1
|
Fernandes AR, Kilanowicz A, Stragierowicz J, Klimczak M, Falandysz J. The toxicological profile of polychlorinated naphthalenes (PCNs). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155764. [PMID: 35545163 DOI: 10.1016/j.scitotenv.2022.155764] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/05/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
The legacy of polychlorinated naphthalenes (PCNs) manufactured during the last century continues to persist in the environment, food and humans. Metrological advances have improved characterisation of these occurrences, enabling studies on the effects of exposure to focus on congener groups and individual PCNs. Liver and adipose tissue show the highest retention but significant levels of PCNs are also retained by the brain and nervous system. Molecular configuration appears to influence tissue disposition as well as retention, favouring the higher chlorinated (≥ four chlorines) PCNs while most lower chlorinated molecules readily undergo hydroxylation and excretion through the renal system. Exposure to PCNs reportedly provokes a wide spectrum of adverse effects that range from hepatotoxicity, neurotoxicity and immune response suppression along with endocrine disruption leading to reproductive disorders and embryotoxicity. A number of PCNs, particularly hexachloronaphthalene congeners, elicit AhR mediated responses that are similar to, and occur within similar potency ranges as most dioxin-like polychlorinated biphenyls (PCBs) and some chlorinated dibenzo-p-dioxins and furans (PCDD/Fs), suggesting a relationship based on molecular size and configuration between these contaminants. Most toxicological responses generally appear to be associated with higher chlorinated PCNs. The most profound effects such as serious and sometimes fatal liver disease, chloracne, and wasting syndrome resulted either from earlier episodes of occupational exposure in humans or from acute experimental dosing of animals at levels that reflected these exposures. However, since the restriction of manufacture and controls on inadvertent production (during combustion processes), the principal route of human and animal exposure is likely to be dietary intake. Therefore, further investigations should include the effects of chronic lower level intake of higher chlorinated PCN congeners that persist in the human diet and subsequently in human and animal tissues. PCNs in the diet should be evaluated cumulatively with other similarly occurring dioxin-like contaminants.
Collapse
Affiliation(s)
- Alwyn R Fernandes
- School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Anna Kilanowicz
- Department of Toxicology, Medical University of Lodz, Muszyńskiego 1, 90-15 Łódź, Poland
| | - Joanna Stragierowicz
- Department of Toxicology, Medical University of Lodz, Muszyńskiego 1, 90-15 Łódź, Poland
| | - Michał Klimczak
- Department of Toxicology, Medical University of Lodz, Muszyńskiego 1, 90-15 Łódź, Poland
| | - Jerzy Falandysz
- Department of Toxicology, Medical University of Lodz, Muszyńskiego 1, 90-15 Łódź, Poland
| |
Collapse
|
2
|
Association of prenatal exposure to dioxin-like compounds, polychlorinated biphenyl, and methylmercury with event-related brain potentials in school-aged children: the Hokkaido study. Neurotoxicology 2022; 91:11-21. [DOI: 10.1016/j.neuro.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 03/18/2022] [Accepted: 04/24/2022] [Indexed: 11/18/2022]
|
3
|
de Weerth C, Aatsinki AK, Azad MB, Bartol FF, Bode L, Collado MC, Dettmer AM, Field CJ, Guilfoyle M, Hinde K, Korosi A, Lustermans H, Mohd Shukri NH, Moore SE, Pundir S, Rodriguez JM, Slupsky CM, Turner S, van Goudoever JB, Ziomkiewicz A, Beijers R. Human milk: From complex tailored nutrition to bioactive impact on child cognition and behavior. Crit Rev Food Sci Nutr 2022; 63:7945-7982. [PMID: 35352583 DOI: 10.1080/10408398.2022.2053058] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human milk is a highly complex liquid food tailor-made to match an infant's needs. Beyond documented positive effects of breastfeeding on infant and maternal health, there is increasing evidence that milk constituents also impact child neurodevelopment. Non-nutrient milk bioactives would contribute to the (long-term) development of child cognition and behavior, a process termed 'Lactocrine Programming'. In this review we discuss the current state of the field on human milk composition and its links with child cognitive and behavioral development. To promote state-of-the-art methodologies and designs that facilitate data pooling and meta-analytic endeavors, we present detailed recommendations and best practices for future studies. Finally, we determine important scientific gaps that need to be filled to advance the field, and discuss innovative directions for future research. Unveiling the mechanisms underlying the links between human milk and child cognition and behavior will deepen our understanding of the broad functions of this complex liquid food, as well as provide necessary information for designing future interventions.
Collapse
Affiliation(s)
- Carolina de Weerth
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, EN Nijmegen, The Netherlands
| | - Anna-Katariina Aatsinki
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Meghan B Azad
- Department of Pediatrics and Child Health, Manitoba Interdisciplinary Lactation Centre, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Frank F Bartol
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Lars Bode
- Department of Pediatrics and Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California San Diego, La Jolla, California, USA
| | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Amanda M Dettmer
- Yale Child Study Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, College of Basic and Applied Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Meagan Guilfoyle
- Department of Anthropology, Indiana University, Bloomington, Indiana, USA
| | - Katie Hinde
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Aniko Korosi
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Brain Plasticity group, University of Amsterdam, Amsterdam, The Netherlands
| | - Hellen Lustermans
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, EN Nijmegen, The Netherlands
| | - Nurul Husna Mohd Shukri
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Sophie E Moore
- Department of Women & Children's Health, King's College London, St Thomas' Hospital, London, UK
- School of Hygiene and Tropical Medicine, Nutrition Theme, MRC Unit The Gambia and the London, Fajara, The GambiaBanjul
| | - Shikha Pundir
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Juan Miguel Rodriguez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - Carolyn M Slupsky
- Department of Nutrition and Department of Food Science and Technology, University of California, Davis, California, USA
| | - Sarah Turner
- Department of Community Health Sciences, Manitoba Interdisciplinary Lactation Centre, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Johannes B van Goudoever
- Department of Pediatrics, Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children's Hospital, Amsterdam, The Netherlands
| | - Anna Ziomkiewicz
- Department of Anthropology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Roseriet Beijers
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, EN Nijmegen, The Netherlands
- Department of Social Development, Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Ramírez V, Gálvez-Ontiveros Y, González-Domenech PJ, Baca MÁ, Rodrigo L, Rivas A. Role of endocrine disrupting chemicals in children's neurodevelopment. ENVIRONMENTAL RESEARCH 2022; 203:111890. [PMID: 34418446 DOI: 10.1016/j.envres.2021.111890] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/08/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Environmental stressors, like endocrine disrupting chemicals (EDC), are considered important contributors to the increased rates of neurodevelopmental dysfunctions. Considering the cumulative research on adverse neurodevelopmental effects associated with prenatal exposure to EDC, the purpose of this study was to review the available limited literature about the effects of postnatal exposure to EDC on child neurodevelopment and behaviour. Despite widespread children's exposure to EDC, there are a limited number of epidemiological studies on the association of this exposure with neurodevelopmental disorders, in particular in the postnatal period. The available research suggests that postnatal EDC exposure is related to adverse neurobehavioral outcomes in children; however the underlying mechanisms of action remain unclear. Timing of exposure is a key factor determining potential neurodevelopmental consequences, hence studying the impact of multiple EDC co-exposure in different vulnerable life periods could guide the identification of sensitive subpopulations. Most of the reviewed studies did not take into account sex differences in the EDC effects on children neurodevelopment. We believe that the inclusion of sex in the study design should be considered as the role of EDC on children neurodevelopment are likely sex-specific and should be taken into consideration when determining susceptibility and potential mechanisms of action.
Collapse
Affiliation(s)
- Viviana Ramírez
- Department of Nutrition and Food Science, University of Granada, Granada, Spain
| | - Yolanda Gálvez-Ontiveros
- Department of Nutrition and Food Science, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Pablo José González-Domenech
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain; Department of Psychiatry, University of Granada, Granada, Spain
| | | | - Lourdes Rodrigo
- Department of Legal Medicine and Toxicology, University of Granada, Granada, Spain.
| | - Ana Rivas
- Department of Nutrition and Food Science, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| |
Collapse
|
5
|
Qi SY, Xu XL, Ma WZ, Deng SL, Lian ZX, Yu K. Effects of Organochlorine Pesticide Residues in Maternal Body on Infants. Front Endocrinol (Lausanne) 2022; 13:890307. [PMID: 35757428 PMCID: PMC9218079 DOI: 10.3389/fendo.2022.890307] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/22/2022] [Indexed: 01/25/2023] Open
Abstract
There are many organochlorine pollutants in the environment, which can be directly or indirectly exposed to by mothers, and as estrogen endocrine disruptors can cause damage to the lactation capacity of the mammary gland. In addition, because breast milk contains a lot of nutrients, it is the most important food source for new-born babies. If mothers are exposed to organochlorine pesticides (OCPs), the lipophilic organochlorine contaminants can accumulate in breast milk fat and be passed to the infant through breast milk. Therefore, it is necessary to investigate organochlorine contaminants in human milk to estimate the health risks of these contaminants to breastfed infants. In addition, toxic substances in the mother can also be passed to the fetus through the placenta, which is also something we need to pay attention to. This article introduces several types of OCPs, such as dichlorodiphenyltrichloroethane (DDT), methoxychlor (MXC), hexachlorocyclohexane (HCH), endosulfan, chlordane, heptachlorand and hexachlorobenzene (HCB), mainly expounds their effects on women's lactation ability and infant health, and provides reference for maternal and infant health. In addition, some measures and methods for the control of organochlorine pollutants are also described here.
Collapse
Affiliation(s)
- Shi-Yu Qi
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xue-Ling Xu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wen-Zhi Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, and Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, School of Basic Medical Science, Ningxia Medical University, Yinchuan, China
- *Correspondence: Wen-Zhi Ma, ; Kun Yu, ; Zheng-Xing Lian,
| | - Shou-Long Deng
- National Health Commission of China (NHC) Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Zheng-Xing Lian
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Wen-Zhi Ma, ; Kun Yu, ; Zheng-Xing Lian,
| | - Kun Yu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Wen-Zhi Ma, ; Kun Yu, ; Zheng-Xing Lian,
| |
Collapse
|
6
|
Seralini GE, Jungers G. Endocrine disruptors also function as nervous disruptors and can be renamed endocrine and nervous disruptors (ENDs). Toxicol Rep 2021; 8:1538-1557. [PMID: 34430217 PMCID: PMC8365328 DOI: 10.1016/j.toxrep.2021.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 01/14/2023] Open
Abstract
Endocrine disruption (ED) and endocrine disruptors (EDs) emerged as scientific concepts in 1995, after numerous chemical pollutants were found to be responsible for reproductive dysfunction. The World Health Organization established in the United Nations Environment Programme a list of materials, plasticizers, pesticides, and various pollutants synthesized from petrochemistry that impact not only reproduction, but also hormonal functions, directly or indirectly. Cells communicate via either chemical or electrical signals transmitted within the endocrine or nervous systems. To investigate whether hormone disruptors may also interfere directly or indirectly with the development or functioning of the nervous system through either a neuroendocrine or a more general mechanism, we examined the scientific literature to ascertain the effects of EDs on the nervous system, specifically in the categories of neurotoxicity, cognition, and behaviour. To date, we demonstrated that all of the 177 EDs identified internationally by WHO are known to have an impact on the nervous system. Furthermore, the precise mechanisms underlying this neurodisruption have also been established. It was previously believed that EDs primarily function via the thyroid. However, this study presents substantial evidence that approximately 80 % of EDs operate via other mechanisms. It thus outlines a novel concept: EDs are also neurodisruptors (NDs) and can be collectively termed endocrine and nervous disruptors (ENDs). Most of ENDs are derived from petroleum residues, and their various mechanisms of action are similar to those of "spam" in electronic communications technologies. Therefore, ENDs can be considered as an instance of spam in a biological context.
