1
|
Shin N, Ikeda Y, Motomura Y, Higuchi S. Effects of observing own/others hand movement in different perspectives on mu rhythm suppression: an EEG study. J Physiol Anthropol 2024; 43:21. [PMID: 39232843 PMCID: PMC11373409 DOI: 10.1186/s40101-024-00369-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/11/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Previous studies have reported that the sense of "self" is associated with specific brain regions and neural network activities. In addition, the mirror system, which functions when executing or observing an action, might contribute to differentiating the self from others and form the basis of the sense of self as a fundamental physical representation. This study investigated whether differences in mu suppression, an indicator of mirror system activity, reflect cognitions related to self-other discrimination. METHODS The participants were 30 of healthy college students. The participants observed short video clips of hand movements performed by themselves or actors from two perspectives (i.e., first-person and third-person). The electroencephalogram (EEG) mu rhythm (8-13 Hz) was measured during video observation as an index of mirror neuron system activity. EEG activity related to self-detection was analyzed using participants' hand movements as self-relevant stimuli. RESULTS The results showed that mu suppression in the 8-13-Hz range exhibited perspective-dependent responses to self/other stimuli. There was a significant self-oriented mu suppression response in the first-person perspective. However, the study found no significant response orientation in the third-person perspective. The results suggest that mirror system activity may involve self-other discrimination differently depending on the perspective. CONCLUSIONS In summary, this study examined the mirror system's activity for self and others using the EEG's mu suppression. As a result, it was suggested that differences in self and others or perspectives may influence mu suppression.
Collapse
Affiliation(s)
- Nakyeong Shin
- Graduate School of Integrated Frontier Sciences, Kyushu University, 4-9-1 Shiobaru, Minami-Ku, Fukuoka City, Fukuoka, Japan.
- Research Fellow of the Japan Society for the Promotion of Science, Kojimachi Business Center, Building, 5-3-1 Kojimachi, Chiyoda-Ku, Tokyo, Japan.
| | - Yuki Ikeda
- Faculty of Health Science, Kyorin University, 6-20-2 Shinkawa, Mitaka-Shi, Tokyo, Japan
- Research Fellow of the Japan Society for the Promotion of Science, Kojimachi Business Center, Building, 5-3-1 Kojimachi, Chiyoda-Ku, Tokyo, Japan
| | - Yuki Motomura
- Faculty of Design, Kyushu University, 4-9-1 Shiobaru, Minami-Ku Fukuoka City, Fukuoka, Japan
| | - Shigekazu Higuchi
- Faculty of Design, Kyushu University, 4-9-1 Shiobaru, Minami-Ku Fukuoka City, Fukuoka, Japan
| |
Collapse
|
2
|
Cheng S, Wang J, Luo R, Hao N. Brain to brain musical interaction: A systematic review of neural synchrony in musical activities. Neurosci Biobehav Rev 2024; 164:105812. [PMID: 39029879 DOI: 10.1016/j.neubiorev.2024.105812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/02/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
The use of hyperscanning technology has revealed the neural mechanisms underlying multi-person interaction in musical activities. However, there is currently a lack of integration among various research findings. This systematic review aims to provide a comprehensive understanding of the social dynamics and brain synchronization in music activities through the analysis of 32 studies. The findings illustrate a strong correlation between inter-brain synchronization (IBS) and various musical activities, with the frontal, central, parietal, and temporal lobes as the primary regions involved. The application of hyperscanning not only advances theoretical research but also holds practical significance in enhancing the effectiveness of music-based interventions in therapy and education. The review also utilizes Predictive Coding Models (PCM) to provide a new perspective for interpreting neural synchronization in music activities. To address the limitations of current research, future studies could integrate multimodal data, adopt novel technologies, use non-invasive techniques, and explore additional research directions.
Collapse
Affiliation(s)
- Shate Cheng
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, Hefei 200062, China.
| | - Jiayi Wang
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, Hefei 200062, China.
| | - Ruiyi Luo
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, Hefei 200062, China.
| | - Ning Hao
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, Hefei 200062, China.
| |
Collapse
|
3
|
Ninomiya T, Isoda M. Dynamic spatial representation of self and others' actions in the macaque frontal cortex. Proc Natl Acad Sci U S A 2024; 121:e2403445121. [PMID: 39047041 PMCID: PMC11295024 DOI: 10.1073/pnas.2403445121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Modulation of neuronal firing rates by the spatial locations of physical objects is a widespread phenomenon in the brain. However, little is known about how neuronal responses to the actions of biological entities are spatially tuned and whether such spatially tuned responses are affected by social contexts. These issues are of key importance for understanding the neural basis of embodied social cognition, such as imitation and perspective-taking. Here, we show that spatial representation of actions can be dynamically changed depending on others' social relevance and agents of action. Monkeys performed a turn-taking choice task with a real monkey partner sitting face-to-face or a filmed partner in prerecorded videos. Three rectangular buttons (left, center, and right) were positioned in front of the subject and partner as their choice targets. We recorded from single neurons in two frontal nodes in the social brain, the ventral premotor cortex (PMv) and the medial prefrontal cortex (MPFC). When the partner was filmed rather than real, spatial preference for partner-actions was markedly diminished in MPFC, but not PMv, neurons. This social context-dependent modulation in the MPFC was also evident for self-actions. Strikingly, a subset of neurons in both areas switched their spatial preference between self-actions and partner-actions in a diametrically opposite manner. This observation suggests that these cortical areas are associated with coordinate transformation in ways consistent with an actor-centered perspective-taking coding scheme. The PMv may subserve such functions in context-independent manners, whereas the MPFC may do so primarily in social contexts.
