1
|
Fallahi MS, Sahebekhtiari K, Hosseini H, Aliasin MM, Noroozi M, Moghadam Fard A, Aarabi MH, Gulisashvili D, Shafie M, Mayeli M. Distinct patterns of hippocampal subfield volumes predict coping strategies, emotion regulation, and impulsivity in healthy adults. Brain Imaging Behav 2024:10.1007/s11682-024-00904-8. [PMID: 39103671 DOI: 10.1007/s11682-024-00904-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Recent studies have suggested that the hippocampus (HC) is involved in cognitive and behavioral functions beyond memory. We aimed to investigate how the volume of each subfield of the HC is associated with distinct patterns of coping strategies, emotion regulation, and impulsivity in a healthy population. METHODS We studied a total of 218 healthy subjects using the Leipzig mind-brain-body dataset. Participants were assessed for coping strategies, emotion regulation, and impulsivity using the Cognitive Emotion Regulation Questionnaire (CERQ), Coping Orientations to Problems Experienced (COPE), Impulsive Behavior Scale (UPPS), and Behavioral Activation and Inhibition System (BAS/BIS). The associations between HC subfield volumes including CA1, CA2/3, CA4/DG, SR-SL-SM, and subiculum, and behavioral scores were examined using multiple linear regression models adjusted for possible confounders, including age, sex, years of education, handedness, total intracranial volume (ICV), and HC volume. RESULTS The use of emotional support, venting, and positive reframing coping strategies were significantly and positively correlated with total, total right, and total left HC volumes. Venting was significantly associated with CA1 after adjusting for age, sex, handedness, and education (P=0.001, B = 0.265, P-FDR = 0.005). No significant association was observed between CERQ subscales and HC subfield volumes after controlling for confounders and multiple analyses. However, sensation-seeking subscale of the UPPS-P was positively correlated with total and right CA2-CA3 volumes after adjustments for age, sex, handedness, ICV, and HC volumes (P=0.002, B = 0.266, P-FDR = 0.035). BAS and BIS subscales did not show significant relationship with HC subfield volumes. CONCLUSION Patterns of HC subfields volumes are associated with coping strategies, impulsivity, and emotion regulation. In particular, using emotional support, positive reframing, venting, and sensation seeking are significantly associated with certain HC subfield volumes. These findings suggest that the hippocampus may play a crucial role in modulating emotional responses and behavioral adaptations, offering potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Mohammad Sadegh Fallahi
- NeuroTRACT International Association, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kianoosh Sahebekhtiari
- NeuroTRACT International Association, Tehran, Iran
- School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Helia Hosseini
- NeuroTRACT International Association, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdi Aliasin
- NeuroTRACT International Association, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Noroozi
- NeuroTRACT International Association, Tehran, Iran
- Department of Biomedical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Atousa Moghadam Fard
- NeuroTRACT International Association, Tehran, Iran
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Aarabi
- Department of Neuroscience (DNS), University of Padova, Padua, Italy
- Padova Neuroscience Center, University of Padova, Padua, Italy
| | - David Gulisashvili
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mahan Shafie
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahsa Mayeli
- NeuroTRACT International Association, Tehran, Iran.
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Tsalouchidou PE, Müller CJ, Belke M, Zahnert F, Menzler K, Trinka E, Knake S, Thomschewski A. Verbal memory depends on structural hippocampal subfield volume. Front Neurol 2023; 14:1209941. [PMID: 37900611 PMCID: PMC10613087 DOI: 10.3389/fneur.2023.1209941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Objective To investigate correlates in hippocampal subfield volume and verbal and visual memory function in patients with temporal lobe epilepsy (TLE), mild amnestic cognitive impairment (MCI) and heathy participants (HP). Methods 50 right-handed participants were included in this study; 11 patients with temporal lobe epilepsy (TLE), 18 patients with mild amnestic cognitive impairment (MCI) and 21 healthy participants (HP). Verbal memory performance was evaluated via the verbal memory test (VLMT) and visual memory performance via the diagnosticum for cerebral damage (DCM). Hippocampal subfield volumes of T1-weighted Magnetic Resonance Imaging (MRI) scans were computed with FreeSurfer version 7.1. Stepwise correlation analyses were performed between the left hippocampal subfield volumes and learning, free recall, consolidation and recognition performance scores of the VLMT as well as between right hippocampal subfield volumes and visual memory performance. Results The volume of the left subicular complex was highly correlated to learning performance (β = 0.284; p = 0.042) and free recall performance in the VLMT (β = 0.434; p = 0.001). The volume of the left CA3 subfield showed a significant correlation to the consolidation performance in the VLMT (β = 0.378; p = 0.006) and recognition performance in the VLMT (β = 0.290; p = 0.037). There was no significant correlation identified between the right hippocampal subfields and the visual memory performance. Conclusion The results of this study show verbal memory correlates with hippocampal subfields and support the role of left subiculum and left CA2/CA3 in verbal memory performance.
Collapse
Affiliation(s)
| | - Christina-Julia Müller
- Epilepsy Center Hessen, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Marcus Belke
- Epilepsy Center Hessen, Department of Neurology, Philipps University Marburg, Marburg, Germany
- Center for Personalized Translational Epilepsy Research (CePTER), Frankfurt, Germany
| | - Felix Zahnert
- Epilepsy Center Hessen, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Katja Menzler
- Epilepsy Center Hessen, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Eugen Trinka
- Department of Neurology and Centre for Cognitive Neuroscience, Christian Doppler University Hospital, Paracelsus Medical University, Member of the European Reference Network EpiCARE, Salzburg, Austria
- Neuroscience Institute, Christian Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Susanne Knake
- Epilepsy Center Hessen, Department of Neurology, Philipps University Marburg, Marburg, Germany
- Center for Personalized Translational Epilepsy Research (CePTER), Frankfurt, Germany
| | - Aljoscha Thomschewski
- Department of Neurology and Centre for Cognitive Neuroscience, Christian Doppler University Hospital, Paracelsus Medical University, Member of the European Reference Network EpiCARE, Salzburg, Austria
- Neuroscience Institute, Christian Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
3
|
Mohammadi S, Seyedmirzaei H, Salehi MA, Jahanshahi A, Zakavi SS, Dehghani Firouzabadi F, Yousem DM. Brain-based Sex Differences in Depression: A Systematic Review of Neuroimaging Studies. Brain Imaging Behav 2023; 17:541-569. [PMID: 37058182 PMCID: PMC10102695 DOI: 10.1007/s11682-023-00772-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2023] [Indexed: 04/15/2023]
Abstract
Major depressive disorder (MDD) is a common psychiatric illness with a wide range of symptoms such as mood decline, loss of interest, and feelings of guilt and worthlessness. Women develop depression more often than men, and the diagnostic criteria for depression mainly rely on female patients' symptoms. By contrast, male depression usually manifests as anger attacks, aggression, substance use, and risk-taking behaviors. Various studies have focused on the neuroimaging findings in psychiatric disorders for a better understanding of their underlying mechanisms. With this review, we aimed to summarize the existing literature on the neuroimaging findings in depression, separated by male and female subjects. A search was conducted on PubMed and Scopus for magnetic resonance imaging (MRI), functional MRI (fMRI), and diffusion tensor imaging (DTI) studies of depression. After screening the search results, 15 MRI, 12 fMRI, and 4 DTI studies were included. Sex differences were mainly reflected in the following regions: 1) total brain, hippocampus, amygdala, habenula, anterior cingulate cortex, and corpus callosum volumes, 2) frontal and temporal gyri functions, along with functions of the caudate nucleus and prefrontal cortex, and 3) frontal fasciculi and frontal projections of corpus callosum microstructural alterations. Our review faces limitations such as small sample sizes and heterogeneity in populations and modalities. But in conclusion, it reflects the possible roles of sex-based hormonal and social factors in the depression pathophysiology.
Collapse
Affiliation(s)
- Soheil Mohammadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Homa Seyedmirzaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Interdisciplinary Neuroscience Research Program (INRP), Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ali Jahanshahi
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyed Sina Zakavi
- School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - David M Yousem
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institution, Baltimore, MD, USA.
| |
Collapse
|
4
|
Hammers DB, Pentchev JV, Kim HJ, Spencer RJ, Apostolova LG. The relationship between learning slopes and Alzheimer's Disease biomarkers in cognitively unimpaired participants with and without subjective memory concerns. J Clin Exp Neuropsychol 2023; 45:727-743. [PMID: 37676258 PMCID: PMC10916703 DOI: 10.1080/13803395.2023.2254444] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
OBJECTIVE Learning slopes represent serial acquisition of information during list-learning tasks. Although several calculations for learning slopes exist, the Learning Ratio (LR) has recently demonstrated the highest sensitivity toward changes in cognition and Alzheimer's disease (AD) biomarkers. However, investigation of learning slopes in cognitively unimpaired individuals with subjective memory concerns (SMC) has been limited. The current study examines the association of learning slopes to SMC, and the role of SMC in the relationship between learning slopes and AD biomarkers in cognitively unimpaired individuals. METHOD Data from 950 cognitively unimpaired participants from the Alzheimer's Disease Neuroimaging Initiative (aged 55 to 89) were used to calculate learning slope metrics. Learning slopes among those with and without SMC were compared with demographic correction, and the relationships of learning slopes with AD biomarkers of bilateral hippocampal volume and β-amyloid pathology were determined. RESULTS Learning slopes were consistently predictive of hippocampal atrophy and β-amyloid deposition. Results were heightened for LR relative to the other learning slopes. Additionally, interaction analyses revealed different associations between learning slopes and hippocampal volume as a function of SMC status. CONCLUSIONS Learning slopes appear to be sensitive to SMC and AD biomarkers, with SMC status influencing the relationship in cognitively unimpaired participants. These findings advance our knowledge of SMC, and suggest that LR - in particular - can be an important tool for the detection of AD pathology in both SMC and in AD clinical trials.
Collapse
Affiliation(s)
- Dustin B. Hammers
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA, 46202
| | - Julian V. Pentchev
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA, 46202
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Robert J. Spencer
- Mental Health Service, VA Ann Arbor Healthcare System, Ann Arbor MI, USA, 48105
- Michigan Medicine, Department of Psychiatry, Neuropsychology Section, Ann Arbor MI, USA, 48105
| | - Liana G. Apostolova
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA, 46202
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA, 46202
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine Indianapolis, Indianapolis, Indiana, USA, 46202
| | | |
Collapse
|
5
|
Kahhale I, Buser NJ, Madan CR, Hanson JL. Quantifying numerical and spatial reliability of hippocampal and amygdala subdivisions in FreeSurfer. Brain Inform 2023; 10:9. [PMID: 37029203 PMCID: PMC10082143 DOI: 10.1186/s40708-023-00189-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/24/2023] [Indexed: 04/09/2023] Open
Abstract
On-going, large-scale neuroimaging initiatives can aid in uncovering neurobiological causes and correlates of poor mental health, disease pathology, and many other important conditions. As projects grow in scale with hundreds, even thousands, of individual participants and scans collected, quantification of brain structures by automated algorithms is becoming the only truly tractable approach. Here, we assessed the spatial and numerical reliability for newly deployed automated segmentation of hippocampal subfields and amygdala nuclei in FreeSurfer 7. In a sample of participants with repeated structural imaging scans (N = 928), we found numerical reliability (as assessed by intraclass correlations, ICCs) was reasonable. Approximately 95% of hippocampal subfields had "excellent" numerical reliability (ICCs ≥ 0.90), while only 67% of amygdala subnuclei met this same threshold. In terms of spatial reliability, 58% of hippocampal subfields and 44% of amygdala subnuclei had Dice coefficients ≥ 0.70. Notably, multiple regions had poor numerical and/or spatial reliability. We also examined correlations between spatial reliability and person-level factors (e.g., participant age; T1 image quality). Both sex and image scan quality were related to variations in spatial reliability metrics. Examined collectively, our work suggests caution should be exercised for a few hippocampal subfields and amygdala nuclei with more variable reliability.
Collapse
|
6
|
A model for estimating the brainstem volume in normal healthy individuals and its application to diffuse axonal injury patients. Sci Rep 2023; 13:33. [PMID: 36593347 PMCID: PMC9807567 DOI: 10.1038/s41598-022-27202-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Diffuse axonal injury (DAI) is a subtype of traumatic brain injury that causes acute-phase consciousness disorders and widespread chronic-phase brain atrophy. Considering the importance of brainstem damage in DAI, a valid method for evaluating brainstem volume is required. We obtained volume measurements from 182 healthy adults by analyzing T1-weighted magnetic resonance images, and created an age-/sex-/intracranial volume-based quantitative model to estimate the normal healthy volume of the brainstem and cerebrum. We then applied this model to the volume measurements of 22 DAI patients, most of whom were in the long-term chronic phase and had no gross focal injury, to estimate the percentage difference in volume from the expected normal healthy volume in different brain regions, and investigated its association with the duration of posttraumatic amnesia (which is an early marker of injury severity). The average loss of the whole brainstem was 13.9%. Moreover, the percentage loss of the whole brainstem, and particularly of the pons and midbrain, was significantly negatively correlated with the duration of posttraumatic amnesia. Our findings suggest that injury severity, as denoted by the duration of posttraumatic amnesia, is among the factors affecting the chronic-phase brainstem volume in patients with DAI.
