1
|
Ueno Y, Morishima Y, Hata T, Shindo A, Murata H, Saito T, Nakamura Y, Shindo K. Current progress in microRNA profiling of circulating extracellular vesicles in amyotrophic lateral sclerosis: A systematic review. Neurobiol Dis 2024; 200:106639. [PMID: 39168358 DOI: 10.1016/j.nbd.2024.106639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease affecting upper and lower motor neurons, leading to death resulting mainly from respiratory failure, for which there is currently no curative treatment. Underlying pathological mechanisms for the development of ALS are diverse and have yet to be elucidated. Non-invasive testing to isolate circulating molecules including microRNA to diagnose ALS has been reported, but circulating extracellular vesicle (EV)-derived microRNA has not been fully studied in the ALS population. METHODS A systematic literature review to explore studies investigating the profile of microRNAs in EVs from blood samples of ALS patients was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guideline. RESULTS Eleven studies including a total of 263 patients with ALS were included in the present systematic review. The majority of patients had sporadic ALS, though a small number of patients with ALS having genetic mutations were included. Seven studies used plasma-derived EVs, and the remaining four studies used serum-derived EVs. RNA sequencing or microarrays were used in eight studies, and quantitative PCR was used in eight studies, of which five studies used RNA sequencing or microarrays for screening and quantitative PCR for validation. There was overlap of miR-199a-3p and miR-199a-5p in three studies. CONCLUSIONS Overall, the systematic review addressed the current advances in the profiling of microRNAs in circulating EVs of ALS patients. Blood samples, isolation of EVs, and microRNA analysis were diverse. Although there was an overlap of miR-199a-3p and miR-199a-5p, collection of further evidence is warranted.
Collapse
Affiliation(s)
- Yuji Ueno
- Department of Neurology, University of Yamanashi, Chuo, Japan.
| | - Yuto Morishima
- Department of Neurology, University of Yamanashi, Chuo, Japan
| | - Takanori Hata
- Department of Neurology, University of Yamanashi, Chuo, Japan
| | - Atsuhiko Shindo
- Department of Neurology, University of Yamanashi, Chuo, Japan
| | - Hiroaki Murata
- Department of Neurology, University of Yamanashi, Chuo, Japan
| | - Tatsuya Saito
- Department of Neurology, University of Yamanashi, Chuo, Japan
| | - Yuki Nakamura
- Department of Neurology, University of Yamanashi, Chuo, Japan
| | - Kazumasa Shindo
- Department of Neurology, University of Yamanashi, Chuo, Japan
| |
Collapse
|
2
|
Malaguarnera M, Cabrera-Pastor A. Emerging Role of Extracellular Vesicles as Biomarkers in Neurodegenerative Diseases and Their Clinical and Therapeutic Potential in Central Nervous System Pathologies. Int J Mol Sci 2024; 25:10068. [PMID: 39337560 PMCID: PMC11432603 DOI: 10.3390/ijms251810068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/07/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
The emerging role of extracellular vesicles (EVs) in central nervous system (CNS) diseases is gaining significant interest, particularly their applications as diagnostic biomarkers and therapeutic agents. EVs are involved in intercellular communication and are secreted by all cell types. They contain specific markers and a diverse cargo such as proteins, lipids, and nucleic acids, reflecting the physiological and pathological state of their originating cells. Their reduced immunogenicity and ability to cross the blood-brain barrier make them promising candidates for both biomarkers and therapeutic agents. In the context of CNS diseases, EVs have shown promise as biomarkers isolable from different body fluids, providing a non-invasive method for diagnosing CNS diseases and monitoring disease progression. This makes them useful for the early detection and monitoring of diseases such as Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis, where specific alterations in EVs content can be detected. Additionally, EVs derived from stem cells show potential in promoting tissue regeneration and repairing damaged tissues. An evaluation has been conducted on the current clinical trials studying EVs for CNS diseases, focusing on their application, treatment protocols, and obtained results. This review aims to explore the potential of EVs as diagnostic markers and therapeutic carriers for CNS diseases, highlighting their significant advantages and ongoing clinical trials evaluating their efficacy.
Collapse
Affiliation(s)
- Michele Malaguarnera
- Departamento de Psicobiología, Facultad de Psicología y Logopedia, Universitat de València, 46010 Valencia, Spain;
- Departamento de Enfermería, Facultad de Enfermería y Podología, Universitat de València, 46010 Valencia, Spain
| | - Andrea Cabrera-Pastor
- Departamento de Farmacología, Facultad de Medicina y Odontología, Universitat de València, 46010 Valencia, Spain
- Fundación de Investigación del Hospital Clínico Universitario de Valencia, INCLIVA, 46010 Valencia, Spain
| |
Collapse
|
3
|
Kajitani GS, Xavier G, Villena-Rueda BE, Karia BTR, Santoro ML. Extracellular vesicles in neurodegenerative, mental, and other neurological disorders: Perspectives into mechanisms, biomarker potential, and therapeutic implications. CURRENT TOPICS IN MEMBRANES 2024; 94:299-336. [PMID: 39370211 DOI: 10.1016/bs.ctm.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Extracellular vesicles (EVs) are produced, secreted, and targeted by most human cells, including cells that compose nervous system tissues. EVs carry several types of biomolecules, such as lipids, proteins and microRNA, and can function as signaling agents in physiological and pathological processes. In this chapter, we will focus on EVs and their cargo secreted by brain cells, especially neurons and glia, and how these aspects are affected in pathological conditions. The chapter covers neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis, as well as several psychiatric disorders, namely schizophrenia, autism spectrum disorder and major depressive disorder. This chapter also addresses other types of neurological dysfunctions, epilepsy and traumatic brain injury. EVs can cross the blood brain barrier, and thus brain EVs may be detected in more accessible peripheral tissue, such as circulating blood. Alterations in EV composition and contents can therefore impart valuable clues into the molecular etiology of these disorders, and serve biomarkers regarding disease prevalence, progression and treatment. EVs can also be used to carry drugs and biomolecules into brain tissue, considered as a promising drug delivery agent for neurological diseases. Therefore, although this area of research is still in its early development, it offers great potential in further elucidating and in treating neurological disorders.
Collapse
Affiliation(s)
- Gustavo Satoru Kajitani
- Department of Morphology and Genetics, Universidade Federal de São Paulo, Brazil; Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo, Brazil
| | - Gabriela Xavier
- Center for Genomic Medicine, Massachusetts General Hospital, United States; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, United States; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, United States
| | - Beatriz Enguidanos Villena-Rueda
- Department of Morphology and Genetics, Universidade Federal de São Paulo, Brazil; Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo, Brazil
| | - Bruno Takao Real Karia
- Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo, Brazil; Department of Biochemistry, Universidade Federal de São Paulo, Brazil
| | - Marcos Leite Santoro
- Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo, Brazil; Department of Biochemistry, Universidade Federal de São Paulo, Brazil.
| |
Collapse
|
4
|
Skuladottir AT, Tragante V, Sveinbjornsson G, Helgason H, Sturluson A, Bjornsdottir A, Jonsson P, Palmadottir V, Sveinsson OA, Jensson BO, Gudjonsson SA, Ivarsdottir EV, Gisladottir RS, Gunnarsson AF, Walters GB, Jonsdottir GA, Thorgeirsson TE, Bjornsdottir G, Holm H, Gudbjartsson DF, Sulem P, Stefansson H, Stefansson K. Loss-of-function variants in ITSN1 confer high risk of Parkinson's disease. NPJ Parkinsons Dis 2024; 10:140. [PMID: 39147844 PMCID: PMC11327306 DOI: 10.1038/s41531-024-00752-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disorder and its rising global incidence highlights the need for the identification of modifiable risk factors. In a gene-based burden test of rare variants (8647 PD cases and 777,693 controls) we discovered a novel association between loss-of-function variants in ITSN1 and PD. This association was further supported with burden data from the Neurodegenerative Disease Knowledge Portal and the Accelerating Medicines Partnership Parkinson's Disease Knowledge Platform. Our findings show that Rho GTPases and disruptions in synaptic vesicle transport may be involved in the pathogenesis of PD, pointing to the possibility of novel therapeutic approaches.
Collapse
Affiliation(s)
- Astros Th Skuladottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.
| | | | | | | | | | | | - Palmi Jonsson
- Department of Geriatric Medicine, Landspitali University Hospital, Reykjavik, Iceland
| | - Vala Palmadottir
- Department of Internal Medicine, Landspitali University Hospital, Reykjavik, Iceland
| | | | | | | | | | - Rosa S Gisladottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Icelandic and Comparative Cultural Studies, University of Iceland, Reykjavik, Iceland
| | | | | | | | | | | | - Hilma Holm
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | - Kari Stefansson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
5
|
Zanirati G, Dos Santos PG, Alcará AM, Bruzzo F, Ghilardi IM, Wietholter V, Xavier FAC, Gonçalves JIB, Marinowic D, Shetty AK, da Costa JC. Extracellular Vesicles: The Next Generation of Biomarkers and Treatment for Central Nervous System Diseases. Int J Mol Sci 2024; 25:7371. [PMID: 39000479 PMCID: PMC11242541 DOI: 10.3390/ijms25137371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 07/16/2024] Open
Abstract
It has been widely established that the characterization of extracellular vesicles (EVs), particularly small EVs (sEVs), shed by different cell types into biofluids, helps to identify biomarkers and therapeutic targets in neurological and neurodegenerative diseases. Recent studies are also exploring the efficacy of mesenchymal stem cell-derived extracellular vesicles naturally enriched with therapeutic microRNAs and proteins for treating various diseases. In addition, EVs released by various neural cells play a crucial function in the modulation of signal transmission in the brain in physiological conditions. However, in pathological conditions, such EVs can facilitate the spread of pathological proteins from one brain region to the other. On the other hand, the analysis of EVs in biofluids can identify sensitive biomarkers for diagnosis, prognosis, and disease progression. This review discusses the potential therapeutic use of stem cell-derived EVs in several central nervous system diseases. It lists their differences and similarities and confers various studies exploring EVs as biomarkers. Further advances in EV research in the coming years will likely lead to the routine use of EVs in therapeutic settings.
Collapse
Affiliation(s)
- Gabriele Zanirati
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil
| | - Paula Gabrielli Dos Santos
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil
| | - Allan Marinho Alcará
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil
| | - Fernanda Bruzzo
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil
| | - Isadora Machado Ghilardi
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil
| | - Vinicius Wietholter
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil
| | - Fernando Antônio Costa Xavier
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil
| | - João Ismael Budelon Gonçalves
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil
| | - Daniel Marinowic
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX 77807, USA
| | - Jaderson Costa da Costa
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil
| |
Collapse
|
6
|
Ma Y, Ma Y. Kernel Bayesian logistic tensor decomposition with automatic rank determination for predicting multiple types of miRNA-disease associations. PLoS Comput Biol 2024; 20:e1012287. [PMID: 38976761 PMCID: PMC11257412 DOI: 10.1371/journal.pcbi.1012287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 07/18/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024] Open
Abstract
Identifying the association and corresponding types of miRNAs and diseases is crucial for studying the molecular mechanisms of disease-related miRNAs. Compared to traditional biological experiments, computational models can not only save time and reduce costs, but also discover potential associations on a large scale. Although some computational models based on tensor decomposition have been proposed, these models usually require manual specification of numerous hyperparameters, leading to a decrease in computational efficiency and generalization ability. Additionally, these linear models struggle to analyze complex, higher-order nonlinear relationships. Based on this, we propose a novel framework, KBLTDARD, to identify potential multiple types of miRNA-disease associations. Firstly, KBLTDARD extracts information from biological networks and high-order association network, and then fuses them to obtain more precise similarities of miRNAs (diseases). Secondly, we combine logistic tensor decomposition and Bayesian methods to achieve automatic hyperparameter search by introducing sparse-induced priors of multiple latent variables, and incorporate auxiliary information to improve prediction capabilities. Finally, an efficient deterministic Bayesian inference algorithm is developed to ensure computational efficiency. Experimental results on two benchmark datasets show that KBLTDARD has better Top-1 precision, Top-1 recall, and Top-1 F1 for new type predictions, and higher AUPR, AUC, and F1 values for new triplet predictions, compared to other state-of-the-art methods. Furthermore, case studies demonstrate the efficiency of KBLTDARD in predicting multiple types of miRNA-disease associations.
