1
|
Ying K, Hua N, Luo Y, Liu X, Liu M, Yang W. [Construction of HEK293T cell line stably expressing TRPM2 channel based on PiggyBac transposition system and its application in drug screening for cerebral ischemia and other diseases]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:604-614. [PMID: 39343750 PMCID: PMC11528149 DOI: 10.3724/zdxbyxb-2024-0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/12/2024] [Indexed: 10/01/2024]
Abstract
OBJECTIVES To establish a cell line stably expressing the transient receptor potential melastatin 2 (TRPM2) channel for screening TRPM2 inhibitors based on PiggyBac transposition system. METHODS A plasmid PiggyBac-human TRPM2 (pPB-hTRPM2) eukaryotic expression vector was constructed using PiggyBac transposition system. The plasmid and a helper plasmid were co-transfected into HEK293T cells to express TRPM2, which was identified by fluorescence and patch-clamp assays. The high throughput screening performance was assessed with the Z ´ factor. Calcium imaging and patch clamp techniques were employed to assess the initial activity of eleven compound molecules, confirming the inhibitory effects of the primary molecules on TRPM2. The protective effect of the screened compounds on damaged cells was validated using the oxygen-glucose deprivation/reperfusion (OGD/R) injury model and CCK-8 kit. The level of cellular reactive oxygen species (ROS) was detected by flow cytometry. The neuroprotective effects of the compounds were evaluated using a transient middle cerebral artery occlusion (tMCAO) mouse model. RESULTS The HEK293T cells transfected with pPB-hTRPM2-EGFP showed high TRPM2 expression. Puromycin-resistant cells, selected through screening, exhibited robust fluorescence. Whole-cell patch results revealed that induced cells displayed classical TRPM2 current characteristics comparable to the control group, showing no significant differences (P>0.05). With a Z ´ factor of 0.5416 in calcium imaging, the model demonstrated suitability for high-throughput screening of TRPM2 inhibitors. Calcium imaging and electrophysiological experiments indicated that compound 6 significantly inhibited the TRPM2 channel. Further experiments showed that 1.0 μmol/L of compound 6 enhanced cell viability (P<0.05) and reduced the level of ROS (P<0.05) of SH-SY5Y under OGD/R injury. 0.3 and 1.0 mg/kg of compound 6 reduced the cerebral infarction volume in tMCAO mice (both P<0.05). CONCLUSIONS A stable TRPM2 gene expressing cell line has been successfully established using PiggyBac gene editing in this study. TRPM2 channel inhibitors were screened through calcium imaging and patch clamp techniques, and an inhibitor compound 6 was identified. This compound can alleviate cell damage after OGD/R by reducing cellular ROS levels and has a protective effect against cerebral ischemia-reperfusion injury in mice.
Collapse
Affiliation(s)
- Kaiyue Ying
- Department of Biophysics, School of Basic Medical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Ning Hua
- Department of Biophysics, School of Basic Medical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanping Luo
- Department of Biophysics, School of Basic Medical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xingyu Liu
- Department of Biophysics, School of Basic Medical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Min Liu
- Department of Biophysics, School of Basic Medical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Yang
- Department of Biophysics, School of Basic Medical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Zong P, Li CX, Feng J, Cicchetti M, Yue L. TRP Channels in Stroke. Neurosci Bull 2024; 40:1141-1159. [PMID: 37995056 PMCID: PMC11306852 DOI: 10.1007/s12264-023-01151-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/11/2023] [Indexed: 11/24/2023] Open
Abstract
Ischemic stroke is a devastating disease that affects millions of patients worldwide. Unfortunately, there are no effective medications for mitigating brain injury after ischemic stroke. TRP channels are evolutionally ancient biosensors that detect external stimuli as well as tissue or cellular injury. To date, many members of the TRP superfamily have been reported to contribute to ischemic brain injury, including the TRPC subfamily (1, 3, 4, 5, 6, 7), TRPV subfamily (1, 2, 3, 4) and TRPM subfamily (2, 4, 7). These TRP channels share structural similarities but have distinct channel functions and properties. Their activation during ischemic stroke can be beneficial, detrimental, or even both. In this review, we focus on discussing the interesting features of stroke-related TRP channels and summarizing the underlying cellular and molecular mechanisms responsible for their involvement in ischemic brain injury.
Collapse
Affiliation(s)
- Pengyu Zong
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA.
- Institute for the Brain and Cognitive Sciences, University of Connecticut, 337 Mansfield Road, Unit 1272, Storrs, CT, 06269, USA.
| | - Cindy X Li
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA
| | - Jianlin Feng
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA
| | - Mara Cicchetti
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA
- Department of Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15260, USA
| | - Lixia Yue
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA.
| |
Collapse
|
3
|
Huang P, Qu C, Rao Z, Wu D, Zhao J. Bidirectional regulation mechanism of TRPM2 channel: role in oxidative stress, inflammation and ischemia-reperfusion injury. Front Immunol 2024; 15:1391355. [PMID: 39007141 PMCID: PMC11239348 DOI: 10.3389/fimmu.2024.1391355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Transient receptor potential melastatin 2 (TRPM2) is a non-selective cation channel that exhibits Ca2+ permeability. The TRPM2 channel is expressed in various tissues and cells and can be activated by multiple factors, including endogenous ligands, Ca2+, reactive oxygen species (ROS) and temperature. This article reviews the multiple roles of the TRPM2 channel in physiological and pathological processes, particularly on oxidative stress, inflammation and ischemia-reperfusion (I/R) injury. In oxidative stress, the excessive influx of Ca2+ caused by the activation of the TRPM2 channel may exacerbate cellular damage. However, under specific conditions, activating the TRPM2 channel can have a protective effect on cells. In inflammation, the activation of the TRPM2 channel may not only promote inflammatory response but also inhibit inflammation by regulating ROS production and bactericidal ability of macrophages and neutrophils. In I/R, the activation of the TRPM2 channel may worsen I/R injury to various organs, including the brain, heart, kidney and liver. However, activating the TRPM2 channel may protect the myocardium from I/R injury by regulating calcium influx and phosphorylating proline-rich tyrosine kinase 2 (Pyk2). A thorough investigation of the bidirectional role and regulatory mechanism of the TRPM2 channel in these physiological and pathological processes will aid in identifying new targets and strategies for treatment of related diseases.
Collapse
Affiliation(s)
- Peng Huang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
| | - Chaoyi Qu
- Physical Education College, Hebei Normal University, Shijiazhuang, China
| | - Zhijian Rao
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
- College of Physical Education, Shanghai Normal University, Shanghai, China
| | - Dongzhe Wu
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Jiexiu Zhao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
| |
Collapse
|
4
|
Burch AM, Garcia JD, O'Leary H, Haas A, Orfila JE, Tiemeier E, Chalmers N, Smith KR, Quillinan N, Herson PS. TRPM2 and CaMKII Signaling Drives Excessive GABAergic Synaptic Inhibition Following Ischemia. J Neurosci 2024; 44:e1762232024. [PMID: 38565288 PMCID: PMC11079974 DOI: 10.1523/jneurosci.1762-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Excitotoxicity and the concurrent loss of inhibition are well-defined mechanisms driving acute elevation in excitatory/inhibitory (E/I) balance and neuronal cell death following an ischemic insult to the brain. Despite the high prevalence of long-term disability in survivors of global cerebral ischemia (GCI) as a consequence of cardiac arrest, it remains unclear whether E/I imbalance persists beyond the acute phase and negatively affects functional recovery. We previously demonstrated sustained impairment of long-term potentiation (LTP) in hippocampal CA1 neurons correlating with deficits in learning and memory tasks in a murine model of cardiac arrest/cardiopulmonary resuscitation (CA/CPR). Here, we use CA/CPR and an in vitro ischemia model to elucidate mechanisms by which E/I imbalance contributes to ongoing hippocampal dysfunction in male mice. We reveal increased postsynaptic GABAA receptor (GABAAR) clustering and function in the CA1 region of the hippocampus that reduces the E/I ratio. Importantly, reduced GABAAR clustering observed in the first 24 h rebounds to an elevation of GABAergic clustering by 3 d postischemia. This increase in GABAergic inhibition required activation of the Ca2+-permeable ion channel transient receptor potential melastatin-2 (TRPM2), previously implicated in persistent LTP and memory deficits following CA/CPR. Furthermore, we find Ca2+-signaling, likely downstream of TRPM2 activation, upregulates Ca2+/calmodulin-dependent protein kinase II (CaMKII) activity, thereby driving the elevation of postsynaptic inhibitory function. Thus, we propose a novel mechanism by which inhibitory synaptic strength is upregulated in the context of ischemia and identify TRPM2 and CaMKII as potential pharmacological targets to restore perturbed synaptic plasticity and ameliorate cognitive function.
Collapse
Affiliation(s)
- Amelia M Burch
- Neuronal Injury & Plasticity Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Joshua D Garcia
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Heather O'Leary
- Neuronal Injury & Plasticity Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Ami Haas
- Neuronal Injury & Plasticity Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - James E Orfila
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - Erika Tiemeier
- Neuronal Injury & Plasticity Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Nicholas Chalmers
- Neuronal Injury & Plasticity Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Katharine R Smith
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Nidia Quillinan
- Neuronal Injury & Plasticity Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Paco S Herson
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, Ohio 43210
| |
Collapse
|
5
|
Zong P, Feng J, Legere N, Li Y, Yue Z, Li CX, Mori Y, Miller B, Hao B, Yue L. TRPM2 enhances ischemic excitotoxicity by associating with PKCγ. Cell Rep 2024; 43:113722. [PMID: 38308841 PMCID: PMC11023021 DOI: 10.1016/j.celrep.2024.113722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/30/2023] [Accepted: 01/13/2024] [Indexed: 02/05/2024] Open
Abstract
N-methyl-D-aspartate receptor (NMDAR)-mediated glutamate excitotoxicity significantly contributes to ischemic neuronal death and post-recanalization infarction expansion. Despite tremendous efforts, targeting NMDARs has proven unsuccessful in clinical trials for mitigating brain injury. Here, we show the discovery of an interaction motif for transient receptor potential melastatin 2 (TRPM2) and protein kinase Cγ (PKCγ) association and demonstrate that TRPM2-PKCγ uncoupling is an effective therapeutic strategy for attenuating NMDAR-mediated excitotoxicity in ischemic stroke. We demonstrate that the TRPM2-PKCγ interaction allows TRPM2-mediated Ca2+ influx to promote PKCγ activation, which subsequently enhances TRPM2-induced potentiation of extrasynaptic NMDAR (esNMDAR) activity. By identifying the PKCγ binding motif on TRPM2 (M2PBM), which directly associates with the C2 domain of PKCγ, an interfering peptide (TAT-M2PBM) is developed to disrupt TRPM2-PKCγ interaction without compromising PKCγ function. M2PBM deletion or TRPM2-PKCγ dissociation abolishes both TRPM2-PKCγ and TRPM2-esNMDAR couplings, resulting in reduced excitotoxic neuronal death and attenuated ischemic brain injury.