Collapse
|
7
|
Katabathula S, Davis PB, Xu R. Sex-Specific Heterogeneity of Mild Cognitive Impairment Identified Based on Multi-Modal Data Analysis. J Alzheimers Dis 2023; 91:233-243. [PMID: 36404544 PMCID: PMC11391386 DOI: 10.3233/jad-220600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Mild cognitive impairment (MCI), a prodromal phase of Alzheimer's disease (AD), is heterogeneous with different rates and risks of progression to AD. There are significant gender disparities in the susceptibility, prognosis, and outcomes in patients with MCI, with female being disproportionately negatively impacted. OBJECTIVE The aim of this study was to identify sex-specific heterogeneity of MCI using multi-modality data and examine the differences in the respective MCI subtypes with different prognostic outcomes or different risks for MCI to AD conversion. METHODS A total of 325 MCI subjects (146 women, 179 men) and 30 relevant features were considered. Mixed-data clustering was applied to women and men separately to discover gender-specific MCI subtypes. Gender differences were compared in the respective subtypes of MCI by examining their MCI to AD disease prognosis, descriptive statistics, and conversion rates. RESULTS We identified three MCI subtypes: poor-, good-, and best-prognosis for women and for men, separately. The subtype-wise comparison (for example, poor-prognosis subtype in women versus poor-prognosis subtype in men) showed significantly different means for brain volumetric, cognitive test-related, also for the proportion of comorbidities. Also, there were substantial gender differences in the proportions of participants who reverted to normal function, remained stable, or converted to AD. CONCLUSION Analyzing sex-specific heterogeneity of MCI offers the opportunity to advance the understanding of the pathophysiology of both MCI and AD, allows stratification of risk in clinical trials of interventions, and suggests gender-based early intervention with targeted treatment for patients at risk of developing AD.
Collapse
Affiliation(s)
- Sreevani Katabathula
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Pamela B Davis
- Center for Community Health Integration, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Rong Xu
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
8
|
Niklason GR, Rawls E, Ma S, Kummerfeld E, Maxwell AM, Brucar LR, Drossel G, Zilverstand A. Explainable machine learning analysis reveals sex and gender differences in the phenotypic and neurobiological markers of Cannabis Use Disorder. Sci Rep 2022; 12:15624. [PMID: 36115920 PMCID: PMC9482622 DOI: 10.1038/s41598-022-19804-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Cannabis Use Disorder (CUD) has been linked to a complex set of neuro-behavioral risk factors. While many studies have revealed sex and gender differences, the relative importance of these risk factors by sex and gender has not been described. We used an "explainable" machine learning approach that combined decision trees [gradient tree boosting, XGBoost] with factor ranking tools [SHapley's Additive exPlanations (SHAP)] to investigate sex and gender differences in CUD. We confirmed that previously identified environmental, personality, mental health, neurocognitive, and brain factors highly contributed to the classification of cannabis use levels and diagnostic status. Risk factors with larger effect sizes in men included personality (high openness), mental health (high externalizing, high childhood conduct disorder, high fear somaticism), neurocognitive (impulsive delay discounting, slow working memory performance) and brain (low hippocampal volume) factors. Conversely, risk factors with larger effect sizes in women included environmental (low education level, low instrumental support) factors. In summary, environmental factors contributed more strongly to CUD in women, whereas individual factors had a larger importance in men.
Collapse
Affiliation(s)
- Gregory R Niklason
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, 717 Delaware St. SE, Minneapolis, MN, 55414, USA
| | - Eric Rawls
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, 717 Delaware St. SE, Minneapolis, MN, 55414, USA
| | - Sisi Ma
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Erich Kummerfeld
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Andrea M Maxwell
- Medical Scientist Training Program, University of Minnesota, Minneapolis, MN, USA
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Leyla R Brucar
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, 717 Delaware St. SE, Minneapolis, MN, 55414, USA
| | - Gunner Drossel
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Anna Zilverstand
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, 717 Delaware St. SE, Minneapolis, MN, 55414, USA.
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
9
|
Ku BS, Aberizk K, Addington J, Bearden CE, Cadenhead KS, Cannon TD, Carrión RE, Compton MT, Cornblatt BA, Druss BG, Mathalon DH, Perkins DO, Tsuang MT, Woods SW, Walker EF. The Association Between Neighborhood Poverty and Hippocampal Volume Among Individuals at Clinical High-Risk for Psychosis: The Moderating Role of Social Engagement. Schizophr Bull 2022; 48:1032-1042. [PMID: 35689540 PMCID: PMC9434451 DOI: 10.1093/schbul/sbac055] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Reductions in hippocampal volume (HV) have been associated with both prolonged exposure to stress and psychotic illness. This study sought to determine whether higher levels of neighborhood poverty would be associated with reduced HV among individuals at clinical high-risk for psychosis (CHR-P), and whether social engagement would moderate this association. This cross-sectional study included a sample of participants (N = 174, age-range = 12-33 years, 35.1% female) recruited for the second phase of the North American Prodrome Longitudinal Study. Generalized linear mixed models tested the association between neighborhood poverty and bilateral HV, as well as the moderating role of social engagement on this association. Higher levels of neighborhood poverty were associated with reduced left (β = -0.180, P = .016) and right HV (β = -0.185, P = .016). Social engagement significantly moderated the relation between neighborhood poverty and bilateral HV. In participants with lower levels of social engagement (n = 77), neighborhood poverty was associated with reduced left (β = -0.266, P = .006) and right HV (β = -0.316, P = .002). Among participants with higher levels of social engagement (n = 97), neighborhood poverty was not significantly associated with left (β = -0.010, P = .932) or right HV (β = 0.087, P = .473). In this study, social engagement moderated the inverse relation between neighborhood poverty and HV. These findings demonstrate the importance of including broader environmental influences and indices of social engagement when conceptualizing adversity and potential interventions for individuals at CHR-P.
Collapse
Affiliation(s)
- Benson S Ku
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GAUSA
| | | | - Jean Addington
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Carrie E Bearden
- Departments of Psychiatry and Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, USA
| | | | - Tyrone D Cannon
- Department of Psychiatry, Yale University, New Haven, CTUSA
- Department of Psychology, Yale University, New Haven, CTUSA
| | - Ricardo E Carrión
- Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Michael T Compton
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, and New York State Psychiatric Institute, New York, NY, USA
| | - Barbara A Cornblatt
- Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Benjamin G Druss
- Department of Health Policy and Management, Rollins School of Public Health, Emory University, Atlanta, GAUSA
| | - Daniel H Mathalon
- Department of Psychiatry, University of California, and San Francisco Veterans Affairs Medical Center, San Francisco, CAUSA
| | - Diana O Perkins
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Ming T Tsuang
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Scott W Woods
- Department of Psychiatry, Yale University, New Haven, CTUSA
| | | |
Collapse
|
10
|
Opfer R, Krüger J, Spies L, Kitzler HH, Schippling S, Buchert R. Single-subject analysis of regional brain volumetric measures can be strongly influenced by the method for head size adjustment. Neuroradiology 2022; 64:2001-2009. [PMID: 35462574 PMCID: PMC9474386 DOI: 10.1007/s00234-022-02961-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/14/2022] [Indexed: 12/03/2022]
Abstract
Purpose
Total intracranial volume (TIV) is often a nuisance covariate in MRI-based brain volumetry. This study compared two TIV adjustment methods with respect to their impact on z-scores in single subject analyses of regional brain volume estimates. Methods Brain parenchyma, hippocampus, thalamus, and TIV were segmented in a normal database comprising 5059 T1w images. Regional volume estimates were adjusted for TIV using the residual method or the proportion method. Age was taken into account by regression with both methods. TIV- and age-adjusted regional volumes were transformed to z-scores and then compared between the two adjustment methods. Their impact on the detection of thalamus atrophy was tested in 127 patients with multiple sclerosis. Results The residual method removed the association with TIV in all regions. The proportion method resulted in a switch of the direction without relevant change of the strength of the association. The reduction of physiological between-subject variability was larger with the residual method than with the proportion method. The difference between z-scores obtained with the residual method versus the proportion method was strongly correlated with TIV. It was larger than one z-score point in 5% of the subjects. The area under the ROC curve of the TIV- and age-adjusted thalamus volume for identification of multiple sclerosis patients was larger with the residual method than with the proportion method (0.84 versus 0.79). Conclusion The residual method should be preferred for TIV and age adjustments of T1w-MRI-based brain volume estimates in single subject analyses. Supplementary Information The online version contains supplementary material available at 10.1007/s00234-022-02961-6.
Collapse
Affiliation(s)
| | | | | | - Hagen H Kitzler
- Institute of Diagnostic and Interventional Neuroradiology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Sven Schippling
- Center for Neuroscience Zurich (ZNZ), Federal Institute of Technology (ETH), Multimodal Imaging in Neuroimmunological Diseases (MINDS), University of Zurich, Zurich, Switzerland
| | - Ralph Buchert
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
11
|
Matuz-Budai T, Lábadi B, Kohn E, Matuz A, Zsidó AN, Inhóf O, Kállai J, Szolcsányi T, Perlaki G, Orsi G, Nagy SA, Janszky J, Darnai G. Individual differences in the experience of body ownership are related to cortical thickness. Sci Rep 2022; 12:808. [PMID: 35039541 PMCID: PMC8764083 DOI: 10.1038/s41598-021-04720-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/21/2021] [Indexed: 11/09/2022] Open
Abstract
The widely used rubber hand illusion (RHI) paradigm provides insight into how the brain manages conflicting multisensory information regarding bodily self-consciousness. Previous functional neuroimaging studies have revealed that the feeling of body ownership is linked to activity in the premotor cortex, the intraparietal areas, the occipitotemporal cortex, and the insula. The current study investigated whether the individual differences in the sensation of body ownership over a rubber hand, as measured by subjective report and the proprioceptive drift, are associated with structural brain differences in terms of cortical thickness in 67 healthy young adults. We found that individual differences measured by the subjective report of body ownership are associated with the cortical thickness in the somatosensory regions, the temporo-parietal junction, the intraparietal areas, and the occipitotemporal cortex, while the proprioceptive drift is linked to the premotor area and the anterior cingulate cortex. These results are in line with functional neuroimaging studies indicating that these areas are indeed involved in processes such as cognitive-affective perspective taking, visual processing of the body, and the experience of body ownership and bodily awareness. Consequently, these individual differences in the sensation of body ownership are pronounced in both functional and structural differences.
Collapse
Affiliation(s)
- Timea Matuz-Budai
- Institute of Psychology, University of Pécs, 6 Ifjúság str., Pécs, 7624, Hungary.
| | - Beatrix Lábadi
- Institute of Psychology, University of Pécs, 6 Ifjúság str., Pécs, 7624, Hungary
| | - Eszter Kohn
- Institute of Philosophy and Art Theory, University of Pécs, Pécs, Hungary
| | - András Matuz
- Department of Behavioural Sciences, Medical School, University of Pécs, Pécs, Hungary
| | - András Norbert Zsidó
- Institute of Psychology, University of Pécs, 6 Ifjúság str., Pécs, 7624, Hungary
| | - Orsolya Inhóf
- Institute of Psychology, University of Pécs, 6 Ifjúság str., Pécs, 7624, Hungary
| | - János Kállai
- Department of Behavioural Sciences, Medical School, University of Pécs, Pécs, Hungary
| | - Tibor Szolcsányi
- Department of Behavioural Sciences, Medical School, University of Pécs, Pécs, Hungary
| | - Gábor Perlaki
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
- MTA-PTE, Clinical Neuroscience MR Research Group, Pécs, Hungary
- Pécs Diagnostic Centre, Pécs, Hungary
| | - Gergely Orsi
- MTA-PTE, Clinical Neuroscience MR Research Group, Pécs, Hungary
- Pécs Diagnostic Centre, Pécs, Hungary
- Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
| | - Szilvia Anett Nagy
- MTA-PTE, Clinical Neuroscience MR Research Group, Pécs, Hungary
- Pécs Diagnostic Centre, Pécs, Hungary
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - József Janszky
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
- MTA-PTE, Clinical Neuroscience MR Research Group, Pécs, Hungary
| | - Gergely Darnai
- Department of Behavioural Sciences, Medical School, University of Pécs, Pécs, Hungary
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
- MTA-PTE, Clinical Neuroscience MR Research Group, Pécs, Hungary
| |
Collapse
|
12
|
Liu Y, Huo Y, Dewey B, Wei Y, Lyu I, Landman BA. Generalizing deep learning brain segmentation for skull removal and intracranial measurements. Magn Reson Imaging 2022; 88:44-52. [PMID: 34999162 DOI: 10.1016/j.mri.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
Abstract
Total intracranial volume (TICV) and posterior fossa volume (PFV) are essential covariates for brain volumetric analyses with structural magnetic resonance imaging (MRI). Detailed whole brain segmentation provides a non-invasive way to measure brain regions. Furthermore, increasing neuroimaging data are distributed in a skull-stripped manner for privacy protection. Therefore, generalizing deep learning brain segmentation for skull removal and intracranial measurements is an appealing task. However, data availability is challenging due to a limited set of manually traced atlases with whole brain and TICV/PFV labels. In this paper, we employ U-Net tiles to achieve automatic TICV estimation and whole brain segmentation simultaneously on brains w/and w/o the skull. To overcome the scarcity of manually traced whole brain volumes, a transfer learning method is introduced to estimate additional TICV and PFV labels during whole brain segmentation in T1-weighted MRI. Specifically, U-Net tiles are first pre-trained using large-scale BrainCOLOR atlases without TICV and PFV labels, which are created by multi-atlas segmentation. Then the pre-trained models are refined by training the additional TICV and PFV labels using limited BrainCOLOR atlases. We also extend our method to handle skull-stripped brain MR images. From the results, our method provides promising whole brain segmentation and volume estimation results for both brains w/and w/o skull in terms of mean Dice similarity coefficients and mean surface distance and absolute volume similarity. This method has been made available in open source (https://github.com/MASILab/SLANTbrainSeg_skullstripped).
