1
|
Zsarnovszky A, Alymbaeva D, Jocsak G, Szabo C, Mária Schilling-Tóth B, Sandor Kiss D. Endocrine disrupting effects on morphological synaptic plasticity. Front Neuroendocrinol 2024; 75:101157. [PMID: 39393417 DOI: 10.1016/j.yfrne.2024.101157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/13/2024]
Abstract
Neural regulation of the homeostasis depends on healthy synaptic function. Adaptation of synaptic functions to physiological needs manifests in various forms of synaptic plasticity (SP), regulated by the normal hormonal regulatory circuits. During the past several decades, the hormonal regulation of animal and human organisms have become targets of thousands of chemicals that have the potential to act as agonists or antagonists of the endogenous hormones. As the action mechanism of these endocrine disrupting chemicals (EDCs) came into the focus of research, a growing number of studies suggest that one of the regulatory avenues of hormones, the morphological form of SP, may well be a neural mechanism affected by EDCs. The present review discusses known and potential effects of some of the best known EDCs on morphological synaptic plasticity (MSP). We highlight molecular mechanisms altered by EDCs and indicate the growing need for more research in this area of neuroendocrinology.
Collapse
Affiliation(s)
- Attila Zsarnovszky
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary; Department of Physiology and Animal Health, Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary.
| | - Daiana Alymbaeva
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary.
| | - Gergely Jocsak
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary.
| | - Csaba Szabo
- Department of Physiology and Animal Health, Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary
| | | | - David Sandor Kiss
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary.
| |
Collapse
|
2
|
Hyun SA, Ka M. Bisphenol A (BPA) and neurological disorders: An overview. Int J Biochem Cell Biol 2024; 173:106614. [PMID: 38944234 DOI: 10.1016/j.biocel.2024.106614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 07/01/2024]
Abstract
The human body is commonly exposed to bisphenol A (BPA), which is widely used in consumer and industrial products. BPA is an endocrine-disrupting chemical that has adverse effects on human health. In particular, many studies have shown that BPA can cause various neurological disorders by affecting brain development and neural function during prenatal, infancy, childhood, and adulthood exposure. In this review, we discussed the correlation between BPA and neurological disorders based on molecular cell biology, neurophysiology, and behavioral studies of the effects of BPA on brain development and function. Recent studies, both animal and epidemiological, strongly indicate that BPA significantly impacts brain development and function. It hinders neural processes, such as proliferation, migration, and differentiation during development, affecting synaptic formation and activity. As a result, BPA is implicated in neurodevelopmental and neuropsychiatric disorders like autism spectrum disorder (ASD), attention-deficit hyperactivity disorder (ADHD), and schizophrenia.
Collapse
Affiliation(s)
- Sung-Ae Hyun
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Minhan Ka
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.
| |
Collapse
|
3
|
Liu ZH, Xia Y, Ai S, Wang HL. Health risks of Bisphenol-A exposure: From Wnt signaling perspective. ENVIRONMENTAL RESEARCH 2024; 251:118752. [PMID: 38513750 DOI: 10.1016/j.envres.2024.118752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Human beings are routinely exposed to chronic and low dose of Bisphenols (BPs) due to their widely pervasiveness in the environment. BPs hold similar chemical structures to 17β-estradiol (E2) and thyroid hormone, thus posing threats to human health by rendering the endocrine system dysfunctional. Among BPs, Bisphenol-A (BPA) is the best-known and extensively studied endocrine disrupting compound (EDC). BPA possesses multisystem toxicity, including reproductive toxicity, neurotoxicity, hepatoxicity and nephrotoxicity. Particularly, the central nervous system (CNS), especially the developing one, is vulnerable to BPA exposure. This review describes our current knowledge of BPA toxicity and the related molecular mechanisms, with an emphasis on the role of Wnt signaling in the related processes. We also discuss the role of oxidative stress, endocrine signaling and epigenetics in the regulation of Wnt signaling by BPA exposure. In summary, dysfunction of Wnt signaling plays a key role in BPA toxicity and thus can be a potential target to alleviate EDCs induced damage to organisms.
Collapse
Affiliation(s)
- Zhi-Hua Liu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Yanzhou Xia
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Shu Ai
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Hui-Li Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| |
Collapse
|
4
|
Di Credico A, Weiss A, Corsini M, Gaggi G, Ghinassi B, Wilbertz JH, Di Baldassarre A. Machine learning identifies phenotypic profile alterations of human dopaminergic neurons exposed to bisphenols and perfluoroalkyls. Sci Rep 2023; 13:21907. [PMID: 38081991 PMCID: PMC10713827 DOI: 10.1038/s41598-023-49364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease and is characterized by the loss of midbrain dopaminergic neurons. Endocrine disrupting chemicals (EDCs) are active substances that interfere with hormonal signaling. Among EDCs, bisphenols (BPs) and perfluoroalkyls (PFs) are chemicals leached from plastics and other household products, and humans are unavoidably exposed to these xenobiotics. Data from animal studies suggest that EDCs exposure may play a role in PD, but data about the effect of BPs and PFs on human models of the nervous system are lacking. Previous studies demonstrated that machine learning (ML) applied to microscopy data can classify different cell phenotypes based on image features. In this study, the effect of BPs and PFs at different concentrations within the real-life exposure range (0.01, 0.1, 1, and 2 µM) on the phenotypic profile of human stem cell-derived midbrain dopaminergic neurons (mDANs) was analyzed. Cells exposed for 72 h to the xenobiotics were stained with neuronal markers and evaluated using high content microscopy yielding 126 different phenotypic features. Three different ML models (LDA, XGBoost and LightGBM) were trained to classify EDC-treated versus control mDANs. EDC treated mDANs were identified with high accuracies (0.88-0.96). Assessment of the phenotypic feature contribution to the classification showed that EDCs induced a significant increase of alpha-synuclein (αSyn) and tyrosine hydroxylase (TH) staining intensity within the neurons. Moreover, microtubule-associated protein 2 (MAP2) neurite length and branching were significantly diminished in treated neurons. Our study shows that human mDANs are adversely impacted by exposure to EDCs, causing their phenotype to shift and exhibit more characteristics of PD. Importantly, ML-supported high-content imaging can identify concrete but subtle subcellular phenotypic changes that can be easily overlooked by visual inspection alone and that define EDCs effects in mDANs, thus enabling further pathological characterization in the future.
Collapse
Affiliation(s)
- Andrea Di Credico
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies, and Technology (CAST), 66100, Chieti, Italy
- Department of Medicine and Aging Sciences, "G. D'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
- UdATech Lab Center (UdATech), 66100, Chieti, Italy
| | | | - Massimo Corsini
- Dipartimento Di Neuroscienze Umane, "Sapienza" University of Rome, Chieti, Italy
| | - Giulia Gaggi
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies, and Technology (CAST), 66100, Chieti, Italy
- Department of Medicine and Aging Sciences, "G. D'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
- UdATech Lab Center (UdATech), 66100, Chieti, Italy
| | - Barbara Ghinassi
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies, and Technology (CAST), 66100, Chieti, Italy
- Department of Medicine and Aging Sciences, "G. D'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
- UdATech Lab Center (UdATech), 66100, Chieti, Italy
| | | | - Angela Di Baldassarre
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies, and Technology (CAST), 66100, Chieti, Italy
- Department of Medicine and Aging Sciences, "G. D'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
- UdATech Lab Center (UdATech), 66100, Chieti, Italy
| |
Collapse
|
5
|
Margolis AE, Greenwood P, Dranovsky A, Rauh V. The Role of Environmental Chemicals in the Etiology of Learning Difficulties: A Novel Theoretical Framework. MIND, BRAIN AND EDUCATION : THE OFFICIAL JOURNAL OF THE INTERNATIONAL MIND, BRAIN, AND EDUCATION SOCIETY 2023; 17:301-311. [PMID: 38389544 PMCID: PMC10881209 DOI: 10.1111/mbe.12354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/09/2023] [Indexed: 02/24/2024]
Abstract
Children from economically disadvantaged communities have a disproportionate risk of exposure to chemicals, social stress, and learning difficulties. Although animal models and epidemiologic studies link exposures and neurodevelopment, little focus has been paid to academic outcomes in environmental health studies. Similarly, in the educational literature, environmental chemical exposures are overlooked as potential etiologic factors in learning difficulties. We propose a theoretical framework for the etiology of learning difficulties that focuses on these understudied exogenous factors. We discuss findings from animal models and longitudinal, prospective birth cohort studies that support this theoretical framework. Studies reviewed point to the effects of prenatal exposure to polycyclic aromatic hydrocarbons on reading comprehension and math skills via effects on inhibitory control processes. Long term, this work will help close the achievement gap in the United States by identifying behavioral and neural pathways from prenatal exposures to learning difficulties in children from economically disadvantaged families.
Collapse
Affiliation(s)
- Amy E. Margolis
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Columbia University Irving Medical Center
- New York State Psychiatric Institute
| | - Paige Greenwood
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Columbia University Irving Medical Center
| | - Alex Dranovsky
- New York State Psychiatric Institute
- Division of Neuroscience, Department of Psychiatry, Columbia University Irving Medical Center
| | - Virginia Rauh
- Population and Family Health, Mailman School of Public Health, Columbia University Irving Medical Center
| |
Collapse
|
6
|
Meng L, Gui S, Ouyang Z, Wu Y, Zhuang Y, Pang Q, Fan R. Low-dose bisphenols exposure sex-specifically induces neurodevelopmental toxicity in juvenile rats and the antagonism of EGCG. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132074. [PMID: 37473573 DOI: 10.1016/j.jhazmat.2023.132074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
Bisphenols (BPs) can negatively affect neurobehaviors in rats, whereas the mechanism remains unclear. Here, the mechanism of BPs-induced neurodevelopmental toxicity and its effective detoxification measures were investigated in vitro and in vivo. In in vitro experiments, primary hippocampal neurons from neonatal rats of different genders were treated with bisphenol A (BPA), bisphenol S (BPS) and bisphenol B (BPB) at 1 nM-100 μM, epigallocatechin gallate (EGCG) and G15, an antagonist of G protein-coupled estrogen receptor (GPER) for 7 d. Results indicated that BPs affected neuronal morphogenesis, impaired GABA synthesis and Glu/GABA homeostasis. Neuronal morphogenetic damage induced by low-doses BPA may be mediated by GPER. Neurotoxicity of BPS is weaker than BPA and BPB. In in vivo studies, exposure to BPA (0.5 μg/kg·bw/day) on PND 10-40 caused oxidative stress and inflammation in rat hippocampus, disrupted neuronal morphogenesis and neurotransmitter homeostasis, ultimately impaired spatial memory of rats. Males are more sensitive to BPA exposure than females. Both in vivo and in vitro studies indicated that EGCG, a phytoestrogen, can alleviate BPA-induced neurotoxicity. Taken together, low-doses BPA exposure sex-specifically disrupted neurodevelopment and further impaired learning and memory ability in rats, which may be mediated by GPER. Promisingly, EGCG effectively mitigated the BPA-induced neurodevelopmental toxicity.