Collapse
Affiliation(s)
- Pengyu Zong
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConn Health), Farmington, CT 06030, USA; Institute for the Brain and Cognitive Sciences, University of Connecticut, 337 Mansfield Road, Unit 1272, Storrs, CT 06269, USA
| | - Jianlin Feng
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConn Health), Farmington, CT 06030, USA
| | - Nicholas Legere
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Department of Genetics and Genome Sciences, UConn Health, Farmington, CT 06030, USA
| | - Yunfeng Li
- Department of Molecular Biology and Biophysics, University of Connecticut School of Medicine (UConn Health), Farmington, CT 06030, USA
| | - Zhichao Yue
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConn Health), Farmington, CT 06030, USA
| | - Cindy X Li
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConn Health), Farmington, CT 06030, USA; Institute for the Brain and Cognitive Sciences, University of Connecticut, 337 Mansfield Road, Unit 1272, Storrs, CT 06269, USA
| | - Yasuo Mori
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Barbara Miller
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, P.O. Box 850, Hershey, PA 17033, USA
| | - Bing Hao
- Department of Molecular Biology and Biophysics, University of Connecticut School of Medicine (UConn Health), Farmington, CT 06030, USA
| | - Lixia Yue
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConn Health), Farmington, CT 06030, USA.
| |
Collapse
|
6
|
Okada Y, Numata T, Sabirov RZ, Kashio M, Merzlyak PG, Sato-Numata K. Cell death induction and protection by activation of ubiquitously expressed anion/cation channels. Part 3: the roles and properties of TRPM2 and TRPM7. Front Cell Dev Biol 2023; 11:1246955. [PMID: 37842082 PMCID: PMC10576435 DOI: 10.3389/fcell.2023.1246955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
Cell volume regulation (CVR) is a prerequisite for animal cells to survive and fulfill their functions. CVR dysfunction is essentially involved in the induction of cell death. In fact, sustained normotonic cell swelling and shrinkage are associated with necrosis and apoptosis, and thus called the necrotic volume increase (NVI) and the apoptotic volume decrease (AVD), respectively. Since a number of ubiquitously expressed ion channels are involved in the CVR processes, these volume-regulatory ion channels are also implicated in the NVI and AVD events. In Part 1 and Part 2 of this series of review articles, we described the roles of swelling-activated anion channels called VSOR or VRAC and acid-activated anion channels called ASOR or PAC in CVR and cell death processes. Here, Part 3 focuses on therein roles of Ca2+-permeable non-selective TRPM2 and TRPM7 cation channels activated by stress. First, we summarize their phenotypic properties and molecular structure. Second, we describe their roles in CVR. Since cell death induction is tightly coupled to dysfunction of CVR, third, we focus on their participation in the induction of or protection against cell death under oxidative, acidotoxic, excitotoxic, and ischemic conditions. In this regard, we pay attention to the sensitivity of TRPM2 and TRPM7 to a variety of stress as well as to their capability to physicall and functionally interact with other volume-related channels and membrane enzymes. Also, we summarize a large number of reports hitherto published in which TRPM2 and TRPM7 channels are shown to be involved in cell death associated with a variety of diseases or disorders, in some cases as double-edged swords. Lastly, we attempt to describe how TRPM2 and TRPM7 are organized in the ionic mechanisms leading to cell death induction and protection.
Collapse
Affiliation(s)
- Yasunobu Okada
- National Institute for Physiological Sciences (NIPS), Okazaki, Japan
- Department of Integrative Physiology, Graduate School of Medicine, AkitaUniversity, Akita, Japan
- Department of Physiology, School of Medicine, Aichi Medical Uniersity, Nagakute, Japan
- Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan
| | - Tomohiro Numata
- Department of Integrative Physiology, Graduate School of Medicine, AkitaUniversity, Akita, Japan
| | - Ravshan Z. Sabirov
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Makiko Kashio
- National Institute for Physiological Sciences (NIPS), Okazaki, Japan
- Department of Physiology, School of Medicine, Aichi Medical Uniersity, Nagakute, Japan
| | - Peter G. Merzlyak
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Kaori Sato-Numata
- Department of Integrative Physiology, Graduate School of Medicine, AkitaUniversity, Akita, Japan
| |
Collapse
|
7
|
Zong P, Lin Q, Feng J, Yue L. A Systemic Review of the Integral Role of TRPM2 in Ischemic Stroke: From Upstream Risk Factors to Ultimate Neuronal Death. Cells 2022; 11:491. [PMID: 35159300 PMCID: PMC8834171 DOI: 10.3390/cells11030491] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
Ischemic stroke causes a heavy health burden worldwide, with over 10 million new cases every year. Despite the high prevalence and mortality rate of ischemic stroke, the underlying molecular mechanisms for the common etiological factors of ischemic stroke and ischemic stroke itself remain unclear, which results in insufficient preventive strategies and ineffective treatments for this devastating disease. In this review, we demonstrate that transient receptor potential cation channel, subfamily M, member 2 (TRPM2), a non-selective ion channel activated by oxidative stress, is actively involved in all the important steps in the etiology and pathology of ischemic stroke. TRPM2 could be a promising target in screening more effective prophylactic strategies and therapeutic medications for ischemic stroke.
Collapse
Affiliation(s)
- Pengyu Zong
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConnHealth), Farmington, CT 06030, USA; (P.Z.); (J.F.)
| | - Qiaoshan Lin
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA;
| | - Jianlin Feng
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConnHealth), Farmington, CT 06030, USA; (P.Z.); (J.F.)
| | - Lixia Yue
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConnHealth), Farmington, CT 06030, USA; (P.Z.); (J.F.)
| |
Collapse
|
8
|
Yang T, Guo R, Ofengeim D, Hwang JY, Zukin RS, Chen J, Zhang F. Molecular and Cellular Mechanisms of Ischemia-Induced Neuronal Death. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Wang Q, Liu N, Ni YS, Yang JM, Ma L, Lan XB, Wu J, Niu JG, Yu JQ. TRPM2 in ischemic stroke: Structure, molecular mechanisms, and drug intervention. Channels (Austin) 2021; 15:136-154. [PMID: 33455532 PMCID: PMC7833771 DOI: 10.1080/19336950.2020.1870088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 01/14/2023] Open
Abstract
Ischemic stroke has a high lethality rate worldwide, and novel treatments are limited. Calcium overload is considered to be one of the mechanisms of cerebral ischemia. Transient receptor potential melastatin 2 (TRPM2) is a reactive oxygen species (ROS)-sensitive calcium channel. Cerebral ischemia-induced TRPM2 activation triggers abnormal intracellular Ca2+ accumulation and cell death, which in turn causes irreversible brain damage. Thus, TRPM2 has emerged as a new therapeutic target for ischemic stroke. This review provides data on the expression, structure, and function of TRPM2 and illustrates its cellular and molecular mechanisms in ischemic stroke. Natural and synthetic TRPM2 inhibitors (both specific and nonspecific) are also summarized. The three-dimensional protein structure of TRPM2 has been identified, and we speculate that molecular simulation techniques will be essential for developing new drugs that block TRPM2 channels. These insights about TRPM2 may be the key to find potent therapeutic approaches for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Qing Wang
- Department of Pharmacology, Ningxia Medical University, Yinchuan, China
| | - Ning Liu
- Department of Pharmacology, Ningxia Medical University, Yinchuan, China
| | - Yuan-Shu Ni
- Department of Pharmacology, Ningxia Medical University, Yinchuan, China
| | - Jia-Mei Yang
- Department of Pharmacology, Ningxia Medical University, Yinchuan, China
| | - Lin Ma
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| | - Xiao-Bing Lan
- Department of Pharmacology, Ningxia Medical University, Yinchuan, China
| | - Jing Wu
- Laboratory Animal Center, Ningxia Medical University, Yinchuan, China
| | - Jian-Guo Niu
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| | - Jian-Qiang Yu
- Department of Pharmacology, Ningxia Medical University, Yinchuan, China
- Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
10
|
Zhu T, Zhu M, Qiu Y, Wu Z, Huang N, Wan G, Xu J, Song P, Wang S, Yin Y, Li P. Puerarin Alleviates Vascular Cognitive Impairment in Vascular Dementia Rats. Front Behav Neurosci 2021; 15:717008. [PMID: 34720898 PMCID: PMC8554240 DOI: 10.3389/fnbeh.2021.717008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Cerebral ischemia triggers vascular dementia (VD), which is characterized by memory loss, cognitive deficits, and vascular injury in the brain. Puerarin (Pur) represents the major isoflavone glycoside of Radix Puerariae, with verified neuroprotective activity and cardiovascular protective effects. However, whether Pur ameliorates cognitive impairment and vascular injury in rats with permanent occlusion of bilateral common carotid arteries (BCCAO) remains unknown. This work aimed to assess Pur's effects on BCCAO-induced VD and to dissect the underlying mechanisms, especially examining the function of transient receptor potential melastatin-related 2 (TRPM2) in alleviating cognitive deficits and vascular injuries. Rats with BCCAO developed VD. Pur (50, 100, and 150 mg/kg) dose-dependently attenuated the pathological changes, increased synaptic structural plasticity in the dorsal CA1 hippocampal region and decreased oxidative stress, which eventually reduced cognitive impairment and vascular injury in BCCAO rats. Notably, Pur-improved neuronal cell loss, synaptic structural plasticity, and endothelial vasorelaxation function might be mediated by the reactive oxygen species (ROS)-dependent TRPM2/NMDAR pathway, evidenced by decreased levels of ROS, malondialdehyde (MDA), Bax, Bax/Bcl2, and TRPM2, and increased levels of superoxide dismutase (SOD), Bcl2, and NR2A. In conclusion, Pur has therapeutic potential for VD, alleviating neuronal cell apoptosis and vascular injury, which may be related to the ROS-dependent TRPM2/NMDAR pathway.
Collapse
Affiliation(s)
- Tiantian Zhu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Moli Zhu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Yue Qiu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Zeqing Wu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Ning Huang
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Guangrui Wan
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Jian Xu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Ping Song
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Shuangxi Wang
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Yaling Yin
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China.,School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Peng Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| |
Collapse
|
11
|
Deficiency of ROS-Activated TRPM2 Channel Protects Neurons from Cerebral Ischemia-Reperfusion Injury through Upregulating Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7356266. [PMID: 34367466 PMCID: PMC8337124 DOI: 10.1155/2021/7356266] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/29/2021] [Indexed: 12/16/2022]
Abstract
Cerebral ischemia-reperfusion (I-R) transiently increased autophagy by producing excessively reactive oxygen species (ROS); on the other hand, activated autophagy would remove ROS-damaged mitochondria and proteins, which led to cell survival. However, the regulation mechanism of autophagy activity during cerebral I-R is still unclear. In this study, we found that deficiency of the TRPM2 channel which is a ROS sensor significantly decreased I-R-induced neuronal damage. I-R transiently increased autophagy activity both in vitro and in vivo. More importantly, TRPM2 deficiency decreased I-R-induced neurological deficit score and infarct volume. Interestingly, our results indicated that TRPM2 deficiency could further activate AMPK rather than Beclin1 activity, suggesting that TRPM2 inhibits autophagy by regulating the AMPK/mTOR pathway in I-R. In conclusion, our study reveals that ROS-activated TRPM2 inhibits autophagy by downregulating the AMPK/mTOR pathway, which results in neuronal death induced by cerebral I-R, further supporting that TRPM2 might be a potential drug target for cerebral ischemic injury therapy.