Collapse
Affiliation(s)
- Yue Liu
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China; Electrical Engineering and Computer Science, Vanderbilt University, TN, USA.
| | - Yuankai Huo
- Electrical Engineering and Computer Science, Vanderbilt University, TN, USA
| | - Blake Dewey
- Electrical and Computer Engineering, Johns Hopkins University, Baltimore, USA
| | - Ying Wei
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Ilwoo Lyu
- Electrical Engineering and Computer Science, Vanderbilt University, TN, USA; Department of Computer Science and Engineering, UNIST, Ulsan 44919, South Korea
| | - Bennett A Landman
- Electrical Engineering and Computer Science, Vanderbilt University, TN, USA
| |
Collapse
|
13
|
Bergamino M, Keeling EG, Baxter LC, Sisco NJ, Walsh RR, Stokes AM. Sex Differences in Alzheimer's Disease Revealed by Free-Water Diffusion Tensor Imaging and Voxel-Based Morphometry. J Alzheimers Dis 2022; 85:395-414. [PMID: 34842185 PMCID: PMC9015709 DOI: 10.3233/jad-210406] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Imaging biomarkers are increasingly used in Alzheimer's disease (AD), and the identification of sex differences using neuroimaging may provide insight into disease heterogeneity, progression, and therapeutic targets. OBJECTIVE The purpose of this study was to investigate differences in grey matter (GM) volume and white matter (WM) microstructural disorganization between males and females with AD using voxel-based morphometry (VBM) and free-water-corrected diffusion tensor imaging (FW-DTI). METHODS Data were downloaded from the OASIS-3 database, including 158 healthy control (HC; 86 females) and 46 mild AD subjects (24 females). VBM and FW-DTI metrics (fractional anisotropy (FA), axial and radial diffusivities (AxD and RD, respectively), and FW index) were compared using effect size for the main effects of group, sex, and their interaction. RESULTS Significant group and sex differences were observed, with no significant interaction. Post-hoc comparisons showed that AD is associated with reduced GM volume, reduced FW-FA, and higher FW-RD/FW-index, consistent with neurodegeneration. Females in both groups exhibited higher GM volume than males, while FW-DTI metrics showed sex differences only in the AD group. Lower FW, lower FW-FA and higher FW-RD were observed in females relative to males in the AD group. CONCLUSION The combination of VBM and DTI may reveal complementary sex-specific changes in GM and WM associated with AD and aging. Sex differences in GM volume were observed for both groups, while FW-DTI metrics only showed significant sex differences in the AD group, suggesting that WM tract disorganization may play a differential role in AD pathophysiology between females and males.
Collapse
Affiliation(s)
| | - Elizabeth G. Keeling
- Neuroimaging Research, Barrow Neurological Institute,School of Life Sciences, Arizona State University
| | | | | | - Ryan R. Walsh
- Muhammad Ali Parkinson Center at Barrow Neurological
Institute
| | | |
Collapse
|
14
|
Sambuco N. Sex differences in the aging brain? A voxel-based morphometry analysis of the hippocampus and the amygdala. Neuroreport 2021; 32:1320-1324. [PMID: 34554939 DOI: 10.1097/wnr.0000000000001728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Volumetric reductions in the hippocampus and the amygdala are considered a hallmark for many psychiatric and neurodegenerative disorders. Because brain atrophy is often observed in disorders that have a higher prevalence in females than males, it has been proposed that sex differences in the aging brain represent a vulnerability factor for developing more severe psychiatric conditions. METHODS Sexual dimorphism was assessed in the amygdala volume and hippocampal volume in a large sample (N = 554) of healthy individuals ranging from 20 to 79 years old, using structural brain data available from a public dataset. RESULTS In both the hippocampus and the amygdala, a quadratic association was found between age and brain volume. Using uncorrected data for head size [total intracranial volume (TIV)], males clearly demonstrated larger amygdala and hippocampal volume across all ages, and an interaction between age and sex in the hippocampus supported the hypothesis of accelerated atrophy in the hippocampus in later life (60-79 years old). However, when volumetric data adjusted for TIV were used, sex differences were not observed in the hippocampus nor the amygdala. CONCLUSION These findings support the extensive series of studies suggesting that sex differences in brain volume are likely related to the confounding effect of head size. While continued effort is allocated to identify sex-related biomarkers, increasing evidence suggests that sexual dimorphism in the hippocampus or the amygdala does not appear to be the primary candidates for precision medicine to identify sex-related biomarkers that index potential vulnerabilities.
Collapse
Affiliation(s)
- Nicola Sambuco
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
15
|
Riederer F, Seiger R, Lanzenberger R, Pataraia E, Kasprian G, Michels L, Kollias S, Czech T, Hainfellner JA, Beiersdorf J, Baumgartner C. Automated volumetry of hippocampal subfields in temporal lobe epilepsy. Epilepsy Res 2021; 175:106692. [PMID: 34175792 DOI: 10.1016/j.eplepsyres.2021.106692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/21/2021] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Hippocampal sclerosis is the most frequent pathological substrate in drug resistant temporal lobe epilepsy (TLE). Recently 4 types of hippocampal sclerosis (HS) have been defined in a task force by the International League Against Epilepsy (ILAE), based on patterns of cell loss in specific hippocampal subfields. Type 1 HS is most frequent and has the most favorable outcome after epilepsy surgery. We hypothesized that volume loss in specific hippocampal subfields determined by automated volumetry of high resolution MRI would correspond to cell loss in histological reports. MATERIAL AND METHODS In a group of well characterized patients with drug resistant TLE (N = 26 patients, 14 with right-sided focus, 12 with left-sided focus) volumes of the right and left hippocampus and the hippocampal subfields CA1, CA2 + 3, CA4 and dentate gyrus (DG) were estimated automatically using FreeSurfer version 6.0 from high-resolution cerebral MRI and compared to a large group of healthy controls (N = 121). HS subtype classification was attempted based on histological reports. RESULTS Volumes of the whole hippocampus and all investigated hippocampal subfields (CA1, CA2 + 3, CA4 and DG) were significantly lower on the ipsilateral compared the contralateral side (p < 0.001) and compared to the healthy controls (p < 0.001). Conversely, whole hippocampal and hippocampal subfield volumes were not significantly different from healthy control values on the contralateral side. In 12 of 20 patients the pattern of hippocampal volume loss in specific subfields was in accordance with HS types from histology. The highest overlap between automated MRI and histology was achieved for type 1 HS (in 10 of 12 cases). CONCLUSION The automated volumetry of hippocampal subfields, based on high resolution MRI, may have the potential to predict the pattern of cell loss in hippocampal sclerosis before operation.
Collapse
Affiliation(s)
- Franz Riederer
- Department of Neurology, Clinic Hietzing & Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Vienna, Austria; Faculty of Medicine, University of Zurich, Zurich, Switzerland.
| | - René Seiger
- Neuroimaging Labs, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Neuroimaging Labs, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | | | - Gregor Kasprian
- Department of Radiology and Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Lars Michels
- Clinic of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
| | - Spyros Kollias
- Clinic of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
| | - Thomas Czech
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Johannes A Hainfellner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Austria
| | - Johannes Beiersdorf
- Department of Neurology, Clinic Hietzing & Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Vienna, Austria
| | - Christoph Baumgartner
- Department of Neurology, Clinic Hietzing & Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Vienna, Austria; Medical Faculty, Sigmund Freud Private University, Vienna, Austria
| |
Collapse
|
16
|
Structural volume and cortical thickness differences between males and females in cognitively normal, cognitively impaired and Alzheimer's dementia population. Neurobiol Aging 2021; 106:1-11. [PMID: 34216846 DOI: 10.1016/j.neurobiolaging.2021.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 11/23/2022]
Abstract
We investigated differences due to sex in brain structural volume and cortical thickness in older cognitively normal (N=742), cognitively impaired (MCI; N=540) and Alzheimer's Dementia (AD; N=402) individuals from the ADNI and AIBL datasets (861 Males and 823 Females). General linear models were used to control the effect of relevant covariates including age, intracranial volume, magnetic resonance imaging (MRI) scanner field strength and scanner types. Significant volumetric differences due to sex were observed within different cortical and subcortical regions of the cognitively normal group. The number of significantly different regions was reduced in the MCI group, and no region remained different in the AD group. Cortical thickness was overall thinner in males than females in the cognitively normal group, and likewise, the differences due to sex were reduced in the MCI and AD groups. These findings were sustained after including cerebrospinal fluid (CSF) Tau and phosphorylated tau (pTau) as additional covariates.
Collapse
|
17
|
Canada KL, Hancock GR, Riggins T. Modeling longitudinal changes in hippocampal subfields and relations with memory from early- to mid-childhood. Dev Cogn Neurosci 2021; 48:100947. [PMID: 33774332 PMCID: PMC8039550 DOI: 10.1016/j.dcn.2021.100947] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 01/25/2023] Open
Abstract
The hippocampus has been suggested to show protracted postnatal developmental growth across childhood. Most previous studies during this developmental period have been cross-sectional in nature and have focused on age-related differences in either hippocampal subregions or subfields, but not both, potentially missing localized changes. This study capitalized on a latent structural equation modeling approach to examine the longitudinal development of hippocampal subfields (cornu ammonis (CA) 2-4/dentate gyrus (DG), CA1, subiculum) in both the head and the body of the hippocampus, separately, in 165 typically developing 4- to 8-year-old children. Our findings document differential development of subfields within hippocampal head and body. Specifically, within hippocampal head, CA1 volume increased between 4-5 years and within hippocampal body, CA2-4/DG and subiculum volume increased between 5-6 years. Additionally, changes in CA1 volume in the head and changes in subiculum in the body between 4-5 years related to improvements in memory between 4-5 years. These findings demonstrate the protracted development of subfields in vivo during early- to mid-childhood, illustrate the importance of considering subfields separately in the head and body of the hippocampus, document co-occurring development of brain and behavior, and highlight the strength of longitudinal data and latent modeling when examining brain development.
Collapse
Affiliation(s)
- Kelsey L Canada
- Department of Psychology, University of Maryland, College Park, United States.
| | - Gregory R Hancock
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, United States
| | - Tracy Riggins
- Department of Psychology, University of Maryland, College Park, United States
| |
Collapse
|
18
|
Hubachek S, Botdorf M, Riggins T, Leong HC, Klein DN, Dougherty LR. Hippocampal subregion volume in high-risk offspring is associated with increases in depressive symptoms across the transition to adolescence. J Affect Disord 2021; 281:358-366. [PMID: 33348179 PMCID: PMC7856102 DOI: 10.1016/j.jad.2020.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/18/2020] [Accepted: 12/05/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND The hippocampus has been implicated in the pathophysiology of depression. This study examined whether youth hippocampal subregion volumes were differentially associated with maternal depression history and youth's depressive symptoms across the transition to adolescence. METHODS 74 preadolescent offspring (Mage=10.74+/-0.84 years) of mothers with (n = 33) and without a lifetime depression history (n = 41) completed a structural brain scan. Youth depressive symptoms were assessed with clinical interviews and mother- and youth-reports prior to the neuroimaging assessment at age 9 (Mage=9.08+/-0.29 years), at the neuroimaging assessment, and in early adolescence (Mage=12.56+/-0.40 years). RESULTS Maternal depression was associated with preadolescent offspring's reduced bilateral hippocampal head volumes and increased left hippocampal body volume. Reduced bilateral head volumes were associated with offspring's increased concurrent depressive symptoms. Furthermore, reduced right hippocampal head volume mediated associations between maternal depression and increases in offspring depressive symptoms from age 9 to age 12. LIMITATIONS This study included a modest-sized sample that was oversampled for early temperamental characteristics, one neuroimaging assessment, and no correction for multiple comparisons. CONCLUSIONS Findings implicate reductions in hippocampal head volume in the intergenerational transmission of risk from parents to offspring.
