1
|
Zhang X, Zhang K, Liu K, Yu S, Fu X, Yuan Q, Zhu C, Lin D, Fan Z. A novel supramolecular nanodrugs for improving the cognitive function of schizophrenia by protecting active lactone of arecoline. Biomed Pharmacother 2025; 183:117845. [PMID: 39826356 DOI: 10.1016/j.biopha.2025.117845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/30/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
Over 30 % of patients with schizophrenia experience treatment resistance and severe side effects. The limited efficacy of antipsychotic therapies poses a challenge, partly due to the blood-brain barrier (BBB) and the non-selective targeting of these drugs. Herein, we report on arecoline (ARE), a water soluble natural small molecule, which was successfully constructed a phospholipid complex by noncovalent interactions. Most striking, this arecoline-phospholipid complex nanoplatforms (ARE-PC NPs) could prevent the hydrolyzation of its ester group by carboxylesterases, which showed sustained release, superior physiological stability and long circulatory capability. Both in vitro cells and in vivo mice speculated that this ARE-PC NPs might has a high cellular uptake and stronger penetration ability of the BBB. Additionally, our results demonstrated that this phospholipid complex might facilitate ARE delivery to the brain tissue and obviously improve the schizophrenia-like behavior in cuprizone induced animal models. This study highlights ARE-PC NPs as a promising antipsychotic nanodrug for the therapy of schizophrenia.
Collapse
Affiliation(s)
- Xianhua Zhang
- Department of Pharmacy, The Third Hospital of Xiamen, Xiamen 361020, China
| | - Kaining Zhang
- Department of Geriatric Psychiatry, Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing 102200, China
| | - Kejun Liu
- Xiamen Xianyue Hospital, Xianyue Hospital Affiliated with Xiamen Medical College, Fujian Psychiatric Center, Fujian Clinical Research Center for Mental Disorders, Xiamen 361012, China
| | - Shujie Yu
- School of Pharmaceutical Sciences, Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Xu Fu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Qianfa Yuan
- Xiamen Xianyue Hospital, Xianyue Hospital Affiliated with Xiamen Medical College, Fujian Psychiatric Center, Fujian Clinical Research Center for Mental Disorders, Xiamen 361012, China
| | - Chuan'an Zhu
- Xiamen Xianyue Hospital, Xianyue Hospital Affiliated with Xiamen Medical College, Fujian Psychiatric Center, Fujian Clinical Research Center for Mental Disorders, Xiamen 361012, China
| | - Duoduo Lin
- Xiamen Xianyue Hospital, Xianyue Hospital Affiliated with Xiamen Medical College, Fujian Psychiatric Center, Fujian Clinical Research Center for Mental Disorders, Xiamen 361012, China.
| | - Zhongxiong Fan
- School of Pharmaceutical Sciences, Institute of Materia Medica, Xinjiang University, Urumqi 830017, China.
| |
Collapse
|
2
|
Walker LC, Huckstep KL, Becker HC, Langmead CJ, Lawrence AJ. Targeting muscarinic receptors for the treatment of alcohol use disorders: Opportunities and hurdles for clinical development. Br J Pharmacol 2024; 181:4385-4398. [PMID: 37005377 DOI: 10.1111/bph.16081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/04/2023] Open
Abstract
Emerging evidence suggests muscarinic acetylcholine receptors represent novel targets to treat alcohol use disorder. In this review, we draw from literature across medicinal chemistry, molecular biology, addiction and learning/cognition fields to interrogate the proposition for muscarinic receptor ligands in treating various aspects of alcohol use disorder, including cognitive dysfunction, motivation to consume alcohol and relapse. In support of this proposition, we describe cholinergic dysfunction in the pathophysiology of alcohol use disorder at a network level, including alcohol-induced adaptations present in both human post-mortem brains and reverse-translated rodent models. Preclinical behavioural pharmacology implicates specific muscarinic receptors, in particular, M4 and M5 receptors, as potential therapeutic targets worthy of further interrogation. We detail how these receptors can be selectively targeted in vivo by the use of subtype-selective allosteric modulators, a strategy that overcomes the issue of targeting a highly conserved orthosteric site bound by acetylcholine. Finally, we highlight the intense pharma interest in allosteric modulators of muscarinic receptors for other indications that provide an opportunity for repurposing into the alcohol use disorder space and provide some currently unanswered questions as a roadmap for future investigation.
Collapse
Affiliation(s)
- Leigh C Walker
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Kade L Huckstep
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Howard C Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Christopher J Langmead
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
3
|
Mata-Bermudez A, Trejo-Chávez R, Martínez-Vargas M, Pérez-Arredondo A, Martínez-Cardenas MDLÁ, Diaz-Ruiz A, Rios C, Navarro L. Dysregulation of the dopaminergic system secondary to traumatic brain injury: implications for mood and anxiety disorders. Front Neurosci 2024; 18:1447688. [PMID: 39176379 PMCID: PMC11338874 DOI: 10.3389/fnins.2024.1447688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Traumatic brain injury (TBI) represents a public health issue with a high mortality rate and severe neurological and psychiatric consequences. Mood and anxiety disorders are some of the most frequently reported. Primary and secondary damage can cause a loss of neurons and glial cells, leading to dysfunction of neuronal circuits, which can induce imbalances in many neurotransmitter systems. Monoaminergic systems, especially the dopaminergic system, are some of the most involved in the pathogenesis of neuropsychiatric and cognitive symptoms after TBI. In this work, we summarize the studies carried out in patients who have suffered TBI and describe alterations in the dopaminergic system, highlighting (1) dysfunction of the dopaminergic neuronal circuits caused by TBI, where modifications are shown in the dopamine transporter (DAT) and alterations in the expression of dopamine receptor 2 (D2R) in brain areas with dopaminergic innervation, thus establishing a hypodopaminergic state and (2) variations in the concentration of dopamine and its metabolites in biological fluids of post-TBI patients, such as elevated dopamine (DA) and alterations in homovanillic acid (HVA). On the other hand, we show a large number of reports of alterations in the dopaminergic system after a TBI in animal models, in which modifications in the levels of DA, DAT, and HVA have been reported, as well as alterations in the expression of tyrosine hydroxylase (TH). We also describe the biological pathways, neuronal circuits, and molecular mechanisms potentially involved in mood and anxiety disorders that occur after TBI and are associated with alterations of the dopaminergic system in clinical studies and animal models. We describe the changes that occur in the clinical picture of post-TBI patients, such as alterations in mood and anxiety associated with DAT activity in the striatum, the relationship between post-TBI major depressive disorders (MDD) with lower availability of the DA receptors D2R and D3R in the caudate and thalamus, as well as a decrease in the volume of the substantia nigra (SN) associated with anxiety symptoms. With these findings, we discuss the possible relationship between the disorders caused by alterations in the dopaminergic system in patients with TBI.
Collapse
Affiliation(s)
- Alfonso Mata-Bermudez
- Departamento de Fisiología Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ricardo Trejo-Chávez
- Departamento de Fisiología Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Doctorado en Ciencias Biomedicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Marina Martínez-Vargas
- Departamento de Fisiología Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Adán Pérez-Arredondo
- Departamento de Fisiología Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Araceli Diaz-Ruiz
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Ciudad de México, Mexico
| | - Camilo Rios
- Laboratorio de Neurofarmacología Molecular, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México, Mexico
- Dirección de Investigación, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra, Ciudad de México, Mexico
| | - Luz Navarro
- Departamento de Fisiología Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
4
|
Xue R, Tang X, Tang J, Zhang S, Liao X, Chen X, Li L, Li X. Climbing Fiber Activation Induced by Footshock in the Cerebellar Vermis Lobule IV/V of Freely Moving Mice. Physiol Res 2024; 73:449-459. [PMID: 39027961 PMCID: PMC11299787 DOI: 10.33549/physiolres.935203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 03/12/2024] [Indexed: 07/27/2024] Open
Abstract
Parallel fibers (PFs) in the cerebellar cortex are involved in a series of coordinated responses in the fear conditioning paradigm induced by footshock. However, whether footshock can activate cerebellar climbing fibers (CFs) remains unclear. In this study, we recorded calcium (Ca2+) activity in CFs by optical fiber photometry in the cerebellar vermis lobule IV/V of freely moving mice with footshock stimulation. We found that the activation of CFs in the lobule IV/V was highly correlated with footshock stimulation but not with the sound stimulation used as a control. This result suggests that afferent information from CFs might be associated with the motor initiation of fear-related behaviors or fear emotion itself. Thus, our results suggest that a characteristic CF signal in the cerebellar cortex might be related to fear processing or footshock-related behaviors (such as startle responses or pain sensation).