Collapse
Affiliation(s)
- Lingxue Meng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shiheng Gui
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Zedong Ouyang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yajuan Wu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Youling Zhuang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qihua Pang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Ruifang Fan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
7
|
Lambré C, Barat Baviera JM, Bolognesi C, Chesson A, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mengelers M, Mortensen A, Rivière G, Silano (until 21 December 2020†) V, Steffensen I, Tlustos C, Vernis L, Zorn H, Batke M, Bignami M, Corsini E, FitzGerald R, Gundert‐Remy U, Halldorsson T, Hart A, Ntzani E, Scanziani E, Schroeder H, Ulbrich B, Waalkens‐Berendsen D, Woelfle D, Al Harraq Z, Baert K, Carfì M, Castoldi AF, Croera C, Van Loveren H. Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J 2023; 21:e06857. [PMID: 37089179 PMCID: PMC10113887 DOI: 10.2903/j.efsa.2023.6857] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
In 2015, EFSA established a temporary tolerable daily intake (t-TDI) for BPA of 4 μg/kg body weight (bw) per day. In 2016, the European Commission mandated EFSA to re-evaluate the risks to public health from the presence of BPA in foodstuffs and to establish a tolerable daily intake (TDI). For this re-evaluation, a pre-established protocol was used that had undergone public consultation. The CEP Panel concluded that it is Unlikely to Very Unlikely that BPA presents a genotoxic hazard through a direct mechanism. Taking into consideration the evidence from animal data and support from human observational studies, the immune system was identified as most sensitive to BPA exposure. An effect on Th17 cells in mice was identified as the critical effect; these cells are pivotal in cellular immune mechanisms and involved in the development of inflammatory conditions, including autoimmunity and lung inflammation. A reference point (RP) of 8.2 ng/kg bw per day, expressed as human equivalent dose, was identified for the critical effect. Uncertainty analysis assessed a probability of 57-73% that the lowest estimated Benchmark Dose (BMD) for other health effects was below the RP based on Th17 cells. In view of this, the CEP Panel judged that an additional uncertainty factor (UF) of 2 was needed for establishing the TDI. Applying an overall UF of 50 to the RP, a TDI of 0.2 ng BPA/kg bw per day was established. Comparison of this TDI with the dietary exposure estimates from the 2015 EFSA opinion showed that both the mean and the 95th percentile dietary exposures in all age groups exceeded the TDI by two to three orders of magnitude. Even considering the uncertainty in the exposure assessment, the exceedance being so large, the CEP Panel concluded that there is a health concern from dietary BPA exposure.
Collapse
|
8
|
Petroff RL, Grant KS, Burbacher TM. The Role of Nonhuman Primates in Neurotoxicology Research: Preclinical Models and Experimental Methods. Curr Protoc 2023; 3:e698. [PMID: 36912610 PMCID: PMC10084743 DOI: 10.1002/cpz1.698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Although noteworthy progress has been made in developing alternatives to animal testing, nonhuman primates still play a critical role in advancing biomedical research and will likely do so for many years. Core similarities between monkeys and humans in genetics, physiology, reproduction, development, and behavior make them excellent models for translational studies relevant to human health. This unit is designed to specifically address the role of nonhuman primates in neurotoxicology research and outlines the specialized assessments that can be used to measure exposure-related changes at the structural, chemical, cellular, molecular, and functional levels. © 2023 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Rebekah L Petroff
- Department of Environmental & Occupational Health Sciences (DEOHS), University of Washington, Seattle, Washington
| | - Kimberly S Grant
- Department of Environmental & Occupational Health Sciences (DEOHS), University of Washington, Seattle, Washington
| | - Thomas M Burbacher
- Department of Environmental & Occupational Health Sciences (DEOHS), University of Washington, Seattle, Washington
| |
Collapse
|
9
|
Li C, Sang C, Zhang S, Zhang S, Gao H. Effects of bisphenol A and bisphenol analogs on the nervous system. Chin Med J (Engl) 2023; 136:295-304. [PMID: 36848196 PMCID: PMC10106255 DOI: 10.1097/cm9.0000000000002170] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Indexed: 03/01/2023] Open
Abstract
ABSTRACT Estrogen impacts neural development; meanwhile, it has a protective effect on the brain. Bisphenols, primarily bisphenol A (BPA), can exert estrogen-like or estrogen-interfering effects by binding with estrogen receptors. Extensive studies have suggested that neurobehavioral problems, such as anxiety and depression, can be caused by exposure to BPA during neural development. Increasing attention has been paid to the effects on learning and memory of BPA exposure at different developmental stages and in adulthood. Further research is required to elucidate whether BPA increases the risk of neurodegenerative diseases and the underlying mechanisms, as well as to assess whether BPA analogs, such as bisphenol S and bisphenol F, influence the nervous system.
Collapse
Affiliation(s)
- Chunxia Li
- Department of Obstetrics and Gynecology, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100730, China
| | - Chen Sang
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Shuo Zhang
- Department of Obstetrics and Gynecology, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100730, China
| | - Sai Zhang
- Department of Obstetrics and Gynecology, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100730, China
| | - Hui Gao
- Department of Obstetrics and Gynecology, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100730, China
| |
Collapse
|
10
|
Flanigan KAS, Czuba MI, Riesgo VR, Rúa MA, Stevenson LM, Willing J. Developmental exposure to corn grown on Lake Erie dredged material: a preliminary analysis. Front Behav Neurosci 2023; 17:987239. [PMID: 37153937 PMCID: PMC10160390 DOI: 10.3389/fnbeh.2023.987239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 03/29/2023] [Indexed: 05/10/2023] Open
Abstract
While corn is considered to be a healthy food option, common agricultural practices, such as the application of soil amendments, might be introducing contaminants of concern (COC) into corn plants. The use of dredged material, which contain contaminants such as heavy metals, polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs), as a soil amendment is increasing. Contaminants from these amendments can accumulate in corn kernels harvested from plants grown on these sediments and potentially biomagnify in organisms that consume them. The extent to which secondary exposure to such contaminants in corn affect the mammalian central nervous system has been virtually unexplored. In this preliminary study, we examine the effects of exposure to corn grown in dredge amended soil or a commercially available feed corn on behavior and hippocampal volume in male and female rats. Perinatal exposure to dredge-amended corn altered behavior in the open-field and object recognition tasks in adulthood. Additionally, dredge-amended corn led to a reduction in hippocampal volume in male but not female adult rats. These results suggest the need for future studies examining how dredge-amended crops and/or commercially available feed corn may be exposing animals to COC that can alter neurodevelopment in a sex-specific manner. This future work will provide insight into the potential long-term consequences of soil amendment practices on the brain and behavior.
Collapse
Affiliation(s)
- Kaylyn A. S. Flanigan
- J.P. Scott Center for Neuroscience, Mind, and Behavior, Department of Psychology, Bowling Green State University, Bowling Green, OH, United States
| | - Madelyn I. Czuba
- J.P. Scott Center for Neuroscience, Mind, and Behavior, Department of Psychology, Bowling Green State University, Bowling Green, OH, United States
| | - Victoria R. Riesgo
- J.P. Scott Center for Neuroscience, Mind, and Behavior, Department of Psychology, Bowling Green State University, Bowling Green, OH, United States
| | - Megan A. Rúa
- Department of Biological Sciences, Wright State University, Dayton, OH, United States
| | - Louise M. Stevenson
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, United States
- Oak Ridge National Laboratory, Environmental Sciences Division, Oak Ridge, TN, United States
| | - Jari Willing
- J.P. Scott Center for Neuroscience, Mind, and Behavior, Department of Psychology, Bowling Green State University, Bowling Green, OH, United States
- *Correspondence: Jari Willing,
| |
Collapse
|
11
|
Zheng J, Reynolds JE, Long M, Ostertag C, Pollock T, Hamilton M, Dunn JF, Liu J, Martin J, Grohs M, Landman B, Huo Y, Dewey D, Kurrasch D, Lebel C. The effects of prenatal bisphenol A exposure on brain volume of children and young mice. ENVIRONMENTAL RESEARCH 2022; 214:114040. [PMID: 35952745 DOI: 10.1016/j.envres.2022.114040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol A (BPA) is a synthetic chemical used for the manufacturing of plastics, epoxy resin, and many personal care products. This ubiquitous endocrine disruptor is detectable in the urine of over 80% of North Americans. Although adverse neurodevelopmental outcomes have been observed in children with high gestational exposure to BPA, the effects of prenatal BPA on brain structure remain unclear. Here, using magnetic resonance imaging (MRI), we studied the associations of maternal BPA exposure with children's brain structure, as well as the impact of comparable BPA levels in a mouse model. Our human data showed that most maternal BPA exposure effects on brain volumes were small, with the largest effects observed in the opercular region of the inferior frontal gyrus (ρ = -0.2754), superior occipital gyrus (ρ = -0.2556), and postcentral gyrus (ρ = 0.2384). In mice, gestational exposure to an equivalent level of BPA (2.25 μg BPA/kg bw/day) induced structural alterations in brain regions including the superior olivary complex (SOC) and bed nucleus of stria terminalis (BNST) with larger effect sizes (1.07≤ Cohens d ≤ 1.53). Human (n = 87) and rodent (n = 8 each group) sample sizes, while small, are considered adequate to perform the primary endpoint analysis. Combined, these human and mouse data suggest that gestational exposure to low levels of BPA may have some impacts on the developing brain at the resolution of MRI.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Jess E Reynolds
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Madison Long
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Curtis Ostertag
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Tyler Pollock
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Max Hamilton
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Jeff F Dunn
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Jiaying Liu
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Jonathan Martin
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Melody Grohs
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Bennett Landman
- Department of Electrical Engineering & Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Yuankai Huo
- Department of Electrical Engineering & Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Deborah Dewey
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Deborah Kurrasch
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Catherine Lebel
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
12
|
Karim S, Hao R, Pinto C, Gustafsson JÅ, Grimaldi M, Balaguer P, Bondesson M. Bisphenol A analogues induce a feed-forward estrogenic response in zebrafish. Toxicol Appl Pharmacol 2022; 455:116263. [DOI: 10.1016/j.taap.2022.116263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/29/2022]
|
13
|
Uncontrolled Disposal of Used Masks Resulting in Release of Microplastics and Co-Pollutants into Environment. WATER 2022. [DOI: 10.3390/w14152403] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The global panic caused by COVID-19 has continued to increase people’s demand for masks. However, due to inadequate management and disposal practice, these masks have, unfortunately, entered the environment and release a large amount of microplastics (MPs), posing a serious threat to the environment and human health. Understanding the occurrence of mask waste in various environments, release of mask-origin MPs, and related environmental risk is essential to mask-waste management in current and future epidemic prevention and control. This paper focuses on the global distribution of mask waste, the potential release of waste-origin MPs, and the impact on the environment. Specifically, the physical and chemical properties of polypropylene (the most common plastic material in a mask), which show a high adsorption capacity for heavy metals and organic pollutants and play a role as a support for microbial growth, were extensively reported. In addition, several important issues that need to be resolved are raised, which offers a direction for future research. This review focuses on the essentiality of handling masks to avoid potential environmental issues.