Collapse
|
19
|
Lowther MK, Tunnell JP, Palka JM, King DR, Salako DC, Macris DG, Italiya JB, Grodin JL, North CS, Brown ES. Relationship between inflammatory biomarker galectin-3 and hippocampal volume in a community study. J Neuroimmunol 2020; 348:577386. [PMID: 32927397 PMCID: PMC7673815 DOI: 10.1016/j.jneuroim.2020.577386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/01/2020] [Accepted: 09/05/2020] [Indexed: 10/23/2022]
Abstract
Galectin-3 (Gal3) is expressed by microglia and performs functions including adhesion; activation of macrophages and fibroblasts, and mediates inflammatory responses in the hippocampus. The present study examined whether serum Gal3 levels predict hippocampal volume in a multi-ethnic, community-based sample. Results of a multiple linear regression (controlling for depression, serum creatinine level, age, BMI, total brain volume, MoCA score, sex, ethnicity, smoking status, history of diabetes) showed that Gal3 levels significantly predicted left (p = .027) but not right hippocampal volume. The relationship was stronger in men than women. Findings suggest this novel inflammatory biomarker is associated with human hippocampal volume.
Collapse
Affiliation(s)
- Megan K Lowther
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, MC 8849, Dallas, TX 75390-8849, United States of America
| | - Jarrod P Tunnell
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, MC 8849, Dallas, TX 75390-8849, United States of America
| | - Jayme M Palka
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, MC 8849, Dallas, TX 75390-8849, United States of America
| | - Darlene R King
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, MC 8849, Dallas, TX 75390-8849, United States of America
| | - Damilola C Salako
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, MC 8849, Dallas, TX 75390-8849, United States of America
| | - Dimitri G Macris
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, MC 8849, Dallas, TX 75390-8849, United States of America
| | - Jay B Italiya
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, MC 8849, Dallas, TX 75390-8849, United States of America
| | - Justin L Grodin
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8830, United States of America
| | - Carol S North
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, MC 8849, Dallas, TX 75390-8849, United States of America; The Altshuler Center for Education & Research, Metrocare Services, 1250 Mockingbird Lane, Suite 330, Dallas, TX 75247, United States of America
| | - E Sherwood Brown
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, MC 8849, Dallas, TX 75390-8849, United States of America.
| |
Collapse
|
20
|
Adeli E, Zhao Q, Zahr NM, Goldstone A, Pfefferbaum A, Sullivan EV, Pohl KM. Deep learning identifies morphological determinants of sex differences in the pre-adolescent brain. Neuroimage 2020; 223:117293. [PMID: 32841716 PMCID: PMC7780846 DOI: 10.1016/j.neuroimage.2020.117293] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/06/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
The application of data-driven deep learning to identify sex differences in developing brain structures of pre-adolescents has heretofore not been accomplished. Here, the approach identifies sex differences by analyzing the minimally processed MRIs of the first 8144 participants (age 9 and 10 years) recruited by the Adolescent Brain Cognitive Development (ABCD) study. The identified pattern accounted for confounding factors (i.e., head size, age, puberty development, socioeconomic status) and comprised cerebellar (corpus medullare, lobules III, IV/V, and VI) and subcortical (pallidum, amygdala, hippocampus, parahippocampus, insula, putamen) structures. While these have been individually linked to expressing sex differences, a novel discovery was that their grouping accurately predicted the sex in individual pre-adolescents. Another novelty was relating differences specific to the cerebellum to pubertal development. Finally, we found that reducing the pattern to a single score not only accurately predicted sex but also correlated with cognitive behavior linked to working memory. The predictive power of this score and the constellation of identified brain structures provide evidence for sex differences in pre-adolescent neurodevelopment and may augment understanding of sex-specific vulnerability or resilience to psychiatric disorders and presage sex-linked learning disabilities.
Collapse
Affiliation(s)
- Ehsan Adeli
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Qingyu Zhao
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Natalie M Zahr
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Center for Biomedical Sciences, SRI International, Menlo Park, CA 94025, USA
| | - Aimee Goldstone
- Center for Biomedical Sciences, SRI International, Menlo Park, CA 94025, USA
| | - Adolf Pfefferbaum
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Center for Biomedical Sciences, SRI International, Menlo Park, CA 94025, USA
| | - Edith V Sullivan
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Kilian M Pohl
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Center for Biomedical Sciences, SRI International, Menlo Park, CA 94025, USA.
| |
Collapse
|
21
|
Torromino G, Maggi A, De Leonibus E. Estrogen-dependent hippocampal wiring as a risk factor for age-related dementia in women. Prog Neurobiol 2020; 197:101895. [PMID: 32781107 DOI: 10.1016/j.pneurobio.2020.101895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/22/2020] [Accepted: 08/03/2020] [Indexed: 02/08/2023]
Abstract
Women are more prone than men to develop age-related dementia, such as Alzheimer's disease (AD). This has been linked to the marked decrease in circulating estrogens during menopause. This review proposes to change this perspective and consider women's vulnerability to developing AD as a consequence of sex differences in the neurobiology of memory, focusing on the hippocampus. The hippocampus of cognitively impaired subjects tends to shrink with age; however, in many cases, this can be prevented by exercise or cognitive training, suggesting that if you do not use the hippocampus you lose it. We will review the developmental trajectory of sex steroids-regulated differences on the hippocampus, proposing that the overall shaping action of sex-steroids results in a lower usage of the hippocampus in females, which in turn makes them more vulnerable to the effects of ageing, the "network fragility hypothesis". To explain why women rely less on hippocampus-dependent strategies, we propose a "computational hypothesis" that is based on experimental evidence suggesting that the direct effects of estrogens on hippocampal synaptic and structural plasticity during the estrous-cycle confers instability to the memory-dependent hippocampal network. Finally, we propose to counteract AD with training and/or treatments, such as orienteering, which specifically favour the use of the hippocampus.
Collapse
Affiliation(s)
- Giulia Torromino
- Telethon Institute of Genetics and Medicine (TIGEM), Telethon Foundation, Pozzuoli, Naples, Italy; Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Monterotondo, Rome, Italy
| | - Adriana Maggi
- Center of Excellence on Neurodegenerative Diseases, University of Milan, Milan, Italy
| | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine (TIGEM), Telethon Foundation, Pozzuoli, Naples, Italy; Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Monterotondo, Rome, Italy.
| |
Collapse
|
22
|
Qi R, Luo Y, Zhang L, Weng Y, Surento W, Jahanshad N, Xu Q, Yin Y, Li L, Cao Z, Thompson PM, Lu GM. Social support modulates the association between PTSD diagnosis and medial frontal volume in Chinese adults who lost their only child. Neurobiol Stress 2020; 13:100227. [PMID: 32490056 PMCID: PMC7256056 DOI: 10.1016/j.ynstr.2020.100227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 04/03/2020] [Accepted: 05/02/2020] [Indexed: 11/30/2022] Open
Abstract
Losing an only child is a devastating life event that a parent can experience and may lead to post-traumatic stress disorder (PTSD). Social support could buffer against the negative influence of this trauma, but the neural mechanism underlying this alleviation effect remains poorly understood. In this study, voxel-based morphometry was conducted on brain MRI of 220 Han Chinese adults who had lost their only child. We performed multiple regression analysis to investigate the associations between social support scores – along with PTSD diagnosis, age, sex, body mass index (BMI) – and brain grey matter (GM) volumes in these bereaved parents. For all trauma-exposed adults, social support-by-diagnosis interaction was significantly associated with medial prefrontal volume (multiple comparisons corrected P ˂ 0.05), where positive correlation was found in adults with PTSD but not in those without PTSD. Besides, PTSD diagnosis was associated with decreased GM volume in medial and middle frontal gyri (P ˂ 0.001, uncorrected); older age was associated with widespread GM volume deficits; male sex was associated with lower GM volume in rolandic operculum, insular, postcentral gyrus (corrected P ˂ 0.05), and lower GM in thalamus but greater GM in parahippocampus (P ˂ 0.001, uncorrected); higher BMI was associated with GM deficits in occipital gyrus (corrected P ˂ 0.05) and precuneus (P ˂ 0.001, uncorrected). In conclusions, social support modulates the association between PTSD diagnosis and medial frontal volume, which may play an important role in the emotional disturbance in PTSD development in adults who lost their only child.
Collapse
Affiliation(s)
- Rongfeng Qi
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, CA, 90292, USA
| | - Yifeng Luo
- Department of Radiology, The Affiliated Yixing Hospital of Jiangsu University, Wuxi, 75 Tongzhenguan Road, 214200, Wuxi, China
| | - Li Zhang
- Mental Health Institute, The Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan, 410011, China
| | - Yifei Weng
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Wesley Surento
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, CA, 90292, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, CA, 90292, USA
| | - Qiang Xu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Yan Yin
- Hangzhou Seventh People's Hospital, Mental Health Center of Zhejiang University School of Medicine, 305 Tianmushan Road, Hangzhou, Zhejiang, 310013, China
| | - Lingjiang Li
- Mental Health Institute, The Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan, 410011, China
| | - Zhihong Cao
- Department of Radiology, The Affiliated Yixing Hospital of Jiangsu University, Wuxi, 75 Tongzhenguan Road, 214200, Wuxi, China
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, CA, 90292, USA
- Corresponding author.
| | - Guang Ming Lu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
- Corresponding author. Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Xuanwu District, Nanjing, Jiangsu Province, 210002, China.
| |
Collapse
|
23
|
Kijonka M, Borys D, Psiuk-Maksymowicz K, Gorczewski K, Wojcieszek P, Kossowski B, Marchewka A, Swierniak A, Sokol M, Bobek-Billewicz B. Whole Brain and Cranial Size Adjustments in Volumetric Brain Analyses of Sex- and Age-Related Trends. Front Neurosci 2020; 14:278. [PMID: 32317915 PMCID: PMC7147247 DOI: 10.3389/fnins.2020.00278] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/11/2020] [Indexed: 12/31/2022] Open
Abstract
Our goal was to determine the influence of sex, age and the head/brain size on the compartmental brain volumes in the radiologically verified healthy population (96 subjects; 54 women and 42 men) from the Upper Silesia region in Poland. The MRI examinations were done using 3T Philips Achieva with the same T1-weighted and T2-weighted protocols. The image segmentation procedures were performed with SPM (Statistical Parameter Mapping) and FSL-FIRST software. The volumes of 14 subcortical structures for the left and right hemispheres and 4 overall volumes were calculated. The General Linear Models (GLM) analysis was used with and without the Total Brain Volume (TBV) and Intracranial Volume (ICV) parameters as the covariates to study the regional vs. global brain atrophy. After the ICV/TBV adjustments, the majority of sex differences in the specific volumes of interest (VOIs) revealed to be linked to the difference in the head/brain size parameters. The analysis also confirmed the significant effect of the aging process on the brain loss. After the TBV adjustment, the age- and sex-related volumetric trends for the gray and white matter volumes were observed: the negative age dependence of the gray matter volume is more pronounced in the males, while in case of the white matter the positive age-related trend in the female group is weaker. The local losses of the left caudate nucleus and the right thalamus are more advanced than the global brain atrophy. Different head-size correction strategies are not interchangeable and may yield various volumetric results, but when used together, facilitate studies on the regional dependencies inherent to a healthy, but aging, brain.
Collapse
Affiliation(s)
- Marek Kijonka
- Department of Medical Physics, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Damian Borys
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland.,Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Krzysztof Psiuk-Maksymowicz
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland.,Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Kamil Gorczewski
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Piotr Wojcieszek
- Brachytherapy Department, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Bartosz Kossowski
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Artur Marchewka
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Andrzej Swierniak
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland.,Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Maria Sokol
- Department of Medical Physics, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Barbara Bobek-Billewicz
- Department of Radiology, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| |
Collapse
|
24
|
Hillerer KM, Slattery DA, Pletzer B. Neurobiological mechanisms underlying sex-related differences in stress-related disorders: Effects of neuroactive steroids on the hippocampus. Front Neuroendocrinol 2019; 55:100796. [PMID: 31580837 PMCID: PMC7115954 DOI: 10.1016/j.yfrne.2019.100796] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/19/2022]
Abstract
Men and women differ in their vulnerability to a variety of stress-related illnesses, but the underlying neurobiological mechanisms are not well understood. This is likely due to a comparative dearth of neurobiological studies that assess male and female rodents at the same time, while human neuroimaging studies often don't model sex as a variable of interest. These sex differences are often attributed to the actions of sex hormones, i.e. estrogens, progestogens and androgens. In this review, we summarize the results on sex hormone actions in the hippocampus and seek to bridge the gap between animal models and findings in humans. However, while effects of sex hormones on the hippocampus are largely consistent in animals and humans, methodological differences challenge the comparability of animal and human studies on stress effects. We summarise our current understanding of the neurobiological mechanisms that underlie sex-related differences in behavior and discuss implications for stress-related illnesses.