Collapse
Affiliation(s)
- Gilles-Eric Seralini
- University of Caen Normandy, Network on Risks, Quality and Sustainable Development, Faculty of Sciences, Esplanade de la Paix, 14032, Caen, France
| | - Gerald Jungers
- University of Caen Normandy, Network on Risks, Quality and Sustainable Development, Faculty of Sciences, Esplanade de la Paix, 14032, Caen, France
| |
Collapse
|
7
|
Wang S, Hu C, Lu A, Wang Y, Cao L, Wu W, Li H, Wu M, Yan C. Association between prenatal exposure to persistent organic pollutants and neurodevelopment in early life: A mother-child cohort (Shanghai, China). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111479. [PMID: 33099138 DOI: 10.1016/j.ecoenv.2020.111479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
As common environmental pollutants, persistent organic pollutants (POPs) that are widely applied in industry and agriculture have adverse effects on neurodevelopment. However, evidence on the neurotoxicity of POPs in neural development of offspring is limited. This study explored the relationship between prenatal exposure to POPs and neurodevelopment of 18-month-old toddlers in a mother-child cohort in Shanghai, China. In this study, we determined exposure levels of 37 POPs in cord blood serum collected at the time of delivery. The detection rate of pollutants HCB, β-HCH, and p,p'-DDE was higher than 60%, so these will be discussed in the following analysis. From birth to approximately 18 months, we followed up infants to longitudinally explore whether POPs influenced their language, motor, and cognitive development according to a Bayley-Ⅲ assessment . Based on multivariable regression analyses, the β-HCH concentration in cord serum was negatively related to motor development scores in children at 18 months by adjusting for the covariates, but there was no change in language and cognition. Further piecewise linear regression analysis showed that a cord serum β-HCH concentration greater than 0.2 μg/L had a significantly negative correlation with the motor development scores. p,p'-DDE was positively associated with language development at 18 months before and after adjusting for covariates. But prenatal HCB levels were not associated with any of the Bayley-Ⅲ subscales at 18 months. We concluded that prenatal exposure to β-HCH might have adverse effects on infants' motor development. The minimum harmful concentration of β-HCH was estimated at 0.2 μg/L in cord serum. The unexpected positive association between p,p'-DDT and language development could be due to live birth bias.
Collapse
Affiliation(s)
- Susu Wang
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| | - Chunping Hu
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| | - Anxin Lu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaqian Wang
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| | - Lulu Cao
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wu
- Qilu Children's Hospital of Shandong University, Shandong, Jinan, China
| | - Hui Li
- Jining No.1 People's Hospital, Shandong, Jining, China
| | - Meiqin Wu
- The Women and Children's Health Care Department Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No.2699, West Gaoke Road, Shanghai 200040, China.
| | - Chonghuai Yan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
González N, Domingo J. Concentrations of persistent organic pollutants in blood of the Spanish population: Temporal trend. ARHIV ZA FARMACIJU 2021. [DOI: 10.5937/arhfarm71-33765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The present article reviews the human biomonitoring studies conducted in Spain to assess exposure to persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), polybrominated diphenyl ethers (PBDEs), and per- and poly-fluoroalkyl substances (PFAS). In general terms, important variations in POPs concentrations between Spanish regions and specific populations were observed, while no associations between exposure to POPs and adverse health outcomes were found. Moreover, occupational exposure seems not to be a risk factor with regards to POPs exposure in the Spanish population. The present review highlights the importance of conducting human biomonitoring studies to find possible associations between POPs and adverse health effects.
Collapse
|
9
|
Kuang L, Hou Y, Huang F, Guo A, Deng W, Sun H, Shen L, Lin H, Hong H. Pesticides in human milk collected from Jinhua, China: Levels, influencing factors and health risk assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111331. [PMID: 32977287 DOI: 10.1016/j.ecoenv.2020.111331] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
In China, many studies have been carried out on pesticide residues in human milk, yet all of them are on organochlorine pesticides (OCPs) and mostly focused on large, economically developed cities. In this study, 27 pesticides including OCPs, pyrethroid pesticides (PYRs) and organophosphate pesticides (OPPs) in human milk were investigated in Jinhua, an inland and medium sized city in China. Method based on QuEChERS extraction and gas chromatography-mass spectrometer (GC-MS) determination was adopted to analyze the above pesticide residues. The influencing factors as well as the health risks were also evaluated. Results show that PYRs and OPPs in human milk samples were both undetectable. Regarding OCPs, the detection rate of hexachlorobenzene (HCB), β-hexachlorocyclohexane (β-HCH) and p,p'-dichlorodiphenyl-dichloroethylene (p,p'-DDE) were 83.6%, 36.4% and 58.2%, respectively, and their mean value were 29.4, 32.0 and 85.2 ng/g lipid, respectively. p,p'-DDE levels in human milk was significantly (p < 0.05) related to maternal age, but no association was detected between OCPs residues and other factors (living environment, dietary habit, living style, etc.), suggesting that OCPs in human milk in Jinhua were originated from nonspecific source. All estimated daily intake of pesticides (EDIpesticides) by infants were under the guideline suggested by Food and Agriculture Organization (FAO) and China Ministry of Health (CMH). Yet 9% of EDIsHCB and 16% of EDIsHCHs exceeded the guideline recommended by Health Canada. The associations between DDE residues and the delivery way as well as HCBs residues and the birth weight were seemly significant, yet the significance disappeared when consider age or gestational age as a cofounder, indicating that OCPs residue in mother's body in Jinhua has no obvious influence on fetus development and the delivery way.
Collapse
Affiliation(s)
- Lihong Kuang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Yizhong Hou
- Jinhua Center for Disease Control and Prevention, Jinhua, 321000, PR China
| | - Fangqu Huang
- Jinhua Center for Disease Control and Prevention, Jinhua, 321000, PR China
| | - Aidi Guo
- Environmental Monitoring Center of Hangzhou, Yuhang District, Hangzhou, 311100, PR China
| | - Wenjing Deng
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, N.T., Hong Kong
| | - Hongjie Sun
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Huachang Hong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China.
| |
Collapse
|
10
|
Abstract
Purpose of Review Flame retardant (FR) compounds can adversely impact neurodevelopment. This updated literature review summarizes epidemiological studies of FRs and neurotoxicity published since 2015, covering historical (polybrominated biphenyls [PBBs], polychlorinated biphenyls [PCBs]), contemporary (polybrominated diphenyl ethers [PBDEs], hexabromocyclododecane [HBCD], and tetrabromobisphenol A [TBBPA]), and current-use organophosphate FRs (OPFRs) and brominated FRs (2-ethylhexyl 2,3,4,5-tetrabromobezoate [EH-TBB] TBB), bis(2-ethylhexyl) tetrabromophthalate [BEH-TEBP]), focusing on prenatal and postnatal periods of exposure. Recent Findings Continuing studies on PCBs still reveal adverse associations on child cognition and behavior. Recent studies indicate PBDEs are neurotoxic, particularly for gestational exposures with decreased cognition and increased externalizing behaviors. Findings were suggestive for PBDEs and other behavioral domains and neuroimaging. OPFR studies provide suggestive evidence of reduced cognition and more behavioral problems. Summary Despite a lack of studies of PBBs, TBBPA, EH-TBB, and BEH-TEBP, and only two studies of HBCD, recent literature of PCBs, PBDEs, and OPFRs are suggestive of developmental neurotoxicity, calling for more studies of OPFRs.
Collapse
|
11
|
Goodman M, Li J, Flanders WD, Mahood D, Anthony LG, Zhang Q, LaKind JS. Epidemiology of PCBs and neurodevelopment: Systematic assessment of multiplicity and completeness of reporting. GLOBAL EPIDEMIOLOGY 2020. [DOI: 10.1016/j.gloepi.2020.100040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
12
|
Meltzer GY, Watkins BX, Vieira D, Zelikoff JT, Boden-Albala B. A Systematic Review of Environmental Health Outcomes in Selected American Indian and Alaska Native Populations. J Racial Ethn Health Disparities 2020; 7:698-739. [PMID: 31974734 DOI: 10.1007/s40615-020-00700-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/30/2019] [Accepted: 01/06/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Economic and social marginalization among American Indians and Alaska Natives (AI/ANs) results in higher chronic disease prevalence. Potential causal associations between toxic environmental exposures and adverse health outcomes within AI/AN communities are not well understood. OBJECTIVES This review examines epidemiological literature on exposure to toxicants and associated adverse health outcomes among AI/AN populations. METHODS PubMed, Embase, Cochrane, Environment Complete, Web of Science Plus, DART, and ToxLine were searched for English-language articles. The following data were extracted: lead author's last name, publication year, cohort name, study location, AI/AN tribe, study initiation and conclusion, sample size, primary characteristic, environmental exposure, health outcomes, risk estimates, and covariates. RESULTS About 31 articles on three types of environmental exposures met inclusion criteria: persistent organic pollutants (POPs), heavy metals, and open dumpsites. Of these, 17 addressed exposure to POPs, 10 heavy metal exposure, 2 exposure to both POPs and heavy metals, and 2 exposure to open dumpsites. Studies on the Mohawk Nation at Akwesasne; Yupik on St. Lawrence Island, Alaska; Navajo Nation; Gila River Indian Community; Cheyenne River Sioux; 197 Alaska Native villages; and 13 tribes in Arizona, Oklahoma, North Dakota, and South Dakota that participated in the Strong Heart Study support associations between toxicant exposure and various chronic conditions including cardiovascular conditions, reproductive abnormalities, cancer, autoimmune disorders, neurological deficits, and diabetes. DISCUSSION The complex interplay of environmental and social factors in disease etiology among AI/ANs is a product of externally imposed environmental exposures, systemic discrimination, and modifiable risk behaviors. The connection between environmental health disparities and adverse health outcomes indicates a need for further study.