Collapse
Affiliation(s)
- Taihei Ninomiya
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi444-8585, Japan
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies, Hayama, Kanagawa240-0193, Japan
| | - Masaki Isoda
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi444-8585, Japan
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies, Hayama, Kanagawa240-0193, Japan
| |
Collapse
|
4
|
Di Bello F, Falcone R, Genovesio A. Simultaneous oscillatory encoding of "hot" and "cold" information during social interactions in the monkey medial prefrontal cortex. iScience 2024; 27:109559. [PMID: 38646179 PMCID: PMC11033171 DOI: 10.1016/j.isci.2024.109559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/27/2023] [Accepted: 03/22/2024] [Indexed: 04/23/2024] Open
Abstract
Social interactions in primates require social cognition abilities such as anticipating the partner's future choices as well as pure cognitive skills involving processing task-relevant information. The medial prefrontal cortex (mPFC) has been implicated in these cognitive processes. Here, we investigated the neural oscillations underlying the complex social behaviors involving the interplay of social roles (Actor vs. Observer) and interaction types (whether working with a "Good" or "Bad" partner). We found opposite power modulations of the beta and gamma bands by social roles, indicating dedicated processing for task-related information. Concurrently, the interaction type was conveyed by lower frequencies, which are commonly associated with neural circuits linked to performance and reward monitoring. Thus, the mPFC exhibits parallel coding of both "cold" processes (purely cognitive) and "hot" processes (reward and social-related). This allocation of neural resources gives the mPFC a key neural node, flexibly integrating multiple sources of information during social interactions.
Collapse
Affiliation(s)
- Fabio Di Bello
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Rossella Falcone
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- Leo M. Davidoff Department of Neurological Surgery, Albert Einstein College of Medicine Montefiore Medical Center Bronx, Bronx, NY, USA
| | - Aldo Genovesio
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
5
|
Sacheli LM, Diana L, Ravani A, Beretta S, Bolognini N, Paulesu E. Neuromodulation of the Left Inferior Frontal Cortex Affects Social Monitoring during Motor Interactions. J Cogn Neurosci 2023; 35:1788-1805. [PMID: 37677055 DOI: 10.1162/jocn_a_02046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Motor interactions require observing and monitoring a partner's performance as the interaction unfolds. Studies in monkeys suggest that this form of social monitoring might be mediated by the activity of the ventral premotor cortex (vPMc), a critical brain region in action observation and motor planning. Our previous fMRI studies in humans showed that the left vPMc is indeed recruited during social monitoring, but its causal role is unexplored. In three experiments, we applied online anodal or cathodal transcranial direct current stimulation over the left lateral frontal cortex during a music-like interactive task to test the hypothesis that neuromodulation of the left vPMc affects participants' performance when a partner violates the agent's expectations. Participants played short musical sequences together with a virtual partner by playing one note each in turn-taking. In 50% of the trials, the partner violated the participant's expectations by generating the correct note through an unexpected movement. During sham stimulation, the partner's unexpected behavior led to a slowdown in the participant's performance (observation-induced posterror slowing). A significant interaction with the stimulation type showed that cathodal and anodal transcranial direct current stimulation induced modulation of the observation-induced posterror slowing in opposite directions by reducing or enhancing it, respectively. Cathodal stimulation significantly reduced the effect compared to sham stimulation. No effect of neuromodulation was found when the partner behaved as expected or when the observed violation occurred within a context that was perceptually matched but noninteractive in nature. These results provide evidence for the critical causal role that the left vPMc might play in social monitoring during motor interactions, possibly through the interplay with other brain regions in the posterior medial frontal cortex.
Collapse
Affiliation(s)
| | | | | | | | - Nadia Bolognini
- University of Milano-Bicocca
- IRCCS Istituto Auxologico Italiano
| | - Eraldo Paulesu
- University of Milano-Bicocca
- IRCCS Istituto Ortopedico Galeazzi, Italy
| |
Collapse
|
6
|
Albrecht C, Bellebaum C. Slip or fallacy? Effects of error severity on own and observed pitch error processing in pianists. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023:10.3758/s13415-023-01097-1. [PMID: 37198385 PMCID: PMC10400674 DOI: 10.3758/s13415-023-01097-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 05/19/2023]
Abstract
Errors elicit a negative, mediofrontal, event-related potential (ERP), for both own errors (error-related negativity; ERN) and observed errors (here referred to as observer mediofrontal negativity; oMN). It is unclear, however, if the action-monitoring system codes action valence as an all-or-nothing phenomenon or if the system differentiates between errors of different severity. We investigated this question by recording electroencephalography (EEG) data of pianists playing themselves (Experiment 1) or watching others playing (Experiment 2). Piano pieces designed to elicit large errors were used. While active participants' ERN amplitudes differed between small and large errors, observers' oMN amplitudes did not. The different pattern in the two groups of participants was confirmed in an exploratory analysis comparing ERN and oMN directly. We suspect that both prediction and action mismatches can be coded in action monitoring systems, depending on the task, and a need-to-adapt signal is sent whenever mismatches happen to indicate the magnitude of the needed adaptation.
