1
|
Li S, Qin S, Zeng H, Chou W, Oudin A, Kanninen KM, Jalava P, Dong G, Zeng X. Adverse outcome pathway for the neurotoxicity of Per- and polyfluoroalkyl substances: A systematic review. ECO-ENVIRONMENT & HEALTH 2024; 3:476-493. [PMID: 39605965 PMCID: PMC11599988 DOI: 10.1016/j.eehl.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 11/29/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are endocrine disruptors with unambiguous neurotoxic effects. However, due to variability in experimental models, population characteristics, and molecular endpoints, the elucidation of mechanisms underlying PFAS-induced neurotoxicity remains incomplete. In this review, we utilized the adverse outcome pathway (AOP) framework, a comprehensive tool for evaluating toxicity across multiple biological levels (molecular, cellular, tissue and organ, individual, and population), to elucidate the mechanisms of neurotoxicity induced by PFAS. Based on 271 studies, the reactive oxygen species (ROS) generation emerged as the molecular initiating event 1 (MIE1). Subsequent key events (KEs) at the cellular level include oxidative stress, neuroinflammation, apoptosis, altered Ca2+ signal transduction, glutamate and dopamine signaling dyshomeostasis, and reduction of cholinergic and serotonin. These KEs culminate in synaptic dysfunction at organ and tissue levels. Further insights were offered into MIE2 and upstream KEs associated with altered thyroid hormone levels, contributing to synaptic dysfunction and hypomyelination at the organ and tissue levels. The inhibition of Na+/I- symporter (NIS) was identified as the MIE2, initiating a cascade of KEs at the cellular level, including altered thyroid hormone synthesis, thyroid hormone transporters, thyroid hormone metabolism, and binding with thyroid hormone receptors. All KEs ultimately result in adverse outcomes (AOs), including cognition and memory impairment, autism spectrum disorders, attention deficit hyperactivity disorders, and neuromotor development impairment. To our knowledge, this review represents the first comprehensive and systematic AOP analysis delineating the intricate mechanisms responsible for PFAS-induced neurotoxic effects, providing valuable insights for risk assessments and mitigation strategies against PFAS-related health hazards.
Collapse
Affiliation(s)
- Shenpan Li
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shuangjian Qin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Huixian Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Weichun Chou
- Department of Environmental Sciences, College of Natural and Agricultural Sciences, University of California, Riverside, CA, United States
| | - Anna Oudin
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Katja M. Kanninen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pasi Jalava
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio, Finland
| | - Guanghui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaowen Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
2
|
Li SP, Zeng HX, Qin SJ, Li QQ, Wu LY, Wu QZ, Lin LZ, Dong GH, Zeng XW. Effects on Synaptic Plasticity Markers in Fetal Mice and HT22 Neurons upon F-53B Exposure: The Role of PKA Cytoplasmic Retention. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2024; 2:776-785. [PMID: 39568694 PMCID: PMC11574628 DOI: 10.1021/envhealth.4c00098] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 11/22/2024]
Abstract
Chlorinated polyfluorinated ether sulfonate (F-53B), a chromium-fog depressant widely utilized as an alternative to perfluorooctanesulfonate, can transfer from mother to fetus. Recent research has demonstrated that prenatal exposure to F-53B results in synaptic damage in weaning mice. However, the mechanism underpinning F-53B-triggered synaptic damage during fetal development remains unclear. This study aims to investigate the role of the protein kinase A (PKA)/cAMP response element-binding protein (CREB) pathway, a crucial signaling mechanism known as "synaptic switch", in the early neurotoxicity of F-53B exposure both in vivo and in vitro. Here, C57BL/6 fetal mice were subjected to exposure to F-53B (0, 4, and 40 μg/L) from gestation days (GD) 0 to 14 to evaluate nerve injury prior to delivery. HT22 neurons exposed to F-53B (0, 0.016, 0.08, 0.4, 2, and 10 μmol/L) for 24 h were utilized to elucidate the underlying mechanism. Our results demonstrated that F-53B significantly increased the fluorescence intensity of Nestin (a neural stem cell marker) in the fetal brain hippocampus (GD14). Subsequently, we found that F-53B downregulated the expression of synaptic plasticity markers (SYP, GAP43, and BDNF) in the fetal brain and HT22 neurons. Further molecular docking analysis revealed that F-53B fits into the ligand-binding pockets of PKA and CREB1. Results showed that F-53B inhibited the translocation of PKA protein from the cytoplasm to the neuronal nuclei and reduced the levels of PKA, CREB1, p-PKA(α/β/γ)-Thr197, and p-CREB1-S133 in the nucleus. Furthermore, the expression of synaptic plasticity markers altered by F-53B could be reversed by a PKA agonist and was intensified by a PKA antagonist. In summary, our findings suggest that intrauterine exposure to F-53B can weaken the expression of synaptic plasticity markers in the fetal brain, with this neurotoxicity being mediated by the cytoplasmic retention of PKA.
Collapse
Affiliation(s)
- Shen-Pan Li
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hui-Xian Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shuang-Jian Qin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing-Qing Li
- Acacia Lab for Implementation Science, Institute for Global Health, Dermatology Hospital of Southern Medical University, Guangzhou 510515, China
| | - Lu-Yin Wu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qi-Zhen Wu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Zi Lin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
3
|
Choi JW, Oh J, Bennett DH, Calafat AM, Schmidt RJ, Shin HM. Prenatal exposure to per- and polyfluoroalkyl substances and child behavioral problems. ENVIRONMENTAL RESEARCH 2024; 251:118511. [PMID: 38387490 PMCID: PMC11144101 DOI: 10.1016/j.envres.2024.118511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Prenatal exposure to per- and polyfluoroalkyl substances (PFAS) may adversely affect child behaviors; however, findings of epidemiologic studies are inconsistent. We examined prenatal PFAS exposure in association with child behavioral problems. METHODS Participants were 177 mother-child pairs from MARBLES (Markers of Autism Risk in Babies - Learning Early Signs), a cohort with elevated familial likelihood of autism spectrum disorder (ASD). We quantified nine PFAS in maternal serum (1-3 samples per mother) collected from the 1st to 3rd trimesters of pregnancy. Child behavioral problems were assessed at 3 years of age using the Child Behavior Checklist (CBCL), developed to test for various behavioral problems of children. We examined associations of the CBCL scores with individual PFAS concentrations and with their mixture using negative binomial regression and weighted quantile sum regression models. RESULTS Higher prenatal perfluorononanoate (PFNA) concentrations were associated with higher scores of externalizing problems [β = 0.16, 95% CI (0.01, 0.32)] and aggressive behavior [β = 0.17 (0.01, 0.32)]. Higher PFNA, perfluorooctane sulfonate (PFOS), and perfluorodecanoate (PFDA) were associated with higher scores of sleep problems [β = 0.34 (0.15, 0.54) for PFNA, β = 0.20 (0.02, 0.37) for PFOS, and β = 0.19 (0.00, 0.37) for PFDA]. No significant associations observed for typically developing children, whereas PFOS, PFNA, and PFDA were associated with several behavioral problems among children diagnosed with ASD or other neurodevelopmental concerns. Exposure to a mixture of PFAS was associated with higher scores of sleep problems and aggressive behavior, mostly contributed by PFNA and PFDA. CONCLUSIONS Our study showed that prenatal exposure to some PFAS could increase child behavioral problems at 3 years of age. However, our results should be interpreted with caution because we relied on data from a cohort with increased familial likelihood of ASD and thereby had more behavioral problems.
Collapse
Affiliation(s)
- Jeong Weon Choi
- Department of Environmental Science, Baylor University, Waco, TX, USA.
| | - Jiwon Oh
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Deborah H Bennett
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | | | - Rebecca J Schmidt
- Department of Public Health Sciences, University of California, Davis, CA, USA; MIND Institute, Sacramento, CA, USA
| | - Hyeong-Moo Shin
- Department of Environmental Science, Baylor University, Waco, TX, USA
| |
Collapse
|
4
|
Gao Y, Zhang Y, Luo J, Mao D, Lei X, Liu C, Zhang S, Yao Q, Li J, Zhang J, Yu X, Tian Y. Effect modification by maternal vitamin D status in the association between prenatal exposure to per- and polyfluoroalkyl substances and neurodevelopment in 2-year-old children. ENVIRONMENT INTERNATIONAL 2024; 185:108563. [PMID: 38461776 DOI: 10.1016/j.envint.2024.108563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Pregnant women in the Shanghai Birth Cohort (SBC) of China faced dual threats of per- and polyfluoroalkyl substances (PFAS) exposure and vitamin D (VD) insufficiency, potentially impacting offspring neurodevelopment. However, little is known about whether maternal VD status modifies PFAS-related neurodevelopment effect. OBJECTIVES To explore the modifying role of maternal VD status in the effect of prenatal PFAS exposure on childhood neurodevelopment. METHODS We included 746 mother-child pairs from the SBC. Ten PFAS congeners and VD levels were measured in maternal blood samples collected during the first and second trimester respectively. At 2 years of age, toddlers underwent neurodevelopment assessments using Bayley-III Scales. Multivariate linear, logistic regression, and weighted quantile sum approach were used to estimate associations of Bayley-III scores with individual and mixture PFAS. We stratified participants into VD sufficient and insufficient groups and further balanced PFAS differences between these groups by matching all PFAS levels. We fitted the same statistical models in each VD group before and after matching. RESULTS Nearly half (46.5 %) of pregnant women were VD insufficient (<30 ng/mL). In the overall population, PFAS exposure was associated with lower language scores and an increased risk for neurodevelopmental delay, but higher cognitive scores. However, adverse associations with PFAS were mainly observed in the VD sufficient group, while the VD insufficient group showed positive cognitive score associations. Higher PFAS concentrations were found in the VD sufficient group compared to the VD insufficient group. Post-matching, adverse associations in the VD sufficient group were nullified, whereas in the VD insufficient group, positive associations disappeared and adverse associations becoming more pronounced. CONCLUSION In this Chinese birth cohort, high prenatal PFAS exposure and low maternal VD levels collectively heighten the risk of adverse childhood neurodevelopment. However, disentangling PFAS and VD interrelationships is crucial to avoid paradoxical findings.