Collapse
Affiliation(s)
- Yingjun Ma
- School of Mathematics and Statistics, Xiamen University of Technology, Xiamen, China
| | - Yuanyuan Ma
- School of Computer Engineering, Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
7
|
Zhu F, Wang T, Wang G, Yan C, He B, Qiao B. The Exosome-Mediated Bone Regeneration: An Advanced Horizon Toward the Isolation, Engineering, Carrying Modalities, and Mechanisms. Adv Healthc Mater 2024; 13:e2400293. [PMID: 38426417 DOI: 10.1002/adhm.202400293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Exosomes, nanoparticles secreted by various cells, composed of a bilayer lipid membrane, and containing bioactive substances such as proteins, nucleic acids, metabolites, etc., have been intensively investigated in tissue engineering owing to their high biocompatibility and versatile biofunction. However, there is still a lack of a high-quality review on bone defect regeneration potentiated by exosomes. In this review, the biogenesis and isolation methods of exosomes are first introduced. More importantly, the engineered exosomes of the current state of knowledge are discussed intensively in this review. Afterward, the biomaterial carriers of exosomes and the mechanisms of bone repair elucidated by compelling evidence are presented. Thus, future perspectives and concerns are revealed to help devise advanced modalities based on exosomes to overcome the challenges of bone regeneration. It is totally believed this review will attract special attention from clinicians and provide promising ideas for their future works.
Collapse
Affiliation(s)
- Fukang Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400010, P. R. China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Taiyou Wang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400010, P. R. China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Guangjian Wang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400010, P. R. China
- Department of Orthopaedics, The People's Hospital of Rongchang District, Chongqing, 402460, P. R. China
| | - Caiping Yan
- Department of Orthopaedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, P. R. China
| | - Bin He
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400010, P. R. China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Bo Qiao
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400010, P. R. China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400010, P. R. China
| |
Collapse
|
8
|
Park C, Weerakkody JS, Schneider R, Miao S, Pitt D. CNS cell-derived exosome signatures as blood-based biomarkers of neurodegenerative diseases. Front Neurosci 2024; 18:1426700. [PMID: 38966760 PMCID: PMC11222337 DOI: 10.3389/fnins.2024.1426700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024] Open
Abstract
Molecular biomarkers require the reproducible capture of disease-associated changes and are ideally sensitive, specific and accessible with minimal invasiveness to patients. Exosomes are a subtype of extracellular vesicles that have gained attention as potential biomarkers. They are released by all cell types and carry molecular cargo that reflects the functional state of the cells of origin. These characteristics make them an attractive means of measuring disease-related processes within the central nervous system (CNS), as they cross the blood-brain barrier (BBB) and can be captured in peripheral blood. In this review, we discuss recent progress made toward identifying blood-based protein and RNA biomarkers of several neurodegenerative diseases from circulating, CNS cell-derived exosomes. Given the lack of standardized methodology for exosome isolation and characterization, we discuss the challenges of capturing and quantifying the molecular content of exosome populations from blood for translation to clinical use.
Collapse
Affiliation(s)
- Calvin Park
- Columbia University Irving Medical Center, Columbia University, New York, NY, United States
| | | | | | - Sheng Miao
- Yale School of Medicine, Yale University, New Haven, CT, United States
| | - David Pitt
- Yale School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
9
|
Bravo-Miana RDC, Arizaga-Echebarria JK, Otaegui D. Central nervous system-derived extracellular vesicles: the next generation of neural circulating biomarkers? Transl Neurodegener 2024; 13:32. [PMID: 38898538 PMCID: PMC11186231 DOI: 10.1186/s40035-024-00418-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/29/2024] [Indexed: 06/21/2024] Open
Abstract
The central nervous system (CNS) is integrated by glial and neuronal cells, and both release extracellular vesicles (EVs) that participate in CNS homeostasis. EVs could be one of the best candidates to operate as nanosized biological platforms for analysing multidimensional bioactive cargos, which are protected during systemic circulation of EVs. Having a window into the molecular level processes that are happening in the CNS could open a new avenue in CNS research. This raises a particular point of interest: can CNS-derived EVs in blood serve as circulating biomarkers that reflect the pathological status of neurological diseases? L1 cell adhesion molecule (L1CAM) is a widely reported biomarker to identify CNS-derived EVs in peripheral blood. However, it has been demonstrated that L1CAM is also expressed outside the CNS. Given that principal data related to neurodegenerative diseases, such as multiple sclerosis, amyotrophic lateral sclerosis, Parkinson's disease and Alzheimer's disease were obtained using L1CAM-positive EVs, efforts to overcome present challenges related to its specificity are required. In this sense, other surface biomarkers for CNS-derived EVs, such as glutamate aspartate transporter (GLAST) and myelin oligodendrocyte glycoprotein (MOG), among others, have started to be used. Establishing a panel of EV biomarkers to analyse CNS-derived EVs in blood could increase the specificity and sensitivity necessary for these types of studies. This review covers the main evidence related to CNS-derived EVs in cerebrospinal fluid and blood samples of patients with neurological diseases, focusing on the reported biomarkers and the technical possibilities for their isolation. EVs are emerging as a mirror of brain physiopathology, reflecting both localized and systemic changes. Therefore, when the technical hindrances for EV research and clinical applications are overcome, novel disease-specific panels of EV biomarkers would be discovered to facilitate transformation from traditional medicine to personalized medicine.
Collapse
Affiliation(s)
- Rocío Del Carmen Bravo-Miana
- Multiple Sclerosis Group, Neuroscience Area, Biodonostia Health Research Institute, San Sebastián, 20014, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, 28029, Spain.
| | - Jone Karmele Arizaga-Echebarria
- Multiple Sclerosis Group, Neuroscience Area, Biodonostia Health Research Institute, San Sebastián, 20014, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - David Otaegui
- Multiple Sclerosis Group, Neuroscience Area, Biodonostia Health Research Institute, San Sebastián, 20014, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, 28029, Spain.
| |
Collapse
|
10
|
Carata E, Muci M, Di Giulio S, Di Giulio T, Mariano S, Panzarini E. The Neuromuscular Disorder Mediated by Extracellular Vesicles in Amyotrophic Lateral Sclerosis. Curr Issues Mol Biol 2024; 46:5999-6017. [PMID: 38921029 PMCID: PMC11202069 DOI: 10.3390/cimb46060358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) represents a neurodegenerative disorder characterized by the progressive loss of both upper and lower motor neurons, resulting in muscular atrophy and eventual paralysis. While much research has concentrated on investigating the impact of major mutations associated with ALS on motor neurons and central nervous system (CNS) cells, recent studies have unveiled that ALS pathogenesis extends beyond CNS imbalances, encompassing dysregulation in other tissues such as skeletal muscle. Evidence from animal models and patients supports this broader perspective. Skeletal muscle, once considered solely as an effector organ, is now recognized as possessing significant secretory activity capable of influencing motor neuron survival. However, the precise cellular and molecular mechanisms underlying the detrimental effects observed in muscle and its associated structures in ALS remain poorly understood. Additionally, emerging data suggest that extracellular vesicles (EVs) may play a role in the establishment and function of the neuromuscular junction (NMJ) under both physiological and pathological conditions and in wasting and regeneration of skeletal muscles, particularly in neurodegenerative diseases like ALS. This review aims to explore the key findings about skeletal muscle involvement in ALS, shedding light on the potential underlying mechanisms and contributions of EVs and their possible application for the design of biosensors.
Collapse
Affiliation(s)
- Elisabetta Carata
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (E.C.); (M.M.); (T.D.G.); (S.M.)
| | - Marco Muci
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (E.C.); (M.M.); (T.D.G.); (S.M.)
| | - Simona Di Giulio
- Department of Mathematics and Physics, University of Salento, 73100 Lecce, Italy;
| | - Tiziano Di Giulio
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (E.C.); (M.M.); (T.D.G.); (S.M.)
| | - Stefania Mariano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (E.C.); (M.M.); (T.D.G.); (S.M.)
| | - Elisa Panzarini
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (E.C.); (M.M.); (T.D.G.); (S.M.)
| |
Collapse
|
11
|
Al-Madhagi H. The Landscape of Exosomes Biogenesis to Clinical Applications. Int J Nanomedicine 2024; 19:3657-3675. [PMID: 38681093 PMCID: PMC11048319 DOI: 10.2147/ijn.s463296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
Exosomes are extracellular vesicles that originate from various cells and mediate intercellular communication, altering the behavior or fate of recipient cells. They carry diverse macromolecules, such as lipids, proteins, carbohydrates, and nucleic acids. Environmental stressors can change the exosomal contents of many cells, making them useful for diagnosing many chronic disorders, especially neurodegenerative, cardiovascular, cancerous, and diabetic diseases. Moreover, exosomes can be engineered as therapeutic agents to modulate disease processes. State-of-art techniques are employed to separate exosomes including ultracentrifugation, size-exclusion chromatography and immunoaffinity. However, modern technologies such as aqueous two-phase system as well as microfluidics are gaining attention in the recent years. The article highlighted the composition, biogenesis, and implications of exosomes, as well as the standard and novel methods for isolating them and applying them as biomarkers and therapeutic cargo carriers.
Collapse
Affiliation(s)
- Haitham Al-Madhagi
- Biochemical Technology Program, Faculty of Applied Sciences, Dhamar University, Dhamar, Yemen
| |
Collapse
|
12
|
Alzahrani FA, Riza YM, Eid TM, Almotairi R, Scherschinski L, Contreras J, Nadeem M, Perez SE, Raikwar SP, Jha RM, Preul MC, Ducruet AF, Lawton MT, Bhatia K, Akhter N, Ahmad S. Exosomes in Vascular/Neurological Disorders and the Road Ahead. Cells 2024; 13:670. [PMID: 38667285 PMCID: PMC11049650 DOI: 10.3390/cells13080670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), stroke, and aneurysms, are characterized by the abnormal accumulation and aggregation of disease-causing proteins in the brain and spinal cord. Recent research suggests that proteins linked to these conditions can be secreted and transferred among cells using exosomes. The transmission of abnormal protein buildup and the gradual degeneration in the brains of impacted individuals might be supported by these exosomes. Furthermore, it has been reported that neuroprotective functions can also be attributed to exosomes in neurodegenerative diseases. The potential neuroprotective functions may play a role in preventing the formation of aggregates and abnormal accumulation of proteins associated with the disease. The present review summarizes the roles of exosomes in neurodegenerative diseases as well as elucidating their therapeutic potential in AD, PD, ALS, HD, stroke, and aneurysms. By elucidating these two aspects of exosomes, valuable insights into potential therapeutic targets for treating neurodegenerative diseases may be provided.
