1
|
Williams ZJ, Payne LB, Wu X, Gourdie RG. New focus on cardiac voltage-gated sodium channel β1 and β1B: Novel targets for treating and understanding arrhythmias? Heart Rhythm 2024:S1547-5271(24)02742-5. [PMID: 38908461 DOI: 10.1016/j.hrthm.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Voltage-gated sodium channels (VGSCs) are transmembrane protein complexes that are vital to the generation and propagation of action potentials in nerve and muscle fibers. The canonical VGSC is generally conceived as a heterotrimeric complex formed by 2 classes of membrane-spanning subunit: an α-subunit (pore forming) and 2 β-subunits (non-pore forming). NaV1.5 is the main sodium channel α-subunit of mammalian ventricle, with lower amounts of other α-subunits, including NaV1.6, being present. There are 4 β-subunits (β1-β4) encoded by 4 genes (SCN1B-SCN4B), each of which is expressed in cardiac tissues. Recent studies suggest that in addition to assignments in channel gating and trafficking, products of Scn1b may have novel roles in conduction of action potential in the heart and intracellular signaling. This includes evidence that the β-subunit extracellular amino-terminal domain facilitates adhesive interactions in intercalated discs and that its carboxyl-terminal region is a substrate for a regulated intramembrane proteolysis (RIP) signaling pathway, with a carboxyl-terminal peptide generated by β1 RIP trafficked to the nucleus and altering transcription of various genes, including NaV1.5. In addition to β1, the Scn1b gene encodes for an alternative splice variant, β1B, which contains an identical extracellular adhesion domain to β1 but has a unique carboxyl-terminus. Although β1B is generally understood to be a secreted variant, evidence indicates that when co-expressed with NaV1.5, it is maintained at the cell membrane, suggesting potential unique roles for this understudied protein. In this review, we focus on what is known of the 2 β-subunit variants encoded by Scn1b in heart, with particular focus on recent findings and the questions raised by this new information. We also explore data that indicate β1 and β1B may be attractive targets for novel antiarrhythmic therapeutics.
Collapse
Affiliation(s)
- Zachary J Williams
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, Virginia
| | - Laura Beth Payne
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, Virginia
| | - Xiaobo Wu
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, Virginia
| | - Robert G Gourdie
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, Virginia; School of Medicine, Virgina Polytechnic University, Roanoke, Virginia; Department of Biomedical Engineering and Mechanics, Virginia Polytechnic University, Blacksburg, Virginia.
| |
Collapse
|
2
|
Wang M, Kleele T, Xiao Y, Plucinska G, Avramopoulos P, Engelhardt S, Schwab MH, Kneussel M, Czopka T, Sherman DL, Brophy PJ, Misgeld T, Brill MS. Completion of neuronal remodeling prompts myelination along developing motor axon branches. J Cell Biol 2021; 220:e201911114. [PMID: 33538762 PMCID: PMC7868780 DOI: 10.1083/jcb.201911114] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 11/20/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022] Open
Abstract
Neuronal remodeling and myelination are two fundamental processes during neurodevelopment. How they influence each other remains largely unknown, even though their coordinated execution is critical for circuit function and often disrupted in neuropsychiatric disorders. It is unclear whether myelination stabilizes axon branches during remodeling or whether ongoing remodeling delays myelination. By modulating synaptic transmission, cytoskeletal dynamics, and axonal transport in mouse motor axons, we show that local axon remodeling delays myelination onset and node formation. Conversely, glial differentiation does not determine the outcome of axon remodeling. Delayed myelination is not due to a limited supply of structural components of the axon-glial unit but rather is triggered by increased transport of signaling factors that initiate myelination, such as neuregulin. Further, transport of promyelinating signals is regulated via local cytoskeletal maturation related to activity-dependent competition. Our study reveals an axon branch-specific fine-tuning mechanism that locally coordinates axon remodeling and myelination.
Collapse
Affiliation(s)
- Mengzhe Wang
- Institute of Neuronal Cell Biology, Technische Universität München, Munich, Germany
| | - Tatjana Kleele
- Institute of Neuronal Cell Biology, Technische Universität München, Munich, Germany
| | - Yan Xiao
- Institute of Neuronal Cell Biology, Technische Universität München, Munich, Germany
| | - Gabriela Plucinska
- Institute of Neuronal Cell Biology, Technische Universität München, Munich, Germany
| | - Petros Avramopoulos
- Institute of Pharmacology and Toxicology, Technische Universität München, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technische Universität München, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Markus H. Schwab
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Matthias Kneussel
- University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology (ZMNH), Institute for Molecular Neurogenetics, Hamburg, Germany
| | - Tim Czopka
- Institute of Neuronal Cell Biology, Technische Universität München, Munich, Germany
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Diane L. Sherman
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Peter J. Brophy
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Thomas Misgeld
- Institute of Neuronal Cell Biology, Technische Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Monika S. Brill
- Institute of Neuronal Cell Biology, Technische Universität München, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
3
|
Booker SA, Simões de Oliveira L, Anstey NJ, Kozic Z, Dando OR, Jackson AD, Baxter PS, Isom LL, Sherman DL, Hardingham GE, Brophy PJ, Wyllie DJ, Kind PC. Input-Output Relationship of CA1 Pyramidal Neurons Reveals Intact Homeostatic Mechanisms in a Mouse Model of Fragile X Syndrome. Cell Rep 2020; 32:107988. [PMID: 32783927 PMCID: PMC7435362 DOI: 10.1016/j.celrep.2020.107988] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 04/01/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022] Open
Abstract
Cellular hyperexcitability is a salient feature of fragile X syndrome animal models. The cellular basis of hyperexcitability and how it responds to changing activity states is not fully understood. Here, we show increased axon initial segment length in CA1 of the Fmr1-/y mouse hippocampus, with increased cellular excitability. This change in length does not result from reduced AIS plasticity, as prolonged depolarization induces changes in AIS length independent of genotype. However, depolarization does reduce cellular excitability, the magnitude of which is greater in Fmr1-/y neurons. Finally, we observe reduced functional inputs from the entorhinal cortex, with no genotypic difference in the firing rates of CA1 pyramidal neurons. This suggests that AIS-dependent hyperexcitability in Fmr1-/y mice may result from adaptive or homeostatic regulation induced by reduced functional synaptic connectivity. Thus, while AIS length and intrinsic excitability contribute to cellular hyperexcitability, they may reflect a homeostatic mechanism for reduced synaptic input onto CA1 neurons.