Collapse
Affiliation(s)
- R Xue
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China. or
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Wu J, Li X, Zhang Q, Li J, Cui R, Li X. Differential effects of intra-RMTg infusions of pilocarpine or 4-DAMP on regulating depression- and anxiety-like behaviors. Behav Brain Res 2024; 462:114833. [PMID: 38220059 DOI: 10.1016/j.bbr.2023.114833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 01/16/2024]
Abstract
Depression and anxiety are associated with dysfunction of the mesolimbic dopamine system. The rostromedial tegmental nucleus (RMTg) is predominantly composed of GABAergic neurons that exhibit dense projections and strongly inhibit mesolimbic dopaminergic neurons, proposed as a major "brake" for the system. Consequently, the RMTg may be a crucial brain region for regulating these emotions. The central cholinergic system, particularly the muscarinic receptors, plays an important regulatory role in depression and anxiety. M3 muscarinic receptors are distributed on GABAergic neurons in the RMTg, but their involvement in the regulation of depression and anxiety remains uncertain. This study aimed to examine the effects of RMTg M3 muscarinic receptors on regulating depression- and anxiety-like behaviors in adult male Wistar rats, as assessed through the forced swim, tail suspension, and elevated plus maze tests. The results showed that intra-RMTg injections of the M1/M3 muscarinic receptors agonist, pilocarpine (3, 10, and 30 μg/side), or the M3 muscarinic receptors antagonist, 4-DAMP (0.5, 1, and 2 μg/side), did not alter the immobility time in the forced swim and tail suspension tests. Additionally, pilocarpine (30 μg/side) decreased time spent in open arms and increased time in closed arms in the elevated plus maze; while 4-DAMP (1 and 2 μg/side) played the opposite role by increasing time spent in open arms and decreasing time in closed arms. These findings suggest that RMTg M3 muscarinic receptors have differential effects on regulating depression- and anxiety-like behaviors. Enhancing or inhibiting these receptors can produce anxiogenic or anxiolytic effects, but have no impact on depression-like behavior. Therefore, RMTg M3 muscarinic receptors are involved in regulating anxiety and may be a potential therapeutic target for anxiolytic drugs.
Collapse
Affiliation(s)
- Jing Wu
- Beijing Key Laboratory of Learning and Cognition, Capital Normal University, Beijing, China; Faculty of Education, Henan Normal University, Xinxiang, China
| | - Xuhong Li
- Department of Education, Lyuliang University, Lyuliang, China
| | - Qi Zhang
- Beijing Key Laboratory of Learning and Cognition, Capital Normal University, Beijing, China
| | - Jiaxiang Li
- Beijing Key Laboratory of Learning and Cognition, Capital Normal University, Beijing, China
| | - Ruisi Cui
- Beijing Key Laboratory of Learning and Cognition, Capital Normal University, Beijing, China
| | - Xinwang Li
- Beijing Key Laboratory of Learning and Cognition, Capital Normal University, Beijing, China.
| |
Collapse
|
6
|
Nunes EJ, Kebede N, Haight JL, Foster DJ, Lindsley CW, Conn PJ, Addy NA. Ventral Tegmental Area M5 Muscarinic Receptors Mediate Effort-Choice Responding and Nucleus Accumbens Dopamine in a Sex-Specific Manner . J Pharmacol Exp Ther 2023; 385:146-156. [PMID: 36828630 PMCID: PMC10108441 DOI: 10.1124/jpet.122.001438] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/18/2023] [Accepted: 02/01/2023] [Indexed: 02/26/2023] Open
Abstract
Optimization of effort-related choices is impaired in depressive disorders. Acetylcholine (ACh) and dopamine (DA) are linked to depressive disorders, and modulation of ACh tone in the ventral tegmental area (VTA) affects mood-related behavioral responses in rats. However, it is unknown if VTA ACh mediates effort-choice behaviors. Using a task of effort-choice, rats can choose to lever press on a fixed-ratio 5 (FR5) schedule for a more-preferred food or consume freely available, less-preferred food. VTA administration of physostigmine (1 μg and 2 μg/side), a cholinesterase inhibitor, reduced FR5 responding for the more-preferred food while leaving consumption of the less-preferred food intact. VTA infusion of the M5 muscarinic receptor negative allosteric modulator VU6000181 (3 μM, 10 μM, 30 μM/side) did not affect lever pressing or chow consumption. However, VU6000181 (30 μM/side) coadministration with physostigmine (2 μg/side) attenuated physostigmine-induced decrease in lever pressing in female and male rats and significantly elevated lever pressing above vehicle baseline levels in male rats. In in vivo voltammetry experiments, VTA infusion of combined physostigmine and VU6000181 did not significantly alter evoked phasic DA release in the nucleus accumbens core (NAc) in female rats. In male rats, combined VTA infusion of physostigmine and VU6000181 increased phasic evoked DA release in the NAc compared with vehicle, physostigmine, or VU6000181 infusion alone. These data indicate a critical role and potential sex differences of VTA M5 receptors in mediating VTA cholinergic effects on effort choice behavior and regulation of DA release. SIGNIFICANCE STATEMENT: Effort-choice impairments are observed in depressive disorders, which are often treatment resistant to currently available thymoleptics. The role of ventral tegmental area (VTA) acetylcholine muscarinic M5 receptors, in a preclinical model of effort-choice behavior, is examined. Using the selective negative allosteric modulator of the M5 receptor VU6000181, we show the role of VTA M5 receptors on effort-choice and regulation of dopamine release in the nucleus accumbens core. This study supports M5 receptors as therapeutic targets for depression.
Collapse
Affiliation(s)
- Eric J Nunes
- Department of Psychiatry (E.J.N., N.K., J.L.H., N.A.A.) and Yale Tobacco Center of Regulatory Science (E.J.N.), Yale School of Medicine, New Haven, Connecticut; Department of Psychology, Quinnipiac University, Hamden, Connecticut (J.L.H.); Departments of Pharmacology (D.J.F., C.W.L., P.J.C.) and Chemistry (C.W.L.) and Vanderbilt Center for Neuroscience Drug Discovery (D.J.F., C.W.L., P.J.C.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee (D.J.F., P.J.C.); and Department of Cellular and Molecular Physiology and Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (N.A.A.)
| | - Nardos Kebede
- Department of Psychiatry (E.J.N., N.K., J.L.H., N.A.A.) and Yale Tobacco Center of Regulatory Science (E.J.N.), Yale School of Medicine, New Haven, Connecticut; Department of Psychology, Quinnipiac University, Hamden, Connecticut (J.L.H.); Departments of Pharmacology (D.J.F., C.W.L., P.J.C.) and Chemistry (C.W.L.) and Vanderbilt Center for Neuroscience Drug Discovery (D.J.F., C.W.L., P.J.C.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee (D.J.F., P.J.C.); and Department of Cellular and Molecular Physiology and Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (N.A.A.)
| | - Joshua L Haight
- Department of Psychiatry (E.J.N., N.K., J.L.H., N.A.A.) and Yale Tobacco Center of Regulatory Science (E.J.N.), Yale School of Medicine, New Haven, Connecticut; Department of Psychology, Quinnipiac University, Hamden, Connecticut (J.L.H.); Departments of Pharmacology (D.J.F., C.W.L., P.J.C.) and Chemistry (C.W.L.) and Vanderbilt Center for Neuroscience Drug Discovery (D.J.F., C.W.L., P.J.C.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee (D.J.F., P.J.C.); and Department of Cellular and Molecular Physiology and Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (N.A.A.)
| | - Daniel J Foster
- Department of Psychiatry (E.J.N., N.K., J.L.H., N.A.A.) and Yale Tobacco Center of Regulatory Science (E.J.N.), Yale School of Medicine, New Haven, Connecticut; Department of Psychology, Quinnipiac University, Hamden, Connecticut (J.L.H.); Departments of Pharmacology (D.J.F., C.W.L., P.J.C.) and Chemistry (C.W.L.) and Vanderbilt Center for Neuroscience Drug Discovery (D.J.F., C.W.L., P.J.C.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee (D.J.F., P.J.C.); and Department of Cellular and Molecular Physiology and Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (N.A.A.)
| | - Craig W Lindsley
- Department of Psychiatry (E.J.N., N.K., J.L.H., N.A.A.) and Yale Tobacco Center of Regulatory Science (E.J.N.), Yale School of Medicine, New Haven, Connecticut; Department of Psychology, Quinnipiac University, Hamden, Connecticut (J.L.H.); Departments of Pharmacology (D.J.F., C.W.L., P.J.C.) and Chemistry (C.W.L.) and Vanderbilt Center for Neuroscience Drug Discovery (D.J.F., C.W.L., P.J.C.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee (D.J.F., P.J.C.); and Department of Cellular and Molecular Physiology and Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (N.A.A.)
| | - P Jeffrey Conn
- Department of Psychiatry (E.J.N., N.K., J.L.H., N.A.A.) and Yale Tobacco Center of Regulatory Science (E.J.N.), Yale School of Medicine, New Haven, Connecticut; Department of Psychology, Quinnipiac University, Hamden, Connecticut (J.L.H.); Departments of Pharmacology (D.J.F., C.W.L., P.J.C.) and Chemistry (C.W.L.) and Vanderbilt Center for Neuroscience Drug Discovery (D.J.F., C.W.L., P.J.C.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee (D.J.F., P.J.C.); and Department of Cellular and Molecular Physiology and Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (N.A.A.)
| | - Nii A Addy
- Department of Psychiatry (E.J.N., N.K., J.L.H., N.A.A.) and Yale Tobacco Center of Regulatory Science (E.J.N.), Yale School of Medicine, New Haven, Connecticut; Department of Psychology, Quinnipiac University, Hamden, Connecticut (J.L.H.); Departments of Pharmacology (D.J.F., C.W.L., P.J.C.) and Chemistry (C.W.L.) and Vanderbilt Center for Neuroscience Drug Discovery (D.J.F., C.W.L., P.J.C.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee (D.J.F., P.J.C.); and Department of Cellular and Molecular Physiology and Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (N.A.A.)