Collapse
|
12
|
The Role of TRPM2 in Endothelial Function and Dysfunction. Int J Mol Sci 2021; 22:ijms22147635. [PMID: 34299254 PMCID: PMC8307439 DOI: 10.3390/ijms22147635] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 01/16/2023] Open
Abstract
The transient receptor potential (TRP) melastatin-like subfamily member 2 (TRPM2) is a non-selective calcium-permeable cation channel. It is expressed by many mammalian tissues, including bone marrow, spleen, lungs, heart, liver, neutrophils, and endothelial cells. The best-known mechanism of TRPM2 activation is related to the binding of ADP-ribose to the nudix-box sequence motif (NUDT9-H) in the C-terminal domain of the channel. In cells, the production of ADP-ribose is a result of increased oxidative stress. In the context of endothelial function, TRPM2-dependent calcium influx seems to be particularly interesting as it participates in the regulation of barrier function, cell death, cell migration, and angiogenesis. Any impairments of these functions may result in endothelial dysfunction observed in such conditions as atherosclerosis or hypertension. Thus, TRPM2 seems to be an attractive therapeutic target for the conditions connected with the increased production of reactive oxygen species. However, before the application of TRPM2 inhibitors will be possible, some issues need to be resolved. The main issues are the lack of specificity, poor membrane permeabilization, and low stability in in vivo conditions. The article aims to summarize the latest findings on a role of TRPM2 in endothelial cells. We also show some future perspectives for the application of TRPM2 inhibitors in cardiovascular system diseases.
Collapse
|
13
|
Ying Y, Jiang P. Research progress on transient receptor potential melastatin 2 channel in nervous system diseases. Zhejiang Da Xue Xue Bao Yi Xue Ban 2021; 50:267-276. [PMID: 34137233 PMCID: PMC8710270 DOI: 10.3724/zdxbyxb-2021-0110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/30/2021] [Indexed: 11/25/2022]
Abstract
Transient receptor potential M2 (TRPM2) ion channel is a non-selective cationic channel that can permeate calcium ions, and plays an important role in neuroinflammation, ischemic reperfusion brain injury, neurodegenerative disease, neuropathic pain, epilepsy and other neurological diseases. In ischemic reperfusion brain injury, TRPM2 mediates neuronal death by modulating the different subunits of glutamate N-methyl-D-aspartic acid receptor in response to calcium/zinc signal. In Alzheimer's disease, TRPM2 is activated by reactive oxygen species generated by β-amyloid peptide to form a malignant positive feedback loop that induces neuronal death and is involved in the pathological process of glial cells by promoting inflammatory response and oxidative stress. In epilepsy, the TRPM2-knockout alleviates epilepsy induced neuronal degeneration by inhibiting autophagy and apoptosis related proteins. The roles of TRPM2 channel in the pathogenesis of various central nervous system diseases and its potential drug development and clinical application prospects are summarized in this review.
Collapse
|
14
|
Zhang H, Yu P, Lin H, Jin Z, Zhao S, Zhang Y, Xu Q, Jin H, Liu Z, Yang W, Zhang L. The Discovery of Novel ACA Derivatives as Specific TRPM2 Inhibitors that Reduce Ischemic Injury Both In Vitro and In Vivo. J Med Chem 2021; 64:3976-3996. [PMID: 33784097 DOI: 10.1021/acs.jmedchem.0c02129] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The transient receptor potential melastatin 2 (TRPM2) channel is associated with ischemia/reperfusion injury, inflammation, cancer, and neurodegenerative diseases. However, the limit of specific inhibitors impedes the development of TRPM2-targeted therapeutic agents. To discover more potent and selective TRPM2 inhibitors, 59 N-(p-amylcinnamoyl) anthranilic acid (ACA) derivatives were synthesized and evaluated using calcium imaging and electrophysiology approaches. Systematic structure-activity relationship studies resulted in some potent compounds inhibiting the TRPM2 channel with sub-micromolar half-maximal inhibitory concentration values. Among them, the preferred compound A23 exhibited TRPM2 selectivity over TRPM8 and TRPV1 channels as well as phospholipase A2 and showed neuroprotective activity in vitro. Following pharmacokinetic studies, A23 was further evaluated in a transient middle cerebral artery occlusion model in vivo, which significantly reduced cerebral infarction. These data indicate that A23 might serve as a useful tool for TRPM2-related research as well as a lead compound for the development of therapeutic agents for ischemic injury.
Collapse
Affiliation(s)
- Han Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Peilin Yu
- Department of Toxicology, and Department of Medical Oncology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, P. R. China
| | - Hongwei Lin
- Department of Biophysics, and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China
| | - Zefang Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Siqi Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Yi Zhang
- Department of Biophysics, and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China
| | - Qingxia Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Wei Yang
- Department of Biophysics, and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| |
Collapse
|
15
|
TRPM2 channel in oxidative stress-induced mitochondrial dysfunction and apoptotic cell death. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 125:51-72. [PMID: 33931144 DOI: 10.1016/bs.apcsb.2020.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mitochondria, conserved intracellular organelles best known as the powerhouse of cells for generating ATP, play an important role in apoptosis. Oxidative stress can induce mitochondrial dysfunction and activate mitochondria-mediated apoptotic cell death. TRPM2 is a Ca2+-permeable cation channel that is activated by pathologically relevant concentrations of reactive oxygen species (ROS) and one of its well-recognized roles is to confer susceptibility to ROS-induced cell death. Increasing evidence from recent studies supports TRPM2 channel-mediated cell death as an important cellular mechanism linking miscellaneous oxidative stress-inducing pathological factors to associated diseased conditions. In this chapter, we will discuss the role of the TRPM2 channel in neurons in the brain and pancreatic β-cells in mediating mitochondrial dysfunction and cell death, focusing mainly on apoptotic cell death, that are induced by pathological stimuli implicated in the pathogenesis of neurodegenerative diseases, ischemic stroke and diabetes.
Collapse
|
16
|
Pala S, Atilgan R, Kuloglu T, Yalçın E, Kaya N, Etem E. The decrease in hippocampal transient receptor potential M2 (TRPM2) channel and muscarinic acetylcholine receptor 1 (CHRM1) is associated with memory loss in a surgical menopause rat model. Arch Med Sci 2021; 17:228-235. [PMID: 33488875 PMCID: PMC7811316 DOI: 10.5114/aoms.2019.83760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/01/2019] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION The aim of the study was to investigate the association of transient receptor potential M2 (TRPM2) channel and muscarinic acetylcholine receptor 1 (CHRM1) activity with the memorial functions that are deteriorated in surgical menopause. MATERIAL AND METHODS A total of 14 female rats were randomly divided into 2 groups: group (G)1: sham group; group (G)2: surgical menopause group, the group in which bilateral ovariectomy was performed. Fourteen days after the surgical procedure, learning and memorial tests were performed in G1 and G2 for a totally 13 days. The time required for the rats to find the cheese in the labyrinth was recorded and statistical evaluation of it was performed between groups. On the 14th day of the memory test, the rats were decapitated and the brain tissues were fixed in 10% formalin. Hippocampal TRPM2 and CHRM1 gene expression was evaluated with RNA isolation, complementary DNA (cDNA) synthesis and quantitative real-time PCR (qRT-PCR) analysis. TRPM2 and CHRM1 immunoreactivity was evaluated in hippocampal tissue with the immunohistochemical method. Histo-score was calculated regarding the diffuseness of and severity of the staining; and statistical analyses were performed. RESULTS In the ovariectomized group, the mean time required for the rats to find the cheese was statistically significantly elongated (39.29 ±4.0 s vs. 29.86 ±2.6 s). When the hippocampal TRPM2 and CHRM1 gene expression and immunoreactivity were compared with the sham group, there was a statistically significant decrease in the surgical menopause group (p < 0.05). CONCLUSIONS In surgical menopause, in deterioration of memorial functions, hippocampal TRPM2 channel and CHRM1 activity plays an important role.
Collapse
Affiliation(s)
- Sehmus Pala
- Department of Obstetrics and Gynecology, School of Medicine, Firat University, Elazig, Turkey
| | - Remzi Atilgan
- Department of Obstetrics and Gynecology, School of Medicine, Firat University, Elazig, Turkey
| | - Tuncay Kuloglu
- Department of Histology and Embryology, School of Medicine, Firat University, Elazig, Turkey
| | - Emre Yalçın
- Department of Obstetrics and Gynecology, School of Medicine, Firat University, Elazig, Turkey
| | - Nalan Kaya
- Department of Histology and Embryology, School of Medicine, Firat University, Elazig, Turkey
| | - Ebru Etem
- Department of Medical Biology, School of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
17
|
Zhang H, Zhao S, Yu J, Yang W, Liu Z, Zhang L. Medicinal chemistry perspective of TRPM2 channel inhibitors: where we are and where we might be heading? Drug Discov Today 2020; 25:2326-2334. [PMID: 33065292 DOI: 10.1016/j.drudis.2020.09.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/26/2020] [Accepted: 09/30/2020] [Indexed: 01/06/2023]
Abstract
Transient receptor potential melastatin 2 (TRPM2) is a Ca2+- permeable nonselective cation channel that is involved in diverse biological functions as a cellular sensor for oxidative stress and temperature. It has been considered a promising therapeutic target for the treatment of ischemia/reperfusion (IR) injury, inflammation, cancer, and neurodegenerative diseases. Development of highly potent and selective TRPM2 inhibitors and validation of their use in relevant disease models will advance drug discovery. In this review, we describe the molecular structures and gating mechanism of the TRPM2 channel, and offer a comprehensive review of advances in the discovery of TRPM2 inhibitors. Furthermore, we analyze the properties of reported TRPM2 inhibitors with an emphasis on how specific inhibitors targeting this channel could be better developed.
Collapse
Affiliation(s)
- Han Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Siqi Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jie Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Wei Yang
- Department of Biophysics, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
18
|
Malko P, Jiang LH. TRPM2 channel-mediated cell death: An important mechanism linking oxidative stress-inducing pathological factors to associated pathological conditions. Redox Biol 2020; 37:101755. [PMID: 33130440 PMCID: PMC7600390 DOI: 10.1016/j.redox.2020.101755] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/17/2020] [Accepted: 10/08/2020] [Indexed: 12/26/2022] Open
Abstract
Oxidative stress resulting from the accumulation of high levels of reactive oxygen species is a salient feature of, and a well-recognised pathological factor for, diverse pathologies. One common mechanism for oxidative stress damage is via the disruption of intracellular ion homeostasis to induce cell death. TRPM2 is a non-selective Ca2+-permeable cation channel with a wide distribution throughout the body and is highly sensitive to activation by oxidative stress. Recent studies have collected abundant evidence to show its important role in mediating cell death induced by miscellaneous oxidative stress-inducing pathological factors, both endogenous and exogenous, including ischemia/reperfusion and the neurotoxicants amyloid-β peptides and MPTP/MPP+ that cause neuronal demise in the brain, myocardial ischemia/reperfusion, proinflammatory mediators that disrupt endothelial function, diabetogenic agent streptozotocin and diabetes risk factor free fatty acids that induce loss of pancreatic β-cells, bile acids that damage pancreatic acinar cells, renal ischemia/reperfusion and albuminuria that are detrimental to kidney cells, acetaminophen that triggers hepatocyte death, and nanoparticles that injure pericytes. Studies have also shed light on the signalling mechanisms by which these pathological factors activate the TRPM2 channel to alter intracellular ion homeostasis leading to aberrant initiation of various cell death pathways. TRPM2-mediated cell death thus emerges as an important mechanism in the pathogenesis of conditions including ischemic stroke, neurodegenerative diseases, cardiovascular diseases, diabetes, pancreatitis, chronic kidney disease, liver damage and neurovascular injury. These findings raise the exciting perspective of targeting the TRPM2 channel as a novel therapeutic strategy to treat such oxidative stress-associated diseases.
