1
|
Villena-Rueda BE, Kajitani GS, Ota VK, Honorato-Mauer J, Santoro ML, Bugiga AVG, Rosa JS, Asprino PF, Meneghetti P, Torrecilhas AC, Intasqui P, Bertolla RP, Foresti ML, da Graça Naffah-Mazzacoratti M, de Moraes Mello LEA, Belangero SI. miR-9-5p is Downregulated in Serum Extracellular Vesicles of Patients Treated with Biperiden After Traumatic Brain Injury. Mol Neurobiol 2024; 61:9595-9607. [PMID: 38664300 DOI: 10.1007/s12035-024-04194-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/19/2024] [Indexed: 10/23/2024]
Abstract
Traumatic brain injury (TBI) is a prevalent and debilitating condition, which often leads to the development of post-traumatic epilepsy (PTE), a condition that yet lacks preventive strategies. Biperiden, an anticholinergic drug, is a promising candidate that has shown efficacy in murine models of PTE. MicroRNAs (miRNAs), small regulatory RNAs, can help in understanding the biological basis of PTE and act as TBI- and PTE-relevant biomarkers that can be detected peripherally, as they are present in extracellular vesicles (EVs) that cross the blood-brain barrier. This study aimed to investigate miRNAs in serum EVs from patients with TBI, and their association with biperiden treatment and PTE. Blood samples of 37 TBI patients were collected 10 days after trauma and treatment initiation in a double-blind clinical trial. A total of 18 patients received biperiden, with three subjects developing PTE, and 19 received placebo, with two developing PTE. Serum EVs were characterized by size distribution and protein profiling, followed by high-throughput sequencing of the EV miRNome. Differential expression analysis revealed no significant differences in miRNA expression between TBI patients with and without PTE. Interestingly, miR-9-5p displayed decreased expression in biperiden-treated patients compared to the placebo group. This miRNA regulates genes enriched in stress response pathways, including axonogenesis and neuronal death, relevant to both PTE and TBI. These findings indicate that biperiden may alter miR-9-5p expression in serum EVs, which may play a role in TBI resolution.
Collapse
Affiliation(s)
- Beatriz Enguidanos Villena-Rueda
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Vila Clementino, São Paulo, - 04023900, Brazil
- LiNC - Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Gustavo Satoru Kajitani
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Vila Clementino, São Paulo, - 04023900, Brazil
- LiNC - Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Vanessa Kiyomi Ota
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Vila Clementino, São Paulo, - 04023900, Brazil
- LiNC - Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Jessica Honorato-Mauer
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Vila Clementino, São Paulo, - 04023900, Brazil
- LiNC - Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Marcos Leite Santoro
- LiNC - Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Molecular Biology Division, Department of Biochemistry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Amanda Victória Gomes Bugiga
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Vila Clementino, São Paulo, - 04023900, Brazil
- LiNC - Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Joice Santos Rosa
- LiNC - Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Paula Meneghetti
- Laboratório de Imunologia Celular E Bioquímica de Fungos E Protozoários, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Department of Pharmaceutical Sciences, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Ana Claudia Torrecilhas
- Laboratório de Imunologia Celular E Bioquímica de Fungos E Protozoários, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Department of Pharmaceutical Sciences, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Paula Intasqui
- Human Reproduction Section, Division of Urology, Department of Surgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Ricardo Pimenta Bertolla
- Human Reproduction Section, Division of Urology, Department of Surgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Maira Licia Foresti
- Department of Physiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Instituto D'Or de Pesquisa E Ensino (IDOR), São Paulo, Brazil
| | | | - Luiz Eugênio Araújo de Moraes Mello
- Department of Physiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Instituto D'Or de Pesquisa E Ensino (IDOR), São Paulo, Brazil
| | - Sintia Iole Belangero
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Vila Clementino, São Paulo, - 04023900, Brazil.
- LiNC - Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
- Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
| |
Collapse
|
2
|
Kim SG, Hwang JS, George NP, Jang YE, Kwon M, Lee SS, Lee G. Integrative Metabolome and Proteome Analysis of Cerebrospinal Fluid in Parkinson's Disease. Int J Mol Sci 2024; 25:11406. [PMID: 39518959 PMCID: PMC11547079 DOI: 10.3390/ijms252111406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra. Recent studies have highlighted the significant role of cerebrospinal fluid (CSF) in reflecting pathophysiological PD brain conditions by analyzing the components of CSF. Based on the published literature, we created a single network with altered metabolites in the CSF of patients with PD. We analyzed biological functions related to the transmembrane of mitochondria, respiration of mitochondria, neurodegeneration, and PD using a bioinformatics tool. As the proteome reflects phenotypes, we collected proteome data based on published papers, and the biological function of the single network showed similarities with that of the metabolomic network. Then, we analyzed the single network of integrated metabolome and proteome. In silico predictions based on the single network with integrated metabolomics and proteomics showed that neurodegeneration and PD were predicted to be activated. In contrast, mitochondrial transmembrane activity and respiration were predicted to be suppressed in the CSF of patients with PD. This review underscores the importance of integrated omics analyses in deciphering PD's complex biochemical networks underlying neurodegeneration.
Collapse
Affiliation(s)
- Seok Gi Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Ji Su Hwang
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Nimisha Pradeep George
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Yong Eun Jang
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Minjun Kwon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Sang Seop Lee
- Department of Pharmacology, Inje University College of Medicine, Busan 50834, Republic of Korea
| | - Gwang Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
3
|
Patel D, Soni R, Shah J. Decoding the Role of Nuclear Sirtuins in Parkinson's Pathogenesis. ACS Chem Neurosci 2024. [PMID: 39331405 DOI: 10.1021/acschemneuro.4c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Parkinson's disease (PD) is the second most prevailing degenerative disease that deals with dopaminergic neuronal loss and deficiency of dopamine in SNpc and striatum. Manifestations primarily include motor symptoms like tremor, rigidity, and akinesia/dyskinesia along with some nonmotor symptoms like GI and olfactory dysfunction. α-Synuclein pathogenesis is the major cause behind progression of PD; however there are many underlying molecular mechanisms behind the pathophysiology of PD. Sirtuins are small molecular deacetylases that have an imperative role in pathology of such neurodegenerative disorders like PD. Sirtuins are majorly classified according to their location; nuclear (SIRT1,7,6), mitochondrial sirtuins (SIRT3-5), and cytosolic (SIRT2). These actively take part in pathological development and possess independent actions. In this review, the role of nuclear sirtuins is individualistically explored for better understanding of PD pathology and development of advanced therapeutics targeting sirtuins.
Collapse
Affiliation(s)
- Dishank Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Ritu Soni
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Jigna Shah
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| |
Collapse
|
4
|
Saadh MJ, Muhammad FA, Singh A, Mustafa MA, Al Zuhairi RAH, Ghildiyal P, Hashim G, Alsaikhan F, Khalilollah S, Akhavan-Sigari R. MicroRNAs Modulating Neuroinflammation in Parkinson's disease. Inflammation 2024:10.1007/s10753-024-02125-z. [PMID: 39162871 DOI: 10.1007/s10753-024-02125-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/20/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
Parkinson's disease (PD) is one of the most frequent age-associated neurodegenerative disorder. Presence of α-synuclein-containing aggregates in the substantia nigra pars compacta (SNpc) and loss of dopaminergic (DA) neurons are among the characteristic of PD. One of the hallmarks of PD pathophysiology is chronic neuroinflammation. Activation of glial cells and elevated levels of pro-inflammatory factors are confirmed as frequent features of the PD brain. Chronic secretion of pro-inflammatory cytokines by activated astrocytes and microglia exacerbates DA neuron degeneration in the SNpc. MicroRNAs (miRNAs) are among endogenous non-coding small RNA with the ability to perform post-transcriptional regulation in target genes. In that regard, the capability of miRNAs for modulating inflammatory signaling is the center of attention in many investigations. MiRNAs could enhance or limit inflammatory signaling, exacerbating or ameliorating the pathological consequences of extreme neuroinflammation. This review summarizes the importance of inflammation in the pathophysiology of PD. Besides, we discuss the role of miRNAs in promoting or protecting neural cell injury in the PD model by controlling the inflammatory pathway. Modifying the neuroinflammation by miRNAs could be considered a primary therapeutic strategy for PD.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Anamika Singh
- Department of Biotechnology and Genetics, Jain (Deemed-to-Be) University, Bengaluru, Karnataka, 560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Mohammed Ahmed Mustafa
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Pharmacy, Arka Jain University, Jamshedpur,, Jamshedpur,, India, Jharkhand, 831001
| | | | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ghassan Hashim
- Department of Nursing, Al-Zahrawi University College, Karbala, Iraq
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Shayan Khalilollah
- Department of Neurosurgery, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center, Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Warszawa, Poland
| |
Collapse
|
5
|
Valizadeh M, Derafsh E, Abdi Abyaneh F, Parsamatin SK, Noshabad FZR, Alinaghipour A, Yaghoobi Z, Taheri AT, Dadgostar E, Aschner M, Mirzaei H, Tamtaji OR, Nabavizadeh F. Non-Coding RNAs and Neurodegenerative Diseases: Information of their Roles in Apoptosis. Mol Neurobiol 2024; 61:4508-4537. [PMID: 38102518 DOI: 10.1007/s12035-023-03849-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
Apoptosis can be known as a key factor in the pathogenesis of neurodegenerative disorders. In disease conditions, the rate of apoptosis expands and tissue damage may become apparent. Recently, the scientific studies of the non-coding RNAs (ncRNAs) has provided new information of the molecular mechanisms that contribute to neurodegenerative disorders. Numerous reports have documented that ncRNAs have important contributions to several biological processes associated with the increase of neurodegenerative disorders. In addition, microRNAs (miRNAs), circular RNAs (circRNAs), as well as, long ncRNAs (lncRNAs) represent ncRNAs subtypes with the usual dysregulation in neurodegenerative disorders. Dysregulating ncRNAs has been associated with inhibiting or stimulating apoptosis in neurodegenerative disorders. Therefore, this review highlighted several ncRNAs linked to apoptosis in neurodegenerative disorders. CircRNAs, lncRNAs, and miRNAs were also illustrated completely regarding the respective signaling pathways of apoptosis.
Collapse
Affiliation(s)
| | - Ehsan Derafsh
- Windsor University School of Medicine, Cayon, Canada
| | | | - Sayedeh Kiana Parsamatin
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Azam Alinaghipour
- School of Medical Sciences, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Zahra Yaghoobi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, IR, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, IR, Iran
| | - Abdolkarim Talebi Taheri
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, IR, Iran
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, IR, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, IR, Iran.
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, IR, Iran.
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, IR, Iran.
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, IR, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, IR, Iran
| |
Collapse
|
6
|
Arora T, Sharma G, Prashar V, Singh R, Sharma A, Changotra H, Parkash J. Mechanistic Evaluation of miRNAs and Their Targeted Genes in the Pathogenesis and Therapeutics of Parkinson's Disease. Mol Neurobiol 2024:10.1007/s12035-024-04261-x. [PMID: 38823001 DOI: 10.1007/s12035-024-04261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/13/2024] [Indexed: 06/03/2024]
Abstract
MicroRNA (miRNA) are usually 18-25 nucleotides long non-coding RNA targeting post-transcriptional regulation of genes involved in various biological processes. The function of miRNA is essential for maintaining a homeostatic cellular condition, regulating autophagy, cellular motility, and inflammation. Dysregulation of miRNA is responsible for multiple disorders, including neurodegeneration, which has emerged as a severe problem in recent times and has verified itself as a life-threatening condition that can be understood by the continuous destruction of neurons affecting various cognitive and motor functions. Parkinson's disease (PD) is the second most common, permanently debilitating neurodegenerative disorder after Alzheimer's, mainly characterized by uncontrolled tremor, stiffness, bradykinesia or akinesia (slowness in movement), and post-traumatic stress disorder. PD is mainly caused by the demolition of the primary dopamine neurotransmitter secretory cells and dopaminergic or dopamine secretory neurons in the substantia nigra pars compacta of the midbrain, which are majorly responsible for motor functions. In this study, a systematic evaluation of research articles from year 2017 to 2022 was performed on multiple search engines, and lists of miRNA being dysregulated in PD in different body components were generated. This study highlighted miR-7, miR-124, miR-29 family, and miR-425, showing altered expression levels during PD's progression, further regulating the expression of multiple genes responsible for PD.