Collapse
Affiliation(s)
- Yu Gao
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, PR China; Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, PR China
| | - Yan Zhang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, PR China
| | - Jiajun Luo
- Institute for Population and Precision Health, the University of Chicago, Chicago, IL, United States
| | - Dandan Mao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, PR China
| | - Xiaoning Lei
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, PR China
| | - Chong Liu
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, PR China
| | - Shanyu Zhang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, PR China
| | - Qian Yao
- Clinical Research Unit, Shanghai Pulmonary Hospital, 200433 Shanghai, PR China
| | - Jiong Li
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Epidemiology, School of Public Health, Nanjing Medical University, 211166 Nanjing, PR China
| | - Jun Zhang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, PR China
| | - Xiaodan Yu
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 200127 Shanghai, PR China.
| | - Ying Tian
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, PR China; Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, PR China.
| |
Collapse
|
5
|
Xie L, Qin J, Wang T, Zhang S, Luo M, Cheng X, Cao X, Wang H, Yao B, Xu D, Peng B. Impact of Prenatal Acetaminophen Exposure for Hippocampal Development Disorder on Mice. Mol Neurobiol 2023; 60:6916-6930. [PMID: 37516664 DOI: 10.1007/s12035-023-03515-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used as analgesic agents. They have been detected in various environmental matrices. The degradation of environmental contaminants and the long-term adverse effects have become a major public concern. Prenatal exposure to acetaminophen can cause damage to the developing hippocampus. However, the molecular mechanisms behind hippocampal damage following prenatal acetaminophen exposure (PAcE) remain unclear. The present study shows an increased risk of adverse neurodevelopmental outcomes in offspring following exposure to acetaminophen during pregnancy on mice. The results revealed that different doses, timings, and duration of exposure to acetaminophen during pregnancy were associated with dose-dependent changes in the hippocampus of the offspring. Furthermore, exposure to high doses, multiple-treatment courses, and late pregnancy induced pathological changes, such as wrinkling and vacuolation, inhibited hippocampal proliferation and increased apoptosis. In addition, PAcE significantly decreased the expression of genes related to synaptic development in fetal hippocampal neurons and hippocampal astrocyte and microglia were also damaged to varying degrees. The significant reduction either in SOX2, an essential gene in regulating neural progenitor cell proliferation, and reduction of genes related to the SOX2/Notch pathway may suggest that the role of SOX2/Notch pathway in impaired hippocampal development in the offspring due to PAcE. In general, PAcE at high doses, multiple-treatment courses, and mid- and late gestation were associated with neurodevelopmental toxicity to the offspring.
Collapse
Affiliation(s)
- Lulu Xie
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiaxin Qin
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tingting Wang
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Shuai Zhang
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Mingcui Luo
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Xuelei Cheng
- Department of Physiology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Xinrui Cao
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Baozhen Yao
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.
| | - Dan Xu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.
| | - Biwen Peng
- Department of Physiology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.
| |
Collapse
|
6
|
Yan W, Bai R, Zheng Q, Yang X, Shi Y, Yang R, Jiang C, Wang X, Li X. Concentrations and association between exposure to mixed perfluoroalkyl and polyfluoroalkyl substances and glycometabolism among adolescents. Ann Med 2023; 55:2227844. [PMID: 37354023 PMCID: PMC10291925 DOI: 10.1080/07853890.2023.2227844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/07/2023] [Accepted: 06/16/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are widely used for industrial and commercial purposes and have received increasing attention due to their adverse effects on health. OBJECTIVE To examine the relationship of serum PFAS and glycometabolism among adolescents based on the US National Health and Nutrition Examination Survey. METHODS General linear regression models were applied to estimate the relationship between exposure to single PFAS and glycometabolism. Weighted quantile sum (WQS) regression models and Bayesian kernel machine regressions (BKMR) were used to assess the associations between multiple PFASs mixture exposure and glycometabolism. RESULTS A total of 757 adolescents were enrolled. Multivariable regression model showed that Me-PFOSA-AcOH exposure was negatively associated with fasting blood glucose. WQS index showed that there was marginal negative correlation between multiple PFASs joint exposure and the homeostasis model of assessment for insulin resistance index (HOMA-IR) (β = -0.26, p < .068), and PFHxS had the largest weight. BKMR models showed that PFASs mixture exposure were associated with decreased INS and HOMA-IR, and the exposure-response relationship had curvilinear shape. CONCLUSIONS The increase in serum PFASs were associated with a decrease in HOMA-IR among adolescents. Mixed exposure models could more accurately and effectively reveal true exposure.Key MessagesThe detection rates of different PFAS contents in adolescent serum remained diverse.Adolescent serum PFASs had negative curvilinear correlation with INS and HOMA-IR levels.PFHxS had the highest weight in the associations between multiple PFASs and adolescent glycometabolism.
Collapse
Affiliation(s)
- Wu Yan
- Department of Children Health Care, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Ruhai Bai
- School of Public Affairs, Nanjing University of Science and Technology, Nanjing, China
| | - Qingqing Zheng
- Department of Children Health Care, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaona Yang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yanan Shi
- Department of Children Health Care, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Ruizhe Yang
- Department of Prevention and Health Care, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Chenjun Jiang
- Department of Physics, University of Auckland, Auckland, New Zealand
| | - Xu Wang
- Department of Endocrinology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaonan Li
- Department of Children Health Care, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Institute of Pediatric Research, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Liang LX, Liang J, Li QQ, Zeeshan M, Zhang Z, Jin N, Lin LZ, Wu LY, Sun MK, Tan WH, Zhou Y, Chu C, Hu LW, Liu RQ, Zeng XW, Yu Y, Dong GH. Early life exposure to F-53B induces neurobehavioral changes in developing children and disturbs dopamine-dependent synaptic signaling in weaning mice. ENVIRONMENT INTERNATIONAL 2023; 181:108272. [PMID: 37890264 DOI: 10.1016/j.envint.2023.108272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/02/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Previous studies have shown that F-53B exposure may be neurotoxic to animals, but there is a lack of epidemiological evidence, and its mechanism needs further investigation. METHODS Serum F-53B concentrations and Wisconsin Card Sorting Test (WCST) were evaluated in 314 growing children from Guangzhou, China, and the association between them were analyzed. To study the developmental neurotoxicity of F-53B, experiments on sucking mice exposed via placental transfer and breast milk was performed. Maternal mice were orally exposed to 4, 40, and 400 μg/L of F-53B from postnatal day 0 (GD0) to postnatal day 21 (PND 21). Several genes and proteins related to neurodevelopment, dopamine anabolism, and synaptic plasticity were examined by qPCR and western blot, respectively, while dopamine contents were detected by ELISA kit in weaning mice. RESULTS The result showed that F-53B was positively associated with poor WCST performance. For example, with an interquartile range increase in F-53B, the change with 95 % confidence interval (CI) of correct response (CR), and non-perseverative errors (NPE) was -2.47 (95 % CI: -3.89, -1.05, P = 0.001), 2.78 (95 % CI: 0.79, 4.76, P = 0.007), respectively. Compared with the control group, the highest exposure group of weaning mice had a longer escape latency (35.24 s vs. 51.18 s, P = 0.034) and a lesser distance movement (34.81 % vs. 21.02 %, P < 0.001) in the target quadrant, as observed from morris water maze (MWM) test. The protein expression of brain-derived neurotrophic factor (BDNF) and growth associated protein-43 (GAP-43) levels were decreased, as compared to control (0.367-fold, P < 0.001; 0.366-fold, P < 0.001; respectively). We also observed the upregulation of dopamine transporter (DAT) (2.940-fold, P < 0.001) consistent with the trend of dopamine content (1.313-fold, P < 0.001) in the hippocampus. CONCLUSION Early life exposure to F-53B is associated with adverse neurobehavioral changes in developing children and weaning mice which may be modulated by dopamine-dependent synaptic plasticity.
Collapse
Affiliation(s)
- Li-Xia Liang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jingjing Liang
- Department of Child Health Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qing-Qing Li
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Mohammed Zeeshan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| | - Zheqing Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Nanxiang Jin
- A.I.Virtanen Institute for Molecular Science, University of Eastern Finland, Neulaniementie 2, 70210 Kuopio, Finland
| | - Li-Zi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lu-Yin Wu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ming-Kun Sun
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei-Hong Tan
- Department of Reproductive Medicine and Genetics Center, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Chu Chu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ru-Qing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
8
|
Li W, Li L, Li B, Peng L, Xu Y, Li R, Song K. Effect and mechanism of perfluorooctanoic acid (PFOA) on anaerobic digestion sludge dewaterability. CHEMOSPHERE 2023:139142. [PMID: 37290510 DOI: 10.1016/j.chemosphere.2023.139142] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/23/2023] [Accepted: 06/04/2023] [Indexed: 06/10/2023]
Abstract
Perfluorooctanoic acid (PFOA) as nonbiodegradable organic pollutant, its presence and risks in wastewater treatment system has aroused wide concern. This study investigated the effect and underlying mechanism of PFOA on anaerobic digestion sludge (ADS) dewaterability. Long-term exposure experiments were set up to investigate the effect with various concentration of PFOA dosed. Experimental results suggested that the existence of high concentration PFOA (over 1000 μg/L) could deteriorate ADS dewaterability. The long-term exposure to 100,000 μg/L PFOA of ADS increased specific resistance filtration (SRF) by 81.57%. It was found that PFOA promoted the release of extracellular polymeric substances (EPS), which was strongly associated with sludge dewaterability. The fluorescence analysis revealed that the high PFOA concentration could significantly improve the percentage of protein-like substances and soluble microbial by-product-like content, and then further deteriorated the dewaterability. The FTIR results showed that long-term exposure of PFOA caused loose protein structure in sludge EPS, which led to loose sludge floc structure. The loose sludge floc structure aggravated the deterioration of sludge dewaterability. The solids-water distribution coefficient (Kd) decreased with the increase of initial PFOA concentration. Moreover, PFOA significantly affected microbial community structure. Metabolic function prediction results showed significant decrease of fermentation function exposed to PFOA. This study revealed that the PFOA with high concentration could deteriorated sludge dewaterability, which should be highly concerned.
Collapse
Affiliation(s)
- Wenkai Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Lu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Biqing Li
- Guangzhou Sewage Purification Co. Ltd., Guangzhou, 510655, China
| | - Lai Peng
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Yifeng Xu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Renhui Li
- College of Life and Environmental Sciences, Wenzhou University, Zhejiang, 325035, China
| | - Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China.
| |
Collapse
|
9
|
Qin J, Yao B, Xie L, Wang T, Zhang S, Luo M, Wang H, Xu D, Peng B. Impact of prenatal amoxicillin exposure on hippocampal development deficiency. Neuropharmacology 2023; 223:109331. [PMID: 36396078 DOI: 10.1016/j.neuropharm.2022.109331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Amoxicillin has been widely used to treat infectious diseases during pregnancy. Current studies suggest that amoxicillin exposure during pregnancy could lead to developmental disorders in the offspring and increase the incidence of long-term complications such as asthma and kidney damage in adulthood. However, the adverse effects of prenatal amoxicillin exposure (PAmE) including administration stage, doses and courses on fetal hippocampal neurodevelopment and its function in the offspring have not been elucidated. In this study, we intend to investigate the effects of PAmE on fetal hippocampal development and its possible mechanisms. METHOD Pregnant Kunming mice were given intragastric administration with amoxicillin at different administration stage, doses and courses, and GD (gestational day) 18 offspring hippocampus was collected for morphological and development-related functional assays, and the molecular mechanisms were explored. RESULTS PAmE induced hippocampal hypoplasia in the offspring with suppressed hippocampal neuronal cell proliferation and impaired neuronal synaptic plasticity comparatively; hippocampal astrocyte and microglia were damaged to varying degrees. The developmental toxicity of PAmE in fetal mices varies by time, dose, and course of treatment. The most severe damage was observed in the late gestation, high dose, and multi-course dosing groups. The significant reduction either in SOX2, an essential gene in regulating neural progenitor cell proliferation, and reduction of genes related to the Wnt/β-catenin pathway may suggest that the key role of SOX2/Wnt/β-catenin pathway in impaired hippocampal development in the offspring due to PAmE. CONCLUSION In this study, PAmE was found to be developmentally toxic to the hippocampus thus to induce developmental damage to various hippocampal cells; Even with current clinically safe doses, potential hippocampal damage to offspring may still present; This study provides a theoretical and experimental basis for guiding the rational usage of drugs during pregnancy and giving effectively assessment of the risk on fetal hippocampal developmental toxicity.