Collapse
Affiliation(s)
- Christine Albrecht
- Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, building 23.03, room number 00.89, 40225, Düsseldorf, Germany.
| | - Christian Bellebaum
- Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, building 23.03, room number 00.89, 40225, Düsseldorf, Germany
| |
Collapse
|
7
|
Ninomiya T, Noritake A, Tatsumoto S, Go Y, Isoda M. Cognitive genomics of learning delay and low level of social performance monitoring in macaque. Sci Rep 2022; 12:16539. [PMID: 36192455 PMCID: PMC9529886 DOI: 10.1038/s41598-022-20948-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
Cognitive skills and the underlying neural architecture are under the influence of genetics. Cognitive genomics research explores the triadic relationship between genes, brain, and cognition, with its major strategy being genotype-driven. Here we show that an inverse strategy is feasible to identify novel candidate genes for particular neuro-cognitive phenotypes in macaques. Two monkeys, originally involved in separate psychological studies, exhibited learning delay and low levels of social performance monitoring. In one monkey, mirror neurons were fewer compared to controls and mu suppression was absent in the frontal cortex. The other monkey showed heightened visual responsiveness in both frontal cortex and dopamine-rich midbrain, with a lack of inter-areal synchronization. Exome analyses revealed that the two monkeys were most likely cousins and shared variants in MAP2, APOC1, and potentially HTR2C. This phenotype-driven strategy in cognitive genomics provides a useful means to clarify the genetic basis of phenotypic variation and develop macaque models of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Taihei Ninomiya
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan.,Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, 240-0193, Japan
| | - Atsushi Noritake
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan.,Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, 240-0193, Japan
| | - Shoji Tatsumoto
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Yasuhiro Go
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan.,Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, 240-0193, Japan.,Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Masaki Isoda
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan. .,Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, 240-0193, Japan.
| |
Collapse
|
8
|
Boukarras S, Özkan DG, Era V, Moreau Q, Tieri G, Candidi M. Midfrontal Theta tACS Facilitates Motor Coordination in Dyadic Human-Avatar Interactions. J Cogn Neurosci 2022; 34:897-915. [PMID: 35171250 DOI: 10.1162/jocn_a_01834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Synchronous interpersonal motor interactions require moment-to-moment prediction and proactive monitoring of the partner's actions. Neurophysiologically, this is highlighted by an enhancement of midfrontal theta (4-7 Hz) oscillations. In this study, we explored the causal role of midfrontal theta for interpersonal motor interactions using transcranial alternating current stimulation (tACS). We implemented a realistic human-avatar interaction task in immersive virtual reality where participants controlled a virtual arm and hand to press a button synchronously with a virtual partner. Participants completed the task while receiving EEG-informed theta (Experiment 1) or beta (control frequency, Experiment 2) tACS over the frontal midline, as well as sham stimulation as a control. Results showed that midfrontal theta tACS significantly improved behavioral performance (i.e., reduced interpersonal asynchrony) and participants' motor strategies (i.e., increased movement times and reduced RTs), whereas beta tACS had no effect on these measures. These results suggest that theta tACS over frontal areas facilitates action monitoring and motor abilities supporting interpersonal interactions.
Collapse
Affiliation(s)
- Sarah Boukarras
- Sapienza University, Rome, Italy.,IRCCS Santa Lucia Foundation, Rome, Italy
| | - Duru Gun Özkan
- Sapienza University, Rome, Italy.,IRCCS Santa Lucia Foundation, Rome, Italy
| | - Vanessa Era
- Sapienza University, Rome, Italy.,IRCCS Santa Lucia Foundation, Rome, Italy
| | - Quentin Moreau
- Sapienza University, Rome, Italy.,IRCCS Santa Lucia Foundation, Rome, Italy
| | - Gaetano Tieri
- IRCCS Santa Lucia Foundation, Rome, Italy.,Unitelma Sapienza, Rome, Italy
| | - Matteo Candidi
- Sapienza University, Rome, Italy.,IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
9
|
Marshall NA, Kaplan J, Stoycos SA, Goldenberg D, Khoddam H, Cárdenas SI, Sellery P, Saxbe D. Stronger Mentalizing Network Connectivity in Expectant Fathers Predicts Postpartum Father-Infant Bonding and Parenting Behavior. Soc Neurosci 2022; 17:21-36. [PMID: 35034575 DOI: 10.1080/17470919.2022.2029559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Fathers play a critical role in parenting and in shaping child outcomes. However, the neurobiological underpinnings of successful adjustment to fatherhood have not been well-specified. Empathy and mentalizing abilities may characterize more effective fathering. These abilities may be supported by the functional connectivity (FC) of brain regions associated with social cognition and executive control. We used a seed-region-based approach to assess resting-state FC (rsFC) of the medial prefrontal cortex (mPFC) in 40 expectant fathers. We tested associations between mPFC whole-brain rsFC and fathers' self-report measures of empathy during pregnancy, as well as their ratings of father-infant bonding and fathering behaviors at six months postpartum. Stronger prenatal rsFC between the mPFC and precuneus, frontal pole, planum polare, and orbitofrontal cortex (OFC) was negatively associated with self-reported empathic concern and perspective-taking, whereas mPFC rsFC with the lateral occipital cortex (LOC) was positively associated with self-reported perspective-taking. Additionally, stronger prenatal connectivity between the mPFC rsFC and the superior parietal lobule and LOC regions predicted father reports of postpartum bonding with infants, and stronger prenatal mPFC rsFC with the LOC predicted more effective postpartum parenting. This study is the first to measure rsFC in expectant fathers as a predictor of subsequent adjustment to fathering.