Collapse
Affiliation(s)
- Philippa Malko
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, UK
| | - Lin-Hua Jiang
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province and Department of Physiology and Pathophysiology, Xinxiang Medical University, PR China; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, UK.
| |
Collapse
|
19
|
Pan T, Zhu QJ, Xu LX, Ding X, Li JQ, Sun B, Hua J, Feng X. Knocking down TRPM2 expression reduces cell injury and NLRP3 inflammasome activation in PC12 cells subjected to oxygen-glucose deprivation. Neural Regen Res 2020; 15:2154-2161. [PMID: 32394974 PMCID: PMC7716023 DOI: 10.4103/1673-5374.282271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Transient receptor potential melastatin 2 (TRPM2) is an important ion channel that represents a potential target for treating injury caused by cerebral ischemia. However, it is unclear whether reducing TRPM2 expression can help repair cerebral injury, and if so what the mechanism underlying this process involves. This study investigated the protective effect of reducing TRPM2 expression on pheochromocytoma (PC12) cells injured by oxygen-glucose deprivation (OGD). PC12 cells were transfected with plasmid encoding TRPM2 shRNAS, then subjected to OGD by incubation in glucose-free medium under hypoxic conditions for 8 hours, after which the cells were allowed to reoxygenate for 24 hours. Apoptotic cells, mitochondrial membrane potentials, reactive oxygen species levels, and cellular calcium levels were detected using flow cytometry. The relative expression of C-X-C motif chemokine ligand 2 (CXCL2), NACHT, LRR, and PYD domain-containing protein 3 (NALP3), and caspase-1 were detected using fluorescence-based quantitative reverse transcription-polymerase chain reaction and western blotting. The rates of apoptosis, mitochondrial membrane potentials, reactive oxygen species levels, and cellular calcium levels in the TRPM2-shRNA + OGD group were lower than those observed in the OGD group. Taken together, these results suggest that TRPM2 knockdown reduces OGD-induced neuronal injury, potentially by inhibiting apoptosis and reducing oxidative stress levels, mitochondrial membrane potentials, intracellular calcium concentrations, and NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Tao Pan
- Department of Neonatology, Children's Hospital Affiliated to Suzhou University, Suzhou, Jiangsu Province, China
| | - Qiu-Jiao Zhu
- Department of Critical Care Medicine, Children's Hospital Affiliated to Suzhou University, Suzhou, Jiangsu Province, China
| | - Li-Xiao Xu
- Institute of Pediatrics, Children's Hospital Affiliated to Suzhou University, Suzhou, Jiangsu Province, China
| | - Xin Ding
- Department of Neonatology, Children's Hospital Affiliated to Suzhou University, Suzhou, Jiangsu Province, China
| | - Jian-Qin Li
- Blood Section, Children's Hospital Affiliated to Suzhou University, Suzhou, Jiangsu Province, China
| | - Bin Sun
- Department of Neonatology, Children's Hospital Affiliated to Suzhou University, Suzhou, Jiangsu Province, China
| | - Jun Hua
- Department of Critical Care Medicine, Children's Hospital Affiliated to Suzhou University, Suzhou, Jiangsu Province, China
| | - Xing Feng
- Department of Neonatology, Children's Hospital Affiliated to Suzhou University, Suzhou, Jiangsu Province, China
| |
Collapse
|
20
|
Cruz-Torres I, Backos DS, Herson PS. Characterization and Optimization of the Novel Transient Receptor Potential Melastatin 2 Antagonist tatM2NX. Mol Pharmacol 2019; 97:102-111. [PMID: 31772034 DOI: 10.1124/mol.119.117549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Transient receptor potential melastatin 2 (TRPM2) is a calcium-permeable channel activated by adenosine diphosphate ribose metabolites and oxidative stress. TRPM2 contributes to neuronal injury in the brain caused by stroke and cardiac arrest among other diseases including pain, inflammation, and cancer. However, the lack of specific inhibitors hinders the study of TRPM2 in brain pathophysiology. Here, we present the design of a novel TRPM2 antagonist, tatM2NX, which prevents ligand binding and TRPM2 activation. We used mutagenesis of tatM2NX to determine the structure-activity relationship and antagonistic mechanism on TRPM2 using whole-cell patch clamp and Calcium imaging in human embryonic kidney 293 cells with stable human TRPM2 expression. We show that tatM2NX inhibits over 90% of TRPM2 channel currents at concentrations as low as 2 μM. Moreover, tatM2NX is a potent antagonist with an IC50 of 396 nM. Our results from tatM2NX mutagenesis indicate that specific residues within the tatM2NX C terminus are required to confer antagonism on TRPM2. Therefore, the peptide tatM2NX represents a new tool for the study of TRPM2 function in cell biology and enhances our understanding of TRPM2 in disease. SIGNIFICANCE STATEMENT: TatM2NX is a potent TRPM2 channel antagonist with the potential for clinical benefit in neurological diseases. This study characterizes interactions of tatM2NX with TRPM2 and the mechanism of action using structure-activity analysis.
Collapse
Affiliation(s)
- I Cruz-Torres
- Departments of Pharmacology (I.C.-T., P.S.H.) and Anesthesiology (P.S.H.) and Neuronal Injury & Plasticity Program (I.C.-T., P.S.H.), University of Colorado School of Medicine, Aurora, Colorado; and Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado (D.S.B.)
| | - D S Backos
- Departments of Pharmacology (I.C.-T., P.S.H.) and Anesthesiology (P.S.H.) and Neuronal Injury & Plasticity Program (I.C.-T., P.S.H.), University of Colorado School of Medicine, Aurora, Colorado; and Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado (D.S.B.)
| | - P S Herson
- Departments of Pharmacology (I.C.-T., P.S.H.) and Anesthesiology (P.S.H.) and Neuronal Injury & Plasticity Program (I.C.-T., P.S.H.), University of Colorado School of Medicine, Aurora, Colorado; and Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado (D.S.B.)
| |
Collapse
|
21
|
Mai C, Mankoo H, Wei L, An X, Li C, Li D, Jiang LH. TRPM2 channel: A novel target for alleviating ischaemia-reperfusion, chronic cerebral hypo-perfusion and neonatal hypoxic-ischaemic brain damage. J Cell Mol Med 2019; 24:4-12. [PMID: 31568632 PMCID: PMC6933339 DOI: 10.1111/jcmm.14679] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 08/10/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022] Open
Abstract
The transient receptor potential melastatin-related 2 (TRPM2) channel, a reactive oxygen species (ROS)-sensitive cation channel, has been well recognized for being an important and common mechanism that confers the susceptibility to ROS-induced cell death. An elevated level of ROS is a salient feature of ischaemia-reperfusion, chronic cerebral hypo-perfusion and neonatal hypoxia-ischaemia. The TRPM2 channel is expressed in hippocampus, cortex and striatum, the brain regions that are critical for cognitive functions. In this review, we examine the recent studies that combine pharmacological and/or genetic interventions with using in vitro and in vivo models to demonstrate a crucial role of the TRPM2 channel in brain damage by ischaemia-reperfusion, chronic cerebral hypo-perfusion and neonatal hypoxic-ischaemia. We also discuss the current understanding of the underlying TRPM2-dependent cellular and molecular mechanisms. These new findings lead to the hypothesis of targeting the TRPM2 channel as a potential novel therapeutic strategy to alleviate brain damage and cognitive dysfunction caused by these conditions.
Collapse
Affiliation(s)
- Chendi Mai
- Sino-UK Joint Laboratory of Brian Function and Injury of Henan Province and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China.,Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Harneet Mankoo
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Linyu Wei
- Sino-UK Joint Laboratory of Brian Function and Injury of Henan Province and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China
| | - Xinfang An
- Sino-UK Joint Laboratory of Brian Function and Injury of Henan Province and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China.,Xinxiang Maternal and Child Health Care Hospital, Xinxiang, China
| | - Chaokun Li
- Sino-UK Joint Laboratory of Brian Function and Injury of Henan Province and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China
| | - Dongliang Li
- Sino-UK Joint Laboratory of Brian Function and Injury of Henan Province and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China.,Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Lin-Hua Jiang
- Sino-UK Joint Laboratory of Brian Function and Injury of Henan Province and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China.,Sanquan College of Xinxiang Medical University, Xinxiang, China.,School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
22
|
Dietz RM, Cruz-Torres I, Orfila JE, Patsos OP, Shimizu K, Chalmers N, Deng G, Tiemeier E, Quillinan N, Herson PS. Reversal of Global Ischemia-Induced Cognitive Dysfunction by Delayed Inhibition of TRPM2 Ion Channels. Transl Stroke Res 2019; 11:254-266. [PMID: 31250378 DOI: 10.1007/s12975-019-00712-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/23/2022]
Abstract
Hippocampal injury and cognitive impairments are common after cardiac arrest and stroke and do not have an effective intervention despite much effort. Therefore, we developed a new approach aimed at reversing synaptic dysfunction by targeting TRPM2 channels. Cardiac arrest/cardiopulmonary resuscitation (CA/CPR) in mice was used to investigate cognitive deficits and the role of the calcium-permeable ion channel transient receptor potential-M2 (TRPM2) in ischemia-induced synaptic dysfunction. Our data indicates that absence (TRPM2-/-) or acute inhibition of TRPM2 channels with tatM2NX reduced hippocampal cell death in males only, but prevented synaptic plasticity deficits in both sexes. Remarkably, administration of tatM2NX weeks after injury reversed hippocampal plasticity and memory deficits. Finally, TRPM2-dependent activation of calcineurin-GSK3β pathway contributes to synaptic plasticity impairments. These data suggest persistent TRPM2 activity following ischemia contributes to impairments of the surviving hippocampal network and that inhibition of TRPM2 channels at chronic time points may represent a novel strategy to improve functional recovery following cerebral ischemia that is independent of neuroprotection.