Collapse
Affiliation(s)
- Sam A. Booker
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK,Patrick Wild Centre for Autism Research, University of Edinburgh, Edinburgh, UK,Corresponding author
| | - Laura Simões de Oliveira
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK,Patrick Wild Centre for Autism Research, University of Edinburgh, Edinburgh, UK
| | - Natasha J. Anstey
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK,Patrick Wild Centre for Autism Research, University of Edinburgh, Edinburgh, UK,Centre for Brain Development and Repair, InStem, GKVK Campus, Bangalore 560065, India
| | - Zrinko Kozic
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Owen R. Dando
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK,Patrick Wild Centre for Autism Research, University of Edinburgh, Edinburgh, UK,Dementia Research Institute, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK,Centre for Brain Development and Repair, InStem, GKVK Campus, Bangalore 560065, India
| | - Adam D. Jackson
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK,Patrick Wild Centre for Autism Research, University of Edinburgh, Edinburgh, UK,Centre for Brain Development and Repair, InStem, GKVK Campus, Bangalore 560065, India
| | - Paul S. Baxter
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK,Dementia Research Institute, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Lori L. Isom
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109-5632, USA
| | - Diane L. Sherman
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Giles E. Hardingham
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK,Dementia Research Institute, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Peter J. Brophy
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - David J.A. Wyllie
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK,Patrick Wild Centre for Autism Research, University of Edinburgh, Edinburgh, UK,Centre for Brain Development and Repair, InStem, GKVK Campus, Bangalore 560065, India
| | - Peter C. Kind
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK,Patrick Wild Centre for Autism Research, University of Edinburgh, Edinburgh, UK,Centre for Brain Development and Repair, InStem, GKVK Campus, Bangalore 560065, India,Corresponding author
| |
Collapse
|
4
|
Salvage SC, Huang CLH, Jackson AP. Cell-Adhesion Properties of β-Subunits in the Regulation of Cardiomyocyte Sodium Channels. Biomolecules 2020; 10:biom10070989. [PMID: 32630316 PMCID: PMC7407995 DOI: 10.3390/biom10070989] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 12/17/2022] Open
Abstract
Voltage-gated sodium (Nav) channels drive the rising phase of the action potential, essential for electrical signalling in nerves and muscles. The Nav channel α-subunit contains the ion-selective pore. In the cardiomyocyte, Nav1.5 is the main Nav channel α-subunit isoform, with a smaller expression of neuronal Nav channels. Four distinct regulatory β-subunits (β1–4) bind to the Nav channel α-subunits. Previous work has emphasised the β-subunits as direct Nav channel gating modulators. However, there is now increasing appreciation of additional roles played by these subunits. In this review, we focus on β-subunits as homophilic and heterophilic cell-adhesion molecules and the implications for cardiomyocyte function. Based on recent cryogenic electron microscopy (cryo-EM) data, we suggest that the β-subunits interact with Nav1.5 in a different way from their binding to other Nav channel isoforms. We believe this feature may facilitate trans-cell-adhesion between β1-associated Nav1.5 subunits on the intercalated disc and promote ephaptic conduction between cardiomyocytes.
Collapse
Affiliation(s)
- Samantha C. Salvage
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK;
- Correspondence: (S.C.S.); (A.P.J.); Tel.: +44-1223-765950 (S.C.S.); +44-1223-765951 (A.P.J.)
| | - Christopher L.-H. Huang
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK;
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Antony P. Jackson
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK;
- Correspondence: (S.C.S.); (A.P.J.); Tel.: +44-1223-765950 (S.C.S.); +44-1223-765951 (A.P.J.)
| |
Collapse
|
5
|
Ni H, Ding H, Tao J, Wang Y, Tao M, Huang L. [Effects of olfactory deprivation on action potential and ankyrin-G expression in glutamatergic neurons in the barrel cortex of mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:262-267. [PMID: 32376530 DOI: 10.12122/j.issn.1673-4254.2020.02.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate effect of upregulated touch sensation induced by olfactory deprivation on action potentials and ankyrin-G expression in the glutamatergic neurons in the barrel cortex of mice. METHODS Chloroform (40 μL) was dropped into the unilateral nasal cavity to induce olfactory deprivation in 40 C57 mice (12 days old), whose glutamatergic neurons were genetically labeled with yellow fluorescent protein (YFP). Behavioral experiments were carried out to assess the effects of olfactory deprivation on whisker tactile of the mice. The action potentials of the glutamatergic neurons in the barrel cortex on the side with or without chloroform treatment (olfactory deprivation group and control group, respectively) were recorded by patch-clamp electrophysiological recording, and ankyrin-G expression in the proximal axonal segment of the neurons was detected with immunohistochemistry. RESULTS Compared with those on the control side, the inter-spike intervals of the barrel glutamatergic neurons were significantly decreased and the absolute refractory periods were significantly shortened on the side with olfactory deprivation (P < 0.01); the expression of ankyrin-G was also significantly increased in the proximal axonal segment of the glutamatergic neurons in the barrel cortex on the side with olfactory deprivation (P < 0.01). CONCLUSIONS Olfaction deprivation induces up-regulation of touch sensation in mice possibly as a result of functional enhancement of the glutamatergic neurons and increased ankyrin-G expression in the barrel cortex.