Collapse
Affiliation(s)
- Tania Arora
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Gaurav Sharma
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Vikash Prashar
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Randeep Singh
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Arti Sharma
- Department of Computational Biology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Harish Changotra
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, 143101, Punjab, India
| | - Jyoti Parkash
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India.
| |
Collapse
|
7
|
Liu Y, Zeng M, Li Z, Lin C, Bao J, Ding W, Wang S, Fan Q, Sun Q, Luo H, Huang J, Chen S, Tang H. Linc01588 deletion inhibits the malignant biological characteristics of hydroquinone-induced leukemic cells via miR-9-5p/SIRT1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116295. [PMID: 38581908 DOI: 10.1016/j.ecoenv.2024.116295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/16/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Leukemia caused by environmental chemical pollutants has attracted great attention, the malignant leukemic transformation model of TK6 cells induced by hydroquinone (HQ) has been previously found in our team. However, the type of leukemia corresponding to this malignant transformed cell line model needs further study and interpretation. Furthermore, the molecular mechanism of malignant proliferation of leukemic cells induced by HQ remains unclear. This study is the first to reveal the expression of aberrant genes in leukemic cells of HQ-induced malignant transformation, which may correspond to chronic lymphocytic leukemia (CLL). The expression of Linc01588, a long non-coding RNA (lncRNA), was significantly up-regulated in CLL patients and leukemic cell line model which previously described. After gain-of-function assays and loss-of-function assays, feeble cell viability, severe apoptotic phenotype and the increased secretion of TNF-α were easily observed in malignant leukemic TK6 cells with Linc01588 deletion after HQ intervention. The tumors derived from malignant TK6 cells with Linc01588 deletion inoculated subcutaneously in nude mice were smaller than controls. In CLL and its cell line model, the expression of Linc01588 and miR-9-5p, miR-9-5p and SIRT1 were negative correlation respectively in CLL and cell line model, while the expression of Linc01588 and SIRT1 were positive correlation. The dual-luciferase reporter assay showed that Linc01588 & miR-9-5p, miR-9-5p & SIRT1 could bind directly, respectively. Furthermore, knockdown of miR-9-5p successfully rescued the severe apoptotic phenotype and the increased secretion of TNF-α caused by the Linc01588 deletion, the deletion of Linc01588 in human CLL cell line MEC-2 could also inhibit malignant biological characteristics, and the phenotype caused by the deletion of Linc01588 could also be rescued after overexpression of SIRT1. Moreover, the regulation of SIRT1 expression in HQ19 cells by Linc01588 and miR-9-5 P may be related to the Akt/NF-κB pathway. In brief, Linc01588 deletion inhibits the malignant biological characteristics of HQ-induced leukemic cells via miR-9-5p/SIRT1, and it is a novel and hopeful clue for the clinical targeted therapy of CLL.
Collapse
Affiliation(s)
- Yanquan Liu
- Department of Hematology, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan 523808, China; School of Public Health, Guangdong Medical University, Dongguan 523808, China; Dongguan Key Laboratory of Environmental Medicine, Dongguan 523808, China
| | - Minjuan Zeng
- School of Basic Medicine, Guangdong Medical University, Dongguan Key Laboratory for Development and Application of Experimental Animal Resources in Biomedical Industry, Dongguan 523808, China
| | - Zhengzhen Li
- School of Public Health, Guangdong Medical University, Dongguan 523808, China; Dongguan Key Laboratory of Environmental Medicine, Dongguan 523808, China
| | - Caixiong Lin
- School of Public Health, Guangdong Medical University, Dongguan 523808, China; Dongguan Key Laboratory of Environmental Medicine, Dongguan 523808, China
| | - Jie Bao
- Department of Clinical Laboratory, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524002, China
| | - Weihua Ding
- Central People's Hospital of Zhanjiang, Zhanjiang 524033, China
| | - Shimei Wang
- School of Public Health, Guangdong Medical University, Dongguan 523808, China; Dongguan Key Laboratory of Environmental Medicine, Dongguan 523808, China
| | - Qin Fan
- School of Public Health, Guangdong Medical University, Dongguan 523808, China; Dongguan Key Laboratory of Environmental Medicine, Dongguan 523808, China
| | - Qian Sun
- School of Public Health, Guangdong Medical University, Dongguan 523808, China; Dongguan Key Laboratory of Environmental Medicine, Dongguan 523808, China
| | - Hao Luo
- School of Public Health, Guangdong Medical University, Dongguan 523808, China; Dongguan Key Laboratory of Environmental Medicine, Dongguan 523808, China
| | - Jinqi Huang
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| | | | - Huanwen Tang
- Department of Hematology, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan 523808, China; School of Public Health, Guangdong Medical University, Dongguan 523808, China; Dongguan Key Laboratory of Environmental Medicine, Dongguan 523808, China.
| |
Collapse
|
8
|
Suciu TS, Feștilă D, Berindan-Neagoe I, Nutu A, Armencea G, Aghiorghiesei AI, Vulcan T, Băciuț M. Circular RNA-Mediated Regulation of Oral Tissue-Derived Stem Cell Differentiation: Implications for Oral Medicine and Orthodontic Applications. Stem Cell Rev Rep 2024; 20:656-671. [PMID: 38279054 PMCID: PMC10984898 DOI: 10.1007/s12015-024-10683-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Circular RNAs (circRNAs) are a novel class of endogenous non-coding RNAs (ncRNAs) which unlike linear RNAs, have a covalently closed continuous loop structure. circRNAs are found abundantly in human cells and their biology is complex. They feature unique expression to different types of cells, tissues, and developmental stages. To the present, the functional roles of circular RNAs are not fully understood. They reportedly act as microRNA (miRNA) sponges, therefore having key regulatory functions in diverse physiological and pathological processes. As for dentistry field, lines of evidence indicate that circRNAs play vital roles in the odontogenic and osteogenic differentiation of dental pulp stem cells (DPSCs) and periodontal ligament stem cells (PDLSCs). Abnormal expression of circRNAs have been found in other areas of pathology frequently reflected also in the oral environment, such as inflammation or bone and soft tissue loss. Therefore, circRNAs could be of significant importance in various fields in dentistry, especially in bone and soft tissue engineering and regeneration. Understanding the molecular mechanisms occurring during the regulation of oral biological and tissue remodeling processes could augment the discovery of novel diagnostic biomarkers and therapeutic strategies that will improve orthodontic and other oral therapeutic protocols.
Collapse
Affiliation(s)
- Tudor-Sergiu Suciu
- Department of Orthodontics and Dentofacial Orthopedics, Iuliu Hațieganu University of Medicine and Pharmacy, 400083, Cluj-Napoca, Romania
| | - Dana Feștilă
- Department of Orthodontics and Dentofacial Orthopedics, Iuliu Hațieganu University of Medicine and Pharmacy, 400083, Cluj-Napoca, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400337, Cluj-Napoca, Romania
| | - Andreea Nutu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400337, Cluj-Napoca, Romania
| | - Gabriel Armencea
- Department of Maxillofacial Surgery and Implantology, Iuliu Hațieganu University of Medicine and Pharmacy, 400029, Cluj-Napoca, Romania
| | - Alexandra Iulia Aghiorghiesei
- Department of Prosthodontics and Dental Materials, Iuliu Hațieganu University of Medicine and Pharmacy, 400006, Cluj-Napoca, Romania
| | - Talida Vulcan
- Department of Dermatology, Iuliu Hațieganu University of Medicine and Pharmacy, 400006, Cluj-Napoca, Romania
| | - Mihaela Băciuț
- Department of Maxillofacial Surgery and Implantology, Iuliu Hațieganu University of Medicine and Pharmacy, 400029, Cluj-Napoca, Romania
| |
Collapse
|
9
|
Talebi Taheri A, Golshadi Z, Zare H, Alinaghipour A, Faghihi Z, Dadgostar E, Tamtaji Z, Aschner M, Mirzaei H, Tamtaji OR, Nabavizadeh F. The Potential of Targeting Autophagy-Related Non-coding RNAs in the Treatment of Alzheimer's and Parkinson's Diseases. Cell Mol Neurobiol 2024; 44:28. [PMID: 38461204 PMCID: PMC10924707 DOI: 10.1007/s10571-024-01461-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/29/2024] [Indexed: 03/11/2024]
Abstract
Clearance of accumulated protein aggregates is one of the functions of autophagy. Recently, a clearer understanding of non-coding RNAs (ncRNAs) functions documented that ncRNAs have important roles in several biological processes associated with the development and progression of neurodegenerative disorders. Subtypes of ncRNA, including microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA), are commonly dysregulated in neurodegenerative disorders such as Alzheimer and Parkinson diseases. Dysregulation of these non-coding RNAs has been associated with inhibition or stimulation of autophagy. Decreased miR-124 led to decreased/increased autophagy in experimental model of Alzheimer and Parkinson diseases. Increased BACE1-AS showed enhanced autophagy in Alzheimer disease by targeting miR-214-3p, Beclin-1, LC3-I/LC3-II, p62, and ATG5. A significant increase in NEAT1led to stimulated autophagy in experimental model of PD by targeting PINK1, LC3-I, LC3-II, p62 and miR-374c-5p. In addition, increased BDNF-AS and SNHG1 decreased autophagy in MPTP-induced PD by targeting miR-125b-5p and miR-221/222, respectively. The upregulation of circNF1-419 and circSAMD4A resulted in an increased autophagy by regulating Dynamin-1 and miR-29c 3p, respectively. A detailed discussion of miRNAs, circRNAs, and lncRNAs in relation to their autophagy-related signaling pathways is presented in this study.
Collapse
Affiliation(s)
- Abdolkarim Talebi Taheri
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zakieh Golshadi
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Azam Alinaghipour
- School of Medical Sciences, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Zahra Faghihi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. of Iran
| | - Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, I.R. of Iran
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, I.R. of Iran
| | - Zeinab Tamtaji
- Student Research Committee, Kashan University of Medical Sciences, Kashan, I.R. of Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. of Iran.
| | - Omid Reza Tamtaji
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
| | - Fatemeh Nabavizadeh
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
| |
Collapse
|
10
|
Han J, Duan S, Li Y, Xin C. Time-series analysis of hematopoietic stem cells. Medicine (Baltimore) 2024; 103:e36509. [PMID: 38394540 PMCID: PMC11309688 DOI: 10.1097/md.0000000000036509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 11/16/2023] [Indexed: 02/25/2024] Open
Abstract
This study aimed to investigate the molecular mechanisms underlying the aging of hematopoietic stem cells (HSCs). Gene expression profile GSE32719 was downloaded from the Gene Expression Omnibus database, including 14 young, 5 middle, and 8 old HSCs. Differential expression analysis, short time-series expression miner analysis, and weighted co-expression network analysis were conducted to screen for hub genes whose expression changed over time during HSC aging. Subsequently, functional enrichment and multiple regulatory network analyses of the hub genes were performed. A total of 124 intersecting time-dependent differentially expressed and module genes were obtained, which were considered hub genes whose expression changed over time during HSC aging. Hub genes were significantly enriched in pathways such as the Hippo and AMP-activated protein kinase (AMPK) signaling pathways. Moreover, AP-1 Transcription Factor Subunit (FOS) and sirtuin 1 (SIRT1) had higher degrees in the protein-protein interaction network, were regulated by more transcription factors (TFs), such as Sp1 transcription factor (SP1) and BRCA1 DNA repair-associated (BRCA1), in the TF-mRNA-miRNA network, were associated with more diseases in the disease-gene network, and could be targeted by more drugs in the drug-gene network. Furthermore, SIRT1 was targeted by miR-9-5p in the TF-mRNA-miRNA network. Hub genes such as FOS and SIRT1 and key pathways such as the Hippo and AMPK signaling pathways may play crucial roles in HSC aging. Moreover, FOS and SIRT1 were regulated by SP1 and BRCA1, respectively, during HSC aging. Furthermore, miR-9-5p may modulate HSC aging by targeting SIRT1. Thus, FOS and SIRT1 may be potential therapeutic targets for age-related hematopoietic dysfunction.