Collapse
Affiliation(s)
- Robert M Dietz
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA.,Neuronal Injury & Plasticity Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ivelisse Cruz-Torres
- Neuronal Injury & Plasticity Program, University of Colorado School of Medicine, Aurora, CO, USA.,Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - James E Orfila
- Neuronal Injury & Plasticity Program, University of Colorado School of Medicine, Aurora, CO, USA.,Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Olivia P Patsos
- Neuronal Injury & Plasticity Program, University of Colorado School of Medicine, Aurora, CO, USA.,Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kaori Shimizu
- Neuronal Injury & Plasticity Program, University of Colorado School of Medicine, Aurora, CO, USA.,Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Nicholas Chalmers
- Neuronal Injury & Plasticity Program, University of Colorado School of Medicine, Aurora, CO, USA.,Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Guiying Deng
- Neuronal Injury & Plasticity Program, University of Colorado School of Medicine, Aurora, CO, USA.,Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Erika Tiemeier
- Neuronal Injury & Plasticity Program, University of Colorado School of Medicine, Aurora, CO, USA.,Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Nidia Quillinan
- Neuronal Injury & Plasticity Program, University of Colorado School of Medicine, Aurora, CO, USA.,Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Paco S Herson
- Neuronal Injury & Plasticity Program, University of Colorado School of Medicine, Aurora, CO, USA. .,Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA. .,Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
23
|
An X, Fu Z, Mai C, Wang W, Wei L, Li D, Li C, Jiang LH. Increasing the TRPM2 Channel Expression in Human Neuroblastoma SH-SY5Y Cells Augments the Susceptibility to ROS-Induced Cell Death. Cells 2019; 8:cells8010028. [PMID: 30625984 PMCID: PMC6356620 DOI: 10.3390/cells8010028] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/22/2018] [Accepted: 12/30/2018] [Indexed: 12/31/2022] Open
Abstract
Human neuroblastoma SH-SY5Y cells are a widely-used human neuronal cell model in the study of neurodegeneration. A recent study shows that, 1-methyl-4-phenylpyridine ion (MPP), which selectively causes dopaminergic neuronal death leading to Parkinson’s disease-like symptoms, can reduce SH-SY5Y cell viability by inducing H2O2 generation and subsequent TRPM2 channel activation. MPP-induced cell death is enhanced by increasing the TRPM2 expression. By contrast, increasing the TRPM2 expression has also been reported to support SH-SY5Y cell survival after exposure to H2O2, leading to the suggestion of a protective role for the TRPM2 channel. To clarify the role of reactive oxygen species (ROS)-induced TRPM2 channel activation in SH-SY5Y cells, we generated a stable SH-SY5Y cell line overexpressing the human TRPM2 channel and examined cell death and cell viability after exposure to H2O2 in the wild-type and TRPM2-overexpressing SH-SY5Y cells. Exposure to H2O2 resulted in concentration-dependent cell death and reduction in cell viability in both cell types. TRPM2 overexpression remarkably augmented H2O2-induced cell death and reduction in cell viability. Furthermore, H2O2-induced cell death in both the wild-type and TRPM2-overexpressing cells was prevented by 2-APB, a TRPM2 inhibitor, and also by PJ34 and DPQ, poly(ADP-ribose) polymerase (PARP) inhibitors. Collectively, our results show that increasing the TRPM2 expression renders SH-SY5Y cells to be more susceptible to ROS-induced cell death and reinforce the notion that the TRPM2 channel plays a critical role in conferring ROS-induced cell death. It is anticipated that SH-SY5Y cells can be useful for better understanding the molecular and signaling mechanisms for ROS-induced TRPM2-mediated neurodegeneration in the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xinfang An
- Sino-UK Joint Laboratory for Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Zixing Fu
- Sino-UK Joint Laboratory for Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Chendi Mai
- Sino-UK Joint Laboratory for Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Weiming Wang
- Sino-UK Joint Laboratory for Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Linyu Wei
- Sino-UK Joint Laboratory for Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Dongliang Li
- Sino-UK Joint Laboratory for Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Chaokun Li
- Sino-UK Joint Laboratory for Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Lin-Hua Jiang
- Sino-UK Joint Laboratory for Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, China.
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 JT, UK.
| |
Collapse
|
24
|
Toda T, Yamamoto S, Umehara N, Mori Y, Wakamori M, Shimizu S. Protective Effects of Duloxetine against Cerebral Ischemia-Reperfusion Injury via Transient Receptor Potential Melastatin 2 Inhibition. J Pharmacol Exp Ther 2018; 368:246-254. [DOI: 10.1124/jpet.118.253922] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/03/2018] [Indexed: 12/12/2022] Open
|
25
|
The TRPM2 channel nexus from oxidative damage to Alzheimer's pathologies: An emerging novel intervention target for age-related dementia. Ageing Res Rev 2018; 47:67-79. [PMID: 30009973 DOI: 10.1016/j.arr.2018.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD), an age-related neurodegenerative condition, is the most common cause of dementia among the elder people, but currently there is no treatment. A number of putative pathogenic events, particularly amyloid β peptide (Aβ) accumulation, are believed to be early triggers that initiate AD. However, thus far targeting Aβ generation/aggregation as the mainstay strategy of drug development has not led to effective AD-modifying therapeutics. Oxidative damage is a conspicuous feature of AD, but this remains poorly defined phenomenon and mechanistically ill understood. The TRPM2 channel has emerged as a potentially ubiquitous molecular mechanism mediating oxidative damage and thus plays a vital role in the pathogenesis and progression of diverse neurodegenerative diseases. This article will review the emerging evidence from recent studies and propose a novel 'hypothesis' that multiple TRPM2-mediated cellular and molecular mechanisms cascade Aβ and/or oxidative damage to AD pathologies. The 'hypothesis' based on these new findings discusses the prospect of considering the TRPM2 channel as a novel therapeutic target for intervening AD and age-related dementia.
Collapse
|
26
|
Li X, Jiang LH. A critical role of the transient receptor potential melastatin 2 channel in a positive feedback mechanism for reactive oxygen species-induced delayed cell death. J Cell Physiol 2018; 234:3647-3660. [PMID: 30229906 DOI: 10.1002/jcp.27134] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 07/05/2018] [Indexed: 12/19/2022]
Abstract
Transient receptor potential melastatin 2 (TRPM2) channel activation by reactive oxygen species (ROS) plays a critical role in delayed neuronal cell death, responsible for postischemia brain damage via altering intracellular Zn2+ homeostasis, but a mechanistic understanding is still lacking. Here, we showed that H2 O2 induced neuroblastoma SH-SY5Y cell death with a significant delay, dependently of the TRPM2 channel and increased [Zn2+ ]i , and therefore used this cell model to investigate the mechanisms underlying ROS-induced TRPM2-mediated delayed cell death. H2 O2 increased concentration-dependently the [Zn2+ ]i and caused lysosomal dysfunction and Zn2+ loss and, furthermore, mitochondrial Zn2+ accumulation, fragmentation, and ROS generation. Such effects were suppressed by preventing poly(adenosine diphosphate ribose, ADPR) polymerase-1-dependent TRPM2 channel activation with PJ34 and 3,3',5,5'-tetra-tert-butyldiphenoquinone, inhibiting the TRPM2 channel with 2-aminoethoxydiphenyl borate (2-APB) and N-(p-amylcinnamoyl)anthranilic acid, or chelating Zn2+ with N,N,N,N-tetrakis(2-pyridylmethyl)-ethylenediamine (TPEN). Bafilomycin-induced lysosomal dysfunction also resulted in mitochondrial Zn2+ accumulation, fragmentation, and ROS generation that were inhibited by PJ34 or 2-APB, suggesting that these mitochondrial events are TRPM2 dependent and sequela of lysosomal dysfunction. Mitochondrial TRPM2 expression was detected and exposure to ADPR-induced Zn2+ uptake in isolated mitochondria, which was prevented by TPEN. H2 O2 -induced delayed cell death was inhibited by apocynin and diphenyleneiodonium, nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) oxidase (NOX) inhibitors, GKT137831, an NOX1/4-specific inhibitor, or Gö6983, a protein kinase C (PKC) inhibitor. Moreover, inhibition of PKC/NOX prevented H2 O2 -induced ROS generation, lysosomal dysfunction and Zn2+ release, and mitochondrial Zn2+ accumulation, fragmentation and ROS generation. Collectively, these results support a critical role for the TRPM2 channel in coupling PKC/NOX-mediated ROS generation, lysosomal Zn2+ release, and mitochondrial Zn2+ accumulation, and ROS generation to form a vicious positive feedback signaling mechanism for ROS-induced delayed cell death.
Collapse
Affiliation(s)
- Xin Li
- Sino-UK Joint Laboratory of Brain Function and Injury, Xinxiang Medical University, Xinxiang, China.,Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Lin-Hua Jiang
- Sino-UK Joint Laboratory of Brain Function and Injury, Xinxiang Medical University, Xinxiang, China.,Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
27
|
Trpm2 Ablation Accelerates Protein Aggregation by Impaired ADPR and Autophagic Clearance in the Brain. Mol Neurobiol 2018; 56:3819-3832. [PMID: 30215158 PMCID: PMC6477016 DOI: 10.1007/s12035-018-1309-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 08/08/2018] [Indexed: 01/10/2023]
Abstract
TRPM2 a cation channel is also known to work as an enzyme that hydrolyzes highly reactive, neurotoxic ADP-ribose (ADPR). Although ADPR is hydrolyzed by NUT9 pyrophosphatase in major organs, the enzyme is defective in the brain. The present study questions the role of TRPM2 in the catabolism of ADPR in the brain. Genetic ablation of Trpm2 results in the disruption of ADPR catabolism that leads to the accumulation of ADPR and reduction in AMP. Trpm2−/− mice elicit the reduction in autophagosome formation in the hippocampus. Trpm2−/− mice also show aggregations of proteins in the hippocampus, aberrant structural changes and neuronal connections in synapses, and neuronal degeneration. Trpm2−/− mice exhibit learning and memory impairment, enhanced neuronal intrinsic excitability, and imbalanced synaptic transmission. These results respond to long-unanswered questions regarding the potential role of the enzymatic function of TRPM2 in the brain, whose dysfunction evokes protein aggregation. In addition, the present finding answers to the conflicting reports such as neuroprotective or neurodegenerative phenotypes observed in Trpm2−/− mice.
Collapse
|
28
|
Liberale L, Carbone F, Montecucco F, Gebhard C, Lüscher TF, Wegener S, Camici GG. Ischemic stroke across sexes: What is the status quo? Front Neuroendocrinol 2018; 50:3-17. [PMID: 29753797 DOI: 10.1016/j.yfrne.2018.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/11/2018] [Accepted: 05/06/2018] [Indexed: 12/15/2022]
Abstract
Stroke prevalence is expected to increase in the next decades due to the aging of the Western population. Ischemic stroke (IS) shows an age- and sex-dependent distribution in which men represent the most affected population within 65 years of age, being passed by post-menopausal women in older age groups. Furthermore, a sexual dimorphism concerning risk factors, presentation and treatment of IS has been widely recognized. In order to address these phenomena, a number of issue have been raised involving both socio-economical and biological factors. The latter can be either dependent on sex hormones or due to intrinsic factors. Although women have poorer outcomes and are more likely to die after a cerebrovascular event, they are still underrepresented in clinical trials and this is mirrored by the lack of sex-tailored therapies. A greater effort is needed in the future to ensure improved treatment and quality of life to both sexes.