Collapse
Affiliation(s)
- Gabriella Y Meltzer
- Department of Social and Behavioral Sciences, New York University School of Global Public Health, 715/719 Broadway, New York, NY, 10003, USA.
| | - Beverly-Xaviera Watkins
- Department of Epidemiology, New York University School of Global Public Health, 715/719 Broadway, New York, NY, 10003, USA
| | - Dorice Vieira
- Health Sciences Library, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Judith T Zelikoff
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Bernadette Boden-Albala
- Department of Population Health, University of California Irvine, 653 East Peltason Drive, Irvine, CA, 92697, USA
| |
Collapse
|
13
|
Sarron E, Pérot M, Barbezier N, Delayre-Orthez C, Gay-Quéheillard J, Anton PM. Early exposure to food contaminants reshapes maturation of the human brain-gut-microbiota axis. World J Gastroenterol 2020; 26:3145-3169. [PMID: 32684732 PMCID: PMC7336325 DOI: 10.3748/wjg.v26.i23.3145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/12/2020] [Accepted: 05/30/2020] [Indexed: 02/06/2023] Open
Abstract
Early childhood growth and development is conditioned by the consecutive events belonging to perinatal programming. This critical window of life will be very sensitive to any event altering programming of the main body functions. Programming of gut function, which is starting right after conception, relates to a very well-established series of cellular and molecular events associating all types of cells present in this organ, including neurons, endocrine and immune cells. At birth, this machinery continues to settle with the establishment of extra connection between enteric and other systemic systems and is partially under the control of gut microbiota activity, itself being under the densification and the diversification of microorganisms' population. As thus, any environmental factor interfering on this pre-established program may have a strong incidence on body functions. For all these reasons, pregnant women, fetuses and infants will be particularly susceptible to environmental factors and especially food contaminants. In this review, we will summarize the actual understanding of the consequences of repeated low-level exposure to major food contaminants on gut homeostasis settlement and on brain/gut axis communication considering the pivotal role played by the gut microbiota during the fetal and postnatal stages and the presumed consequences of these food toxicants on the individuals especially in relation with the risks of developing later in life non-communicable chronic diseases.
Collapse
Affiliation(s)
- Elodie Sarron
- Transformations and Agroressources (EA 7519), Institut Polytechnique UniLaSalle, Université d'Artois, Beauvais 60026, France
| | - Maxime Pérot
- Transformations and Agroressources (EA 7519), Institut Polytechnique UniLaSalle, Université d'Artois, Beauvais 60026, France
| | - Nicolas Barbezier
- Transformations and Agroressources (EA 7519), Institut Polytechnique UniLaSalle, Université d'Artois, Beauvais 60026, France
| | - Carine Delayre-Orthez
- Transformations and Agroressources (EA 7519), Institut Polytechnique UniLaSalle, Université d'Artois, Beauvais 60026, France
| | - Jérôme Gay-Quéheillard
- Périnatalité et risques Toxiques, UMR-I-01, Université de Picardie Jules Verne, Amiens 80000, France
| | - Pauline M Anton
- Transformations and Agroressources (EA 7519), Institut Polytechnique UniLaSalle, Université d'Artois, Beauvais 60026, France
| |
Collapse
|
14
|
Deepika D, Sharma RP, Schuhmacher M, Kumar V. An integrative translational framework for chemical induced neurotoxicity – a systematic review. Crit Rev Toxicol 2020; 50:424-438. [DOI: 10.1080/10408444.2020.1763253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Deepika Deepika
- Environmental Engineering Laboratory, Departament d’ Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Raju Prasad Sharma
- Environmental Engineering Laboratory, Departament d’ Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Departament d’ Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Vikas Kumar
- Environmental Engineering Laboratory, Departament d’ Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
- IISPV, Hospital Universitari Sant Joan de Reus, Universitat Rovira I Virgili, Reus, Spain
| |
Collapse
|
15
|
Nelson W, Wang YX, Sakwari G, Ding YB. Review of the Effects of Perinatal Exposure to Endocrine-Disrupting Chemicals in Animals and Humans. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 251:131-184. [PMID: 31129734 DOI: 10.1007/398_2019_30] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Maternal exposure to endocrine-disrupting chemicals (EDCs) is associated with long-term hormone-dependent effects that are sometimes not revealed until maturity, middle age, or adulthood. The aim of this study was to conduct descriptive reviews on animal experimental and human epidemiological evidence of the adverse health effects of in utero and lactational exposure to selected EDCs on the first generation and subsequent generation of the exposed offspring. PubMed, Web of Science, and Toxline databases were searched for relevant human and experimental animal studies on 29 October 29 2018. Search results were screened for relevance, and studies that met the inclusion criteria were evaluated and qualitative data extracted for analysis. The search yielded 73 relevant human and 113 animal studies. Results from studies show that in utero and lactational exposure to EDCs is associated with impairment of reproductive, immunologic, metabolic, neurobehavioral, and growth physiology of the exposed offspring up to the fourth generation without additional exposure. Little convergence is seen between animal experiments and human studies in terms of the reported adverse health effects which might be associated with methodologic challenges across the studies. Based on the available animal and human evidence, in utero and lactational exposure to EDCs is detrimental to the offspring. However, more human studies are necessary to clarify the toxicological and pathophysiological mechanisms underlying these effects.
Collapse
Affiliation(s)
- William Nelson
- Joint International Research Laboratory of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ying-Xiong Wang
- Joint International Research Laboratory of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Gloria Sakwari
- Department of Environmental and Occupational Health, School of Public Health and Social Sciences, Muhimbili University of Health and Allied Sciences, Dar es salaam, Tanzania
| | - Yu-Bin Ding
- Joint International Research Laboratory of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
16
|
Casadó L, Arrebola JP, Fontalba A, Muñoz A. Adverse effects of hexaclorobenzene exposure in children and adolescents. ENVIRONMENTAL RESEARCH 2019; 176:108421. [PMID: 31387069 DOI: 10.1016/j.envres.2019.03.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Hexachlorobenzene (HCB: C₆Cl₆) is a persistent, bioaccumulative chemical formerly used worldwide in pesticide mixtures but also produced as a by-product in the chemical and metallurgical industry. Despite current international restrictions in the use and production of HCB, the majority of the general population still show detectable levels of HCB, which raises concerns on the potential health implications of the exposure. OBJECTIVE To compile and synthesize the available scientific evidence regarding the adverse effects of exposure to HCB in children and adolescents. METHODS A review of the literature focused on the adverse effects of HCB exposure in children. Eligible studies were systematically screened from searches in Medline, Scopus and Ebsco-host databases. A total of 62 studies were finally included. RESULTS AND DISCUSSION In our search we found evidences of potential health effects linked to HCB exposure at different levels (e.g. neurotoxic, nephrotoxic, immunotoxic, hepatotoxic and toxicogenomic), although the conclusions are still contradictory. Further prospective research is needed, considering the special vulnerability of children and adolescent population as well as the ubiquity of the exposure.
Collapse
Affiliation(s)
- Lina Casadó
- Department of Nursing, Medical Anthropology Research Centre (MARC), University Rovira i Virgili, Tarragona, Spain.
| | - Juan Pedro Arrebola
- Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Hospitales Universitarios de Granada, Spain, CIBER de Epidemiología y Salud Pública (CIBERESP), Spain.
| | - Andrés Fontalba
- Northern Málaga Integrated Healthcare Area, Andalusian Health Service, Antequera, Spain, Department of Nursing, Medicine and Physiotherapy, Almeria University, Almería, Spain
| | - Araceli Muñoz
- School of Social Work, Food Observatory (ODELA), University of Barcelona, Barcelona, Spain, Medical Anthropology Research Centre (MARC), University Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
17
|
Berghuis SA, Roze E. Prenatal exposure to PCBs and neurological and sexual/pubertal development from birth to adolescence. Curr Probl Pediatr Adolesc Health Care 2019; 49:133-159. [PMID: 31147261 DOI: 10.1016/j.cppeds.2019.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Several chemical compounds are resistant to degradation and end up in the food chain. One group of these chemicals is polychlorinated biphenyls (PCBs) which are used as flame retardants and plasticizers. Although PCBs were banned several decades ago, PCBs are still found in environmental media, including in the body of humans. PCBs are transferred from mother to fetus via the placenta during pregnancy. Considering that the prenatal period is a sensitive period during which essential developmental processes take place, exposure to environmental chemicals might have considerable and permanent consequences for outcomes in later life. The aim of this review is to provide an update on the latest insights on the effects of prenatal exposure to PCBs on neurological, sexual and pubertal development in children. We give an overview of recent literature, and discuss it in the light of the findings in a unique Dutch birth cohort, with data on both neurological and pubertal development into adolescence. The findings in the studies included in this review, together with the findings in the Dutch cohort, demonstrate that prenatal exposure to PCBs can interfere with normal child development, not only during the perinatal period, but up to and including adolescence. Higher prenatal exposure to PCBs was found to be both negatively and positively associated with neurodevelopmental outcomes. Regarding pubertal development, higher prenatal PCB exposure was found to be associated with more advanced pubertal development, also in the Dutch cohort, whereas other studies also found delayed pubertal development. These findings raise concern regarding the effects of man-made chemical compounds on child development. They further contribute to the awareness of how environmental chemical compounds can interfere with child development and negatively influence healthy ageing.
Collapse
Affiliation(s)
- Sietske Annette Berghuis
- Division of Neonatology, Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30.001, 9713 GZ, Groningen, the Netherlands.
| | - Elise Roze
- Division of Neonatology, Department of Pediatrics, Wilhelmina Children's Hospital, University of Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
18
|
Prenatal exposure to organohalogen compounds and children’s mental and motor development at 18 and 30 months of age. Neurotoxicology 2019; 72:6-14. [DOI: 10.1016/j.neuro.2019.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/05/2019] [Accepted: 01/16/2019] [Indexed: 11/21/2022]
|
19
|
Haug LS, Sakhi AK, Cequier E, Casas M, Maitre L, Basagana X, Andrusaityte S, Chalkiadaki G, Chatzi L, Coen M, de Bont J, Dedele A, Ferrand J, Grazuleviciene R, Gonzalez JR, Gutzkow KB, Keun H, McEachan R, Meltzer HM, Petraviciene I, Robinson O, Saulnier PJ, Slama R, Sunyer J, Urquiza J, Vafeiadi M, Wright J, Vrijheid M, Thomsen C. In-utero and childhood chemical exposome in six European mother-child cohorts. ENVIRONMENT INTERNATIONAL 2018; 121:751-763. [PMID: 30326459 DOI: 10.1016/j.envint.2018.09.056] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/26/2018] [Accepted: 09/30/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Harmonized data describing simultaneous exposure to a large number of environmental contaminants in-utero and during childhood is currently very limited. OBJECTIVES To characterize concentrations of a large number of environmental contaminants in pregnant women from Europe and their children, based on chemical analysis of biological samples from mother-child pairs. METHODS We relied on the Early-Life Exposome project, HELIX, a collaborative project across six established population-based birth cohort studies in Europe. In 1301 subjects, biomarkers of exposure to 45 contaminants (i.e. organochlorine compounds, polybrominated diphenyl ethers, per- and polyfluoroalkyl substances, toxic and essential elements, phthalate metabolites, environmental phenols, organophosphate pesticide metabolites and cotinine) were measured in biological samples from children (6-12 years) and their mothers during pregnancy, using highly sensitive biomonitoring methods. RESULTS Most of the exposure biomarkers had high detection frequencies in mothers (35 out of 45 biomarkers with >90% detected) and children (33 out of 45 biomarkers with >90% detected). Concentrations were significantly different between cohorts for all compounds, and were generally higher in maternal compared to children samples. For most of the persistent compounds the correlations between maternal and child concentrations were moderate to high (Spearman Rho > 0.35), while for most non-persistent compounds correlations were considerably lower (Spearman Rho < 0.15). For mercury, PFOS and PFOA a considerable proportion of the samples of both mothers and their children exceeded the HBM I value established by The Human Biomonitoring Commission of the German Federal Environment Agency. DISCUSSION Although not based on a representative sample, our study suggests that children across Europe are exposed to a wide range of environmental contaminants in fetal life and childhood including many with potential adverse effects. For values exceeding the HBM I value identification of specific sources of exposure and reducing exposure in an adequate way is recommended. Considerable variability in this "chemical exposome" was seen between cohorts, showing that place of residence is a strong determinant of one's personal exposome. This extensive dataset comprising >100,000 concentrations of environmental contaminants in mother-child pairs forms a unique possibility for conducting epidemiological studies using an exposome approach.