Collapse
Affiliation(s)
- Hong Ni
- Department of Functional Experiment Center, Bengbu Medical College, Bengbu 233030, China
| | - Haihu Ding
- Department of Functional Experiment Center, Bengbu Medical College, Bengbu 233030, China
| | - Jing Tao
- Department of Functional Experiment Center, Bengbu Medical College, Bengbu 233030, China
| | - Yuanyuan Wang
- Department of Functional Experiment Center, Bengbu Medical College, Bengbu 233030, China
| | - Mingfei Tao
- Department of Functional Experiment Center, Bengbu Medical College, Bengbu 233030, China
| | - Li Huang
- Department of Pathophysiology, Bengbu Medical College, Bengbu 233030, China
| |
Collapse
|
6
|
Maroni M, Körner J, Schüttler J, Winner B, Lampert A, Eberhardt E. β1 and β3 subunits amplify mechanosensitivity of the cardiac voltage-gated sodium channel Nav1.5. Pflugers Arch 2019; 471:1481-1492. [PMID: 31728700 DOI: 10.1007/s00424-019-02324-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/25/2019] [Accepted: 10/21/2019] [Indexed: 12/19/2022]
Abstract
In cardiomyocytes, electrical activity is coupled to cellular contraction, thus exposing all proteins expressed in the sarcolemma to mechanical stress. The voltage-gated sodium channel Nav1.5 is the main contributor to the rising phase of the action potential in the heart. There is growing evidence that gating and kinetics of Nav1.5 are modulated by mechanical forces and pathogenic variants that affect mechanosensitivity have been linked to arrhythmias. Recently, the sodium channel β1 subunit has been described to stabilise gating against mechanical stress of Nav1.7 expressed in neurons. Here, we tested the effect of β1 and β3 subunits on mechanosensitivity of the cardiac Nav1.5. β1 amplifies stress-induced shifts of V1/2 of steady-state fast inactivation to hyperpolarised potentials (ΔV1/2: 6.2 mV without and 10.7 mV with β1 co-expression). β3, on the other hand, almost doubles stress-induced speeding of time to sodium current transient peak (Δtime to peak at - 30 mV: 0.19 ms without and 0.37 ms with β3 co-expression). Our findings may indicate that in cardiomyocytes, the interdependence of electrical activity and contraction is used as a means of fine tuning cardiac sodium channel function, allowing quicker but more strongly inactivating sodium currents under conditions of increased mechanical stress. This regulation may help to shorten action potential duration during tachycardia, to prevent re-entry phenomena and thus arrhythmias.
Collapse
Affiliation(s)
- Michele Maroni
- Department of Anaesthesiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany.,Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Jannis Körner
- Institute of Physiology, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany.,Department of Anaesthesiology, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
| | - Jürgen Schüttler
- Department of Anaesthesiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Angelika Lampert
- Institute of Physiology, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
| | - Esther Eberhardt
- Department of Anaesthesiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany.
| |
Collapse
|
7
|
Li S, Han J, Guo G, Sun Y, Zhang T, Zhao M, Xu Y, Cui Y, Liu Y, Zhang J. Voltage-gated sodium channels β3 subunit promotes tumorigenesis in hepatocellular carcinoma by facilitating p53 degradation. FEBS Lett 2019; 594:497-508. [PMID: 31626714 DOI: 10.1002/1873-3468.13641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 11/08/2022]
Abstract
The voltage-gated sodium channels (VGSCs) are aberrantly expressed in a variety of tumors and play an important role in tumor growth and metastasis. Here, we show that VGSCs auxiliary β3 subunit, encoded by the SCN3B gene, promotes proliferation and suppresses apoptosis in HepG2 cells by promoting p53 degradation. β3 significantly increases HepG2 cell proliferation, promotes tumor growth in mouse xenograft models, and suppresses senescence and apoptosis. We found that β3 knockdown stabilizes p53 protein, leading to potentiation of p53-induced cell cycle arrest, senescence, and apoptosis. Mechanistic studies revealed that β3 could bind to p53, promoting p53 ubiquitination and degradation by stabilizing the p53/MDM2 complex. Our results suggest that β3 is a novel negative regulator of p53 and a potential oncogenic factor.
Collapse
Affiliation(s)
- Shuai Li
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, China
| | - Jiadi Han
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, China
| | - Guili Guo
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, China
| | - Yudi Sun
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, China
| | - Tingting Zhang
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, China
| | - Mingyi Zhao
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, China
| | - Yijia Xu
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, China
| | - Yong Cui
- School of Medical Devices, Shenyang Pharmaceutical University, China
| | - Yanfeng Liu
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, China
| | - Jinghai Zhang
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, China.,School of Medical Devices, Shenyang Pharmaceutical University, China
| |
Collapse
|
8
|
Hull JM, Isom LL. Voltage-gated sodium channel β subunits: The power outside the pore in brain development and disease. Neuropharmacology 2017; 132:43-57. [PMID: 28927993 DOI: 10.1016/j.neuropharm.2017.09.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/19/2017] [Accepted: 09/11/2017] [Indexed: 12/19/2022]
Abstract
Voltage gated sodium channels (VGSCs) were first identified in terms of their role in the upstroke of the action potential. The underlying proteins were later identified as saxitoxin and scorpion toxin receptors consisting of α and β subunits. We now know that VGSCs are heterotrimeric complexes consisting of a single pore forming α subunit joined by two β subunits; a noncovalently linked β1 or β3 and a covalently linked β2 or β4 subunit. VGSC α subunits contain all the machinery necessary for channel cell surface expression, ion conduction, voltage sensing, gating, and inactivation, in one central, polytopic, transmembrane protein. VGSC β subunits are more than simple accessories to α subunits. In the more than two decades since the original cloning of β1, our knowledge of their roles in physiology and pathophysiology has expanded immensely. VGSC β subunits are multifunctional. They confer unique gating mechanisms, regulate cellular excitability, affect brain development, confer distinct channel pharmacology, and have functions that are independent of the α subunits. The vast array of functions of these proteins stems from their special station in the channelome: being the only known constituents that are cell adhesion and intra/extracellular signaling molecules in addition to being part of channel complexes. This functional trifecta and how it goes awry demonstrates the power outside the pore in ion channel signaling complexes, broadening the term channelopathy beyond defects in ion conduction. This article is part of the Special Issue entitled 'Channelopathies.'