Collapse
Affiliation(s)
| | - Jonas Kaplan
- University of Southern California, Department of Psychology
| | | | | | - Hannah Khoddam
- University of Southern California, Department of Psychology
| | | | - Pia Sellery
- University of Southern California, Department of Psychology
| | - Darby Saxbe
- University of Southern California, Department of Psychology
| |
Collapse
|
10
|
OUP accepted manuscript. Cereb Cortex 2022; 32:4934-4951. [DOI: 10.1093/cercor/bhac019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
|
11
|
Holbrook C, Iacoboni M, Gordon C, Proksch S, Makhfi H, Balasubramaniam R. Posterior medial frontal cortex regulates sympathy: A TMS study. Soc Neurosci 2021; 16:595-606. [PMID: 34517789 DOI: 10.1080/17470919.2021.1980097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Harm to some elicits greater sympathy than harm to others. Here, we examine the role of posterior medial frontal cortex (PMFC) in regulating sympathy, and explore the potential role of PMFC in the related phenomena of mentalizing and representing others as connected with oneself. We down-regulated either PMFC or a control region (middle temporal visual area), then assessed feelings of sympathy for and self-other overlap with two characters described as having suffered physical harm, and who were framed as adversarial or affiliative, respectively. We also measured mentalizing performance with regard to inferring the cognitive and affective states of the adversarial character. As hypothesized, down-regulating PMFC increased sympathy for both characters. Whereas we had predicted that down-regulating PMFC would decrease mentalizing ability given the postulated role of PMFC in the mentalizing network, participants in the PMFC down-regulation condition evinced greater second-order cognitive inference ability relative to controls. We observed no effect of the TMS manipulation on self-other overlap, although sympathy and self-other overlap were positively correlated. These findings are discussed as they may inform understanding of the functional role(s) of PMFC in regulating responses broadly linked with empathy.
Collapse
Affiliation(s)
- Colin Holbrook
- Department of Cognitive and Information Sciences, University of California, Merced, CA, USA
| | - Marco Iacoboni
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Chelsea Gordon
- Department of Cognitive and Information Sciences, University of California, Merced, CA, USA
| | - Shannon Proksch
- Department of Cognitive and Information Sciences, University of California, Merced, CA, USA
| | - Harmony Makhfi
- Department of Cognitive and Information Sciences, University of California, Merced, CA, USA
| | - Ramesh Balasubramaniam
- Department of Cognitive and Information Sciences, University of California, Merced, CA, USA
| |
Collapse
|
12
|
Ferrucci L, Nougaret S, Falcone R, Cirillo R, Ceccarelli F, Genovesio A. Dedicated Representation of Others in the Macaque Frontal Cortex: From Action Monitoring and Prediction to Outcome Evaluation. Cereb Cortex 2021; 32:891-907. [PMID: 34428277 PMCID: PMC8841564 DOI: 10.1093/cercor/bhab253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 11/14/2022] Open
Abstract
Social neurophysiology has increasingly addressed how several aspects of self and other are distinctly represented in the brain. In social interactions, the self–other distinction is fundamental for discriminating one’s own actions, intentions, and outcomes from those that originate in the external world. In this paper, we review neurophysiological experiments using nonhuman primates that shed light on the importance of the self–other distinction, focusing mainly on the frontal cortex. We start by examining how the findings are impacted by the experimental paradigms that are used, such as the type of social partner or whether a passive or active interaction is required. Next, we describe the 2 sociocognitive systems: mirror and mentalizing. Finally, we discuss how the self–other distinction can occur in different domains to process different aspects of social information: the observation and prediction of others’ actions and the monitoring of others’ rewards.
Collapse
Affiliation(s)
- Lorenzo Ferrucci
- Department of Physiology and Pharmacology, SAPIENZA, University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Simon Nougaret
- Department of Physiology and Pharmacology, SAPIENZA, University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Rossella Falcone
- Department of Physiology and Pharmacology, SAPIENZA, University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Rossella Cirillo
- Institut des Sciences Cognitives Marc Jeannerod, Département de Neuroscience Cognitive, CNRS, UMR 5229, 69500 Bron Cedex, France
| | - Francesco Ceccarelli
- Department of Physiology and Pharmacology, SAPIENZA, University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.,PhD program in Behavioral Neuroscience, Sapienza University of Rome, 00185 Rome, Italy
| | - Aldo Genovesio
- Department of Physiology and Pharmacology, SAPIENZA, University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
13
|
Yaple ZA, Tolomeo S, Yu R. Mapping working memory-specific dysfunction using a transdiagnostic approach. NEUROIMAGE-CLINICAL 2021; 31:102747. [PMID: 34256292 PMCID: PMC8278205 DOI: 10.1016/j.nicl.2021.102747] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/26/2021] [Indexed: 01/17/2023]
Abstract
Background Working memory (WM) is an executive ability that allows one to hold and manipulate information for a short period of time. Schizophrenia and mood disorders are severe psychiatric conditions with overlapping genetic and clinical symptoms. Whilst WM has been suggested as meeting the criteria for being an endophenotype for schizophrenia and mood disorders, it still unclear whether they share overlapping neural circuitry. Objective The n-back task has been widely used to measure WM capacity, such as maintenance, flexible updating, and interference control. Here we compiled studies that included psychiatric populations, i.e., schizophrenia, bipolar disorder and major depressive disorder. Methods We performed a coordinate-based meta-analysis that combined 34 BOLD-fMRI studies comparing activity associated with n-back working memory between psychiatric patients and healthy controls. We specifically focused our search using the n-back task to diminish study heterogeneity. Results All patient groups showed blunted activity in the striatum, anterior insula and frontal lobe. The same brain networks related to WM were compromised in schizophrenia, major depressive disorder and bipolar disorder. Conclusion Our findings support the suggestion of commonal functional abnormalities across schizophrenia and mood disorders related to WM.