Collapse
Affiliation(s)
| | | | | | - Maribel Casas
- ISGlobal, Institute for Global Health, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Léa Maitre
- ISGlobal, Institute for Global Health, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Xavier Basagana
- ISGlobal, Institute for Global Health, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Sandra Andrusaityte
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | | | - Leda Chatzi
- Department of Social Medicine, University of Crete, Greece; Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA; Department of Genetics & Cell Biology, Maastricht University, Maastricht, the Netherlands
| | - Muireann Coen
- Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, UK; Discovery Safety, Drug Safety and Metabolism, AstraZeneca, Cambridge, UK
| | - Jeroen de Bont
- ISGlobal, Institute for Global Health, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Audrius Dedele
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Joane Ferrand
- Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Inserm, CNRS, University Grenoble Alpes, Institute of Advanced Biosciences, Joint research center (U1209), La Tronche, Grenoble, France; CHU Grenoble Alpes, CIC Pédiatrique, Grenoble, France
| | | | | | | | - Hector Keun
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, UK
| | | | | | - Inga Petraviciene
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Oliver Robinson
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, UK
| | - Pierre-Jean Saulnier
- Clinical Investigation Center CIC1402, Inserm, CHU Poitiers, School of Medicine, University of Poitiers, Poitiers, France
| | - Rémy Slama
- Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Inserm, CNRS, University Grenoble Alpes, Institute of Advanced Biosciences, Joint research center (U1209), La Tronche, Grenoble, France
| | - Jordi Sunyer
- ISGlobal, Institute for Global Health, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - José Urquiza
- ISGlobal, Institute for Global Health, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | | | - John Wright
- Bradford Institute for Health Research, Bradford, UK
| | - Martine Vrijheid
- ISGlobal, Institute for Global Health, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | | |
Collapse
|
20
|
Junqué E, Garí M, Llull RM, Grimalt JO. Drivers of the accumulation of mercury and organochlorine pollutants in Mediterranean lean fish and dietary significance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:170-180. [PMID: 29627539 DOI: 10.1016/j.scitotenv.2018.03.335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/09/2018] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
An integrated assessment of lean fish of commercial value as Hg and organochlorine compound source into the population of the Balearic Islands were reported. Dependences between pollutant concentrations, trophic level, fish species, specimen weight and physical-chemical properties were evaluated. Hg and total DDTs showed highest variability between fish species whereas PCBs and HCB displayed more constant median values. The organochlorine compounds found in highest concentrations were those with highest hydrophobicity, consistently with their higher bioaccumulation potential. These pollutant concentrations were higher in Mediterranean than Atlantic fish. Higher median total DDT and PCBs concentrations were also observed in the third than the second trophic level species. The observed concentrations were below the threshold recommended by the EU for human consumption (75ng/g wet weight). The Hg concentrations were higher in Mediterranean than Atlantic fish, with average values of 1.5μg/g ww and 0.43μg/g ww, respectively. Forty-one percent of the specimens from the Mediterranean and 25% of dusky grouper specimens from the Atlantic Ocean showed Hg concentrations above the EU recommended limits for human consumption, either 0.5μg/g ww or 1μg/g ww. In the third trophic level, a significant dependence between median Hg concentrations and weight of each studied species was observed, which remained significant in specimen weight correlations. Independent species correlations of Hg concentrations vs individual weight generally showed higher concentrations at higher weight. Weight/size of the individuals was therefore an important factor for Hg accumulation but the trend was modulated by a species effect. Extrapolation of the observed Hg concentrations in Mediterranean fish to Provisional Tolerable Weekly Intakes (PTWIs) showed higher intakes than the thresholds recommended by EFSA for adults and children, 110% and 140%, respectively. The estimated PTWIs for MeHg corresponded to 310% and 400% of the recommended threshold values. The PTWI values for organochlorine compounds were lower than those recommended.
Collapse
Affiliation(s)
- Eva Junqué
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Catalonia, Spain
| | - Mercè Garí
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Catalonia, Spain; Department of Earth and Ocean Dynamics, Universitat de Barcelona (UB), Barcelona, Catalonia, Spain
| | - Rosa Maria Llull
- General Direction of Public Health and Consumption, Ministry of Health, Family and Social Welfare, Government of the Balearic Islands, Palma, Mallorca, Spain
| | - Joan O Grimalt
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Catalonia, Spain.
| |
Collapse
|
21
|
Association between prenatal exposure to organochlorine pesticides and the mental and psychomotor development of infants at ages 6 and 18 months: The Hokkaido Study on Environment and Children's Health. Neurotoxicology 2017; 69:201-208. [PMID: 29203293 DOI: 10.1016/j.neuro.2017.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 02/06/2023]
Abstract
Organochlorine pesticides (OCPs) are environmental contaminants that persist in the environment and bioaccumulate through the food chain in humans and animals. Although previous studies have shown an association between prenatal OCP exposure and subsequent neurodevelopment, the levels of OCPs included in these studies were inconsistent. A hospital-based prospective birth cohort study was conducted to examine the associations between prenatal exposure to relatively low levels of OCPs and neurodevelopment in infants at 6 (n=164) and 18 (n=115)months of age. Blood samples were analyzed using gas chromatography/mass spectrometry techniques to quantify 29 OCPs. The Bayley Scales of Infant Development 2nd edition (BSID-II) was used to assess the Mental and Psychomotor Developmental Index. After controlling for confounders, we found an inverse association between prenatal exposure to cis-heptachlor epoxide and the Mental Developmental Index at 18 months of age. Furthermore, infants born to mothers with prenatal concentrations of cis-heptachlor epoxide in the highest quartile had Mental Developmental Index scores -9.8 (95% confidence interval: -16.4, -3.1) lower than that recorded for infants born to mothers with concentrations of cis-heptachlor epoxide in the first quartile (p for trend <0.01). These results support the hypothesis that prenatal exposure to OCPs, especially cis-heptachlor epoxide, may have an adverse effect on the neurodevelopment of infants at specific ages, even at low levels.
Collapse
|
22
|
Kim HM, Youn CH, Ko HJ, Lee SH, Lee YM. The Relationship between the Blood Level of Persistent Organic Pollutants and Common Gastrointestinal Symptoms. Korean J Fam Med 2017; 38:233-238. [PMID: 28775815 PMCID: PMC5541173 DOI: 10.4082/kjfm.2017.38.4.233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 09/01/2016] [Indexed: 01/14/2023] Open
Abstract
Background Persistent organic pollutants (POPs) are toxic materials that cannot be broken down naturally and that easily accumulate in the body. Although several studies have attempted to uncover the effects of POPs on the endocrine and nervous systems and on cancer, few focus on the relationship between low-dose POPs and public health. Here, we attempt to determine the relationship between the level of POPs and common gastrointestinal symptoms, including abdominal discomfort, diarrhea, and constipation. Methods We recruited 121 subjects who visited Kyungpook National University Medical Center for health screening. Plasma concentrations were evaluated for 40 kinds of POPs including 17 types of polychlorinated biphenyls (PCBs) and 23 types of organochlorine pesticides (OCP). Furthermore, the Korean version of the Rome III criteria was used to identify gastrointestinal symptoms. Results Based on our results, abdominal discomfort showed an inverse relationship with several PCBs and an inverted U-shaped relationship with several other OCPs including pp-DDD and pp-DDT. The effects of pp-DDD and pp-DDT on abdominal discomfort were similar to those of OCPs on obesity and metabolic syndrome. Conclusion Our results suggest that mild and unspecified gastrointestinal symptoms with no clear causes could be related to POP levels.