Collapse
Affiliation(s)
- Katharina M Hillerer
- Department of Obstetrics and Gynaecology, Salzburger Landeskrankenhaus (SALK), Paracelsus Medical University (PMU), Clinical Research Center Salzburg (CRCS), Salzburg, Austria.
| | - David A Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Belinda Pletzer
- Department of Psychology, University of Salzburg, Salzburg, Austria; Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| |
Collapse
|
25
|
Abstract
Alzheimer disease (AD) is characterized by wide heterogeneity in cognitive and behavioural syndromes, risk factors and pathophysiological mechanisms. Addressing this phenotypic variation will be crucial for the development of precise and effective therapeutics in AD. Sex-related differences in neural anatomy and function are starting to emerge, and sex might constitute an important factor for AD patient stratification and personalized treatment. Although the effects of sex on AD epidemiology are currently the subject of intense investigation, the notion of sex-specific clinicopathological AD phenotypes is largely unexplored. In this Review, we critically discuss the evidence for sex-related differences in AD symptomatology, progression, biomarkers, risk factor profiles and treatment. The cumulative evidence reviewed indicates sex-specific patterns of disease manifestation as well as sex differences in the rates of cognitive decline and brain atrophy, suggesting that sex is a crucial variable in disease heterogeneity. We discuss critical challenges and knowledge gaps in our current understanding. Elucidating sex differences in disease phenotypes will be instrumental in the development of a 'precision medicine' approach in AD, encompassing individual, multimodal, biomarker-driven and sex-sensitive strategies for prevention, detection, drug development and treatment.
Collapse
|
26
|
Palumbo L, Bosco P, Fantacci ME, Ferrari E, Oliva P, Spera G, Retico A. Evaluation of the intra- and inter-method agreement of brain MRI segmentation software packages: A comparison between SPM12 and FreeSurfer v6.0. Phys Med 2019; 64:261-272. [PMID: 31515029 DOI: 10.1016/j.ejmp.2019.07.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/12/2019] [Accepted: 07/19/2019] [Indexed: 11/19/2022] Open
Abstract
PURPOSE The lack of inter-method agreement can produce inconsistent results in neuroimaging studies. We evaluated the intra-method repeatability and the inter-method reproducibility of two widely-used automatic segmentation methods for brain MRI: the FreeSurfer (FS) and the Statistical Parametric Mapping (SPM) software packages. METHODS We segmented the gray matter (GM), the white matter (WM) and subcortical structures in test-retest MRI data of healthy volunteers from Kirby-21 and OASIS datasets. We used Pearson's correlation (r), Bland-Altman plot and Dice index to study intra-method repeatability and inter-method reproducibility. In order to test whether different processing methods affect the results of a neuroimaging-based group study, we carried out a statistical comparison between male and female volume measures. RESULTS A high correlation was found between test-retest volume measures for both SPM (r in the 0.98-0.99 range) and FS (r in the 0.95-0.99 range). A non-null bias between test-retest FS volumes was detected for GM and WM in the OASIS dataset. The inter-method reproducibility analysis measured volume correlation values in the 0.72-0.98 range and the overlap between the segmented structures assessed by the Dice index was in the 0.76-0.83 range. SPM systematically provided significantly greater GM volumes and lower WM and subcortical volumes with respect to FS. In the male vs. female brain volume comparisons, inconsistencies arose for the OASIS dataset, where the gender-related differences appear subtler with respect to the Kirby dataset. CONCLUSIONS The inter-method reproducibility should be evaluated before interpreting the results of neuroimaging studies.
Collapse
Affiliation(s)
- L Palumbo
- National Institute for Nuclear Physics (INFN), Pisa Division, Pisa, Italy.
| | - P Bosco
- National Institute for Nuclear Physics (INFN), Pisa Division, Pisa, Italy
| | - M E Fantacci
- University of Pisa, Physics Department, Pisa, Italy
| | - E Ferrari
- National Institute for Nuclear Physics (INFN), Pisa Division, Pisa, Italy; Scuola Normale Superiore, Pisa, Italy
| | - P Oliva
- University of Sassari and INFN Cagliari Division, Italy
| | - G Spera
- National Institute for Nuclear Physics (INFN), Pisa Division, Pisa, Italy
| | - A Retico
- National Institute for Nuclear Physics (INFN), Pisa Division, Pisa, Italy
| |
Collapse
|
27
|
Palomero-Gallagher N, Hoffstaedter F, Mohlberg H, Eickhoff SB, Amunts K, Zilles K. Human Pregenual Anterior Cingulate Cortex: Structural, Functional, and Connectional Heterogeneity. Cereb Cortex 2019; 29:2552-2574. [PMID: 29850806 PMCID: PMC6519696 DOI: 10.1093/cercor/bhy124] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 12/21/2022] Open
Abstract
The human pregenual anterior cingulate cortex (pACC) encompasses 7 distinct cyto- and receptorarchitectonic areas. We lack a detailed understanding of the functions in which they are involved, and stereotaxic maps are not available. We present an integrated structural/functional map of pACC based on probabilistic cytoarchitectonic mapping and meta-analytic connectivity modeling and quantitative functional decoding. Due to the restricted spatial resolution of functional imaging data relative to the microstructural parcellation, areas p24a of the callosal sulcus and p24b on the surface of the cingulate gyrus were merged into a "gyral component" (p24ab) of area p24, and areas pv24c, pd24cv, and pd24cd, located within the cingulate sulcus were merged into a "sulcal component" (p24c) for meta-analytic analysis. Area p24ab was specifically associated with interoception, p24c with the inhibition of action, and p32, which was also activated by emotion induction tasks pertaining negatively valenced stimuli, with the ability to experience empathy. Thus, area p32 could be classified as cingulate association cortex playing a crucial role in the cognitive regulation of emotion. By this spectrum of functions, pACC is a structurally and functionally heterogeneous region, clearly differing from other parts of the anterior and middle cingulate cortex.
Collapse
Affiliation(s)
- Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, 52074 Aachen, Germany
| | - Felix Hoffstaedter
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf 40225, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, 52425 Jülich, Germany
| | - Hartmut Mohlberg
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf 40225, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, 52425 Jülich, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany
- C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225 Düsseldorf, Germany
- JARA-BRAIN, Jülich-Aachen Research Alliance, 52425 Jülich, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, 52074 Aachen, Germany
- JARA-BRAIN, Jülich-Aachen Research Alliance, 52425 Jülich, Germany
| |
Collapse
|
28
|
Ma D, Popuri K, Bhalla M, Sangha O, Lu D, Cao J, Jacova C, Wang L, Beg MF. Quantitative assessment of field strength, total intracranial volume, sex, and age effects on the goodness of harmonization for volumetric analysis on the ADNI database. Hum Brain Mapp 2019; 40:1507-1527. [PMID: 30431208 PMCID: PMC6449147 DOI: 10.1002/hbm.24463] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 12/29/2022] Open
Abstract
When analyzing large multicenter databases, the effects of multiple confounding covariates increase the variability in the data and may reduce the ability to detect changes due to the actual effect of interest, for example, changes due to disease. Efficient ways to evaluate the effect of covariates toward the data harmonization are therefore important. In this article, we showcase techniques to assess the "goodness of harmonization" of covariates. We analyze 7,656 MR images in the multisite, multiscanner Alzheimer's Disease Neuroimaging Initiative (ADNI) database. We present a comparison of three methods for estimating total intracranial volume to assess their robustness and correct the brain structure volumes using the residual method and the proportional (normalization by division) method. We then evaluated the distribution of brain structure volumes over the entire ADNI database before and after accounting for multiple covariates such as total intracranial volume, scanner field strength, sex, and age using two techniques: (a) Zscapes, a panoramic visualization technique to analyze the entire database and (b) empirical cumulative distributions functions. The results from this study highlight the importance of assessing the goodness of data harmonization as a necessary preprocessing step when pooling large data set with multiple covariates, prior to further statistical data analysis.
Collapse
Affiliation(s)
- Da Ma
- School of Engineering ScienceSimon Fraser UniversityBurnabyBritish ColumbiaCanada
| | - Karteek Popuri
- School of Engineering ScienceSimon Fraser UniversityBurnabyBritish ColumbiaCanada
| | - Mahadev Bhalla
- School of Engineering ScienceSimon Fraser UniversityBurnabyBritish ColumbiaCanada
- Faculty of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Oshin Sangha
- School of Engineering ScienceSimon Fraser UniversityBurnabyBritish ColumbiaCanada
| | - Donghuan Lu
- School of Engineering ScienceSimon Fraser UniversityBurnabyBritish ColumbiaCanada
| | - Jiguo Cao
- Department of Statistics and Actuarial ScienceSimon Fraser UniversityBurnabyBritish ColumbiaCanada
| | - Claudia Jacova
- Department of Medicine, Division of NeurologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Lei Wang
- Feinberg School of Medicine, Northwestern UniversityChicagoIllinois
| | - Mirza Faisal Beg
- School of Engineering ScienceSimon Fraser UniversityBurnabyBritish ColumbiaCanada
| | | |
Collapse
|
29
|
Zsidó AN, Darnai G, Inhóf O, Perlaki G, Orsi G, Nagy SA, Lábadi B, Lénárd K, Kovács N, Dóczi T, Janszky J. Differentiation between young adult Internet addicts, smokers, and healthy controls by the interaction between impulsivity and temporal lobe thickness. J Behav Addict 2019; 8:35-47. [PMID: 30739462 PMCID: PMC7044605 DOI: 10.1556/2006.8.2019.03] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND AIMS Internet addiction is a non-substance-related addiction disorder with progressively growing prevalence. Internet addiction, like substance-related addictions, has been linked with high impulsivity, low inhibitory control, and poor decision-making abilities. Cortical thickness measurements and trait impulsivity have been shown to have a distinct relationship in addicts compared to healthy controls. Thus, we test whether the cortical correlates of trait impulsivity are different in Internet addicts and healthy controls, using an impulsive control group (smokers). METHODS Thirty Internet addicts (15 females) and 60 age- and gender-matched controls (30 smokers, all young adults aged 19-28 years) were scanned using a 3T MRI scanner and completed the Barratt Impulsiveness Scale. RESULTS Internet addicts had a thinner left superior temporal cortex than controls. Impulsivity had a significant main effect on the left pars orbitalis and bilateral insula, regardless of group membership. We identified divergent relationships between trait impulsivity and thicknesses of the bilateral middle temporal, right superior temporal, left inferior temporal, and left transverse temporal cortices between Internet addicts and healthy controls. Further analysis with smokers revealed that the left middle temporal and left transverse temporal cortical thickness change might be exclusive to Internet addiction. DISCUSSION The effects of impulsivity, combined with a long-term exposure to some specific substance or stimuli, might result in different natures of relationships between impulsivity and brain structure when compared to healthy controls. CONCLUSION These results may indicate that Internet addiction is similar to substance-related addictions, such that inefficient self-control could result in maladaptive behavior and inability to resist Internet use.
Collapse
Affiliation(s)
- András N. Zsidó
- Institute of Psychology, University of Pécs, Pécs, Hungary,Corresponding author: Andras N. Zsidó; Institute of Psychology, University of Pécs, 6 Ifjusag Street, Pécs, Baranya H 7624, Hungary; Phone/Fax: +36 72 501 516; E-mail:
| | - Gergely Darnai
- Institute of Psychology, University of Pécs, Pécs, Hungary,Department of Neurology, Medical School, University of Pécs, Pécs, Hungary,MTA-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary
| | - Orsolya Inhóf
- Institute of Psychology, University of Pécs, Pécs, Hungary
| | - Gábor Perlaki
- MTA-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary,Pécs Diagnostic Centre, Pécs, Hungary,Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
| | - Gergely Orsi
- MTA-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary,Pécs Diagnostic Centre, Pécs, Hungary,Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
| | - Szilvia Anett Nagy
- MTA-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary,Pécs Diagnostic Centre, Pécs, Hungary,Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary,MTA-PTE Neurobiology of Stress Research Group, Szentágothai Research Center, Pécs, Hungary
| | - Beatrix Lábadi
- Institute of Psychology, University of Pécs, Pécs, Hungary
| | - Kata Lénárd
- Institute of Psychology, University of Pécs, Pécs, Hungary
| | - Norbert Kovács
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary,MTA-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary
| | - Tamás Dóczi
- MTA-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary,Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
| | - József Janszky
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary,MTA-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary
| |
Collapse
|
30
|
Inhóf O, Zsidó AN, Perlaki G, Orsi G, Lábadi B, Kovács N, Szente A, Dóczi T, Janszky J, Darnai G. Internet addiction associated with right pars opercularis in females. J Behav Addict 2019; 8:162-168. [PMID: 30663329 PMCID: PMC7044598 DOI: 10.1556/2006.7.2018.135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/15/2018] [Accepted: 11/24/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND AIMS Structural differences in higher-order brain areas are common features of behavioral addictions, including Internet addiction (IA) as well. Taking into consideration the limited number of studies and methods used in previous studies on IA, our aim was to investigate the correlates of IA and the morphometry of the frontal lobes. METHODS To observe these relationships, the high-resolution T1-weighted MR images of 144 healthy, Caucasian, university students were analyzed with volumetry and voxel-based morphometry. The Problematic Internet Use Questionnaire (PIUQ) was used to assess IA. RESULTS We found significant correlations between PIUQ subscales and the volume of the right pars opercularis volume and gray matter mass in women. DISCUSSION AND CONCLUSION The increased gray matter measures of this structure might be explained with the extended effort to control for the impulsive behavior in addiction, and with the increased number of social interactions via the Internet.