Collapse
Affiliation(s)
- Jacob M Hull
- Neuroscience Program and Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Lori L Isom
- Neuroscience Program and Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| |
Collapse
|
9
|
Shimizu H, Tosaki A, Ohsawa N, Ishizuka-Katsura Y, Shoji S, Miyazaki H, Oyama F, Terada T, Shirouzu M, Sekine SI, Nukina N, Yokoyama S. Parallel homodimer structures of the extracellular domains of the voltage-gated sodium channel β4 subunit explain its role in cell-cell adhesion. J Biol Chem 2017; 292:13428-13440. [PMID: 28655765 PMCID: PMC5555201 DOI: 10.1074/jbc.m117.786509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/26/2017] [Indexed: 11/06/2022] Open
Abstract
Voltage-gated sodium channels (VGSCs) are transmembrane proteins required for the generation of action potentials in excitable cells and essential for propagating electrical impulses along nerve cells. VGSCs are complexes of a pore-forming α subunit and auxiliary β subunits, designated as β1/β1B-β4 (encoded by SCN1B-4B, respectively), which also function in cell-cell adhesion. We previously reported the structural basis for the trans homophilic interaction of the β4 subunit, which contributes to its adhesive function. Here, using crystallographic and biochemical analyses, we show that the β4 extracellular domains directly interact with each other in a parallel manner that involves an intermolecular disulfide bond between the unpaired Cys residues (Cys58) in the loop connecting strands B and C and intermolecular hydrophobic and hydrogen-bonding interactions of the N-terminal segments (Ser30-Val35). Under reducing conditions, an N-terminally deleted β4 mutant exhibited decreased cell adhesion compared with the wild type, indicating that the β4 cis dimer contributes to the trans homophilic interaction of β4 in cell-cell adhesion. Furthermore, this mutant exhibited increased association with the α subunit, indicating that the cis dimerization of β4 affects α-β4 complex formation. These observations provide the structural basis for the parallel dimer formation of β4 in VGSCs and reveal its mechanism in cell-cell adhesion.
Collapse
Affiliation(s)
- Hideaki Shimizu
- From the RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama 230-0045, Japan.,the RIKEN Center for Life Science Technologies, Tsurumi, Yokohama 230-0045, Japan.,the Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Asako Tosaki
- the Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Noboru Ohsawa
- From the RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama 230-0045, Japan.,the RIKEN Center for Life Science Technologies, Tsurumi, Yokohama 230-0045, Japan
| | - Yoshiko Ishizuka-Katsura
- From the RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama 230-0045, Japan.,the RIKEN Center for Life Science Technologies, Tsurumi, Yokohama 230-0045, Japan
| | - Shisako Shoji
- From the RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama 230-0045, Japan.,the RIKEN Center for Life Science Technologies, Tsurumi, Yokohama 230-0045, Japan
| | - Haruko Miyazaki
- the Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan.,the Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.,the Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, 1-3 Tatara Miyakodani, Kyotanabe-shi, Kyoto 610-0394, Japan
| | - Fumitaka Oyama
- the Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan.,the Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan, and
| | - Takaho Terada
- From the RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama 230-0045, Japan.,the RIKEN Structural Biology Laboratory, Tsurumi, Yokohama 230-0045, Japan
| | - Mikako Shirouzu
- From the RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama 230-0045, Japan.,the RIKEN Center for Life Science Technologies, Tsurumi, Yokohama 230-0045, Japan
| | - Shun-Ichi Sekine
- From the RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama 230-0045, Japan.,the RIKEN Center for Life Science Technologies, Tsurumi, Yokohama 230-0045, Japan
| | - Nobuyuki Nukina
- the Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan.,the Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.,the Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, 1-3 Tatara Miyakodani, Kyotanabe-shi, Kyoto 610-0394, Japan
| | - Shigeyuki Yokoyama
- From the RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama 230-0045, Japan, .,the RIKEN Structural Biology Laboratory, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|
10
|
Abstract
Voltage-gated sodium channels are protein complexes comprised of one pore forming α subunit and two, non-pore forming, β subunits. The voltage-gated sodium channel β subunits were originally identified to function as auxiliary subunits, which modulate the gating, kinetics, and localization of the ion channel pore. Since that time, the five β subunits have been shown to play crucial roles as multifunctional signaling molecules involved in cell adhesion, cell migration, neuronal pathfinding, fasciculation, and neurite outgrowth. Here, we provide an overview of the evidence implicating the β subunits in their conducting and non-conducting roles. Mutations in the β subunit genes (SCN1B-SCN4B) have been linked to a variety of diseases. These include cancer, epilepsy, cardiac arrhythmias, sudden infant death syndrome/sudden unexpected death in epilepsy, neuropathic pain, and multiple neurodegenerative disorders. β subunits thus provide novel therapeutic targets for future drug discovery.
Collapse
Affiliation(s)
- Alexandra A Bouza
- Department of Pharmacology, University of Michigan Medical School, 2200 MSRBIII, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109-5632, USA
| | - Lori L Isom
- Department of Pharmacology, University of Michigan Medical School, 2301 MSRB III, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109-5632, USA.
| |
Collapse
|
11
|
Patel F, Brackenbury WJ. Dual roles of voltage-gated sodium channels in development and cancer. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2016; 59:357-66. [PMID: 26009234 DOI: 10.1387/ijdb.150171wb] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Voltage-gated Na(+) channels (VGSCs) are heteromeric protein complexes containing pore-forming α subunits together with non-pore-forming β subunits. There are nine α subunits, Nav1.1-Nav1.9, and four β subunits, β1-β4. The β subunits are multifunctional, modulating channel activity, cell surface expression, and are members of the immunoglobulin superfamily of cell adhesion molecules. VGSCs are classically responsible for action potential initiation and conduction in electrically excitable cells, including neurons and muscle cells. In addition, through the β1 subunit, VGSCs regulate neurite outgrowth and pathfinding in the developing central nervous system. Reciprocal signalling through Nav1.6 and β1 collectively regulates Na(+) current, electrical excitability and neurite outgrowth in cerebellar granule neurons. Thus, α and β subunits may have diverse interacting roles dependent on cell/tissue type. VGSCs are also expressed in non-excitable cells, including cells derived from a number of types of cancer. In cancer cells, VGSC α and β subunits regulate cellular morphology, migration, invasion and metastasis. VGSC expression associates with poor prognosis in several studies. It is hypothesised that VGSCs are up-regulated in metastatic tumours, favouring an invasive phenotype. Thus, VGSCs may have utility as prognostic markers, and/or as novel therapeutic targets for reducing/preventing metastatic disease burden. VGSCs appear to regulate a number of key cellular processes, both during normal postnatal development of the CNS and during cancer metastasis, by a combination of conducting (i.e. via Na(+) current) and non-conducting mechanisms.