Collapse
Affiliation(s)
- Jingjing Han
- Clinical Medical College of Jining Medical University, Jining Medical University, Jining, China
- Jining NO.1 People’s Hospital, Jining, China
| | - Shuangshuang Duan
- Clinical Medical College of Jining Medical University, Jining Medical University, Jining, China
- Jining NO.1 People’s Hospital, Jining, China
| | - Ya Li
- Jining NO.1 People’s Hospital, Jining, China
| | - Chunlei Xin
- Jining NO.1 People’s Hospital, Jining, China
- Yingjisha County People’s Hospital, Xinjiang, China
| |
Collapse
|
11
|
Liu X, Zhao Z, Chen D, Zhang Z, Lin X, Shen Z, Lin Q, Fan K, Wang Q, Zhang W, Ou Q. SIRT1 and miR-34a-5p Expression in PBMCs as Potential Biomarkers for Patients With Type 2 Diabetes With Cognitive Impairments. J Clin Endocrinol Metab 2024; 109:815-826. [PMID: 37758217 DOI: 10.1210/clinem/dgad562] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
CONTEXT Patients with type 2 diabetes mellitus (T2DM) are at significantly increased risk of Alzheimer disease (AD). However, no biomarkers are available for early identification of patients with T2DM with cognitive impairment (T2DM-CI). Mitochondrial dysfunction is linked to AD. Silent Information Regulator 1 (SIRT1), which is responsible for regulating mitochondrial biogenesis, and its related miRNAs were also altered in AD. OBJECTIVE This study aimed to determine whether mitochondrial function in peripheral blood mononuclear cells (PBMCs) of patients with T2DM-CI was altered and if these alterations could be used as biomarkers. METHODS A total of 374 subjects were enrolled, including AD, T2DM-CI, T2DM-nCI (T2DM without cognitive impairment), and healthy controls. The mitochondrial function was determined using a commercial assay kit. The mitochondrial DNA (mtDNA) content, the expression of SIRT1, and selected miRNAs in PBMCs were measured by quantitative polymerase chain reaction. The correlations and diagnostic accuracy were assessed using the Spearman correlation coefficient or receiver operating characteristics analysis, respectively. RESULTS We found significant changes in mitochondrial function in PBMCs of patients with AD compared with controls (all P < .05), which were not found in T2DM-CI. However, mtDNA content and SIRT1 mRNA expression were lower in PBMCs of patients with T2DM-CI, while miR-34a-5p expression was higher than in patients with T2DM-nCI (all P < .05). A combination of SIRT1 and miR-34a-5p demonstrated excellent discrimination between T2DM-CI and T2DM-nCI (area under the curve = 0.793; sensitivity: 80.01%; specificity: 78.46%). Furthermore, correlation analysis revealed a link between miR-34a-5p expression and hyperglycemia in T2DM-CI. CONCLUSION Our findings revealed that there was an alteration of mitochondria at the peripheral level in patients with T2DM-CI. SIRT1 combined with miR-34a-5p in PBMCs performed well in identifying patients with T2DM-CI and may be a promising biomarker.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Zhipei Zhao
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Dengbin Chen
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Zeqin Zhang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Xiaozhen Lin
- Department of Geriatrics, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Zhanbo Shen
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Qingwen Lin
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Kengna Fan
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Qi Wang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Weiqing Zhang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Qishui Ou
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| |
Collapse
|
12
|
Zhang D, Wu L, Ma L, Wang J, Niu L, He P. Circular RNA DLGAP4 alleviates sevoflurane-induced neurotoxicity by regulating miR-9-5p/Sirt1/BDNF pathway. Exp Cell Res 2023; 433:113861. [PMID: 38000773 DOI: 10.1016/j.yexcr.2023.113861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND Sevoflurane is a widely used anesthetic in infants. However, long and repeated exposure to this drug can cause developmental neurotoxicity. This study aimed to investigate the role and mechanism of circular RNA DLGAP4 (circDLGAP4) in sevoflurane-induced neurotoxicity. METHODS Neonatal mice and mouse hippocampal neuronal cell line HT22 were used to construct sevoflurane-induced nerve injury models. The role of circDLGAP4 in sevoflurane-induced neurotoxicity was evaluated by gain-and/or loss-of-function methods. Pathological alterations in hippocampus were analyzed by hematoxylin-eosin and Tunel staining. Cell injury was assessed by cell viability and apoptosis, which was detected by CCK-8 and flow cytometry. The expression of circDLGAP4 and miR-9-5p was determined by real-time PCR. Sirt1 and BDNF levels were measured by Western blot. Productions of TNF-α and IL-6 were examined by ELISA. Dual-luciferase reporter assay and/or RNA pull-down assay were used to confirm the direct binding among circDLGAP4, miR-9-5p, and Sirt1. Rescue experiments were used to further verify the mechanism of circDLGAP4. RESULTS CircDLGAP4 expression was decreased by sevoflurane both in vivo and in vitro. Overexpression of circDLGAP4 elevated cell viability, reduced apoptosis and levels of TNF-α and IL-6, while circDLGAP4 knockdown showed the opposite effects in sevoflurane-induced HT22 cells. Mechanically, circDLGAP4 functioned via directly binding to and regulating miR-9-5p, followed by targeting the Sirt1/BDNF pathway. Additionally, circDLGAP4 upregulation relieved sevoflurane-induced nerve injury, reduced levels of TNF-α, IL-6 and miR-9-5p, but increased the expression of Sirt1 and BDNF in hippocampus. CONCLUSIONS Our studies found that circDLGAP4 relieved sevoflurane-induced neurotoxicity by sponging miR-9-5p to regulate Sirt1/BDNF pathway.
Collapse
Affiliation(s)
- Dongying Zhang
- Department of Anesthesiology, Handan Central Hospital, Handan, 056001, Hebei, China
| | - Liuping Wu
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, 226000, Jiangsu, China
| | - Long Ma
- Department of Anesthesiology, Handan Central Hospital, Handan, 056001, Hebei, China
| | - Jiazheng Wang
- Department of Anesthesiology, Handan Central Hospital, Handan, 056001, Hebei, China
| | - Linjie Niu
- Department of Anesthesiology, Fengfeng General Hospital, North China Medical and Health Group, Handan, 056002, Hebei, China
| | - Ping He
- Department of Anesthesiology, Handan Central Hospital, Handan, 056001, Hebei, China.
| |
Collapse
|
13
|
Varesi A, Campagnoli LIM, Barbieri A, Rossi L, Ricevuti G, Esposito C, Chirumbolo S, Marchesi N, Pascale A. RNA binding proteins in senescence: A potential common linker for age-related diseases? Ageing Res Rev 2023; 88:101958. [PMID: 37211318 DOI: 10.1016/j.arr.2023.101958] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
Aging represents the major risk factor for the onset and/or progression of various disorders including neurodegenerative diseases, metabolic disorders, and bone-related defects. As the average age of the population is predicted to exponentially increase in the coming years, understanding the molecular mechanisms underlying the development of aging-related diseases and the discovery of new therapeutic approaches remain pivotal. Well-reported hallmarks of aging are cellular senescence, genome instability, autophagy impairment, mitochondria dysfunction, dysbiosis, telomere attrition, metabolic dysregulation, epigenetic alterations, low-grade chronic inflammation, stem cell exhaustion, altered cell-to-cell communication and impaired proteostasis. With few exceptions, however, many of the molecular players implicated within these processes as well as their role in disease development remain largely unknown. RNA binding proteins (RBPs) are known to regulate gene expression by dictating at post-transcriptional level the fate of nascent transcripts. Their activity ranges from directing primary mRNA maturation and trafficking to modulation of transcript stability and/or translation. Accumulating evidence has shown that RBPs are emerging as key regulators of aging and aging-related diseases, with the potential to become new diagnostic and therapeutic tools to prevent or delay aging processes. In this review, we summarize the role of RBPs in promoting cellular senescence and we highlight their dysregulation in the pathogenesis and progression of the main aging-related diseases, with the aim of encouraging further investigations that will help to better disclose this novel and captivating molecular scenario.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| | | | - Annalisa Barbieri
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Lorenzo Rossi
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | | | - Ciro Esposito
- Department of Internal Medicine and Therapeutics, University of Pavia, Italy; Nephrology and dialysis unit, ICS S. Maugeri SPA SB Hospital, Pavia, Italy; High School in Geriatrics, University of Pavia, Italy
| | | | - Nicoletta Marchesi
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy.
| |
Collapse
|
14
|
Uppala SN, Tryphena KP, Naren P, Srivastava S, Singh SB, Khatri DK. Involvement of miRNA on Epigenetics landscape of Parkinson's disease: From pathogenesis to therapeutics. Mech Ageing Dev 2023:111826. [PMID: 37268278 DOI: 10.1016/j.mad.2023.111826] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/04/2023]
Abstract
The development of novel therapeutics for the effective management of Parkinson's disease (PD) is undertaken seriously by the scientific community as the burden of PD continues to increase. Several molecular pathways are being explored to identify novel therapeutic targets. Epigenetics is strongly implicated in several neurodegenerative diseases (NDDs) including PD. Several epigenetic mechanisms were found to dysregulated in various studies. These mechanisms are regulated by several miRNAs which are associated with a variety of pathogenic mechanisms in PD. This concept is extensively investigated in several cancers but not well documented in PD. Identifying the miRNAs with dual role i.e., regulation of epigenetic mechanisms as well as modulation of proteins implicated in the pathogenesis of PD could pave way for the development of novel therapeutics to target them. These miRNAs could also serve as potential biomarkers and can be useful in the early diagnosis or assessment of disease severity. In this article we would like to discuss about various epigenetic changes operating in PD and how miRNAs are involved in the regulation of these mechanisms and their potential to be novel therapeutic targets in PD.
Collapse
Affiliation(s)
- Sai Nikhil Uppala
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad, Telangana-500037
| | - Kamatham Pushpa Tryphena
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad, Telangana-500037
| | - Padmashri Naren
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad, Telangana-500037
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad, Telangana-500037
| | - Shashi Bala Singh
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad, Telangana-500037.
| | - Dharmendra Kumar Khatri
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad, Telangana-500037.
| |
Collapse
|
15
|
Wang M, Yang Y, Guo Y, Tan R, Sheng Y, Chui H, Chen P, Luo H, Ying Z, Li L, Zeng J, Zhao J. Xiaoxuming decoction cutting formula reduces LPS-stimulated inflammation in BV-2 cells by regulating miR-9-5p in microglia exosomes. Front Pharmacol 2023; 14:1183612. [PMID: 37266151 PMCID: PMC10229826 DOI: 10.3389/fphar.2023.1183612] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023] Open
Abstract
The Background: Stroke is one of the leading causes of morbidity and mortality, and the inflammatory mechanism plays a crucial role in stroke-related brain injury and post-ischemic tissue damage. Xiaoxuming decoction (XXMD) is the first prescription for the treatment of "zhongfeng" (a broad concept referring to stroke) in the Tang and Song Dynasties of China and has a significant position in the history of stroke treatment. Through the study of ancient medical records and modern clinical evidence, it is evident that XXMD has significant efficacy in the treatment of stroke and its sequelae, and its pharmacological mechanism may be related to post-stroke inflammation. However, XXMD contains 12 medicinal herbs with complex composition, and therefore, a simplified version of XXMD, called Xiaoxuming decoction cutting (XXMD-C), was derived based on the anti-inflammatory effects of the individual herbs. Therefore, it is necessary to explore and confirm the anti-inflammatory mechanism of XXMD-C. Aim of the study: Based on the previous experiments of our research group, it was found that both XXMD and XXMD-C have anti-inflammatory effects on LPS-induced microglia, and XXMD-C has a better anti-inflammatory effect. Since miRNAs in exosomes also participate in the occurrence and development of cardiovascular diseases, and traditional Chinese medicine can regulate exosomal miRNAs through intervention, this study aims to explore the anti-inflammatory mechanism of XXMD-C in the treatment of post-stroke inflammation through transcriptome sequencing, providing a basis for the application of XXMD-C. Materials and methods: XXMD-C was extracted using water and filtered through a 0.22 μm membrane filter. The main chemical components of the medicinal herbs in XXMD-C were rapidly qualitatively analyzed using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Cell viability was determined using the CCK-8 assay, and an LPS-induced BV-2 cell inflammation model was established. The expression of inflammatory cytokines was detected using ELISA and Western blot (WB). Extracellular vesicles were extracted using ultracentrifugation, and identified using transmission electron microscopy (TEM), nanoparticle tracking analysis, and WB. Differential miRNAs were screened using smallRNA-seq sequencing, and validated using RT-PCR and Western blot. Results: The UPLC-Q-TOF-MS analysis revealed that representative components including ephedrine, pseudoephedrine, cinnamaldehyde, baicalin, baicalein, wogonin, and ginsenoside Rg1 were detected in XXMD-C. The results of ELISA and WB assays showed that XXMD-C had a therapeutic effect on LPS-induced inflammation in BV-2 cells. TEM, nanoparticle tracking analysis, and WB results demonstrated the successful extraction of extracellular vesicles using high-speed centrifugation. Differential miRNA analysis by smallRNA-seq identified miR-9-5p, which was validated by RT-PCR and WB. Inhibition of miR-9-5p was found to downregulate the expression of inflammatory factors including IL-1β, IL-6, iNOS, and TNF-α. Conclusion: The study found that XXMD-C has anti-neuroinflammatory effects. Through smallRNA-seq sequencing of extracellular vesicles, miR-9-5p was identified as a key miRNA in the mechanism of XXMD-C for treating neuroinflammation, and its in vivo anti-inflammatory mechanism deserves further investigation.