Collapse
Affiliation(s)
- Orsolya Inhóf
- Institute of Psychology, University of Pécs, Pécs, Hungary
| | | | - Gábor Perlaki
- MTA-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary
- Pécs Diagnostic Centre, Pécs, Hungary
- Department of Neurosurgery, University of Pécs Medical School, Pécs, Hungary
| | - Gergely Orsi
- MTA-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary
- Pécs Diagnostic Centre, Pécs, Hungary
- Department of Neurosurgery, University of Pécs Medical School, Pécs, Hungary
| | - Beatrix Lábadi
- Institute of Psychology, University of Pécs, Pécs, Hungary
| | - Norbert Kovács
- MTA-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary
- Department of Neurology, University of Pécs Medical School, Pécs, Hungary
| | - Anna Szente
- Department of Neurology, University of Pécs Medical School, Pécs, Hungary
| | - Tamás Dóczi
- MTA-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary
- Pécs Diagnostic Centre, Pécs, Hungary
- Department of Neurosurgery, University of Pécs Medical School, Pécs, Hungary
| | - József Janszky
- MTA-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary
- Department of Neurology, University of Pécs Medical School, Pécs, Hungary
| | - Gergely Darnai
- Institute of Psychology, University of Pécs, Pécs, Hungary
- MTA-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary
- Department of Neurology, University of Pécs Medical School, Pécs, Hungary
| |
Collapse
|
31
|
Perlaki G, Molnar D, Smeets PAM, Ahrens W, Wolters M, Eiben G, Lissner L, Erhard P, van Meer F, Herrmann M, Janszky J, Orsi G. Volumetric gray matter measures of amygdala and accumbens in childhood overweight/obesity. PLoS One 2018; 13:e0205331. [PMID: 30335775 PMCID: PMC6193643 DOI: 10.1371/journal.pone.0205331] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/24/2018] [Indexed: 11/18/2022] Open
Abstract
Objectives Neuroimaging data suggest that pediatric overweight and obesity are associated with morphological alterations in gray matter (GM) brain structures, but previous studies using mainly voxel-based morphometry (VBM) showed inconsistent results. Here, we aimed to examine the relationship between youth obesity and the volume of predefined reward system structures using magnetic resonance (MR) volumetry. We also aimed to complement volumetry with VBM-style analysis. Methods Fifty-one Caucasian young subjects (32 females; mean age: 13.8±1.9, range: 10.2–16.5 years) were included. Subjects were selected from a subsample of the I.Family study examined in the Hungarian center. A T1-weighted 1 mm3 isotropic resolution image was acquired. Age- and sex-standardized body mass index (zBMI) was assessed at the day of MRI and ~1.89 years (mean±SD: 689±188 days) before the examination. Obesity related GM alterations were investigated using MR volumetry in five predefined brain structures presumed to play crucial roles in body weight regulation (hippocampus, amygdala, accumbens, caudate, putamen), as well as whole-brain and regional VBM. Results The volumes of accumbens and amygdala showed significant positive correlations with zBMI, while their GM densities were inversely related to zBMI. Voxel-based GM mass also showed significant negative correlation with zBMI when investigated in the predefined amygdala region, but this relationship was mediated by GM density. Conclusions Overweight/obesity related morphometric brain differences already seem to be present in children/adolescents. Our work highlights the disparity between volume and VBM-derived measures and that GM mass (combination of volume and density) is not informative in the context of obesity related volumetric changes. To better characterize the association between childhood obesity and GM morphometry, a combination of volumetric segmentation and VBM methods, as well as future longitudinal studies are necessary. Our results suggest that childhood obesity is associated with enlarged structural volumes, but decreased GM density in the reward system.
Collapse
Affiliation(s)
- Gabor Perlaki
- MTA-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary
- Department of Neurology, University of Pecs, Medical School, Pecs, Hungary
- * E-mail:
| | - Denes Molnar
- Department of Pediatrics, University of Pecs, Medical School, Pecs, Hungary
| | - Paul A. M. Smeets
- Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Division of Human Nutrition, Wageningen University & Research, Wageningen, Netherlands
| | - Wolfgang Ahrens
- Leibniz Institute for Prevention Research and Epidemiology—BIPS, Bremen, Germany
| | - Maike Wolters
- Leibniz Institute for Prevention Research and Epidemiology—BIPS, Bremen, Germany
| | - Gabriele Eiben
- Department of Public Health and Community Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Biomedicine and Public Health, School of Health and Education, University of Skövde, Skövde, Sweden
| | - Lauren Lissner
- Department of Public Health and Community Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Peter Erhard
- Center for Cognitive Sciences, University of Bremen, Bremen, Germany
- Department of Neuropsychology and Behavioral Neurobiology, University of Bremen, Bremen, Germany
| | - Floor van Meer
- Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Manfred Herrmann
- Center for Cognitive Sciences, University of Bremen, Bremen, Germany
- Department of Neuropsychology and Behavioral Neurobiology, University of Bremen, Bremen, Germany
| | - Jozsef Janszky
- MTA-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary
- Department of Neurology, University of Pecs, Medical School, Pecs, Hungary
| | - Gergely Orsi
- MTA-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary
- Department of Neurology, University of Pecs, Medical School, Pecs, Hungary
| | | |
Collapse
|
32
|
Blankenship SL, Chad-Friedman E, Riggins T, Dougherty LR. Early parenting predicts hippocampal subregion volume via stress reactivity in childhood. Dev Psychobiol 2018; 61:125-140. [DOI: 10.1002/dev.21788] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/23/2018] [Accepted: 08/26/2018] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Tracy Riggins
- Department of Psychology; University of Maryland; College Park Maryland
| | - Lea R. Dougherty
- Department of Psychology; University of Maryland; College Park Maryland
| |
Collapse
|
33
|
Cavedo E, Chiesa PA, Houot M, Ferretti MT, Grothe MJ, Teipel SJ, Lista S, Habert M, Potier M, Dubois B, Hampel H. Sex differences in functional and molecular neuroimaging biomarkers of Alzheimer's disease in cognitively normal older adults with subjective memory complaints. Alzheimers Dement 2018; 14:1204-1215. [DOI: 10.1016/j.jalz.2018.05.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/22/2018] [Accepted: 05/26/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Enrica Cavedo
- AXA Research Fund & Sorbonne University ChairParisFrance
- Sorbonne University, GRC n° 21Alzheimer Precision Medicine (APM)AP‐HPPitié‐Salpêtrière HospitalBoulevard de l'hôpitalParisFrance
- Brain & Spine Institute (ICM)INSERM U 1127CNRS UMR 7225ParisFrance
- Institute of Memory and Alzheimer's Disease (IM2A)Department of NeurologyPitié‐Salpêtrière HospitalAP‐HPParisFrance
- Laboratory of Alzheimer's Neuroimaging and EpidemiologyIRCCS Centro San Giovanni di Dio FatebenefratelliBresciaItaly
| | - Patrizia A. Chiesa
- AXA Research Fund & Sorbonne University ChairParisFrance
- Sorbonne University, GRC n° 21Alzheimer Precision Medicine (APM)AP‐HPPitié‐Salpêtrière HospitalBoulevard de l'hôpitalParisFrance
- Brain & Spine Institute (ICM)INSERM U 1127CNRS UMR 7225ParisFrance
- Institute of Memory and Alzheimer's Disease (IM2A)Department of NeurologyPitié‐Salpêtrière HospitalAP‐HPParisFrance
| | - Marion Houot
- Sorbonne University, GRC n° 21Alzheimer Precision Medicine (APM)AP‐HPPitié‐Salpêtrière HospitalBoulevard de l'hôpitalParisFrance
- Institute of Memory and Alzheimer's Disease (IM2A)Centre of Excellence of Neurodegenerative Disease (CoEN)ICMCIC NeurosciencesAPHP Department of NeurologyHopital Pitié‐SalpêtrièreUniversity Paris 6ParisFrance
| | - Maria Teresa Ferretti
- Institute for Regenerative Medicine University of ZurichSchlierenSwitzerland
- Neuroscience Center ZurichZurichSwitzerland
- Women's Brain ProjectSwitzerland
| | - Michel J. Grothe
- German Center for Neurodegenerative Diseases (DZNE) – Rostock/GreifswaldRostockGermany
- Department of Psychosomatic MedicineUniversity of RostockRostockGermany
| | - Stefan J. Teipel
- German Center for Neurodegenerative Diseases (DZNE) – Rostock/GreifswaldRostockGermany
- Department of Psychosomatic MedicineUniversity of RostockRostockGermany
| | - Simone Lista
- AXA Research Fund & Sorbonne University ChairParisFrance
- Sorbonne University, GRC n° 21Alzheimer Precision Medicine (APM)AP‐HPPitié‐Salpêtrière HospitalBoulevard de l'hôpitalParisFrance
- Brain & Spine Institute (ICM)INSERM U 1127CNRS UMR 7225ParisFrance
- Institute of Memory and Alzheimer's Disease (IM2A)Department of NeurologyPitié‐Salpêtrière HospitalAP‐HPParisFrance
| | - Marie‐Odile Habert
- Sorbonne UniversitésUPMC Univ Paris 06CNRSINSERMLaboratoire d'Imagerie BiomédicaleParisFrance
- Centre pour l'Acquisition et le Traitement des ImagesParisFrance
- AP‐HPHôpital Pitié‐SalpêtrièreDépartement de Médecine NucléaireParisFrance
| | - Marie‐Claude Potier
- ICM Institut du Cerveau et de la Moelle épinièreCNRS UMR7225INSERM U1127UPMCHôpital de la Pitié‐SalpêtrièreParisFrance
| | - Bruno Dubois
- Sorbonne University, GRC n° 21Alzheimer Precision Medicine (APM)AP‐HPPitié‐Salpêtrière HospitalBoulevard de l'hôpitalParisFrance
- Brain & Spine Institute (ICM)INSERM U 1127CNRS UMR 7225ParisFrance
- Institute of Memory and Alzheimer's Disease (IM2A)Department of NeurologyPitié‐Salpêtrière HospitalAP‐HPParisFrance
| | - Harald Hampel
- AXA Research Fund & Sorbonne University ChairParisFrance
- Sorbonne University, GRC n° 21Alzheimer Precision Medicine (APM)AP‐HPPitié‐Salpêtrière HospitalBoulevard de l'hôpitalParisFrance
- Brain & Spine Institute (ICM)INSERM U 1127CNRS UMR 7225ParisFrance
- Institute of Memory and Alzheimer's Disease (IM2A)Department of NeurologyPitié‐Salpêtrière HospitalAP‐HPParisFrance
| | | | | |
Collapse
|
34
|
Nemeth VL, Must A, Horvath S, Király A, Kincses ZT, Vécsei L. Gender-Specific Degeneration of Dementia-Related Subcortical Structures Throughout the Lifespan. J Alzheimers Dis 2018; 55:865-880. [PMID: 27792015 DOI: 10.3233/jad-160812] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Age-related changes in brain structure are a question of interest to a broad field of research. Structural decline has been consistently, but not unambiguously, linked to functional consequences, including cognitive impairment and dementia. One of the areas considered of crucial importance throughout this process is the medial temporal lobe, and primarily the hippocampal region. Gender also has a considerable effect on volume deterioration of subcortical grey matter (GM) structures, such as the hippocampus. The influence of age×gender interaction on disproportionate GM volume changes might be mediated by hormonal effects on the brain. Hippocampal volume loss appears to become accelerated in the postmenopausal period. This decline might have significant influences on neuroplasticity in the CA1 region of the hippocampus highly vulnerable to pathological influences. Additionally, menopause has been associated with critical pathobiochemical changes involved in neurodegeneration. The micro- and macrostructural alterations and consequent functional deterioration of critical hippocampal regions might result in clinical cognitive impairment-especially if there already is a decline in the cognitive reserve capacity. Several lines of potential vulnerability factors appear to interact in the menopausal period eventually leading to cognitive decline, mild cognitive impairment, or Alzheimer's disease. This focused review aims to delineate the influence of unmodifiable risk factors of neurodegenerative processes, i.e., age and gender, on critical subcortical GM structures in the light of brain derived estrogen effects. The menopausal period appears to be of key importance for the risk of cognitive decline representing a time of special vulnerability for molecular, structural, and functional influences and offering only a narrow window for potential protective effects.