Collapse
Affiliation(s)
- Faisal A. Alzahrani
- Department of Biochemistry, King Fahad Center for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yasir M. Riza
- Department of Biochemistry, King Fahad Center for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Thamir M. Eid
- Department of Biochemistry, King Fahad Center for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Reema Almotairi
- Department of Medical Laboratory Technology, Prince Fahad bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Lea Scherschinski
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
| | - Jessica Contreras
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
| | - Muhammed Nadeem
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
| | - Sylvia E. Perez
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
| | - Sudhanshu P. Raikwar
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
| | - Ruchira M. Jha
- Department of Neurology, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Mark C. Preul
- Department of Neurosurgery, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Andrew F. Ducruet
- Department of Neurosurgery, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Michael T. Lawton
- Department of Neurosurgery, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Kanchan Bhatia
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA
| | - Naseem Akhter
- Department of Biology, Arizona State University, Lake Havasu City, AZ 86403, USA
| | - Saif Ahmad
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
- Department of Neurosurgery, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
- Phoenix Veterans Affairs (VA) Health Care System, Phoenix, AZ 85012, USA
| |
Collapse
|
13
|
Zhang Z, Wu Z, Hu S, He M. Identification of serum microRNA alterations associated with long-term exercise-induced motor improvements in patients with Parkinson disease. Medicine (Baltimore) 2024; 103:e37470. [PMID: 38552099 PMCID: PMC10977540 DOI: 10.1097/md.0000000000037470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/12/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Long-term physical exercise has been shown to benefit patients with Parkinson disease (PD), but there is a lack of evidence regarding the underlying mechanism. A better understanding of how such benefits are induced by exercise might contribute to the development of therapeutic targets for improving the motor function in individuals with PD. The purpose of this study was therefore to investigate the possible association between exercise-induced motor improvements and the changes in serum microRNA (miRNA) levels of PD patients through small RNA sequencing for the first time. METHODS Thirteen PD patients completed our 3-month home-and-community-based exercise program, while 6 patients were assigned to the control group. Motor functions were measured, and small RNA sequencing with data analysis was performed on serum miRNAs both before and after the program. The results were further validated by quantitative real-time polymerase chain reaction. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were then conducted to determine the role of differentially expressed miRNAs. RESULTS The 3-month home-and-community-based exercise program induced significant motor improvements in PD patients in terms of Unified Parkinson's Disease Rating Scale activities of daily living and Motor Subscale (P < .05), comfortable walking speed (P = .003), fast walking speed (P = .028), Six-Minute Walk Test (P = .004), Berg Balance Scale (P = .039), and Timed Up and Go (P = .002). A total of 11 miRNAs (10 upregulated and one downregulated) were identified to be remarkably differentially expressed after intervention in the exercise group, but not in the control group. The results of miRNA sequencing were further validated by quantitative real-time polymerase chain reaction. It was found that the targets of altered miRNAs were mostly enriched in the mitogen-activated protein kinase, Wnt, and Hippo signaling pathways and the GO annotations mainly included binding, catalytic activity, and transcription regulator activity. CONCLUSION The exercise-induced motor improvements were possibly associated with changes in circulating miRNA levels in PD patients. These miRNAs, as well as the most enriched pathways and GO terms, may play a critical role in the mechanism of exercise-induced benefits in PD and serve as novel treatment targets for the disease, although further investigations are needed.
Collapse
Affiliation(s)
- Ziyi Zhang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ziwei Wu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shenglan Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Miao He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
14
|
Xu X, Iqbal Z, Xu L, Wen C, Duan L, Xia J, Yang N, Zhang Y, Liang Y. Brain-derived extracellular vesicles: Potential diagnostic biomarkers for central nervous system diseases. Psychiatry Clin Neurosci 2024; 78:83-96. [PMID: 37877617 DOI: 10.1111/pcn.13610] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/15/2023] [Accepted: 10/22/2023] [Indexed: 10/26/2023]
Abstract
Extracellular vesicles (EVs) are membrane-enclosed nanovesicles secreted by cells into the extracellular space and contain functional biomolecules, e.g. signaling receptors, bioactive lipids, nucleic acids, and proteins, which can serve as biomarkers. Neurons and glial cells secrete EVs, contributing to various physiological and pathological aspects of brain diseases. EVs confer their role in the bidirectional crosstalk between the central nervous system (CNS) and the periphery owing to their distinctive ability to cross the unique blood-brain barrier (BBB). Thus, EVs in the blood, cerebrospinal fluid (CSF), and urine can be intriguing biomarkers, enabling the minimally invasive diagnosis of CNS diseases. Although there has been an enormous interest in evaluating EVs as promising biomarkers, the lack of ultra-sensitive approaches for isolating and detecting brain-derived EVs (BDEVs) has hindered the development of efficient biomarkers. This review presents the recent salient findings of exosomal biomarkers, focusing on brain disorders. We summarize highly sensitive sensors for EV detection and state-of-the-art methods for single EV detection. Finally, the prospect of developing advanced EV analysis approaches for the non-invasive diagnosis of brain diseases is presented.
Collapse
Affiliation(s)
- Xiao Xu
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Zoya Iqbal
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Limei Xu
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Caining Wen
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Li Duan
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Ningning Yang
- Lake Erie College of Osteopathic Medicine School of Pharmacy, Bradenton, Florida, USA
| | - Yuanmin Zhang
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
- College of Rehabilitation Medicine, Jining Medical University, Jining, China
| | - Yujie Liang
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
- College of Rehabilitation Medicine, Jining Medical University, Jining, China
| |
Collapse
|
15
|
Irwin KE, Sheth U, Wong PC, Gendron TF. Fluid biomarkers for amyotrophic lateral sclerosis: a review. Mol Neurodegener 2024; 19:9. [PMID: 38267984 PMCID: PMC10809579 DOI: 10.1186/s13024-023-00685-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/21/2023] [Indexed: 01/26/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the loss of upper and lower motor neurons. Presently, three FDA-approved drugs are available to help slow functional decline for patients with ALS, but no cure yet exists. With an average life expectancy of only two to five years after diagnosis, there is a clear need for biomarkers to improve the care of patients with ALS and to expedite ALS treatment development. Here, we provide a review of the efforts made towards identifying diagnostic, prognostic, susceptibility/risk, and response fluid biomarkers with the intent to facilitate a more rapid and accurate ALS diagnosis, to better predict prognosis, to improve clinical trial design, and to inform interpretation of clinical trial results. Over the course of 20 + years, several promising fluid biomarker candidates for ALS have emerged. These will be discussed, as will the exciting new strategies being explored for ALS biomarker discovery and development.
Collapse
Affiliation(s)
- Katherine E Irwin
- Department of Pathology, Johns Hopkins Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins Medicine, Baltimore, MD, 21205, USA
| | - Udit Sheth
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Philip C Wong
- Department of Pathology, Johns Hopkins Medicine, Baltimore, MD, 21205, USA.
- Department of Neuroscience, Johns Hopkins Medicine, Baltimore, MD, 21205, USA.
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
16
|
Seltenrich N. Channels of Communication: Extracellular Vesicles in Environmental Stress and Human Disease. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:14002. [PMID: 38271057 PMCID: PMC10810299 DOI: 10.1289/ehp14224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/08/2023] [Indexed: 01/27/2024]
Abstract
Extracellular vesicles offer great promise for revealing mechanisms and serving as biomarkers in studies of exposure effects on neurological, respiratory, reproductive, and other physiological systems-and they require only a simple blood draw.
Collapse
|
17
|
Lauria G, Curcio R, Tucci P. A Machine Learning Approach for Highlighting microRNAs as Biomarkers Linked to Amyotrophic Lateral Sclerosis Diagnosis and Progression. Biomolecules 2023; 14:47. [PMID: 38254647 PMCID: PMC10813207 DOI: 10.3390/biom14010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons in the brain and spinal cord. The early diagnosis of ALS can be challenging, as it usually depends on clinical examination and the exclusion of other possible causes. In this regard, the analysis of miRNA expression profiles in biofluids makes miRNAs promising non-invasive clinical biomarkers. Due to the increasing amount of scientific literature that often provides controversial results, this work aims to deepen the understanding of the current state of the art on this topic using a machine-learning-based approach. A systematic literature search was conducted to analyze a set of 308 scientific articles using the MySLR digital platform and the Latent Dirichlet Allocation (LDA) algorithm. Two relevant topics were identified, and the articles clustered in each of them were analyzed and discussed in terms of biomolecular mechanisms, as well as in translational and clinical settings. Several miRNAs detected in the tissues and biofluids of ALS patients, including blood and cerebrospinal fluid (CSF), have been linked to ALS diagnosis and progression. Some of them may represent promising non-invasive clinical biomarkers. In this context, future scientific priorities and goals have been proposed.
Collapse
Affiliation(s)
| | - Rosita Curcio
- Correspondence: (R.C.); (P.T.); Tel.: +39-0984493046 (R.C.); +39-0984493185 (P.T.)
| | - Paola Tucci
- Correspondence: (R.C.); (P.T.); Tel.: +39-0984493046 (R.C.); +39-0984493185 (P.T.)
| |
Collapse
|
18
|
Al-Khfaji KMS, Zamani NK, Arefian E. HSV-1 latency-associated transcript miR-H3 and miR-H4 target STXBP1 and GABBR2 genes. J Neurovirol 2023; 29:669-677. [PMID: 37668872 DOI: 10.1007/s13365-023-01174-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023]
Abstract
During latent infection, the HSV-1 virus generates only a single transcript, LAT, which encodes six miRNAs. The GABAergic pathway signaling system is an essential cell signaling pathway influenced by various therapeutic targets and some brain disorders, such as epilepsy. This study found that miRNAs encoding LAT might target the STXBP1 and GABBR2 genes, which are among the significant genes in the GABAergic pathway. Bioinformatic analysis utilizing TargetScan version 5.2 and the RNA22 tools uncovered miRNAs encoding LAT that can influence STXBP1 and GABBR2 transcripts. To evaluate the targeting effect of candidate microRNAs encoding LAT, namely, miR-H3 and miR-H4, LAT constructs were transfected into HEK 293T cells. The expression levels of microRNAs encoding LAT, as well as STXBP1 and GABBR2, were assayed by real-time PCR. Finally, the targeting potential of STXBP1 and GABBR2 3'UTR by LAT-encoded microRNAs was evaluated by the luciferase assay. In the current study, the bioinformatic tool TargetScan demonstrated that miR-H3 has the potential to target the transcripts of the STXBP1 and GABBR2 genes, whereas miR-H4 solely targeted GABBR2. On the other hand, the bioinformatic tool RNA22 validated the potential targeting of STXBP1 and GABBR2 by miR-H3 and miR-H4. Our findings showed that overexpression of miR-H4, miR-H3, or LAT significantly decreased STXBP1 gene expression by an average of 0.0593-fold, 0.237-fold, and 0.84-fold, respectively. Similarly, overexpression of miR-H3 or miR-H4 decreased GABBR2 expression by an average of 0.055- or 0.687-fold, respectively. Notably, targeting the GABBR2 3'UTR with the LAT transcript had no detectable effect. The evaluation of the targeting potential of STXBP1 and GABBR2 3'UTR by microRNAs encoded by LAT was conducted with a luciferase assay. Our results showed that miR-H3 overexpression reduces Renilla expression in psiCHECK2 plasmids with STXBP1 or GABBR2 3'UTR genes by 0.62- and 0.55-fold, respectively. miR-H4 reduced Renilla gene expression regulated by GABBR2's 3'UTR plasmid but had no effect on the Renilla gene expression regulated by STXBP1's 3'UTR. When the LAT transcript was overexpressed, there was a decrease in Renilla expression by 0.44-fold because of the regulation of STXBP1's 3'UTR. However, there was no significant effect observed through the control of GABBR2's 3'UTR.
Collapse
Affiliation(s)
- Karrar Mahmood Shaker Al-Khfaji
- Molecular Virology Lab, Department of Microbiology, School of Biology, College of Sciences, University of Tehran, P.O. Box 14155-6455, Tehran, 1417614411, Iran
| | - Nika Kooshki Zamani
- Department of Biotechnology, College of Sciences, University of Tehran, Tehran, Iran
| | - Ehsan Arefian
- Molecular Virology Lab, Department of Microbiology, School of Biology, College of Sciences, University of Tehran, P.O. Box 14155-6455, Tehran, 1417614411, Iran.
- Paediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Donini L, Tanel R, Zuccarino R, Basso M. Protein biomarkers for the diagnosis and prognosis of Amyotrophic Lateral Sclerosis. Neurosci Res 2023; 197:31-41. [PMID: 37689321 DOI: 10.1016/j.neures.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is the most common motor neuron disease, still incurable. The disease is highly heterogenous both genetically and phenotypically. Therefore, developing efficacious treatments is challenging in many aspects because it is difficult to predict the rate of disease progression and stratify the patients to minimize statistical variability in clinical studies. Moreover, there is a lack of sensitive measures of therapeutic effect to assess whether a pharmacological intervention ameliorates the disease. There is also urgency of markers that reflect a molecular mechanism dysregulated by ALS pathology and can be rescued when a treatment relieves the condition. Here, we summarize and discuss biomarkers tested in multicentered studies and across different laboratories like neurofilaments, the most used marker in ALS clinical studies, neuroinflammatory-related proteins, p75ECD, p-Tau/t-Tau, and UCHL1. We also explore the applicability of muscle proteins and extracellular vesicles as potential biomarkers.
