapse
|
47
|
Tian Y, Wang W, Xu L, Li H, Wei Y, Wu Q, Jia J. Activation of Nrf2/ARE pathway alleviates the cognitive deficits in PS1V97L-Tg mouse model of Alzheimer's disease through modulation of oxidative stress. J Neurosci Res 2018; 97:492-505. [PMID: 30461032 DOI: 10.1002/jnr.24357] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 12/16/2022]
Abstract
Oxidative stress refers to an imbalance between oxidative and antioxidative systems due to environmental factors. Although oxidative stress is implicated in the pathogenesis of Alzheimer's disease (AD), its precise role is not yet understood. We aimed to investigate the pathogenic mechanisms of the oxidative stress by using in vitro cultured neurons and in vivo AD models of PS1V97L-transgenic (Tg) mice. Our results showed that when oxidative stress became increasingly evident, the endogenous protective pathway of nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) decreased in 10-month-old PS1V97L-Tg mice. Activating the Nrf2/ARE pathway suppressed oxidative stress, decreased amyloid-β (Aβ), and improved the cognitive function of the PS1V97L-Tg mice. In contrast, blocking the Nrf2/ARE pathway augmented oxidative injury and decreased the cell viability of PS1V97L-Tg neurons. Our results highlight the role of the Nrf2/ARE pathway in regulating oxidative stress of the PS1V97L-Tg mice and may indicate a potential therapeutic avenue for AD treatment.
Collapse
Affiliation(s)
- Yuanruhua Tian
- Innovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Wei Wang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Lingzhi Xu
- Innovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Haitao Li
- Innovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Yiping Wei
- Innovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Qiaoqi Wu
- Innovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| |
Collapse
|
48
|
Preventing childhood and lifelong disability: Maternal dietary supplementation for perinatal brain injury. Pharmacol Res 2018; 139:228-242. [PMID: 30227261 DOI: 10.1016/j.phrs.2018.08.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 07/29/2018] [Accepted: 08/24/2018] [Indexed: 12/30/2022]
Abstract
The majority of brain injuries that lead to cerebral palsy, developmental disability, and mental health disorders have their onset in utero. These lifelong conditions come with great economic and emotional burden as they impact function in nearly all domains of affected individuals' lives. Unfortunately, current therapeutic options are limited. There remains a focus on rescue, rehabilitation, and regeneration after the injury has occurred, rather than aiming to prevent the initial injury. Prevention would imply treating the mother during pregnancy to alter the fetal environment and in turn, treat the fetus. Fear of harming the developing fetus remains as a result of errors of the past such as the release of thalidomide. In this review, we outline evidence from animal studies and clinical trials that have explored maternal dietary supplementation with natural health products (including nutraceuticals and functional foods) for perinatal brain injury prevention. Namely, we discuss magnesium sulphate, creatine, choline, melatonin, resveratrol and broccoli sprouts/sulforaphane. Although clinical trials have only been completed in this realm for magnesium sulphate, results in animal models have been promising, suggesting that this is a productive avenue for further research. Natural health products may provide safe, effective, affordable, and easily accessible prevention of fetal brain injury and resulting lifelong disabilities.
Collapse
|
49
|
Molcho L, Ben-Zur T, Barhum Y, Angel A, Glat M, Offen D. Combined Gene Therapy to Reduce the Neuronal Damage in the Mouse Model of Focal Ischemic Injury. J Mol Neurosci 2018; 66:180-187. [PMID: 30178388 DOI: 10.1007/s12031-018-1143-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/25/2018] [Indexed: 01/08/2023]
Abstract
Research into stroke is driven by frustration over the limited available therapeutics. Targeting a single aspect of this multifactorial disease contributes to the therapeutic boundaries. To overcome this, we devised a novel multifactorial-cocktail treatment, using lentiviruses encoding excitatory amino acid transporter 2 (EAAT2(, glutamate dehydrogenase 2 (GDH2), and nuclear factor E2-related factor 2 (Nrf2) genes, that acts synergistically to address the effected excito-oxidative axis. Here, we used the vasoconstrictor endothelin-1 (ET-1) to induce focal ischemic injury in mice by direct injection into the striatum. Mice treated with the mixture of these three genes show significant improvement in body balance, motor coordination, and decreased motor asymmetry compared to each gene separately. These results demonstrate that overexpression of the combined EAAT2, GDH2, and NRF2 genes can provide neuroprotection after ischemic injury.
Collapse
Affiliation(s)
- Lior Molcho
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
| | - Tali Ben-Zur
- Felsenstein Medical Research Center, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Yael Barhum
- Felsenstein Medical Research Center, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ariel Angel
- Felsenstein Medical Research Center, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Mica Glat
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
| | - Daniel Offen
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel. .,Felsenstein Medical Research Center, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| |
Collapse
|
50
|
Liu R, Yan X. Sulforaphane protects rabbit corneas against oxidative stress injury in keratoconus through activation of the Nrf-2/HO-1 antioxidant pathway. Int J Mol Med 2018; 42:2315-2328. [PMID: 30106111 PMCID: PMC6192721 DOI: 10.3892/ijmm.2018.3820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/30/2018] [Indexed: 12/18/2022] Open
Abstract
The aim of the present study was to examine whether activation of the nuclear factor E2-related factor 2 (Nrf-2)/heme oxygenase-1 (HO-1) antioxidant pathway in the cornea was involved in the protective effect of sulforaphane (SF) following keratoconus (KC) injury. Following epithelial debridement, collagenase type II was applied in KC groups at room temperature for 30 min. Following this, rabbits were administered with a subconjunctival (s.c.) injection of SF or placebo (maize oil) daily for a total of 2 weeks. To investigate whether HO-1 was involved in the Nrf-2-related antioxidant pathway, rabbits were injected with zinc (II) protoporphyrin IX (ZnPP IX, s.c.) treatment in combination with SF 24 h following the application of collagenase type II. The protective effects of SF were evaluated by examining the mean keratometry (Km) and central cornea thickness (CCT), measuring reactive oxygen species (ROS) production using immunofluorescent staining, and analyzing the protein expression of NADPH oxidase (Nox) family members Nox-2 and Nox-4, and Nrf-2 and HO-1 using immunohistochemistry and western blot analysis. The mRNA levels of Nox-2, Nox-4, Nrf-2 and HO-1 were quantitatively detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. No significant difference in Km or CCT was observed among groups prior to surgery (P=0.700 and P=0.982, respectively). KC induced an apparent increase of ROS generation, and caused a significant increase in Km and a significant decrease in CCT. These changes were neutralized or reversed by SF treatment. Simultaneously, SF treatment decreased the expression of Nox-2 and Nox-4, and enhanced the expression of Nrf-2 and HO-1 in the KC corneas. The RT-qPCR results indicated that SF induced downregulation of the mRNA expression of Nox-2 and Nox-4, and upregulation of the mRNA expression of Nrf-2 and HO-1 following KC injury. The HO-1 inhibitor, ZnPP IX, counteracted the protective effects of SF on KC corneas. Therefore, the present study provided evidence that activation of the Nrf-2/HO-1 signal transduction pathway may partially promote the protective effect of the antioxidant SF in the KC cornea.
Collapse
Affiliation(s)
- Ruixing Liu
- Department of Ophthalmology, The First Hospital of Peking University, Beijing 100034, P.R. China
| | - Xiaoming Yan
- Department of Ophthalmology, The First Hospital of Peking University, Beijing 100034, P.R. China
| |
Collapse
|