Collapse
|
14
|
Hyun SA, Ko MY, Jang S, Lee BS, Rho J, Kim KK, Kim WY, Ka M. Bisphenol-A impairs synaptic formation and function by RGS4-mediated negative regulation of BDNF/NTRK2 signaling in the cerebral cortex. Dis Model Mech 2022; 15:276081. [PMID: 35781563 PMCID: PMC9346518 DOI: 10.1242/dmm.049177] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 06/06/2022] [Indexed: 12/02/2022] Open
Abstract
Bisphenol-A (BPA) is a representative endocrine disruptor, widely used in a variety of products including plastics, medical equipment and receipts. Hence, most people are exposed to BPA via the skin, digestive system or inhalation in everyday life. Furthermore, BPA crosses the blood–brain barrier and is linked to multiple neurological dysfunctions found in neurodegenerative and neuropsychological disorders. However, the mechanisms underlying BPA-associated neurological dysfunctions remain poorly understood. Here, we report that BPA exposure alters synapse morphology and function in the cerebral cortex. Cortical pyramidal neurons treated with BPA showed reduced size and number of dendrites and spines. The density of excitatory synapses was also decreased by BPA treatment. More importantly, we found that BPA disrupted normal synaptic transmission and cognitive behavior. RGS4 and its downstream BDNF/NTRK2 pathway appeared to mediate the effect of BPA on synaptic and neurological function. Our findings provide molecular mechanistic insights into anatomical and physiological neurotoxic consequences related to a potent endocrine modifier. Summary: Bisphenol-A (BPA) disrupts normal synaptic transmission and cognitive behavior in mice. Rgs4 transcription factor and its downstream BDNF/NTRK2 pathway appear to mediate the effect of BPA on synaptic and neurological function.
Collapse
Affiliation(s)
- Sung-Ae Hyun
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.,Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Moon Yi Ko
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.,Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Sumi Jang
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Byoung-Seok Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Jaerang Rho
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kee K Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Woo-Yang Kim
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Minhan Ka
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| |
Collapse
|
15
|
Guignard D, Canlet C, Tremblay-Franco M, Chaillou E, Gautier R, Gayrard V, Picard-Hagen N, Schroeder H, Jourdan F, Zalko D, Viguié C, Cabaton NJ. Gestational exposure to bisphenol A induces region-specific changes in brain metabolomic fingerprints in sheep. ENVIRONMENT INTERNATIONAL 2022; 165:107336. [PMID: 35700571 DOI: 10.1016/j.envint.2022.107336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Fetal brain development depends on maternofetal thyroid function. In rodents and sheep, perinatal BPA exposure is associated with maternal and/or fetal thyroid disruption and alterations in central nervous system development as demonstrated by metabolic modulations in the encephala of mice. We hypothesized that a gestational exposure to a low dose of BPA affects maternofetal thyroid function and fetal brain development in a region-specific manner. Pregnant ewes, a relevant model for human thyroid and brain development, were exposed to BPA (5 µg/kg bw/d, sc). The thyroid status of ewes during gestation and term fetuses at delivery was monitored. Fetal brain development was assessed by metabolic fingerprints at birth in 10 areas followed by metabolic network-based analysis. BPA treatment was associated with a significant time-dependent decrease in maternal TT4 serum concentrations. For 8 fetal brain regions, statistical models allowed discriminating BPA-treated from control lambs. Metabolic network computational analysis revealed that prenatal exposure to BPA modulated several metabolic pathways, in particular excitatory and inhibitory amino-acid, cholinergic, energy and lipid homeostasis pathways. These pathways might contribute to BPA-related neurobehavioral and cognitive disorders. Discrimination was particularly clear for the dorsal hippocampus, the cerebellar vermis, the dorsal hypothalamus, the caudate nucleus and the lateral part of the frontal cortex. Compared with previous results in rodents, the use of a larger animal model allowed to examine specific brain areas, and generate evidence of the distinct region-specific effects of fetal BPA exposure on the brain metabolome. These modifications occur concomitantly to subtle maternal thyroid function alteration. The functional link between such moderate thyroid changes and fetal brain metabolomic fingerprints remains to be determined as well as the potential implication of other modes of action triggered by BPA such as estrogenic ones. Our results pave the ways for new scientific strategies aiming at linking environmental endocrine disruption and altered neurodevelopment.
Collapse
Affiliation(s)
- Davy Guignard
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Cécile Canlet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France; Metatoul-AXIOM Platform, National Infrastructure for Metabolomics and Fluxomics: MetaboHUB, Toxalim, INRAE, Toulouse, France
| | - Marie Tremblay-Franco
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France; Metatoul-AXIOM Platform, National Infrastructure for Metabolomics and Fluxomics: MetaboHUB, Toxalim, INRAE, Toulouse, France
| | - Elodie Chaillou
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Roselyne Gautier
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France; Metatoul-AXIOM Platform, National Infrastructure for Metabolomics and Fluxomics: MetaboHUB, Toxalim, INRAE, Toulouse, France
| | - Véronique Gayrard
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Nicole Picard-Hagen
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Henri Schroeder
- Université de Lorraine, INSERM U1256, NGERE, Nutrition Génétique et Exposition aux Risques Environnementaux, 54000 Nancy, France
| | - Fabien Jourdan
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Daniel Zalko
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Catherine Viguié
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Nicolas J Cabaton
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
16
|
El Tabaa MM, Sokkar SS, Ramdan ES, El Salam IZA, Anis A. Does ( -)-epigallocatechin-3-gallate protect the neurotoxicity induced by bisphenol A in vivo? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32190-32203. [PMID: 35013969 PMCID: PMC9054912 DOI: 10.1007/s11356-021-18408-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
Bisphenol A (BPA) is one of the chemicals that is firmly accompanied by hippocampal neuronal injury. As oxidative stress appears to be a major contributor to neurotoxicity induced by BPA, antioxidants with remarkable neuroprotective effects can play a valuable protective role. Around the world, ( -)-epigallocatechin-3-gallate (EGCG) was one of the most popular antioxidants that could exert a beneficial neuroprotective role. Here, we examined the potential efficiency of EGCG against neurotoxicity induced by BPA in the hippocampal CA3 region of the rat model. This study revealed that EGCG was unable to abrogate the significant decrease in circulating adiponectin level and hippocampal superoxide dismutase activity as well as an increase in hippocampal levels of nitric oxide and malondialdehyde. Notably, EGCG failed to antagonize the oxidative inhibitory effect of BPA on hippocampal neurotransmission and its associated cognitive deficits. In addition, the histopathological examination with immunohistochemical detection of caspase-3 and NF-kB/p65 emphasized that EGCG failed to protect hippocampal CA3 neurons from apoptotic and necrotic effects induced by BPA. Our study revealed that EGCG showed no protective role against the neurotoxic effect caused by BPA, which may be attributed to its failure to counteract the BPA-induced oxidative stress in vivo. The controversial effect is probably related to EGCG's ability to impede BPA glucuronidation and thus, its detoxification. That inference requires further additional experimental and clinical studies.
Collapse
Affiliation(s)
- Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute, University of Sadat City, Sadat, Egypt
| | - Samia Salem Sokkar
- Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | | | - Inas Zakria Abd El Salam
- Medicinal Plants, Environmental Studies & Research Institute, University of Sadat City, Sadat, Egypt
| | - Anis Anis
- Pathology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, Egypt
| |
Collapse
|
17
|
Welch C, Mulligan K. Does Bisphenol A Confer Risk of Neurodevelopmental Disorders? What We Have Learned from Developmental Neurotoxicity Studies in Animal Models. Int J Mol Sci 2022; 23:2894. [PMID: 35270035 PMCID: PMC8910940 DOI: 10.3390/ijms23052894] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 02/01/2023] Open
Abstract
Substantial evidence indicates that bisphenol A (BPA), a ubiquitous environmental chemical used in the synthesis of polycarbonate plastics and epoxy resins, can impair brain development. Clinical and epidemiological studies exploring potential connections between BPA and neurodevelopmental disorders in humans have repeatedly identified correlations between early BPA exposure and developmental disorders, such as attention deficit/hyperactivity disorder and autism spectrum disorder. Investigations using invertebrate and vertebrate animal models have revealed that developmental exposure to BPA can impair multiple aspects of neuronal development, including neural stem cell proliferation and differentiation, synapse formation, and synaptic plasticity-neuronal phenotypes that are thought to underpin the fundamental changes in behavior-associated neurodevelopmental disorders. Consistent with neuronal phenotypes caused by BPA, behavioral analyses of BPA-treated animals have shown significant impacts on behavioral endophenotypes related to neurodevelopmental disorders, including altered locomotor activity, learning and memory deficits, and anxiety-like behavior. To contextualize the correlations between BPA and neurodevelopmental disorders in humans, this review summarizes the current literature on the developmental neurotoxicity of BPA in laboratory animals with an emphasis on neuronal phenotypes, molecular mechanisms, and behavioral outcomes. The collective works described here predominantly support the notion that gestational exposure to BPA should be regarded as a risk factor for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Chloe Welch
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA;
| | - Kimberly Mulligan
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA 95819, USA
| |
Collapse
|
18
|
Robaire B, Delbes G, Head JA, Marlatt VL, Martyniuk CJ, Reynaud S, Trudeau VL, Mennigen JA. A cross-species comparative approach to assessing multi- and transgenerational effects of endocrine disrupting chemicals. ENVIRONMENTAL RESEARCH 2022; 204:112063. [PMID: 34562476 DOI: 10.1016/j.envres.2021.112063] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
A wide range of chemicals have been identified as endocrine disrupting chemicals (EDCs) in vertebrate species. Most studies of EDCs have focused on exposure of both male and female adults to these chemicals; however, there is clear evidence that EDCs have dramatic effects when mature or developing gametes are exposed, and consequently are associated with in multigenerational and transgenerational effects. Several publications have reviewed such actions of EDCs in subgroups of species, e.g., fish or rodents. In this review, we take a holistic approach synthesizing knowledge of the effects of EDCs across vertebrate species, including fish, anurans, birds, and mammals, and discuss the potential mechanism(s) mediating such multi- and transgenerational effects. We also propose a series of recommendations aimed at moving the field forward in a structured and coherent manner.