Collapse
Affiliation(s)
- Luisa Donini
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Italy.
| | - Raffaella Tanel
- Clinical Center NeMO, APSS Ospedale Riabilitativo Villa Rosa, Pergine 38057, TN, Italy.
| | - Riccardo Zuccarino
- Clinical Center NeMO, APSS Ospedale Riabilitativo Villa Rosa, Pergine 38057, TN, Italy
| | - Manuela Basso
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Italy.
| |
Collapse
|
20
|
Gomes BC, Peixinho N, Pisco R, Gromicho M, Pronto-Laborinho AC, Rueff J, de Carvalho M, Rodrigues AS. Differential Expression of miRNAs in Amyotrophic Lateral Sclerosis Patients. Mol Neurobiol 2023; 60:7104-7117. [PMID: 37531027 PMCID: PMC10657797 DOI: 10.1007/s12035-023-03520-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/14/2023] [Indexed: 08/03/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease that affects nerve cells in the brain and spinal cord, causing loss of muscle control, muscle atrophy and in later stages, death. Diagnosis has an average delay of 1 year after symptoms onset, which impairs early management. The identification of a specific disease biomarker could help decrease the diagnostic delay. MicroRNA (miRNA) expression levels have been proposed as ALS biomarkers, and altered function has been reported in ALS pathogenesis. The aim of this study was to assess the differential expression of plasma miRNAs in ALS patients and two control populations (healthy controls and ALS-mimic disorders). For that, 16 samples from each group were pooled, and then 1008 miRNAs were assessed through reverse transcription-quantitative polymerase chain reaction (RT-qPCR). From these, ten candidate miRNAs were selected and validated in 35 ALS patients, 16 ALS-mimic disorders controls and 15 healthy controls. We also assessed the same miRNAs in two different time points of disease progression. Although we were unable to determine a miRNA signature to use as disease or condition marker, we found that miR-7-2-3p, miR-26a-1-3p, miR-224-5p and miR-206 are good study candidates to understand the pathophysiology of ALS.
Collapse
Affiliation(s)
- Bruno Costa Gomes
- Instituto de Fisiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal.
| | - Nuno Peixinho
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Rita Pisco
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Marta Gromicho
- Instituto de Fisiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Catarina Pronto-Laborinho
- Instituto de Fisiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - José Rueff
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Mamede de Carvalho
- Instituto de Fisiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Department of Neurosciences and Mental Health, Hospital de Santa Maria CHULN, Lisboa, Portugal
| | - António Sebastião Rodrigues
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
21
|
Wang R, Zhong J, Pan X, Su Z, Xu Y, Zhang M, Chen X, Chen N, Yu T, Zhou Q. A novel intronic circular RNA circFGFR1 int2 up-regulates FGFR1 by recruiting transcriptional activators P65/FUS and suppressing miR-4687-5p to promote prostate cancer progression. J Transl Med 2023; 21:840. [PMID: 37993879 PMCID: PMC10664560 DOI: 10.1186/s12967-023-04718-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023] Open
Abstract
Fibroblast growth factor receptor 1 (FGFR1) is a core component of the FGFs/FGFR pathway that activates multiple signalling pathways, including ERK1/2, PI3K/AKT, PLCγ, and NF-κB. Aberrant expression of FGFR1 due to gene amplification, chromosome rearrangement, point mutation, and epigenetic deregulations, have been reported in various cancers. FGFR1 overexpression has also been reported in prostate cancer (PCa), but the underlining mechanisms are not clear. Here we report a novel circular RNA, circFGFR1int2, derived from intron 2 of FGFR1 gene, which is overexpressed in PCa and associated with tumor progression. Importantly, we show that circFGFR1int2 facilitates FGFR1 transcription by recruiting transcription activators P65/FUS and by interacting with FGFR1 promoter. Moreover, we show that circFGFR1int2 suppresses post-transcriptional inhibitory effects of miR-4687-5p on FGFR1 mRNA. These mechanisms synergistically promote PCa cell growth, migration, and invasion. Overexpression of circFGFR1int2 is significantly correlated with higher tumor grade, Gleason score, and PSA level, and is a significant unfavorable prognosticator for CRPC-free survival (CFS) (RR = 3.277, 95% confidence interval: 1.192-9.009; P = 0.021). These findings unravelled novel mechanisms controlling FGFR1 gene expression by intronic circRNA and its potential clinicopathological utility as a diagnostic or therapeutic target.
Collapse
Affiliation(s)
- Ruyue Wang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinjing Zhong
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiuyi Pan
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhengzheng Su
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yunyi Xu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mengni Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xueqin Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ni Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Yu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiao Zhou
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
22
|
Provenzano F, Torazza C, Bonifacino T, Bonanno G, Milanese M. The Key Role of Astrocytes in Amyotrophic Lateral Sclerosis and Their Commitment to Glutamate Excitotoxicity. Int J Mol Sci 2023; 24:15430. [PMID: 37895110 PMCID: PMC10607805 DOI: 10.3390/ijms242015430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
In the last two decades, there has been increasing evidence supporting non-neuronal cells as active contributors to neurodegenerative disorders. Among glial cells, astrocytes play a pivotal role in driving amyotrophic lateral sclerosis (ALS) progression, leading the scientific community to focus on the "astrocytic signature" in ALS. Here, we summarized the main pathological mechanisms characterizing astrocyte contribution to MN damage and ALS progression, such as neuroinflammation, mitochondrial dysfunction, oxidative stress, energy metabolism impairment, miRNAs and extracellular vesicles contribution, autophagy dysfunction, protein misfolding, and altered neurotrophic factor release. Since glutamate excitotoxicity is one of the most relevant ALS features, we focused on the specific contribution of ALS astrocytes in this aspect, highlighting the known or potential molecular mechanisms by which astrocytes participate in increasing the extracellular glutamate level in ALS and, conversely, undergo the toxic effect of the excessive glutamate. In this scenario, astrocytes can behave as "producers" and "targets" of the high extracellular glutamate levels, going through changes that can affect themselves and, in turn, the neuronal and non-neuronal surrounding cells, thus actively impacting the ALS course. Moreover, this review aims to point out knowledge gaps that deserve further investigation.
Collapse
Affiliation(s)
- Francesca Provenzano
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
| | - Carola Torazza
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
| | - Tiziana Bonifacino
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Giambattista Bonanno
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
| | - Marco Milanese
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
23
|
Kalia V, Baccarelli AA, Happel C, Hollander JA, Jukic AM, McAllister KA, Menon R, Merrick BA, Milosavljevic A, Ravichandran LV, Roth ME, Subramanian A, Tyson FL, Worth L, Shaughnessy DT. Seminar: Extracellular Vesicles as Mediators of Environmental Stress in Human Disease. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:104201. [PMID: 37861803 PMCID: PMC10588739 DOI: 10.1289/ehp12980] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Extracellular vesicles (EVs), membrane-bound particles containing a variety of RNA types, DNA, proteins, and other macromolecules, are now appreciated as an important means of communication between cells and tissues, both in normal cellular physiology and as a potential indicator of cellular stress, environmental exposures, and early disease pathogenesis. Extracellular signaling through EVs is a growing field of research for understanding fundamental mechanisms of health and disease and for the potential for biomarker discovery and therapy development. EVs are also known to play important roles in mediating the effects of exposure to environmental stress. OBJECTIVES This seminar addresses the application of new tools and approaches for EV research, developed in part through the National Institutes of Health (NIH) Extracellular RNA Communication Program, and reflects presentations and discussions from a workshop held 27-28 September 2021 by the National Institute of Environmental Health Sciences (NIEHS) and the National Center for Advancing Translational Sciences (NCATS) on "Extracellular Vesicles, Exosomes, and Cell-Cell Signaling in Response to Environmental Stress." The panel of experts discussed current research on EVs and environmental exposures, highlighted recent advances in EV isolation and characterization, and considered research gaps and opportunities toward identifying and characterizing the roles for EVs in environmentally related diseases, as well as the current challenges and opportunities in this field. DISCUSSION The authors discuss the application of new experimental models, particularly organ-on-chip (OOC) systems and in vitro approaches and how these have the potential to extend findings in population-based studies of EVs in exposure-related diseases. Given the complex challenges of identifying cell-specific EVs related to environmental exposures, as well as the general heterogeneity and variability in EVs in blood and other accessible biological samples, there is a critical need for rigorous reporting of experimental methods and validation studies. The authors note that these efforts, combined with cross-disciplinary approaches, would ensure that future research efforts in environmental health studies on EV biomarkers are rigorous and reproducible. https://doi.org/10.1289/EHP12980.
Collapse
Affiliation(s)
- Vrinda Kalia
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Andrea A. Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Christine Happel
- National Center for Advancing Translational Sciences, National Institutes of Health (NIH), U.S. Department of Health and Human Services (DHHS), Bethesda, Maryland, USA
| | - Jonathan A. Hollander
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Anne Marie Jukic
- Division of Intramural Research, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Kimberly A. McAllister
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Ramkumar Menon
- Department of Obstetrics and Gynecology, Division of Basic Science and Translational Research, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Bruce A. Merrick
- Division of Translational Toxicology, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | | | - Lingamanaidu V. Ravichandran
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Matthew E. Roth
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Anita Subramanian
- Division of Intramural Research, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Frederick L. Tyson
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Leroy Worth
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Daniel T. Shaughnessy
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, Research Triangle Park, North Carolina, USA
| |
Collapse
|
24
|
Rashidi SK, Kalirad A, Rafie S, Behzad E, Dezfouli MA. The role of microRNAs in neurobiology and pathophysiology of the hippocampus. Front Mol Neurosci 2023; 16:1226413. [PMID: 37727513 PMCID: PMC10506409 DOI: 10.3389/fnmol.2023.1226413] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/11/2023] [Indexed: 09/21/2023] Open
Abstract
MicroRNAs (miRNAs) are short non-coding and well-conserved RNAs that are linked to many aspects of development and disorders. MicroRNAs control the expression of genes related to different biological processes and play a prominent role in the harmonious expression of many genes. During neural development of the central nervous system, miRNAs are regulated in time and space. In the mature brain, the dynamic expression of miRNAs continues, highlighting their functional importance in neurons. The hippocampus, as one of the crucial brain structures, is a key component of major functional connections in brain. Gene expression abnormalities in the hippocampus lead to disturbance in neurogenesis, neural maturation and synaptic formation. These disturbances are at the root of several neurological disorders and behavioral deficits, including Alzheimer's disease, epilepsy and schizophrenia. There is strong evidence that abnormalities in miRNAs are contributed in neurodegenerative mechanisms in the hippocampus through imbalanced activity of ion channels, neuronal excitability, synaptic plasticity and neuronal apoptosis. Some miRNAs affect oxidative stress, inflammation, neural differentiation, migration and neurogenesis in the hippocampus. Furthermore, major signaling cascades in neurodegeneration, such as NF-Kβ signaling, PI3/Akt signaling and Notch pathway, are closely modulated by miRNAs. These observations, suggest that microRNAs are significant regulators in the complicated network of gene regulation in the hippocampus. In the current review, we focus on the miRNA functional role in the progression of normal development and neurogenesis of the hippocampus. We also consider how miRNAs in the hippocampus are crucial for gene expression mechanisms in pathophysiological pathways.
Collapse
Affiliation(s)
- Seyed Khalil Rashidi
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ata Kalirad
- Department of Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Shahram Rafie
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Neuroscience Lab, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ebrahim Behzad
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Neuroscience Lab, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mitra Ansari Dezfouli
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Neuroscience Lab, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
25
|
Sonbhadra S, Mehak, Pandey LM. Biogenesis, Isolation, and Detection of Exosomes and Their Potential in Therapeutics and Diagnostics. BIOSENSORS 2023; 13:802. [PMID: 37622888 PMCID: PMC10452587 DOI: 10.3390/bios13080802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/26/2023]
Abstract
The increasing research and rapid developments in the field of exosomes provide insights into their role and significance in human health. Exosomes derived from various sources, such as mesenchymal stem cells, cardiac cells, and tumor cells, to name a few, can be potential therapeutic agents for the treatment of diseases and could also serve as biomarkers for the early detection of diseases. Cellular components of exosomes, several proteins, lipids, and miRNAs hold promise as novel biomarkers for the detection of various diseases. The structure of exosomes enables them as drug delivery vehicles. Since exosomes exhibit potential therapeutic applications, their efficient isolation from complex biological/clinical samples and precise real-time analysis becomes significant. With the advent of microfluidics, nano-biosensors are being designed to capture exosomes efficiently and rapidly. Herein, we have summarized the history, biogenesis, characteristics, functions, and applications of exosomes, along with the isolation, detection, and quantification techniques. The implications of surface modifications to enhance specificity have been outlined. The review also sheds light on the engineered nanoplatforms being developed for exosome detection and capture.