| |
Collapse
|
7
|
Akmese C, Sevinc C, Halim S, Unal G. Differential role of GABAergic and cholinergic ventral pallidal neurons in behavioral despair, conditioned fear memory and active coping. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110760. [PMID: 37031946 DOI: 10.1016/j.pnpbp.2023.110760] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
The ventral pallidum (VP), a major component of the reward circuit, is well-associated with appetitive behaviors. Recent evidence suggests that this basal forebrain nucleus may have an overarching role in affective processing, including behavioral responses to aversive stimuli. We investigated this by utilizing selective immunotoxin lesions and a series of behavioral tests in adult male Wistar rats. We made bilateral GAT1-Saporin, 192-IgG-Saporin or PBS (vehicle) injections into the VP to respectively eliminate GABAergic and cholinergic neurons, and tested the animals in the forced swim test (FST), open field test (OFT), elevated plus maze (EPM), Morris water maze (MWM) and cued fear conditioning. Both GAT1-Saporin and 192-IgG-Saporin injections reduced behavioral despair without altering general locomotor activity. During the acquisition phase of cued fear conditioning, this antidepressant effect was accompanied by reduced freezing and increased darting in the 192-IgG-Saporin group, and increased jumping in the GAT1-Saporin group. In the extinction phase, cholinergic lesions impaired fear memory irrespective of the context, while GABAergic lesions reduced memory durability only during the early phases of extinction in a novel context. In line with this, selective cholinergic, but not GABAergic, lesions impaired spatial memory in the MWM. We observed no consistent effect in anxiety-like behavior assessed in the OFT and EPM. These findings indicate that both the GABAergic and cholinergic neuronal groups of the VP may contribute to emotion regulation through modulation of behavioral despair and acquired fear by suppressing active coping and promoting species-specific passive behaviors.
Collapse
Affiliation(s)
- Cemal Akmese
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey
| | - Cem Sevinc
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey
| | - Sahar Halim
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey
| | - Gunes Unal
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey.
| |
Collapse
|
8
|
Wickham RJ, Van Pampus MG. Editorial: Understanding perinatal mental health psychiatric impact. Front Psychiatry 2023; 14:1118492. [PMID: 36824674 PMCID: PMC9941694 DOI: 10.3389/fpsyt.2023.1118492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Affiliation(s)
- Robert J Wickham
- Department of Psychology, Lafayette College, Easton, PA, United States
| | - Maria G Van Pampus
- Department of Obstetrics and Gynecology, Onze Lieve Vrouwe Gasthuis, Amsterdam, Netherlands
| |
Collapse
|
9
|
Hu G, Zhang M, Wang Y, Yu M, Zhou Y. Potential of Heterogeneous Compounds as Antidepressants: A Narrative Review. Int J Mol Sci 2022; 23:ijms232213776. [PMID: 36430254 PMCID: PMC9692659 DOI: 10.3390/ijms232213776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
Depression is a globally widespread disorder caused by a complicated interplay of social, psychological, and biological factors. Approximately 280 million people are suffering from depression worldwide. Traditional frontline antidepressants targeting monoamine neurotransmitters show unsatisfactory effects. The development and application of novel antidepressants for dissimilar targets are on the agenda. This review characterizes the antidepressant effects of multiple endogenous compounds and/or their targets to provide new insight into the working mechanism of antidepressants. We also discuss perspectives and challenges for the generation of novel antidepressants.
Collapse
Affiliation(s)
- Gonghui Hu
- Department of Rehabilitation Medicine, Affiliated Hospital of Qingdao University, Qingdao 266000, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao 266071, China
| | - Meng Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao 266071, China
| | - Yuyang Wang
- Department of Rehabilitation Medicine, Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Ming Yu
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao 266000, China
| | - Yu Zhou
- Department of Rehabilitation Medicine, Affiliated Hospital of Qingdao University, Qingdao 266000, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao 266071, China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao 266000, China
- Correspondence:
| |
Collapse
|
10
|
Razidlo JA, Fausner SML, Ingebretson AE, Wang LC, Petersen CL, Mirza S, Swank IN, Alvarez VA, Lemos JC. Chronic Loss of Muscarinic M5 Receptor Function Manifests Disparate Impairments in Exploratory Behavior in Male and Female Mice despite Common Dopamine Regulation. J Neurosci 2022; 42:6917-6930. [PMID: 35896424 PMCID: PMC9463982 DOI: 10.1523/jneurosci.1424-21.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 06/09/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
Abstract
There are five cloned muscarinic acetylcholine receptors (M1-M5). Of these, the muscarinic type 5 receptor (M5) is the only one localized to dopamine neurons in the ventral tegmental area and substantia nigra. Unlike M1-M4, the M5 receptor has relatively restricted expression in the brain, making it an attractive therapeutic target. Here, we performed an in-depth characterization of M5-dependent potentiation of dopamine transmission in the nucleus accumbens and accompanying exploratory behaviors in male and female mice. We show that M5 receptors potentiate dopamine transmission by acting directly on the terminals within the nucleus accumbens. Using the muscarinic agonist oxotremorine, we revealed a unique concentration-response curve and a sensitivity to repeated forced swim stress or restraint stress exposure. We found that constitutive deletion of M5 receptors reduced exploration of the center of an open field while at the same time impairing normal habituation only in male mice. In addition, M5 deletion reduced exploration of salient stimuli, especially under conditions of high novelty, yet had no effect on hedonia assayed using the sucrose preference test or on stress-coping strategy assayed using the forced swim test. We conclude that M5 receptors are critical for both engaging with the environment and updating behavioral output in response to environment cues, specifically in male mice. A cardinal feature of mood and anxiety disorders is withdrawal from the environment. These data indicate that boosting M5 receptor activity may be a useful therapeutic target for ameliorating these symptoms of depression and anxiety.SIGNIFICANCE STATEMENT The basic physiological and behavioral functions of the muscarinic M5 receptor remain understudied. Furthermore, its presence on dopamine neurons, relatively restricted expression in the brain, and recent crystallization make it an attractive target for therapeutic development. Yet, most preclinical studies of M5 receptor function have primarily focused on substance use disorders in male rodents. Here, we characterized the role of M5 receptors in potentiating dopamine transmission in the nucleus accumbens, finding impaired functioning after stress exposure. Furthermore, we show that M5 receptors can modulate exploratory behavior in a sex-specific manner, without affecting hedonic behavior. These findings further illustrate the therapeutic potential of the M5 receptor, warranting further research in the context of treating mood disorders.
Collapse
Affiliation(s)
- John A Razidlo
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
- Medical Discovery Team on Addiction, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
| | - Skylar M L Fausner
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
- Medical Discovery Team on Addiction, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
| | - Anna E Ingebretson
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
- Medical Discovery Team on Addiction, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
| | - Liuchang C Wang
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
- Medical Discovery Team on Addiction, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
| | - Christopher L Petersen
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
- Medical Discovery Team on Addiction, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
| | - Salahudeen Mirza
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
- Medical Discovery Team on Addiction, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
| | - Isabella N Swank
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
- Medical Discovery Team on Addiction, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
| | - Veronica A Alvarez
- Laboratory on Neurobiology of Compulsive Behaviors, Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892-9411
| | - Julia C Lemos
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
- Medical Discovery Team on Addiction, Medical School, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
11
|
Faure P, Fayad SL, Solié C, Reynolds LM. Social Determinants of Inter-Individual Variability and Vulnerability: The Role of Dopamine. Front Behav Neurosci 2022; 16:836343. [PMID: 35386723 PMCID: PMC8979673 DOI: 10.3389/fnbeh.2022.836343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Individuals differ in their traits and preferences, which shape their interactions, their prospects for survival and their susceptibility to diseases. These correlations are well documented, yet the neurophysiological mechanisms underlying the emergence of distinct personalities and their relation to vulnerability to diseases are poorly understood. Social ties, in particular, are thought to be major modulators of personality traits and psychiatric vulnerability, yet the majority of neuroscience studies are performed on rodents in socially impoverished conditions. Rodent micro-society paradigms are therefore key experimental paradigms to understand how social life generates diversity by shaping individual traits. Dopamine circuitry is implicated at the interface between social life experiences, the expression of essential traits, and the emergence of pathologies, thus proving a possible mechanism to link these three concepts at a neuromodulatory level. Evaluating inter-individual variability in automated social testing environments shows great promise for improving our understanding of the link between social life, personality, and precision psychiatry – as well as elucidating the underlying neurophysiological mechanisms.