Collapse
Affiliation(s)
- Bernard Robaire
- Department of Pharmacology and Therapeutics and of Obstetrics and Gynecology, McGill University, Montreal, Canada.
| | - Geraldine Delbes
- Centre Armand Frappier Santé Biotechnologie, Institut National de La Recherche Scientifique (INRS), Laval, QC, Canada
| | - Jessica A Head
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| | - Vicki L Marlatt
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Christopher J Martyniuk
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Stéphane Reynaud
- Univ. Grenoble-Alpes, Université. Savoie Mont Blanc, CNRS, LECA, Grenoble, 38000, France
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
19
|
Gu J, Guo M, Yin X, Huang C, Qian L, Zhou L, Wang Z, Wang L, Shi L, Ji G. A systematic comparison of neurotoxicity of bisphenol A and its derivatives in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150210. [PMID: 34534871 DOI: 10.1016/j.scitotenv.2021.150210] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
As more and more countries have prohibited the manufacture and sale of plastic products with bisphenol A (BPA), a number of bisphenol analogues (BPs), including BPS, BPF and BPAF, have gradually been used as its primary substitutes. Ideally, substitutes used to replace chemicals with environmental risks should be inert, so it makes sense that the risk of the similar chemical substitutes (BPS, BPF, and BPAF) should be assessed before they used. Therefore, in the present study, the neurotoxicity of four BPs at environmentally relevant concentration (200 μg/L) were systematically compared using zebrafish as a model. Our results showed that the four BPs (BPA, BPS, BPF and BPAF) exhibited no obvious effect on the hatchability, survival rate and body length of zebrafish larvae, noteworthily a significant inhibitory effect on spontaneous movement at 24 hpf was observed in the BPA, BPF and BPAF treatment groups. Behavioral tests showed that BPAF, BPF and BPA exposure significantly reduced the locomotor activity of the larvae. Additionally, BPAF treatment adversely affected motor neuron axon length in transgenic lines hb9-GFP zebrafish and decreased central nervous system (CNS) neurogenesis in transgenic lines HuC-GFP zebrafish. Intriguingly, BPAF displayed the strongest effects on the levels and metabolism of neurotransmitters, followed by BPF and BPA, while BPS showed the weakest effects on neurotransmitters. In conclusion, our study deciphered that environmentally relevant concentrations of BPs exposure exhibited differential degrees of neurotoxicity, which ranked as below: BPAF > BPF ≈ BPA > BPS. The possible mechanisms can be partially ascribed to the dramatical changes of multiple neurotransmitters and the inhibitory effects on neuronal development. These results suggest that BPAF and BPF should be carefully considered as alternatives to BPA.
Collapse
Affiliation(s)
- Jie Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Min Guo
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xiaogang Yin
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Lingling Qian
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Linjun Zhou
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Zhen Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Lei Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Lili Shi
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Guixiang Ji
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
20
|
Kawato S, Ogiue-Ikeda M, Soma M, Yoshino H, Kominami T, Saito M, Aou S, Hojo Y. Perinatal Exposure of Bisphenol A Differently Affects Dendritic Spines of Male and Female Grown-Up Adult Hippocampal Neurons. Front Neurosci 2021; 15:712261. [PMID: 34616273 PMCID: PMC8488347 DOI: 10.3389/fnins.2021.712261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/26/2021] [Indexed: 12/03/2022] Open
Abstract
Perinatal exposure to Bisphenol A (BPA) at a very low dose may modulate the development of synapses of the hippocampus during growth to adulthood. Here, we demonstrate that perinatal exposure to 30 μg BPA/kg per mother’s body weight/day significantly altered the dendritic spines of the grownup rat hippocampus. The density of the spine was analyzed by imaging of Lucifer Yellow-injected CA1 glutamatergic neurons in adult hippocampal slices. In offspring 3-month male hippocampus, the total spine density was significantly decreased by BPA exposure from 2.26 spines/μm (control, no BPA exposure) to 1.96 spines/μm (BPA exposure). BPA exposure considerably changed the normal 4-day estrous cycle of offspring 3-month females, resulting in a 4∼5 day estrous cycle with 2-day estrus stages in most of the subjects. In the offspring 3-month female hippocampus, the total spine density was significantly increased by BPA exposure at estrus stage from 2.04 spines/μm (control) to 2.25 spines/μm (BPA exposure). On the other hand, the total spine density at the proestrus stage was moderately decreased from 2.33 spines/μm (control) to 2.19 spines/μm (BPA exposure). Thus, after the perinatal exposure to BPA, the total spine density in males became lower than that in females. Concerning the BPA effect on the morphology of spines, the large-head spine was significantly changed with its significant decrease in males and moderate change in females.
Collapse
Affiliation(s)
- Suguru Kawato
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.,Core Research for Evolutional Science and Technology Project of Japan Science and Technology Agency, The University of Tokyo, Tokyo, Japan.,Bioinformatics Project, Japan Science and Technology Agency, The University of Tokyo, Tokyo, Japan.,Department of Urology, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan
| | - Mari Ogiue-Ikeda
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.,Core Research for Evolutional Science and Technology Project of Japan Science and Technology Agency, The University of Tokyo, Tokyo, Japan.,Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan
| | - Mika Soma
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan
| | - Hinako Yoshino
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshihiro Kominami
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Minoru Saito
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan
| | - Shuji Aou
- Department of Biological Functions and Engineering, Graduate School of Life Sciences and Systems Engineering, Kyushu Institute of Technology, Wakamatsu, Japan
| | - Yasushi Hojo
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.,Core Research for Evolutional Science and Technology Project of Japan Science and Technology Agency, The University of Tokyo, Tokyo, Japan.,Bioinformatics Project, Japan Science and Technology Agency, The University of Tokyo, Tokyo, Japan.,Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| |
Collapse
|
21
|
Musachio EAS, de Freitas Couto S, Poetini MR, Bortolotto VC, Dahleh MMM, Janner DE, Araujo SM, Ramborger BP, Rohers R, Guerra GP, Prigol M. Bisphenol A exposure during the embryonic period: Insights into dopamine relationship and behavioral disorders in Drosophila melanogaster. Food Chem Toxicol 2021; 157:112526. [PMID: 34461193 DOI: 10.1016/j.fct.2021.112526] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/06/2021] [Accepted: 08/26/2021] [Indexed: 11/29/2022]
Abstract
Environmental factors are involved in the pathogenesis of neurodevelopmental disorders in addition to genetic factors. In this sense, we demonstrated here that the embryonic exposure of Drosophila melanogaster to Bisphenol A (BPA) 1 mM resulted in changes in development, behavior, and biochemical markers punctuated below. BPA did not alter the oviposition and viability of the eggs, however, it was evidenced a decrease in the rate of pupal eclosion and life span of the hatched flies of the generation filial 1 (F1). F1 flies also developed behavioral changes such as incompatibility in the social interaction between them, and hyperactivity demonstrated by increased locomotion in open field tests, increased grooming, and aggression episodes. Furthermore, decreases in dopamine levels and tyrosine hydroxylase activity have also been observed in flies' heads, possibly related to oxidative damage. Through analyzes of oxidative stress biomarkers, carried out on samples of flies' heads, we observed an increase in malondialdehyde and reactive species, decrease in the activity of the superoxide dismutase and catalase, which possibly culminated in the reduction of cell viability. Thus, it is important to emphasize that BPA developed atypical behaviors in Drosophila melanogaster, reinforce the importance of the environmental factor in the development of neurobehavioral diseases.
Collapse
Affiliation(s)
- Elize Aparecida Santos Musachio
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, RS, Brazil
| | - Shanda de Freitas Couto
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, RS, Brazil; Department of Nutrition, Federal University of Pampa, Itaqui Campus, RS, Brazil
| | - Marcia Rósula Poetini
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, RS, Brazil
| | - Vandreza Cardoso Bortolotto
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, RS, Brazil
| | - Mustafa Munir Mustafa Dahleh
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, RS, Brazil
| | - Dieniffer Espinosa Janner
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, RS, Brazil
| | - Stífani Machado Araujo
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, RS, Brazil
| | - Bruna Piaia Ramborger
- Interdisciplinary Group of Research in Teaching Practice, Federal University of Pampa, Uruguaiana Campus, RS, Brazil
| | - Rafael Rohers
- Interdisciplinary Group of Research in Teaching Practice, Federal University of Pampa, Uruguaiana Campus, RS, Brazil
| | - Gustavo Petri Guerra
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, RS, Brazil; Department of Nutrition, Federal University of Pampa, Itaqui Campus, RS, Brazil
| | - Marina Prigol
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, RS, Brazil; Department of Nutrition, Federal University of Pampa, Itaqui Campus, RS, Brazil.
| |
Collapse
|
22
|
Minatoya M, Kishi R. A Review of Recent Studies on Bisphenol A and Phthalate Exposures and Child Neurodevelopment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18073585. [PMID: 33808331 PMCID: PMC8036555 DOI: 10.3390/ijerph18073585] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/20/2021] [Accepted: 03/25/2021] [Indexed: 01/17/2023]
Abstract
Purpose of Review: Bisphenol A and phthalate have been found in the environment, as well as in humans. In this narrative review pre- and postnatal bisphenol A and phthalate exposures, their relationship to neurodevelopment, and the behavioral outcomes of children are elucidated, focusing in particular on the recent case-control, cross-sectional, and longitudinal studies. This review also introduces some of the possible mechanisms behind the observed associations between exposures and outcomes. Recent Findings: Although bisphenol A and phthalate exposure have been reported to influence neurobehavioral development in children, there are various kinds of test batteries for child neurodevelopmental assessment at different ages whose findings have been inconsistent among studies. In addition, the timing and number of exposure assessments have varied. Summary: Overall, this review suggests that prenatal exposure to bisphenol A and phthalates may contribute to neurobehavioral outcomes in children. The evidence is still limited; however, Attention Deficit Hyperactivity Disorder (ADHD) symptoms, especially among boys, constantly suggested association with both prenatal and concurrent exposure to bisphenol A. Although there is limited evidence on the adverse effects of prenatal and postnatal bisphenol A and phthalate exposures provided, pregnant women and young children should be protected from exposure based on a precautionary approach.