Collapse
Affiliation(s)
- Jiaxin Qin
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Baozhen Yao
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Lulu Xie
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tingting Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Shuai Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Mingcui Luo
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Dan Xu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China; Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.
| | - Biwen Peng
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China; Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
10
|
Bell KS, O’Shaughnessy KL. The development and function of the brain barriers - an overlooked consideration for chemical toxicity. FRONTIERS IN TOXICOLOGY 2022; 4:1000212. [PMID: 36329715 PMCID: PMC9622783 DOI: 10.3389/ftox.2022.1000212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022] Open
Abstract
It is well known that the adult brain is protected from some infections and toxic molecules by the blood-brain and the blood-cerebrospinal fluid barriers. Contrary to the immense data collected in other fields, it is deeply entrenched in environmental toxicology that xenobiotics easily permeate the developing brain because these barriers are either absent or non-functional in the fetus and newborn. Here we review the cellular and physiological makeup of the brain barrier systems in multiple species, and discuss decades of experiments that show they possess functionality during embryogenesis. We next present case studies of two chemical classes, perfluoroalkyl substances (PFAS) and bisphenols, and discuss their potential to bypass the brain barriers. While there is evidence to suggest these pollutants may enter the developing and/or adult brain parenchyma, many studies suffer from confounding technical variables which complicates data interpretation. In the future, a more formal consideration of brain barrier biology could not only improve understanding of chemical toxicokinetics but could assist in prioritizing environmental xenobiotics for their neurotoxicity risk.
Collapse
Affiliation(s)
- Kiersten S. Bell
- US Environmental Protection Agency, Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, United States,Oak Ridge Institute for Science Education, Oak Ridge, TN, United States
| | - Katherine L. O’Shaughnessy
- US Environmental Protection Agency, Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, United States,*Correspondence: Katherine L. O’Shaughnessy,
| |
Collapse
|
11
|
Lee H, Sung EJ, Seo S, Min EK, Lee JY, Shim I, Kim P, Kim TY, Lee S, Kim KT. Integrated multi-omics analysis reveals the underlying molecular mechanism for developmental neurotoxicity of perfluorooctanesulfonic acid in zebrafish. ENVIRONMENT INTERNATIONAL 2021; 157:106802. [PMID: 34358914 DOI: 10.1016/j.envint.2021.106802] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Limited studies on multi-omics have been conducted to comprehensively investigate the molecular mechanism underlying the developmental neurotoxicity of perfluorooctanesulfonic acid (PFOS). In this study, the locomotor behavior of zebrafish larvae was assessed under the exposure to 0.1-20 μM PFOS based on its reported neurobehavioral effect. After the number of zebrafish larvae was optimized for proteomics and metabolomics studies, three kinds of omics (i.e., transcriptomics, proteomics, and metabolomics) were carried out with zebrafish larvae exposed to 0.1, 1, 5, and 10 μM PFOS. More importantly, a data-driven integration of multi-omics was performed to elucidate the toxicity mechanism involved in developmental neurotoxicity. In a concentration-dependent manner, exposure to PFOS provoked hyperactivity and hypoactivity under light and dark conditions, respectively. Individual omics revealed that PFOS exposure caused perturbations in the pathways of neurological function, oxidative stress, and energy metabolism. Integrated omics implied that there were decisive pathways for axonal deformation, neuroinflammatory stimulation, and dysregulation of calcium ion signaling, which are more clearly specified for neurotoxicity. Overall, our findings broaden the molecular understanding of the developmental neurotoxicity of PFOS, for which multi-omics and integrated omics analyses are efficient for discovering the significant molecular pathways related to developmental neurotoxicity in zebrafish.
Collapse
Affiliation(s)
- Hyojin Lee
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Eun Ji Sung
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seungwoo Seo
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Eun Ki Min
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Ji-Young Lee
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Ilseob Shim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Pilje Kim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Tae-Young Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| | - Sangkyu Lee
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| |
Collapse
|
12
|
Prieto-Villalobos J, Alvear TF, Liberona A, Lucero CM, Martínez-Araya CJ, Balmazabal J, Inostroza CA, Ramírez G, Gómez GI, Orellana JA. Astroglial Hemichannels and Pannexons: The Hidden Link between Maternal Inflammation and Neurological Disorders. Int J Mol Sci 2021; 22:ijms22179503. [PMID: 34502412 PMCID: PMC8430734 DOI: 10.3390/ijms22179503] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 12/11/2022] Open
Abstract
Maternal inflammation during pregnancy causes later-in-life alterations of the offspring’s brain structure and function. These abnormalities increase the risk of developing several psychiatric and neurological disorders, including schizophrenia, intellectual disability, bipolar disorder, autism spectrum disorder, microcephaly, and cerebral palsy. Here, we discuss how astrocytes might contribute to postnatal brain dysfunction following maternal inflammation, focusing on the signaling mediated by two families of plasma membrane channels: hemi-channels and pannexons. [Ca2+]i imbalance linked to the opening of astrocytic hemichannels and pannexons could disturb essential functions that sustain astrocytic survival and astrocyte-to-neuron support, including energy and redox homeostasis, uptake of K+ and glutamate, and the delivery of neurotrophic factors and energy-rich metabolites. Both phenomena could make neurons more susceptible to the harmful effect of prenatal inflammation and the experience of a second immune challenge during adulthood. On the other hand, maternal inflammation could cause excitotoxicity by producing the release of high amounts of gliotransmitters via astrocytic hemichannels/pannexons, eliciting further neuronal damage. Understanding how hemichannels and pannexons participate in maternal inflammation-induced brain abnormalities could be critical for developing pharmacological therapies against neurological disorders observed in the offspring.
Collapse
Affiliation(s)
- Juan Prieto-Villalobos
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (J.P.-V.); (T.F.A.); (A.L.); (C.J.M.-A.); (J.B.); (C.A.I.); (G.R.)
| | - Tanhia F. Alvear
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (J.P.-V.); (T.F.A.); (A.L.); (C.J.M.-A.); (J.B.); (C.A.I.); (G.R.)
| | - Andrés Liberona
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (J.P.-V.); (T.F.A.); (A.L.); (C.J.M.-A.); (J.B.); (C.A.I.); (G.R.)
| | - Claudia M. Lucero
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago 8910060, Chile; (C.M.L.); (G.I.G.)
| | - Claudio J. Martínez-Araya
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (J.P.-V.); (T.F.A.); (A.L.); (C.J.M.-A.); (J.B.); (C.A.I.); (G.R.)
| | - Javiera Balmazabal
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (J.P.-V.); (T.F.A.); (A.L.); (C.J.M.-A.); (J.B.); (C.A.I.); (G.R.)
| | - Carla A. Inostroza
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (J.P.-V.); (T.F.A.); (A.L.); (C.J.M.-A.); (J.B.); (C.A.I.); (G.R.)
| | - Gigliola Ramírez
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (J.P.-V.); (T.F.A.); (A.L.); (C.J.M.-A.); (J.B.); (C.A.I.); (G.R.)
| | - Gonzalo I. Gómez
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago 8910060, Chile; (C.M.L.); (G.I.G.)
| | - Juan A. Orellana
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (J.P.-V.); (T.F.A.); (A.L.); (C.J.M.-A.); (J.B.); (C.A.I.); (G.R.)
- Correspondence: ; Tel.: +56-23548105
| |
Collapse
|
13
|
Basaly V, Hill J, Bihaqi SW, Marques E, Slitt AL, Zawia NH. Developmental Perfluorooctanesulfonic acid (PFOS) exposure as a potential risk factor for late-onset Alzheimer's disease in CD-1 mice and SH-SY5Y cells. Neurotoxicology 2021; 86:26-36. [PMID: 34224775 DOI: 10.1016/j.neuro.2021.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that accounts for approximately 60-80% of dementia cases worldwide and is characterized by an accumulation of extracellular senile plaques composed of β-amyloid (Aβ) peptide and intracellular neurofibrillary tangles (NFTs) containing hyperphosphorylated tau protein. Sporadic or late-onset AD (LOAD) represents 95 % of the AD cases and its etiology does not appear to follow Mendelian laws of inheritance, thus, implicating the role of epigenetic programming and environmental factors. Apolipoprotein allele 4 (ApoE4), the only established genetic risk factor for LOAD, is suggested to accelerate the pathogenesis of AD by increasing tau hyperphosphorylation, inhibiting the clearance of amyloid-β (Aβ), and promoting Aβ aggregation. Perfluorooctanesulfonic acid (PFOS) is a persistent organic pollutant, with potential neurotoxic effects, that poses a major threat to the ecosystem and human health. By employing in vivo and in vitro models, the present study investigated PFOS as a potential risk factor for LOAD by assessing its impact on amyloidogenesis, tau pathology, and rodent behavior. Our behavioral analysis revealed that developmentally exposed male and female mice exhibited a strong trend of increased rearing and significantly increased distance traveled in the open field test. Biochemically, GSK3β and total ApoE were increased following developmental exposure, in vivo. Furthermore, in vitro, low concentrations of PFOS elevated protein levels of APP, tau, and its site-specific phosphorylation. Differentiated SH-SY5Y cells exposed to a series of PFOS concentrations, also, had elevated protein expression of GSK3β. These data suggest that total ApoE is inducible by environmental exposure to PFOS.
Collapse
Affiliation(s)
- Veronia Basaly
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Jaunetta Hill
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Syed Waseem Bihaqi
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Emily Marques
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Angela L Slitt
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Nasser H Zawia
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA; George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, 02881, USA; Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, 02881, USA; Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
| |
Collapse
|
14
|
McCann MS, Maguire-Zeiss KA. Environmental toxicants in the brain: A review of astrocytic metabolic dysfunction. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 84:103608. [PMID: 33556584 DOI: 10.1016/j.etap.2021.103608] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/24/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Exposure to environmental toxicants is linked to long-term adverse outcomes in the brain and involves the dysfunction of glial and neuronal cells. Astrocytes, the most numerous cell type, are increasingly implicated in the pathogenesis of many diseases of the central nervous system, including neurodegenerative diseases. Astrocytes are critical for proper brain function in part due to their robust antioxidant and unique metabolic capabilities. Additionally, astrocytes are positioned both at the blood-brain barrier, where they are the primary responders to xenobiotic penetrance of the CNS, and at synapses where they are in close contact with neurons and synaptic machinery. While exposure to several classes of environmental toxicants, including chlorinated and fluorinated compounds, and trace metals, have been implicated in neurodegenerative diseases, their impact on astrocytes represents an important and growing field of research. Here, we review existing literature focused on the impact of a range of synthetic compounds on astrocytic function. We focus specifically on perturbed metabolic processes in response to these compounds and consider how perturbation of these pathways impacts disease pathogenesis.