Collapse
Affiliation(s)
| | | | - Lalit M. Pandey
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (S.S.); (M.)
| |
Collapse
|
26
|
Willemse SW, Harley P, van Eijk RPA, Demaegd KC, Zelina P, Pasterkamp RJ, van Damme P, Ingre C, van Rheenen W, Veldink JH, Kiernan MC, Al-Chalabi A, van den Berg LH, Fratta P, van Es MA. UNC13A in amyotrophic lateral sclerosis: from genetic association to therapeutic target. J Neurol Neurosurg Psychiatry 2023; 94:649-656. [PMID: 36737245 PMCID: PMC10359588 DOI: 10.1136/jnnp-2022-330504] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with limited treatment options and an incompletely understood pathophysiology. Although genomewide association studies (GWAS) have advanced our understanding of the disease, the precise manner in which risk polymorphisms contribute to disease pathogenesis remains unclear. Of relevance, GWAS have shown that a polymorphism (rs12608932) in the UNC13A gene is associated with risk for both ALS and frontotemporal dementia (FTD). Homozygosity for the C-allele at rs12608932 modifies the ALS phenotype, as these patients are more likely to have bulbar-onset disease, cognitive impairment and FTD at baseline as well as shorter survival. UNC13A is expressed in neuronal tissue and is involved in maintaining synaptic active zones, by enabling the priming and docking of synaptic vesicles. In the absence of functional TDP-43, risk variants in UNC13A lead to the inclusion of a cryptic exon in UNC13A messenger RNA, subsequently leading to nonsense mediated decay, with loss of functional protein. Depletion of UNC13A leads to impaired neurotransmission. Recent discoveries have identified UNC13A as a potential target for therapy development in ALS, with a confirmatory trial with lithium carbonate in UNC13A cases now underway and future approaches with antisense oligonucleotides currently under consideration. Considering UNC13A is a potent phenotypic modifier, it may also impact clinical trial outcomes. This present review describes the path from the initial discovery of UNC13A as a risk gene in ALS to the current therapeutic options being explored and how knowledge of its distinct phenotype needs to be taken into account in future trials.
Collapse
Affiliation(s)
- Sean W Willemse
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Peter Harley
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Ruben P A van Eijk
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
- Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care, UMC Utrecht, Utrecht, The Netherlands
| | - Koen C Demaegd
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Pavol Zelina
- Department of Translational Neuroscience, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Philip van Damme
- Department of Neurology, KU Leuven Hospital, Leuven, Belgium
- Laboratory of Neurobiology, VIB KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Caroline Ingre
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Wouter van Rheenen
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Jan H Veldink
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Matthew C Kiernan
- Bushell Chair of Neurology, Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Neurology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | | | - Leonard H van den Berg
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Pietro Fratta
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Michael A van Es
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| |
Collapse
|
27
|
Afonso GJM, Cavaleiro C, Valero J, Mota SI, Ferreiro E. Recent Advances in Extracellular Vesicles in Amyotrophic Lateral Sclerosis and Emergent Perspectives. Cells 2023; 12:1763. [PMID: 37443797 PMCID: PMC10340215 DOI: 10.3390/cells12131763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a severe and incurable neurodegenerative disease characterized by the progressive death of motor neurons, leading to paralysis and death. It is a rare disease characterized by high patient-to-patient heterogeneity, which makes its study arduous and complex. Extracellular vesicles (EVs) have emerged as important players in the development of ALS. Thus, ALS phenotype-expressing cells can spread their abnormal bioactive cargo through the secretion of EVs, even in distant tissues. Importantly, owing to their nature and composition, EVs' formation and cargo can be exploited for better comprehension of this elusive disease and identification of novel biomarkers, as well as for potential therapeutic applications, such as those based on stem cell-derived exosomes. This review highlights recent advances in the identification of the role of EVs in ALS etiopathology and how EVs can be promising new therapeutic strategies.
Collapse
Affiliation(s)
- Gonçalo J. M. Afonso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (G.J.M.A.); (C.C.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- III-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Carla Cavaleiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (G.J.M.A.); (C.C.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- III-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Jorge Valero
- Instituto de Neurociencias de Castilla y León, University of Salamanca, 37007 Salamanca, Spain;
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Department of Cell Biology and Pathology, University of Salamanca, 37007 Salamanca, Spain
| | - Sandra I. Mota
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (G.J.M.A.); (C.C.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- III-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Elisabete Ferreiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (G.J.M.A.); (C.C.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- III-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
28
|
Kozhevnikova D, Chernyshev V, Yashchenok A. Progress in Isolation and Molecular Profiling of Small Extracellular Vesicles via Bead-Assisted Platforms. BIOSENSORS 2023; 13:688. [PMID: 37504087 PMCID: PMC10377709 DOI: 10.3390/bios13070688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023]
Abstract
Tremendous interest in research of small extracellular vesicles (sEVs) is driven by the participation of vesicles in a number of biological processes in the human body. Being released by almost all cells of the body, sEVs present in complex bodily fluids form the so-called intercellular communication network. The isolation and profiling of individual fractions of sEVs secreted by pathological cells are significant in revealing their physiological functions and clinical importance. Traditional methods for isolation and purification of sEVs from bodily fluids are facing a number of challenges, such as low yield, presence of contaminants, long-term operation and high costs, which restrict their routine practical applications. Methods providing a high yield of sEVs with a low content of impurities are actively developing. Bead-assisted platforms are very effective for trapping sEVs with high recovery yield and sufficient purity for further molecular profiling. Here, we review recent advances in the enrichment of sEVs via bead-assisted platforms emphasizing the type of binding sEVs to the bead surface, sort of capture and target ligands and isolation performance. Further, we discuss integration-based technologies for the capture and detection of sEVs as well as future research directions in this field.
Collapse
Affiliation(s)
- Daria Kozhevnikova
- Skoltech Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology Skolkovo Innovation Center, 121205 Moscow, Russia
| | - Vasiliy Chernyshev
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov, 117997 Moscow, Russia
| | - Alexey Yashchenok
- Skoltech Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology Skolkovo Innovation Center, 121205 Moscow, Russia
| |
Collapse
|
29
|
Liu Y, Ding M, Pan S, Zhou R, Yao J, Fu R, Yu H, Lu Z. MicroRNA-23a-3p is upregulated in plasma exosomes of bulbar-onset ALS patients and targets ERBB4. Neuroscience 2023:S0306-4522(23)00250-6. [PMID: 37290686 DOI: 10.1016/j.neuroscience.2023.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/10/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease related to the progressive death of motor neurons. Understanding the pathogenesis of ALS continues to provide considerable challenges. Bulbar-onset ALS involves faster functional loss and shorter survival time than spinal cord-onset ALS. However, debate is ongoing regarding typical plasma miRNA changes in ALS patients with bulbar onset. Exosomal miRNAs have not yet been described as a tool for bulbar-onset ALS diagnosis or prognosis prediction. In this study, candidate exosomal miRNAs were identified by small RNA sequencing using samples from patients with bulbar-onset ALS and healthy controls. Potential pathogenic mechanisms were identified through enrichment analysis of target genes for differential miRNAs. Expression of miR-16-5p, miR-23a-3p, miR-22-3p, and miR-93-5p was significantly up-regulated in plasma exosomes from bulbar-onset ALS patients compared with healthy control subjects. Among them, miR-16-5p and miR-23a-3p were significantly lower in spinal-onset ALS patients than those with bulbar-onset. Furthermore, up-regulation of miR-23a-3p in motor neuron-like NSC-34 cells promoted apoptosis and inhibited cell viability. This miRNA was found to directly target ERBB4 and regulate the AKT/GSK3β pathway. Collectively, the above miRNAs and their targets are related to the development of bulbar-onset ALS. Our research indicates that miR-23a-3p might have an effect on motor neuron loss observed in bulbar-onset ALS and may be a novel target for the therapy of ALS in the future.
Collapse
Affiliation(s)
- Yue Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Man Ding
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Sijia Pan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rumeng Zhou
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiajia Yao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rong Fu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hang Yu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zuneng Lu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
30
|
Kim JA, Park C, Sung JJ, Seo DJ, Choi SJ, Hong YH. Small RNA sequencing of circulating small extracellular vesicles microRNAs in patients with amyotrophic lateral sclerosis. Sci Rep 2023; 13:5528. [PMID: 37016037 PMCID: PMC10073149 DOI: 10.1038/s41598-023-32717-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/31/2023] [Indexed: 04/06/2023] Open
Abstract
Dysregulation of microRNAs (miRNA) in small extracellular vesicles (sEV) such as exosomes have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS). Although circulating cell-free miRNA have been extensively investigated in ALS, sEV-derived miRNAs have not been systemically explored yet. Here, we performed small RNA sequencing analysis of serum sEV and identified 5 differentially expressed miRNA in a discovery cohort of 12 patients and 11 age- and sex-matched healthy controls (fold change > 2, p < 0.05). Two of them (up- and down-regulation of miR-23c and miR192-5p, respectively) were confirmed in a separate validation cohort (18 patients and 15 healthy controls) by droplet digital PCR. Bioinformatic analysis revealed that these two miRNAs interact with distinct sets of target genes and involve biological processes relevant to the pathomechanism of ALS. Our results suggest that circulating sEV from ALS patients have distinct miRNA profiles which may be potentially useful as a biomarker of the disease.
Collapse
Affiliation(s)
- Jin-Ah Kim
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Canaria Park
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Jung-Joon Sung
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Do-Jin Seo
- Department of Neurology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Seok-Jin Choi
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yoon-Ho Hong
- Department of Neurology, Neuroscience Research Institute, Medical Research Council, Seoul National University College of Medicine, Seoul National University Seoul Metropolitan Government Boramae Medical Center, Seoul, Republic of Korea.
- Department of Neurology, Seoul National University Seoul Metropolitan Government Boramae Medical Center, 20 Boramaero-5-Gil, Dongjak-Gu, Seoul, 07061, Republic of Korea.
| |
Collapse
|
31
|
Sataer X, Qifeng Z, Yingying Z, Chunhua H, Bingzhenga F, Zhiran X, Wanli L, Yuwei Y, Shuangfeng C, Lingling W, Hongri H, Jibing C, Xiaoping R, Hongjun G. Exosomal microRNAs as diagnostic biomarkers and therapeutic applications in neurodegenerative diseases. Neurol Res 2023; 45:191-199. [PMID: 36184105 DOI: 10.1080/01616412.2022.2129768] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2022]
Abstract
Originating from slow irreversible and progressive loss and dysfunction of neurons and synapses in the nervous system, neurodegenerative diseases (NDDs) affect millions of people worldwide. Common NDDs include Parkinson's disease, Alzheimer's disease multiple sclerosis, Huntington's disease, and amyotrophic lateral sclerosis. Currently, no sensitive biomarkers are available to monitor the progression and treatment response of NDDs or to predict their prognosis. Exosomes (EXOs) are small bilipid layer-enclosed extracellular vesicles containing numerous biomolecules, including proteins, nucleic acids, and lipids. Recent evidence indicates that EXOs are pathogenic participants in the spread of neurodegenerative diseases, contributing to disease progression and spread. EXOs are also important tools for diagnosis and treatment. Recently, studies have proposed exosomal microRNAs (miRNAs) as the targets for therapies or biomarkers of NDDs. In this review, we outline the latest research on the roles of exosomal miRNAs in NDDs and their applications as potential diagnostic and therapeutic biomarkers, targets, and drugs for NDDs.