Collapse
|
12
|
Vaidya S, Guerin AA, Walker LC, Lawrence AJ. Clinical Effectiveness of Muscarinic Receptor-Targeted Interventions in Neuropsychiatric Disorders: A Systematic Review. CNS Drugs 2022; 36:1171-1206. [PMID: 36269510 PMCID: PMC9653329 DOI: 10.1007/s40263-022-00964-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND For decades, treatment of mood disorders, psychoses, anxiety and dementia have been confounded by limited efficacy and high rates of treatment resistance. Preclinical and clinical evidence have highlighted disruption of cholinergic signalling in several neuropsychiatric conditions and examined intervention strategies including acetylcholinesterase inhibitors and nicotinic receptor-targeted intervention. However, the effectiveness of these approaches is often curtailed by on-target side effects. Post mortem studies implicate muscarinic receptor dysregulation in neuropsychiatric pathophysiology; therefore, we conducted a systematic review and meta-analysis to investigate the therapeutic efficacy and safety of muscarinic receptor-targeted interventions in adults with neuropsychiatric disorders. METHODS PubMed, EMBASE, PsycINFO, EBSCO and Web of Science were searched using relevant keywords from database inception to 7 August 2022. Randomised, double-blind, placebo-controlled studies were included if they investigated the effect of muscarinic receptor-targeted intervention in adults with a diagnosis of a neuropsychiatric disorder and were published in English. A narrative synthesis approach was adopted to describe the findings. Wherever three or more studies with a similar intervention were available, effect sizes were calculated, and a meta-analysis was performed. Cochrane risk-of-bias-2 tool was utilised to assess the risk of bias, and sensitivity analyses were performed to identify publication bias. Certainty analysis (high, moderate, low and/or very low) was conducted using GRADE criteria. RESULTS Overall, 33 studies met the inclusion criteria and 5 were included in the meta-analysis. Despite a limited pool with several different interventions, we found therapeutic efficacy of xanomeline (M1/M4 agonist) in primary psychotic disorders plus behavioural and psychological symptoms of dementia. Scopolamine showed a significant antidepressant effect in a combined cohort of major depressive and bipolar disorders in the short-term outcome measure, but no effect following cessation of treatment. Results from bias assessments suggest "very low" certainty in the antidepressant effect of scopolamine. Critical limitations of the current literature included low power, high heterogeneity in the patient population and a lack of active comparators. CONCLUSION While the results are not definitive, findings on muscarinic receptor-targeted interventions in several mental disorders are promising in terms of efficacy and safety, specifically in treating schizophrenia, mood disorders, and behavioural and psychiatric symptoms of Alzheimer's disease. However, orthosteric muscarinic receptor-targeted interventions are associated with a range of peripheral adverse effects that are thought to be mediated via M2/M3 receptors. The orthosteric binding site of muscarinic acetylcholine receptors is remarkably conserved, posing a challenge for subtype-selective interventions; nonetheless allosteric ligands with biased signalling pathways are now in development. We conclude that adequately powered prospective studies with subtype-selective interventions are required to determine the clinical effectiveness of muscarinic-receptor targeted interventions for the treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Shivani Vaidya
- Florey Institute of Neuroscience & Mental Health, Royal Parade, Parkville, VIC 3010 Australia ,Florey Department of Neuroscience & Mental Health, University of Melbourne, Parkville, VIC 3010 Australia
| | - Alexandre A. Guerin
- Centre for Youth Mental Health, University of Melbourne, 35 Poplar Rd, Parkville, VIC 3052 Australia ,Orygen, 35 Poplar Rd, Parkville, VIC 3052 Australia
| | - Leigh C. Walker
- Florey Institute of Neuroscience & Mental Health, Royal Parade, Parkville, VIC 3010 Australia ,Florey Department of Neuroscience & Mental Health, University of Melbourne, Parkville, VIC 3010 Australia
| | - Andrew J. Lawrence
- Florey Institute of Neuroscience & Mental Health, Royal Parade, Parkville, VIC 3010 Australia ,Florey Department of Neuroscience & Mental Health, University of Melbourne, Parkville, VIC 3010 Australia
| |
Collapse
|
13
|
Radulovic J, Ivkovic S, Adzic M. From chronic stress and anxiety to neurodegeneration: Focus on neuromodulation of the axon initial segment. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:481-495. [PMID: 35034756 DOI: 10.1016/b978-0-12-819410-2.00025-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
To adapt to the sustained demands of chronic stress, discrete brain circuits undergo structural and functional changes often resulting in anxiety disorders. In some individuals, anxiety disorders precede the development of motor symptoms of Parkinson's disease (PD) caused by degeneration of neurons in the substantia nigra (SN). Here, we present a circuit framework for probing a causal link between chronic stress, anxiety, and PD, which postulates a central role of abnormal neuromodulation of the SN's axon initial segment by brainstem inputs. It is grounded in findings demonstrating that the earliest PD pathologies occur in the stress-responsive, emotion regulation network of the brainstem, which provides the SN with dense aminergic and cholinergic innervation. SN's axon initial segment (AIS) has unique features that support the sustained and bidirectional propagation of activity in response to synaptic inputs. It is therefore, especially sensitive to circuit-mediated stress-induced imbalance of neuromodulation, and thus a plausible initiating site of neurodegeneration. This could explain why, although secondary to pathophysiologies in other brainstem nuclei, SN degeneration is the most extensive. Consequently, the cardinal symptom of PD, severe motor deficits, arise from degeneration of the nigrostriatal pathway rather than other brainstem nuclei. Understanding when and how circuit dysfunctions underlying anxiety can progress to neurodegeneration, raises the prospect of timed interventions for reversing, or at least impeding, the early pathophysiologies that lead to PD and possibly other neurodegenerative disorders.
Collapse
Affiliation(s)
- Jelena Radulovic
- Department of Neuroscience, Albert Einstein Medical College, Bronx, NY, United States; Department of Psychiatry and Behavioral Sciences, Albert Einstein Medical College, Bronx, NY, United States.
| | - Sanja Ivkovic
- Department of Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Miroslav Adzic
- Department of Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
14
|
Chronic Stress Induces Sex-Specific Functional and Morphological Alterations in Corticoaccumbal and Corticotegmental Pathways. Biol Psychiatry 2021; 90:194-205. [PMID: 33867113 DOI: 10.1016/j.biopsych.2021.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND The medial prefrontal cortex (mPFC) is part of a complex circuit controlling stress responses by sending projections to different limbic structures including the nucleus accumbens (NAc) and ventral tegmental area (VTA). However, the impact of chronic stress on NAc- and VTA-projecting mPFC neurons is still unknown, and the distinct contribution of these pathways to stress responses in males and females is unclear. METHODS Behavioral stress responses were induced by 21 days of chronic variable stress in male and female C57BL/6NCrl mice. An intersectional viral approach was used to label both pathways and assess the functional, morphological, and transcriptional adaptations in NAc- and VTA-projecting mPFC neurons in stressed males and females. Using chemogenetic approaches, we modified neuronal activity of NAc-projecting mPFC neurons to decipher their contribution to stress phenotypes. RESULTS Chronic variable stress induced depressive-like behaviors in males and females. NAc- and VTA-projecting mPFC neurons exhibited sex-specific functional, morphological, and transcriptional alterations. The functional changes were more severe in females in NAc-projecting mPFC neurons, while males exhibited more drastic reductions in dendritic complexity in VTA-projecting mPFC neurons after chronic variable stress. Finally, chemogenetic overactivation of the corticoaccumbal pathway triggered anxiety and behavioral despair in both sexes, while its inhibition rescued the phenotype only in females. CONCLUSIONS Our results suggest that stress responses in males and females result from pathway-specific changes in the activity of transcriptional programs controlling the morphological and synaptic properties of corticoaccumbal and corticotegmental pathways in a sex-specific fashion.
Collapse
|
15
|
Gustavson DE, Coleman PL, Iversen JR, Maes HH, Gordon RL, Lense MD. Mental health and music engagement: review, framework, and guidelines for future studies. Transl Psychiatry 2021; 11:370. [PMID: 34226495 PMCID: PMC8257764 DOI: 10.1038/s41398-021-01483-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 06/03/2021] [Accepted: 06/10/2021] [Indexed: 01/08/2023] Open
Abstract
Is engaging with music good for your mental health? This question has long been the topic of empirical clinical and nonclinical investigations, with studies indicating positive associations between music engagement and quality of life, reduced depression or anxiety symptoms, and less frequent substance use. However, many earlier investigations were limited by small populations and methodological limitations, and it has also been suggested that aspects of music engagement may even be associated with worse mental health outcomes. The purpose of this scoping review is first to summarize the existing state of music engagement and mental health studies, identifying their strengths and weaknesses. We focus on broad domains of mental health diagnoses including internalizing psychopathology (e.g., depression and anxiety symptoms and diagnoses), externalizing psychopathology (e.g., substance use), and thought disorders (e.g., schizophrenia). Second, we propose a theoretical model to inform future work that describes the importance of simultaneously considering music-mental health associations at the levels of (1) correlated genetic and/or environmental influences vs. (bi)directional associations, (2) interactions with genetic risk factors, (3) treatment efficacy, and (4) mediation through brain structure and function. Finally, we describe how recent advances in large-scale data collection, including genetic, neuroimaging, and electronic health record studies, allow for a more rigorous examination of these associations that can also elucidate their neurobiological substrates.