Collapse
|
23
|
The Effect of Bisphenol A on the Histological Parameters of Male Rat Prefrontal Area. NUTRITION AND FOOD SCIENCES RESEARCH 2021. [DOI: 10.52547/nfsr.8.2.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
24
|
vom Saal FS, Vandenberg LN. Update on the Health Effects of Bisphenol A: Overwhelming Evidence of Harm. Endocrinology 2021; 162:6124507. [PMID: 33516155 PMCID: PMC7846099 DOI: 10.1210/endocr/bqaa171] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 12/14/2022]
Abstract
In 1997, the first in vivo bisphenol A (BPA) study by endocrinologists reported that feeding BPA to pregnant mice induced adverse reproductive effects in male offspring at the low dose of 2 µg/kg/day. Since then, thousands of studies have reported adverse effects in animals administered low doses of BPA. Despite more than 100 epidemiological studies suggesting associations between BPA and disease/dysfunction also reported in animal studies, regulatory agencies continue to assert that BPA exposures are safe. To address this disagreement, the CLARITY-BPA study was designed to evaluate traditional endpoints of toxicity and modern hypothesis-driven, disease-relevant outcomes in the same set of animals. A wide range of adverse effects was reported in both the toxicity and the mechanistic endpoints at the lowest dose tested (2.5 µg/kg/day), leading independent experts to call for the lowest observed adverse effect level (LOAEL) to be dropped 20 000-fold from the current outdated LOAEL of 50 000 µg/kg/day. Despite criticism by members of the Endocrine Society that the Food and Drug Administration (FDA)'s assumptions violate basic principles of endocrinology, the FDA rejected all low-dose data as not biologically plausible. Their decisions rely on 4 incorrect assumptions: dose responses must be monotonic, there exists a threshold below which there are no effects, both sexes must respond similarly, and only toxicological guideline studies are valid. This review details more than 20 years of BPA studies and addresses the divide that exists between regulatory approaches and endocrine science. Ultimately, CLARITY-BPA has shed light on why traditional methods of evaluating toxicity are insufficient to evaluate endocrine disrupting chemicals.
Collapse
Affiliation(s)
- Frederick S vom Saal
- University of Missouri – Columbia, Division of Biological Sciences, Columbia, Missouri
- Correspondence: Dr. Frederick vom Saal, University of Missouri-Columbia, Division of Biological Sciences, 105 Lefevre Hall, Columbia, MO, 65211, USA. E-mail:
| | - Laura N Vandenberg
- University of Massachusetts – Amherst, Department of Environmental Health Sciences, Amherst, Massachusetts
| |
Collapse
|
25
|
Heindel JJ, Belcher S, Flaws JA, Prins GS, Ho SM, Mao J, Patisaul HB, Ricke W, Rosenfeld CS, Soto AM, Vom Saal FS, Zoeller RT. Data integration, analysis, and interpretation of eight academic CLARITY-BPA studies. Reprod Toxicol 2020; 98:29-60. [PMID: 32682780 PMCID: PMC7365109 DOI: 10.1016/j.reprotox.2020.05.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/03/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022]
Abstract
"Consortium Linking Academic and Regulatory Insights on BPA Toxicity" (CLARITY-BPA) was a comprehensive "industry-standard" Good Laboratory Practice (GLP)-compliant 2-year chronic exposure study of bisphenol A (BPA) toxicity that was supplemented by hypothesis-driven independent investigator-initiated studies. The investigator-initiated studies were focused on integrating disease-associated, molecular, and physiological endpoints previously found by academic scientists into an industry standard guideline-compliant toxicity study. Thus, the goal of this collaboration was to provide a more comprehensive dataset upon which to base safety standards and to determine whether industry-standard tests are as sensitive and predictive as molecular and disease-associated endpoints. The goal of this report is to integrate the findings from the investigator-initiated studies into a comprehensive overview of the observed impacts of BPA across the multiple organs and systems analyzed. For each organ system, we provide the rationale for the study, an overview of methodology, and summarize major findings. We then compare the results of the CLARITY-BPA studies across organ systems with the results of previous peer-reviewed studies from independent labs. Finally, we discuss potential influences that contributed to differences between studies. Developmental exposure to BPA can lead to adverse effects in multiple organs systems, including the brain, prostate gland, urinary tract, ovary, mammary gland, and heart. As published previously, many effects were at the lowest dose tested, 2.5μg/kg /day, and many of the responses were non-monotonic. Because the low dose of BPA affected endpoints in the same animals across organs evaluated in different labs, we conclude that these are biologically - and toxicologically - relevant.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies Commonweal, Bolinas, CA 94924, United States.
| | - Scott Belcher
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Gail S Prins
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago IL 60612, United States
| | - Shuk-Mei Ho
- Department of Environmental Health, University of Cincinnati, Cincinnati OH 45267, United States; Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Jiude Mao
- Biomedical Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - William Ricke
- Department of Urology, University of Wisconsin, Madison WI 53705, United States
| | - Cheryl S Rosenfeld
- Biomedical Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States
| | - Ana M Soto
- Tufts University, Boston, MA 02111, United States
| | - Frederick S Vom Saal
- Department of Biology, University of Missouri, Columbia, MO 65211, United States
| | - R Thomas Zoeller
- Department of Biology, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
26
|
Mustieles V, D'Cruz SC, Couderq S, Rodríguez-Carrillo A, Fini JB, Hofer T, Steffensen IL, Dirven H, Barouki R, Olea N, Fernández MF, David A. Bisphenol A and its analogues: A comprehensive review to identify and prioritize effect biomarkers for human biomonitoring. ENVIRONMENT INTERNATIONAL 2020; 144:105811. [PMID: 32866736 DOI: 10.1016/j.envint.2020.105811] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/24/2020] [Accepted: 05/07/2020] [Indexed: 05/21/2023]
Abstract
Human biomonitoring (HBM) studies have demonstrated widespread and daily exposure to bisphenol A (BPA). Moreover, BPA structural analogues (e.g. BPS, BPF, BPAF), used as BPA replacements, are being increasingly detected in human biological matrices. BPA and some of its analogues are classified as endocrine disruptors suspected of contributing to adverse health outcomes such as altered reproduction and neurodevelopment, obesity, and metabolic disorders among other developmental and chronic impairments. One of the aims of the H2020 European Human Biomonitoring Initiative (HBM4EU) is the implementation of effect biomarkers at large scales in future HBM studies in a systematic and standardized way, in order to complement exposure data with mechanistically-based biomarkers of early adverse effects. This review aimed to identify and prioritize existing biomarkers of effect for BPA, as well as to provide relevant mechanistic and adverse outcome pathway (AOP) information in order to cover knowledge gaps and better interpret effect biomarker data. A comprehensive literature search was performed in PubMed to identify all the epidemiologic studies published in the last 10 years addressing the potential relationship between bisphenols exposure and alterations in biological parameters. A total of 5716 references were screened, out of which, 119 full-text articles were analyzed and tabulated in detail. This work provides first an overview of all epigenetics, gene transcription, oxidative stress, reproductive, glucocorticoid and thyroid hormones, metabolic and allergy/immune biomarkers previously studied. Then, promising effect biomarkers related to altered neurodevelopmental and reproductive outcomes including brain-derived neurotrophic factor (BDNF), kisspeptin (KiSS), and gene expression of nuclear receptors are prioritized, providing mechanistic insights based on in vitro, animal studies and AOP information. Finally, the potential of omics technologies for biomarker discovery and its implications for risk assessment are discussed. To the best of our knowledge, this is the first effort to comprehensively identify bisphenol-related biomarkers of effect for HBM purposes.
Collapse
Affiliation(s)
- Vicente Mustieles
- University of Granada, Center for Biomedical Research (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain.
| | - Shereen Cynthia D'Cruz
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Stephan Couderq
- Evolution des Régulations Endocriniennes, Département "Adaptation du Vivant", UMR 7221 MNHN/CNRS, Sorbonne Université, Paris 75006, France
| | | | - Jean-Baptiste Fini
- Evolution des Régulations Endocriniennes, Département "Adaptation du Vivant", UMR 7221 MNHN/CNRS, Sorbonne Université, Paris 75006, France
| | - Tim Hofer
- Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, NO-0213 Oslo, Norway
| | - Inger-Lise Steffensen
- Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, NO-0213 Oslo, Norway
| | - Hubert Dirven
- Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, NO-0213 Oslo, Norway
| | - Robert Barouki
- University Paris Descartes, ComUE Sorbonne Paris Cité, Paris, France. Institut national de la santé et de la recherche médicale (INSERM, National Institute of Health & Medical Research) UMR S-1124, Paris, France
| | - Nicolás Olea
- University of Granada, Center for Biomedical Research (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Mariana F Fernández
- University of Granada, Center for Biomedical Research (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain.
| | - Arthur David
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| |
Collapse
|
27
|
Yao J, Wang J, Wu L, Lu H, Wang Z, Yu P, Xiao H, Gao R, Yu J. Perinatal exposure to bisphenol A causes a disturbance of neurotransmitter metabolic pathways in female mouse offspring: A focus on the tryptophan and dopamine pathways. CHEMOSPHERE 2020; 254:126715. [PMID: 32334245 DOI: 10.1016/j.chemosphere.2020.126715] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/27/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
Perinatal exposure to bisphenol A (BPA) contributes to neurological disorders in offspring, but the underlying mechanisms are still poorly understood. The abnormal release of neuroactive metabolites in the tryptophan (TRP) and dopamine (DA) pathways is considered to be closely associated with some disorders. Thus, in this study, TRP and DA pathways in adult female mouse offspring were investigated when the pregnant mice were given either vehicle or BPA (2, 10, or 100 μg/kg/d) from day 6 of gestation until weaning. Then, the serum and brain samples of offspring were collected at 3, 6 and 9 months, and 12 neuroactive metabolites in the TRP and DA pathways were detected. The results showed that, in the TRP pathway, TRP levels decreased, whereas kynurenine (KYN) levels and TRP turnover increased in the brain. In the serum, TRP, KYN and 5-hydroxytryptamine (5-HT) levels decreased significantly. For the DA pathway, DA and DA metabolites, including 3,4-dihydroxyphenylacetic acid (DOPAC), 3-methoxytyramine (3-MT) and homovanillic acid (HVA), reduced significantly in the brain and serum. DA turnover decreased dramatically in the brain but enhanced in the serum. The disturbance of these two metabolic pathways might be one of the potential mechanisms of BPA-induced neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jiaxi Yao
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, No. 101 Longmian Avenue, Nanjing, 211166, China; Haining Center for Disease Control and Prevention, No. 82 West Qianjiang Road, Haining, Zhejiang, 314400, China
| | - Jun Wang
- Department of Toxicology, Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, No. 101 Longmian Avenue, Nanjing, 211166, China
| | - Linlin Wu
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, No. 101 Longmian Avenue, Nanjing, 211166, China
| | - Haihua Lu
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, No. 101 Longmian Avenue, Nanjing, 211166, China
| | - Zhonghe Wang
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, No. 101 Longmian Avenue, Nanjing, 211166, China
| | - Pengfei Yu
- Department of Toxicology, Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, No. 101 Longmian Avenue, Nanjing, 211166, China
| | - Hang Xiao
- Department of Toxicology, Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, No. 101 Longmian Avenue, Nanjing, 211166, China
| | - Rong Gao
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, No. 101 Longmian Avenue, Nanjing, 211166, China.