Collapse
|
12
|
Winters JJ, Isom LL. Developmental and Regulatory Functions of Na(+) Channel Non-pore-forming β Subunits. CURRENT TOPICS IN MEMBRANES 2016; 78:315-51. [PMID: 27586289 DOI: 10.1016/bs.ctm.2016.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Voltage-gated Na(+) channels (VGSCs) isolated from mammalian neurons are heterotrimeric complexes containing one pore-forming α subunit and two non-pore-forming β subunits. In excitable cells, VGSCs are responsible for the initiation of action potentials. VGSC β subunits are type I topology glycoproteins, containing an extracellular amino-terminal immunoglobulin (Ig) domain with homology to many neural cell adhesion molecules (CAMs), a single transmembrane segment, and an intracellular carboxyl-terminal domain. VGSC β subunits are encoded by a gene family that is distinct from the α subunits. While α subunits are expressed in prokaryotes, β subunit orthologs did not arise until after the emergence of vertebrates. β subunits regulate the cell surface expression, subcellular localization, and gating properties of their associated α subunits. In addition, like many other Ig-CAMs, β subunits are involved in cell migration, neurite outgrowth, and axon pathfinding and may function in these roles in the absence of associated α subunits. In sum, these multifunctional proteins are critical for both channel regulation and central nervous system development.
Collapse
Affiliation(s)
- J J Winters
- University of Michigan Neuroscience Program, Ann Arbor, MI, United States
| | - L L Isom
- University of Michigan Neuroscience Program, Ann Arbor, MI, United States; University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
13
|
Abstract
Voltage-gated sodium channels (VGSCs), composed of a pore-forming α subunit and up to two associated β subunits, are critical for the initiation of the action potential (AP) in excitable tissues. Building on the monumental discovery and description of sodium current in 1952, intrepid researchers described the voltage-dependent gating mechanism, selectivity of the channel, and general structure of the VGSC channel. Recently, crystal structures of bacterial VGSC α subunits have confirmed many of these studies and provided new insights into VGSC function. VGSC β subunits, first cloned in 1992, modulate sodium current but also have nonconducting roles as cell-adhesion molecules and function in neurite outgrowth and neuronal pathfinding. Mutations in VGSC α and β genes are associated with diseases caused by dysfunction of excitable tissues such as epilepsy. Because of the multigenic and drug-resistant nature of some of these diseases, induced pluripotent stem cells and other novel approaches are being used to screen for new drugs and further understand how mutations in VGSC genes contribute to pathophysiology.
Collapse
|
14
|
Shimizu H, Miyazaki H, Ohsawa N, Shoji S, Ishizuka-Katsura Y, Tosaki A, Oyama F, Terada T, Sakamoto K, Shirouzu M, Sekine SI, Nukina N, Yokoyama S. Structure-based site-directed photo-crosslinking analyses of multimeric cell-adhesive interactions of voltage-gated sodium channel β subunits. Sci Rep 2016; 6:26618. [PMID: 27216889 PMCID: PMC4877568 DOI: 10.1038/srep26618] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 05/04/2016] [Indexed: 11/09/2022] Open
Abstract
The β1, β2, and β4 subunits of voltage-gated sodium channels reportedly function as cell adhesion molecules. The present crystallographic analysis of the β4 extracellular domain revealed an antiparallel arrangement of the β4 molecules in the crystal lattice. The interface between the two antiparallel β4 molecules is asymmetric, and results in a multimeric assembly. Structure-based mutagenesis and site-directed photo-crosslinking analyses of the β4-mediated cell-cell adhesion revealed that the interface between the antiparallel β4 molecules corresponds to that in the trans homophilic interaction for the multimeric assembly of β4 in cell-cell adhesion. This trans interaction mode is also employed in the β1-mediated cell-cell adhesion. Moreover, the β1 gene mutations associated with generalized epilepsy with febrile seizures plus (GEFS+) impaired the β1-mediated cell-cell adhesion, which should underlie the GEFS+ pathogenesis. Thus, the structural basis for the β-subunit-mediated cell-cell adhesion has been established.
Collapse
Affiliation(s)
- Hideaki Shimizu
- RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama 230-0045, Japan.,RIKEN Center for Life Science Technologies, Tsurumi, Yokohama 230-0045, Japan.,Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Haruko Miyazaki
- Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan.,Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.,Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, 1-3 Tatara Miyakodani, Kyotanabe-shi, Kyoto 610-0394, Japan
| | - Noboru Ohsawa
- RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama 230-0045, Japan.,RIKEN Center for Life Science Technologies, Tsurumi, Yokohama 230-0045, Japan
| | - Shisako Shoji
- RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama 230-0045, Japan.,RIKEN Center for Life Science Technologies, Tsurumi, Yokohama 230-0045, Japan
| | - Yoshiko Ishizuka-Katsura
- RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama 230-0045, Japan.,RIKEN Center for Life Science Technologies, Tsurumi, Yokohama 230-0045, Japan
| | - Asako Tosaki
- Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Fumitaka Oyama
- Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan.,Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan
| | - Takaho Terada
- RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama 230-0045, Japan.,RIKEN Structural Biology Laboratory, Tsurumi, Yokohama 230-0045, Japan
| | - Kensaku Sakamoto
- RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama 230-0045, Japan.,RIKEN Center for Life Science Technologies, Tsurumi, Yokohama 230-0045, Japan
| | - Mikako Shirouzu
- RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama 230-0045, Japan.,RIKEN Center for Life Science Technologies, Tsurumi, Yokohama 230-0045, Japan
| | - Shun-Ichi Sekine
- RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama 230-0045, Japan.,RIKEN Center for Life Science Technologies, Tsurumi, Yokohama 230-0045, Japan
| | - Nobuyuki Nukina
- Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan.,Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.,Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, 1-3 Tatara Miyakodani, Kyotanabe-shi, Kyoto 610-0394, Japan
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama 230-0045, Japan.,RIKEN Structural Biology Laboratory, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|
15
|
Abstract
Voltage-gated sodium channels (VGSCs) are responsible for the initiation and propagation of action potentials in excitable cells. VGSCs in mammalian brain are heterotrimeric complexes of α and β subunits. Although β subunits were originally termed auxiliary, we now know that they are multifunctional signaling molecules that play roles in both excitable and nonexcitable cell types and with or without the pore-forming α subunit present. β subunits function in VGSC and potassium channel modulation, cell adhesion, and gene regulation, with particularly important roles in brain development. Mutations in the genes encoding β subunits are linked to a number of diseases, including epilepsy, sudden death syndromes like SUDEP and SIDS, and cardiac arrhythmia. Although VGSC β subunit-specific drugs have not yet been developed, this protein family is an emerging therapeutic target.