Collapse
Affiliation(s)
- Luca Liberale
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, CH-8952 Schlieren, Switzerland; First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy; Ospedale Policlinico San Martino, 10 Largo Benzi, 16132 Genoa, Italy; Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 9 viale Benedetto XV, 16132 Genoa, Italy
| | - Cathérine Gebhard
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, CH-8952 Schlieren, Switzerland; Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091 Zürich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, CH-8952 Schlieren, Switzerland; Cardiology, Royal Brompton and Harefield Hospitals and Imperial College, London, United Kingdom
| | - Susanne Wegener
- Department of Neurology, University Hospital Zurich and University of Zurich, Rämistrasse 100, CH-8091 Zürich, Switzerland
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, CH-8952 Schlieren, Switzerland.
| |
Collapse
|
29
|
mRNA expression of transient receptor potential melastatin (TRPM) channels 2 and 7 in perinatal brain development. Int J Dev Neurosci 2018; 69:23-31. [DOI: 10.1016/j.ijdevneu.2018.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/04/2018] [Accepted: 05/18/2018] [Indexed: 12/31/2022] Open
|
30
|
Liberale L, Carbone F, Montecucco F, Gebhard C, Lüscher TF, Wegener S, Camici GG. Ischemic stroke across sexes: what is the status quo? Front Neuroendocrinol 2018:S0091-3022(18)30040-2. [PMID: 29763641 DOI: 10.1016/j.yfrne.2018.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/14/2022]
Abstract
Stroke prevalence is expected to increase in the next decades due to the aging of the Western population. Ischemic stroke (IS) shows an age- and sex-dependent distribution in which men represent the most affected population within 65 years of age, being passed by post-menopausal women in older age groups. Furthermore, a sexual dimorphism concerning risk factors, presentation and treatment of IS has been widely recognized. In order to address these phenomena, a number of issue have been raised involving both socio-economical and biological factors. The latter can be either dependent on sex hormones or due to intrinsic factors. Although women have poorer outcomes and are more likely to die after a cerebrovascular event, they are still underrepresented in clinical trials and this is mirrored by the lack of sex-tailored therapies. A greater effort is needed in the future to ensure improved treatment and quality of life to both sexes.
Collapse
Affiliation(s)
- Luca Liberale
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, CH-8952 Schlieren, Switzerland; First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy; Ospedale Policlinico San Martino, 10 Largo Benzi, 16132 Genoa, Italy; Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 9 viale Benedetto XV, 16132 Genoa, Italy
| | - Cathérine Gebhard
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, CH-8952 Schlieren, Switzerland; Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091 Zürich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, CH-8952 Schlieren, Switzerland; Cardiology, Royal Brompton and Harefield Hospitals and Imperial College, London, United Kingdom
| | - Susanne Wegener
- Department of Neurology, University Hospital Zurich and University of Zurich, Rämistrasse 100, CH-8091 Zürich, Switzerland
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, CH-8952 Schlieren, Switzerland.
| |
Collapse
|
31
|
The role of TRPM2 channels in neurons, glial cells and the blood-brain barrier in cerebral ischemia and hypoxia. Acta Pharmacol Sin 2018. [PMID: 29542681 PMCID: PMC5943904 DOI: 10.1038/aps.2017.194] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Stroke is one of the major causes of mortality and morbidity worldwide, yet novel therapeutic treatments for this condition are lacking. This review focuses on the roles of the transient receptor potential melastatin 2 (TRPM2) ion channels in cellular damage following hypoxia-ischemia and their potential as a future therapeutic target for stroke. Here, we highlight the complex molecular signaling that takes place in neurons, glial cells and the blood-brain barrier following ischemic insult. We also describe the evidence of TRPM2 involvement in these processes, as shown from numerous in vitro and in vivo studies that utilize genetic and pharmacological approaches. This evidence implicates TRPM2 in a broad range of pathways that take place every stage of cerebral ischemic injury, thus making TRPM2 a promising target for drug development for stroke and other neurodegenerative conditions of the central nervous system.
Collapse
|
32
|
Li X, Jiang LH. Multiple molecular mechanisms form a positive feedback loop driving amyloid β42 peptide-induced neurotoxicity via activation of the TRPM2 channel in hippocampal neurons. Cell Death Dis 2018; 9:195. [PMID: 29416015 PMCID: PMC5833848 DOI: 10.1038/s41419-018-0270-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 12/01/2017] [Accepted: 12/27/2017] [Indexed: 11/10/2022]
Abstract
Emerging evidence supports an important role for the ROS-sensitive TRPM2 channel in mediating age-related cognitive impairment in Alzheimer’s disease (AD), particularly neurotoxicity resulting from generation of excessive neurotoxic Aβ peptides. Here we examined the elusive mechanisms by which Aβ42 activates the TRPM2 channel to induce neurotoxicity in mouse hippocampal neurons. Aβ42-induced neurotoxicity was ablated by genetic knockout (TRPM2-KO) and attenuated by inhibition of the TRPM2 channel activity or activation through PARP-1. Aβ42-induced neurotoxicity was also inhibited by treatment with TPEN used as a Zn2+-specific chelator. Cell imaging revealed that Aβ42-induced lysosomal dysfunction, cytosolic Zn2+ increase, mitochondrial Zn2+ accumulation, loss of mitochondrial function, and mitochondrial generation of ROS. These effects were suppressed by TRPM2-KO, inhibition of TRPM2 or PARP-1, or treatment with TPEN. Bafilomycin-induced lysosomal dysfunction also resulted in TRPM2-dependent cytosolic Zn2+ increase, mitochondrial Zn2+ accumulation, and mitochondrial generation of ROS, supporting that lysosomal dysfunction and accompanying Zn2+ release trigger mitochondrial Zn2+ accumulation and generation of ROS. Aβ42-induced effects on lysosomal and mitochondrial functions besides neurotoxicity were also suppressed by inhibition of PKC and NOX. Furthermore, Aβ42-induced neurotoxicity was prevented by inhibition of MEK/ERK. Therefore, our study reveals multiple molecular mechanisms, including PKC/NOX-mediated generation of ROS, activation of MEK/ERK and PARP-1, lysosomal dysfunction and Zn2+ release, mitochondrial Zn2+ accumulation, loss of mitochondrial function, and mitochondrial generation of ROS, are critically engaged in forming a positive feedback loop that drives Aβ42-induced activation of the TRPM2 channel and neurotoxicity in hippocampal neurons. These findings shed novel and mechanistic insights into AD pathogenesis.
Collapse
Affiliation(s)
- Xin Li
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Lin-Hua Jiang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK. .,Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
33
|
Li X, Yang W, Jiang LH. Alteration in Intracellular Zn 2+ Homeostasis as a Result of TRPM2 Channel Activation Contributes to ROS-Induced Hippocampal Neuronal Death. Front Mol Neurosci 2017; 10:414. [PMID: 29311807 PMCID: PMC5732979 DOI: 10.3389/fnmol.2017.00414] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 11/29/2017] [Indexed: 12/23/2022] Open
Abstract
Transient receptor potential melastatin-related 2 (TRPM2) channel, a molecular sensor for reactive oxygen species (ROS), plays an important role in cognitive dysfunction associated with post-ischemia brain damage thought to result from ROS-induced TRPM2-dependent neuronal death during reperfusion. Emerging evidence further suggests that an alteration in the Zn2+ homeostasis is critical in ROS-induced TRPM2-dependent neuronal death. Here we applied genetic and pharmacological interventions to define the role of TRPM2 channel in ROS-induced neuronal death and explore the mechanisms contributing in the alteration in intracellular Zn2+ homeostasis in mouse hippocampal neurons. Exposure of neurons to 30–300 μM H2O2 for 2–24 h caused concentration/duration-dependent neuronal death, which was significantly suppressed, but not completely prevented, by TRPM2-knockout (TRPM2-KO) and pharmacological inhibition of the TRPM2 channel. H2O2-induced neuronal death was also attenuated by treatment with TPEN acting as a Zn2+ selective chelator. Single cell imaging demonstrated that H2O2 evoked a prominent increase in the intracellular Zn2+ concentration, which was completely prevented by TPEN as well as TRPM2-KO and inhibition of the TRPM2 channel. Furthermore, H2O2 induced lysosomal Zn2+ release and lysosomal dysfunction, and subsequent mitochondrial Zn2+ accumulation that provokes mitochondrial dysfunction and ROS generation. These H2O2-induced lysosomal/mitochondrial effects were prevented by TRPM2-KO or TPEN. Taken together, our results provide evidence to show that a dynamic alteration in the intracellular Zn2+ homeostasis as a result of activation of the TRPM2 channel contributes to ROS-induced hippocampal neuronal death.
Collapse
Affiliation(s)
- Xin Li
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Wei Yang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.,Department of Neurobiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lin-Hua Jiang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.,Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
34
|
Carvacrol promotes neuroprotection in the mouse hemiparkinsonian model. Neuroscience 2017; 356:176-181. [DOI: 10.1016/j.neuroscience.2017.05.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 12/12/2022]
|
35
|
Targeting TRPM2 in ROS-Coupled Diseases. Pharmaceuticals (Basel) 2016; 9:ph9030057. [PMID: 27618067 PMCID: PMC5039510 DOI: 10.3390/ph9030057] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/05/2016] [Accepted: 09/05/2016] [Indexed: 12/15/2022] Open
Abstract
Under pathological conditions such as inflammation and ischemia-reperfusion injury large amounts of reactive oxygen species (ROS) are generated which, in return, contribute to the development and exacerbation of disease. The second member of the transient receptor potential (TRP) melastatin subfamily, TRPM2, is a Ca(2+)-permeable non-selective cation channel, activated by ROS in an ADP-ribose mediated fashion. In other words, TRPM2 functions as a transducer that converts oxidative stress into Ca(2+) signaling. There is good evidence that TRPM2 plays an important role in ROS-coupled diseases. For example, in monocytes the influx of Ca(2+) through TRPM2 activated by ROS contributes to the aggravation of inflammation via chemokine production. In this review, the focus is on TRPM2 as a molecular linker between ROS and Ca(2+) signaling in ROS-coupled diseases.
Collapse
|
36
|
Mouse models of Down syndrome: gene content and consequences. Mamm Genome 2016; 27:538-555. [PMID: 27538963 DOI: 10.1007/s00335-016-9661-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/27/2016] [Indexed: 12/25/2022]
Abstract
Down syndrome (DS), trisomy of human chromosome 21 (Hsa21), is challenging to model in mice. Not only is it a contiguous gene syndrome spanning 35 Mb of the long arm of Hsa21, but orthologs of Hsa21 genes map to segments of three mouse chromosomes, Mmu16, Mmu17, and Mmu10. The Ts65Dn was the first viable segmental trisomy mouse model for DS; it is a partial trisomy currently popular in preclinical evaluations of drugs for cognition in DS. Limitations of the Ts65Dn are as follows: (i) it is trisomic for 125 human protein-coding orthologs, but only 90 of these are Hsa21 orthologs and (ii) it lacks trisomy for ~75 Hsa21 orthologs. In recent years, several additional mouse models of DS have been generated, each trisomic for a different subset of Hsa21 genes or their orthologs. To best exploit these models and interpret the results obtained with them, prior to proposing clinical trials, an understanding of their trisomic gene content, relative to full trisomy 21, is necessary. Here we first review the functional information on Hsa21 protein-coding genes and the more recent annotation of a large number of functional RNA genes. We then discuss the conservation and genomic distribution of Hsa21 orthologs in the mouse genome and the distribution of mouse-specific genes. Lastly, we consider the strengths and weaknesses of mouse models of DS based on the number and nature of the Hsa21 orthologs that are, and are not, trisomic in each, and discuss their validity for use in preclinical evaluations of drug responses.