Collapse
Affiliation(s)
- Hyo-Min Kim
- Department of Family Medicine, Kyungpook National University Medical Center, Daegu, Korea
| | - Chang-Ho Youn
- Department of Family Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Hae Jin Ko
- Department of Family Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Seon-Hwa Lee
- Graduate School of Public Health, Kyungpook National University, Daegu, Korea
| | - Yu-Mi Lee
- Regional Cardiocerebrovascular Center, Kyungpook National University Hospital, Daegu, Korea
| |
Collapse
|
23
|
Gascon M, Guxens M, Vrijheid M, Torrent M, Ibarluzea J, Fano E, Llop S, Ballester F, Fernández MF, Tardón A, Fernández-Somoano A, Sunyer J. The INMA—INfancia y Medio Ambiente—(Environment and Childhood) project: More than 10 years contributing to environmental and neuropsychological research. Int J Hyg Environ Health 2017; 220:647-658. [DOI: 10.1016/j.ijheh.2017.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/27/2017] [Accepted: 02/27/2017] [Indexed: 12/01/2022]
|
24
|
Caspersen IH, Kvalem HE, Haugen M, Brantsæter AL, Meltzer HM, Alexander J, Thomsen C, Frøshaug M, Bremnes NMB, Broadwell SL, Granum B, Kogevinas M, Knutsen HK. Determinants of plasma PCB, brominated flame retardants, and organochlorine pesticides in pregnant women and 3 year old children in The Norwegian Mother and Child Cohort Study. ENVIRONMENTAL RESEARCH 2016; 146:136-44. [PMID: 26749444 DOI: 10.1016/j.envres.2015.12.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/25/2015] [Accepted: 12/18/2015] [Indexed: 05/26/2023]
Abstract
BACKGROUND Exposure to persistent organic pollutants (POPs) during prenatal and postnatal life has been extensively studied in relation to adverse health effects in children. OBJECTIVES The aim was to identify determinants of the concentrations of polychlorinated biphenyls (PCBs), brominated flame retardants (polybrominated diphenyl ethers, PBDEs; polybrominated biphenyl, PBB), and organochlorine pesticides (OCPs) in blood samples from pregnant women and children in The Norwegian Mother and Child Cohort Study (MoBa). METHODS Blood samples were collected from two independent subsamples within MoBa; a group of women (n=96) enrolled in mid-pregnancy during the years 2002-2008 and a group of 3 year old children (n=99) participating during 2010-2011. PCB congeners (74, 99, 138, 153, 180, 170, 194, 209, 105, 114, 118, 156, 157, 167, and 189), brominated flame retardants (PBDE-28, 47, 99, 100, 153, 154, and PBB-153), as well as the OCPs hexachlorobenzene (HCB), oxychlordane, 4,4'dichlorodiphenyltrichloroethane (DDT), and 4,4'dichlorodiphenyldichloroethylene (DDE) were measured in both pregnant women and children. RESULTS Age, low parity, and low pre-pregnant BMI were the most important determinants of increased plasma concentrations of POPs in pregnant women. In 3 year old children, prolonged breastfeeding duration was a major determinant of increased POP concentrations. Estimated dietary exposure to PCBs during pregnancy was positively associated with plasma concentrations in 3 year old children, but not in pregnant women. Plasma concentrations were approximately 40% higher in children compared to pregnant women. CONCLUSIONS Several factors associated with exposure and toxicokinetics, i.e. accumulation, excretion and transfer via breastmilk of POPs were the main predictors of POP levels in pregnant women and children. Diet, which is the main exposure source for these compounds in the general population, was found to predict PCB levels only among children. For the PBDEs, for which non-dietary sources are more important, toxicokinetic factors appeared to have less predictive impact.
Collapse
Affiliation(s)
| | - Helen Engelstad Kvalem
- Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, NO-0403 Oslo, Norway; Bjørknes College, Lovisenberggata 13, NO-0456 Oslo, Norway
| | - Margaretha Haugen
- Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, NO-0403 Oslo, Norway
| | - Anne Lise Brantsæter
- Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, NO-0403 Oslo, Norway
| | | | - Jan Alexander
- Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, NO-0403 Oslo, Norway
| | - Cathrine Thomsen
- Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, NO-0403 Oslo, Norway
| | - May Frøshaug
- Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, NO-0403 Oslo, Norway
| | | | | | - Berit Granum
- Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, NO-0403 Oslo, Norway
| | - Manolis Kogevinas
- Centre for Research in Environmental Epidemiology (CREAL), Doctor Aiguader 88, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | | |
Collapse
|
25
|
Kim HM, Youn CH, Ko HJ, Lee SH, Lee YM. The Relationship between the Blood Level of Persistent Organic Pollutants and Common Gastrointestinal Symptoms. Korean J Fam Med 2016; 37:267-72. [PMID: 27688859 PMCID: PMC5039117 DOI: 10.4082/kjfm.2016.37.5.267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 03/27/2016] [Accepted: 05/19/2016] [Indexed: 11/03/2022] Open
Affiliation(s)
- Hyo-Min Kim
- Department of Family Medicine, Kyungpook National University Hospital, Daegu, Korea
| | - Chang-Ho Youn
- Department of Family Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Hae Jin Ko
- Department of Family Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Seon-Hwa Lee
- Graduate School of Public Health, Kyungpook National University, Daegu, Korea
| | - Yu-Mi Lee
- Regional Cardiocerebrovascular Center, Kyungpook National University Hospital, Daegu, Korea
| |
Collapse
|
26
|
Fu J, Shi Q, Song X, Xia X, Su C, Liu Z, Song E, Song Y. Tetrachlorobenzoquinone exhibits neurotoxicity by inducing inflammatory responses through ROS-mediated IKK/IκB/NF-κB signaling. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 41:241-250. [PMID: 26745386 DOI: 10.1016/j.etap.2015.12.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 06/05/2023]
Abstract
Tetrachlorobenzoquinone (TCBQ) is a joint metabolite of persistent organic pollutants (POPs), hexachlorobenzene (HCB) and pentachlorophenol (PCP). Previous studies have been reported that TCBQ contributes to acute hepatic damage due to its pro-oxidative nature. In the current study, TCBQ showed the highest capacity on the cytotoxicity, ROS formation and inflammatory cytokines release among four compounds, i.e., HCB, PCP, tetrachlorohydroquinone (TCHQ, reduced form of TCBQ) and TCBQ, in PC 12 cells. Further mechanistic study illustrated TCBQ activates nuclear factor-kappa B (NF-κB) signaling. The activation of NF-κB was identified by measuring the protein expressions of inhibitor of nuclear factor kappa-B kinase (IKK) α/β, p-IKKα/β, an inhibitor of NF-κB (IκB) α, p-IκBα, NF-κB (p65) and p-p65. The translocation of NF-κB was assessed by Western blotting of p65 in nuclear/cytosolic fractions, electrophoretic mobility shift assay (EMSA) and luciferase reporter gene assay. In addition, TCBQ significantly induced protein and mRNA expressions of inflammatory cytokines and mediators, such as interleukin-1 beta (IL-1β), IL-6, tumor necrosis factor-alpha (TNF-α), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and the production of nitric oxide (NO) and prostaglandin E2 (PGE2). Pyrrolidine dithiocarbamate (PDTC), a specific NF-κB inhibitor inhibited these effects efficiently, further suggested TCBQ-induced inflammatory responses involve NF-κB signaling. Moreover, antioxidants, i.e., N-acetyl-l-cysteine (NAC), Vitamin E and curcumin, ameliorated TCBQ-induced ROS generation as well as the activation of NF-κB, which implied that ROS serve as the upstream molecule of NF-κB signaling. In summary, TCBQ exhibits a neurotoxic effect by inducing oxidative stress-mediated inflammatory responses via the activation of IKK/IκB/NF-κB pathway in PC12 cells.
Collapse
Affiliation(s)
- Juanli Fu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Qiong Shi
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Xiufang Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Xiaomin Xia
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Chuanyang Su
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Zixuan Liu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Erqun Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Yang Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Beibei, Chongqing 400715, People's Republic of China.
| |
Collapse
|
27
|
Coullery RP, Ferrari ME, Rosso SB. Neuronal development and axon growth are altered by glyphosate through a WNT non-canonical signaling pathway. Neurotoxicology 2016; 52:150-61. [PMID: 26688330 DOI: 10.1016/j.neuro.2015.12.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/04/2015] [Accepted: 12/04/2015] [Indexed: 01/25/2023]
Abstract
The growth and morphological differentiation of neurons are critical events in the establishment of proper neuronal connectivity and functioning. The developing nervous system is highly susceptible to damage caused by exposure to environmental contaminants. Glyphosate-containing herbicides are the most used agrochemicals in the world, particularly on genetically modified plants. Previous studies have demonstrated that glyphosate induces neurotoxicity in mammals. Therefore, its action mechanism on the nervous system needs to be determined. In this study, we report about impaired neuronal development caused by glyphosate exposure. Particularly, we observed that the initial axonal differentiation and growth of cultured neurons is affected by glyphosate since most treated cells remained undifferentiated after 1 day in culture. Although they polarized at 2 days in vitro, they elicited shorter and unbranched axons and they also developed less complex dendritic arbors compared to controls. To go further, we attempted to identify the cellular mechanism by which glyphosate affected neuronal morphology. Biochemical approaches revealed that glyphosate led to a decrease in Wnt5a level, a key factor for the initial neurite development and maturation, as well as inducing a down-regulation of CaMKII activity. This data suggests that the morphological defects would likely be a consequence of the decrease in both Wnt5a expression and CaMKII activity induced by glyphosate. Additionally, these changes might be reflected in a subsequent neuronal dysfunction. Therefore, our findings highlight the importance of establishing rigorous control on the use of glyphosate-based herbicides in order to protect mammals' health.
Collapse
Affiliation(s)
- Romina P Coullery
- Experimental Toxicology Laboratory, School of Biochemical and Pharmaceutical Sciences, National University of Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - María E Ferrari
- Experimental Toxicology Laboratory, School of Biochemical and Pharmaceutical Sciences, National University of Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Silvana B Rosso
- Experimental Toxicology Laboratory, School of Biochemical and Pharmaceutical Sciences, National University of Rosario, Suipacha 531, S2002LRK Rosario, Argentina.
| |
Collapse
|
28
|
Fernández-Rodríguez M, Arrebola JP, Artacho-Cordón F, Amaya E, Aragones N, Llorca J, Perez-Gomez B, Ardanaz E, Kogevinas M, Castano-Vinyals G, Pollan M, Olea N. Levels and predictors of persistent organic pollutants in an adult population from four Spanish regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 538:152-61. [PMID: 26298258 DOI: 10.1016/j.scitotenv.2015.07.162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 07/31/2015] [Accepted: 07/31/2015] [Indexed: 05/26/2023]
Abstract
This research aimed to assess serum concentrations of a group of persistent organic pollutants (POPs) in a sample of adults recruited in four different regions from Spain and to assess socio-demographic, dietary, and lifestyle predictors of the exposure. The study population comprised 312 healthy adults selected from among controls recruited in the MCC-Spain multicase-control study. Study variables were collected using standardized questionnaires, and pollutants were analyzed by means of gas chromatography with electron capture detection. Multivariable analyses were performed to identify predictors of log-transformed pollutant concentrations, using combined backward and forward stepwise multiple linear regression models. Detection rates ranged from 89.1% (hexachlorobenzene, HCB) to 93.6% (Polychlorinated biphenyl-153 [PCB-153]); p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) showed the highest median concentrations (1.04ng/ml), while HCB showed the lowest (0.24ng/ml). In the multivariable models, age was positively associated with HCB, p,p'-DDE, and PCB-180. BMI was associated positively with p,p'-DDE but negatively with PCB-138. Total accumulated time residing in an urban area was positively associated with PCB-153 concentrations. The women showed higher HCB and lower p,p'-DDE concentrations versus the men. Notably, POP exposure in our study population was inversely associated with the breastfeeding received by participants and with the number of pregnancies of their mothers but was not related to the participants' history of breastfeeding their children or parity. Smoking was negatively associated with HCB and PCB-153 concentrations. Consumption of fatty foods, including blue fish, was in general positively associated with POP levels. Although POP environmental levels are declining worldwide, there is a need for the continuous monitoring of human exposure in the general population. The results of the present study confirm previous findings and point to novel predictors of long-term exposure to persistent organic pollutants.