| | - Jing Yu
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, No. 101 Longmian Avenue, Nanjing, 211166, China.
| |
Collapse
|
28
|
Selemon LD, Begovic A. Reduced Midbrain Dopamine Neuron Number in the Adult Non-human Primate Brain after Fetal Radiation Exposure. Neuroscience 2020; 442:193-201. [PMID: 32659340 DOI: 10.1016/j.neuroscience.2020.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/17/2020] [Accepted: 07/02/2020] [Indexed: 11/19/2022]
Abstract
Early gestation is a neurodevelopmental period that is especially vulnerable to environmental insult and one in which neurogenesis features prominently. Prenatal perturbation during early gestation has been linked to neuropsychiatric illnesses such as autism and schizophrenia, and severe environmental insult during this period can result in profound mental impairment. Midbrain dopamine neurons are generated during early gestation and play a key role in the motor, cognitive and reward circuitries implicated in neuropsychiatric disease and addiction. This study examined the impact of curtailing neurogenesis in early gestation on neuron number in the midbrain dopamine group, i.e., the substantia nigra and contiguous ventral tegmental area. Rhesus macaque monkeys were exposed in utero on embryonic days 39-41 to x-irradiation (3-4 exposures of 50 cGy over 3-7 days totalling <200 cGy) and allowed to mature to full adulthood. Stereologic cell counts of tyrosine hydroxylase-positive neurons in the midbrain dopamine group were performed in adult monkeys, as were measurements of somal size. Mean total neuron number in the irradiated monkeys was significantly reduced on average by 33% compared to that of the control group. Somal size did not differ between the groups, suggesting that the integrity of survivor populations was not impacted. Reduced midbrain dopamine neuron number in fetally irradiated, adult monkeys indicates that radiation exposure during the critical period of neurogenesis results in an enduring reduction of this population and underscores the susceptibility of early neurodevelopmental processes to irreversible damage from environmental exposures.
Collapse
Affiliation(s)
- Lynn D Selemon
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States.
| | - Anita Begovic
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
29
|
Prenatal exposure to bisphenol A alters the transcriptome-interactome profiles of genes associated with Alzheimer's disease in the offspring hippocampus. Sci Rep 2020; 10:9487. [PMID: 32528016 PMCID: PMC7289845 DOI: 10.1038/s41598-020-65229-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/27/2020] [Indexed: 01/01/2023] Open
Abstract
Our recent study revealed that prenatal exposure to bisphenol A (BPA) disrupted the transcriptome profiles of genes in the offspring hippocampus. In addition to genes linked to autism, several genes associated with Alzheimer’s disease (AD) were found to be differentially expressed, although the association between BPA-responsive genes and AD-related genes has not been thoroughly investigated. Here, we demonstrated that in utero BPA exposure also disrupted the transcriptome profiles of genes associated with neuroinflammation and AD in the hippocampus. The level of NF-κB protein and its AD-related target gene Bace1 were significantly increased in the offspring hippocampus in a sex-dependent manner. Quantitative RT-PCR analysis also showed an increase in the expression of Tnf gene. Moreover, the reanalysis of transcriptome profiling data from several previously published BPA studies consistently showed that BPA-responsive genes were significantly associated with top AD candidate genes. The findings from this study suggest that maternal BPA exposure may increase AD risk in offspring by dysregulating genes associated with AD neuropathology and inflammation and reveal a possible relationship between AD and autism, which are linked to the same environmental factor. Sex-specific effects of prenatal BPA exposure on the susceptibility of AD deserve further investigation.
Collapse
|
30
|
Bisphenol a Exposure in Utero Disrupts Hypothalamic Gene Expression Particularly Genes Suspected in Autism Spectrum Disorders and Neuron and Hormone Signaling. Int J Mol Sci 2020; 21:ijms21093129. [PMID: 32365465 PMCID: PMC7246794 DOI: 10.3390/ijms21093129] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 01/09/2023] Open
Abstract
Bisphenol A (BPA) is an endocrine-disrupting compound detected in the urine of more than 92% of humans, easily crosses the placental barrier, and has been shown to influence gene expression during fetal brain development. The purpose of this study was to investigate the effect of in utero BPA exposure on gene expression in the anterior hypothalamus, the basal nucleus of the stria terminalis (BNST), and hippocampus in C57BL/6 mice. Mice were exposed in utero to human-relevant doses of BPA, and then RNA sequencing was performed on male PND 28 tissue from whole hypothalamus (n = 3/group) that included the medial preoptic area (mPOA) and BNST to determine whether any genes were differentially expressed between BPA-exposed and control mice. A subset of genes was selected for further study using RT-qPCR on adult tissue from hippocampus to determine whether any differentially expressed genes (DEGs) persisted into adulthood. Two different RNA-Seq workflows indicated a total of 259 genes that were differentially expressed between BPA-exposed and control mice. Gene ontology analysis indicated that those DEGs were overrepresented in categories relating to mating, cell-cell signaling, behavior, neurodevelopment, neurogenesis, synapse formation, cognition, learning behaviors, hormone activity, and signaling receptor activity, among others. Ingenuity Pathway Analysis was used to interrogate novel gene networks and upstream regulators, indicating the top five upstream regulators as huntingtin, beta-estradiol, alpha-synuclein, Creb1, and estrogen receptor (ER)-alpha. In addition, 15 DE genes were identified that are suspected in autism spectrum disorders.
Collapse
|
31
|
Hu F, Liu J, Xu G, Wang H, Shen J, Zhou Y. Bisphenol A exposure inhibits contrast sensitivity in cats involving increased response noise and inhibitory synaptic transmission. Brain Res Bull 2020; 157:1-9. [PMID: 31982453 DOI: 10.1016/j.brainresbull.2020.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/25/2019] [Accepted: 01/21/2020] [Indexed: 12/18/2022]
Abstract
Contrast sensitivity (CS) is one of the primary fundamental factors determining how well we can see, and it directly influences object recognition. Whether bisphenol-A (BPA, an environmental xenoestrogen) can perturb contrast detection in the visual system has yet to be elucidated. In the present study, we analyzed CS of single neurons in the primary visual cortex (area 17, A17) of cats before and after BPA exposure using a multiple-channel recording technique. The results showed that CS of A17 neurons was markedly depressed with an increased contrast threshold after two hour of intravenous BPA administration, which had a positive correlation with decreased firing rates of A17 neurons. Additionally, responses of these neurons presented an overt increase in the trial-to-trail response variability (a kind of neuronal noise), which could disturb the information-filtering function of single neurons. We also found that neuronal CS in the visual relay station was not disturbed after BPA administration, which rules out the contribution of CS alteration in the optical pathway. Importantly, acute BPA treatment obviously increased the inhibitory innervation to the visual pyramidal neurons. This implies that alteration of intracortical inhibitory regulation contributes to the compromised contrast detection in the visual system after BPA treatment.
Collapse
Affiliation(s)
- Fan Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China.
| | - Jiachen Liu
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Guangwei Xu
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Huan Wang
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Jiawei Shen
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Yifeng Zhou
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China.
| |
Collapse
|
32
|
Hung PH, Van Winkle LS, Williams CJ, Hunt PA, VandeVoort CA. Prenatal Bisphenol A Exposure Alters Epithelial Cell Composition in the Rhesus Macaque Fetal Oviduct. Toxicol Sci 2020; 167:450-457. [PMID: 30295897 DOI: 10.1093/toxsci/kfy251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bisphenol A (BPA) is an endocrine disrupting compound that is a pervasive environmental contaminant. Although it has been reported to affect the development of a variety of fetal reproductive tissues, data on the effect of fetal BPA exposure on oviducts were extremely limited and were only available in mice. To determine if there are adverse effects of gestational BPA exposure on fetal oviduct, we exposed pregnant rhesus macaques with female fetuses to oral or nonoral BPA during the last trimester of gestation (day 100 to term). After the treatment, fetal oviducts were collected for morphology evaluation. BPA exposure altered the percentages of different cell types (ciliated, nonciliated, and secretory) in the fetal oviduct and resulted in a significant high ciliated cell population in the BPA-exposed fetal oviduct. The distribution of ciliated cells on the epithelium in the BPA-exposed fetal oviduct was also altered. Gestational BPA exposure reduced the expression of mucosubstance and uteroglobin in secretory cells in the fetal oviduct. A comparison of the outcome of the fetal oviduct studies with similar outcomes previously reported in the lung from the same fetuses demonstrates that BPA exhibits opposite effects in these two organs. In conclusion, the BPA-associated alterations in the fetal oviduct could potentially affect the oviduct morphology and function later in life with a negative impact on fertility. The mechanisms of action of the differential response in the oviduct and the lung to BPA exposure require further investigation.