Collapse
|
37
|
Extended therapeutic window of a novel peptide inhibitor of TRPM2 channels following focal cerebral ischemia. Exp Neurol 2016; 283:151-6. [PMID: 27317297 DOI: 10.1016/j.expneurol.2016.06.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/10/2016] [Accepted: 06/13/2016] [Indexed: 01/19/2023]
Abstract
INTRODUCTION TRPM2 channels have been suggested to play a role in ischemic neuronal injury, specifically in males. A major hindrance to TRPM2 research has been the lack of specific TRPM2 inhibitors. The current study characterized the specificity and neuroprotective efficacy of a novel TRPM2 inhibitor. METHODS Fluorescent calcium imaging (Fluo5F) was used to determine inhibitor efficacy of the TRPM2 peptide inhibitor (tat-M2NX) in HEK293 cells stably expressing hTRPM2. Adult (2-3months) and aged (18-20months) mice were subjected to 60min middle cerebral artery occlusion (MCAO) and injected with tat-M2NX, control scrambled peptide (tat-SCR) or clotrimazole (CTZ) either 20min prior or 3h after reperfusion. Infarct size was assessed using TTC staining. RESULTS TRPM2 inhibition by tat-M2NX was observed by decreased Ca(2+) influx following H2O2 exposure human TRPM2 expressing cells. Male mice pre-treated with tat-M2NX had smaller infarct volume compared to tat-SCR. No effect of tat-M2NX on infarct size was observed in female mice. Importantly, male TRPM2(-/-) mice were not further protected by tat-M2NX, demonstrating selectivity of tat-M2NX. Administration of tat-M2NX 3h after reperfusion provided significant protection to males when analyzed at 24h or 4days after MCAO. Finally, we observed that tat-M2NX reduced ischemic injury in aged male mice. CONCLUSIONS These data demonstrate the development of a new peptide inhibitor of TRPM2 channels that provides protection from ischemic stroke in young adult and aged male animals with a clinically relevant therapeutic window.
Collapse
|
38
|
The Transient Receptor Potential Melastatin 2 (TRPM2) Channel Contributes to β-Amyloid Oligomer-Related Neurotoxicity and Memory Impairment. J Neurosci 2016; 35:15157-69. [PMID: 26558786 DOI: 10.1523/jneurosci.4081-14.2015] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED In Alzheimer's disease, accumulation of soluble oligomers of β-amyloid peptide is known to be highly toxic, causing disturbances in synaptic activity and neuronal death. Multiple studies relate these effects to increased oxidative stress and aberrant activity of calcium-permeable cation channels leading to calcium imbalance. The transient receptor potential melastatin 2 (TRPM2) channel, a Ca(2+)-permeable nonselective cation channel activated by oxidative stress, has been implicated in neurodegenerative diseases, and more recently in amyloid-induced toxicity. Here we show that the function of TRPM2 is augmented by treatment of cultured neurons with β-amyloid oligomers. Aged APP/PS1 Alzheimer's mouse model showed increased levels of endoplasmic reticulum stress markers, protein disulfide isomerase and phosphorylated eukaryotic initiation factor 2α, as well as decreased levels of the presynaptic marker synaptophysin. Elimination of TRPM2 in APP/PS1 mice corrected these abnormal responses without affecting plaque burden. These effects of TRPM2 seem to be selective for β-amyloid toxicity, as ER stress responses to thapsigargin or tunicamycin in TRPM2(-/-) neurons was identical to that of wild-type neurons. Moreover, reduced microglial activation was observed in TRPM2(-/-)/APP/PS1 hippocampus compared with APP/PS1 mice. In addition, age-dependent spatial memory deficits in APP/PS1 mice were reversed in TRPM2(-/-)/APP/PS1 mice. These results reveal the importance of TRPM2 for β-amyloid neuronal toxicity, suggesting that TRPM2 activity could be potentially targeted to improve outcomes in Alzheimer's disease. SIGNIFICANCE STATEMENT Transient receptor potential melastatin 2 (TRPM2) is an oxidative stress sensing calcium-permeable channel that is thought to contribute to calcium dysregulation associated with neurodegenerative diseases, including Alzheimer's disease. Here we show that oligomeric β-amyloid, the toxic peptide in Alzheimer's disease, facilitates TRPM2 channel activation. In mice designed to model Alzheimer's disease, genetic elimination of TRPM2 normalized deficits in synaptic markers in aged mice. Moreover, the absence of TRPM2 improved age-dependent spatial memory deficits observed in Alzheimer's mice. Our results reveal the importance of TRPM2 for neuronal toxicity and memory impairments in an Alzheimer's mouse model and suggest that TRPM2 could be targeted for the development of therapeutic agents effective in the treatment of dementia.
Collapse
|
39
|
Detrimental or beneficial: the role of TRPM2 in ischemia/reperfusion injury. Acta Pharmacol Sin 2016; 37:4-12. [PMID: 26725732 DOI: 10.1038/aps.2015.141] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/14/2015] [Indexed: 12/30/2022] Open
Abstract
Ischemia/reperfusion (I/R) injury is the main cause of tissue damage and dysfunction. I/R injury is characterized by Ca(2+) overload and production of reactive oxygen species (ROS), which play critical roles in the process of I/R injury to the brain, heart and kidney, but the underlying mechanisms are largely elusive. Recent evidence demonstrates that TRPM2, a Ca(2+)-permeable cationic channel and ROS sensor, is involved in I/R injury, but whether TRPM2 plays a protective or detrimental role in this process remains controversial. In this review, we discuss the recent progress in understanding the role of TRPM2 in reperfusion process after brain, heart and kidney ischemia and the potential of targeting TRPM2 for the development of therapeutic drugs to treat I/R injury.
Collapse
|
40
|
Block A, Ahmed MM, Dhanasekaran AR, Tong S, Gardiner KJ. Sex differences in protein expression in the mouse brain and their perturbations in a model of Down syndrome. Biol Sex Differ 2015; 6:24. [PMID: 26557979 PMCID: PMC4640233 DOI: 10.1186/s13293-015-0043-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/01/2015] [Indexed: 01/08/2023] Open
Abstract
Background While many sex differences in structure and function of the mammalian brain have been described, the molecular correlates of these differences are not broadly known. Also unknown is how sex differences at the protein level are perturbed by mutations that lead to intellectual disability (ID). Down syndrome (DS) is the most common genetic cause of ID and is due to trisomy of human chromosome 21 (Hsa21) and the resulting increased expression of Hsa21-encoded genes. The Dp(10)1Yey mouse model (Dp10) of DS is trisomic for orthologs of 39 Hsa21 protein-coding genes that map to mouse chromosome 10 (Mmu10), including four genes with known sex differences in functional properties. How these genes contribute to the DS cognitive phenotype is not known. Methods Using reverse phase protein arrays, levels of ~100 proteins/protein modifications were measured in the hippocampus, cerebellum, and cortex of female and male controls and their trisomic Dp10 littermates. Proteins were chosen for their known roles in learning/memory and synaptic plasticity and include components of the MAPK, MTOR, and apoptosis pathways, immediate early genes, and subunits of ionotropic glutamate receptors. Protein levels were compared between genotypes, sexes, and brain regions using a three-level mixed effects model and the Benjamini-Hochberg correction for multiple testing. Results In control mice, levels of approximately one half of the proteins differ significantly between females and males in at least one brain region; in the hippocampus alone, levels of 40 % of the proteins are significantly higher in females. Trisomy of the Mmu10 segment differentially affects female and male profiles, perturbing protein levels most in the cerebellum of female Dp10 and most in the hippocampus of male Dp10. Cortex is minimally affected by sex and genotype. Diverse pathways and processes are implicated in both sex and genotype differences. Conclusions The extensive sex differences in control mice in levels of proteins involved in learning/memory illustrate the molecular complexity underlying sex differences in normal neurological processes. The sex-specific abnormalities in the Dp10 suggest the possibility of sex-specific phenotypic features in DS and reinforce the need to use female as well as male mice, in particular in preclinical evaluations of drug responses. Electronic supplementary material The online version of this article (doi:10.1186/s13293-015-0043-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aaron Block
- Department of Pediatrics, Linda Crnic Institute for Down Syndrome, Aurora, USA
| | - Md Mahiuddin Ahmed
- Department of Pediatrics, Linda Crnic Institute for Down Syndrome, Aurora, USA
| | | | - Suhong Tong
- Colorado School of Public Health, Aurora, USA
| | - Katheleen J Gardiner
- Department of Pediatrics, Linda Crnic Institute for Down Syndrome, Aurora, USA ; Human Medical Genetics and Genomics, and Neuroscience Programs, University of Colorado Denver School of Medicine, 12700 E 19th Avenue, Mail Stop 8608, Aurora, CO 80045 USA
| |
Collapse
|
41
|
Sirtuin-2 mediates male specific neuronal injury following experimental cardiac arrest through activation of TRPM2 ion channels. Exp Neurol 2015; 275 Pt 1:78-83. [PMID: 26522013 DOI: 10.1016/j.expneurol.2015.10.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/12/2015] [Accepted: 10/29/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Sirtuins (Sirt) are a class of deacetylase enzymes that play an important role in cell proliferation. Sirt2 activation produces O-acetylated-ADPribose (OAADPr) which can act as a ligand for transient receptor potential cation channel, M2 (TRPM2). We tested the hypothesis that Sirt2 is activated following global cerebral ischemia and contributes to neuronal injury through activation of TRPM2. METHODS Adult male and female mice (8-12 weeks old) C57Bl/6 and TRPM2 knock-out mice were subjected to 8 min of cardiac arrest followed by cardiopulmonary resuscitation (CA/CPR). The Sirt2 inhibitor AGK-2 was administered intravenously 30 min after resuscitation. Hippocampal CA1 injury was analyzed at 3 days after CA/CPR. Acute Sirt2 activity was analyzed at 3 and 24 h after CA/CPR. Long-term hippocampal function was assessed using slice electrophysiology 7 days after CA/CPR. RESULTS AGK-2 significantly reduced CA1 injury in WT but not TRPM2 knock-out males and had no effect on CA1 injury in females. Elevated Sirt2 activity was observed in hippocampal tissue from males at 24 h after cardiac arrest and was reduced by AGK-2. In contrast, Sirt2 activity in females was increased at 3 but not 24 h. Finally, we observed long-term benefit of AGK-2 on hippocampal function, with a protection of long-term potentiation at CA1 synapses at 7 and 30 days after ischemia. CONCLUSIONS In summary, we observed a male specific activation of Sirt2 that contributes to neuronal injury and functional deficits after ischemia specifically in males. These results are consistent with a role of Sirt2 in activating TRPM2 following global ischemia in a sex specific manner. These results support the growing body of literature showing that oxidative stress mechanisms predominate in males and converge on TRPM2 activation as a mediator of cell death.