Collapse
Affiliation(s)
- Menglei Wang
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
- College Pharmacy, Chengdu Medical College, Chengdu, China
| | - Yuting Yang
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Yanlei Guo
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Ruirong Tan
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Yanmei Sheng
- College Pharmacy, Chengdu Medical College, Chengdu, China
| | - Huawei Chui
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Ping Chen
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Hua Luo
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zhujun Ying
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Li Li
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Jin Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Junning Zhao
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| |
Collapse
|
16
|
Elangovan A, Venkatesan D, Selvaraj P, Pasha MY, Babu HWS, Iyer M, Narayanasamy A, Subramaniam MD, Valsala Gopalakrishnan A, Kumar NS, Vellingiri B. miRNA in Parkinson's disease: From pathogenesis to theranostic approaches. J Cell Physiol 2023; 238:329-354. [PMID: 36502506 DOI: 10.1002/jcp.30932] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is an age associated neurological disorder which is specified by cardinal motor symptoms such as tremor, stiffness, bradykinesia, postural instability, and non-motor symptoms. Dopaminergic neurons degradation in substantia nigra region and aggregation of αSyn are the classic signs of molecular defects noticed in PD pathogenesis. The discovery of microRNAs (miRNA) predicted to have a pivotal part in various processes regarding regularizing the cellular functions. Studies on dysregulation of miRNA in PD pathogenesis has recently gained the concern where our review unravels the role of miRNA expression in PD and its necessity in clinical validation for therapeutic development in PD. Here, we discussed how miRNA associated with ageing process in PD through molecular mechanistic approach of miRNAs on sirtuins, tumor necrosis factor-alpha and interleukin-6, dopamine loss, oxidative stress and autophagic dysregulation. Further we have also conferred the expression of miRNAs affected by SNCA gene expression, neuronal differentiation and its therapeutic potential with PD. In conclusion, we suggest more rigorous studies should be conducted on understanding the mechanisms and functions of miRNA in PD which will eventually lead to discovery of novel and promising therapeutics for PD.
Collapse
Affiliation(s)
- Ajay Elangovan
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Dhivya Venkatesan
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Priyanka Selvaraj
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Md Younus Pasha
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Harysh Winster Suresh Babu
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India.,Department of Zoology, Disease Proteomics Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Mahalaxmi Iyer
- Livestock Farming, & Bioresources Technology, Tamil Nadu, India
| | - Arul Narayanasamy
- Department of Zoology, Disease Proteomics Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Mohana Devi Subramaniam
- Department of Genetics and Molecular Biology, Vision Research Foundation, Tamil Nadu, Chennai, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bioscience and Technology, Vellore Institute of Technology (VIT), Tamil Nadu, Vellore, India
| | | | - Balachandar Vellingiri
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India.,Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab, Punjab, Bathinda, India
| |
Collapse
|
17
|
Wang S, He X, Bao N, Chen M, Ding X, Zhang M, Zhao L, Wang S, Jiang G. Potentials of miR-9-5p in promoting epileptic seizure and improving survival of glioma patients. ACTA EPILEPTOLOGICA 2022. [DOI: 10.1186/s42494-022-00097-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract
Background
Epilepsy affects over 70 million people worldwide; however, the underlying mechanisms remain unclear. MicroRNAs (miRNAs) have essential functions in epilepsy. miRNA-9, a brain-specific/enriched miRNA, plays a role in various nervous system diseases and tumors, but whether miRNA-9 is involved in epilepsy and glioma-associated epilepsy remains unknown. Therefore, we aimed to explore the potential role of miR-9-5p in seizures and its effect on the survival of glioma patients, in order to provide new targets for the treatment of epilepsy and glioma.
Methods
The YM500v2 database was used to validate the expression of hsa-miR-9-5p in tissues. Moreover, qRT-PCR was performed to investigate the expression of miR-9-5p in temporal lobe epilepsy patients and rats with lithium-pilocarpine-induced seizures. Recombinant adeno-associated virus containing miR-9-5p was constructed to overexpress miR-9-5p in vivo. The effects of miR-9-5p on the behavior and electroencephalographic activities of the lithium-pilocarpine rat model of epilepsy were tested. Bioinformatics analysis was used to predict the targets of miR-9-5p and explore its potential role in epilepsy and glioma-associated epilepsy.
Results
The expression of miR-9-5p increased at 6 h and 7 days after lithium-pilocarpine-induced seizures in rats. Overexpression of miR-9-5p significantly shortened the latency of seizures and increased seizure intensity at 10 min and 20 min after administration of pilocarpine (P < 0.05). Predicted targets of miR-9-5p were abundant and enriched in the brain, and affected various pathways related to epilepsy and tumor. Survival analysis revealed that overexpression of miR-9-5p significantly improved the survival of patients from with low-grade gliomas and glioblastomas. The involvement of miR-9-5p in the glioma-associated epileptic seizures and the improvement of glioma survival may be related to multiple pathways, including the Rho GTPases and hub genes included SH3PXD2B, ARF6, and ANK2.
Conclusions
miR-9-5p may play a key role in promoting epileptic seizures and improving glioma survival, probably through multiple pathways, including GTPases of the Rho family and hub genes including SH3PXD2B, ARF6 and ANK2. Understanding the roles of miR-9-5p in epilepsy and glioma and the underlying mechanisms may provide a theoretical basis for the diagnosis and treatment of patients with epilepsy and glioma.
Collapse
|
18
|
Zhang H, Liu X, Liu Y, Liu J, Gong X, Li G, Tang M. Crosstalk between regulatory non-coding RNAs and oxidative stress in Parkinson’s disease. Front Aging Neurosci 2022; 14:975248. [PMID: 36016854 PMCID: PMC9396353 DOI: 10.3389/fnagi.2022.975248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease is the second most common neurodegenerative disease after Alzheimer’s disease, which imposes an ever-increasing burden on society. Many studies have indicated that oxidative stress may play an important role in Parkinson’s disease through multiple processes related to dysfunction or loss of neurons. Besides, several subtypes of non-coding RNAs are found to be involved in this neurodegenerative disorder. However, the interplay between oxidative stress and regulatory non-coding RNAs in Parkinson’s disease remains to be clarified. In this article, we comprehensively survey and overview the role of regulatory ncRNAs in combination with oxidative stress in Parkinson’s disease. The interaction between them is also summarized. We aim to provide readers with a relatively novel insight into the pathogenesis of Parkinson’s disease, which would contribute to the development of pre-clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Hantao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiaoyan Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yi Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- Institute of Animal Husbandry, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Junlin Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xun Gong
- Department of Rheumatology & Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Gang Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
- *Correspondence: Gang Li Min Tang
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- *Correspondence: Gang Li Min Tang
| |
Collapse
|
19
|
Nguyen TPN, Kumar M, Fedele E, Bonanno G, Bonifacino T. MicroRNA Alteration, Application as Biomarkers, and Therapeutic Approaches in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23094718. [PMID: 35563107 PMCID: PMC9104163 DOI: 10.3390/ijms23094718] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 01/27/2023] Open
Abstract
MicroRNAs (miRNAs) are essential post-transcriptional gene regulators involved in various neuronal and non-neuronal cell functions and play a key role in pathological conditions. Numerous studies have demonstrated that miRNAs are dysregulated in major neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, amyotrophic lateral sclerosis, or Huntington’s disease. Hence, in the present work, we constructed a comprehensive overview of individual microRNA alterations in various models of the above neurodegenerative diseases. We also provided evidence of miRNAs as promising biomarkers for prognostic and diagnostic approaches. In addition, we summarized data from the literature about miRNA-based therapeutic applications via inhibiting or promoting miRNA expression. We finally identified the overlapping miRNA signature across the diseases, including miR-128, miR-140-5p, miR-206, miR-326, and miR-155, associated with multiple etiological cellular mechanisms. However, it remains to be established whether and to what extent miRNA-based therapies could be safely exploited in the future as effective symptomatic or disease-modifying approaches in the different human neurodegenerative disorders.
Collapse
Affiliation(s)
- T. P. Nhung Nguyen
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (T.P.N.N.); (M.K.); (G.B.); (T.B.)
| | - Mandeep Kumar
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (T.P.N.N.); (M.K.); (G.B.); (T.B.)
| | - Ernesto Fedele
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (T.P.N.N.); (M.K.); (G.B.); (T.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Correspondence:
| | - Giambattista Bonanno
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (T.P.N.N.); (M.K.); (G.B.); (T.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Tiziana Bonifacino
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (T.P.N.N.); (M.K.); (G.B.); (T.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Genoa, Italy
| |
Collapse
|
20
|
Tan X, Hu J, Ming F, Lv L, Yan W, Peng X, Bai R, Xiao Q, Zhang H, Tang B, Wang C, Tan J. MicroRNA-409-3p Targeting at ATXN3 Reduces the Apoptosis of Dopamine Neurons Based on the Profile of miRNAs in the Cerebrospinal Fluid of Early Parkinson's Disease. Front Cell Dev Biol 2022; 9:755254. [PMID: 35111747 PMCID: PMC8803123 DOI: 10.3389/fcell.2021.755254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
Precise recognition of early Parkinson’s disease (PD) has always been a challenging task requiring more feasible biomarkers to be integrated to improve diagnostic accuracy. MicroRNAs (miRNAs) of cerebrospinal fluid (CSF) are believed to be potential and promising candidate biomarkers for PD. However, the role of altered miRNAs of CSF play in PD is unclear. Here, we recruited patients with early stages of PD and controls to analyze the expression of miRNA in CSF by the Next Generation Sequencing (NGS). Furthermore, we tested the levels of these miRNA in SH-SY5Y cells treated with MPP+ using real-time quantitative PCR. We found 21 miRNAs were upregulated in CSF of early PD patients and miR-409-3p, one of the identified 21 miRNAs, was further confirmed in SH-SY5Y cells treated with MPP+. Also, more cells survived in the overexpression of the miR-409-3p group when SH-SY5Y cells and mice were treated with MPP+ and MPTP, respectively. Mechanistically, we demonstrated the binding of miR-409-3p and 3’UTR of ATXN3 through a dual luciferase reporter gene assay. Moreover, miR-409-3p mimic reduced the aggregation of polyglutamine-expanded mutant of ATXN3 and apoptosis. Our results provide experimental evidence for miR-409-3p in CSF as a diagnostic marker of PD.