Collapse
Affiliation(s)
| | - Serenella Tolomeo
- Department of Psychology, National University of Singapore, Singapore
| | - Rongjun Yu
- Department of Management, Hong Kong Baptist University, Hong Kong, China; Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong, China; Department of Physics, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
14
|
Albrecht C, Bellebaum C. Disentangling effects of expectancy, accuracy, and empathy on the processing of observed actions. Psychophysiology 2021; 58:e13883. [PMID: 34196017 DOI: 10.1111/psyp.13883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/05/2021] [Accepted: 06/01/2021] [Indexed: 11/30/2022]
Abstract
A number of studies suggest that event-related potential (ERP) components previously associated with error processing might represent expectation violation instead of valence. When observing others, these processes might further be modulated by trait empathy. We suggest that trait empathy modulates expectancy formation and that these expectancies then influence observed response processing as reflected in a frontocentral negative ERP component resembling the previously described observer error-related negativity. We acquired single trial ERPs of participants who observed another person in a true- or false-belief condition answering correctly or erroneously. Additionally, we prompted participants' expectancy in some trials. Using linear mixed model analyses, we found that for low empathy participants, expectations for the false-belief condition decreased throughout the experiment, so that expectations were more pronounced in participants with higher empathy toward the end of the experiment. We also found that single trial expectancy measures derived from regression models of the measured expectancies predicted the amplitude of the frontocentral negative ERP component, and that neither the addition of empathy nor accuracy or trial type (true- or false-belief) led to the explanation of significantly more variance compared with the model just containing expectancy as predictor. These results suggest that empathy modulates the processing of observed responses indirectly via its effect on expectancy of the response.
Collapse
Affiliation(s)
- Christine Albrecht
- Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christian Bellebaum
- Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
15
|
Albajara Sáenz A, Villemonteix T, Van Schuerbeek P, Baijot S, Septier M, Defresne P, Delvenne V, Passeri G, Raeymaekers H, Victoor L, Willaye E, Peigneux P, Deconinck N, Massat I. Motor Abnormalities in Attention-Deficit/Hyperactivity Disorder and Autism Spectrum Disorder Are Associated With Regional Grey Matter Volumes. Front Neurol 2021; 12:666980. [PMID: 34017307 PMCID: PMC8129495 DOI: 10.3389/fneur.2021.666980] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/26/2021] [Indexed: 12/27/2022] Open
Abstract
Attention-Deficit/Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD) are associated with motor impairments, with some children holding a comorbid diagnosis of Developmental Coordination Disorder (DCD). However, DCD is underdiagnosed in these populations and the volume abnormalities that contribute to explaining these motor impairments are poorly understood. In this study, motor abilities as measured by the Developmental Coordination Disorder Questionnaire (DCDQ) were compared between children with ADHD, children with ASD and typically developing (TD) children, aged 8–12 years old. Additionally, the association between the DCDQ scores (general coordination, fine motor/handwriting, control during movement, total) and regional volume abnormalities were explored in 6 regions of interest (pre-central gyrus, post-central gyrus, inferior parietal cortex, superior frontal gyrus, middle frontal gyrus, medial frontal gyrus), within each group and across all participants. Children with ASD and children with ADHD showed impaired motor abilities in all the DCDQ-derived scores compared to TD children. Additionally, most children with ASD or ADHD had an indication or suspicion of DCD. Within the ASD group, coordination abilities were associated with the volume of the right medial frontal gyrus, and within the ADHD group, the total DCDQ score was associated with the volume of the right superior frontal gyrus. This study underlines the importance of routinely checking motor abilities in populations with ASD or ADHD in clinical practise and contributes to the understanding of structural abnormalities subtending motor impairments in these disorders.