Collapse
Affiliation(s)
- Xuehereti Sataer
- Center for Translational Medicine of Integrated Traditional Chinese and Western Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, 530011 Nanning, China.,Department of Urology Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, 830054 Urumqi, China
| | - Zhu Qifeng
- Center for Translational Medicine of Integrated Traditional Chinese and Western Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, 530011 Nanning, China
| | - Zhang Yingying
- Department of Foreign Language, Guangxi University of Chinese Medicine, 530200 Nanning, China
| | - He Chunhua
- Department of Urology Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, 830054 Urumqi, China
| | - Feng Bingzhenga
- Center for Translational Medicine of Integrated Traditional Chinese and Western Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, 530011 Nanning, China
| | - Xu Zhiran
- Center for Translational Medicine of Integrated Traditional Chinese and Western Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, 530011 Nanning, China
| | - Li Wanli
- Department of Foreign Language, Guangxi University of Chinese Medicine, 530200 Nanning, China
| | - Yang Yuwei
- Department of Foreign Language, Guangxi University of Chinese Medicine, 530200 Nanning, China
| | - Chen Shuangfeng
- Department of Urology Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, 830054 Urumqi, China
| | - Wu Lingling
- Center for Translational Medicine of Integrated Traditional Chinese and Western Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, 530011 Nanning, China
| | - Huang Hongri
- R & D Center, Guangxi Taimei Rensheng Biotechnology Co Ltd, 530006 Nanning, China
| | - Chen Jibing
- Center for Translational Medicine of Integrated Traditional Chinese and Western Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, 530011 Nanning, China
| | - Ren Xiaoping
- Center for Translational Medicine of Integrated Traditional Chinese and Western Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, 530011 Nanning, China
| | - Gao Hongjun
- Center for Translational Medicine of Integrated Traditional Chinese and Western Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, 530011 Nanning, China
| |
Collapse
|
32
|
Barbo M, Ravnik-Glavač M. Extracellular Vesicles as Potential Biomarkers in Amyotrophic Lateral Sclerosis. Genes (Basel) 2023; 14:genes14020325. [PMID: 36833252 PMCID: PMC9956314 DOI: 10.3390/genes14020325] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is described as a fatal and rapidly progressive neurodegenerative disorder caused by the degeneration of upper motor neurons in the primary motor cortex and lower motor neurons of the brainstem and spinal cord. Due to ALS's slowly progressive characteristic, which is often accompanied by other neurological comorbidities, its diagnosis remains challenging. Perturbations in vesicle-mediated transport and autophagy as well as cell-autonomous disease initiation in glutamatergic neurons have been revealed in ALS. The use of extracellular vesicles (EVs) may be key in accessing pathologically relevant tissues for ALS, as EVs can cross the blood-brain barrier and be isolated from the blood. The number and content of EVs may provide indications of the disease pathogenesis, its stage, and prognosis. In this review, we collected a recent study aiming at the identification of EVs as a biomarker of ALS with respect to the size, quantity, and content of EVs in the biological fluids of patients compared to controls.
Collapse
|
33
|
McCluskey G, Morrison KE, Donaghy C, Rene F, Duddy W, Duguez S. Extracellular Vesicles in Amyotrophic Lateral Sclerosis. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010121. [PMID: 36676070 PMCID: PMC9867379 DOI: 10.3390/life13010121] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023]
Abstract
Amyotrophic Lateral Sclerosis is a progressive neurodegenerative disease and is the most common adult motor neuron disease. The disease pathogenesis is complex with the perturbation of multiple pathways proposed, including mitochondrial dysfunction, RNA processing, glutamate excitotoxicity, endoplasmic reticulum stress, protein homeostasis and endosomal transport/extracellular vesicle (EV) secretion. EVs are nanoscopic membrane-bound particles that are released from cells, involved in the intercellular communication of proteins, lipids and genetic material, and there is increasing evidence of their role in ALS. After discussing the biogenesis of EVs, we review their roles in the propagation of pathological proteins in ALS, such as TDP-43, SOD1 and FUS, and their contribution to disease pathology. We also discuss the ALS related genes which are involved in EV formation and vesicular trafficking, before considering the EV protein and RNA dysregulation found in ALS and how these have been investigated as potential biomarkers. Finally, we highlight the potential use of EVs as therapeutic agents in ALS, in particular EVs derived from mesenchymal stem cells and EVs as drug delivery vectors for potential treatment strategies.
Collapse
Affiliation(s)
- Gavin McCluskey
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry BT47 6SB, UK
- Department of Neurology, Altnagelvin Hospital, Derry BT47 6SB, UK
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
- Correspondence: (G.M.); (S.D.)
| | - Karen E. Morrison
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
- Faculty of Medicine, Health & Life Sciences, Queen’s University, Belfast BT9 6AG, UK
| | - Colette Donaghy
- Department of Neurology, Altnagelvin Hospital, Derry BT47 6SB, UK
| | - Frederique Rene
- INSERM U1118, Centre de Recherche en Biomédecine de Strasbourg, Université de Strasbourg, 67000 Strasbourg, France
| | - William Duddy
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry BT47 6SB, UK
| | - Stephanie Duguez
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry BT47 6SB, UK
- Correspondence: (G.M.); (S.D.)
| |
Collapse
|
34
|
Xia X, Wang Y, Zheng JC. Extracellular vesicles, from the pathogenesis to the therapy of neurodegenerative diseases. Transl Neurodegener 2022; 11:53. [PMID: 36510311 PMCID: PMC9743667 DOI: 10.1186/s40035-022-00330-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are small bilipid layer-enclosed vesicles that can be secreted by all tested types of brain cells. Being a key intercellular communicator, EVs have emerged as a key contributor to the pathogenesis of various neurodegenerative diseases (NDs) including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease through delivery of bioactive cargos within the central nervous system (CNS). Importantly, CNS cell-derived EVs can be purified via immunoprecipitation, and EV cargos with altered levels have been identified as potential biomarkers for the diagnosis and prognosis of NDs. Given the essential impact of EVs on the pathogenesis of NDs, pathological EVs have been considered as therapeutic targets and EVs with therapeutic effects have been utilized as potential therapeutic agents or drug delivery platforms for the treatment of NDs. In this review, we focus on recent research progress on the pathological roles of EVs released from CNS cells in the pathogenesis of NDs, summarize findings that identify CNS-derived EV cargos as potential biomarkers to diagnose NDs, and comprehensively discuss promising potential of EVs as therapeutic targets, agents, and drug delivery systems in treating NDs, together with current concerns and challenges for basic research and clinical applications of EVs regarding NDs.
Collapse
Affiliation(s)
- Xiaohuan Xia
- grid.24516.340000000123704535Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200072 China ,Shanghai Frontiers Science Center of Nanocatalytic Medicine, 200331 Shanghai, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065 Shanghai, China ,grid.24516.340000000123704535Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, Tongji University School of Medicine, 200434 Shanghai, China ,grid.412793.a0000 0004 1799 5032Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200065 China
| | - Yi Wang
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, 200331 Shanghai, China ,grid.24516.340000000123704535Translational Research Center, Shanghai Yangzhi Rehabilitation Hospital Affiliated to Tongji University School of Medicine, Shanghai, 201613 China ,grid.24516.340000000123704535Collaborative Innovation Center for Brain Science, Tongji University, 200092 Shanghai, China
| | - Jialin C. Zheng
- grid.24516.340000000123704535Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200072 China ,Shanghai Frontiers Science Center of Nanocatalytic Medicine, 200331 Shanghai, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065 Shanghai, China ,grid.24516.340000000123704535Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, Tongji University School of Medicine, 200434 Shanghai, China ,grid.24516.340000000123704535Collaborative Innovation Center for Brain Science, Tongji University, 200092 Shanghai, China ,grid.412793.a0000 0004 1799 5032Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200065 China
| |
Collapse
|
35
|
Extracellular Vesicles in Chronic Demyelinating Diseases: Prospects in Treatment and Diagnosis of Autoimmune Neurological Disorders. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111943. [PMID: 36431078 PMCID: PMC9693249 DOI: 10.3390/life12111943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Extracellular vesicles (EVs) represent membrane-enclosed structures that are likely to be secreted by all living cell types in the animal organism, including cells of peripheral (PNS) and central nervous systems (CNS). The ability to cross the blood-brain barrier (BBB) provides the possibility not only for various EV-loaded molecules to be delivered to the brain tissues but also for the CNS-to-periphery transmission of these molecules. Since neural EVs transfer proteins and RNAs are both responsible for functional intercellular communication and involved in the pathogenesis of neurodegenerative diseases, they represent attractive diagnostic and therapeutic targets. Here, we discuss EVs' role in maintaining the living organisms' function and describe deviations in EVs' structure and malfunctioning during various neurodegenerative diseases.
Collapse
|
36
|
Epigenetic Changes in Prion and Prion-like Neurodegenerative Diseases: Recent Advances, Potential as Biomarkers, and Future Perspectives. Int J Mol Sci 2022; 23:ijms232012609. [PMID: 36293477 PMCID: PMC9604074 DOI: 10.3390/ijms232012609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/09/2022] [Accepted: 10/18/2022] [Indexed: 12/01/2022] Open
Abstract
Prion diseases are transmissible spongiform encephalopathies (TSEs) caused by a conformational conversion of the native cellular prion protein (PrPC) to an abnormal, infectious isoform called PrPSc. Amyotrophic lateral sclerosis, Alzheimer’s, Parkinson’s, and Huntington’s diseases are also known as prion-like diseases because they share common features with prion diseases, including protein misfolding and aggregation, as well as the spread of these misfolded proteins into different brain regions. Increasing evidence proposes the involvement of epigenetic mechanisms, namely DNA methylation, post-translational modifications of histones, and microRNA-mediated post-transcriptional gene regulation in the pathogenesis of prion-like diseases. Little is known about the role of epigenetic modifications in prion diseases, but recent findings also point to a potential regulatory role of epigenetic mechanisms in the pathology of these diseases. This review highlights recent findings on epigenetic modifications in TSEs and prion-like diseases and discusses the potential role of such mechanisms in disease pathology and their use as potential biomarkers.
Collapse
|
37
|
Sturmey E, Malaspina A. Blood biomarkers in ALS: challenges, applications and novel frontiers. Acta Neurol Scand 2022; 146:375-388. [PMID: 36156207 PMCID: PMC9828487 DOI: 10.1111/ane.13698] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 01/12/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease among adults. With diagnosis reached relatively late into the disease process, extensive motor cell loss narrows the window for therapeutic opportunities. Clinical heterogeneity in ALS and the lack of disease-specific biomarkers have so far led to large-sized clinical trials with long follow-up needed to define clinical outcomes. In advanced ALS patients, there is presently limited scope to use imaging or invasive cerebrospinal fluid (CSF) collection as a source of disease biomarkers. The development of more patient-friendly and accessible blood biomarker assays is hampered by analytical hurdles like the matrix effect of blood components. However, blood also provides the opportunity to identify disease-specific adaptive changes of the stoichiometry and conformation of target proteins and the endogenous immunological response to low-abundance brain peptides, such as neurofilaments (Nf). Among those biomarkers under investigation in ALS, the change in concentration before or after diagnosis of Nf has been shown to aid prognostication and to allow the a priori stratification of ALS patients into smaller sized and clinically more homogeneous cohorts, supporting more affordable clinical trials. Here, we discuss the technical hurdles affecting reproducible and sensitive biomarker measurement in blood. We also summarize the state of the art of non-CSF biomarkers in the study of prognosis, disease progression, and treatment response. We will then address the potential as disease-specific biomarkers of the newly discovered cryptic peptides which are formed down-stream of TDP-43 loss of function, the hallmark of ALS pathobiology.