Collapse
Affiliation(s)
- Xuling Tan
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Junjian Hu
- Center for Medical Genetics, School of Life Science, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Fengyu Ming
- Department of Neurology, The First People's Hospital of Huaihua City, HuaiHua, China
| | - Lingling Lv
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weiqian Yan
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xinke Peng
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Rongrong Bai
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qile Xiao
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hainan Zhang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Chunyu Wang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jieqiong Tan
- Center for Medical Genetics, School of Life Science, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| |
Collapse
|
21
|
Han YP, Liu ZJ, Bao HH, Wang Q, Su LL. miR-126-5p Targets SP1 to Inhibit the Progression of Parkinson's Disease. Eur Neurol 2022; 85:235-244. [PMID: 35108712 DOI: 10.1159/000521525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 12/13/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND At present, symptomatic treatment may improve the life quality of Parkinson's disease (PD) patients to a certain extent but cannot completely cure PD. Therefore, it is urgent medical problem to be solved for improving the efficacy and safety of PD treatment. METHODS SH-SY5Y and SK-N-SH cells were treated with 1-methyl-4-phenylpyridinium (MPP+) to establish PD model cells. miR-126-5p and specific protein-1 (SP1) expression levels were detected by quantitative Real-Time PCR (qRT-PCR). Western blot was applied to measure protein levels of SP1, Bax, and Bcl-2. The viabilities and apoptosis rates of treated cells were measured using cell counting kit-8 assay and flow cytometry analysis. Enzyme-linked immunosorbent assay was performed to measure TNF-α and IL-1β releases. Interaction between miR-126-5p and SP1 was examined by dual-luciferase reporter assay. RESULTS MPP+ treatment greatly downregulated miR-126-5p expression while upregulated SP1 expression in SH-SY5Y and SK-N-SH cells in a time- and does-dependent manner. Overexpression of miR-126-5p facilitated cell viability, while reduced cell apoptosis and inflammatory responses induced by MPP+ treatment. Moreover, SP1 was a target of miR-126-5p and could be negatively regulated by miR-126-5p. Overexpression of SP1 could reverse the effects of miR-126-5p on MPP+-administrated cells. CONCLUSION Our results suggested that miR-126-5p attenuated the neurotoxicity induced by MPP+ in vitro through targeting SP1 (Graphical abstract), which further enhanced our understanding of the pathological mechanism of PD.
Collapse
Affiliation(s)
- Yan-Ping Han
- Department of Neurology, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhi-Jun Liu
- Department of Neurology, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Hong-Hui Bao
- Department of Neurology, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Qiong Wang
- Department of Neurology, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Li-Li Su
- Department of Neurology, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
22
|
Mohamad KA, El-Naga RN, Wahdan SA. Neuroprotective effects of indole-3-carbinol on the rotenone rat model of Parkinson's disease: Impact of the SIRT1-AMPK signaling pathway. Toxicol Appl Pharmacol 2022; 435:115853. [PMID: 34973289 DOI: 10.1016/j.taap.2021.115853] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/26/2021] [Accepted: 12/24/2021] [Indexed: 10/19/2022]
Abstract
Parkinson's disease (PD) is the second most common progressive neurodegenerative disorder. Although mounting studies have been conducted, no effective therapy is available to halt its progression. Indole-3-carbinol (I3C) is a naturally occurring compound obtained by β-thioglucosidase-mediated autolysis of glucobrassicin in cruciferous vegetables. Besides its powerful antioxidant activity, I3C has shown neuroprotection against depression and chemically induced neurotoxicity via its anti-inflammatory and antiapoptotic effects. This study aimed to investigate the neuroprotective effects of I3C against rotenone (ROT)-induced PD in male albino rats. The possible protective mechanisms were also explored. PD was induced by subcutaneous administration of ROT (2 mg/kg) for 28 days. The effects of I3C (25, 50, and 100 mg/kg/day) were assessed by catalepsy test (bar test), spontaneous locomotor activity, rotarod test, weight change, tyrosine hydroxylase (TH) expression, α-synuclein (α-Syn) expression, striatal dopamine (DA) content, and histological examination. The highest dose of I3C (100 mg/kg) was the most effective to prevent ROT-mediated motor dysfunctions and amend striatal DA decrease, weight loss, neurodegeneration, TH expression reduction, and α-Syn expression increase in both the midbrain and striatum. Further mechanistic investigations revealed that the neuroprotective effects of I3C are partially attributed to its anti-inflammatory and antiapoptotic effects and the activation of the sirtuin 1/AMP-activated protein kinase pathway. Altogether, these results suggested that I3C could attenuate biochemical, molecular, and functional changes in a rat PD model with following repeated rotenone exposures.
Collapse
Affiliation(s)
- Khalid A Mohamad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Reem N El-Naga
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Sara A Wahdan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
23
|
Zhang W, Liu Q, Zhu H, Ma C, Luo Q, Ji M, Liu L. Propofol induces the apoptosis of neural stem cells via microRNA-9-5p / chemokine CXC receptor 4 signaling pathway. Bioengineered 2022; 13:1062-1072. [PMID: 34990302 PMCID: PMC8805814 DOI: 10.1080/21655979.2021.2017590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Recent studies suggested that propofol, one of the most widely used anesthetics, may cause neurotoxicity in the developing brain, leading to cognitive deficits in adults. However, the underlying mechanisms remain unclear. In this study, we aimed to evaluate the mechanisms of propofol neurotoxicity in the neural stem cells (NSCs). The mRNA and protein expression levels of microRNA-9-5p (miR-9-5p) and chemokine CXC receptor 4 (CXCR4) were determined by quantitative reverse transcription-polymerase chain reaction and Western blotting analyses. Cell viability and apoptosis were evaluated using the cell counting kit-8 and Hoechst staining kits. The levels of apoptosis-related proteins B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein, and caspase-3 were detected by Western blotting analysis. These results confirmed that propofol activated cell apoptosis in a dose-dependent manner. A significant increase in the miR-9-5p and CXCR4 expression was observed in the propofol-treated cells. The overexpression of miR-9-5p induced apoptosis in NSCs, accompanied by elevated apoptosis-related protein activity. Furthermore, mitigated CXCR4 expression reduced propofol-induced cell apoptosis. We conclude that propofol induces cell death in NSCs, and overexpression of miR-9-5p/CXCR4 contributes to propofol-induced cell apoptosis, which might be a target for developing novel strategies to treat propofol neurotoxicity.
Collapse
Affiliation(s)
- Weixin Zhang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qi Liu
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - He Zhu
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chao Ma
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qin Luo
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Meilin Ji
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Li Liu
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
24
|
Xu H, Liu YY, Li LS, Liu YS. Sirtuins at the Crossroads between Mitochondrial Quality Control and Neurodegenerative Diseases: Structure, Regulation, Modifications, and Modulators. Aging Dis 2022; 14:794-824. [PMID: 37191431 DOI: 10.14336/ad.2022.1123] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/23/2022] [Indexed: 04/03/2023] Open
Abstract
Sirtuins (SIRT1-SIRT7), a family of nicotinamide adenine dinucleotide (NAD+)-dependent enzymes, are key regulators of life span and metabolism. In addition to acting as deacetylates, some sirtuins have the properties of deacylase, decrotonylase, adenosine diphosphate (ADP)-ribosyltransferase, lipoamidase, desuccinylase, demalonylase, deglutarylase, and demyristolyase. Mitochondrial dysfunction occurs early on and acts causally in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Sirtuins are implicated in the regulation of mitochondrial quality control, which is highly associated with the pathogenesis of neurodegenerative diseases. There is growing evidence indicating that sirtuins are promising and well-documented molecular targets for the treatment of mitochondrial dysfunction and neurodegenerative disorders by regulating mitochondrial quality control, including mitochondrial biogenesis, mitophagy, mitochondrial fission/fusion dynamics, and mitochondrial unfolded protein responses (mtUPR). Therefore, elucidation of the molecular etiology of sirtuin-mediated mitochondrial quality control points to new prospects for the treatment of neurodegenerative diseases. However, the mechanisms underlying sirtuin-mediated mitochondrial quality control remain obscure. In this review, we update and summarize the current understanding of the structure, function, and regulation of sirtuins with an emphasis on the cumulative and putative effects of sirtuins on mitochondrial biology and neurodegenerative diseases, particularly their roles in mitochondrial quality control. In addition, we outline the potential therapeutic applications for neurodegenerative diseases of targeting sirtuin-mediated mitochondrial quality control through exercise training, calorie restriction, and sirtuin modulators in neurodegenerative diseases.
Collapse
|
25
|
Yang K, Zheng Y, Lu K, Chang K, Wang N, Shu Z, Yu J, Liu B, Gao Z, Zhou X. PDGNet: Predicting Disease Genes Using a Deep Neural Network With Multi-View Features. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:575-584. [PMID: 32750864 DOI: 10.1109/tcbb.2020.3002771] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The knowledge of phenotype-genotype associations is crucial for the understanding of disease mechanisms. Numerous studies have focused on developing efficient and accurate computing approaches to predict disease genes. However, owing to the sparseness and complexity of medical data, developing an efficient deep neural network model to identify disease genes remains a huge challenge. Therefore, we develop a novel deep neural network model that fuses the multi-view features of phenotypes and genotypes to identify disease genes (termed PDGNet). Our model integrated the multi-view features of diseases and genes and leveraged the feedback information of training samples to optimize the parameters of deep neural network and obtain the deep vector features of diseases and genes. The evaluation experiments on a large data set indicated that PDGNet obtained higher performance than the state-of-the-art method (precision and recall improved by 9.55 and 9.63 percent). The analysis results for the candidate genes indicated that the predicted genes have strong functional homogeneity and dense interactions with known genes. We validated the top predicted genes of Parkinson's disease based on external curated data and published medical literatures, which indicated that the candidate genes have a huge potential to guide the selection of causal genes in the 'wet experiment'. The source codes and the data of PDGNet are available at https://github.com/yangkuoone/PDGNet.
Collapse
|
26
|
Wang HQ, Wang WH, Chen CZ, Guo HX, Jiang H, Yuan B, Zhang JB. Regulation of FSH Synthesis by Differentially Expressed miR-488 in Anterior Adenohypophyseal Cells. Animals (Basel) 2021; 11:ani11113262. [PMID: 34827994 PMCID: PMC8614264 DOI: 10.3390/ani11113262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary GnRH and FSH play an important regulatory role in the reproductive activities of mammals. At present, many artificially synthesized GnRH analogues have been used in the regulation of cattle reproduction and the clinical treatment of various reproductive diseases. This study explored the potential mechanism of miR-488 in GnRH regulation of FSH synthesis and secretion and provides a theoretical basis for the application of GnRH analogue in cattle artificial breeding. We hope to provide a research foundation for improving the processing procedures of cattle estrus control and the domestic application of hormone products. Abstract Gonadotropin-releasing hormone (GnRH), which is synthesized and released by the hypothalamus, promotes the synthesis and secretion of follicle-stimulating hormone (FSH), thereby regulating the growth and reproduction of animals. GnRH analogues have been widely used in livestock production. MiRNAs, which are endogenous non-coding RNAs, have been found to play important roles in hormone regulation and other physiological processes in recent years. However, the roles of miRNAs in GnRH-mediated regulation of FSH secretion have rarely been studied. Herein, we treated bovine anterior adenohypophyseal cells with an exogenous GnRH analogue and found that miR-488 was differentially expressed. Through a combination of TargetScan prediction and dual luciferase reporter analysis, miR-488 was confirmed to be able to target the FSHB gene. Based on this finding, we verified the expression of Fshβ and Lhβ mRNA in the rat adenohypophysis before and after exogenous GnRH treatment in vivo and in vitro. Experiments on rat anterior adenohypophyseal cells showed that overexpression of miR-488 significantly inhibited Fshβ expression and FSH synthesis, while knockdown of miR-488 had the opposite effects. Our results demonstrate that GnRH relies on miR-488 to regulate FSH synthesis, providing additional useful evidence for the significance of miRNAs in the regulation of animal reproduction.