Collapse
Affiliation(s)
- Ariadna Albajara Sáenz
- Neuropsychology and Functional Neuroimaging Research Group (UR2NF) at the Centre for Research in Cognition and Neurosciences, Université Libre de Bruxelles, Brussels, Belgium
| | - Thomas Villemonteix
- Neuropsychology and Functional Neuroimaging Research Group (UR2NF) at the Centre for Research in Cognition and Neurosciences, Université Libre de Bruxelles, Brussels, Belgium.,Paris 8 Vincennes - St Denis University, Laboratoire de Psychopathologie et Neuropsychologie, Saint Denis, France
| | | | - Simon Baijot
- Neuropsychology and Functional Neuroimaging Research Group (UR2NF) at the Centre for Research in Cognition and Neurosciences, Université Libre de Bruxelles, Brussels, Belgium.,Hôpital Universitaire des Enfants Reine Fabiola (HUDERF), Université Libre de Bruxelles, Brussels, Belgium
| | - Mathilde Septier
- Hôpital Universitaire Robert Debré, Paris, France.,Institut de Psychiatrie et de Neurosciences de Paris Inserm U894 Team 1, Paris, France
| | - Pierre Defresne
- Fondation SUSA (Service Universitaire Spéécialisé pour personnes avec Autisme), Université de Mons, Mons, Belgium
| | - Véronique Delvenne
- Hôpital Universitaire des Enfants Reine Fabiola (HUDERF), Université Libre de Bruxelles, Brussels, Belgium
| | - Gianfranco Passeri
- Hôpital Universitaire des Enfants Reine Fabiola (HUDERF), Université Libre de Bruxelles, Brussels, Belgium
| | - Hubert Raeymaekers
- Department of Radiology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Laurent Victoor
- PsyPluriel, Centre Européen de Psychologie Médicale, Brussels, Belgium
| | - Eric Willaye
- Fondation SUSA (Service Universitaire Spéécialisé pour personnes avec Autisme), Université de Mons, Mons, Belgium
| | - Philippe Peigneux
- Neuropsychology and Functional Neuroimaging Research Group (UR2NF) at the Centre for Research in Cognition and Neurosciences, Université Libre de Bruxelles, Brussels, Belgium
| | - Nicolas Deconinck
- Hôpital Universitaire des Enfants Reine Fabiola (HUDERF), Université Libre de Bruxelles, Brussels, Belgium
| | - Isabelle Massat
- Neuropsychology and Functional Neuroimaging Research Group (UR2NF) at the Centre for Research in Cognition and Neurosciences, Université Libre de Bruxelles, Brussels, Belgium.,Laboratory of Experimental Neurology, Université Libre de Bruxelles, Brussels, Belgium.,National Fund of Scientific Research, Brussels, Belgium.,Department of Neurology, Erasme Hospital, Brussels, Belgium
| |
Collapse
|
16
|
Isoda M. The Role of the Medial Prefrontal Cortex in Moderating Neural Representations of Self and Other in Primates. Annu Rev Neurosci 2021; 44:295-313. [PMID: 33752448 DOI: 10.1146/annurev-neuro-101420-011820] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
As a frontal node in the primate social brain, the medial prefrontal cortex (MPFC) plays a critical role in coordinating one's own behavior with respect to that of others. Current literature demonstrates that single neurons in the MPFC encode behavior-related variables such as intentions, actions, and rewards, specifically for self and other, and that the MPFC comes into play when reflecting upon oneself and others. The social moderator account of MPFC function can explain maladaptive social cognition in people with autism spectrum disorder, which tips the balance in favor of self-centered perspectives rather than taking into consideration the perspective of others. Several strands of evidence suggest a hypothesis that the MPFC represents different other mental models, depending on the context at hand, to better predict others' emotions and behaviors. This hypothesis also accounts for aberrant MPFC activity in autistic individuals while they are mentalizing others.
Collapse
Affiliation(s)
- Masaki Isoda
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan; .,Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa 240-0193, Japan
| |
Collapse
|
17
|
Barker TV, Buzzell GA, Troller-Renfree SV, Bowman LC, Pine DS, Fox NA. The influence of social motivation on neural correlates of cognitive control in girls. Dev Psychobiol 2021; 63:1611-1625. [PMID: 33538051 DOI: 10.1002/dev.22086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 11/25/2020] [Accepted: 12/02/2020] [Indexed: 11/11/2022]
Abstract
Motivation influences cognitive control, particularly in childhood and adolescence. Previous work finds that the error-related negativity (ERN), an event-related potential (ERP) linked to cognitive control following errors, is influenced by social motivation. However, it is unclear whether the influences of social motivation on the ERN extend to stimulus-locked neural correlates of cognitive control. This study reexamines how social motivation influences cognitive control in adolescence by exploring motivational influences on two stimulus-locked ERPs; the N2 and P3. Adolescent girls (8-17 years of age) completed a flanker task under two different conditions. In the social condition, girls were led to believe that they were evaluated by a peer during a flanker task. In the nonsocial condition, girls completed a flanker task while evaluated by a computer. Results revealed that all girls exhibited a larger P3 in social as compared to nonsocial contexts, whereas the N2 was not different between contexts. In addition, the largest P3 enhancements were observed among younger girls. These findings suggest that social motivation influences some ERP components related to cognitive control, and such influences change across development. Additionally, findings suggest the importance of including multiple ERPs when interpreting the functional significance of motivation on cognitive control.
Collapse
Affiliation(s)
- Tyson V Barker
- Department of Psychology, University of Oregon, Eugene, OR, USA
| | - George A Buzzell
- Department of Psychology, Florida International University, Miami, FL, USA
| | - Sonya V Troller-Renfree
- Department of Biobehavioral Sciences, Teachers College at Columbia University, New York, NY, USA
| | - Lindsay C Bowman
- Department of Psychology, University of California, Davis, CA, USA
| | - Daniel S Pine
- Emotion and Development Branch, Intramural Research Program, National Institute of Mental Health (NIMH), Bethesda, MD, USA
| | - Nathan A Fox
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD, USA
| |
Collapse
|
18
|
Hebert-Beirne J, Camenga DR, James AS, Brady SS, Newman DK, Burgio KL, Kane Low L, Hardacker CT, Gahagan S, Williams BR. Social Processes Informing Toileting Behavior Among Adolescent and Adult Women: Social Cognitive Theory as an Interpretative Lens. QUALITATIVE HEALTH RESEARCH 2021; 31:430-442. [PMID: 33427071 PMCID: PMC8053251 DOI: 10.1177/1049732320979168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Little is known about social processes shaping adolescent and adult women's toileting behaviors. The "Study of Habits, Attitudes, Realities, and Experiences" (SHARE) examines adolescent and adult women's experiences related to bladder health across the life course. Forty-four focus groups with 360 participants organized by six age groups were conducted across seven sites. A transdisciplinary team used social cognitive theory as an interpretive lens across a five-stage analysis. The act of observing was identified as the overarching social process informing women's toileting behaviors in three ways: (a) observing others' toileting behavior, (b) being aware that one's own toileting behaviors are monitored by others, and (c) observing oneself relative to others. We found that underlying processes of toileting behaviors, seemingly private are, in fact, highly social. We suggest, given this social embeddedness that health promotion efforts should leverage interpersonal networks for "social norming" interventions and policies to promote healthy toileting behaviors.