Collapse
Affiliation(s)
- Mondona S McCann
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, United States.
| | - Kathleen A Maguire-Zeiss
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, United States; Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, United States
| |
Collapse
|
15
|
Schümann M, Lilienthal H, Hölzer J. Human biomonitoring (HBM)-II values for perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) - Description, derivation and discussion. Regul Toxicol Pharmacol 2021; 121:104868. [PMID: 33484797 DOI: 10.1016/j.yrtph.2021.104868] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/27/2020] [Accepted: 01/05/2021] [Indexed: 01/22/2023]
Abstract
For evaluation of internal exposure to harmful substances, the Human Biomonitoring Commission of the German Environment Agency (HBM Commission) develops toxicologically justified assessment values (HBM-I and HBM-II). The HBM-I value corresponds to the concentration of a compound in human biological material below which no adverse health effects are expected to occur. Consequently, no action is required when the HBM-I value is not exceeded (HBM-Commission, 1996). In 2016, the HBM Commission developed HBM-I values of 2 ng PFOA/mL and 5 ng PFOS/mL in blood serum or plasma, respectively. A detailed delineation of supporting arguments was published in April 2018 (HBM-Commission, 2018). In contrast to the HBM-I, the HBM-II value corresponds to the concentration in human biological material which, when exceeded, may lead to health impairment which is considered as relevant to exposed individuals (HBM-Commission, 1996, HBM-Commission, 2014). HBM-II VALUES FOR PFOA AND PFOS: On September 17, 2019, the HBM Commission of the German Environment Agency established the following HBM-II values: Women at child-bearing age: 5 ng PFOA/mL blood plasma; 10 ng PFOS/mL blood plasma; All other population groups: 10 ng PFOA/mL blood plasma; 20 ng PFOS/mL blood plasma.
Collapse
Affiliation(s)
- Michael Schümann
- Department for Hygiene, Social and Environmental Medicine, MA 1/31, Ruhr-University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany.
| | - Hellmuth Lilienthal
- Department for Hygiene, Social and Environmental Medicine, MA 1/31, Ruhr-University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Jürgen Hölzer
- Department for Hygiene, Social and Environmental Medicine, MA 1/31, Ruhr-University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| |
Collapse
|
16
|
HBM-II-Werte für Perfluoroctansäure (PFOA) und Perfluoroctansulfonsäure (PFOS) in Blutplasma – Stellungnahme der Kommission Human-Biomonitoring des Umweltbundesamtes. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2020; 63:356-360. [DOI: 10.1007/s00103-020-03101-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
17
|
Guo J, Wu P, Cao J, Luo Y, Chen J, Wang G, Guo W, Wang T, He X. The PFOS disturbed immunomodulatory functions via nuclear Factor-κB signaling in liver of zebrafish (Danio rerio). FISH & SHELLFISH IMMUNOLOGY 2019; 91:87-98. [PMID: 31082517 DOI: 10.1016/j.fsi.2019.05.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 05/18/2023]
Abstract
Excessive perfluorooctane sulfonate (PFOS) in natural water ecosystem has the potential to detrimentally affect immune system, but little is known of such effects or underlying mechanisms in fish. In the present study, we evaluated the effects of PFOS on growth performance, organizational microstructure, activities of immune-related enzymes and expressions of immune-related genes in male zebrafish (Danio rerio) exposed to different concentrations of 0, 0.02, 0.04 and 0.08 mg/L of PFOS for 7, 14, and 21 days or cotreatment with PFOS and PDTC to investigate the effects of PFOS on immune system and the potential toxic mechanisms caused by PFOS. The results indicated that PFOS accumulated in livers after exposure, and remarkably elevations were found in three exposure groups compared with the control group at three stages. The growth of the adult zebrafish in the experiments was significantly inhibited, the microstructures of liver were serious damaged. The ROS levels were remarkably increased. The activities of ACP, AKP, and lysozyme were obviously decreased, while the activities of MPO and NF-κB were significantly increased. The expressions of immune-related mRNA were significantly affected. After co-treatment with PFOS and PDTC, the growth inhibition, the morphological damage, the ROS induction, and the expressions of immune-related mRNA were reversed. Taken together, the results indicated that PFOS can significantly inhibit the growth, disturb the immune system by changing the normal structure of liver, the activities of immune-related enzymes, and a series of gene transcriptions involved in immune regulation in liver of male zebrafish. PFOS-induced pro-inflammatory effect of hepatocytes was observed, and the involvement of NF-κB signaling pathway was participated in its action mechanism. These findings provide further evidence that PFOS interferes with the immune regulation of liver of male zebrafish under in vivo conditions.
Collapse
Affiliation(s)
- Jinshu Guo
- State Key Laboratory of Ecological Animal Husbandry and Environment Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, shanxi, China
| | - Panhong Wu
- State Key Laboratory of Ecological Animal Husbandry and Environment Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, shanxi, China
| | - Jinling Cao
- State Key Laboratory of Ecological Animal Husbandry and Environment Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, shanxi, China.
| | - Yongju Luo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Acedemy of Fishery Science, Nanning, 530021, Guangxi, China.
| | - Jianjie Chen
- State Key Laboratory of Ecological Animal Husbandry and Environment Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, shanxi, China
| | - Guodong Wang
- State Key Laboratory of Ecological Animal Husbandry and Environment Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, shanxi, China
| | - Wenjing Guo
- State Key Laboratory of Ecological Animal Husbandry and Environment Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, shanxi, China
| | - Tianyu Wang
- State Key Laboratory of Ecological Animal Husbandry and Environment Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, shanxi, China
| | - Xinjing He
- State Key Laboratory of Ecological Animal Husbandry and Environment Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, shanxi, China
| |
Collapse
|
18
|
Interspecies differences in perfluoroalkyl substances (PFAS) toxicokinetics and application to health-based criteria. Regul Toxicol Pharmacol 2019; 106:239-250. [DOI: 10.1016/j.yrtph.2019.05.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 04/08/2019] [Accepted: 05/06/2019] [Indexed: 01/07/2023]
|
19
|
Wang Y, Wang L, Chang W, Zhang Y, Zhang Y, Liu W. Neurotoxic effects of perfluoroalkyl acids: Neurobehavioral deficit and its molecular mechanism. Toxicol Lett 2019; 305:65-72. [DOI: 10.1016/j.toxlet.2019.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/17/2018] [Accepted: 01/25/2019] [Indexed: 02/04/2023]
|
20
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Vleminckx C, Vollmer G, Wallace H, Bodin L, Cravedi JP, Halldorsson TI, Haug LS, Johansson N, van Loveren H, Gergelova P, Mackay K, Levorato S, van Manen M, Schwerdtle T. Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. EFSA J 2018. [PMID: 32625773 DOI: 10.2903/j.efsa.2018.5194">10.2903/j.efsa.2018.5194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [10.2903/j.efsa.2018.5194','32625773', '10.1016/j.neuro.2010.10.001')">Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
10.2903/j.efsa.2018.5194" />
Abstract
The European Commission asked EFSA for a scientific evaluation on the risks to human health related to the presence of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in food. Regarding PFOS and PFOA occurrence, the final data set available for dietary exposure assessment contained a total of 20,019 analytical results (PFOS n = 10,191 and PFOA n = 9,828). There were large differences between upper and lower bound exposure due to analytical methods with insufficient sensitivity. The CONTAM Panel considered the lower bound estimates to be closer to true exposure levels. Important contributors to the lower bound mean chronic exposure were 'Fish and other seafood', 'Meat and meat products' and 'Eggs and egg products', for PFOS, and 'Milk and dairy products', 'Drinking water' and 'Fish and other seafood' for PFOA. PFOS and PFOA are readily absorbed in the gastrointestinal tract, excreted in urine and faeces, and do not undergo metabolism. Estimated human half-lives for PFOS and PFOA are about 5 years and 2-4 years, respectively. The derivation of a health-based guidance value was based on human epidemiological studies. For PFOS, the increase in serum total cholesterol in adults, and the decrease in antibody response at vaccination in children were identified as the critical effects. For PFOA, the increase in serum total cholesterol was the critical effect. Also reduced birth weight (for both compounds) and increased prevalence of high serum levels of the liver enzyme alanine aminotransferase (ALT) (for PFOA) were considered. After benchmark modelling of serum levels of PFOS and PFOA, and estimating the corresponding daily intakes, the CONTAM Panel established a tolerable weekly intake (TWI) of 13 ng/kg body weight (bw) per week for PFOS and 6 ng/kg bw per week for PFOA. For both compounds, exposure of a considerable proportion of the population exceeds the proposed TWIs.
Collapse
|
21
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Vleminckx C, Vollmer G, Wallace H, Bodin L, Cravedi JP, Halldorsson TI, Haug LS, Johansson N, van Loveren H, Gergelova P, Mackay K, Levorato S, van Manen M, Schwerdtle T. Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. EFSA J 2018; 16:e05194. [PMID: 32625773 PMCID: PMC7009575 DOI: 10.2903/j.efsa.2018.5194] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The European Commission asked EFSA for a scientific evaluation on the risks to human health related to the presence of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in food. Regarding PFOS and PFOA occurrence, the final data set available for dietary exposure assessment contained a total of 20,019 analytical results (PFOS n = 10,191 and PFOA n = 9,828). There were large differences between upper and lower bound exposure due to analytical methods with insufficient sensitivity. The CONTAM Panel considered the lower bound estimates to be closer to true exposure levels. Important contributors to the lower bound mean chronic exposure were 'Fish and other seafood', 'Meat and meat products' and 'Eggs and egg products', for PFOS, and 'Milk and dairy products', 'Drinking water' and 'Fish and other seafood' for PFOA. PFOS and PFOA are readily absorbed in the gastrointestinal tract, excreted in urine and faeces, and do not undergo metabolism. Estimated human half-lives for PFOS and PFOA are about 5 years and 2-4 years, respectively. The derivation of a health-based guidance value was based on human epidemiological studies. For PFOS, the increase in serum total cholesterol in adults, and the decrease in antibody response at vaccination in children were identified as the critical effects. For PFOA, the increase in serum total cholesterol was the critical effect. Also reduced birth weight (for both compounds) and increased prevalence of high serum levels of the liver enzyme alanine aminotransferase (ALT) (for PFOA) were considered. After benchmark modelling of serum levels of PFOS and PFOA, and estimating the corresponding daily intakes, the CONTAM Panel established a tolerable weekly intake (TWI) of 13 ng/kg body weight (bw) per week for PFOS and 6 ng/kg bw per week for PFOA. For both compounds, exposure of a considerable proportion of the population exceeds the proposed TWIs.