Collapse
Affiliation(s)
- Daniel E. Gustavson
- grid.412807.80000 0004 1936 9916Department of Medicine, Vanderbilt University Medical Center, Nashville, TN USA ,grid.412807.80000 0004 1936 9916Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN USA
| | - Peyton L. Coleman
- grid.412807.80000 0004 1936 9916Department of Otolaryngology – Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, TN USA
| | - John R. Iversen
- grid.266100.30000 0001 2107 4242Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California, San Diego, La Jolla, CA USA
| | - Hermine H. Maes
- grid.224260.00000 0004 0458 8737Department of Human and Molecular Genetics, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA USA ,grid.224260.00000 0004 0458 8737Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA USA ,grid.224260.00000 0004 0458 8737Massey Cancer Center, Virginia Commonwealth University, Richmond, VA USA
| | - Reyna L. Gordon
- grid.412807.80000 0004 1936 9916Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN USA ,grid.412807.80000 0004 1936 9916Department of Otolaryngology – Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, TN USA ,grid.152326.10000 0001 2264 7217Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN USA ,grid.152326.10000 0001 2264 7217The Curb Center, Vanderbilt University, Nashville, TN USA
| | - Miriam D. Lense
- grid.412807.80000 0004 1936 9916Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN USA ,grid.152326.10000 0001 2264 7217Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN USA ,grid.152326.10000 0001 2264 7217The Curb Center, Vanderbilt University, Nashville, TN USA
| |
Collapse
|
16
|
Peker K, Polat R. The effects of preoperative reactions of emotional distress on headache and acute low back pain after spinal anesthesia: A prospective study. J Psychosom Res 2021; 144:110416. [PMID: 33735647 DOI: 10.1016/j.jpsychores.2021.110416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 01/03/2023]
Abstract
OBJECTIVES To address the effect of preoperative symptoms of depression and anxiety on headache and low back pain after spinal anesthesia. METHODS This prospective observational cohort study included 370 patients who underwent spinal anesthesia before elective surgeries at a university hospital. The patients were evaluated in terms of symptoms of depression (Beck Depression Inventory) and anxiety (Beck Anxiety Scale) while in their wards. The patients were evaluated via telephone calls for headache and low back pain after the operation. RESULTS Eighty-two (82/362) (23%) patients were determined as having headache and 28 (28/362) (7.8%) were determined as having low back pain. There was a significant association between preoperative depression scores and anxiety scores and VAS scores of headache (respectively, eta-squared = 0.19, p < .001; eta-squared = 0.14, p < .001). There was a significant association between preoperative depression scores and anxiety scores and VAS scores of low back pain (respectively, eta-squared = 0.02, p = .08; eta-squared = 0.03, p = .01). CONCLUSIONS Preoperative symptoms of anxiety and symptoms of depression affect headache after spinal anesthesia. Preoperative symptoms of depression affect acute low back pain after spinal anesthesia. This trial was also registered at http://www.ClinicalTrials.gov. (Protocol Registration Receipt NCT03427372).
Collapse
Affiliation(s)
- Kevser Peker
- Kırıkkale University Faculty of Medicine, Department of Anesthesiology and Critical Care, Turkey.
| | - Reyhan Polat
- Diskapi Yildirim Beyazit Training and Research Hospital, Anesthesiology and Reanimation, TC Saglik Bakanligi, Turkey
| |
Collapse
|
17
|
Fitzgerald PJ, Hale PJ, Ghimire A, Watson BO. Repurposing Cholinesterase Inhibitors as Antidepressants? Dose and Stress-Sensitivity May Be Critical to Opening Possibilities. Front Behav Neurosci 2021; 14:620119. [PMID: 33519395 PMCID: PMC7840590 DOI: 10.3389/fnbeh.2020.620119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
When stress becomes chronic it can trigger lasting brain and behavioral changes including Major Depressive Disorder (MDD). There is conflicting evidence regarding whether acetylcholinesterase inhibitors (AChEIs) may have antidepressant properties. In a recent publication, we demonstrated a strong dose-dependency of the effect of AChEIs on antidepressant-related behavior in the mouse forced swim test: whereas the AChEI donepezil indeed promotes depression-like behavior at a high dose, it has antidepressant-like properties at lower doses in the same experiment. Our data therefore suggest a Janus-faced dose-response curve for donepezil in depression-related behavior. In this review, we investigate the mood-related properties of AChEIs in greater detail, focusing on both human and rodent studies. In fact, while there have been many studies showing pro-depressant activity by AChEIs and this is a major concept in the field, a variety of other studies in both humans and rodents show antidepressant effects. Our study was one of the first to systematically vary dose to include very low concentrations while measuring behavioral effects, potentially explaining the apparent disparate findings in the field. The possibility of antidepressant roles for AChEIs in rodents may provide hope for new depression treatments. Importantly, MDD is a psychosocial stress-linked disorder, and in rodents, stress is a major experimental manipulation for studying depression mechanisms, so an important future direction will be to determine the extent to which these depression-related effects are stress-sensitive. In sum, gaining a greater understanding of the potentially therapeutic mood-related effects of low dose AChEIs, both in rodent models and in human subjects, should be a prioritized topic in ongoing translational research.
Collapse
Affiliation(s)
- Paul J Fitzgerald
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Pho J Hale
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Anjesh Ghimire
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Brendon O Watson
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
18
|
Siemann JK, Grueter BA, McMahon DG. Rhythms, Reward, and Blues: Consequences of Circadian Photoperiod on Affective and Reward Circuit Function. Neuroscience 2020; 457:220-234. [PMID: 33385488 DOI: 10.1016/j.neuroscience.2020.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/01/2023]
Abstract
Circadian disruptions, along with altered affective and reward states, are commonly associated with psychiatric disorders. In addition to genetics, the enduring influence of environmental factors in programming neural networks is of increased interest in assessing the underpinnings of mental health. The duration of daylight or photoperiod is known to impact both the serotonin and dopamine systems, which are implicated in mood and reward-based disorders. This review first examines the effects of circadian disruption and photoperiod in the serotonin system in both human and preclinical studies. We next highlight how brain regions crucial for the serotoninergic system (i.e., dorsal raphe nucleus; DRN), and dopaminergic (i.e., nucleus accumbens; NAc and ventral tegmental area; VTA) system are intertwined in overlapping circuitry, and play influential roles in the pathology of mood and reward-based disorders. We then focus on human and animal studies that demonstrate the impact of circadian factors on the dopaminergic system. Lastly, we discuss how environmental factors such as circadian photoperiod can impact the neural circuits that are responsible for regulating affective and reward states, offering novel insights into the biological mechanisms underlying the pathophysiology, systems, and therapeutic treatments necessary for mood and reward-based disorders.
Collapse
Affiliation(s)
- Justin K Siemann
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| | - Brad A Grueter
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA; Department of Anesthesiology, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37235, USA; Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| | - Douglas G McMahon
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA; Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
19
|
M 3 but not M 4 muscarinic receptors in the rostromedial tegmental nucleus are involved in the acquisition of morphine-induced conditioned place preference. Eur J Pharmacol 2020; 882:173274. [PMID: 32534071 DOI: 10.1016/j.ejphar.2020.173274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 01/08/2023]
Abstract
Opioids strongly inhibit GABAergic neurons in the rostromedial tegmental nucleus (RMTg) that expresses μ-opioid receptors to induce rewarding and psychomotor effects. M3 and M4 muscarinic receptors are co-localized with μ-opioid receptors at these GABAergic neurons. This study explored whether RMTg M3 and M4 muscarinic receptors are involved in regulating opioid-induced reward and locomotion via a conditioned place preference (CPP) paradigm. Selective muscarinic receptor agonists and antagonists were both singly and combinatorically injected into the RMTg to examine their effects on the acquisition of systemic morphine-induced CPP and locomotor activity. The M3 muscarinic receptor agonist, pilocarpine, inhibited the acquisition of morphine-induced CPP, whereas its antagonist, 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide (4-DAMP, 1 μg/side), reversed the inhibitory effect of pilocarpine (30 μg/side). Additionally, 4-DAMP increased locomotor activity while pilocarpine (30 μg/side) partially decreased locomotor activity when combined with morphine. In contrast, the M4 muscarinic receptor agonist, LY2033298 (0.1 and 0.2 μg/side), and antagonist, tropicamide (20 and 40 μM/side), did not affect the acquisition of morphine-induced CPP or locomotor activity. Taken together, our findings suggest that RMTg M3 muscarinic receptors are involved in opioid-induced rewarding and psychomotor effects. Therefore, RMTg M3 muscarinic receptors may represent a promising target for the treatment of opioid addiction.
Collapse
|
20
|
Converging evidence that short-active photoperiod increases acetylcholine signaling in the hippocampus. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2020; 20:1173-1183. [PMID: 32794101 DOI: 10.3758/s13415-020-00824-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Seasonal variations in environmental light influence switches between moods in seasonal affective disorder (SAD) and bipolar disorder (BD), with depression arising during short active (SA) winter periods. Light-induced changes in behavior are also seen in healthy animals and are intensified in mice with reduced dopamine transporter expression. Specifically, decreasing the nocturnal active period (SA) of mice increases punishment perseveration and forced swim test (FST) immobility. Elevating acetylcholine with the acetylcholinesterase inhibitor physostigmine induces depression symptoms in people and increases FST immobility in mice. We used SA photoperiods and physostigmine to elevate acetylcholine prior to testing in a probabilistic learning task and the FST, including reversing subsequent deficits with nicotinic and scopolamine antagonists and targeted hippocampal adeno-associated viral administration. We confirmed that physostigmine also increases punishment sensitivity in a probabilistic learning paradigm. In addition, muscarinic and nicotinic receptor blockade attenuated both physostigmine-induced and SA-induced phenotypes. Finally, viral-mediated hippocampal expression of human AChE used to lower ACh levels blocked SA-induced elevation of FST immobility. These results indicate that increased hippocampal acetylcholine neurotransmission is necessary for the expression of SA exposure-induced behaviors. Furthermore, these studies support the potential for cholinergic treatments in depression. Taken together, these results provide evidence for hippocampal cholinergic mechanisms in contributing to seasonally depressed affective states induced by short day lengths.