Collapse
Affiliation(s)
- Heather A O'Malley
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109;
| | | |
Collapse
|
16
|
Analgesic-antitumor peptide inhibits the migration and invasion of HepG2 cells by an upregulated VGSC β1 subunit. Tumour Biol 2015; 37:3033-41. [DOI: 10.1007/s13277-015-4067-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/25/2014] [Indexed: 01/28/2023] Open
|
17
|
Namadurai S, Yereddi NR, Cusdin FS, Huang CLH, Chirgadze DY, Jackson AP. A new look at sodium channel β subunits. Open Biol 2015; 5:140192. [PMID: 25567098 PMCID: PMC4313373 DOI: 10.1098/rsob.140192] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Voltage-gated sodium (Nav) channels are intrinsic plasma membrane proteins that initiate the action potential in electrically excitable cells. They are a major focus of research in neurobiology, structural biology, membrane biology and pharmacology. Mutations in Nav channels are implicated in a wide variety of inherited pathologies, including cardiac conduction diseases, myotonic conditions, epilepsy and chronic pain syndromes. Drugs active against Nav channels are used as local anaesthetics, anti-arrhythmics, analgesics and anti-convulsants. The Nav channels are composed of a pore-forming α subunit and associated β subunits. The β subunits are members of the immunoglobulin (Ig) domain family of cell-adhesion molecules. They modulate multiple aspects of Nav channel behaviour and play critical roles in controlling neuronal excitability. The recently published atomic resolution structures of the human β3 and β4 subunit Ig domains open a new chapter in the study of these molecules. In particular, the discovery that β3 subunits form trimers suggests that Nav channel oligomerization may contribute to the functional properties of some β subunits.
Collapse
Affiliation(s)
- Sivakumar Namadurai
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Nikitha R Yereddi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Fiona S Cusdin
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | | | - Dimitri Y Chirgadze
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Antony P Jackson
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| |
Collapse
|
18
|
Calhoun JD, Isom LL. The role of non-pore-forming β subunits in physiology and pathophysiology of voltage-gated sodium channels. Handb Exp Pharmacol 2014; 221:51-89. [PMID: 24737232 DOI: 10.1007/978-3-642-41588-3_4] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Voltage-gated sodium channel β1 and β2 subunits were discovered as auxiliary proteins that co-purify with pore-forming α subunits in brain. The other family members, β1B, β3, and β4, were identified by homology and shown to modulate sodium current in heterologous systems. Work over the past 2 decades, however, has provided strong evidence that these proteins are not simply ancillary ion channel subunits, but are multifunctional signaling proteins in their own right, playing both conducting (channel modulatory) and nonconducting roles in cell signaling. Here, we discuss evidence that sodium channel β subunits not only regulate sodium channel function and localization but also modulate voltage-gated potassium channels. In their nonconducting roles, VGSC β subunits function as immunoglobulin superfamily cell adhesion molecules that modulate brain development by influencing cell proliferation and migration, axon outgrowth, axonal fasciculation, and neuronal pathfinding. Mutations in genes encoding β subunits are linked to paroxysmal diseases including epilepsy, cardiac arrhythmia, and sudden infant death syndrome. Finally, β subunits may be targets for the future development of novel therapeutics.
Collapse
Affiliation(s)
- Jeffrey D Calhoun
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109-5632, USA
| | | |
Collapse
|
19
|
Chen C, Calhoun JD, Zhang Y, Lopez-Santiago L, Zhou N, Davis TH, Salzer JL, Isom LL. Identification of the cysteine residue responsible for disulfide linkage of Na+ channel α and β2 subunits. J Biol Chem 2012; 287:39061-9. [PMID: 22992729 PMCID: PMC3493947 DOI: 10.1074/jbc.m112.397646] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/13/2012] [Indexed: 01/28/2023] Open
Abstract
Voltage-gated Na(+) channels in the brain are composed of a single pore-forming α subunit, one non-covalently linked β subunit (β1 or β3), and one disulfide-linked β subunit (β2 or β4). The final step in Na(+) channel biosynthesis in central neurons is concomitant α-β2 disulfide linkage and insertion into the plasma membrane. Consistent with this, Scn2b (encoding β2) null mice have reduced Na(+) channel cell surface expression in neurons, and action potential conduction is compromised. Here we generated a series of mutant β2 cDNA constructs to investigate the cysteine residue(s) responsible for α-β2 subunit covalent linkage. We demonstrate that a single cysteine-to-alanine substitution at extracellular residue Cys-26, located within the immunoglobulin (Ig) domain, abolishes the covalent linkage between α and β2 subunits. Loss of α-β2 covalent complex formation disrupts the targeting of β2 to nodes of Ranvier in a myelinating co-culture system and to the axon initial segment in primary hippocampal neurons, suggesting that linkage with α is required for normal β2 subcellular localization in vivo. WT β2 subunits are resistant to live cell Triton X-100 detergent extraction from the hippocampal axon initial segment, whereas mutant β2 subunits, which cannot form disulfide bonds with α, are removed by detergent. Taken together, our results demonstrate that α-β2 covalent association via a single, extracellular disulfide bond is required for β2 targeting to specialized neuronal subcellular domains and for β2 association with the neuronal cytoskeleton within those domains.