Collapse
Affiliation(s)
- M Fernández-Rodríguez
- Instituto de Investigación Biosanitaria ibs.Granada, University of Granada, San Cecilio University Hospital, Granada, Spain.
| | - J P Arrebola
- Instituto de Investigación Biosanitaria ibs.Granada, University of Granada, San Cecilio University Hospital, Granada, Spain; Oncology Unit, Virgen de las Nieves University Hospital, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - F Artacho-Cordón
- Instituto de Investigación Biosanitaria ibs.Granada, University of Granada, San Cecilio University Hospital, Granada, Spain
| | - E Amaya
- Instituto de Investigación Biosanitaria ibs.Granada, University of Granada, San Cecilio University Hospital, Granada, Spain
| | - N Aragones
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Cancer Epidemiology Unit, National Center for Epidemiology, Instituto de Salud Carlos III, Madrid, Spain; Cancer Epidemiology Research Group, Oncology and Hematology Area, IIS Puerta de Hierro (IDIPHIM), Majadahonda, Madrid, Spain
| | - J Llorca
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Universidad de Cantabria-IDIVAL, Santander, Spain
| | - B Perez-Gomez
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Cancer Epidemiology Unit, National Center for Epidemiology, Instituto de Salud Carlos III, Madrid, Spain; Cancer Epidemiology Research Group, Oncology and Hematology Area, IIS Puerta de Hierro (IDIPHIM), Majadahonda, Madrid, Spain
| | - E Ardanaz
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Navarra Public Health Institute, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA) Pamplona, Spain
| | - M Kogevinas
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
| | - G Castano-Vinyals
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
| | - M Pollan
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Cancer Epidemiology Unit, National Center for Epidemiology, Instituto de Salud Carlos III, Madrid, Spain; Cancer Epidemiology Research Group, Oncology and Hematology Area, IIS Puerta de Hierro (IDIPHIM), Majadahonda, Madrid, Spain
| | - N Olea
- Instituto de Investigación Biosanitaria ibs.Granada, University of Granada, San Cecilio University Hospital, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
29
|
Šovčíková E, Wimmerová S, Strémy M, Kotianová J, Loffredo CA, Murínová ĽP, Chovancová J, Čonka K, Lancz K, Trnovec T. Simple reaction time in 8-9-year old children environmentally exposed to PCBs. Neurotoxicology 2015; 51:138-44. [PMID: 26480857 DOI: 10.1016/j.neuro.2015.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 10/05/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
Abstract
Simple reaction time (SRT) has been studied in children exposed to polychlorinated biphenyls (PCBs), with variable results. In the current work we examined SRT in 146 boys and 161 girls, aged 8.53 ± 0.65 years (mean ± SD), exposed to PCBs in the environment of eastern Slovakia. We divided the children into tertiles with regard to increasing PCB serum concentration. The mean ± SEM serum concentration of the sum of 15 PCB congeners was 191.15 ± 5.39, 419.23 ± 8.47, and 1315.12 ± 92.57 ng/g lipids in children of the first, second, and third tertiles, respectively. We created probability distribution plots for each child from their multiple trials of the SRT testing. We fitted response time distributions from all valid trials with the ex-Gaussian function, a convolution of a normal and an additional exponential function, providing estimates of three independent parameters μ, σ, and τ. μ is the mean of the normal component, σ is the standard deviation of the normal component, and τ is the mean of the exponential component. Group response time distributions were calculated using the Vincent averaging technique. A Q-Q plot comparing probability distribution of the first vs. third tertile indicated that deviation of the quantiles of the latter tertile from those of the former begins at the 40th percentile and does not show a positive acceleration. This was confirmed in comparison of the ex-Gaussian parameters of these two tertiles adjusted for sex, age, Raven IQ of the child, mother's and father's education, behavior at home and school, and BMI: the results showed that the parameters μ and τ significantly (p ≤ 0.05) increased with PCB exposure. Similar increases of the ex-Gaussian parameter τ in children suffering from ADHD have been previously reported and interpreted as intermittent attentional lapses, but were not seen in our cohort. Our study has confirmed that environmental exposure of children to PCBs is associated with prolongation of simple reaction time reflecting impairment of cognitive functions.
Collapse
Affiliation(s)
- Eva Šovčíková
- Department of Environmental Medicine, Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia
| | - Soňa Wimmerová
- Institute of Biophysics, Informatics and Biostatistics, Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia
| | - Maximilián Strémy
- Research Centre of Progressive Technologies, Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, Hajdóczyho 1, 91724 Trnava, Slovakia
| | - Janette Kotianová
- Institute of Applied Informatics, Automatization and Mechatronics, Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, Hajdóczyho 1, 91724 Trnava, Slovakia
| | - Christopher A Loffredo
- Department of Oncology & Department of Biostatistics, Georgetown University, Washington, DC 20057, USA
| | | | - Jana Chovancová
- Department of Toxic Organic Pollutants, Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia
| | - Kamil Čonka
- Department of Toxic Organic Pollutants, Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia
| | - Kinga Lancz
- Department of Environmental Medicine, Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia
| | - Tomáš Trnovec
- Department of Environmental Medicine, Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia.
| |
Collapse
|
30
|
Robinson O, Basagaña X, Agier L, de Castro M, Hernandez-Ferrer C, Gonzalez JR, Grimalt JO, Nieuwenhuijsen M, Sunyer J, Slama R, Vrijheid M. The Pregnancy Exposome: Multiple Environmental Exposures in the INMA-Sabadell Birth Cohort. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:10632-41. [PMID: 26168307 DOI: 10.1021/acs.est.5b01782] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The "exposome" is defined as "the totality of human environmental exposures from conception onward, complementing the genome" and its holistic approach may advance understanding of disease etiology. We aimed to describe the correlation structure of the exposome during pregnancy to better understand the relationships between and within families of exposure and to develop analytical tools appropriate to exposome data. Estimates on 81 environmental exposures of current health concern were obtained for 728 women enrolled in The INMA (INfancia y Medio Ambiente) birth cohort, in Sabadell, Spain, using biomonitoring, geospatial modeling, remote sensors, and questionnaires. Pair-wise Pearson's and polychoric correlations were calculated and principal components were derived. The median absolute correlation across all exposures was 0.06 (5th-95th centiles, 0.01-0.54). There were strong levels of correlation within families of exposure (median = 0.45, 5th-95th centiles, 0.07-0.85). Nine exposures (11%) had a correlation higher than 0.5 with at least one exposure outside their exposure family. Effectively all the variance in the data set (99.5%) was explained by 40 principal components. Future exposome studies should interpret exposure effects in light of their correlations to other exposures. The weak to moderate correlation observed between exposure families will permit adjustment for confounding in future exposome studies.
Collapse
Affiliation(s)
- Oliver Robinson
- Centre for Research in Environmental Epidemiology (CREAL) , Doctor Aiguader, 88, E-08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF) , Plaça de la Mercè, 10-12, 08002, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP) , Casanova, 143, 5 Planta, 08036, Barcelona, Spain
| | - Xavier Basagaña
- Centre for Research in Environmental Epidemiology (CREAL) , Doctor Aiguader, 88, E-08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF) , Plaça de la Mercè, 10-12, 08002, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP) , Casanova, 143, 5 Planta, 08036, Barcelona, Spain
| | - Lydiane Agier
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Inserm and Univ. Grenoble-Alpes, U823 (IAB) Joint Research Center, Grenoble, France
| | - Montserrat de Castro
- Centre for Research in Environmental Epidemiology (CREAL) , Doctor Aiguader, 88, E-08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF) , Plaça de la Mercè, 10-12, 08002, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP) , Casanova, 143, 5 Planta, 08036, Barcelona, Spain
| | - Carles Hernandez-Ferrer
- Centre for Research in Environmental Epidemiology (CREAL) , Doctor Aiguader, 88, E-08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF) , Plaça de la Mercè, 10-12, 08002, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP) , Casanova, 143, 5 Planta, 08036, Barcelona, Spain
| | - Juan R Gonzalez
- Centre for Research in Environmental Epidemiology (CREAL) , Doctor Aiguader, 88, E-08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF) , Plaça de la Mercè, 10-12, 08002, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP) , Casanova, 143, 5 Planta, 08036, Barcelona, Spain
| | - Joan O Grimalt
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research , Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Mark Nieuwenhuijsen
- Centre for Research in Environmental Epidemiology (CREAL) , Doctor Aiguader, 88, E-08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF) , Plaça de la Mercè, 10-12, 08002, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP) , Casanova, 143, 5 Planta, 08036, Barcelona, Spain
| | - Jordi Sunyer
- Centre for Research in Environmental Epidemiology (CREAL) , Doctor Aiguader, 88, E-08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF) , Plaça de la Mercè, 10-12, 08002, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP) , Casanova, 143, 5 Planta, 08036, Barcelona, Spain
| | - Rémy Slama
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Inserm and Univ. Grenoble-Alpes, U823 (IAB) Joint Research Center, Grenoble, France
| | - Martine Vrijheid
- Centre for Research in Environmental Epidemiology (CREAL) , Doctor Aiguader, 88, E-08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF) , Plaça de la Mercè, 10-12, 08002, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP) , Casanova, 143, 5 Planta, 08036, Barcelona, Spain
| |
Collapse
|
31
|
Zhang X, Hong Q, Yang L, Zhang M, Guo X, Chi X, Tong M. PCB1254 exposure contributes to the abnormalities of optomotor responses and influence of the photoreceptor cell development in zebrafish larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 118:133-138. [PMID: 25938693 DOI: 10.1016/j.ecoenv.2015.04.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/18/2015] [Accepted: 04/21/2015] [Indexed: 06/04/2023]
Abstract
Polychlorinated biphenyls (PCBs), a group of highly toxic environmental pollutants, have been report to influence the visual system development in children. However, the underlying mechanism is unclear. The study was aim to investigate the effects of continuous PCBs exposure on optomotor response (OMR) and retinal photoreceptor cell development-related gene expression in zebrafish larvae. The fertilized zebrafish embryos were exposed to PCBs at concentrations of 0.125, 0.25, 0.5, and 1mg/L until 7 days post-fertilization. Control groups with blank and 0.01% methanol were also prepared. OMR test was used to detect the visual behavior. The mRNA expression of the CRX, RHO, SWS1, and SWS2 was assessed by the Quantitative Real-Time PCR. The OMR test showed that the visual behavior of the larvae was most sensitive when the grating spatial frequency was 0.20LP/mm and the moving speed was 25cm/s. Moreover, the proportion of positively swimming fish was significantly reduced in the 0.5 and 1mg/L PCB1254 treatment group (P<0.05) compared with the controls. In addition, the expression of SWS2 was significantly down-regulated in all PCB1254 treatment groups (P<0.05), whereas the decreased expression of the CRX, RHO and SWS1 was found in the 0.5 and 1mg/L PCB1254 groups (P<0.05). This is the first report to demonstrate that continue exposure of zebrafish larvae to PCBs causes photoreceptor cell development-related gene expression changes that lead to OMR behavioral alterations. Analysis of these visual behavioral paradigms may be useful in predicting the adverse effects of toxicants on visual function in fish.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Pediatrics, Nanjing Medical University, NO.140, Hanzhong Road, Nanjing 210029, China; Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital of Nanjing Medical University, NO.123, Tianfei Road, Mochou Street, Nanjing 210004, China
| | - Qin Hong
- Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital of Nanjing Medical University, NO.123, Tianfei Road, Mochou Street, Nanjing 210004, China
| | - Lei Yang
- Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital of Nanjing Medical University, NO.123, Tianfei Road, Mochou Street, Nanjing 210004, China
| | - Min Zhang
- Department of Pediatrics, Nanjing Medical University, NO.140, Hanzhong Road, Nanjing 210029, China
| | - Xirong Guo
- Department of Pediatrics, Nanjing Medical University, NO.140, Hanzhong Road, Nanjing 210029, China; Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital of Nanjing Medical University, NO.123, Tianfei Road, Mochou Street, Nanjing 210004, China
| | - Xia Chi
- Department of Pediatrics, Nanjing Medical University, NO.140, Hanzhong Road, Nanjing 210029, China; Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital of Nanjing Medical University, NO.123, Tianfei Road, Mochou Street, Nanjing 210004, China.