Collapse
|
22
|
Zhang Q, Liu W, Zhao H, Zhang Z, Qin H, Luo F, Niu Q. Developmental perfluorooctane sulfonate exposure inhibits long-term potentiation by affecting AMPA receptor trafficking. Toxicology 2018; 412:55-62. [PMID: 30508566 DOI: 10.1016/j.tox.2018.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/12/2018] [Accepted: 11/28/2018] [Indexed: 11/15/2022]
Abstract
Both animal study and epidemiological survey revealed the associations between defects of cognitive function and the developmental exposure to perfluorooctane sulfonate (PFOS), while the mechanism is not well known. The SD rats were exposed PFOS at 1.7, 5 and 15 mg/L by drinking water from gestation to the adulthood of the pups for evaluating the effects of PFOS exposure on long-term potentiation (LTP) and the role of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors trafficking. Whole-life exposure of PFOS beginning in utero to adulthood significantly inhibited the induction and expression of LTP, and the input/output curve (I/O) and paired-pulse facilitation (PPF) were moderately suppressed, suggesting that PFOS might affect the synaptic transmission and plasticity both in pre- and post-synaptic cells. Meanwhile, PFOS decreased the mRNA levels of AMPA receptor subunits GluA1 and GluA2, and the protein amounts in the membrane, with the total GluA1 and GluA2 protein amounts increased, indicating the internalization of AMPA receptors. Furthermore, tests in the primary hippocampal neurons also support the decreased mRNA levels of GluA1 and GluA2 induced by PFOS. After the pretreatment of AMPA antagonist (NBQX), PFOS decreased the expression of GluA1 and GluA2 and increased internal cellular calcium at much lower levels than that in the neurons without NBQX treatment. The results provide electrophysiological evidence for the impaired cognitive function induced by PFOS exposure and revealed the critical role of AMPA receptor involved.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China; Aquacultural Engineering R&D Center, School of Marine Technology and Environment Institute, Dalian Ocean University, Dalian, 116023, Liaoning, China
| | - Wei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China.
| | - Huimin Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Zhou Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Hui Qin
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Fang Luo
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Qiao Niu
- Department of Occupational Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| |
Collapse
|
23
|
Nrf2 Signaling Elicits a Neuroprotective Role Against PFOS-mediated Oxidative Damage and Apoptosis. Neurochem Res 2018; 43:2446-2459. [DOI: 10.1007/s11064-018-2672-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/24/2018] [Accepted: 10/25/2018] [Indexed: 01/22/2023]
|
24
|
Brenner M, Messing A, Olsen ML. AP-1 and the injury response of the GFAP gene. J Neurosci Res 2018; 97:149-161. [PMID: 30345544 DOI: 10.1002/jnr.24338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 01/04/2023]
Abstract
Increased GFAP gene expression is a common feature of CNS injury, resulting in its use as a reporter to investigate mechanisms producing gliosis. AP-1 transcription factors are among those proposed to participate in mediating the reactive response. Prior studies found a consensus AP-1 binding site in the GFAP promoter to be essential for activity of reporter constructs transfected into cultured cells, but to have little to no effect on basal transgene expression in mice. Since cultured astrocytes display some properties of reactive astrocytes, these findings suggested that AP-1 transcription factors are critical for the upregulation of GFAP in injury, but not for its resting level of expression. We have examined this possibility by comparing the injury response in mice of lacZ transgenes driven by human GFAP promoters that contain the wild-type AP-1 binding site to those in which the site is mutated. An intact AP-1 site was found critical for a GFAP promoter response to the three different injury models used: physical trauma produced by cryoinjury, seizures produced by kainic acid, and chronic gliosis produced in an Alexander disease model. An unexpected additional finding was that the responses of the lacZ transgenes driven by the wild-type promoters were substantially less than that of the endogenous mouse GFAP gene. This suggests that the GFAP gene has previously unrecognized injury-responsive elements that reside further upstream of the transcription start site than the 2.2 kb present in the GFAP promoter segments used here.
Collapse
Affiliation(s)
- Michael Brenner
- Department of Neurobiology and the Civitan International Research Center, Center for Glial Biology in Medicine, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama
| | - Albee Messing
- Department of Comparative Biosciences, Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Michelle L Olsen
- School of Neuroscience, Virginia Polytechnic and State University, Blacksburg, Virginia
| |
Collapse
|
25
|
Chen X, Nie X, Mao J, Zhang Y, Yin K, Sun P, Luo J, Liu Y, Jiang S, Sun L. Perfluorooctane sulfonate mediates secretion of IL-1β through PI3K/AKT NF-кB pathway in astrocytes. Neurotoxicol Teratol 2018; 67:65-75. [DOI: 10.1016/j.ntt.2018.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/09/2018] [Accepted: 03/19/2018] [Indexed: 12/21/2022]
|
26
|
Perfluorooctanesulfonate induces neuroinflammation through the secretion of TNF-α mediated by the JAK2/STAT3 pathway. Neurotoxicology 2018. [DOI: 10.1016/j.neuro.2018.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Phycoerythrin Peptide from Pyropia yezoensis Alleviates Endoplasmic Reticulum Stress Caused by Perfluorooctane Sulfonate-Induced Calcium Dysregulation. Mar Drugs 2018; 16:md16020044. [PMID: 29373516 PMCID: PMC5852472 DOI: 10.3390/md16020044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 01/27/2023] Open
Abstract
Perfluorooctane sulfonate (PFOS), a stable fluorosurfactant, causes endoplasmic reticulum (ER) stress in the brain. This study was designed to investigate whether a phycoerythrin-derived peptide of Pyropia yezoensis (PYP) reduces PFOS-induced ER stress associated with calcium dysregulation. The protective effects of PYP were determined by cell viability, immunoblotting for ER stress response protein glucose-regulated protein 78 (GRP78) and calcium-dependent protein kinases in rat frontal cortical neurons. PFOS-induced decrease in cell viability was attenuated by PYP pretreatment (1 µg/mL) for 24 h, which was downregulated by inhibiting tropomyosin-receptor kinase B (TrkB). PYP pretreatment downregulated the increase in intracellular calcium levels and phosphorylation of calcium/calmodulin-dependent protein kinase II and c-Jun N-terminal kinase which are associated with a PFOS-induced increase in GRP78. The PFOS-induced increase in GRP78 was downregulated via activation of TrkB receptor-linked extracellular signal-regulated kinases 1/2 (ERK1/2) by PYP pretreatment. Moreover, PYP microinjections (1 µg/kg, 0.54 nmol) attenuated the GRP78 expression in rat prefrontal cortex caused by PFOS (10 mg/kg) exposure for 2 weeks. These findings demonstrate that PYP enhances frontal cortical neuron viability via activation of TrkB receptor-ERK1/2 signaling and attenuation of ER stress in rat prefrontal cortex against PFOS exposure, suggesting that PYP might prevent neuronal dysfunctions caused by PFOS-induced ER stress.
Collapse
|
28
|
Developing integrated PBPK/PD coupled mechanistic pathway model (miRNA-BDNF): An approach towards system toxicology. Toxicol Lett 2017; 280:79-91. [DOI: 10.1016/j.toxlet.2017.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/30/2017] [Accepted: 08/04/2017] [Indexed: 12/15/2022]
|
29
|
Chou HC, Wen LL, Chang CC, Lin CY, Jin L, Juan SH. From the Cover: l-Carnitine via PPARγ- and Sirt1-Dependent Mechanisms Attenuates Epithelial-Mesenchymal Transition and Renal Fibrosis Caused by Perfluorooctanesulfonate. Toxicol Sci 2017; 160:217-229. [DOI: 10.1093/toxsci/kfx183] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
30
|
Zhao L, Zhu L, Zhao S, Ma X. Sequestration and bioavailability of perfluoroalkyl acids (PFAAs) in soils: Implications for their underestimated risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 572:169-176. [PMID: 27497034 DOI: 10.1016/j.scitotenv.2016.07.196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 06/06/2023]
Abstract
Different from typical hydrophobic organic contaminants (HOCs), perfluoroalkyl acids (PFAAs) are more soluble in water and less partitioned to soil than the HOCs. It remains unclear whether and to what extent PFAAs could be sequestrated in soil. In this study, sequential extraction of PFAAs in soil and bioaccumulation of PFAAs in earthworm were carried out to understand the sequestration and bioavailability of PFAAs in soils with different soil organic matter (SOM) and aged for different time periods (7 and 47d). Sequestration occurred in different degrees depending on the amount and compositions of SOM in soil, structural properties of PFAAs and aging time. Surprisingly, in one peat soil with high fraction of organic carbon (foc, 59%), the PFAAs were completely sequestrated in the soil. Aging might lead to further sequestration of PFAAs in soil with relatively lower foc. As a consequence of sequestration, the bioavailability of PFAAs in peat soils was reduced 3-10 times compared to that in the plain farmland soil. However, the sequestrated PFAAs were still bioaccumulative in earthworms to some extent. The results indicated that the risk of PFAAs in field soil with high content of SOM could be underestimated if only free PFAAs using mild solvent extraction were monitored.
Collapse
Affiliation(s)
- Lixia Zhao
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; Institute of Agro-Environmental Protection, Ministry of Agriculture, Tianjin 300191, China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Shuyan Zhao
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xinxin Ma
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
31
|
Li Z, Liu Q, Liu C, Li C, Li Y, Li S, Liu X, Shao J. Evaluation of PFOS-mediated neurotoxicity in rat primary neurons and astrocytes cultured separately or in co-culture. Toxicol In Vitro 2016; 38:77-90. [PMID: 27825932 DOI: 10.1016/j.tiv.2016.11.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 01/28/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a potential neurotoxicant reported by epidemiological investigations and experimental studies, while the underlying mechanisms are still unclear. Astrocytes not only support for the construction of neurons, but also conduct neuronal functions through glutamate-glutamine cycle in astrocyte-neuron crosstalk. In the present study, the effect of PFOS exposure on rat primary hippocampal neurons or cortex astrocytes was evaluated. Then the role of the astrocytes in PFOS-induced toxic effect on neurons was explored with astrocyte-neuron co-culture system. Exposure of rat primary hippocampal neurons to PFOS has led to oxidation-antioxidation imbalance, increased apoptosis and abnormal autophagy. The adverse effect of PFOS on rat primary cortex astrocytes manifested in the form of altered extracellular glutamate and glutamine concentrations, decreased glutamine synthase activity, as well as decreased gene expression of glutamine synthase, glutamate transporters and glutamine transporters in the glutamate-glutamine cycle. Especially, the alleviation of PFOS-inhibited neurite outgrowth in neurons could be observed in astrocyte-neuron co-culture system, though the ability of astrocytes in fostering neurite outgrowth was affected by PFOS. These results indicated that both astrocytes and neurons might be the targets of PFOS-induced neurotoxicity, and astrocytes could protect against PFOS-inhibited neurite outgrowth in primary cultured neurons. Our research might render some information in explaining the mechanisms of PFOS-induced neurotoxicity.