Collapse
Affiliation(s)
- Chunling Chen
- From the Department of Pharmacology and Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan 48109 and
| | - Jeffrey D. Calhoun
- From the Department of Pharmacology and Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan 48109 and
| | - Yanqing Zhang
- the Departments of Cell Biology and Neurology and the New York University Neuroscience Institute, New York University School of Medicine, New York, New York 10016
| | - Luis Lopez-Santiago
- From the Department of Pharmacology and Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan 48109 and
| | - Ningna Zhou
- From the Department of Pharmacology and Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan 48109 and
| | - Tigwa H. Davis
- From the Department of Pharmacology and Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan 48109 and
| | - James L. Salzer
- the Departments of Cell Biology and Neurology and the New York University Neuroscience Institute, New York University School of Medicine, New York, New York 10016
| | - Lori L. Isom
- From the Department of Pharmacology and Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan 48109 and
| |
Collapse
|
20
|
Yereddi NR, Cusdin FS, Namadurai S, Packman LC, Monie TP, Slavny P, Clare JJ, Powell AJ, Jackson AP. The immunoglobulin domain of the sodium channel β3 subunit contains a surface-localized disulfide bond that is required for homophilic binding. FASEB J 2012; 27:568-80. [PMID: 23118027 PMCID: PMC3583845 DOI: 10.1096/fj.12-209445] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The β subunits of voltage-gated sodium (Nav) channels possess an extracellular immunoglobulin (Ig) domain that is related to the L1 family of cell-adhesion molecules (CAMs). Here we show that in HEK293 cells, secretion of the free Ig domain of the β3 subunit is reduced significantly when it is coexpressed with the full-length β3 and β1 subunits but not with the β2 subunit. Using immunoprecipitation, we show that the β3 subunit can mediate trans homophilic-binding via its Ig domain and that the β3-Ig domain can associate heterophilically with the β1 subunit. Evolutionary tracing analysis and structural modeling identified a cluster of surface-localized amino acids fully conserved between the Ig domains of all known β3 and β1 sequences. A notable feature of this conserved surface cluster is the presence of two adjacent cysteine residues that previously we have suggested may form a disulfide bond. We now confirm the presence of the disulfide bond in β3 using mass spectrometry, and we show that its integrity is essential for the association of the full-length, membrane-anchored β3 subunit with itself. However, selective reduction of this surface disulfide bond did not inhibit homophilic binding of the purified β3-Ig domain in free solution. Hence, the disulfide bond itself is unlikely to be part of the homophilic binding site. Rather, we suggest that its integrity ensures the Ig domain of the membrane-tethered β3 subunit adopts the correct orientation for productive association to occur in vivo.—Yereddi, N. R., Cusdin, F. S., Namadurai, S., Packman, L. C., Monie, T. P., Slavny, P., Clare, J. C., Powell, A. J., Jackson, A. P. The immunoglobulin domain of the sodium channel β3 subunit contains a surface-localized disulfide bond that is required for homophilic binding.
Collapse
|
21
|
Savio-Galimberti E, Gollob MH, Darbar D. Voltage-gated sodium channels: biophysics, pharmacology, and related channelopathies. Front Pharmacol 2012; 3:124. [PMID: 22798951 PMCID: PMC3394224 DOI: 10.3389/fphar.2012.00124] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 06/11/2012] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (VGSC) are multi-molecular protein complexes expressed in both excitable and non-excitable cells. They are primarily formed by a pore-forming multi-spanning integral membrane glycoprotein (α-subunit) that can be associated with one or more regulatory β-subunits. The latter are single-span integral membrane proteins that modulate the sodium current (INa) and can also function as cell adhesion molecules. In vitro some of the cell-adhesive functions of the β-subunits may play important physiological roles independently of the α-subunits. Other endogenous regulatory proteins named “channel partners” or “channel interacting proteins” (ChiPs) like caveolin-3 and calmodulin/calmodulin kinase II (CaMKII) can also interact and modulate the expression and/or function of VGSC. In addition to their physiological roles in cell excitability and cell adhesion, VGSC are the site of action of toxins (like tetrodotoxin and saxitoxin), and pharmacologic agents (like antiarrhythmic drugs, local anesthetics, antiepileptic drugs, and newly developed analgesics). Mutations in genes that encode α- and/or β-subunits as well as the ChiPs can affect the structure and biophysical properties of VGSC, leading to the development of diseases termed sodium “channelopathies”. This review will outline the structure, function, and biophysical properties of VGSC as well as their pharmacology and associated channelopathies and highlight some of the recent advances in this field.
Collapse
Affiliation(s)
- Eleonora Savio-Galimberti
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Nashville, TN, USA
| | | | | |
Collapse
|
22
|
Patino GA, Brackenbury WJ, Bao Y, Lopez-Santiago LF, O'Malley HA, Chen C, Calhoun JD, Lafrenière RG, Cossette P, Rouleau GA, Isom LL. Voltage-gated Na+ channel β1B: a secreted cell adhesion molecule involved in human epilepsy. J Neurosci 2011; 31:14577-91. [PMID: 21994374 PMCID: PMC3212034 DOI: 10.1523/jneurosci.0361-11.2011] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 08/10/2011] [Accepted: 08/15/2011] [Indexed: 12/19/2022] Open
Abstract
Scn1b-null mice have a severe neurological and cardiac phenotype. Human mutations in SCN1B result in epilepsy and cardiac arrhythmia. SCN1B is expressed as two developmentally regulated splice variants, β1 and β1B, that are each expressed in brain and heart in rodents and humans. Here, we studied the structure and function of β1B and investigated a novel human SCN1B epilepsy-related mutation (p.G257R) unique to β1B. We show that wild-type β1B is not a transmembrane protein, but a soluble protein expressed predominantly during embryonic development that promotes neurite outgrowth. Association of β1B with voltage-gated Na+ channels Na(v)1.1 or Na(v)1.3 is not detectable by immunoprecipitation and β1B does not affect Na(v)1.3 cell surface expression as measured by [(3)H]saxitoxin binding. However, β1B coexpression results in subtle alteration of Na(v)1.3 currents in transfected cells, suggesting that β1B may modulate Na+ current in brain. Similar to the previously characterized p.R125C mutation, p.G257R results in intracellular retention of β1B, generating a functional null allele. In contrast, two other SCN1B mutations associated with epilepsy, p.C121W and p.R85H, are expressed at the cell surface. We propose that β1B p.G257R may contribute to epilepsy through a mechanism that includes intracellular retention resulting in aberrant neuronal pathfinding.