Collapse
Affiliation(s)
| | | | | | | | | | - Bao Yuan
- Correspondence: (B.Y.); (J.-B.Z.); Tel.: +86-431-8783-6536 (B.Y.); +86-431-8783-6551 (J.-B.Z.)
| | - Jia-Bao Zhang
- Correspondence: (B.Y.); (J.-B.Z.); Tel.: +86-431-8783-6536 (B.Y.); +86-431-8783-6551 (J.-B.Z.)
| |
Collapse
|
27
|
Ma W, Zhang W, Cui B, Gao J, Liu Q, Yao M, Ning H, Xing L. Functional delivery of lncRNA TUG1 by endothelial progenitor cells derived extracellular vesicles confers anti-inflammatory macrophage polarization in sepsis via impairing miR-9-5p-targeted SIRT1 inhibition. Cell Death Dis 2021; 12:1056. [PMID: 34743197 PMCID: PMC8572288 DOI: 10.1038/s41419-021-04117-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 12/16/2022]
Abstract
The delivery of biomolecules by extracellular vesicles (EVs) derived from endothelial progenitor cells (EPCs) has been proven to ameliorate sepsis, yet the therapeutic mechanism remains to be elucidated. Taurine upregulated gene 1 (TUG1) is a long noncoding RNA (lncRNA) that is downregulated in sepsis. The current study was designed to explore the role of EPCs derived EVs transmitting TUG1 in macrophage polarization and macrophage-mediated inflammation in a cecal ligation and puncture (CLP)-induced sepsis mouse model. TUG1 was underexpressed in CLP-induced sepsis, and its reexpression induced anti-inflammatory macrophage polarization and suppressed macrophage-medicated inflammatory injury to the pulmonary vascular endothelium. EPCs derived EVs transmitted TUG1 to promote M2 macrophage polarization. Luciferase, RIP, and RNA pull-down assays showed that TUG1 could competitively bind to microRNA-9-5p (miR-9-5p) to upregulate the expression of sirtuin 1 (SIRT1). Furthermore, EPCs derived EVs transmitted TUG1 to promote M2 macrophage polarization through the impairment of miR-9-5p-dependent SIRT1 inhibition. Finally, EPCs derived EVs carrying TUG1 were verified to ameliorate sepsis-induced organ damage in the murine model. In summary, EPCs derived EVs transmit TUG1 to attenuate sepsis via macrophage M2 polarization. This study also highlights the proinflammatory mechanism associated with miR-9-5p-mediated inhibition of SIRT1, which contributes to a more comprehensive understanding of the pathogenesis of sepsis.
Collapse
Affiliation(s)
- Wentao Ma
- Department of Respiratory Intensive Care Unit, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P.R. China
| | - Weihong Zhang
- Department of Anatomy, School of Nursing and Health College, Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Bing Cui
- Department of Nephrology, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, 450052, P.R. China
| | - Jing Gao
- Department of Respiratory Intensive Care Unit, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P.R. China
| | - Qiuhong Liu
- Department of Respiratory Intensive Care Unit, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P.R. China
| | - Mengying Yao
- Department of Respiratory Intensive Care Unit, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P.R. China.
| | - Hanbing Ning
- Department of Digestive Diseases, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P.R. China.
| | - Lihua Xing
- Department of Respiratory Intensive Care Unit, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P.R. China.
| |
Collapse
|
28
|
Gupta R, Ambasta RK, Kumar P. Multifaced role of protein deacetylase sirtuins in neurodegenerative disease. Neurosci Biobehav Rev 2021; 132:976-997. [PMID: 34742724 DOI: 10.1016/j.neubiorev.2021.10.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 01/07/2023]
Abstract
Sirtuins, a class III histone/protein deacetylase, is a central regulator of metabolic function and cellular stress response. This plays a pivotal role in the pathogenesis and progression of diseases such as cancer, neurodegeneration, metabolic syndromes, and cardiovascular disease. Sirtuins regulate biological and cellular processes, for instance, mitochondrial biogenesis, lipid and fatty acid oxidation, oxidative stress, gene transcriptional activity, apoptosis, inflammatory response, DNA repair mechanism, and autophagic cell degradation, which are known components for the progression of the neurodegenerative diseases (NDDs). Emerging evidence suggests that sirtuins are the useful molecular targets against NDDs like, Alzheimer's Disease (AD), Parkinson's Disease (PD), Huntington's Disease (HD), and Amyotrophic Lateral Sclerosis (ALS). However, the exact mechanism of neuroprotection mediated through sirtuins remains unsettled. The manipulation of sirtuins activity with its modulators, calorie restriction (CR), and micro RNAs (miR) is a novel therapeutic approach for the treatment of NDDs. Herein, we reviewed the current putative therapeutic role of sirtuins in regulating synaptic plasticity and cognitive functions, which are mediated through the different molecular phenomenon to prevent neurodegeneration. We also explained the implications of sirtuin modulators, and miR based therapies for the treatment of life-threatening NDDs.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India.
| |
Collapse
|
29
|
Chen XR, Zhang YG, Wang Q. miR-9-5p Mediates ABCC1 to Elevate the Sensitivity of Glioma Cells to Temozolomide. Front Oncol 2021; 11:661653. [PMID: 34532283 PMCID: PMC8438306 DOI: 10.3389/fonc.2021.661653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/19/2021] [Indexed: 01/14/2023] Open
Abstract
Chemotherapy combined with surgery is an important clinical treatment for glioma, but endogenous or acquired temozolomide (TMZ) resistance can lead to poor prognosis. microRNA (miR)-9-5p acts in biological function of glioma, but the drug resistance of miR-9-5p in glioma is under exploration. The study intended to test the molecular mechanism of miR-9-5p in glioma cells. MTT assay was applied to investigate the chemosensitivity enhancement of miR-9-5p on TMZ in glioma cells U87-TMZ and U251-TMZ, and in vivo experiments confirmed its role on tumor growth in nude mice. The results of double luciferase reporter gene assay, qRT-PCR and WB indicated that miR-9-5p directly targeted ABCC1 (ATP binding cassette subfamily C member 1) to reduce its expressions. MTT and flow cytometry indicated that elevation of miR-9-5p or down-regulation of ABCC1 could inhibit proliferation-induced apoptosis of drug-resistant cells, and the decrease of miR-9-5p could reverse the reduction of ABCC1 on proliferation-induced apoptosis of drug-resistant cells. In vivo experiments showed that miR-9-5p could promote the anti-tumor role of TMZ. To sum up, the increase of miR-9-5p directly targets ABCC1 and may make glioma cells sensitive to TMZ.
Collapse
Affiliation(s)
- Xiang-Rui Chen
- Department of Neurosurgery, The Third Affiliated Hospital of Qiqihar Medical Unversity, Qiqihar, China
| | - Yan-Guo Zhang
- Department of Neurosurgery, The Third Affiliated Hospital of Qiqihar Medical Unversity, Qiqihar, China
| | - Qiang Wang
- Department of Neurosurgery, The Third Affiliated Hospital of Qiqihar Medical Unversity, Qiqihar, China
| |
Collapse
|
30
|
Su Z, Ren N, Ling Z, Sheng L, Zhou S, Guo C, Ke Z, Xu T, Qin Z. Differential expression of microRNAs associated with neurodegenerative diseases and diabetic nephropathy in protein l-isoaspartyl methyltransferase-deficient mice. Cell Biol Int 2021; 45:2316-2330. [PMID: 34314072 DOI: 10.1002/cbin.11679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/15/2021] [Accepted: 07/24/2021] [Indexed: 11/05/2022]
Abstract
Protein l-isoaspartyl methyltransferase (PIMT/PCMT1), an enzyme repairing isoaspartate residues in peptides and proteins that result from the spontaneous decomposition of normal l-aspartyl and l-asparaginyl residues during aging, has been revealed to be involved in neurodegenerative diseases (NDDs) and diabetes. However, the molecular mechanisms for a putative association of PIMT dysfunction with these diseases have not been clarified. Our study aimed to identify differentially expressed microRNAs (miRNAs) in the brain and kidneys of PIMT-deficient mice and uncover the epigenetic mechanism of PIMT-involved NDDs and diabetic nephropathy (DN). Differentially expressed miRNAs by sequencing underwent target prediction and enrichment analysis in the brain and kidney of PIMT knockout (KO) mice and age-matched wild-type (WT) littermates. Sequence analysis revealed 40 differentially expressed miRNAs in the PIMT KO mouse brain including 25 upregulated miRNAs and 15 downregulated miRNAs. In the PIMT KO mouse kidney, there were 80 differentially expressed miRNAs including 40 upregulated miRNAs and 40 downregulated miRNAs. Enrichment analysis and a systematic literature review of differentially expressed miRNAs indicated the involvement of PIMT deficiency in the pathogenesis in NDDs and DN. Some overlapped differentially expressed miRNAs between the brain and kidney were quantitatively assessed in the brain, kidney, and serum-derived exosomes, respectively. Despite being preliminary, these results may aid in investigating the pathological hallmarks and identify the potential therapeutic targets and biomarkers for PIMT dysfunction-related NDDs and DN.
Collapse
Affiliation(s)
- Zhonghao Su
- Department of Febrile Disease, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Na Ren
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zicheng Ling
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lanyue Sheng
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sirui Zhou
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunxia Guo
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zunji Ke
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tiefeng Xu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhenxia Qin
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
31
|
miR-9-5p promotes wear-particle-induced osteoclastogenesis through activation of the SIRT1/NF-κB pathway. 3 Biotech 2021; 11:258. [PMID: 33987074 DOI: 10.1007/s13205-021-02814-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022] Open
Abstract
To explore the potential function of miR-9-5p in wear-particle-induced osteoclastogenesis, we examined the expression of SIRT1 and miR-9-5p in particle-induced osteolysis (PIO) mice calvariae and polyethylene (PE)-induced RAW 264.7 cells and found that SIRT1 expression was downregulated while miR-9-5p expression was upregulated in both models. We then verified that miR-9-5p targets SIRT1. miR-9-5p was found to promote PE-induced osteoclast formation from RAW 264.7 cells by tartrate-resistant acid phosphatase staining and detection of osteoclast markers, and miR-9-5p activation of the SIRT1/NF-kB signaling pathway was found in cells by detecting the expression of SIRT1/NF-kB pathway-related proteins and rescue assays. In conclusion, we found that miR-9-5p activated the SIRT1/NF-κB pathway to promote wear-particle-induced osteoclastogenesis. miR-9-5p may be a useful therapeutic target for PIO remission and treatment.
Collapse
|
32
|
Kinoshita C, Kubota N, Aoyama K. Interplay of RNA-Binding Proteins and microRNAs in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms22105292. [PMID: 34069857 PMCID: PMC8157344 DOI: 10.3390/ijms22105292] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 02/07/2023] Open
Abstract
The number of patients with neurodegenerative diseases (NDs) is increasing, along with the growing number of older adults. This escalation threatens to create a medical and social crisis. NDs include a large spectrum of heterogeneous and multifactorial pathologies, such as amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and multiple system atrophy, and the formation of inclusion bodies resulting from protein misfolding and aggregation is a hallmark of these disorders. The proteinaceous components of the pathological inclusions include several RNA-binding proteins (RBPs), which play important roles in splicing, stability, transcription and translation. In addition, RBPs were shown to play a critical role in regulating miRNA biogenesis and metabolism. The dysfunction of both RBPs and miRNAs is often observed in several NDs. Thus, the data about the interplay among RBPs and miRNAs and their cooperation in brain functions would be important to know for better understanding NDs and the development of effective therapeutics. In this review, we focused on the connection between miRNAs, RBPs and neurodegenerative diseases.