Collapse
Affiliation(s)
- Ellie Sturmey
- Centre of Neuroscience, Surgery and Trauma, Queen Mary University of London, London, UK
| | - Andrea Malaspina
- Centre of Neuroscience, Surgery and Trauma, Queen Mary University of London, London, UK.,Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
38
|
Beatriz M, Vilaça R, Anjo SI, Manadas B, Januário C, Rego AC, Lopes C. Defective mitochondria-lysosomal axis enhances the release of extracellular vesicles containing mitochondrial DNA and proteins in Huntington's disease. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e65. [PMID: 38939215 PMCID: PMC11080813 DOI: 10.1002/jex2.65] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/21/2022] [Accepted: 09/23/2022] [Indexed: 06/29/2024]
Abstract
Mitochondrial and autophagy dysfunction are mechanisms proposed to be involved in the pathogenesis of several neurodegenerative diseases. Huntington's disease (HD) is a progressive neurodegenerative disorder associated with mutant Huntingtin-induced abnormalities in neuronal mitochondrial dynamics and quality control. Former studies suggest that the removal of defective mitochondria may be compromised in HD. Mitochondrial quality control (MQC) is a complex, well-orchestrated pathway that can be compromised through mitophagy dysregulation or impairment in the mitochondria-lysosomal axis. Another mitochondrial stress response is the generation of mitochondrial-derived vesicles that fuse with the endolysosomal system and form multivesicular bodies that are extruded from cells as extracellular vesicles (EVs). In this work, we aimed to study the presence of mitochondrial components in human EVs and the relation to the dysfunction of both mitochondria and the autophagy pathway. We comprehensively characterized the mitochondrial and autophagy alterations in premanifest and manifest HD carriers and performed a proteomic and genomic EVs profile. We observed that manifest HD patients exhibit mitochondrial and autophagy impairment associated with enhanced EVs release. Furthermore, we detected mitochondrial DNA and proteins in EVs released by HD cells and in neuronal-derived EVs including VDAC-1 and alpha and beta subunits of ATP synthase F1. HD-extracellular vesicles transport higher levels of mitochondrial genetic material in manifest HD patients, suggesting an alternative pathway for the secretion of reactive mitochondrial components. This study provides a novel framework connecting EVs enhanced release of mitochondrial components to mitochondrial and lysosomal dysfunction in HD.
Collapse
Affiliation(s)
- Margarida Beatriz
- CNC‐Center for Neuroscience and Cell BiologyCIBB ‐ Centre for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCoimbraPortugal
- IIIUC‐Institute for Interdisciplinary ResearchUniversity of CoimbraCoimbraPortugal
| | - Rita Vilaça
- CNC‐Center for Neuroscience and Cell BiologyCIBB ‐ Centre for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCoimbraPortugal
- IIIUC‐Institute for Interdisciplinary ResearchUniversity of CoimbraCoimbraPortugal
| | - Sandra I. Anjo
- CNC‐Center for Neuroscience and Cell BiologyCIBB ‐ Centre for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCoimbraPortugal
- Multidisciplinary Institute of AgeingUniversity of CoimbraCoimbraPortugal
| | - Bruno Manadas
- CNC‐Center for Neuroscience and Cell BiologyCIBB ‐ Centre for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCoimbraPortugal
| | | | - A. Cristina Rego
- CNC‐Center for Neuroscience and Cell BiologyCIBB ‐ Centre for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCoimbraPortugal
- FMUC‐Faculty of MedicineUniversity of CoimbraCoimbraPortugal
| | - Carla Lopes
- CNC‐Center for Neuroscience and Cell BiologyCIBB ‐ Centre for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCoimbraPortugal
- IIIUC‐Institute for Interdisciplinary ResearchUniversity of CoimbraCoimbraPortugal
| |
Collapse
|
39
|
Lucotti S, Kenific CM, Zhang H, Lyden D. Extracellular vesicles and particles impact the systemic landscape of cancer. EMBO J 2022; 41:e109288. [PMID: 36052513 PMCID: PMC9475536 DOI: 10.15252/embj.2021109288] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/16/2022] [Accepted: 03/23/2022] [Indexed: 11/09/2022] Open
Abstract
Intercellular cross talk between cancer cells and stromal and immune cells is essential for tumor progression and metastasis. Extracellular vesicles and particles (EVPs) are a heterogeneous class of secreted messengers that carry bioactive molecules and that have been shown to be crucial for this cell-cell communication. Here, we highlight the multifaceted roles of EVPs in cancer. Functionally, transfer of EVP cargo between cells influences tumor cell growth and invasion, alters immune cell composition and function, and contributes to stromal cell activation. These EVP-mediated changes impact local tumor progression, foster cultivation of pre-metastatic niches at distant organ-specific sites, and mediate systemic effects of cancer. Furthermore, we discuss how exploiting the highly selective enrichment of molecules within EVPs has profound implications for advancing diagnostic and prognostic biomarker development and for improving therapy delivery in cancer patients. Altogether, these investigations into the role of EVPs in cancer have led to discoveries that hold great promise for improving cancer patient care and outcome.
Collapse
Affiliation(s)
- Serena Lucotti
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - Candia M Kenific
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - Haiying Zhang
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| |
Collapse
|
40
|
Panio A, Cava C, D’Antona S, Bertoli G, Porro D. Diagnostic Circulating miRNAs in Sporadic Amyotrophic Lateral Sclerosis. Front Med (Lausanne) 2022; 9:861960. [PMID: 35602517 PMCID: PMC9121628 DOI: 10.3389/fmed.2022.861960] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by the neurodegeneration of motoneurons. About 10% of ALS is hereditary and involves mutation in 25 different genes, while 90% of the cases are sporadic forms of ALS (sALS). The diagnosis of ALS includes the detection of early symptoms and, as disease progresses, muscle twitching and then atrophy spreads from hands to other parts of the body. The disease causes high disability and has a high mortality rate; moreover, the therapeutic approaches for the pathology are not effective. miRNAs are small non-coding RNAs, whose activity has a major impact on the expression levels of coding mRNA. The literature identifies several miRNAs with diagnostic abilities on sALS, but a unique diagnostic profile is not defined. As miRNAs could be secreted, the identification of specific blood miRNAs with diagnostic ability for sALS could be helpful in the identification of the patients. In the view of personalized medicine, we performed a meta-analysis of the literature in order to select specific circulating miRNAs with diagnostic properties and, by bioinformatics approaches, we identified a panel of 10 miRNAs (miR-193b, miR-3911, miR-139-5p, miR-193b-1, miR-338-5p, miR-3911-1, miR-455-3p, miR-4687-5p, miR-4745-5p, and miR-4763-3p) able to classify sALS patients by blood analysis. Among them, the analysis of expression levels of the couple of blood miR-193b/miR-4745-5p could be translated in clinical practice for the diagnosis of sALS.
Collapse
|
41
|
Gurudas Shivji G, Dhar R, Devi A. Role of Exosomes and its emerging therapeutic applications in the pathophysiology of Non-Infectious disease. Biomarkers 2022; 27:534-548. [PMID: 35451890 DOI: 10.1080/1354750x.2022.2067233] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Exosomes are a type of small Extracellular Vesicles (EVs) and play crucial roles in cancer and other diseases. Exosomes role in various diseases has been studied as they regulate intercellular communication and are obtained from almost any part of the body. Exosomes use is complicated in diseases as they promote pathogenesis but also act as a very good therapeutic agent in most diseases. The presence of a complex molecular cargo consisting of nucleic acids (DNA, RNA, miRNA, siRNA, etc.,) makes it a very good delivery agent and acts as a biomarker for many cancers, cardiovascular and neurodegenerative diseases. They can be used to selectively target cells and activate immune cell responses depending on the source obtained. Exosomes based immunotherapy is an area of gaining importance due to the proteins present in them and their specificity to the targeted cells. The role of exosomes in the diagnosis and treatment of non-infectious diseases is discussed in detail in this article.
Collapse
Affiliation(s)
- Gauresh Gurudas Shivji
- Cancer Biology and Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Potheri, Kattankulathur, Chengalpattu District, Tamilnadu 603203, India
| | - Rajib Dhar
- Cancer Biology and Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Potheri, Kattankulathur, Chengalpattu District, Tamilnadu 603203, India
| | - Arikketh Devi
- Cancer Biology and Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Potheri, Kattankulathur, Chengalpattu District, Tamilnadu 603203, India
| |
Collapse
|
42
|
Identification of let-7f and miR-338 as plasma-based biomarkers for sporadic amyotrophic lateral sclerosis using meta-analysis and empirical validation. Sci Rep 2022; 12:1373. [PMID: 35082326 PMCID: PMC8791978 DOI: 10.1038/s41598-022-05067-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 01/06/2022] [Indexed: 12/11/2022] Open
Abstract
AbstractAmyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease that in most cases occurs sporadic (sALS). The disease is not curable, and its pathogenesis mechanisms are not well understood yet. Given the intricacy of underlying molecular interactions and heterogeneity of ALS, the discovery of molecules contributing to disease onset and progression will open a new avenue for advancement in early diagnosis and therapeutic intervention. Here we conducted a meta-analysis of 12 circulating miRNA profiling studies using the robust rank aggregation (RRA) method, followed by enrichment analysis and experimental verification. We identified miR-451a and let-7f-5p as meta-signature miRNAs whose targets are involved in critical pathogenic pathways underlying ALS, including ‘FoxO signaling pathway’, ‘MAPK signaling pathway’, and ‘apoptosis’. A systematic review of 7 circulating gene profiling studies elucidated that 241 genes up-regulated in sALS circulation with concomitant being targets of the meta-signature miRNAs. Protein–protein interaction (PPI) network analysis of the candidate targets using MCODE algorithm revealed the main subcluster is involved in multiple cascades eventually leads apoptosis, including ‘positive regulation of neuron apoptosis. Besides, we validated the meta-analysis results using RT-qPCR. Indeed, relative expression analysis verified let-7f-5p and miR-338-3p as significantly down-regulated and up-regulated biomarkers in the plasma of sALS patients, respectively. Receiver operating characteristic (ROC) analysis also highlighted the let-7f-5p and miR-338-3p potential as robustness plasma biomarkers for diagnosis and potential therapeutic targets of sALS disease.
Collapse
|
43
|
Wang K, Li Y, Ren C, Wang Y, He W, Jiang Y. Extracellular Vesicles as Innovative Treatment Strategy for Amyotrophic Lateral Sclerosis. Front Cell Dev Biol 2021; 9:754630. [PMID: 34858980 PMCID: PMC8632491 DOI: 10.3389/fcell.2021.754630] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/11/2021] [Indexed: 12/22/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal motor neuron degenerative disease, and it is hard to diagnose in the early stage, and treatment means are limited, and the treatment effect is unsatisfactory. Therefore, exploring a new effective treatment strategy is urgently needed for ALS patients. Extracellular vesicles (EVs) are a heterogeneous group of natural membrane vesicles containing many bioactive substances, and they play important roles in the paracrine pathway and exhibit neuroprotection effects. A growing body of evidence shows that EVs have great application potential in diagnosis, treatment, and drug delivery in ALS, and they represent an innovative treatment strategy for ALS. In this review, we will briefly introduce the biogenesis of EVs and focus on discussing the role of EVs in ALS treatment to further enrich and boost the development of EVs as an innovative treatment strategy for ALS.