Collapse
Affiliation(s)
- Pei-Hsuan Hung
- California National Primate Research Center, University of California.,Department of Obstetrics and Gynecology, School of Medicine
| | - Laura S Van Winkle
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine.,Center for Health and the Environment, University of California, Davis, California 95616
| | - Carmen J Williams
- Reproductive Medicine Group, Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709
| | - Patricia A Hunt
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164
| | - Catherine A VandeVoort
- California National Primate Research Center, University of California.,Department of Obstetrics and Gynecology, School of Medicine
| |
Collapse
|
33
|
Kim SS, Hwang KS, Yang JY, Chae JS, Kim GR, Kan H, Jung MH, Lee HY, Song JS, Ahn S, Shin DS, Lee KR, Kim SK, Bae MA. Neurochemical and behavioral analysis by acute exposure to bisphenol A in zebrafish larvae model. CHEMOSPHERE 2020; 239:124751. [PMID: 31518922 DOI: 10.1016/j.chemosphere.2019.124751] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Bisphenol A (BPA) is a chemical monomer widely used in the production of hard plastics for food containers and personal items. Through improper industrial control and disposal, BPA has become a pervasive environmental contaminant, and toxicological studies have shown potent xenobiotic endocrine disruptor activity. Prenatal exposure in particular can lead to infertility and nervous system disorders characterized by behavioral aggression, depression, and cognitive impairment, thus necessitating careful hazard assessment. In this study, we evaluated BPA accumulation rate, blood-brain barrier (BBB) permeability, lethality, cardiotoxicity, behavioral effects, and impacts on multiple neurochemical pathways in zebrafish larvae. The bioconcentration factor (BCF) ranged from 1.95 to 10.0, resulting in a high rate of accumulation in the larval body. Also, high BBB permeability allowed BPA to accumulate at similar rates in both zebrafish and adult mouse (blood to brain concentration ratios of 3.2-6.7 and 1.8 to 5.5, respectively). In addition, BPA-exposed zebrafish larvae exhibited developmental deformities, reduced heart rate, and impaired behavioral patterns, including decreased total distance traveled, slower movement velocity, and altered color-preference. These impairments were associated with inhibition of the phenylalanine to dopamine synthesis pathway and an imbalance between excitatory and inhibitory neurotransmitter systems. Our results suggest that behavioral alteration in BPA-exposed zebrafish result from high accumulation and ensuing dysregulation of serotonergic, kynurenergic, dopaminergic, cholinergic, and GABAergic neurotransmitter systems. In conclusion, similarities in toxic responses to mammalian models highlight the utility of the zebrafish larva as a convenient model for screening environmental toxins.
Collapse
Affiliation(s)
- Seong Soon Kim
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea; College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Kyu-Seok Hwang
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Jung Yoon Yang
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Jin Sil Chae
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Geum Ran Kim
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Hyemin Kan
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Myeong Hun Jung
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Ha-Yeon Lee
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea; College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Jin Sook Song
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon, Republic of Korea
| | - Sunjoo Ahn
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon, Republic of Korea
| | - Dae-Seop Shin
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Kyeong-Ryoon Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Republic of Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Myung Ae Bae
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon, Republic of Korea.
| |
Collapse
|
34
|
Zhang H, Kuang H, Luo Y, Liu S, Meng L, Pang Q, Fan R. Low-dose bisphenol A exposure impairs learning and memory ability with alterations of neuromorphology and neurotransmitters in rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134036. [PMID: 31476513 DOI: 10.1016/j.scitotenv.2019.134036] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
To investigate the developmental neurotoxicity of environmental bisphenol A (BPA) exposure for infants and children, postnatal rats were used as the animal model and were divided into four groups. Then, they were treated with different concentrations of BPA (i.e., 0, 0.5, 50, or 5000 μg/kg·bw/day of BPA as the control, low-, medium- and high-exposed group) from postnatal days 7 to 21. Y-maze tests, Golgi-Cox assays and liquid chromatography-tandem mass spectrometry (LC/MS/MS) were performed to test the changes of learning and memory ability, hippocampal neuromorphology and neurotransmitter levels, respectively. The results showed that the BPA-exposed rats, especially the low- and high-exposed rats, needed more trials and longer times to qualify for the learned criterion than the control rats. Additionally, rats after low- or high-exposure to BPA exhibited decreased DG dendritic complexity and reduced CA1 and DG dendritic spine densities in the hippocampus. Low-dosage BPA treatment could significantly alter the neurotransmitter contents in the hippocampus. In male rats, the levels of glutamic acid (Glu) and acetylcholine increased, while the 5-hydroxytryptamine (5-HT) and γ-aminobutyric acid (GABA) levels decreased, which lead to an unbalanced Glu/GABA ratio. However, in female rats, only 5-HT levels decreased. In conclusion, postnatal exposure to BPA could sex- and dose-dependently disrupt dendritic development and neurotransmitter homeostasis in the rat hippocampus. The impaired spatial learning and memory ability of rats induced by low-dose BPA is associated with both disrupted dendritic development and neurotransmitter homeostasis in the hippocampus.
Collapse
Affiliation(s)
- Haibin Zhang
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Hongxuan Kuang
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yifan Luo
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shuhua Liu
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lingxue Meng
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qihua Pang
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Ruifang Fan
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
35
|
Wang Q, Lin F, He Q, Liu X, Xiao S, Zheng L, Yang H, Zhao H. Assessment of the Effects of Bisphenol A on Dopamine Synthesis and Blood Vessels in the Goldfish Brain. Int J Mol Sci 2019; 20:ijms20246206. [PMID: 31835337 PMCID: PMC6941070 DOI: 10.3390/ijms20246206] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 02/04/2023] Open
Abstract
Bisphenol A (BPA) is an abundant contaminant found in aquatic environments. While a large number of toxicological studies have investigated the effects of BPA, the potential effects of BPA exposure on fish brain have rarely been studied. To understand how BPA impacts goldfish brains, we performed a transcriptome analysis of goldfish brains that had been exposed to 50 μg L−1 and 0 μg L−1 BPA for 30 days. In the analysis of unigene expression profiles, 327 unigenes were found to be upregulated and 153 unigenes were found to be downregulated in the BPA exposure group compared to the control group. Dopaminergic signaling pathway-related genes were significantly downregulated in the BPA exposure group. Furthermore, we found that serum dopamine concentrations decreased and TUNEL (terminal deoxynucleotidyl transferase 2-deoxyuridine, 5-triphosphate nick end labeling) staining was present in dopamine neurons enriched regions in the brain after BPA exposure, suggesting that BPA may disrupt dopaminergic processes. A KEGG analysis revealed that genes involved in the fluid shear stress and atherosclerosis pathway were highly significantly enriched. In addition, the qRT-PCR results for fluid shear stress and atherosclerosis pathway-related genes and the vascular histology of the brain showed that BPA exposure could damage blood vessels and induce brain atherosclerosis. The results of this work provide insights into the biological effects of BPA on dopamine synthesis and blood vessels in goldfish brain and could lay a foundation for future BPA neurotoxicity studies.
Collapse
Affiliation(s)
- Qing Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Q.W.); (F.L.); (Q.H.); (X.L.); (S.X.)
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Fangmei Lin
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Q.W.); (F.L.); (Q.H.); (X.L.); (S.X.)
| | - Qi He
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Q.W.); (F.L.); (Q.H.); (X.L.); (S.X.)
| | - Xiaochun Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Q.W.); (F.L.); (Q.H.); (X.L.); (S.X.)
| | - Shiqiang Xiao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Q.W.); (F.L.); (Q.H.); (X.L.); (S.X.)
| | - Leyun Zheng
- Fisheries Research Institute of Fujian, Xiamen 361000, China;
| | - Huirong Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Q.W.); (F.L.); (Q.H.); (X.L.); (S.X.)
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (H.Y.); (H.Z.)
| | - Huihong Zhao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Q.W.); (F.L.); (Q.H.); (X.L.); (S.X.)
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (H.Y.); (H.Z.)
| |
Collapse
|
36
|
Nesan D, Kurrasch DM. Gestational Exposure to Common Endocrine Disrupting Chemicals and Their Impact on Neurodevelopment and Behavior. Annu Rev Physiol 2019; 82:177-202. [PMID: 31738670 DOI: 10.1146/annurev-physiol-021119-034555] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Endocrine disrupting chemicals are common in our environment and act on hormone systems and signaling pathways to alter physiological homeostasis. Gestational exposure can disrupt developmental programs, permanently altering tissues with impacts lasting into adulthood. The brain is a critical target for developmental endocrine disruption, resulting in altered neuroendocrine control of hormonal signaling, altered neurotransmitter control of nervous system function, and fundamental changes in behaviors such as learning, memory, and social interactions. Human cohort studies reveal correlations between maternal/fetal exposure to endocrine disruptors and incidence of neurodevelopmental disorders. Here, we summarize the major literature findings of endocrine disruption of neurodevelopment and concomitant changes in behavior by four major endocrine disruptor classes:bisphenol A, polychlorinated biphenyls, organophosphates, and polybrominated diphenyl ethers. We specifically review studies of gestational and/or lactational exposure to understand the effects of early life exposure to these compounds and summarize animal studies that help explain human correlative data.
Collapse
Affiliation(s)
- Dinushan Nesan
- Department of Medical Genetics, University of Calgary, Calgary, Alberta T2N 4N1, Canada; , .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Deborah M Kurrasch
- Department of Medical Genetics, University of Calgary, Calgary, Alberta T2N 4N1, Canada; , .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
37
|
Pinto C, Hao R, Grimaldi M, Thrikawala S, Boulahtouf A, Aït-Aïssa S, Brion F, Gustafsson JÅ, Balaguer P, Bondesson M. Differential activity of BPA, BPAF and BPC on zebrafish estrogen receptors in vitro and in vivo. Toxicol Appl Pharmacol 2019; 380:114709. [PMID: 31415773 DOI: 10.1016/j.taap.2019.114709] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/25/2019] [Accepted: 08/10/2019] [Indexed: 11/29/2022]
Abstract
The high volume production compound bisphenol A (BPA) is of environmental concern largely because of its estrogenic activity. Consequently, BPA analogues have been synthesized to be considered as replacement molecules for BPA. These analogues need to be thoroughly evaluated for their estrogenic activity. Here, we combined mechanism zebrafish-based assays to examine estrogenic and anti-estrogenic activities of BPA and two of its analogues, bisphenol AF (BPAF) and bisphenol C (BPC) in vitro and in vivo. In vitro reporter cell lines were used to investigate agonistic and antagonistic effects of the three bisphenols on the three zebrafish estrogen receptors. The transgenic Tg(5 × ERE:GFP) and Cyp19a1b-GFP zebrafish lines were then used to analyze estrogenic and anti-estrogenic responses of the three bisphenols in vivo. BPA, BPAF and BPC were agonists with different potencies for the three zebrafish estrogen receptors in vitro. The potent zfERα-mediated activity of BPA and BPAF in vitro resulted in vivo by activation of GFP expression in zebrafish larvae in the heart (zfERα-dependent) at lower concentrations, and in the liver (zfERβ-dependent) at higher concentrations. BPC induced zfERβ-mediated luciferase expression in vitro, and the zfERβ agonism led to activation of GFP expression in the liver and the brain in vivo. In addition, BPC acted as a full antagonist on zfERα, and completely inhibited estrogen-induced GFP expression in the heart of the zebrafish larvae. To summarize, applying a combination of zebrafish-based in vitro and in vivo methods to evaluate bisphenol analogues for estrogenic activity will facilitate the prioritization of these chemicals for further analysis in higher vertebrates as well as the risk assessment in humans.