Collapse
Affiliation(s)
- Zhenwei Li
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Qi Liu
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Chang Liu
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Chunna Li
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Yachen Li
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Shuangyue Li
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Xiaohui Liu
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian 116044, China.
| | - Jing Shao
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
32
|
Dong X, Yang J, Nie X, Xiao J, Jiang S. Perfluorooctane sulfonate (PFOS) impairs the proliferation of C17.2 neural stem cells via the downregulation of GSK-3β/β-catenin signaling. J Appl Toxicol 2016; 36:1591-1598. [DOI: 10.1002/jat.3320] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 01/09/2016] [Accepted: 02/14/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Xuan Dong
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health; Nantong University; Nantong 226019 China
| | - Jianbin Yang
- Department of Disease Prevention; the Second People's Hospital of Nan Tong; Nantong 226019 China
| | - Xiaoke Nie
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health; Nantong University; Nantong 226019 China
| | - Jing Xiao
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health; Nantong University; Nantong 226019 China
| | - Shengyang Jiang
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health; Nantong University; Nantong 226019 China
| |
Collapse
|
33
|
PFOS Disturbs BDNF-ERK-CREB Signalling in Association with Increased MicroRNA-22 in SH-SY5Y Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:302653. [PMID: 26649298 PMCID: PMC4662996 DOI: 10.1155/2015/302653] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/01/2015] [Indexed: 12/11/2022]
Abstract
Perfluorooctane sulfonate (PFOS), a ubiquitous environmental pollutant, is neurotoxic to mammalian species. However, the underlying mechanism of its neurotoxicity was unclear. We hypothesized that PFOS suppresses BDNF expression to produce its neurotoxic effects by inhibiting the ERK-CREB pathway. SH-SY5Y human neuroblastoma cells were exposed to various concentrations of PFOS to examine the role of the BDNF-ERK-CREB signalling pathway in PFOS-induced apoptosis and cytotoxicity. Furthermore, to ascertain the mechanism by which PFOS reduces BDNF signalling, we examined the expression levels of miR-16 and miR-22, which potentially regulate BDNF mRNA translation at the posttranscriptional level. Results indicated that PFOS significantly decreased cell viability and induced apoptosis in SH-SY5Y cells. In addition, BDNF and pERK protein levels decreased after PFOS treatment; however, pCREB protein levels were significantly elevated in PFOS treated groups. TrkB protein expression increased in the 10 μM and 50 μM PFOS groups and significantly decreased in the 100 μM PFOS group. Our results demonstrated that PFOS exposure decreased miR-16 expression and increased miR-22 expression, which may represent a possible mechanism by which PFOS decreases BDNF protein levels. PFOS may inhibit BDNF-ERK-CREB signalling by increasing miR-22 levels, which may, in part, explain the mechanism of PFOS neurotoxicity.
Collapse
|
34
|
Forns J, Iszatt N, White RA, Mandal S, Sabaredzovic A, Lamoree M, Thomsen C, Haug LS, Stigum H, Eggesbø M. Perfluoroalkyl substances measured in breast milk and child neuropsychological development in a Norwegian birth cohort study. ENVIRONMENT INTERNATIONAL 2015; 83:176-82. [PMID: 26159671 DOI: 10.1016/j.envint.2015.06.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 06/25/2015] [Accepted: 06/25/2015] [Indexed: 05/04/2023]
Abstract
Perfluoroalkyl substances (PFASs) are chemicals with potential neurotoxic effects although the current evidence is still limited. This study investigated the association between perinatal exposure to perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) and neuropsychological development assessed at 6, 12 and 24 months. We measured PFOS and PFOA in breast milk samples collected one month after delivery by mothers of children participating in the HUMIS study (Norway). Cognitive and psychomotor development was measured at 6 and at 24 months using the Ages and Stages Questionnaire (ASQ-II). Behavioral development was assessed using the infant-toddler symptom checklist (ITSC) at 12 and at 24 months. Weighted logistic regression and weighted negative binomial regression models were applied to analyze the associations between PFASs and ASQ-II and ITSC, respectively. The median concentration of PFOS was 110 ng/L, while the median for PFOA was 40 ng/L. We did not detect an increased risk of having an abnormal score in ASQ-II at 6 months or 24 months. Moreover, no consistent increase in behavioral problems assessed at 12 and 24 months by ITSC questionnaire was detected. We observed no association between perinatal PFOS and PFOA exposure and early neuropsychological development. Further longitudinal studies are needed to confirm the effects of these compounds on neuropsychological development in older children.
Collapse
Affiliation(s)
- J Forns
- Department of Genes and Environment, Division of Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| | - N Iszatt
- Department of Genes and Environment, Division of Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| | - R A White
- Department of Genes and Environment, Division of Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| | - S Mandal
- Department of Genes and Environment, Division of Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| | - A Sabaredzovic
- Department of Exposure and Risk Assessment, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway
| | - M Lamoree
- Institute for Environmental Studies, Faculty of Earth and Life Sciences, VU University, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - C Thomsen
- Department of Exposure and Risk Assessment, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway
| | - L S Haug
- Department of Exposure and Risk Assessment, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway
| | - H Stigum
- Department of Chronic Diseases, Norwegian Institute of Public Health, Oslo, Norway
| | - M Eggesbø
- Department of Genes and Environment, Division of Epidemiology, Norwegian Institute of Public Health, Oslo, Norway.
| |
Collapse
|
35
|
Zeng HC, He QZ, Li YY, Wu CQ, Wu YM, Xu SQ. Prenatal exposure to PFOS caused mitochondia-mediated apoptosis in heart of weaned rat. ENVIRONMENTAL TOXICOLOGY 2015; 30:1082-1090. [PMID: 24616003 DOI: 10.1002/tox.21981] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 02/17/2014] [Accepted: 02/23/2014] [Indexed: 06/03/2023]
Abstract
Perfluorooctanyl sulfonate (PFOS), a cardiac toxicity compound, has been widely detected in the environment and in organisms. However, the toxic mechanism is not clear. Our previous study indicated that prenatal PFOS exposure led to swollen mitochondrial with vacuolar structure and loss of cristae in offsping's heart. The purpose of this study was to investigate the effect of PFOS on the apoptosis in developing heart and mitochondria-mediated apoptosis pathway. Pregnant Sprague-Dawley (SD) rats were exposed to PFOS at doses of 0.1, 0.6, and 2.0 mg/kg-d and 0.05% Tween 80 as control by gavage from gestation day 2 (GD 2) to GD 21. Apoptosis, as well as expression of apoptosis related genes associated with mitochondrial-mediated apoptosis pathway, including p53, bcl-2, bax, cytochrome c, caspase-9, and caspase-3 were analyzed in heart tissues from weaned (postnatal day 21, PND 21) offspring. The results showed that prenatal PFOS exposure resulted in apoptosis in the offspring's heart. The mRNA and protein expression levels of p53, bax, cytochrome c, caspase-9, and caspase-3 in the offspring's heart were enhanced in various PFOS-treated groups, meanwhile, the bcl-2 expression levels were decreased. Our results indicated that prenatal PFOS exposure induced the apoptosis of weaned offspring rat heart tissue via mitochondria-mediated apoptotic pathway.
Collapse
Affiliation(s)
- Huai-Cai Zeng
- Post-Doctoral Mobile Stations for Basic Medicine, University of South China, Hengyang, 421001, People's Republic of China
- Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
- Institute of Pathogenic Biology, Medical College, University of South China, Hengyang, 421001, People's Republic of China
| | - Qing-Zhi He
- Institute of Pathogenic Biology, Medical College, University of South China, Hengyang, 421001, People's Republic of China
| | - Yuan-Yuan Li
- Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Cheng-Qiu Wu
- Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yi-Mou Wu
- Institute of Pathogenic Biology, Medical College, University of South China, Hengyang, 421001, People's Republic of China
| | - Shun-Qing Xu
- Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| |
Collapse
|
36
|
Yang J, Wang C, Nie X, Shi S, Xiao J, Ma X, Dong X, Zhang Y, Han J, Li T, Mao J, Liu X, Zhao J, Wu Q. Perfluorooctane sulfonate mediates microglial activation and secretion of TNF-α through Ca2+-dependent PKC-NF-кB signaling. Int Immunopharmacol 2015; 28:52-60. [DOI: 10.1016/j.intimp.2015.05.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 05/10/2015] [Accepted: 05/11/2015] [Indexed: 01/06/2023]
|
37
|
Wang C, Nie X, Zhang Y, Li T, Mao J, Liu X, Gu Y, Shi J, Xiao J, Wan C, Wu Q. Reactive oxygen species mediate nitric oxide production through ERK/JNK MAPK signaling in HAPI microglia after PFOS exposure. Toxicol Appl Pharmacol 2015; 288:143-51. [PMID: 26086160 DOI: 10.1016/j.taap.2015.06.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 06/06/2015] [Accepted: 06/12/2015] [Indexed: 12/15/2022]
Abstract
Perfluorooctane sulfonate (PFOS), an emerging persistent contaminant that is commonly encountered during daily life, has been shown to exert toxic effects on the central nervous system (CNS). However, the molecular mechanisms underlying the neurotoxicity of PFOS remain largely unknown. It has been widely acknowledged that the inflammatory mediators released by hyper-activated microglia play vital roles in the pathogenesis of various neurological diseases. In the present study, we examined the impact of PFOS exposure on microglial activation and the release of proinflammatory mediators, including nitric oxide (NO) and reactive oxidative species (ROS). We found that PFOS exposure led to concentration-dependent NO and ROS production by rat HAPI microglia. We also discovered that there was rapid activation of the ERK/JNK MAPK signaling pathway in the HAPI microglia following PFOS treatment. Moreover, the PFOS-induced iNOS expression and NO production were attenuated after the inhibition of ERK or JNK MAPK by their corresponding inhibitors, PD98059 and SP600125. Interestingly, NAC, a ROS inhibitor, blocked iNOS expression, NO production, and activation of ERK and JNK MAPKs, which suggested that PFOS-mediated microglial NO production occurs via a ROS/ERK/JNK MAPK signaling pathway. Finally, by exposing SH-SY5Y cells to PFOS-treated microglia-conditioned medium, we demonstrated that NO was responsible for PFOS-mediated neuronal apoptosis.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Xiaoke Nie
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Yan Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Ting Li
- Department of Labor and Environmental Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Jiamin Mao
- Department of Labor and Environmental Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Xinhang Liu
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Yiyang Gu
- Department of Labor and Environmental Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Jiyun Shi
- Department of Labor and Environmental Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Jing Xiao
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Chunhua Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Qiyun Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001, People's Republic of China.
| |
Collapse
|
38
|
Zeng XW, Qian Z, Emo B, Vaughn M, Bao J, Qin XD, Zhu Y, Li J, Lee YL, Dong GH. Association of polyfluoroalkyl chemical exposure with serum lipids in children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 512-513:364-370. [PMID: 25638651 DOI: 10.1016/j.scitotenv.2015.01.042] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/16/2015] [Accepted: 01/17/2015] [Indexed: 05/19/2023]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs), as well as polymers of PFASs, have been widely used in commercial applications and have been detected in humans and the environment. Previous epidemiological studies have shown associations between particular PFAS chemicals and serum lipid concentrations in adults, particularly perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA). There exists, however, limited information concerning the effect of PFASs have on serum lipids among children. In the present cross-sectional study, 225 Taiwanese children (12-15 years of age) were recruited to determine the relationship between serum level PFASs and lipid concentration. Results showed that eight out of ten particular PFASs were detected in the serum of >94% of the participants. Serum PFOS and perfluorotetradecanoic acid (PFTA) levels were at an order of magnitude higher than the other PFASs, with arithmetical means of 32.4 and 30.7 ng/ml in boys and 34.2 and 27.4 ng/ml in girls, respectively. However, the variation in serum PFTA concentration was quite large. Following covariate adjustment, linear regression models revealed that PFOS, PFOA, and perfluorononanoic acid (PFNA) were positively associated with total cholesterol (TC), low-density lipoprotein (LDL) and triglycerides (TG), particularly for PFOS and PFTA. Quartile analysis, with the lowest exposure quartile as a reference, yielded associations between serum PFTA and elevations in TC (p=0.002) and LDL (p=0.004). Though not statistically significant, high-density lipoprotein (HDL) appeared to decrease linearly across quartiles for PFOS and PFOA exposure. In conclusion, a significant association was observed between serum PFASs and lipid level in Taiwanese children. These findings for PFTA are novel, and emphasize the need to investigate the exposure route and toxicological evidence of PFASs beyond PFOS and PFOA.