Collapse
Affiliation(s)
- Viola Luca Nemeth
- Department of Neurology, Albert Szent-Györgyi Clinical Center, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Anita Must
- Department of Neurology, Albert Szent-Györgyi Clinical Center, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Szatmar Horvath
- Department of Psychiatry, Albert Szent-Györgyi Clinical Center, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Andras Király
- Department of Neurology, Albert Szent-Györgyi Clinical Center, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zsigmond Tamas Kincses
- Department of Neurology, Albert Szent-Györgyi Clinical Center, Faculty of Medicine, University of Szeged, Szeged, Hungary.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Clinical Center, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| |
Collapse
|
35
|
Kurth F, Cherbuin N, Luders E. The impact of aging on subregions of the hippocampal complex in healthy adults. Neuroimage 2017; 163:296-300. [DOI: 10.1016/j.neuroimage.2017.09.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/08/2017] [Accepted: 09/08/2017] [Indexed: 12/22/2022] Open
|
36
|
Altbäcker A, Plózer E, Darnai G, Perlaki G, Horváth R, Orsi G, Nagy SA, Bogner P, Schwarcz A, Kovács N, Komoly S, Clemens Z, Janszky J. Problematic internet use is associated with structural alterations in the brain reward system in females. Brain Imaging Behav 2017; 10:953-959. [PMID: 26399236 DOI: 10.1007/s11682-015-9454-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Neuroimaging findings suggest that excessive Internet use shows functional and structural brain changes similar to substance addiction. Even though it is still under debate whether there are gender differences in case of problematic use, previous studies by-passed this question by focusing on males only or by using gender matched approach without controlling for potential gender effects. We designed our study to find out whether there are structural correlates in the brain reward system of problematic Internet use in habitual Internet user females. T1-weighted Magnetic Resonance (MR) images were collected in 82 healthy habitual Internet user females. Structural brain measures were investigated using both automated MR volumetry and voxel based morphometry (VBM). Self-reported measures of problematic Internet use and hours spent online were also assessed. According to MR volumetry, problematic Internet use was associated with increased grey matter volume of bilateral putamen and right nucleus accumbens while decreased grey matter volume of orbitofrontal cortex (OFC). Similarly, VBM analysis revealed a significant negative association between the absolute amount of grey matter OFC and problematic Internet use. Our findings suggest structural brain alterations in the reward system usually related to addictions are present in problematic Internet use.
Collapse
Affiliation(s)
- Anna Altbäcker
- Department of Neurology, University of Pécs, Pécs, Hungary. .,Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Enikő Plózer
- Department of Neurology, University of Pécs, Pécs, Hungary
| | - Gergely Darnai
- Department of Neurology, University of Pécs, Pécs, Hungary
| | - Gábor Perlaki
- Department of Neurology, University of Pécs, Pécs, Hungary.,MTA-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary.,Diagnostic Centre, Pécs, Hungary
| | - Réka Horváth
- Department of Neurology, University of Pécs, Pécs, Hungary
| | - Gergely Orsi
- Department of Neurology, University of Pécs, Pécs, Hungary.,MTA-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary.,Diagnostic Centre, Pécs, Hungary
| | - Szilvia Anett Nagy
- Diagnostic Centre, Pécs, Hungary.,MTA-PTE, Neurobiology of Stress Research Group, Pécs, Hungary
| | | | - Attila Schwarcz
- MTA-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary.,Department of Neurosurgery, University of Pécs, Pécs, Hungary
| | - Norbert Kovács
- Department of Neurology, University of Pécs, Pécs, Hungary
| | - Sámuel Komoly
- Department of Neurology, University of Pécs, Pécs, Hungary
| | - Zsófia Clemens
- Department of Neurology, University of Pécs, Pécs, Hungary.,National Institute of Clinical Neurosciences, Budapest, Hungary
| | - József Janszky
- Department of Neurology, University of Pécs, Pécs, Hungary.,MTA-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary
| |
Collapse
|
37
|
Caldwell JZK, Berg JL, Cummings JL, Banks SJ. Moderating effects of sex on the impact of diagnosis and amyloid positivity on verbal memory and hippocampal volume. ALZHEIMERS RESEARCH & THERAPY 2017; 9:72. [PMID: 28899422 PMCID: PMC5596932 DOI: 10.1186/s13195-017-0300-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/22/2017] [Indexed: 01/16/2023]
Abstract
Background Alzheimer’s disease (AD) impacts men and women differently, but the effect of sex on predementia stages is unclear. The objective of this study was to examine whether sex moderates the impact of florbetapir positron emission tomography (PET) amyloid positivity (A+) on verbal learning and memory performance and hippocampal volume (HV) in normal cognition (NC) and early mild cognitive impairment (eMCI). Methods Seven hundred forty-two participants with NC and participants with eMCI from the Alzheimer’s Disease Neuroimaging Initiative (second cohort [ADNI2] and Grand Opportunity Cohort [ADNI-GO]) were included. All had baseline florbetapir PET measured, and 526 had screening visit HV measured. Regression moderation models were used to examine whether A+ effects on Rey Auditory Verbal Learning Test learning and delayed recall and right and left HV (adjusted for total intracranial volume) were moderated by diagnosis and sex. Age, cognition at screening, education, and apolipoprotein E ε4 carrier status were controlled. Results Women with A+, but not those with florbetapir PET amyloid negative (A-),eMCI showed poorer learning. For women with NC, there was no relationship of A+ with learning. In contrast, A+ men trended toward poorer learning regardless of diagnosis. A similar trend was found for verbal delayed recall: Women with A+, but not A-, eMCI trended toward reduced delayed recall; no effects were observed for women with NC or for men. Hippocampal analyses indicated that women with A+, but not those with A−, eMCI, trended toward smaller right HV; no significant A+ effects were observed for women with NC. Men showed similar, though nonsignificant, patterns of smaller right HV in A+ eMCI, but not in men with A− eMCI or NC. No interactive effects of sex were noted for left HV. Conclusions Women with NC showed verbal learning and memory scores robust to A+, and women with A+ eMCI lost this advantage. In contrast, A+ impacted men’s scores less significantly or not at all, and comparably across those with NC and eMCI. Sex marginally moderated the relationship of A+ and diagnosis with right HV, such that women with NC showed no A+ effect and women with A+ eMCI lost that advantage in neural integrity; the pattern in men was less clear. These findings show that women with A+ eMCI (i.e., prodromal AD) have differential neural and cognitive decline, which has implications for considering sex in early detection of AD and development of therapeutics.
Collapse
Affiliation(s)
- Jessica Z K Caldwell
- Cleveland Clinic Lou Ruvo Center for Brain Health, 888 West Bonneville Avenue, Las Vegas, NV, 89106, USA.
| | - Jody-Lynn Berg
- Cleveland Clinic Lou Ruvo Center for Brain Health, 888 West Bonneville Avenue, Las Vegas, NV, 89106, USA
| | - Jeffrey L Cummings
- Cleveland Clinic Lou Ruvo Center for Brain Health, 888 West Bonneville Avenue, Las Vegas, NV, 89106, USA
| | - Sarah J Banks
- Cleveland Clinic Lou Ruvo Center for Brain Health, 888 West Bonneville Avenue, Las Vegas, NV, 89106, USA
| | | |
Collapse
|
38
|
Braunitzer G, Őze A, Eördegh G, Pihokker A, Rózsa P, Kasik L, Kéri S, Nagy A. The development of acquired equivalence from childhood to adulthood-A cross-sectional study of 265 subjects. PLoS One 2017. [PMID: 28632760 PMCID: PMC5478105 DOI: 10.1371/journal.pone.0179525] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Acquired equivalence (AE) is a form of feedback-based associative learning where the subject learns that two or more stimuli are equivalent in terms of being mapped onto the same outcomes or responses. While several studies dealt with how various neurological and psychiatric conditions affect performance on AE tasks (typically with small populations), studies dealing with AE in healthy subjects are rare, and no study has ever made an attempt to plot the development of this form of learning from the childhood through adulthood. In a cross-sectional study, we assessed the AE performance of 265 healthy subjects aged 3 to 52 years with the computer-based Rutgers Equivalence Test (Fish-Face Test, FFT). The test assesses three main aspects of AE: the efficiency of pair learning, the efficiency of the retrieval of acquired pairs, and the ability to generalise previous knowledge to a new stimulus that partially overlaps with the previous ones. It has been demonstrated in imaging studies that the initial, pair learning phase of this specific test is dependent on the basal ganglia, while its generalization phase requires the hippocampi. We found that both pair learning and retrieval exhibited development well into adulthood, but generalisation did not, after having reached its adult-like level by the age of 6. We propose that these findings might be explained by the integrative encoding theory that focuses on the parallel dopaminergic midbrain-striatum/midbrain-hippocampus connections.
Collapse
Affiliation(s)
- Gábor Braunitzer
- Nyírő Gyula Hospital, Laboratory for Perception & Cognition and Clinical Neuroscience, Budapest, Hungary
| | - Attila Őze
- University of Szeged, Faculty of Medicine, Department of Physiology, Szeged, Hungary
| | - Gabriella Eördegh
- University of Szeged, Faculty of Dentistry, Department of Operative and Esthetic Dentistry, Szeged, Hungary
| | - Anna Pihokker
- University of Szeged, Faculty of Medicine, Department of Physiology, Szeged, Hungary
| | - Petra Rózsa
- University of Szeged, Faculty of Medicine, Department of Physiology, Szeged, Hungary
| | - László Kasik
- University of Szeged, Faculty of Arts, Institute of Education, Department of Social and Affective Education, Szeged, Hungary
| | - Szabolcs Kéri
- Nyírő Gyula Hospital, Laboratory for Perception & Cognition and Clinical Neuroscience, Budapest, Hungary
| | - Attila Nagy
- University of Szeged, Faculty of Medicine, Department of Physiology, Szeged, Hungary
- * E-mail:
| |
Collapse
|
39
|
Kumar VJ, van Oort E, Scheffler K, Beckmann CF, Grodd W. Functional anatomy of the human thalamus at rest. Neuroimage 2017; 147:678-691. [DOI: 10.1016/j.neuroimage.2016.12.071] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 12/25/2022] Open
|
40
|
Huo Y, Asman AJ, Plassard AJ, Landman BA. Simultaneous total intracranial volume and posterior fossa volume estimation using multi-atlas label fusion. Hum Brain Mapp 2016; 38:599-616. [PMID: 27726243 DOI: 10.1002/hbm.23432] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/02/2016] [Accepted: 10/01/2016] [Indexed: 01/09/2023] Open
Abstract
Total intracranial volume (TICV) is an essential covariate in brain volumetric analyses. The prevalent brain imaging software packages provide automatic TICV estimates. FreeSurfer and FSL estimate TICV using a scaling factor while SPM12 accumulates probabilities of brain tissues. None of the three provide explicit skull/CSF boundary (SCB) since it is challenging to distinguish these dark structures in a T1-weighted image. However, explicit SCB not only leads to a natural way of obtaining TICV (i.e., counting voxels inside the skull) but also allows sub-definition of TICV, for example, the posterior fossa volume (PFV). In this article, they proposed to use multi-atlas label fusion to obtain TICV and PFV simultaneously. The main contributions are: (1) TICV and PFV are simultaneously obtained with explicit SCB from a single T1-weighted image. (2) TICV and PFV labels are added to the widely used BrainCOLOR atlases. (3) Detailed mathematical derivation of non-local spatial STAPLE (NLSS) label fusion is presented. As the skull is clearly distinguished in CT images, we use a semi-manual procedure to obtain atlases with TICV and PFV labels using 20 subjects who both have a MR and CT scan. The proposed method provides simultaneous TICV and PFV estimation while achieving more accurate TICV estimation compared with FreeSurfer, FSL, SPM12, and the previously proposed STAPLE based approach. The newly developed TICV and PFV labels for the OASIS BrainCOLOR atlases provide acceptable performance, which enables simultaneous TICV and PFV estimation during whole brain segmentation. The NLSS method and the new atlases have been made freely available. Hum Brain Mapp 38:599-616, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yuankai Huo
- Electrical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Andrew J Asman
- Electrical Engineering, Vanderbilt University, Nashville, Tennessee
| | | | - Bennett A Landman
- Electrical Engineering, Vanderbilt University, Nashville, Tennessee.,Computer Science, Vanderbilt University, Nashville, Tennessee.,Biomedical Engineering, Vanderbilt University, Nashville, Tennessee.,Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee.,Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
41
|
Cytoarchitecture and probability maps of the human medial orbitofrontal cortex. Cortex 2016; 75:87-112. [DOI: 10.1016/j.cortex.2015.11.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 09/11/2015] [Accepted: 11/09/2015] [Indexed: 01/28/2023]
|
42
|
Tan A, Ma W, Vira A, Marwha D, Eliot L. The human hippocampus is not sexually-dimorphic: Meta-analysis of structural MRI volumes. Neuroimage 2016; 124:350-366. [DOI: 10.1016/j.neuroimage.2015.08.050] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/20/2015] [Accepted: 08/22/2015] [Indexed: 12/31/2022] Open
|
43
|
Male brain ages faster: the age and gender dependence of subcortical volumes. Brain Imaging Behav 2015; 10:901-10. [DOI: 10.1007/s11682-015-9468-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
44
|
Stening E, Persson J, Eriksson E, Wahlund LO, Zetterberg H, Söderlund H. Apolipoprotein E ϵ4 is positively related to spatial performance but unrelated to hippocampal volume in healthy young adults. Behav Brain Res 2015; 299:11-8. [PMID: 26581118 DOI: 10.1016/j.bbr.2015.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/17/2015] [Accepted: 11/06/2015] [Indexed: 12/30/2022]
Abstract
The apolipoprotein E (APOE) ϵ4 allele is known to be a major genetic risk factor for Alzheimer's disease (AD). It has been linked to especially episodic memory decline and hippocampal atrophy in both healthy and demented elderly populations. In young adults, ϵ4 carriers have shown better performance in episodic memory compared to non-carriers. Spatial memory, however, has not been thoroughly assessed in relation to APOE in spite of its dependence on the hippocampus. In this study, we assessed the effect of APOE genotype on a variety of spatial and episodic memory tasks as well as hippocampal volume assessed through manual tracing in a sample of young adults (N=123). We also assessed whether potential effects were modulated by sex. The presence of one or more ϵ4 alleles had positive effects on spatial function and memory and object location memory, but no effect on word recognition. Men were superior to women in spatial function and memory but there were no sex differences in the other tasks. In spite of APOE ϵ4 carriers having superior performance in several memory tasks, no difference was found as a function of APOE genotype in hippocampal volume. To our knowledge, this study is the first to show that APOE ϵ4 has a positive effect on spatial ability in young adults.