Collapse
Affiliation(s)
- Chisato Kinoshita
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan;
- Correspondence: (C.K.); (K.A.); Tel.: +81-3-3964-3794 (C.K.); +81-3-3964-3793 (K.A.)
| | - Noriko Kubota
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan;
- Teikyo University Support Center for Women Physicians and Researchers, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Koji Aoyama
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan;
- Correspondence: (C.K.); (K.A.); Tel.: +81-3-3964-3794 (C.K.); +81-3-3964-3793 (K.A.)
| |
Collapse
|
33
|
Lian H, Wang B, Lu Q, Chen B, Yang H. LINC00943 knockdown exerts neuroprotective effects in Parkinson's disease through regulates CXCL12 expression by sponging miR-7-5p. Genes Genomics 2021; 43:797-805. [PMID: 33886117 DOI: 10.1007/s13258-021-01084-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/15/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is a common neurodegenerative movement disorder, but the pathogenesis is still unclear. Long non-coding RNAs (lncRNAs) have been reported to play a prominent role in PD. OBJECTIVE This study is designed to explore the role and mechanism of long intergenic non-coding RNA 00943 (LINC00943) in the N-methyl-4-phenylpyridine (MPP+)-inducted PD model. METHODS LINC00943, microRNA-7-5p (miR-7-5p), and the chemokine (C-X-C motif) ligand 12 (CXCL12, also referred to as SDF-1) level were examined by real-time quantitative polymerase chain reaction (RT-qPCR). Cell viability and apoptosis were analyzed by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT), and flow cytometry assays, severally. Protein levels of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and CXCL12 were assessed by western blot assay. The ROS generation and SOD activity were detected by the corresponding kits. The binding relationship between miR-7-5p and LINC00943 or CXCL12 was predicted by Starbase and then verified by a dual-luciferase reporter and RNA Immunoprecipitation (RIP) assays. RESULTS LINC00943 and CXCL12 were increased, and miR-7-5p was decreased in MPP+-inducted SK-N-SH cells. LINC00943 silencing promoted cell viability, and repressed apoptosis and the inflammatory response in MPP+-treated SK-N-SH cells. The mechanical analysis discovered that LINC00943 acted as a sponge of miR-7-5p to regulate CXCL12 expression. CONCLUSIONS LINC00943 knockdown could attenuate MPP+-triggered neuron injury by regulating the miR-7-5p/CXCL12 axis, hinting at a promising therapeutic target for PD treatment.
Collapse
Affiliation(s)
- Han Lian
- Department of Neurology, Jingmen No. 1 People's Hospital, No. 168, Xiangshan Avenue, Duodao District, Jingmen, 448000, Hubei, China
| | - Baohua Wang
- Department of Neurology, Jingmen No. 1 People's Hospital, No. 168, Xiangshan Avenue, Duodao District, Jingmen, 448000, Hubei, China
| | - Quan Lu
- Department of Neurology, Jingmen No. 1 People's Hospital, No. 168, Xiangshan Avenue, Duodao District, Jingmen, 448000, Hubei, China
| | - Bin Chen
- Department of Neurology, Jingmen No. 1 People's Hospital, No. 168, Xiangshan Avenue, Duodao District, Jingmen, 448000, Hubei, China
| | - Hui Yang
- Department of Neurology, Jingmen No. 1 People's Hospital, No. 168, Xiangshan Avenue, Duodao District, Jingmen, 448000, Hubei, China.
| |
Collapse
|
34
|
Xiao L, Gong D, Liang L, Liang A, Liang H, Xu X, Teng H. Inhibition of HDAC4 by GSK3β leads to downregulation of KLF5 and ASK1 and prevents the progression of intravertebral disc degeneration. Clin Epigenetics 2021; 13:53. [PMID: 33691773 PMCID: PMC7948391 DOI: 10.1186/s13148-021-01005-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is a major cause of lower back pain. This study aimed at exploring the effects of histone deacetylase 4 (HDAC4) and its upstream and downstream signaling molecules on IDD development. METHODS A murine IDD model was established by inducing a needle puncture injury to the vertebrate, whereupon we isolated and transfected of nucleus pulposus (NP) cells. Disc height index (DHI) of the mice was determined by X-ray tomography, while the pain experienced by the IDD mice was evaluated by mechanical and thermal sensitivity tests. Next, the interaction between GSK3β and HDAC4 as well as that between HDAC4 and KLF5 acetylation was assessed by co-immunoprecipitation, while the promoter region binding was assessed identified by chromatin immunoprecipitation. By staining methods with TUNEL, Safranin O fast green, and hematoxylin and eosin, the NP cell apoptosis, degradation of extracellular matrix, and morphology of intervertebral disc tissues were measured. Furthermore, mRNA and protein expressions of GSK3β, HDAC4, KLF5, and ASK1, as well as the extent of HDAC4 phosphorylation, were determined by RT-qPCR and Western blotting. RESULTS GSK3β was identified to be downregulated in the intervertebral disc tissues obtained from IDD mice, while HDAC4, KLF5, and ASK1 were upregulated. HDAC4 silencing alleviated IDD symptoms. It was also found that GSK3β promoted the phosphorylation of HDAC4 to increase its degradation, while HDAC4 promoted ASK1 expression through upregulating the expression of KLF5. In IDD mice, GSK3β overexpression resulted in increased DHI, inhibition of NP cell apoptosis, alleviation of disc degeneration, and promoted mechanical and thermal pain thresholds. However, HDAC4 overexpression reversed these effects by promoting ASK1 expression. CONCLUSION Based on the key findings of the current study, we conclude that GSK3β can promote degradation of HDAC4, which lead to an overall downregulation of the downstream KLF5/ASK1 axis, thereby alleviating the development of IDD.
Collapse
Affiliation(s)
- Lin Xiao
- Department of Pain, Guangxi University of Chinese Medicine, Guangxi International Zhuang Medicine Hospital, No. 8, Qiuyue Road, Wuxiang New District, Nanning, 530000, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Dongping Gong
- Department of Pain, Guangxi University of Chinese Medicine, Guangxi International Zhuang Medicine Hospital, No. 8, Qiuyue Road, Wuxiang New District, Nanning, 530000, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Loufeng Liang
- Department of Pain, Guangxi University of Chinese Medicine, Guangxi International Zhuang Medicine Hospital, No. 8, Qiuyue Road, Wuxiang New District, Nanning, 530000, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Anwei Liang
- Department of Pain, Guangxi University of Chinese Medicine, Guangxi International Zhuang Medicine Hospital, No. 8, Qiuyue Road, Wuxiang New District, Nanning, 530000, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Huaxin Liang
- Department of Pain, Guangxi University of Chinese Medicine, Guangxi International Zhuang Medicine Hospital, No. 8, Qiuyue Road, Wuxiang New District, Nanning, 530000, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiayi Xu
- Department of Pain, Guangxi University of Chinese Medicine, Guangxi International Zhuang Medicine Hospital, No. 8, Qiuyue Road, Wuxiang New District, Nanning, 530000, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hongli Teng
- Department of Pain, Guangxi University of Chinese Medicine, Guangxi International Zhuang Medicine Hospital, No. 8, Qiuyue Road, Wuxiang New District, Nanning, 530000, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
35
|
Lithium alleviated spinal cord injury (SCI)-induced apoptosis and inflammation in rats via BDNF-AS/miR-9-5p axis. Cell Tissue Res 2021; 384:301-312. [PMID: 33464390 DOI: 10.1007/s00441-020-03298-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022]
Abstract
Spinal cord injury (SCI) is a major cause of paralysis, disability and even death in severe cases. Lithium has neuroprotective effects on SCI, while the underlying mechanisms remain obscure. In the present study, we established a SCI rat model, which subsequently received lithium treatment. Results displayed that lithium treatment improved the locomotor function recovery and reduced apoptosis by increasing anti-apoptotic molecule expression and decreasing pro-apoptotic factor expression in SCI rats. Furthermore, lithium treatment alleviated the inflammatory response by inactivating the nuclear factor-kappa B (NF-κB) pathway and inhibited the expression of lncRNA brain-derived neurotrophic factor antisense (BDNF-AS) in SCI rats. Subsequent researches indicated that miR-9-5p was targeted and regulated by BDNF-AS. Lithium treatment rescued the upregulation of BDNF-AS expression and downregulation of miR-9-5p expression induced by H2O2 in SH-SY5Y cells. BDNF-AS overexpression or miR-9-5p interference attenuated the anti-apoptotic and anti-inflammatory effects of lithium chloride in SH-SY5Y cells that was damaged by H2O2 induction, revealing that lithium might act through the BDNF-AS/miR-9-5p axis. In vivo studies showed that the injection of BDNF-AS adenovirus vector or miR-9-5p inhibitor reversed the effects of lithium on the histologic morphology of spinal cord, motor function, inflammatory reaction and apoptosis in SCI rats, which was consistent with the results of in vitro studies. In conclusion, our data demonstrated that lithium reduced SCI-induced apoptosis and inflammation in rats via the BDNF-AS/miR-9-5p axis.
Collapse
|
36
|
Xie Y, Zhang S, Lv Z, Long T, Luo Y, Li Z. SOX21-AS1 modulates neuronal injury of MMP +-treated SH-SY5Y cells via targeting miR-7-5p and inhibiting IRS2. Neurosci Lett 2021; 746:135602. [PMID: 33421490 DOI: 10.1016/j.neulet.2020.135602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/21/2020] [Accepted: 12/26/2020] [Indexed: 01/29/2023]
Abstract
Parkinson's disease (PD), caused by the decreased number of dopaminergic neurons in the substantia nigra, is identified as the second most familiar age-dependent neurodegenerative disease to the public. Long non-coding RNAs (lncRNAs) have been reported to participate in the development of PD. In our research, the expression of lncRNA SRY-box transcription factor 21 antisense divergent transcript 1 (SOX21-AS1) was up-regulated in 1-methyl-4-phenylpyridinium (MMP+)-treated SH-SY5Y cells. In addition, SOX21-AS1 depletion weakened the cell injury induced by MMP+. Moreover, SOX21-AS1 knockdown decreased Reactive Oxygen Species (ROS) generation and levels of TNF-α, IL-1β and IL-6, but increased SOD activity. However, SOX21-AS1 up-regulation led to opposite results. Further, SOX21-AS1 could bind with miR-7-5p, whose overexpression relieved MMP+-induced cell injury. Additionally, insulin receptor substrate 2 (IRS2) served as the target gene of miR-7-5p, and its expression was positively modulated by SOX21-AS1. Similarly, IRS2 knockdown also had alleviative effects on cell injury stimulated by MMP+ treatment. In sum up, our study demonstrated a new regulatory network consisted of SOX21-AS1, miR-7-5p and IRS2 in SH-SY5Y cells, supplying with a better comprehension about the pathogenic mechanism of PD.
Collapse
Affiliation(s)
- Yang Xie
- Department of Neurology, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou City, Sichuan Province, 646000, China
| | - Shujiang Zhang
- Department of Neurology, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou City, Sichuan Province, 646000, China
| | - Zhiyu Lv
- Department of Neurology, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou City, Sichuan Province, 646000, China
| | - Ting Long
- Department of Neurology, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou City, Sichuan Province, 646000, China
| | - Ying Luo
- Department of Neurology, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou City, Sichuan Province, 646000, China
| | - Zuoxiao Li
- Department of Neurology, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou City, Sichuan Province, 646000, China.
| |
Collapse
|
37
|
Ying M, Feng H, Zhang X, Liu R, Ning H. MiR-9-5p Inhibits the Proliferation, Migration and Invasion of Choroidal Melanoma by Targeting BRAF. Technol Cancer Res Treat 2020; 19:1533033820956987. [PMID: 33138697 PMCID: PMC7645805 DOI: 10.1177/1533033820956987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective: According to different reports, miR-9-5p either facilitates or suppresses the
occurrence of tumors. BRAF is a serine/threonine kinase involved in the MAPK
pathway and is a proto-oncogene promoting the progression of many tumors,
especially melanoma. The present study aimed to reveal the mechanism of
action of miR-9-5p and BRAF in choroidal melanoma (CM). Methods: RT-qPCR was used to detect the expression of miR-9-5p in CM cells after
transfection with miR-9-5p mimics and inhibitor. EdU assay and Transwell
assay, respectively, showed the proliferation, migration and invasion of CM
cells after transfection with miR-9-5p mimics and inhibitor. A
bioinformatics website was used for target prediction and the dual
luciferase reporter assay was used to verify the interaction between
miR-9-5p and BRAF. RT-qPCR and Western blot were performed to examine the
expression of BRAF mRNA and protein, respectively. The BRAF protein was
knocked down by siRNAs and then examined by Western blot. The effects of
BRAF in CM cells were investigated by EdU assay and Transwell assay.
Overexpressing BRAF and transfecting miR-9-5p mimics into choroidal melanoma
cells confirmed the interaction between miR-9-5p and BRAF. Results: miR-9-5p could bind to the BRAF mRNA 3’UTR and inhibit the transcription and
translation of BRAF, thereby suppressing the proliferation, migration and
invasion of CM cell lines. Moreover, silencing BRAF inhibited the
progression of CM cells. Conclusions: In conclusion, this study is the first to investigate the association among
BRAF, miR-9-5p and the progression of CM cells. In addition, the interaction
between BRAF and miR-9-5p was explored for the first time in CM. Thus, our
study suggests that miR-9-5p, BRAF and their interaction may act as
potential therapeutic targets for CM.