Collapse
|
42
|
Li C, Meng L, Li X, Li D, Jiang LH. Non-NMDAR neuronal Ca2+–permeable channels in delayed neuronal death and as potential therapeutic targets for ischemic brain damage. Expert Opin Ther Targets 2015; 19:879-92. [DOI: 10.1517/14728222.2015.1021781] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
43
|
TRPM2 channel deficiency prevents delayed cytosolic Zn2+ accumulation and CA1 pyramidal neuronal death after transient global ischemia. Cell Death Dis 2014; 5:e1541. [PMID: 25429618 PMCID: PMC4260752 DOI: 10.1038/cddis.2014.494] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 10/02/2014] [Accepted: 10/16/2014] [Indexed: 11/09/2022]
Abstract
Transient ischemia is a leading cause of cognitive dysfunction. Postischemic ROS generation and an increase in the cytosolic Zn2+ level ([Zn2+]c) are critical in delayed CA1 pyramidal neuronal death, but the underlying mechanisms are not fully understood. Here we investigated the role of ROS-sensitive TRPM2 (transient receptor potential melastatin-related 2) channel. Using in vivo and in vitro models of ischemia–reperfusion, we showed that genetic knockout of TRPM2 strongly prohibited the delayed increase in the [Zn2+]c, ROS generation, CA1 pyramidal neuronal death and postischemic memory impairment. Time-lapse imaging revealed that TRPM2 deficiency had no effect on the ischemia-induced increase in the [Zn2+]c but abolished the cytosolic Zn2+ accumulation during reperfusion as well as ROS-elicited increases in the [Zn2+]c. These results provide the first evidence to show a critical role for TRPM2 channel activation during reperfusion in the delayed increase in the [Zn2+]c and CA1 pyramidal neuronal death and identify TRPM2 as a key molecule signaling ROS generation to postischemic brain injury.
Collapse
|
44
|
Sex Steroids Do Not Modulate TRPM2-Mediated Injury in Females following Middle Cerebral Artery Occlusion(1,2,3). eNeuro 2014; 1:eN-NRS-0022-14. [PMID: 26464961 PMCID: PMC4596140 DOI: 10.1523/eneuro.0022-14.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/11/2014] [Accepted: 11/11/2014] [Indexed: 02/08/2023] Open
Abstract
TRPM2 is an ion channel that is activated by ischemia in stroke and contributes to neuronal injury only in males. We tested whether the lack of TRPM2 activation following stroke in females is caused by differences in sex steroids. Calcium-permeable transient receptor potential M2 (TRPM2) ion channel activation contributes to cerebral ischemic injury specifically in males. In male mice, circulating androgens are required for TRPM2 inhibition with clotrimazole (CTZ) to provide protection following experimental stroke. Sufficient levels of circulating androgens are necessary to support ischemia-induced activation of poly ADP ribose polymerase (PARP) and consequent activation of TRPM2 channels. In this study, we tested whether differences in sex steroids contribute to the lack of CTZ neuroprotection in females. Middle cerebral artery occlusion (MCAO) was performed using adult female mice that were hormonally intact, ovariectomized (OVX) or dihydrotestosterone (DHT) treated. CTZ or vehicle was administered at the time of reperfusion, animals were euthanized 24 h later and brains and serum were collected. Infarct analysis revealed no effect of CTZ in intact females or females lacking endogenous sex steroids (OVX). Interestingly, treatment of female mice with the potent androgen receptor agonist DHT had no effect on ischemic injury and did not permit CTZ neuroprotection. Similarly, DHT-treated females did not exhibit increased levels of ADPribose, the TRPM2 ligand generated by PARP, following ischemia. No differences in TRPM2 or androgen receptor expression were observed between males and females. These data suggest that the lack of TRPM2 activation in females following experimental stroke is not due to the presence of estrogen or the absence of androgens. In conclusion, our data demonstrate that while circulating androgens are necessary for PARP-mediated TRPM2 injury in males, they are not sufficient to produce TRPM2 activation in females.
Collapse
|
45
|
Demarest TG, McCarthy MM. Sex differences in mitochondrial (dys)function: Implications for neuroprotection. J Bioenerg Biomembr 2014; 47:173-88. [PMID: 25293493 DOI: 10.1007/s10863-014-9583-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/14/2014] [Indexed: 12/12/2022]
Abstract
Decades of research have revealed numerous differences in brain structure size, connectivity and metabolism between males and females. Sex differences in neurobehavioral and cognitive function after various forms of central nervous system (CNS) injury are observed in clinical practice and animal research studies. Sources of sex differences include early life exposure to gonadal hormones, chromosome compliment and adult hormonal modulation. It is becoming increasingly apparent that mitochondrial metabolism and cell death signaling are also sexually dimorphic. Mitochondrial metabolic dysfunction is a common feature of CNS injury. Evidence suggests males predominantly utilize proteins while females predominantly use lipids as a fuel source within mitochondria and that these differences may significantly affect cellular survival following injury. These fundamental biochemical differences have a profound impact on energy production and many cellular processes in health and disease. This review will focus on the accumulated evidence revealing sex differences in mitochondrial function and cellular signaling pathways in the context of CNS injury mechanisms and the potential implications for neuroprotective therapy development.
Collapse
Affiliation(s)
- Tyler G Demarest
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA,
| | | |
Collapse
|
46
|
Abstract
Cerebrovascular disease is a leading cause of death-from-disease and of disability worldwide, affecting some 15 million people. The incidence of stroke or "brain attack" is unlikely to recede for a decade at minimum by most predictions, despite large public health initiatives in stroke prevention. It has been well established that stroke is also one of the most strikingly sex-specific diseases in its epidemiology, and in some cases, in patient outcomes. For example, women sustain lower rates of ischemic stroke relative to men, even beyond their menopausal years. In contrast, outcomes are worse in women in many clinical studies. The biological basis for this sexual dimorphism is a compelling story, and both hormone-dependent and hormone-independent factors are involved, the latter of which is the subject of this brief review. Understanding the molecular and cell-based mechanisms underlying sex differences in ischemic brain injury is an important step toward personalized medicine and effective therapeutic interventions in patients of both sexes.
Collapse
Affiliation(s)
- Paco S Herson
- Departments of Anesthesiology and Pharmacology, University of Colorado, Denver
| | | | | |
Collapse
|
47
|
Nilius B, Szallasi A. Transient Receptor Potential Channels as Drug Targets: From the Science of Basic Research to the Art of Medicine. Pharmacol Rev 2014; 66:676-814. [DOI: 10.1124/pr.113.008268] [Citation(s) in RCA: 348] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
48
|
Antisense transcription at the TRPM2 locus as a novel prognostic marker and therapeutic target in prostate cancer. Oncogene 2014; 34:2094-102. [PMID: 24931166 DOI: 10.1038/onc.2014.144] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 03/16/2014] [Accepted: 04/19/2014] [Indexed: 01/19/2023]
Abstract
Overwhelming evidence indicates that cancer is a genetic disease caused by the accumulation of mutations in oncogenes and tumor suppressor genes. It is also increasingly apparent, however, that cancer depends not only on mutations in these coding genes but also on alterations in the large class of non-coding RNAs. Here, we report that one such long non-coding RNA, TRPM2-AS, an antisense transcript of TRPM2, which encodes an oxidative stress-activated ion channel, is overexpressed in prostate cancer (PCa). The high expression of TRPM2-AS and its related gene signature were found to be linked to poor clinical outcome, with the related gene signature working also independently of the patient's Gleason score. Mechanistically, TRPM2-AS knockdown led to PCa cell apoptosis, with a transcriptional profile that indicated an unbearable increase in cellular stress in the dying cells, which was coupled to cell cycle arrest, an increase in intracellular hydrogen peroxide and activation of the sense TRPM2 gene. Moreover, targets of existing drugs and treatments were found to be consistently associated with high TRPM2-AS levels in both targeted cells and patients, ultimately suggesting that the measurement of the expression levels of TRPM2-AS allows not only for the early identification of aggressive PCa tumors, but also identifies a subset of at-risk patients who would benefit from currently available, but mostly differently purposed, therapeutic agents.
Collapse
|
49
|
Abstract
TRPM2 is the second member of the transient receptor potential melastatin-related (TRPM) family of cation channels. The protein is widely expressed including in the brain, immune system, endocrine cells, and endothelia. It embodies both ion channel functionality and enzymatic ADP-ribose (ADPr) hydrolase activity. TRPM2 is a Ca(2+)-permeable nonselective cation channel embedded in the plasma membrane and/or lysosomal compartments that is primarily activated in a synergistic fashion by intracellular ADP-ribose (ADPr) and Ca(2+). It is also activated by reactive oxygen and nitrogen species (ROS/NOS) and enhanced by additional factors, such as cyclic ADPr and NAADP, while inhibited by permeating protons (acidic pH) and adenosine monophosphate (AMP). Activation of TRPM2 leads to increases in intracellular Ca(2+) levels, which can serve signaling roles in inflammatory and secretory cells through release of vesicular mediators (e.g., cytokines, neurotransmitters, insulin) and in extreme cases can induce apoptotic and necrotic cell death under oxidative stress.
Collapse
Affiliation(s)
- Malika Faouzi
- Center for Biomedical Research, The Queen's Medical Center, 1301 Punchbowl Street, Honolulu, HI, 96813, USA,
| | | |
Collapse
|
50
|
Fairbanks SL, Vest R, Verma S, Traystman RJ, Herson PS. Sex stratified neuronal cultures to study ischemic cell death pathways. J Vis Exp 2013:e50758. [PMID: 24378980 DOI: 10.3791/50758] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Sex differences in neuronal susceptibility to ischemic injury and neurodegenerative disease have long been observed, but the signaling mechanisms responsible for those differences remain unclear. Primary disassociated embryonic neuronal culture provides a simplified experimental model with which to investigate the neuronal cell signaling involved in cell death as a result of ischemia or disease; however, most neuronal cultures used in research today are mixed sex. Researchers can and do test the effects of sex steroid treatment in mixed sex neuronal cultures in models of neuronal injury and disease, but accumulating evidence suggests that the female brain responds to androgens, estrogens, and progesterone differently than the male brain. Furthermore, neonate male and female rodents respond differently to ischemic injury, with males experiencing greater injury following cerebral ischemia than females. Thus, mixed sex neuronal cultures might obscure and confound the experimental results; important information might be missed. For this reason, the Herson Lab at the University of Colorado School of Medicine routinely prepares sex-stratified primary disassociated embryonic neuronal cultures from both hippocampus and cortex. Embryos are sexed before harvesting of brain tissue and male and female tissue are disassociated separately, plated separately, and maintained separately. Using this method, the Herson Lab has demonstrated a male-specific role for the ion channel TRPM2 in ischemic cell death. In this manuscript, we share and discuss our protocol for sexing embryonic mice and preparing sex-stratified hippocampal primary disassociated neuron cultures. This method can be adapted to prepare sex-stratified cortical cultures and the method for embryo sexing can be used in conjunction with other protocols for any study in which sex is thought to be an important determinant of outcome.
Collapse
Affiliation(s)
- Stacy L Fairbanks
- Department of Anesthesiology, University of Colorado School of Medicine
| | | | | | | | | |
Collapse
|