Collapse
Affiliation(s)
- Eva Stening
- Department of Psychology, Uppsala University, Uppsala, Sweden.
| | - Jonas Persson
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | - Elias Eriksson
- Department of Pharmacology, Institute of Physiology and Neuroscience, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Lars-Olof Wahlund
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institute, Stockholm, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | | |
Collapse
|
45
|
Pintzka CWS, Hansen TI, Evensmoen HR, Håberg AK. Marked effects of intracranial volume correction methods on sex differences in neuroanatomical structures: a HUNT MRI study. Front Neurosci 2015. [PMID: 26217172 PMCID: PMC4496575 DOI: 10.3389/fnins.2015.00238] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
To date, there is no consensus whether sexual dimorphism in the size of neuroanatomical structures exists, or if such differences are caused by choice of intracranial volume (ICV) correction method. When investigating volume differences in neuroanatomical structures, corrections for variation in ICV are used. Commonly applied methods are the ICV-proportions, ICV-residuals and ICV as a covariate of no interest, ANCOVA. However, these different methods give contradictory results with regard to presence of sex differences. Our aims were to investigate presence of sexual dimorphism in 18 neuroanatomical volumes unrelated to ICV-differences by using a large ICV-matched subsample of 304 men and women from the HUNT-MRI general population study, and further to demonstrate in the entire sample of 966 healthy subjects, which of the ICV-correction methods gave results similar to the ICV-matched subsample. In addition, sex-specific subsamples were created to investigate whether differences were an effect of head size or sex. Most sex differences were related to volume scaling with ICV, independent of sex. Sex differences were detected in a few structures; amygdala, cerebellar cortex, and 3rd ventricle were larger in men, but the effect sizes were small. The residuals and ANCOVA methods were most effective at removing the effects of ICV. The proportions method suffered from systematic errors due to lack of proportionality between ICV and neuroanatomical volumes, leading to systematic mis-assignment of structures as either larger or smaller than their actual size. Adding additional sexual dimorphic covariates to the ANCOVA gave opposite results of those obtained in the ICV-matched subsample or with the residuals method. The findings in the current study explain some of the considerable variation in the literature on sexual dimorphisms in neuroanatomical volumes. In conclusion, sex plays a minor role for neuroanatomical volume differences; most differences are related to ICV.
Collapse
Affiliation(s)
- Carl W S Pintzka
- Department of Neuroscience, Norwegian University of Science and Technology Trondheim, Norway ; Department of Medical Imaging, St. Olav's University Hospital Trondheim, Norway
| | - Tor I Hansen
- Department of Medical Imaging, St. Olav's University Hospital Trondheim, Norway
| | - Hallvard R Evensmoen
- Department of Neuroscience, Norwegian University of Science and Technology Trondheim, Norway ; Department of Medical Imaging, St. Olav's University Hospital Trondheim, Norway
| | - Asta K Håberg
- Department of Neuroscience, Norwegian University of Science and Technology Trondheim, Norway ; Department of Medical Imaging, St. Olav's University Hospital Trondheim, Norway
| |
Collapse
|
46
|
Functional organization of human subgenual cortical areas: Relationship between architectonical segregation and connectional heterogeneity. Neuroimage 2015; 115:177-90. [PMID: 25937490 DOI: 10.1016/j.neuroimage.2015.04.053] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 01/02/2023] Open
Abstract
Human subgenual anterior cingulate cortex (sACC) is involved in affective experiences and fear processing. Functional neuroimaging studies view it as a homogeneous cortical entity. However, sACC comprises several distinct cyto- and receptorarchitectonical areas: 25, s24, s32, and the ventral portion of area 33. Thus, we hypothesized that the areas may also be connectionally and functionally distinct. We performed structural post mortem and functional in vivo analyses. We computed probabilistic maps of each area based on cytoarchitectonical analysis of ten post mortem brains. Maps, publicly available via the JuBrain atlas and the Anatomy Toolbox, were used to define seed regions of task-dependent functional connectivity profiles and quantitative functional decoding. sACC areas presented distinct co-activation patterns within widespread networks encompassing cortical and subcortical regions. They shared common functional domains related to emotion, perception and cognition. A more specific analysis of these domains revealed an association of s24 with sadness, and of s32 with fear processing. Both areas were activated during taste evaluation, and co-activated with the amygdala, a key node of the affective network. s32 co-activated with areas of the executive control network, and was associated with tasks probing cognition in which stimuli did not have an emotional component. Area 33 was activated by painful stimuli, and co-activated with areas of the sensorimotor network. These results support the concept of a connectional and functional specificity of the cyto- and receptorarchitectonically defined areas within the sACC, which can no longer be seen as a structurally and functionally homogeneous brain region.
Collapse
|
47
|
Du J, Quan M, Zhuang W, Zhong N, Jiang H, Kennedy DN, Harrington A, Ziedonis D, Fan X, Zhao M. Hippocampal volume reduction in female but not male recent abstinent methamphetamine users. Behav Brain Res 2015; 289:78-83. [PMID: 25920682 DOI: 10.1016/j.bbr.2015.04.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/13/2015] [Accepted: 04/19/2015] [Indexed: 12/26/2022]
Abstract
Growing evidence suggests abnormalities in brain morphology including hippocampal structure in patients with methamphetamine (MA) dependence. This study was performed to examine hippocampal volume in abstinent MA users, and to further explore its relationship with cognitive function. 30 abstinent MA users (20 males and 10 females) with average 5.52 months of duration of abstinence and 29 healthy controls (19 males and 10 females) age 18-45 years old were recruited for clinical assessment and imaging scan. FreeSurfer was used to segment the hippocampus bilaterally, and hippocampal volumes were extracted for group and gender comparisons. Cognitive function was measured using the CogState Battery Chinese language version (CSB-C). Analysis of covariance (ANCOVA) controlling for education showed a significant group by gender interaction for the right hippocampal relative volume adjusted for total brain size (p = 0.020); there was a significant difference between male controls and female controls (p < 0.001), but such a difference did not exist between male patients and female patients (p = 0.203). No significant correlations were found between hippocampal volume and cognitive measures. There seems to be a gender difference in how MA affects hippocampal volume in abstinent MA users. Hippocampus might be an important treatment target for cognitive improvement and functional recovery in this patient population, especially in females.
Collapse
Affiliation(s)
- Jiang Du
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Meina Quan
- UMass Memorial Medical Center/University of Massachusetts Medical School, Worcester, MA, USA
| | - Wenxu Zhuang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Na Zhong
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Haifeng Jiang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - David N Kennedy
- UMass Memorial Medical Center/University of Massachusetts Medical School, Worcester, MA, USA
| | - Amy Harrington
- UMass Memorial Medical Center/University of Massachusetts Medical School, Worcester, MA, USA
| | - Douglas Ziedonis
- UMass Memorial Medical Center/University of Massachusetts Medical School, Worcester, MA, USA
| | - Xiaoduo Fan
- UMass Memorial Medical Center/University of Massachusetts Medical School, Worcester, MA, USA.
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
48
|
Luders E, Thompson PM, Kurth F. Larger hippocampal dimensions in meditation practitioners: differential effects in women and men. Front Psychol 2015; 6:186. [PMID: 25798115 PMCID: PMC4351565 DOI: 10.3389/fpsyg.2015.00186] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/05/2015] [Indexed: 01/28/2023] Open
Abstract
On average, the human hippocampus shows structural differences between meditators and non-meditators as well as between men and women. However, there is a lack of research exploring possible sex effects on hippocampal anatomy in the framework of meditation. Thus, we obtained high-resolution magnetic resonance imaging data from 30 long-term meditation practitioners (15 men/15 women) and 30 well-matched control subjects (15 men/15 women) to assess if hippocampus-specific effects manifest differently in male and female brains. Hippocampal dimensions were enlarged both in male and in female meditators when compared to sex- and age-matched controls. However, meditation effects differed between men and women in magnitude, laterality, and location on the hippocampal surface. Such sex-divergent findings may be due to genetic (innate) or acquired differences between male and female brains in the areas involved in meditation and/or suggest that male and female hippocampi are differently receptive to mindfulness practices.
Collapse
Affiliation(s)
- Eileen Luders
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles , Los Angeles, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California , Los Angeles, CA, USA
| | - Florian Kurth
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles , Los Angeles, CA, USA
| |
Collapse
|
49
|
Malone IB, Leung KK, Clegg S, Barnes J, Whitwell JL, Ashburner J, Fox NC, Ridgway GR. Accurate automatic estimation of total intracranial volume: a nuisance variable with less nuisance. Neuroimage 2014; 104:366-72. [PMID: 25255942 PMCID: PMC4265726 DOI: 10.1016/j.neuroimage.2014.09.034] [Citation(s) in RCA: 321] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/27/2014] [Accepted: 09/15/2014] [Indexed: 12/21/2022] Open
Abstract
Total intracranial volume (TIV/ICV) is an important covariate for volumetric analyses of the brain and brain regions, especially in the study of neurodegenerative diseases, where it can provide a proxy of maximum pre-morbid brain volume. The gold-standard method is manual delineation of brain scans, but this requires careful work by trained operators. We evaluated Statistical Parametric Mapping 12 (SPM12) automated segmentation for TIV measurement in place of manual segmentation and also compared it with SPM8 and FreeSurfer 5.3.0. For T1-weighted MRI acquired from 288 participants in a multi-centre clinical trial in Alzheimer's disease we find a high correlation between SPM12 TIV and manual TIV (R2 = 0.940, 95% Confidence Interval (0.924, 0.953)), with a small mean difference (SPM12 40.4 ± 35.4 ml lower than manual, amounting to 2.8% of the overall mean TIV in the study). The correlation with manual measurements (the key aspect when using TIV as a covariate) for SPM12 was significantly higher (p < 0.001) than for either SPM8 (R2 = 0.577 CI (0.500, 0.644)) or FreeSurfer (R2 = 0.801 CI (0.744, 0.843)). These results suggest that SPM12 TIV estimates are an acceptable substitute for labour-intensive manual estimates even in the challenging context of multiple centres and the presence of neurodegenerative pathology. We also briefly discuss some aspects of the statistical modelling approaches to adjust for TIV. 288 T1 MRI from multiple scanners were manually segmented for intracranial volume. We compare SPM12 with the current methods of estimating intracranial volume. SPM12 shows a very high correlation with manual measures and little bias. Newer automated volume measures are more accurate controls for head size variation.
Collapse
Affiliation(s)
- Ian B Malone
- Dementia Research Centre (DRC), Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK.
| | - Kelvin K Leung
- Dementia Research Centre (DRC), Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Shona Clegg
- Dementia Research Centre (DRC), Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Josephine Barnes
- Dementia Research Centre (DRC), Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Jennifer L Whitwell
- Department of Radiology, Mayo School of Graduate Medical Education, 200 1st St. SW., Rochester, MN 55905, USA
| | - John Ashburner
- Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London WC1N 3BG, UK
| | - Nick C Fox
- Dementia Research Centre (DRC), Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Gerard R Ridgway
- Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London WC1N 3BG, UK; FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford OX3 9DU, UK
| |
Collapse
|