Collapse
Affiliation(s)
- Xiao-Wen Zeng
- Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhengmin Qian
- Department of Epidemiology, College of Public Health and Social Justice, Saint Louis University, Saint Louis, MO 63104, USA
| | - Brett Emo
- Department of Environmental and Occupational Health, College for Public Health and Social Justice, Saint Louis University, Saint Louis, MO 63104, USA
| | - Michael Vaughn
- School of Social Work, College for Public Health and Social Justice, Saint Louis University, Saint Louis, MO 63104, USA
| | - Jia Bao
- School of Environmental Science, Shenyang University of Technology, Shenyang 110870, China
| | - Xiao-Di Qin
- Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yu Zhu
- Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jie Li
- Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yungling Leo Lee
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 100, Taiwan.
| | - Guang-Hui Dong
- Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
39
|
Zhu J, Qian W, Wang Y, Gao R, Wang J, Xiao H. Involvement of mitogen-activated protein kinase and NF-κB signaling pathways in perfluorooctane sulfonic acid-induced inflammatory reaction in BV2 microglial cells. J Appl Toxicol 2015; 35:1539-49. [DOI: 10.1002/jat.3119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/15/2014] [Accepted: 12/15/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Jingying Zhu
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health; Nanjing Medical University; Nanjing Jiangsu China
| | - Wenyi Qian
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health; Nanjing Medical University; Nanjing Jiangsu China
| | - Yixin Wang
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health; Nanjing Medical University; Nanjing Jiangsu China
| | - Rong Gao
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health; Nanjing Medical University; Nanjing Jiangsu China
| | - Jun Wang
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health; Nanjing Medical University; Nanjing Jiangsu China
| | - Hang Xiao
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health; Nanjing Medical University; Nanjing Jiangsu China
| |
Collapse
|
40
|
Sex-specific enhanced behavioral toxicity induced by maternal exposure to a mixture of low dose endocrine-disrupting chemicals. Neurotoxicology 2014; 45:121-30. [PMID: 25454719 DOI: 10.1016/j.neuro.2014.09.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 09/15/2014] [Accepted: 09/15/2014] [Indexed: 01/12/2023]
Abstract
Humans are increasingly and consistently exposed to a variety of endocrine disrupting chemicals (EDCs), chemicals that have been linked to neurobehavioral disorders such as ADHD and autism. Many of such EDCs have been shown to adversely influence brain mesocorticolimbic systems raising the potential for cumulative toxicity. As such, understanding the effects of developmental exposure to mixtures of EDCs is critical to public health protection. Consequently, this study compared the effects of a mixture of four EDCs to their effects alone to examine potential for enhanced toxicity, using behavioral domains and paradigms known to be mediated by mesocorticolimbic circuits (fixed interval (FI) schedule controlled behavior, novel object recognition memory and locomotor activity) in offspring of pregnant mice that had been exposed to vehicle or relatively low doses of four EDCs, atrazine (ATR - 10mg/kg), perfluorooctanoic acid (PFOA - 0.1mg/kg), bisphenol-A (BPA - 50 μg/kg), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD - 0.25 μg/kg) alone or combined in a mixture (MIX), from gestational day 7 until weaning. EDC-treated males maintained significantly higher horizontal activity levels across three testing sessions, indicative of delayed habituation, whereas no effects were found in females. Statistically significant effects of MIX were seen in males, but not females, in the form of increased FI response rates, in contrast to reductions in response rate with ATR, BPA and TCDD, and reduced short term memory in the novel object recognition paradigm. MIX also reversed the typically lower neophobia levels of males compared to females. With respect to individual EDCs, TCDD produced notable increases in FI response rates in females, and PFOA significantly increased ambulatory locomotor activity in males. Collectively, these findings show the potential for enhanced behavioral effects of EDC mixtures in males and underscore the need for animal studies to fully investigate mixtures, including chemicals that converge on common physiological substrates to examine potential mechanisms of toxicity with full dose effect curves to assist in interpretations of relevant mechanisms.
Collapse
|
41
|
Berk M, Williams LJ, Andreazza AC, Pasco JA, Dodd S, Jacka FN, Moylan S, Reiner EJ, Magalhaes PVS. Pop, heavy metal and the blues: secondary analysis of persistent organic pollutants (POP), heavy metals and depressive symptoms in the NHANES National Epidemiological Survey. BMJ Open 2014; 4:e005142. [PMID: 25037643 PMCID: PMC4120423 DOI: 10.1136/bmjopen-2014-005142] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Persistent environmental pollutants, including heavy metals and persistent organic pollutants (POPs), have a ubiquitous presence. Many of these pollutants affect neurobiological processes, either accidentally or by design. The aim of this study was to explore the associations between assayed measures of POPs and heavy metals and depressive symptoms. We hypothesised that higher levels of pollutants and metals would be associated with depressive symptoms. SETTING National Health and Nutrition Examination Survey (NHANES). PARTICIPANTS A total of 15 140 eligible people were included across the three examined waves of NHANES. PRIMARY AND SECONDARY OUTCOME MEASURES Depressive symptoms were assessed using the nine-item version of the Patient Health Questionnaire (PHQ-9), using a cut-off point of 9/10 as likely depression cases. Organic pollutants and heavy metals, including cadmium, lead and mercury, as well as polyfluorinated compounds (PFCs), pesticides, phenols and phthalates, were measured in blood or urine. RESULTS Higher cadmium was positively associated with depression (adjusted Prevalence Ratios (PR)=1.48, 95% CI 1.16 to 1.90). Higher levels of mercury were negatively associated with depression (adjusted PR=0.62, 95% CI 0.50 to 0.78), and mercury was associated with increased fish consumption (n=5500, r=0.366, p<0.001). In addition, several PFCs (perfluorooctanoic acid, perfluorohexane sulfonic acid, perfluorodecanoic acid and perfluorononanoic acid) were negatively associated with the prevalence of depression. CONCLUSIONS Cadmium was associated with an increased likelihood of depression. Contrary to hypotheses, many of persistent environmental pollutants were not associated or negatively associated with depression. While the inverse association between mercury and depressive symptoms may be explained by a protective role for fish consumption, the negative associations with other pollutants remains unclear. This exploratory study suggests the need for further investigation of the role of various agents and classes of agents in the pathophysiology of depression.
Collapse
Affiliation(s)
- Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia
- Orygen Youth Health Research Centre, Centre for Youth Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Barwon Health and the Geelong Clinic, Swanston Centre, Geelong, Victoria, Australia
- Florey Institute for Neuroscience and Mental Health, Parkville, Australia
- Department of Psychiatry, University of Melbourne, Parkville, Australia
| | - Lana J Williams
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia
- Department of Psychiatry, University of Melbourne, Parkville, Australia
| | - Ana C Andreazza
- Departments of Psychiatry and Pharmacology, University of Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Julie A Pasco
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia
- Department of Medicine, NorthWest Academic Centre, The University of Melbourne, St Albans, Victoria, Australia
| | - Seetal Dodd
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia
- Barwon Health and the Geelong Clinic, Swanston Centre, Geelong, Victoria, Australia
- Department of Psychiatry, University of Melbourne, Parkville, Australia
| | - Felice N Jacka
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia
- Department of Psychiatry, University of Melbourne, Parkville, Australia
| | - Steven Moylan
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia
- Barwon Health and the Geelong Clinic, Swanston Centre, Geelong, Victoria, Australia
| | - Eric J Reiner
- Laboratory Services Branch, Ontario Ministry of the Environment, Toronto, Ontario, Canada
| | - Pedro V S Magalhaes
- National Institute for Translational Medicine, Hospital de Clinicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
42
|
Barichello T, Fagundes GD, Generoso JS, Elias SG, Simões LR, Teixeira AL. Pathophysiology of neonatal acute bacterial meningitis. J Med Microbiol 2013; 62:1781-1789. [PMID: 23946474 DOI: 10.1099/jmm.0.059840-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neonatal meningitis is a severe acute infectious disease of the central nervous system and an important cause of morbidity and mortality worldwide. The inflammatory reaction involves the meninges, the subarachnoid space and the brain parenchymal vessels and contributes to neuronal injury. Neonatal meningitis leads to deafness, blindness, cerebral palsy, seizures, hydrocephalus or cognitive impairment in approximately 25-50 % of survivors. Bacterial pathogens can reach the blood-brain barrier and be recognized by antigen-presenting cells through the binding of Toll-like receptors. They induce the activation of NFκB or mitogen-activated protein kinase pathways and subsequently upregulate leukocyte populations and express numerous proteins involved in inflammation and the immune response. Many brain cells can produce cytokines, chemokines and other pro-inflammatory molecules in response to bacterial stimuli, and polymorphonuclear leukocytes are attracted, activated and released in large amounts of superoxide anion and nitric oxide, leading to peroxynitrite formation and generating oxidative stress. This cascade leads to lipid peroxidation, mitochondrial damage and breakdown of the blood-brain barrier, thus contributing to cell injury during neonatal meningitis. This review summarizes information on the pathophysiology and adjuvant treatment of acute bacterial meningitis in neonates.
Collapse
Affiliation(s)
- Tatiana Barichello
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil.,Laboratório de Microbiologia Experimental e Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil.,Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil.,Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Glauco D Fagundes
- Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil.,Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil.,Laboratório de Microbiologia Experimental e Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Jaqueline S Generoso
- Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil.,Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil.,Laboratório de Microbiologia Experimental e Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Samuel Galvão Elias
- Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil.,Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil.,Laboratório de Microbiologia Experimental e Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Lutiana R Simões
- Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil.,Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil.,Laboratório de Microbiologia Experimental e Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Antonio Lucio Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
43
|
Fang C, Huang Q, Ye T, Chen Y, Liu L, Kang M, Lin Y, Shen H, Dong S. Embryonic exposure to PFOS induces immunosuppression in the fish larvae of marine medaka. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 92:104-111. [PMID: 23545396 DOI: 10.1016/j.ecoenv.2013.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 02/22/2013] [Accepted: 03/01/2013] [Indexed: 06/02/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a global pollutant that has been studied because of its health risks. PFOS has been shown to have immune toxicity. However, few studies have focused on the immune responses of fish larvae exposed to PFOS at early embryonic stages. In this study, the larvae of marine medaka (Oryzias melastigma) were evaluated for postnatal immune toxicity after embryonic exposure to PFOS (0, 1, 4 and 16mg/L) from 2 days post fertilization (dpf). The physiological indices, survival rates, PFOS elimination kinetics, liver histology and gene transcription in the fish larvae were examined after depuration. The elimination rate constant (ke) of PFOS in the fish larvae ranged from 0.04±0.00 to 0.07±0.01d(-1). Embryonic exposure to PFOS severely compromised the postnatal survival of fish larvae after depuration. The survival rate and body width decreased in a concentration dependent manner. PFOS impaired the liver structure in the fish larvae by enlarging the cell nuclei and damaging the cell structure. To explore the toxic mechanisms that affect the immune responses, fish larvae at 27 days post hatch (dph) were exposed to lipopolysaccharides (LPS) to elicit an inflammatory response. The inflammatory response and immune-related genes were generally up-regulated in the fish larvae following embryonic exposure to 0mg/L PFOS. In contrast, the genes were all markedly down-regulated in the fish larvae following embryonic exposure to 1 and 4mg/L PFOS. These results suggest that early life exposure to PFOS could alter immunoregulation functions, leading to functional dysfunction or weakness of the immune system in fish larvae. The immunosuppression effects caused by PFOS could reduce the efficiency of immune defense mechanisms and increase the susceptibility to infectious agents, which may contribute to various detrimental health effects in the fish larvae.