Collapse
|
21
|
Nunes EJ, Rupprecht LE, Foster DJ, Lindsley CW, Conn PJ, Addy NA. Examining the role of muscarinic M5 receptors in VTA cholinergic modulation of depressive-like and anxiety-related behaviors in rats. Neuropharmacology 2020; 171:108089. [PMID: 32268153 PMCID: PMC7313677 DOI: 10.1016/j.neuropharm.2020.108089] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/21/2020] [Accepted: 04/02/2020] [Indexed: 12/14/2022]
Abstract
Acetylcholine is implicated in mood disorders including depression and anxiety. Increased cholinergic tone in humans and rodents produces pro-depressive and anxiogenic-like effects. Cholinergic receptors in the ventral tegmental area (VTA) are known to mediate these responses in male rats, as measured by the sucrose preference test (SPT), elevated plus maze (EPM), and the forced swim test (FST). However, these effects have not been examined in females, and the VTA muscarinic receptor subtype(s) mediating the pro-depressive and anxiogenic-like behavioral effects of increased cholinergic tone are unknown. We first examined the behavioral effects of increased VTA cholinergic tone in male and female rats, and then determined whether VTA muscarinic M5 receptors were mediating these effects. VTA infusion of the acetylcholinesterase inhibitor physostigmine (0.5 μg, 1 μg and 2 μg/side) in males and females produced anhedonic-like, anxiogenic, pro-depressive-like responses on the SPT, EPM, and FST. In females, VTA administration of the muscarinic M5 selective negative allosteric modulator VU6000181 (0.68 ng, 2.3 ng, 6.8 ng/side for a 3 μM, 10 μM, 30 μM/side infusion) did not alter SPT, EPM nor FST behavior. However, in males intra-VTA infusion of VU6000181 alone reduced time spent immobile on the FST. Furthermore, co-infusion of VU6000181 with physostigmine, in male and female rats, attenuated the pro-depressive and anxiogenic-like behavioral responses induced by VTA physostigmine alone, in the SPT, EPM, and FST. Together, these data reveal a critical role of VTA M5 receptors in mediating the anhedonic, anxiogenic, and depressive-like behavioral effects of increased cholinergic tone in the VTA.
Collapse
Affiliation(s)
- Eric J Nunes
- Department of Psychiatry, Yale School of Medicine, New Haven, 06511, CT, USA
| | - Laura E Rupprecht
- Department of Psychiatry, Yale School of Medicine, New Haven, 06511, CT, USA
| | - Daniel J Foster
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA; Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Nii A Addy
- Department of Psychiatry, Yale School of Medicine, New Haven, 06511, CT, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, 06511, CT, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, 06511, CT, USA.
| |
Collapse
|
22
|
Walker LC, Lawrence AJ. Allosteric modulation of muscarinic receptors in alcohol and substance use disorders. FROM STRUCTURE TO CLINICAL DEVELOPMENT: ALLOSTERIC MODULATION OF G PROTEIN-COUPLED RECEPTORS 2020; 88:233-275. [DOI: 10.1016/bs.apha.2020.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
The molecular and cellular mechanisms of depression: a focus on reward circuitry. Mol Psychiatry 2019; 24:1798-1815. [PMID: 30967681 PMCID: PMC6785351 DOI: 10.1038/s41380-019-0415-3] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/18/2019] [Accepted: 03/18/2019] [Indexed: 12/16/2022]
Abstract
Depression is a complex disorder that takes an enormous toll on individual health. As affected individuals display a wide variation in their clinical symptoms, the precise neural mechanisms underlying the development of depression remain elusive. Although it is impossible to phenocopy every symptom of human depression in rodents, the preclinical field has had great success in modeling some of the core affective and neurovegetative depressive symptoms, including social withdrawal, anhedonia, and weight loss. Adaptations in select cell populations may underlie these individual depressive symptoms and new tools have expanded our ability to monitor and manipulate specific cell types. This review outlines some of the most recent preclinical discoveries on the molecular and neurophysiological mechanisms in reward circuitry that underlie the expression of behavioral constructs relevant to depressive symptoms.
Collapse
|
24
|
Nasehi M, Mohammadi-Mahdiabadi-Hasani MH, Ebrahimi-Ghiri M, Zarrindast MR. Additive interaction between scopolamine and nitric oxide agents on immobility in the forced swim test but not exploratory activity in the hole-board. Psychopharmacology (Berl) 2019; 236:3353-3362. [PMID: 31175384 DOI: 10.1007/s00213-019-05294-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 05/31/2019] [Indexed: 01/01/2023]
Abstract
RATIONALE The muscarinic cholinergic antagonist scopolamine has received an attention due to its unique antidepressant effects. However, the considerable adverse effects on nervous system limit the use of scopolamine as a psychiatric drug. OBJECTIVE In order to overcome the limitations and increase the therapeutic effects of scopolamine, we decided to examine the effects of joint administration of sub-effective dose of scopolamine and the sub-effective dose of a nitric oxide (NO) precursor L-Arginine or a non-selective nitric oxide synthase (NOS) inhibitor L-NAME on depression- and anxiety-related behaviors in male NMRI mice. METHODS To this aim, animal behavior was assessed in the forced swim test (FST) and hole-board apparatus. RESULTS Scopolamine (0.05 mg/kg) significantly decreased immobility time in the FST, suggesting an antidepressant-like effect. Moreover, L-Arginine (50 mg/kg) produced an antidepressant-like response in the FST and decreased head-dip counts in the hole-board apparatus, indicating an anxiety-like effect. The same doses of scopolamine and L-Arginine decreased the locomotor activity in mice. Joint administration of sub-effective dose of scopolamine (0.01 mg/kg) with a low dose of L-Arginine (25 mg/kg) or L-NAME (1 mg/kg) induced a profound antidepressant-like effect in the FST. These drug combinations did not influence on anxiety-related behaviors. Meanwhile, L-NAME alone did not alter the performance of mice in the FST and hole-board. Isobolographic analysis revealed an additive effect for scopolamine and L-Arginine or L-NAME. CONCLUSION Data suggests that NO agents could positively impact the therapeutic profile of scopolamine, because they might be useful for inducing antidepressant-like effect associated to scopolamine.
Collapse
Affiliation(s)
- Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Amir-Almomenin Hospital, Islamic Azad University, Tehran, Iran
| | | | - Mohaddeseh Ebrahimi-Ghiri
- Department of Biology, Faculty of Sciences, University of Zanjan, P.O. Box 45371-38791, Zanjan, Iran.
| | - Mohammad-Reza Zarrindast
- Institute for Cognitive Science Studies (ICSS), Tehran, Iran.,Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran.,Department of Neuroendocrinology, Endocrinology, and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Falk S, Lund C, Clemmensen C. Muscarinic receptors in energy homeostasis: Physiology and pharmacology. Basic Clin Pharmacol Toxicol 2019; 126 Suppl 6:66-76. [PMID: 31464050 DOI: 10.1111/bcpt.13311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/12/2019] [Indexed: 11/27/2022]
Abstract
Despite increased awareness and intensified biomedical research efforts, the prevalence of obesity continues to rise worldwide. This is alarming, because obesity accelerates the progression of several chronic disorders, including type 2 diabetes, cancer and cardiovascular disease. Individuals who experience significant weight loss must combat powerful counter-regulatory energy homeostatic processes, and, typically, most individuals regain the lost weight. Therefore, decoding the neural mechanisms underlying the regulation of energy homeostasis is necessary for developing breakthroughs in obesity management. It has been known for decades that cholinergic neurotransmission both directly and indirectly modulates energy homeostasis and metabolic health. Despite this insight, the molecular details underlying the modulation remain ill-defined, and the potential for targeting cholinergic muscarinic receptors for treating metabolic disease is largely uncharted. In this MiniReview, we scrutinize the literature that has formed our knowledge of muscarinic acetylcholine receptors (mAChRs) in energy homeostasis. The role of mAChRs in canonical appetite-regulating circuits will be discussed as will the more indirect regulation of energy homoeostasis via neurocircuits linked to motivated behaviours and emotional states. Finally, we discuss the therapeutic prospects of targeting mAChRs for the treatment of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Sarah Falk
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Lund
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Christoffer Clemmensen
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Nunes EJ, Bitner L, Hughley SM, Small KM, Walton SN, Rupprecht LE, Addy NA. Cholinergic Receptor Blockade in the VTA Attenuates Cue-Induced Cocaine-Seeking and Reverses the Anxiogenic Effects of Forced Abstinence. Neuroscience 2019; 413:252-263. [PMID: 31271832 DOI: 10.1016/j.neuroscience.2019.06.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/31/2019] [Accepted: 06/19/2019] [Indexed: 02/08/2023]
Abstract
Drug relapse after periods of abstinence is a common feature of substance abuse. Moreover, anxiety and other mood disorders are often co-morbid with substance abuse. Cholinergic receptors in the ventral tegmental area (VTA) are known to mediate drug-seeking and anxiety-related behavior in rodent models. However, it is unclear if overlapping VTA cholinergic mechanisms mediate drug relapse and anxiety-related behaviors associated with drug abstinence. We examined the effects of VTA cholinergic receptor blockade on cue-induced cocaine seeking and anxiety during cocaine abstinence. Male Sprague-Dawley rats were trained to self-administer intravenous cocaine (~0.5 mg/kg/infusion, FR1 schedule) for 10 days, followed by 14 days of forced abstinence. VTA infusion of the non-selective nicotinic acetylcholine receptor antagonist mecamylamine (0, 10, and 30 μg/side) or the non-selective muscarinic receptor antagonist scopolamine (0, 2.4 and 24 μg /side) significantly decreased cue-induced cocaine seeking. In cocaine naïve rats, VTA mecamylamine or scopolamine also led to dose-dependent increases in open arm time in the elevated plus maze (EPM). In contrast, rats that received I.V. cocaine, compared to received I.V. saline rats, displayed an anxiogenic response on day 14 of abstinence as reflected by decreased open arm time in the EPM. Furthermore, low doses of VTA mecamylamine (10 μg /side) or scopolamine (2.4 μg /side), that did not alter EPM behavior in cocaine naive rats, were sufficient to reverse the anxiogenic effects of cocaine abstinence. Together, these data point to an overlapping role of VTA cholinergic mechanisms to regulate relapse and mood disorder-related responses during cocaine abstinence.