Collapse
Affiliation(s)
| | | | | | - Sonya S Brady
- University of Minnesota, Minneapolis, Minnesota, USA
| | - Diane K Newman
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kathryn L Burgio
- University of Alabama, Birmingham, Alabama, USA
- Birmingham/Atlanta Geriatric Research, Education and Clinical Center, Birmingham, Alabama, USA
| | | | | | - Sheila Gahagan
- University of California San Diego, La Jolla, California, USA
| | - Beverly Rosa Williams
- University of Alabama, Birmingham, Alabama, USA
- Birmingham/Atlanta Geriatric Research, Education and Clinical Center, Birmingham, Alabama, USA
| |
Collapse
|
19
|
Effects of trait empathy and expectation on the processing of observed actions. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2020; 21:156-171. [PMID: 33296041 PMCID: PMC7994233 DOI: 10.3758/s13415-020-00857-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 11/08/2022]
Abstract
Recent evidence suggests that the processing of observed actions may reflect an action prediction error, with more pronounced mediofrontal negative event-related potentials (ERPs) for unexpected actions. This evidence comes from an application of a false-belief task, where unexpected correct responses elicited high ERP amplitudes. An alternative interpretation is that the ERP component reflects vicarious error processing, as objectively correct responses were errors from the observed person's perspective. In this study, we aimed to disentangle the two possibilities by adding the factor task difficulty, which varied expectations without affecting the definition of (vicarious) errors, and to explore the role of empathy in action observation. We found that the relationship between empathy and event-related potentials (ERPs) mirrored the relationship between empathy and behavioral expectancy measures. Only in the easy task condition did higher empathy lead to stronger expectancy of correct responses in the true-belief and of errors in the false-belief condition. A compatible pattern was found for an early ERP component (150-200 ms) after the observed response, with a larger negativity for error than correct responses in the true-belief and the reverse pattern in the false-belief condition, but only in highly empathic participants. We conclude that empathy facilitates the formation of expectations regarding the actions of others. These expectations then modulate the processing of observed actions, as indicated by the ERPs in the present study.
Collapse
|
20
|
A causal role for frontal cortico-cortical coordination in social action monitoring. Nat Commun 2020; 11:5233. [PMID: 33067461 PMCID: PMC7568569 DOI: 10.1038/s41467-020-19026-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/25/2020] [Indexed: 12/05/2022] Open
Abstract
Decision-making via monitoring others’ actions is a cornerstone of interpersonal exchanges. Although the ventral premotor cortex (PMv) and the medial prefrontal cortex (MPFC) are cortical nodes in social brain networks, the two areas are rarely concurrently active in neuroimaging, inviting the hypothesis that they are functionally independent. Here we show in macaques that the ability of the MPFC to monitor others’ actions depends on input from the PMv. We found that delta-band coherence between the two areas emerged during action execution and action observation. Information flow especially in the delta band increased from the PMv to the MPFC as the biological nature of observed actions increased. Furthermore, selective blockade of the PMv-to-MPFC pathway using a double viral vector infection technique impaired the processing of observed, but not executed, actions. These findings demonstrate that coordinated activity in the PMv-to-MPFC pathway has a causal role in social action monitoring. Social interactions require monitoring others’ actions to optimally organise one’s own actions. Here, the authors show that the pathway from the ventral premotor cortex (PMv) to the medial prefrontal cortex (MPFC) is causally involved in monitoring observed, but not executed, actions.
Collapse
|
21
|
Cerebral responses to self-initiated action during social interactions. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2020; 19:1521-1535. [PMID: 30941709 DOI: 10.3758/s13415-019-00711-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Social interaction involves self-initiated actions that engage subjective awareness of one's own volition. Individuals with social communication needs or social anxiety find it particularly difficult to initiate social interactions. However, extant studies have not specifically addressed how perceived exclusion may influence self-initiated actions during social interaction. As a first step to address this question, we scanned 24 healthy adults participating in a Cyberball game with two fictive players. By contrasting events of observing, receiving, and initiating ball toss during a scenario of fair game (FG) and of exclusion (EX), we examined the neural correlates of self-initiated action during social interactions. Behaviorally, participants were faster in catching but slower in tossing the ball in EX compared with FG, suggesting a burden during self-initiated actions during social exclusion. Tossing versus receiving (or observing) engaged higher activity during EX than FG in the precuneus and angular gyrus, regions that have been widely implicated in theory of mind processing and social emotions. Across subjects these cortical activities correlated positively with the difference between EX and FG in the percentage of trials where participants tossed the ball back to the same player (r = 0.69, p < 0.001). Together, the results suggested that, in healthy adults, social exclusion encumbered and engaged higher posterior cortical activations during self-initiated actions. The findings may facilitate future research of neural markers of social behavioral disorders.