Collapse
Affiliation(s)
- Chao Fang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Long Y, Wang Y, Ji G, Yan L, Hu F, Gu A. Neurotoxicity of perfluorooctane sulfonate to hippocampal cells in adult mice. PLoS One 2013; 8:e54176. [PMID: 23382877 PMCID: PMC3559704 DOI: 10.1371/journal.pone.0054176] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 12/11/2012] [Indexed: 11/18/2022] Open
Abstract
Perfluorooctane sulfonate (PFOS) is a ubiquitous pollutant and found in the environment and in biota. The neurotoxicity of PFOS has received much concern among its various toxic effects when given during developing period of brain. However, little is known about the neurotoxic effects and potential mechanisms of PFOS in the mature brain. Our study demonstrated the neurotoxicity and the potential mechanisms of PFOS in the hippocampus of adult mice for the first time. The impairments of spatial learning and memory were observed by water maze studies after exposure to PFOS for three months. Significant apoptosis was found in hippocampal cells after PFOS exposure, accompanied with a increase of glutamate in the hippocampus and decreases of dopamine (DA) and 3,4-dihydrophenylacetic acid (DOPAC) in Caudate Putamen in the 10.75 mg/kg PFOS group. By two-dimensional fluorescence difference in gel electrophoresis (2D-DIGE) analysis, seven related proteins in the hippocampus that responded to PFOS exposure were identified, among which, Mib1 protein (an E3 ubiquitin-protein ligase), Herc5 (hect domain and RLD 5 isoform 2) and Tyro3 (TYRO3 protein tyrosine kinase 3) were found down-regulated, while Sdha (Succinate dehydrogenase flavoprotein subunit), Gzma (Isoform HF1 of Granzyme A precursor), Plau (Urokinase-type plasminogen activator precursor) and Lig4 (DNA ligase 4) were found up-regulated in the 10.75 mg/kg PFOS-treated group compare with control group. Furthermore, we also found that (i) increased expression of caspase-3 protein and decreased expression of Bcl-2, Bcl-XL and survivin proteins, (ii) the increased glutamate release in the hippocampus. All these might contribute to the dysfunction of hippocampus which finally account for the impairments of spatial learning and memory in adult mice.
Collapse
Affiliation(s)
- Yan Long
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Yubang Wang
- The Safety Assessment and Research Center for Drugs of Jiangsu Province, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Guixiang Ji
- Nanjing Institute of Environmental Sciences/Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Environmental Protection, Nanjing, China
| | - Lifeng Yan
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Fan Hu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Aihua Gu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
45
|
Greaves AK, Letcher RJ, Sonne C, Dietz R, Born EW. Tissue-specific concentrations and patterns of perfluoroalkyl carboxylates and sulfonates in East Greenland polar bears. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:11575-83. [PMID: 23057644 DOI: 10.1021/es303400f] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Several perfluoroalkyl carboxylates (PFCAs) and perfluoroalkyl sulfonates (PFSAs) of varying chain length are bioaccumulative in biota. However, wildlife reports have focused on liver and with very little examination of other tissues, and thus there is a limited understanding of their distribution and potential effects in the mammalian body. In the present study, the comparative accumulation of C(6) to C(15) PFCAs, C(4), C(6), C(8) and C(10) PFSAs, and select precursors were examined in the liver, blood, muscle, adipose, and brain of 20 polar bears (Ursus maritimus) from Scoresby Sound, Central East Greenland. Overall, PFSA and PFCA concentrations were highest in liver followed by blood > brain > muscle ≈ adipose. Liver and blood samples contained proportionally more of the shorter/medium chain length (C(6) to C(11)) PFCAs, whereas adipose and brain samples were dominated by longer chain (C(13) to C(15)) PFCAs. PFCAs with lower lipophilicities accumulated more in the liver, whereas the brain accumulated PFCAs with higher lipophilicities. The concentration ratios (±SE) between perfluorooctane sulfonate and its precursor perfluorooctane sulfonamide varied among tissues from 9 (±1):1 (muscle) to 36 (±7):1 (liver). PFCA and PFSA patterns in polar bears indicate that the pharmacokinetics of these compounds are to some extent tissue-specific, and are the result of several factors that may include differing protein interactions throughout the body.
Collapse
Affiliation(s)
- Alana K Greaves
- Ecotoxicology and Wildlife Health Division, Science and Technology Branch, Environment Canada , National Wildlife Research Centre, Carleton University, Ottawa, ON, K1A 0H3, Canada
| | | | | | | | | |
Collapse
|
46
|
Wang F, Liu W, Ma J, Yu M, Jin Y, Dai J. Prenatal and neonatal exposure to perfluorooctane sulfonic acid results in changes in miRNA expression profiles and synapse associated proteins in developing rat brains. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:6822-6829. [PMID: 22594572 DOI: 10.1021/es3008547] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We previously identified a number of perfluorooctane sulfonic acid (PFOS)-responsive transcripts in developing rat brains using microarray analysis. However, the underlying mechanisms and functional consequences remain unclear. We hypothesized that microRNAs (miRNAs), which have emerged as powerful negative regulators of mRNA and protein levels, might be responsible for PFOS-induced mRNA changes and consequent neural dysfunctions. We used eight miRNA arrays to profile the expression of brain miRNAs in neonatal rats on postnatal days (PND) 1 and 7 with maternal treatment of 0 (Control) and 3.2 mg/kg of PFOS feed from gestational day 1 to PND 7, and subsequently examined six potentially altered synapse-associated proteins to evaluate presumptive PFOS-responsive functions. Twenty-four brain miRNAs on PND 1 and 17 on PND 7 were significantly altered with PFOS exposure (P < 0.05), with miR-466b, -672, and -297, which are critical in neurodevelopment and synapse transmission, showing a more than 5-fold reduction. Levels of three synapse-involved proteins, NGFR, TrkC, and VGLUT2, were significantly decreased with no protein up-regulated on PND 1 or 7. Perfluorooctane sulfonic acid might affect calcium actions during synapse transmission in the nervous system by interfering with SYNJ1, ITPR1, and CALM1 via their targeting miRNAs. Our results indicated that miRNA had little direct regulatory effect on the expression of mRNAs and synapse-associated proteins tested in the developing rat brain exposed to PFOS, and it seems that the PFOS-induced synaptic dysfunctions and changes in transcripts resulted from a combinatory action of biological controllers and processes, rather than directed by one single factor.
Collapse
Affiliation(s)
- Faqi Wang
- School of Environmental Science and Technology, Dalian University of Technology, Key Laboratory of Industrial Ecology and Environmental Engineering, MOE, Dalian 116024, China
| | | | | | | | | | | |
Collapse
|
47
|
Neurotoxic effects of perfluoroalkylated compounds: mechanisms of action and environmental relevance. Arch Toxicol 2012; 86:1349-67. [DOI: 10.1007/s00204-012-0822-6] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 02/14/2012] [Indexed: 01/09/2023]
|
48
|
Wang Y, Jin Y. Perfluorooctane sulfonate (PFOS) and calcium channel downstream signaling molecules. Toxicol Res (Camb) 2012. [DOI: 10.1039/c2tx20017a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
49
|
Ek CJ, Dziegielewska KM, Habgood MD, Saunders NR. Barriers in the developing brain and Neurotoxicology. Neurotoxicology 2011; 33:586-604. [PMID: 22198708 DOI: 10.1016/j.neuro.2011.12.009] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/11/2011] [Accepted: 12/11/2011] [Indexed: 01/16/2023]
Abstract
The brain develops and grows within a well-controlled internal environment that is provided by cellular exchange mechanisms in the interfaces between blood, cerebrospinal fluid and brain. These are generally referred to by the term "brain barriers": blood-brain barrier across the cerebral endothelial cells and blood-CSF barrier across the choroid plexus epithelial cells. An essential component of barrier mechanisms is the presence of tight junctions between the endothelial and epithelial cells of these interfaces. This review outlines historical evidence for the presence of effective barrier mechanisms in the embryo and newborn and provides an up to date description of recent morphological, biochemical and molecular data for the functional effectiveness of these barriers. Intercellular tight junctions between cerebral endothelial cells and between choroid plexus epithelial cells are functionally effective as soon as they differentiate. Many of the influx and efflux mechanisms are not only present from early in development, but the genes for some are expressed at much higher levels in the embryo than in the adult and there is physiological evidence that these transport systems are functionally more active in the developing brain. This substantial body of evidence supporting the concept of well developed barrier mechanisms in the developing brain is contrasted with the widespread belief amongst neurotoxicologists that "the" blood-brain barrier is immature or even absent in the embryo and newborn. A proper understanding of the functional capacity of the barrier mechanisms to restrict the entry of harmful substances or administered therapeutics into the developing brain is critical. This knowledge would assist the clinical management of pregnant mothers and newborn infants and development of protocols for evaluation of risks of drugs used in pregnancy and the neonatal period prior to their introduction into clinical practice.
Collapse
Affiliation(s)
- C Joakim Ek
- Department of Pharmacology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | |
Collapse
|
50
|
Zhang L, Li YY, Chen T, Xia W, Zhou Y, Wan YJ, Lv ZQ, Li GQ, Xu SQ. Abnormal development of motor neurons in perfluorooctane sulphonate exposed zebrafish embryos. ECOTOXICOLOGY (LONDON, ENGLAND) 2011; 20:643-652. [PMID: 21298338 DOI: 10.1007/s10646-011-0604-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/27/2011] [Indexed: 05/30/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is an environmental organic pollutant, the potential neurotoxicity of which is causing great concern in fish. In the present study, we examined the effects of PFOS on motor neurons, and investigated the potential toxicological mechanisms oxidative stress in zebrafish embryos. Six-hour post-fertilization (hpf) zebrafish embryos were exposed to 1.0 mg/L PFOS, then we examined the expression of alpha-tubulin, proliferating cell nuclear antigen (PCNA), cyclin-dependent kinase 5 (CDK5), and peroxiredoxin 2 (PRX2) after PFOS exposure until 120 hpf. The results showed that PFOS increased alpha-tubulin in the coccygeal spinal cord (CSC) at 96 hpf, whereas decreased alpha-tubulin in the brain and spinal cord at 120 hpf. PCNA expression was highly increased in CSC and abdomen compared with control at 96 and 120 hpf after PFOS exposure. In addition, PFOS exposure caused CDK5 expression to be highly increased in brain region following by down-regulation of PRX2 expression at 96 hpf. These results indicated that, at least in part, the effect on motor neurons induced by PFOS was mediated by dynamically interfering with the expression of alpha-tubulin and PCNA. Furthermore, PFOS-induced toxicity was associated with oxidative stress by deregulating CDK5 and PRX2.
Collapse
Affiliation(s)
- Ling Zhang
- Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | | | | | | | | | | | | | | | | |
Collapse
|