Collapse
Affiliation(s)
- Eric J Nunes
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Lillian Bitner
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Shannon M Hughley
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Keri M Small
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Sofia N Walton
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Laura E Rupprecht
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Nii A Addy
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06511, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
27
|
Volgin AD, Bashirzade A, Amstislavskaya TG, Yakovlev OA, Demin KA, Ho YJ, Wang D, Shevyrin VA, Yan D, Tang Z, Wang J, Wang M, Alpyshov ET, Serikuly N, Wappler-Guzzetta EA, Lakstygal AM, Kalueff AV. DARK Classics in Chemical Neuroscience: Arecoline. ACS Chem Neurosci 2019; 10:2176-2185. [PMID: 30664352 DOI: 10.1021/acschemneuro.8b00711] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Arecoline is a naturally occurring psychoactive alkaloid from areca (betel) nuts of the areca palm ( Areca catechu) endemic to South and Southeast Asia. A partial agonist of nicotinic and muscarinic acetylcholine receptors, arecoline evokes multiple effects on the central nervous system (CNS), including stimulation, alertness, elation, and anxiolysis. Like nicotine, arecoline also evokes addiction and withdrawal symptoms (upon discontinuation). The abuse of areca nuts is widespread, with over 600 million users globally. The importance of arecoline is further supported by its being the world's fourth most commonly used human psychoactive substance (after alcohol, nicotine, and caffeine). Here, we discuss neuropharmacology, pharmacokinetics, and metabolism of arecoline, as well as social and historical aspects of its use and abuse. Paralleling clinical findings, we also evaluate its effects in animal models and outline future clinical and preclinical CNS research in this field.
Collapse
Affiliation(s)
- Andrey D. Volgin
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk 630117, Russia
| | - Alim Bashirzade
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk 630117, Russia
| | | | - Oleg A. Yakovlev
- Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg 194156, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Konstantin A. Demin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg 194156, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Ying-Jui Ho
- Department of Psychology, Chung Shan Medical University, Taichung, Taiwan
| | - Dongmei Wang
- School of Pharmacy, Southwest University, Chongqing 400700, China
| | | | - Dongni Yan
- School of Pharmacy, Southwest University, Chongqing 400700, China
| | - Zhichong Tang
- School of Pharmacy, Southwest University, Chongqing 400700, China
| | - Jingtao Wang
- School of Pharmacy, Southwest University, Chongqing 400700, China
| | - Mengyao Wang
- School of Pharmacy, Southwest University, Chongqing 400700, China
| | - Erik T. Alpyshov
- School of Pharmacy, Southwest University, Chongqing 400700, China
| | - Nazar Serikuly
- School of Pharmacy, Southwest University, Chongqing 400700, China
| | | | - Anton M. Lakstygal
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Russian Scientific Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg 197758, Russia
| | - Allan V. Kalueff
- School of Pharmacy, Southwest University, Chongqing 400700, China
- Ural Federal University, Ekaterinburg 620002, Russia
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, Louisiana 70458, United States
- Anatomy and Physiology Laboratory, Ural Federal University, Ekaterinburg 620002, Russia
- ZENEREI Research Center, Slidell, Louisiana 70458, United States
| |
Collapse
|
28
|
Dulawa SC, Janowsky DS. Cholinergic regulation of mood: from basic and clinical studies to emerging therapeutics. Mol Psychiatry 2019; 24:694-709. [PMID: 30120418 PMCID: PMC7192315 DOI: 10.1038/s41380-018-0219-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/06/2018] [Accepted: 07/09/2018] [Indexed: 12/16/2022]
Abstract
Mood disorders are highly prevalent and are the leading cause of disability worldwide. The neurobiological mechanisms underlying depression remain poorly understood, although theories regarding dysfunction within various neurotransmitter systems have been postulated. Over 50 years ago, clinical studies suggested that increases in central acetylcholine could lead to depressed mood. Evidence has continued to accumulate suggesting that the cholinergic system has a important role in mood regulation. In particular, the finding that the antimuscarinic agent, scopolamine, exerts fast-onset and sustained antidepressant effects in depressed humans has led to a renewal of interest in the cholinergic system as an important player in the neurochemistry of major depression and bipolar disorder. Here, we synthesize current knowledge regarding the modulation of mood by the central cholinergic system, drawing upon studies from human postmortem brain, neuroimaging, and drug challenge investigations, as well as animal model studies. First, we describe an illustrative series of early discoveries which suggest a role for acetylcholine in the pathophysiology of mood disorders. Then, we discuss more recent studies conducted in humans and/or animals which have identified roles for both acetylcholinergic muscarinic and nicotinic receptors in different mood states, and as targets for novel therapies.
Collapse
Affiliation(s)
- Stephanie C. Dulawa
- Department of Psychiatry, University of California at San Diego,Corresponding author: Stephanie Dulawa, Ph.D., Associate Professor in Psychiatry, University of California San Diego, 9500 Gilman Drive, Mailcode 0804, La Jolla, CA 92093-0804, USA ()
| | | |
Collapse
|
29
|
Nassar N, Assaf N, Farrag D, Ibrahim D, Al-Sheekh A. Depression in patients with chronic low back pain. EGYPTIAN RHEUMATOLOGY AND REHABILITATION 2018. [DOI: 10.4103/err.err_32_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
30
|
Moreno-Rius J. The cerebellum in fear and anxiety-related disorders. Prog Neuropsychopharmacol Biol Psychiatry 2018; 85:23-32. [PMID: 29627508 DOI: 10.1016/j.pnpbp.2018.04.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 01/06/2023]
Abstract
Fear and anxiety-related disorders are highly prevalent psychiatric conditions characterized by avoidant and fearful reactions towards specific stimuli or situations, which are disproportionate given the real threat such stimuli entail. These conditions comprise the most common mental disorder group. There are a high proportion of patients who fail to achieve remission and the presence of high relapse rates indicate the therapeutic options available are far from being fully efficient. Despite an increased understanding the neural circuits underlying fear and anxiety-related behaviors in the last decades, a factor that could be partially contributing to the lack of adequate therapies may be an insufficient understanding of the core features of the disorders and their associated neurobiology. Interestingly, the cerebellum shows connections with fear and anxiety-related brain areas and functional involvement in such processes, but explanations for its role in anxiety disorders are lacking. Therefore, the aims of this review are to provide an overview of the neural circuitry of fear and anxiety and its connections to the cerebellum, and of the animal studies that directly assess an involvement of the cerebellum in these processes. Then, the studies performed in patients suffering from anxiety disorders that explore the cerebellum will be discussed. Finally, we'll propose a function for the cerebellum in these disorders, which could guide future experimental approaches to the topic and lead to a better understanding of the neurobiology of anxiety-related disorders, ultimately helping to develop more effective treatments for these conditions.
Collapse
Affiliation(s)
- Josep Moreno-Rius
- Department of Pharmacology and Toxicology, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
31
|
Zhang C, Liu X, Zhou P, Zhang J, He W, Yuan TF. Cholinergic tone in ventral tegmental area: Functional organization and behavioral implications. Neurochem Int 2018; 114:127-133. [DOI: 10.1016/j.neuint.2018.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/20/2018] [Accepted: 02/01/2018] [Indexed: 11/29/2022]
|
32
|
Broussard JI, Acion L, De Jesús-Cortés H, Yin T, Britt JK, Salas R, Costa-Mattioli M, Robertson C, Pieper AA, Arciniegas DB, Jorge R. Repeated mild traumatic brain injury produces neuroinflammation, anxiety-like behaviour and impaired spatial memory in mice. Brain Inj 2017; 32:113-122. [PMID: 29156991 DOI: 10.1080/02699052.2017.1380228] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PRIMARY OBJECTIVE Repeated traumatic brain injuries (rmTBI) are frequently associated with debilitating neuropsychiatric conditions such as cognitive impairment, mood disorders, and post-traumatic stress disorder. We tested the hypothesis that repeated mild traumatic brain injury impairs spatial memory and enhances anxiety-like behaviour. RESEARCH DESIGN We used a between groups design using single (smTBI) or repeated (rmTBI) controlled cranial closed skull impacts to mice, compared to a control group. METHODS AND PROCEDURES We assessed the effects of smTBI and rmTBI using measures of motor performance (Rotarod Test [RT]), anxiety-like behaviour (Elevated Plus Maze [EPM] and Open Field [OF] tests), and spatial memory (Morris Water Maze [MWM]) within 12 days of the final injury. In separate groups of mice, astrocytosis and microglial activation were assessed 24 hours after the final injury using GFAP and IBA-1 immunohistochemistry. MAIN OUTCOMES AND RESULTS RmTBI impaired spatial memory in the MWM and increased anxiety-like behaviour in the EPM and OFT. In addition, rmTBI elevated GFAP and IBA-1 immunohistochemistry throughout the mouse brain. RmTBI produced astrocytosis and microglial activation, and elicited impaired spatial memory and anxiety-like behaviour. CONCLUSIONS rmTBI produces acute cognitive and anxiety-like disturbances associated with inflammatory changes in brain regions involved in spatial memory and anxiety.