Collapse
Affiliation(s)
- Ke Wang
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yu Li
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Chao Ren
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yongjing Wang
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wenshan He
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yuan Jiang
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
44
|
Lo TW, Figueroa-Romero C, Hur J, Pacut C, Stoll E, Spring C, Lewis R, Nair A, Goutman SA, Sakowski SA, Nagrath S, Feldman EL. Extracellular Vesicles in Serum and Central Nervous System Tissues Contain microRNA Signatures in Sporadic Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2021; 14:739016. [PMID: 34776863 PMCID: PMC8586523 DOI: 10.3389/fnmol.2021.739016] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/01/2021] [Indexed: 01/12/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a terminalneurodegenerative disease. Clinical and molecular observations suggest that ALS pathology originates at a single site and spreads in an organized and prion-like manner, possibly driven by extracellular vesicles. Extracellular vesicles (EVs) transfer cargo molecules associated with ALS pathogenesis, such as misfolded and aggregated proteins and dysregulated microRNAs (miRNAs). However, it is poorly understood whether altered levels of circulating extracellular vesicles or their cargo components reflect pathological signatures of the disease. In this study, we used immuno-affinity-based microfluidic technology, electron microscopy, and NanoString miRNA profiling to isolate and characterize extracellular vesicles and their miRNA cargo from frontal cortex, spinal cord, and serum of sporadic ALS (n = 15) and healthy control (n = 16) participants. We found larger extracellular vesicles in ALS spinal cord versus controls and smaller sized vesicles in ALS serum. However, there were no changes in the number of extracellular vesicles between cases and controls across any tissues. Characterization of extracellular vesicle-derived miRNA cargo in ALS compared to controls identified significantly altered miRNA levels in all tissues; miRNAs were reduced in ALS frontal cortex and spinal cord and increased in serum. Two miRNAs were dysregulated in all three tissues: miR-342-3p was increased in ALS, and miR-1254 was reduced in ALS. Additional miRNAs overlapping across two tissues included miR-587, miR-298, miR-4443, and miR-450a-2-3p. Predicted targets and pathways associated with the dysregulated miRNAs across the ALS tissues were associated with common biological pathways altered in neurodegeneration, including axon guidance and long-term potentiation. A predicted target of one identified miRNA (N-deacetylase and N-sulfotransferase 4; NDST4) was likewise dysregulated in an in vitro model of ALS, verifying potential biological relevance. Together, these findings demonstrate that circulating extracellular vesicle miRNA cargo mirror those of the central nervous system disease state in ALS, and thereby offer insight into possible pathogenic factors and diagnostic opportunities.
Collapse
Affiliation(s)
- Ting-wen Lo
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
| | | | - Junguk Hur
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Crystal Pacut
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Evan Stoll
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Calvin Spring
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Rose Lewis
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Athul Nair
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Stephen A. Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Stacey A. Sakowski
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Sunitha Nagrath
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
- Binterface Institute, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
45
|
Anakor E, Le Gall L, Dumonceaux J, Duddy WJ, Duguez S. Exosomes in Ageing and Motor Neurone Disease: Biogenesis, Uptake Mechanisms, Modifications in Disease and Uses in the Development of Biomarkers and Therapeutics. Cells 2021; 10:2930. [PMID: 34831153 PMCID: PMC8616058 DOI: 10.3390/cells10112930] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023] Open
Abstract
Intercellular communication between neurons and their surrounding cells occurs through the secretion of soluble molecules or release of vesicles such as exosomes into the extracellular space, participating in brain homeostasis. Under neuro-degenerative conditions associated with ageing, such as amyotrophic lateral sclerosis (ALS), Alzheimer's or Parkinson's disease, exosomes are suspected to propagate toxic proteins. The topic of this review is the role of exosomes in ageing conditions and more specifically in ALS. Our current understanding of exosomes and exosome-related mechanisms is first summarized in a general sense, including their biogenesis and secretion, heterogeneity, cellular interaction and intracellular fate. Their role in the Central Nervous System (CNS) and ageing of the neuromotor system is then considered in the context of exosome-induced signaling. The review then focuses on exosomes in age-associated neurodegenerative disease. The role of exosomes in ALS is highlighted, and their use as potential biomarkers to diagnose and prognose ALS is presented. The therapeutic implications of exosomes for ALS are considered, whether as delivery vehicles, neurotoxic targets or as corrective drugs in and of themselves. A diverse set of mechanisms underpin the functional roles, both confirmed and potential, of exosomes, generally in ageing and specifically in motor neurone disease. Aspects of their contents, biogenesis, uptake and modifications offer many plausible routes towards the development of novel biomarkers and therapeutics.
Collapse
Affiliation(s)
- Ekene Anakor
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry-Londonderry BT47 6SB, UK; (E.A.); (L.L.G.); (J.D.); (W.J.D.)
| | - Laura Le Gall
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry-Londonderry BT47 6SB, UK; (E.A.); (L.L.G.); (J.D.); (W.J.D.)
- NIHR Biomedical Research Centre, Great Ormond Street Institute of Child Health, Great Ormond Street Hospital NHS Trust, University College London, London WC1N 1EH, UK
| | - Julie Dumonceaux
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry-Londonderry BT47 6SB, UK; (E.A.); (L.L.G.); (J.D.); (W.J.D.)
- NIHR Biomedical Research Centre, Great Ormond Street Institute of Child Health, Great Ormond Street Hospital NHS Trust, University College London, London WC1N 1EH, UK
| | - William John Duddy
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry-Londonderry BT47 6SB, UK; (E.A.); (L.L.G.); (J.D.); (W.J.D.)
| | - Stephanie Duguez
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry-Londonderry BT47 6SB, UK; (E.A.); (L.L.G.); (J.D.); (W.J.D.)
| |
Collapse
|
46
|
Chen QY, Wen T, Wu P, Jia R, Zhang R, Dang J. Exosomal Proteins and miRNAs as Mediators of Amyotrophic Lateral Sclerosis. Front Cell Dev Biol 2021; 9:718803. [PMID: 34568332 PMCID: PMC8461026 DOI: 10.3389/fcell.2021.718803] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022] Open
Abstract
Recent advances in the neurobiology and neurogenerative diseases have attracted growing interest in exosomes and their ability to carry and propagate active biomolecules as a means to reprogram recipient cells. Alterations in exosomal protein content and nucleic acid profiles found in human biological fluids have been correlated with various diseases including amyotrophic lateral sclerosis (ALS). In ALS pathogenesis, these lipid-bound nanoscale vesicles have emerged as valuable candidates for diagnostic biomarkers. Moreover, their capacity to spread misfolded proteins and functional non-coding RNAs to interconnected neuronal cells make them putative mediators for the progressive motor degeneration found remarkably apparent in ALS. This review outlines current knowledge concerning the biogenesis, heterogeneity, and function of exosomes in the brain as well as a comprehensive probe of currently available literature on ALS-related exosomal proteins and microRNAs. Lastly, with the rapid development of employing nanoparticles for drug delivery, we explore the therapeutic potentials of exosomes as well as underlying limitations in current isolation and detection methodologies.
Collapse
Affiliation(s)
- Qiao Yi Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Ting Wen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Peng Wu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Rui Jia
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ronghua Zhang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingxia Dang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
47
|
Laneve P, Tollis P, Caffarelli E. RNA Deregulation in Amyotrophic Lateral Sclerosis: The Noncoding Perspective. Int J Mol Sci 2021; 22:10285. [PMID: 34638636 PMCID: PMC8508793 DOI: 10.3390/ijms221910285] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 12/18/2022] Open
Abstract
RNA metabolism is central to cellular physiopathology. Almost all the molecular pathways underpinning biological processes are affected by the events governing the RNA life cycle, ranging from transcription to degradation. The deregulation of these processes contributes to the onset and progression of human diseases. In recent decades, considerable efforts have been devoted to the characterization of noncoding RNAs (ncRNAs) and to the study of their role in the homeostasis of the nervous system (NS), where they are highly enriched. Acting as major regulators of gene expression, ncRNAs orchestrate all the steps of the differentiation programs, participate in the mechanisms underlying neural functions, and are crucially implicated in the development of neuronal pathologies, among which are neurodegenerative diseases. This review aims to explore the link between ncRNA dysregulation and amyotrophic lateral sclerosis (ALS), the most frequent motoneuron (MN) disorder in adults. Notably, defective RNA metabolism is known to be largely associated with this pathology, which is often regarded as an RNA disease. We also discuss the potential role that these transcripts may play as diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Pietro Laneve
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy
| | - Paolo Tollis
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy;
| | - Elisa Caffarelli
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy
| |
Collapse
|
48
|
Pregnolato F, Cova L, Doretti A, Bardelli D, Silani V, Bossolasco P. Exosome microRNAs in Amyotrophic Lateral Sclerosis: A Pilot Study. Biomolecules 2021; 11:biom11081220. [PMID: 34439885 PMCID: PMC8394507 DOI: 10.3390/biom11081220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/11/2022] Open
Abstract
The pathogenesis of amyotrophic lateral sclerosis (ALS), a lethal neurodegenerative disease, remains undisclosed. Mutations in ALS related genes have been identified, albeit the majority of cases are unmutated. Clinical pathology of ALS suggests a prion-like cell-to-cell diffusion of the disease possibly mediated by exosomes, small endocytic vesicles involved in the propagation of RNA molecules and proteins. In this pilot study, we focused on exosomal microRNAs (miRNAs), key regulators of many signaling pathways. We analyzed serum-derived exosomes from ALS patients in comparison with healthy donors. Exosomes were obtained by a commercial kit. Purification of miRNAs was performed using spin column chromatography and RNA was reverse transcribed into cDNA. All samples were run on the miRCURY LNATM Universal RT miRNA PCR Serum/Plasma Focus panel. An average of 29 miRNAs were detectable per sample. The supervised analysis did not identify any statistically significant difference among the groups indicating that none of the miRNA of our panel has a strong pathological role in ALS. However, selecting samples with the highest miRNA content, six biological processes shared across miRNAs through the intersection of the GO categories were identified. Our results, combined to those reported in the literature, indicated that further investigation is needed to elucidate the role of exosome-derived miRNA in ALS.
Collapse
Affiliation(s)
- Francesca Pregnolato
- Experimental Laboratory of Immunological and Rheumatologic Researches, Istituto Auxologico Italiano, IRCCS, Cusano Milanino, 20095 Milan, Italy;
| | - Lidia Cova
- Department of Neurology-Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano, IRCCS, 20149 Milan, Italy; (L.C.); (A.D.); (D.B.); (V.S.)
| | - Alberto Doretti
- Department of Neurology-Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano, IRCCS, 20149 Milan, Italy; (L.C.); (A.D.); (D.B.); (V.S.)
| | - Donatella Bardelli
- Department of Neurology-Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano, IRCCS, 20149 Milan, Italy; (L.C.); (A.D.); (D.B.); (V.S.)
| | - Vincenzo Silani
- Department of Neurology-Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano, IRCCS, 20149 Milan, Italy; (L.C.); (A.D.); (D.B.); (V.S.)
- “Dino Ferrari” Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, 20122 Milan, Italy
| | - Patrizia Bossolasco
- Department of Neurology-Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano, IRCCS, 20149 Milan, Italy; (L.C.); (A.D.); (D.B.); (V.S.)
- Correspondence:
| |
Collapse
|
49
|
Human Monocytes Plasticity in Neurodegeneration. Biomedicines 2021; 9:biomedicines9070717. [PMID: 34201693 PMCID: PMC8301413 DOI: 10.3390/biomedicines9070717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/11/2021] [Accepted: 06/21/2021] [Indexed: 01/09/2023] Open
Abstract
Monocytes play a crucial role in immunity and tissue homeostasis. They constitute the first line of defense during the inflammatory process, playing a role in the pathogenesis and progression of diseases, making them an attractive therapeutic target. They are heterogeneous in morphology and surface marker expression, which suggest different molecular and physiological properties. Recent evidences have demonstrated their ability to enter the brain, and, as a consequence, their hypothetical role in different neurodegenerative diseases. In this review, we will discuss the current knowledge about the correlation between monocyte dysregulation in the brain and/or in the periphery and neurological diseases in humans. Here we will focus on the most common neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and multiple sclerosis.
Collapse
|
50
|
Akbari Dilmaghani N, Hussen BM, Nateghinia S, Taheri M, Ghafouri-Fard S. Emerging role of microRNAs in the pathogenesis of amyotrophic lateral sclerosis. Metab Brain Dis 2021; 36:737-749. [PMID: 33604874 DOI: 10.1007/s11011-021-00697-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/16/2021] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a deadly motor neuron disease (MND) and the most frequent MND in adults. ALS is recognized by degenerative alterations in both upper and lower motor neurons. This disorder is classified to familial and sporadic classes. Disease-causing mutations in SOD1, C9ORF72, FUS, and TARDBP have been recognized in familial ALS cases. However, in spite of conduction of several genetic association studies, heritable genetic risk elements in sporadic have not been identified completely. Several miRNAs have been dysregulated in the serum samples or brain tissues of ALS patients. Moreover, a number of miRNAs have been suggested as putative biomarkers for sporadic ALS. In the current manuscript, we review of miRNAs in the development of ALS.
Collapse
Affiliation(s)
- Nader Akbari Dilmaghani
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Pharmacognosy Department, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Saeedeh Nateghinia
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|