| | - Meiling Tong
- Department of Pediatrics, Nanjing Medical University, NO.140, Hanzhong Road, Nanjing 210029, China; Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital of Nanjing Medical University, NO.123, Tianfei Road, Mochou Street, Nanjing 210004, China.
| |
Collapse
|
32
|
Kim JT, Son MH, Lee DH, Seong WJ, Han S, Chang YS. Partitioning behavior of heavy metals and persistent organic pollutants among feto-maternal bloods and tissues. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:7411-7422. [PMID: 26000703 DOI: 10.1021/es5051309] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Heavy metals and persistent organic pollutants (POPs), including Pb, Cd, T-Hg, MeHg, PCDD/Fs, PCBs, PBDEs, PCNs, and PBDD/Fs, were analyzed in 20 paired samples of cord blood, maternal blood, maternal urine, and placenta. The samples were collected from pregnant mothers and neonates from South Korea in 2010. The distribution of heavy metals among the samples varied with their physicochemical characteristics. The concentrations of Pb and Hg in the maternal and the cord blood samples were significantly correlated each other, implying efficient transplacental transport (TPT). Cd and Hg were accumulated in the placenta, forming protein conjugates, and T-Hg was higher in the cord blood samples than the maternal blood samples due to the binding affinity of Hg with fetal proteins. POPs generally showed the highest concentrations in the maternal serum samples, and the POPs levels in the cord serum and the placenta samples were dependent on the degree of halogenation. The TPT of POPs was seemingly related to lipoprotein transportation. Some PBDE congeners, however, showed their highest concentrations in the cord serum samples, suggesting an additional TPT mechanism. This is the first study to detect PCNs and PBDD/Fs in the cord serum samples, showing that the PCN levels were comparable to other POPs. According to the principal component analysis (PCA) results of the contaminant levels, POPs and heavy metals showed significantly different characteristics, whereas PBDEs had an intermediate attribute. Despite the limited number of participants, the comprehensive analysis of trace contaminants in the paired sample sets enabled us to infer the distribution and TPT mechanism of various contaminants.
Collapse
Affiliation(s)
- Jun-Tae Kim
- †School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea
| | - Min-Hui Son
- †School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea
| | - Duk-Hee Lee
- ‡School of Medicine, Kyungpook National University, Daegu, 790-842, Republic of Korea
| | - Won Joon Seong
- ‡School of Medicine, Kyungpook National University, Daegu, 790-842, Republic of Korea
| | - Seunghee Han
- §School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 500-712, Republic of Korea
| | - Yoon-Seok Chang
- †School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea
| |
Collapse
|
33
|
Haddad S, Ayotte P, Verner MA. Derivation of exposure factors for infant lactational exposure to persistent organic pollutants (POPs). Regul Toxicol Pharmacol 2015; 71:135-40. [DOI: 10.1016/j.yrtph.2014.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/05/2014] [Accepted: 12/06/2014] [Indexed: 12/01/2022]
|
34
|
Wang BL, Pang ST, Sun JP, Zhang XL, Li XL, Sun YG, Lu XM, Zhang Q. Levels of polychlorinated biphenyls in settled house dust from urban dwellings in China and their neurodevelopmental effects on preschool-aged children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 505:402-408. [PMID: 25461042 DOI: 10.1016/j.scitotenv.2014.10.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 10/08/2014] [Accepted: 10/08/2014] [Indexed: 06/04/2023]
Abstract
We investigated the levels of polychlorinated biphenyls (PCBs) in settled house dust (SHD) from urban dwellings with resident preschool-aged children in Nanjing, China. The possible neurodevelopmental effects of house-dust PCBs were also explored. SHD was collected from 114 urban houses. The levels of 39 PCB congeners were measured by gas chromatography-tandem mass spectrometry. The Child Behavior Checklist and the Gesell Development Inventory were used to evaluate the child's development. All 39 target congeners measured were detected. The mass percentage of di-PCBs was the highest at 47.8%, followed by tetra- and tri-PCBs at 16.8% and 13.0%, respectively. Spearman's rho correlation showed that di-, tri-, hexa-, hepta-, nona- and total PCBs were positively associated with somatic, thought problem and total problem scores (0.24<r<0.36). After dichotomization at the 75th percentile PCB concentration, we found that the higher PCB3, 6, 12, 25, 44, 71, 174 and 203 might increase the risk of certain behavior problems. Moreover, among the lower-chlorinated PCBs, PCB3 and PCB4 showed some risk of adaptive and gross motor abnormality, respectively. In conclusion, PCBs (especially lower-chlorinated PCBs) are ubiquitous in urban SHD in Nanjing and may carry a risk of certain developmental abnormalities. The potential adverse effects of postnatal exposure to PCBs on the behavior and neurodevelopment of preschool-aged children need to be studied in larger follow-up studies.
Collapse
Affiliation(s)
- Bing-Ling Wang
- Qingdao Centers for Disease Control and Prevention, Qingdao 266033, China.
| | - Shu-Tao Pang
- Qingdao Centers for Disease Control and Prevention, Qingdao 266033, China
| | - Jian-Ping Sun
- Qingdao Centers for Disease Control and Prevention, Qingdao 266033, China
| | - Xiao-Ling Zhang
- Department of Hygiene Analysis and Detection, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xi-Ling Li
- Institute of Child Health Care, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Yong-Gang Sun
- Department of Child Health Care, Maternity and Child Care Center of Gulou District of Nanjing, Nanjing 210029, China
| | - Xiao-Mei Lu
- Department of Hygiene Analysis and Detection, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Qi Zhang
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
35
|
Tatsuta N, Nakai K, Murata K, Suzuki K, Iwai-Shimada M, Kurokawa N, Hosokawa T, Satoh H. Impacts of prenatal exposures to polychlorinated biphenyls, methylmercury, and lead on intellectual ability of 42-month-old children in Japan. ENVIRONMENTAL RESEARCH 2014; 133:321-6. [PMID: 24998460 DOI: 10.1016/j.envres.2014.05.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 05/08/2014] [Accepted: 05/27/2014] [Indexed: 05/23/2023]
Abstract
BACKGROUND The age-specific impacts of perinatal exposures to polychlorinated biphenyls (PCB), methylmercury (MeHg), and lead on child neurodevelopment remain controversial. Since we have already reported the prenatal effects of these chemicals on neurodevelopment in 3-day-old and 30-month-old children of a birth cohort, the following effects were analyzed in the 42-month-old children in the same cohort. METHODS The Kaufman Assessment Battery for Children (K-ABC), comprised of four scales, was used to assess their intelligence and achievement. The relationships between the chemicals and K-ABC scores were analyzed using multivariate analyses. RESULTS The median values of chemicals in cord blood of 387 children were 46.5 (5th and 95th percentiles, 16.7-115.7)ng/g-lipid for total PCB, 10.1 (4.3-22.2)ng/g for total mercury (THg), and 1.0 (0.5-1.8) μg/dL for lead. Of the highly chlorinated PCB homologs, 9 CBs was negatively correlated with the sequential and mental processing score of the K-ABC (p<0.05). There were no significant correlations between any K-ABC score and either THg or lead. The negative effect of 9 CBs remained even after adjusting for THg, lead, and other confounders. The K-ABC scores were significantly lower in the boys than in the girls, and the standardized β of 9 CBs for the sequential and mental processing scores in multiple regression analysis was statistically significant in boys. CONCLUSIONS These findings suggest that intellectual ability in the developmental stage may be impaired by prenatal exposures to highly chlorinated PCB homologs, especially in Japanese boys.
Collapse
Affiliation(s)
- Nozomi Tatsuta
- Development and Environmental Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Miyagi, Sendai 980-8575, Japan
| | - Kunihiko Nakai
- Development and Environmental Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Miyagi, Sendai 980-8575, Japan.
| | - Katsuyuki Murata
- Environmental Health Sciences, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Keita Suzuki
- Environmental Health Sciences, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Miyuki Iwai-Shimada
- Environmental Health Sciences, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Naoyuki Kurokawa
- Environmental Health Sciences, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Toru Hosokawa
- Human Development and Disabilities, Tohoku University Graduate School of Education, Sendai 980-8576, Japan
| | - Hiroshi Satoh
- Environmental Health Sciences, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| |
Collapse
|
36
|
Berk M, Williams LJ, Andreazza AC, Pasco JA, Dodd S, Jacka FN, Moylan S, Reiner EJ, Magalhaes PVS. Pop, heavy metal and the blues: secondary analysis of persistent organic pollutants (POP), heavy metals and depressive symptoms in the NHANES National Epidemiological Survey. BMJ Open 2014; 4:e005142. [PMID: 25037643 PMCID: PMC4120423 DOI: 10.1136/bmjopen-2014-005142] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Persistent environmental pollutants, including heavy metals and persistent organic pollutants (POPs), have a ubiquitous presence. Many of these pollutants affect neurobiological processes, either accidentally or by design. The aim of this study was to explore the associations between assayed measures of POPs and heavy metals and depressive symptoms. We hypothesised that higher levels of pollutants and metals would be associated with depressive symptoms. SETTING National Health and Nutrition Examination Survey (NHANES). PARTICIPANTS A total of 15 140 eligible people were included across the three examined waves of NHANES. PRIMARY AND SECONDARY OUTCOME MEASURES Depressive symptoms were assessed using the nine-item version of the Patient Health Questionnaire (PHQ-9), using a cut-off point of 9/10 as likely depression cases. Organic pollutants and heavy metals, including cadmium, lead and mercury, as well as polyfluorinated compounds (PFCs), pesticides, phenols and phthalates, were measured in blood or urine. RESULTS Higher cadmium was positively associated with depression (adjusted Prevalence Ratios (PR)=1.48, 95% CI 1.16 to 1.90). Higher levels of mercury were negatively associated with depression (adjusted PR=0.62, 95% CI 0.50 to 0.78), and mercury was associated with increased fish consumption (n=5500, r=0.366, p<0.001). In addition, several PFCs (perfluorooctanoic acid, perfluorohexane sulfonic acid, perfluorodecanoic acid and perfluorononanoic acid) were negatively associated with the prevalence of depression. CONCLUSIONS Cadmium was associated with an increased likelihood of depression. Contrary to hypotheses, many of persistent environmental pollutants were not associated or negatively associated with depression. While the inverse association between mercury and depressive symptoms may be explained by a protective role for fish consumption, the negative associations with other pollutants remains unclear. This exploratory study suggests the need for further investigation of the role of various agents and classes of agents in the pathophysiology of depression.