Collapse
Affiliation(s)
- John I Broussard
- a Beth K and Stuart C. Yudofsky Division of Neuropsychiatry , Baylor College of Medicine , Houston , TX , USA
| | - Laura Acion
- a Beth K and Stuart C. Yudofsky Division of Neuropsychiatry , Baylor College of Medicine , Houston , TX , USA.,b Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires - CONICET , Buenos Aires , Argentina
| | | | - Terry Yin
- c Departments of Psychiatry , University of Iowa , Iowa City , IA , USA
| | - Jeremiah K Britt
- c Departments of Psychiatry , University of Iowa , Iowa City , IA , USA
| | - Ramiro Salas
- a Beth K and Stuart C. Yudofsky Division of Neuropsychiatry , Baylor College of Medicine , Houston , TX , USA.,d Department of Veteran Affairs , Michael E DeBakey VA Medical Center , Houston TX , USA
| | - Mauro Costa-Mattioli
- e Free Radical & Radiation Biology Program, Department of Radiation Oncology Holden Comprehensive Cancer Center , University of Iowa , Iowa City , IA , USA
| | - Claudia Robertson
- f Department of Neurosurgery , Baylor College of Medicine , Houston , TX , USA
| | - Andrew A Pieper
- c Departments of Psychiatry , University of Iowa , Iowa City , IA , USA.,g Neurology , University of Iowa , Iowa City , IA , USA.,h Department of Neuroscience , Baylor College of Medicine , Houston , TX , USA.,i Department of Veterans Affairs , Carver College of Medicine, University of Iowa , Iowa City , IA , USA.,j Cornell Autism Research Program , Weill Cornell Medical College , New York , NY , USA
| | - David B Arciniegas
- a Beth K and Stuart C. Yudofsky Division of Neuropsychiatry , Baylor College of Medicine , Houston , TX , USA
| | - Ricardo Jorge
- a Beth K and Stuart C. Yudofsky Division of Neuropsychiatry , Baylor College of Medicine , Houston , TX , USA.,d Department of Veteran Affairs , Michael E DeBakey VA Medical Center , Houston TX , USA
| |
Collapse
|
33
|
The Analgesic Effects of (5R,6R)6-(3-Propylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[3.2.1] Octane on a Mouse Model of Neuropathic Pain. Anesth Analg 2017; 124:1330-1338. [PMID: 28002166 PMCID: PMC5367490 DOI: 10.1213/ane.0000000000001755] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Published ahead of print December 19, 2016. BACKGROUND: Both pharmacologic and genetic approaches have been used to study the involvement of the muscarinic acetylcholine system in the regulation of chronic pain. Previous studies suggest that the M2 and M4 subtypes of muscarinic acetylcholine receptors (mAChRs) are important targets for the development of chronic pain. (5R,6R)6-(3-Propylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[3.2.1] octane (PTAC) has agonist effects on muscarinic M2 and M4 receptors and antagonist effects on muscarinic M1, M3, and M5 receptors. However, its analgesic effects have been less studied. METHODS: Male C57B L/6 mice were anesthetized, and left common peroneal nerve (CPN) ligation was performed to induce neuropathic pain. Before and after the application of PTAC systemically or specifically to the anterior cingulate cortex (ACC), the withdrawal thresholds to mechanical stimulation and static weight balance were measured, and the effects of PTAC on the conditioned place preference (CPP) were further evaluated. Western blotting was used to examine the expression of M1 and M2 in the striatum, ACC, and ventral tegmental area. RESULTS: The application of PTAC ([i.p.] intraperitoneal injection) increased the paw withdraw threshold in both the early (0.05 mg/kg, mean difference [95% confidence interval, CI]: 0.19 [0.05–0.32]; 0.10 mg/kg: mean difference [95% CI]: 0.34 [0.22–0.46]) and the late phases (0.05 mg/kg: mean difference [95% CI]: 0.45 [0.39–0.50]; 0.1 mg/kg: mean difference [95% CI]: 0.44 [0.37–0.51]) after nerve injury and rebalanced the weight distribution on the hind paws of mice (L/R ratio: before, 0.56 ± 0.03. 0.05 mg/kg, 1.00 ± 0.04, 0.10 mg/kg, 0.99 ± 0.03); however, it failed to induce place preference in the CPP (0.05 mg/kg, 2-way analysis of variance, P > .05; 0.2 mg/kg, 2-way analysis of variance, P > .05,). At the same doses, the analgesic effects at D3–5 lasted longer than the effects at D14–16. This may be due to the down-regulation of the M2 and M1 in tested brain regions. CONCLUSIONS: These observations suggested that PTAC has analgesic effects on the neuropathic pain induced by nerve injury.
Collapse
|
34
|
Krahe TE, Filgueiras CC, da Silva Quaresma R, Schibuola HG, Abreu-Villaça Y, Manhães AC, Ribeiro-Carvalho A. Energy drink enhances the behavioral effects of alcohol in adolescent mice. Neurosci Lett 2017; 651:102-108. [PMID: 28456714 DOI: 10.1016/j.neulet.2017.04.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 01/15/2023]
Abstract
Mixing alcohol with energy drinks has become increasingly popular among teenagers and young adults due to the prevailing view that the stimulant properties of energy drinks decrease the depressant effects of alcohol. Surprisingly, in spite of energy drinks being heavily marketed to and consumed by adolescents, there is scarcely available preclinical data on the neurobehavioral effects of energy drinks mixed with alcohol during adolescence. Thus, here we examine the effects of the combined exposure to alcohol and energy drink on adolescent mice using a variety of behavioral tasks to assess locomotor activity, righting reflex and motor coordination. At postnatal day 40, male and female Swiss mice were assigned to the following experimental groups: alcohol diluted in energy drink (Ed+Etoh), alcohol diluted in water (Etoh) or controls (Ctrl: energy drink or water). Alcohol and energy drink (Red Bull) concentrations were 4g/kg and 8ml/kg, respectively, and all solutions were administered via oral gavage. When compared to Etoh mice, Ed+Etoh animals displayed greater locomotor activity and increased anxiety-like behaviors in the open-field, lost their righting reflexes sooner and displayed poorer motor coordination in the rotarod. Collectively, our findings indicate that alcohol-induced deficits in adolescent mice are worsened by energy drink and go against the view that the stimulant properties of energy drinks can antagonize the adverse effects of alcohol.
Collapse
Affiliation(s)
- Thomas E Krahe
- Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Cláudio C Filgueiras
- Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Renata da Silva Quaresma
- Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Helen Gomes Schibuola
- Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Yael Abreu-Villaça
- Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Alex C Manhães
- Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Anderson Ribeiro-Carvalho
- Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de Janeiro, Rua Dr. Francisco Portela 1470 - Patronato, São Gonçalo, RJ, 24435-005, Brazil.
| |
Collapse
|
35
|
Tsuji T, Matsudaira K, Sato H, Vietri J. The impact of depression among chronic low back pain patients in Japan. BMC Musculoskelet Disord 2016; 17:447. [PMID: 27784335 PMCID: PMC5081964 DOI: 10.1186/s12891-016-1304-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/17/2016] [Indexed: 12/19/2022] Open
Abstract
Background Chronic low back pain (CLBP) is associated with significant disability and reductions in health related quality of life (HRQoL), which can negatively impact overall function and productivity. Depression is also associated with painful physical symptoms, and is often present in patients with chronic pain. However, the incremental burden associated with depression or symptoms of depression among CLBP patients is not well understood. The objective of this study was to investigate the impact of depression on HRQoL in CLBP and to assess the relationship between depression and work impairment and healthcare use among CLBP patients in Japan. Methods Data were extracted from the 2014 Japan National Health and Wellness Survey (N = 30,000). CLBP was defined by report of diagnosed low back pain ≥3 months duration. Depression was assessed using the Patient Health Questionnaire (PHQ-9). Measurements assessed included pain, HRQoL, labor force participation, work productivity and healthcare utilization. Patients with depression (PHQ-9 ≥ 10) were compared to patients without depression (PHQ-9 < 10) using t-tests for continuous and count variables and chi-square for categorical variables, which were followed by generalized linear models adjusted for covariates. The association between presenteeism and other patient outcomes and characteristics was analysed using nonparametric correlations (Spearman’s rho). Results Depressed CLBP patients had significantly more severe pain and higher levels of pain compared with patients without depression (P < 0.001). Depression was associated with worse HRQoL in CLBP patients. Presenteeism, overall work impairment and activity impairment were 1.8, 1.9 and 1.7 times as high, respectively, among those with depression relative to those without depression. CLBP patients with depression had almost twice as many healthcare provider visits in 6 months than those without depression. The pattern of results remained consistent after adjustment for sociodemographic and general health characteristics. Analysis also indicated presenteeism was closely related to overall work impairment (rho = 0.99). Conclusions Depression among CLBP patients in Japan was associated with higher pain scores and lower HRQoL scores, as well as lower labor productivity and increased healthcare use. Screening for depression in CLBP patients should be an essential part of CLBP patient care.
Collapse
Affiliation(s)
- Toshinaga Tsuji
- Medical Affairs Department, Shionogi & Co., Ltd., Osaka, Japan
| | - Ko Matsudaira
- Department of Medical Research and Management for Musculoskeletal Pain, 22nd Century Medical and Research Center, The University of Tokyo, Tokyo, Japan
| | - Hiroki Sato
- Medical Affairs Department, Shionogi & Co., Ltd., Osaka, Japan
| | - Jeffrey Vietri
- Health Outcomes Practice, Kantar Health, 700 Dresher Road, Horsham, PA, 19044, USA.
| |
Collapse
|