Collapse
Affiliation(s)
| | | | - Yangyang Bao
- Department of Pharmacology and Program in Neuroscience, and
| | | | | | - Chunling Chen
- Department of Pharmacology and Program in Neuroscience, and
| | - Jeffrey D. Calhoun
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Ron G. Lafrenière
- Centre of Excellence in Neuromics and
- Emerillon Therapeutics, Inc., Montréal, Québec H3A IL2, Canada, and
| | - Patrick Cossette
- Department of Medicine, Université de Montréal, Montréal, Québec H2L 2W5, Canada
- Centre Hospitalier de l'Université de Montréal–Hôpital Notre-Dame, Montréal, Québec H2L 4M1, Canada
| | - Guy A. Rouleau
- Centre of Excellence in Neuromics and
- Emerillon Therapeutics, Inc., Montréal, Québec H3A IL2, Canada, and
| | - Lori L. Isom
- Department of Pharmacology and Program in Neuroscience, and
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
23
|
Brackenbury WJ, Isom LL. Na Channel β Subunits: Overachievers of the Ion Channel Family. Front Pharmacol 2011; 2:53. [PMID: 22007171 PMCID: PMC3181431 DOI: 10.3389/fphar.2011.00053] [Citation(s) in RCA: 229] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 09/12/2011] [Indexed: 11/13/2022] Open
Abstract
Voltage-gated Na+ channels (VGSCs) in mammals contain a pore-forming α subunit and one or more β subunits. There are five mammalian β subunits in total: β1, β1B, β2, β3, and β4, encoded by four genes: SCN1B–SCN4B. With the exception of the SCN1B splice variant, β1B, the β subunits are type I topology transmembrane proteins. In contrast, β1B lacks a transmembrane domain and is a secreted protein. A growing body of work shows that VGSC β subunits are multifunctional. While they do not form the ion channel pore, β subunits alter gating, voltage-dependence, and kinetics of VGSCα subunits and thus regulate cellular excitability in vivo. In addition to their roles in channel modulation, β subunits are members of the immunoglobulin superfamily of cell adhesion molecules and regulate cell adhesion and migration. β subunits are also substrates for sequential proteolytic cleavage by secretases. An example of the multifunctional nature of β subunits is β1, encoded by SCN1B, that plays a critical role in neuronal migration and pathfinding during brain development, and whose function is dependent on Na+ current and γ-secretase activity. Functional deletion of SCN1B results in Dravet Syndrome, a severe and intractable pediatric epileptic encephalopathy. β subunits are emerging as key players in a wide variety of physiopathologies, including epilepsy, cardiac arrhythmia, multiple sclerosis, Huntington’s disease, neuropsychiatric disorders, neuropathic and inflammatory pain, and cancer. β subunits mediate multiple signaling pathways on different timescales, regulating electrical excitability, adhesion, migration, pathfinding, and transcription. Importantly, some β subunit functions may operate independently of α subunits. Thus, β subunits perform critical roles during development and disease. As such, they may prove useful in disease diagnosis and therapy.
Collapse
|
24
|
Zhao J, O'Leary ME, Chahine M. Regulation of Nav1.6 and Nav1.8 peripheral nerve Na+ channels by auxiliary β-subunits. J Neurophysiol 2011; 106:608-19. [PMID: 21562192 DOI: 10.1152/jn.00107.2011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Voltage-gated Na(+) (Na(v)) channels are composed of a pore-forming α-subunit and one or more auxiliary β-subunits. The present study investigated the regulation by the β-subunit of two Na(+) channels (Na(v)1.6 and Na(v)1.8) expressed in dorsal root ganglion (DRG) neurons. Single cell RT-PCR was used to show that Na(v)1.8, Na(v)1.6, and β(1)-β(3) subunits were widely expressed in individually harvested small-diameter DRG neurons. Coexpression experiments were used to assess the regulation of Na(v)1.6 and Na(v)1.8 by β-subunits. The β(1)-subunit induced a 2.3-fold increase in Na(+) current density and hyperpolarizing shifts in the activation (-4 mV) and steady-state inactivation (-4.7 mV) of heterologously expressed Na(v)1.8 channels. The β(4)-subunit caused more pronounced shifts in activation (-16.7 mV) and inactivation (-9.3 mV) but did not alter the current density of cells expressing Na(v)1.8 channels. The β(3)-subunit did not alter Na(v)1.8 gating but significantly reduced the current density by 31%. This contrasted with Na(v)1.6, where the β-subunits were relatively weak regulators of channel function. One notable exception was the β(4)-subunit, which induced a hyperpolarizing shift in activation (-7.6 mV) but no change in the inactivation or current density of Na(v)1.6. The β-subunits differentially regulated the expression and gating of Na(v)1.8 and Na(v)1.6. To further investigate the underlying regulatory mechanism, β-subunit chimeras containing portions of the strongly regulating β(1)-subunit and the weakly regulating β(2)-subunit were generated. Chimeras retaining the COOH-terminal domain of the β(1)-subunit produced hyperpolarizing shifts in gating and increased the current density of Na(v)1.8, similar to that observed for wild-type β(1)-subunits. The intracellular COOH-terminal domain of the β(1)-subunit appeared to play an essential role in the regulation of Na(v)1.8 expression and gating.
Collapse
Affiliation(s)
- Juan Zhao
- Centre de Recherche Université Laval Robert-Giffard, 2601 Chemin de la Canardière, Quebec City, QC, Canada
| | | | | |
Collapse
|
25
|
Dib-Hajj SD, Waxman SG. Isoform-specific and pan-channel partners regulate trafficking and plasma membrane stability; and alter sodium channel gating properties. Neurosci Lett 2010; 486:84-91. [DOI: 10.1016/j.neulet.2010.08.077] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 08/25/2010] [Accepted: 08/26/2010] [Indexed: 12/19/2022]
|
26
|
Patino GA, Isom LL. Electrophysiology and beyond: multiple roles of Na+ channel β subunits in development and disease. Neurosci Lett 2010; 486:53-9. [PMID: 20600605 DOI: 10.1016/j.neulet.2010.06.050] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 06/02/2010] [Accepted: 06/16/2010] [Indexed: 12/19/2022]
Abstract
Voltage-gated Na+ channel (VGSC) β Subunits are not "auxiliary." These multi-functional molecules not only modulate Na+ current (I(Na)), but also function as cell adhesion molecules (CAMs)-playing roles in aggregation, migration, invasion, neurite outgrowth, and axonal fasciculation. β subunits are integral members of VGSC signaling complexes at nodes of Ranvier, axon initial segments, and cardiac intercalated disks, regulating action potential propagation through critical intermolecular and cell-cell communication events. At least in vitro, many β subunit cell adhesive functions occur both in the presence and absence of pore-forming VGSC α subunits, and in vivo β subunits are expressed in excitable as well as non-excitable cells, thus β subunits may play important functional roles on their own, in the absence of α subunits. VGSC β1 subunits are essential for life and appear to be especially important during brain development. Mutations in β subunit genes result in a variety of human neurological and cardiovascular diseases. Moreover, some cancer cells exhibit alterations in β subunit expression during metastasis. In short, these proteins, originally thought of as merely accessory to α subunits, are critical players in their own right in human health and disease. Here we discuss the role of VGSC β subunits in the nervous system.
Collapse
Affiliation(s)
- Gustavo A Patino
- Department of Pharmacology and Neuroscience Program, University of Michigan, Ann Arbor, MI 48109, United States
| | | |
Collapse
|