Collapse
|
22
|
Dehais F, Lafont A, Roy R, Fairclough S. A Neuroergonomics Approach to Mental Workload, Engagement and Human Performance. Front Neurosci 2020; 14:268. [PMID: 32317914 PMCID: PMC7154497 DOI: 10.3389/fnins.2020.00268] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/10/2020] [Indexed: 12/26/2022] Open
Abstract
The assessment and prediction of cognitive performance is a key issue for any discipline concerned with human operators in the context of safety-critical behavior. Most of the research has focused on the measurement of mental workload but this construct remains difficult to operationalize despite decades of research on the topic. Recent advances in Neuroergonomics have expanded our understanding of neurocognitive processes across different operational domains. We provide a framework to disentangle those neural mechanisms that underpin the relationship between task demand, arousal, mental workload and human performance. This approach advocates targeting those specific mental states that precede a reduction of performance efficacy. A number of undesirable neurocognitive states (mind wandering, effort withdrawal, perseveration, inattentional phenomena) are identified and mapped within a two-dimensional conceptual space encompassing task engagement and arousal. We argue that monitoring the prefrontal cortex and its deactivation can index a generic shift from a nominal operational state to an impaired one where performance is likely to degrade. Neurophysiological, physiological and behavioral markers that specifically account for these states are identified. We then propose a typology of neuroadaptive countermeasures to mitigate these undesirable mental states.
Collapse
Affiliation(s)
- Frédéric Dehais
- ISAE-SUPAERO, Université de Toulouse, Toulouse, France
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| | - Alex Lafont
- ISAE-SUPAERO, Université de Toulouse, Toulouse, France
| | - Raphaëlle Roy
- ISAE-SUPAERO, Université de Toulouse, Toulouse, France
| | - Stephen Fairclough
- School of Psychology, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
23
|
Midline frontal and occipito-temporal activity during error monitoring in dyadic motor interactions. Cortex 2020; 127:131-149. [PMID: 32197149 DOI: 10.1016/j.cortex.2020.01.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/17/2019] [Accepted: 01/07/2020] [Indexed: 12/18/2022]
Abstract
Discrepancies between sensory predictions and action outcome are at the base of error coding. However, these phenomena have mainly been studied focussing on individual performance. Here, we explored EEG responses to motor prediction errors during a human-avatar interaction and show that Theta/Alpha activity of the frontal error-monitoring system works in phase with activity of the occipito-temporal node of the action observation network. Our motor interaction paradigm required healthy individuals to synchronize their reach-to-grasp movements with those of a virtual partner in conditions that did (Interactive) or did not require (Cued) movement prediction and adaptation to the partner's actions. Crucially, in 30% of the trials the virtual partner suddenly and unpredictably changed its movement trajectory thereby violating the human participant's expectation. These changes elicited error-related neuromarkers (ERN/Pe - Theta/Alpha modulations) over fronto-central electrodes during the Interactive condition. Source localization and connectivity analyses showed that the frontal Theta/Alpha activity induced by violations of the expected interactive movements was in phase with occipito-temporal Theta/Alpha activity. These results expand current knowledge about the neural correlates of on-line interpersonal motor interactions linking the frontal error-monitoring system to visual, body motion-related, responses.
Collapse
|
24
|
Wang W, Zhornitsky S, Li CSP, Le TM, Joormann J, Li CSR. Social anxiety, posterior insula activation, and autonomic response during self-initiated action in a Cyberball game. J Affect Disord 2019; 255:158-167. [PMID: 31153052 PMCID: PMC6591038 DOI: 10.1016/j.jad.2019.05.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND An earlier study characterized the neural correlates of self-initiated actions in a Cyberball game in healthy individuals. It remains unclear how social anxiety may influence these neural processes. METHODS We examined regional activations to self-initiated actions in 25 adults with low and 25 with high social anxiety (LA and HA, respectively). Skin conductance was recorded concurrently with fMRI. We followed published routines in the analyses of imaging and skin conductance data. RESULTS We hypothesized that HA as compared to LA individuals would demonstrate increased cortical limbic activations during self-initiated actions (tossing or T > receiving or R trials, to control for motor activities) in social exclusion (EX) vs. fair game (FG) scenario. At a corrected threshold, HA as compared with LA group showed increases in bilateral posterior insula activation during T vs. R trials in EX as compared to FG. Further, HA as compared to LA showed higher skin conductance response to tossing trials during EX as compared to FG. LIMITATIONS With a limited sample size, we did not examine potential sex effects. Further, we cannot rule out the effects of depression on the findings. CONCLUSIONS Together, the results suggest that individuals with more severe social anxiety engaged the somatosensory insula to a greater extent and exhibited higher physiological arousal when initiating ball toss during social exclusion in the Cyberball game. Posterior insula response to self-initiated action may represent a biomarker of social anxiety. It remains to be investigated whether interventions to decrease physiological arousal may alleviate social anxiety.
Collapse
Affiliation(s)
- Wuyi Wang
- Department of Psychiatry, Yale University, New Haven, CT 06519, United States
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University, New Haven, CT 06519, United States
| | - Clara S-P Li
- Department of Psychiatry, Yale University, New Haven, CT 06519, United States; Phillips Academy, Andover, MA 01810, United States
| | - Thang M Le
- Department of Psychiatry, Yale University, New Haven, CT 06519, United States
| | - Jutta Joormann
- Department of Psychology, Yale University, New Haven, CT 06520, United States
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University, New Haven, CT 06519, United States; Department of Neuroscience, Yale University, New Haven, CT 06520, United States; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, United States.
| |
Collapse
|
25
|
Somon B, Campagne A, Delorme A, Berberian B. Human or not human? Performance monitoring ERPs during human agent and machine supervision. Neuroimage 2019; 186:266-277. [DOI: 10.1016/j.neuroimage.2018.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/23/2018] [Accepted: 11/09/2018] [Indexed: 11/30/2022] Open
|