Collapse
Affiliation(s)
- Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia
- Orygen Youth Health Research Centre, Centre for Youth Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Barwon Health and the Geelong Clinic, Swanston Centre, Geelong, Victoria, Australia
- Florey Institute for Neuroscience and Mental Health, Parkville, Australia
- Department of Psychiatry, University of Melbourne, Parkville, Australia
| | - Lana J Williams
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia
- Department of Psychiatry, University of Melbourne, Parkville, Australia
| | - Ana C Andreazza
- Departments of Psychiatry and Pharmacology, University of Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Julie A Pasco
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia
- Department of Medicine, NorthWest Academic Centre, The University of Melbourne, St Albans, Victoria, Australia
| | - Seetal Dodd
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia
- Barwon Health and the Geelong Clinic, Swanston Centre, Geelong, Victoria, Australia
- Department of Psychiatry, University of Melbourne, Parkville, Australia
| | - Felice N Jacka
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia
- Department of Psychiatry, University of Melbourne, Parkville, Australia
| | - Steven Moylan
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia
- Barwon Health and the Geelong Clinic, Swanston Centre, Geelong, Victoria, Australia
| | - Eric J Reiner
- Laboratory Services Branch, Ontario Ministry of the Environment, Toronto, Ontario, Canada
| | - Pedro V S Magalhaes
- National Institute for Translational Medicine, Hospital de Clinicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
37
|
Vrijheid M, Slama R, Robinson O, Chatzi L, Coen M, van den Hazel P, Thomsen C, Wright J, Athersuch TJ, Avellana N, Basagaña X, Brochot C, Bucchini L, Bustamante M, Carracedo A, Casas M, Estivill X, Fairley L, van Gent D, Gonzalez JR, Granum B, Gražulevičienė R, Gutzkow KB, Julvez J, Keun HC, Kogevinas M, McEachan RRC, Meltzer HM, Sabidó E, Schwarze PE, Siroux V, Sunyer J, Want EJ, Zeman F, Nieuwenhuijsen MJ. The human early-life exposome (HELIX): project rationale and design. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:535-44. [PMID: 24610234 PMCID: PMC4048258 DOI: 10.1289/ehp.1307204] [Citation(s) in RCA: 235] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 03/06/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Developmental periods in early life may be particularly vulnerable to impacts of environmental exposures. Human research on this topic has generally focused on single exposure-health effect relationships. The "exposome" concept encompasses the totality of exposures from conception onward, complementing the genome. OBJECTIVES The Human Early-Life Exposome (HELIX) project is a new collaborative research project that aims to implement novel exposure assessment and biomarker methods to characterize early-life exposure to multiple environmental factors and associate these with omics biomarkers and child health outcomes, thus characterizing the "early-life exposome." Here we describe the general design of the project. METHODS In six existing birth cohort studies in Europe, HELIX will estimate prenatal and postnatal exposure to a broad range of chemical and physical exposures. Exposure models will be developed for the full cohorts totaling 32,000 mother-child pairs, and biomarkers will be measured in a subset of 1,200 mother-child pairs. Nested repeat-sampling panel studies (n = 150) will collect data on biomarker variability, use smartphones to assess mobility and physical activity, and perform personal exposure monitoring. Omics techniques will determine molecular profiles (metabolome, proteome, transcriptome, epigenome) associated with exposures. Statistical methods for multiple exposures will provide exposure-response estimates for fetal and child growth, obesity, neurodevelopment, and respiratory outcomes. A health impact assessment exercise will evaluate risks and benefits of combined exposures. CONCLUSIONS HELIX is one of the first attempts to describe the early-life exposome of European populations and unravel its relation to omics markers and health in childhood. As proof of concept, it will form an important first step toward the life-course exposome.
Collapse
Affiliation(s)
- Martine Vrijheid
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Liberda EN, Tsuji LJS, Martin ID, Cote S, Ayotte P, Dewailly E, Nieboer E. Plasma concentrations of persistent organic pollutants in the Cree of northern Quebec, Canada: results from the multi-community environment-and-health study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 470-471:818-828. [PMID: 24189104 DOI: 10.1016/j.scitotenv.2013.10.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 10/01/2013] [Accepted: 10/14/2013] [Indexed: 06/02/2023]
Abstract
Historically, resource development has had negative impacts on the traditional lifestyle of First Nation Cree Communities in the Province of Quebec, Canada. In response to the perceived need for fisheries restoration and for managing health concerns associated with environmental pollutants, the Mercury Program in the James Bay Region of Quebec was reconstituted in 2001 and broadened to include a wider range of chemicals of concern. Based on comprehensive surveys of the nine Cree Territory (Eeyou Istchee) communities in this region during the period 2002-2009, blood plasma concentrations are presented of Aroclor 1260, PCB congeners 28, 52, 99, 101, 105, 118, 128, 138, 153, 156, 163, 170, 180, 183, and 187, Aldrin, ß-HCH, α-Chlordane, γ-Chlordane, oxy-Chlordane, trans-Nonachlor, cis-Nonachlor, p,p'-DDT, p,p'-DDE, Hexachloro benzene (HCB), Mirex, PBB 153, PBDE 47, PBDE 99, PBDE 100, PBDE 153, Toxaphene 26, and Toxaphene 50. The organohalogenated compounds were extracted using solid-phase extraction and cleaned on florisil columns before high resolution HRGC-MS analysis. Principal component analysis (PCA) was used to reduce the large number of contaminant variables into a smaller number of uncorrelated variables. ANOVA identified significant differences between age groups, with the older participants having higher body burdens of legacy lipophilic contaminants, but not for the PBDEs. In certain female age groups, plasma concentrations of PBDEs were observed to be lower than for males; conversely, DDT was higher. Among communities, concentrations were different (p<0.001) for all contaminants. This work provides a baseline for the James Bay Eeyou Istchee communities who, to varying degrees, rely on food and other resources from the land and therefore are at higher risk of increased body burdens of legacy persistent organic pollutants (POPs).
Collapse
Affiliation(s)
- Eric N Liberda
- School of Occupational and Public Health, Ryerson University, Toronto, ON, Canada.
| | - Leonard J S Tsuji
- Department of Environment and Resource Studies, University of Waterloo, Waterloo, ON, Canada
| | - Ian D Martin
- Department of Environment and Resource Studies, University of Waterloo, Waterloo, ON, Canada
| | - Suzanne Cote
- Santé publique et pratiques optimales en santé, Centre de Recherche du CHU de Québec, Québec, QC, Canada
| | - Pierre Ayotte
- Santé publique et pratiques optimales en santé, Centre de Recherche du CHU de Québec, Québec, QC, Canada; Laboratoire de toxicologie, INSPQ, 945, Avenue Wolfe, Québec, QC, Canada
| | - Eric Dewailly
- Laboratoire de toxicologie, INSPQ, 945, Avenue Wolfe, Québec, QC, Canada
| | - Evert Nieboer
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
39
|
Influence of prenatal exposure to environmental pollutants on human cord blood levels of glutamate. Neurotoxicology 2013; 40:102-10. [PMID: 24361731 DOI: 10.1016/j.neuro.2013.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 12/09/2013] [Accepted: 12/10/2013] [Indexed: 11/21/2022]
Abstract
Some chemicals released into the environment, including mercury and some organochlorine compounds (OCs), are suspected to have a key role on subclinical brain dysfunction in childhood. Alteration of the glutamatergic system may be one mechanistic pathway. We aimed to determine whether mercury and seven OCs, including PCBs 138, 153, and 180, DDT and DDE, hexachlorobenzene (HCB), and beta-hexachlorocyclohexane (β-HCH) influence the cord levels of two excitatory amino acids, glutamate and aspartate. Second, we evaluated if this association was mediated by glutamate uptake measured in human placental membranes. The study sample included 40 newborns from a Spanish cohort selected according to cord mercury levels. We determined the content of both amino acids in cord blood samples by means of HPLC and assessed their associations with the contaminants using linear regression analyses, and the effect of the contaminants on glutamate uptake by means of [(3)H]-aspartate binding in human placenta samples. PCB138, β-HCH, and the sum of the three PCBs and seven OCs showed a significant negative association with glutamate levels (decrease of 51, 24, 56 and 54%, respectively, in glutamate levels for each 10-fold increase in the contaminant concentration). Mercury did not show a significant correlation neither with glutamate nor aspartate levels in cord blood, however a compensatory effect between T-Hg and both PCB138, and 4,4'-DDE was observed. The organo-metallic derivative methylmercury completely inhibited glutamate uptake in placenta while PCB138 and β-HCH partially inhibited it (IC50 values: 4.9±0.8 μM, 14.2±1.2 nM and 6.9±2.9 nM, respectively). We conclude that some environmental toxicants may alter the glutamate content in the umbilical cord blood, which might underlie alterations in human development.
Collapse
|
40
|
Zeliger HI. Exposure to lipophilic chemicals as a cause of neurological impairments, neurodevelopmental disorders and neurodegenerative diseases. Interdiscip Toxicol 2013; 6:103-10. [PMID: 24678247 PMCID: PMC3967436 DOI: 10.2478/intox-2013-0018] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 09/25/2013] [Accepted: 09/30/2013] [Indexed: 11/26/2022] Open
Abstract
Many studies have associated environmental exposure to chemicals with neurological impairments (NIs) including neuropathies, cognitive, motor and sensory impairments; neurodevelopmental disorders (NDDs) including autism and attention deficit hyperactivity disorder (ADHD); neurodegenerative diseases (NDGs) including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis (ALS). The environmental chemicals shown to induce all these diseases include persistent organic pollutants (POPs), the plastic exudates bisphenol A and phthalates, low molecular weight hydrocarbons (LMWHCs) and polynuclear aromatic hydrocarbons (PAHs). It is reported here that though these chemicals differ widely in their chemical properties, reactivities and known points of attack in humans, a common link does exist between them. All are lipophilic species found in serum and they promote the sequential absorption of otherwise non-absorbed toxic hydrophilic species causing these diseases.
Collapse
Affiliation(s)
- Harold I Zeliger
- Zeliger Chemical, Toxicological, and Environmental Research, West Charlton, NY, USA
| |
Collapse
|