Collapse
Affiliation(s)
- Manman Ying
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Hao Feng
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xiaonan Zhang
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Ran Liu
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Hong Ning
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
38
|
Li J, Li M, Wang C, Zhang S, Gao Q, Wang L, Ma L. NaSH increases SIRT1 activity and autophagy flux through sulfhydration to protect SH-SY5Y cells induced by MPP~. Cell Cycle 2020; 19:2216-2225. [PMID: 32787548 PMCID: PMC7513839 DOI: 10.1080/15384101.2020.1804179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 06/09/2020] [Accepted: 07/03/2020] [Indexed: 01/07/2023] Open
Abstract
Parkinson's disease (PD) is one of the most prevailing aging diseases around the world. The present study was to investigate the potential effect of hydrogen sulfide (H2S) and silent mating type information regulation 2 homolog 1 (SIRT1) in MPP~+ induced SH-SY5Y cells and its underlying mechanisms in PD. SH-SY5Y cells were induced by MPP~+ and treated with the H2S donor NaHS to detect the effect of H2S on the molecular behaviors of MPP~+ induced SH-SY5Y cells. NaHS reduced the apoptosis rate and expressions of MDA, 4-HNE and p62, while increased cell viability, autophagy flux and expressions of LC3 II/I and Beclin1 in MPP~+ induced SH-SY5Y cells. Then, levels of autophagy-related proteins and inflammation-related proteins (TNF-α, IL-Iβ) were detected, indicating that Chloroquine and Sirtinol reversed the protective effect of H2S on SH-SY5Y cells induced by MPP~+. We further explored the particular function of H2S, SH-SY5Y cells treated with MPP~+, NaHS chloroquine, and SIRT1 inhibitor (Sirtinol). The results showed that H2S increased SIRT1 expression and sulfhydration. Finally, a PD mouse model verified the above results. In a word, H2S ameliorated SIRT1 activity through acceleration of SIRT1 sulfhydration to increase the autophagy flux and attenuate damage of SH-SY5Y cells induced by MPP~+. H2S and SIRT1 activator might be a target in the treatment of PD patients.
Collapse
Affiliation(s)
- Jing Li
- Department of Geriatrics, The Second Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Mei Li
- Department of Geriatrics, The Second Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Cui Wang
- Department of Geriatrics, The Second Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Shuhu Zhang
- Department of Geriatrics, The Second Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Qiang Gao
- Department of Geriatrics, The Second Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Liping Wang
- Department of Geriatrics, The Second Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Lan Ma
- Department of Geriatrics, The Second Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| |
Collapse
|
39
|
Paul S, Bravo Vázquez LA, Pérez Uribe S, Roxana Reyes-Pérez P, Sharma A. Current Status of microRNA-Based Therapeutic Approaches in Neurodegenerative Disorders. Cells 2020; 9:cells9071698. [PMID: 32679881 PMCID: PMC7407981 DOI: 10.3390/cells9071698] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a key gene regulator and play essential roles in several biological and pathological mechanisms in the human system. In recent years, plenty of miRNAs have been identified to be involved in the development of neurodegenerative disorders (NDDs), thus making them an attractive option for therapeutic approaches. Hence, in this review, we provide an overview of the current research of miRNA-based therapeutics for a selected set of NDDs, either for their high prevalence or lethality, such as Alzheimer's, Parkinson's, Huntington's, Amyotrophic Lateral Sclerosis, Friedreich's Ataxia, Spinal Muscular Atrophy, and Frontotemporal Dementia. We also discuss the relevant delivery techniques, pertinent outcomes, their limitations, and their potential to become a new generation of human therapeutic drugs in the near future.
Collapse
|
40
|
Jamali-Raeufy N, Mojarrab Z, Baluchnejadmojarad T, Roghani M, Fahanik-Babaei J, Goudarzi M. The effects simultaneous inhibition of dipeptidyl peptidase-4 and P2X7 purinoceptors in an in vivo Parkinson's disease model. Metab Brain Dis 2020; 35:539-548. [PMID: 32016817 DOI: 10.1007/s11011-020-00538-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/23/2020] [Indexed: 12/11/2022]
Abstract
Loss of dopaminergic neurons following Parkinson's disease (PD) diminishes quality of life in patients. The present study was carried out to investigate the protective effects of simultaneous inhibition of dipeptidyl peptidase-4 (DPP-4) and P2X7 purinoceptors in a PD model and explore possible mechanisms. The 6-hydroxydopamine (6-OHDA) was used as a tool to establish PD model in male Wister rats. The expressions of SIRT1, SIRT3, mTOR, PGC-1α, PTEN, P53 and DNA fragmentation were evaluated by ELISA assay. Behavioral impairments were determined using apomorphine-induced rotational and narrow beam tests. Dopamine synthesis and TH-positive neurons were detected by tyrosine hydroxylase (TH) immunohistochemistry. Neuronal density was determined by Nissl staining. OHDA-lesioned rats exhibited behavioral impairments that reversed by BBG, lin and lin + BBG. We found significant reduced levels of SIRT1, SIRT3, PGC-1α and mTOR in both mid brain and striatum from OHDA-lesioned rats that reversed by BBG, lin and lin + BBG. Likewise, significant increased levels of PTEN and P53 were found in both mid brain and striatum from OHDA-lesioned rats that was reversed by BBG, lin and lin + BBG. TH-positive neurons and neuronal density were markedly reduced OHDA-lesioned rats that reversed by BBG, lin and lin + BBG. Collectively, our results showed protective effects of simultaneous inhibition of DPP-4 and P2X7 purinoceptors in a rat model of PD can be linked to targeting SIRT1/SIRT3, PTEN-mTOR pathways. Moreover, our findings demonstrated that simultaneous inhibition of DPP-4 and P2X7 purinoceptors might have stronger effect on mitochondrial biogenesis compared to only one.
Collapse
Affiliation(s)
- Nida Jamali-Raeufy
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Zahra Mojarrab
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| | - Javad Fahanik-Babaei
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mina Goudarzi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
New Insights for Cellular and Molecular Mechanisms of Aging and Aging-Related Diseases: Herbal Medicine as Potential Therapeutic Approach. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4598167. [PMID: 31915506 PMCID: PMC6930799 DOI: 10.1155/2019/4598167] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 09/28/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023]
Abstract
Aging is a progressive disease affecting around 900 million people worldwide, and in recent years, the mechanism of aging and aging-related diseases has been well studied. Treatments for aging-related diseases have also made progress. For the long-term treatment of aging-related diseases, herbal medicine is particularly suitable for drug discovery. In this review, we discuss cellular and molecular mechanisms of aging and aging-related diseases, including oxidative stress, inflammatory response, autophagy and exosome interactions, mitochondrial injury, and telomerase damage, and summarize commonly used herbals and compounds concerned with the development of aging-related diseases, including Ginkgo biloba, ginseng, Panax notoginseng, Radix astragali, Lycium barbarum, Rhodiola rosea, Angelica sinensis, Ligusticum chuanxiong, resveratrol, curcumin, and flavonoids. We also summarize key randomized controlled trials of herbal medicine for aging-related diseases during the past ten years. Adverse reactions of herbs were also described. It is expected to provide new insights for slowing aging and treating aging-related diseases with herbal medicine.
Collapse
|
42
|
Tao H, Liu Y, Hou Y. miRNA‑384‑5p regulates the progression of Parkinson's disease by targeting SIRT1 in mice and SH‑SY5Y cell. Int J Mol Med 2019; 45:441-450. [PMID: 31894288 PMCID: PMC6984790 DOI: 10.3892/ijmm.2019.4426] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 11/20/2019] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. miR-384-5p expression has been shown to be increased in an in vitro model of PD; however, it remains unknown whether there are other molecules that can be regulated by miR-384-5p in in vivo and in vitro models of PD; thus, the present study aimed to elucidate this matter. Rotenone was applied for the establishment of in vitro and in vivo models of PD in the present study. Motor disability and equilibrium were determined by a swimming test and traction test, respectively. mRNA and protein levels were detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis, respectively. The association between miR-384-5p and Sirtuin 1 (SIRT1) expression was verified by dual luciferase reporter assay. The α-synuclein aggregation was evaluated by immunofluorescence. The results from the in vitro model of PD demonstrated that, the mice in the PD group exhibited decreased scores in the swimming test and traction test, which were accompanied by increased α-synuclein aggregation. In addition, the expression of miR-384-5p, which targeted the 3′untranslated region (3′UTR) of SIRT1, was verified to be increased in mice and SH-SY5Y cells in the PD group, whereas SIRT1 exhibited the opposite changes. Moreover, increased mRNA and protein levels of p53 and FOXO1 were observed in mice and SH-SY5Y cells in the PD group. In addition, the SH-SY5Y cells in the PD group exhibited a higher cell apoptotic rate. On the whole, the findings of this study demonstrate that miRNA-384-5p promotes the progression of PD by targeting SIRT1.
Collapse
Affiliation(s)
- Hongli Tao
- Department of Psychiatry, Xianyang Central Hospital, Xianyang, Shaanxi 712000, P.R. China
| | - Yan Liu
- Department of Neurology, Weinan Central Hospital, Weinan, Shaanxi 714000, P.R. China
| | - Yingjuan Hou
- Department of Neurology, The First Hospital of Yulin, Yulin, Shaanxi 718000, P.R. China
| |
Collapse
|
43
|
Geng L, Zhao J, Liu W, Chen Y. Retracted Article: Knockdown of NEAT1 ameliorated MPP +-induced neuronal damage by sponging miR-221 in SH-SY5Y cells. RSC Adv 2019; 9:25257-25265. [PMID: 35528660 PMCID: PMC9069939 DOI: 10.1039/c9ra05039f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/06/2019] [Indexed: 12/01/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have recently attracted increasing attention for their involvement in a wide variety of human neurodegenerative diseases, including Parkinson's disease (PD). The purpose of the present study was to investigate the functional role and underlying mechanism of NEAT1 in PD. qRT-PCR was used to assess the expression of NEAT1 and miR-221, and the expression levels of Bcl-2 and Bax were detected by western blot. Cell viability and apoptosis were determined by CCK-8 assay and flow cytometry, respectively. The changes of oxidative stress and neuroinflammation were evaluated by ELISA assay and qRT-PCR, respectively. The targeted interaction between NEAT1 and miR-221 was verified by dual-luciferase reporter assay and RNA immunoprecipitation assay. Our data supported that MPP+ treatment elevated NEAT1 expression in dose- and time-dependent manners in SH-SY5Y cells, and NEAT1 silencing relieved MPP+-induced suppression of cell viability and enhancement of cell apoptosis in SH-SY5Y cells. Moreover, NEAT1 silencing alleviated MPP+-induced promotion of oxidative stress and neuroinflammation in SH-SY5Y cells. NEAT1 directly targeted miR-221 and negatively regulated miR-221 expression. More importantly, miR-221 mediated the protective effect of NEAT1 knockdown, as evidenced by the restoration of cell viability, cell apoptosis, oxidative stress and neuroinflammation in MPP+-induced SH-SY5Y cells. In conclusion, our study suggested that NEAT1 silencing alleviated MPP+-induced neuronal damage by sponging miR-221 in SH-SY5Y cells, highlighting the role of NEAT1 as a potential molecular target for PD therapy.
Collapse
Affiliation(s)
- Lijiao Geng
- Department of Rehabilitation Medicine, Huaihe Hospital of Henan University No. 357 Ximen Street Kaifeng 475000 China +86-371-23906882
| | - Jun Zhao
- Department of Neurology, Huaihe Hospital of Henan University Kaifeng 475000 China
| | - Wei Liu
- Department of Neurology, Huaihe Hospital of Henan University Kaifeng 475000 China
| | - Yong Chen
- Department of Rehabilitation Medicine, Huaihe Hospital of Henan University No. 357 Ximen Street Kaifeng 475000 China +86-371-23906882
| |
Collapse
|