Collapse
Affiliation(s)
- Caroline Pinto
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Ruixin Hao
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Marina Grimaldi
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Institut régional du Cancer de Montpellier, Université de Montpellier, 34298 Montpellier, Cedex 5, France
| | - Savini Thrikawala
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Abdelhay Boulahtouf
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Institut régional du Cancer de Montpellier, Université de Montpellier, 34298 Montpellier, Cedex 5, France
| | - Selim Aït-Aïssa
- Institut National de l'Environnement Industriel et des risques (INERIS), Unité Ecotoxicologie in vitro et in vivo, UMR-I 02 SEBIO, 60550 Verneuil-en-Halatte, France
| | - François Brion
- Institut National de l'Environnement Industriel et des risques (INERIS), Unité Ecotoxicologie in vitro et in vivo, UMR-I 02 SEBIO, 60550 Verneuil-en-Halatte, France
| | - Jan-Åke Gustafsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA; Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Institut régional du Cancer de Montpellier, Université de Montpellier, 34298 Montpellier, Cedex 5, France.
| | - Maria Bondesson
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47408, USA
| |
Collapse
|
38
|
Wolstenholme JT, Drobná Z, Henriksen AD, Goldsby JA, Stevenson R, Irvin JW, Flaws JA, Rissman EF. Transgenerational Bisphenol A Causes Deficits in Social Recognition and Alters Postsynaptic Density Genes in Mice. Endocrinology 2019; 160:1854-1867. [PMID: 31188430 PMCID: PMC6637794 DOI: 10.1210/en.2019-00196] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/24/2019] [Indexed: 01/08/2023]
Abstract
Bisphenol A (BPA) is a ubiquitous endocrine-disrupting chemical. Developmental exposure produces changes in behavior and gene expression in the brain. Here, we examined social recognition behaviors in mice from the third familial generation (F3) after exposure to gestational BPA. Second-generation mice were bred in one of four mating combinations to reveal whether characteristics in F3 were acquired via maternal or paternal exposures. After repeated habituation to the same mouse, offspring of dams from the BPA lineage failed to display increased investigation of a novel mouse. Genes involved in excitatory postsynaptic densities (PSDs) were examined in F3 brains using quantitative PCR. Differential expression of genes important for function and stability of PSDs were assessed at three developmental ages. Several related PSD genes-SH3 and multiple ankyrin repeat domains 1 (Shank1), Homer scaffolding protein 1c (Homer1c), DLG associated protein 1 (Gkap), and discs large MAGUK scaffold protein 4 (PSD95)-were differentially expressed in control- vs BPA-lineage brains. Using a second strain of F3 inbred mice exposed to BPA, we noted the same differences in Shank1 and PSD95 expression in C57BL/6J mice. In sum, transgenerational BPA exposure disrupted social interactions in mice and dysregulated normal expression of PSD genes during neural development. The fact that the same genetic effects were found in two different mouse strains and in several brain regions increased potential for translation. The genetic and functional relationship between PSD and abnormal neurobehavioral disorders is well established, and our data suggest that BPA may contribute in a transgenerational manner to neurodevelopmental diseases.
Collapse
Affiliation(s)
- Jennifer T Wolstenholme
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Zuzana Drobná
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
| | - Anne D Henriksen
- Department of Integrated Science and Technology, James Madison University, Harrisonburg, Virginia
| | - Jessica A Goldsby
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Rachel Stevenson
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Joshua W Irvin
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois
| | - Emilie F Rissman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
- Correspondence: Emilie F. Rissman, PhD, North Carolina State University, Thomas Hall Room 3526, Raleigh, North Carolina 27695. E-mail:
| |
Collapse
|
39
|
Bowman RE, Hagedorn J, Madden E, Frankfurt M. Effects of adolescent Bisphenol-A exposure on memory and spine density in ovariectomized female rats: Adolescence vs adulthood. Horm Behav 2019; 107:26-34. [PMID: 30465772 DOI: 10.1016/j.yhbeh.2018.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/09/2018] [Accepted: 11/14/2018] [Indexed: 01/25/2023]
Abstract
The endocrine disruptor, Bisphenol-A (BPA), alters many behavioral and neural parameters in rodents. BPA administration to gonadally intact adolescent rats increases anxiety, impairs spatial memory, and decreases dendritic spine density when measured in adulthood. Since BPA's action seems to be mediated through gonadal steroid receptors, the current experiments were done in ovariectomized (OVX) female rats to examine the effects on behavior and spine density of adolescent BPA exposure under controlled hormone conditions. OVX (postnatal day, PND, 21) female Sprague-Dawley rats (n = 66) received subcutaneous injections of BPA (40 μg/kg/bodyweight), 17β-Estradiol (E2, 50 μg/kg/bodyweight), or saline during adolescence (PND 38-49). Following the last injection brains were processed for Golgi impregnation (Exp1), behavioral and spine density in adolescence (Exp2), or in adulthood (Exp3). In Exp1, E2 increased spine density in CA1 pyramidal cells and BPA decreased spine density in granule cells of the dentate gyrus (DG). In Exp2, BPA impaired spatial memory on the object placement (OP) task, E2 increased spine density in CA1, BPA decreased spine density in the DG and the medial prefrontal cortex (mPFC). When measured in adulthood (Exp3), BPA impaired OP and object recognition (OR) performance, E2 increased spine density in CA1, and BPA decreased spine density in CA1, the mPFC and the DG. Results provide novel data on the effects of adolescent BPA in an OVX model and are compared to data in intact animals and within the context of understanding the importance of the profound neuronal alterations occurring during adolescent development.
Collapse
Affiliation(s)
- Rachel E Bowman
- Department of Psychology, Sacred Heart University, Fairfield, CT 06825, United States of America.
| | - Jennifer Hagedorn
- Department of Psychology, Sacred Heart University, Fairfield, CT 06825, United States of America
| | - Emma Madden
- Department of Psychology, Sacred Heart University, Fairfield, CT 06825, United States of America
| | - Maya Frankfurt
- Department of Science Education, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, United States of America
| |
Collapse
|
40
|
Sheng Z, Wang C, Ren F, Liu Y, Zhu B. Molecular mechanism of endocrine-disruptive effects induced by Bisphenol A: The role of transmembrane G-protein estrogen receptor 1 and integrin αvβ3. J Environ Sci (China) 2019; 75:1-13. [PMID: 30473274 DOI: 10.1016/j.jes.2018.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 06/09/2023]
Abstract
Bisphenol A (BPA) is one of the highest volume industrial products worldwide and has been widely used to make various products as the intermediates of polycarbonate plastics and epoxy resins. Inevitably, general population has been widely exposed to BPA due to extensive use of BPA-containing products. BPA has similar chemical structure with the natural estrogen and has been shown to induce a variety of estrogen-like endocrine effects on organism in vivo or in vitro. High doses of BPA tend to act as antagonist of estrogen receptors (ERs) by directly regulating the genomic transcription. However, BPA at environmentally relevant low-dose always disrupt the biological function via a non-genomic manner mediated by membrane receptors, rather than ERs. Although some studies had investigated the non-genomic effects of low-dose BPA, the exact molecular mechanism still remains unclear. Recently, we found that membrane G protein-coupled estrogen receptor 1 and integrin αvβ3 and its relative signal pathways participate in the induction of male germ cell proliferation and thyroid transcription disruption by the low-dose BPA. A profound understanding for the mechanism of action of the environmentally relevant BPA exposure not only contributes to objectively evaluate and predict the potential influence to human health, but also provides theoretical basis and methodological support for assessing health effects trigged by other estrogen-like environmental endocrine disruptors. Based mainly on our recent findings, this review outlines the research progress of molecular mechanism on endocrine disrupting effects of environmental low-dose BPA, existing problems and some consideration for future studies.
Collapse
Affiliation(s)
- Zhiguo Sheng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Cong Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Furong Ren
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuxiang Liu
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China
| | - Benzhan Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
41
|
Pouzaud F, Thierry-Mieg M, Burga K, Vérines-Jouin L, Fiore K, Beausoleil C, Michel C, Rousselle C, Pasquier E. Concerns related to ED-mediated effects of Bisphenol A and their regulatory consideration. Mol Cell Endocrinol 2018; 475:92-106. [PMID: 29428396 DOI: 10.1016/j.mce.2018.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 01/25/2018] [Accepted: 02/05/2018] [Indexed: 12/21/2022]
Abstract
The extensive database on BPA provides strong evidence of its adverse effects on reproductive, neurobehavioural, metabolic functions and mammary gland. Disruption of estrogenic pathway is central in the mediation of these effects although other modes of action may be involved. BPA has a weak affinity for ERα/β but interaction with extranuclearly located pathways activated by estrogens such as ERRγ and GPER reveals how BPA can act at low doses. The effects are observed later in life after developmental exposure and are associated with pathologies of major societal concern in terms of severity, incidence, impact on quality of life, burden on public health system. The complexity of the dose response raise uncertainties on the possibility to establish safe levels and the scope of ED-mediated effects of BPA may be wider. These concerns fulfill the requirements for ED identification under REACH regulation.
Collapse
Affiliation(s)
| | | | - Karen Burga
- ANSES, Risk Assessment Department, Maisons-Alfort, France
| | | | - Karine Fiore
- ANSES, Risk Assessment Department, Maisons-Alfort, France
| | | | - Cécile Michel
- ANSES, Risk Assessment Department, Maisons-Alfort, France
| | | | | |
Collapse
|
42
|
Mhaouty-Kodja S, Belzunces LP, Canivenc MC, Schroeder H, Chevrier C, Pasquier E. Impairment of learning and memory performances induced by BPA: Evidences from the literature of a MoA mediated through an ED. Mol Cell Endocrinol 2018; 475:54-73. [PMID: 29605460 DOI: 10.1016/j.mce.2018.03.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 03/28/2018] [Accepted: 03/28/2018] [Indexed: 11/29/2022]
Abstract
Many rodent studies and a few non-human primate data report impairments of spatial and non-spatial memory induced by exposure to bisphenol A (BPA), which are associated with neural modifications, particularly in processes involved in synaptic plasticity. BPA-induced alterations involve disruption of the estrogenic pathway as established by reversal of BPA-induced effects with estrogenic receptor antagonist or by interference of BPA with administered estradiol in ovariectomized animals. Sex differences in hormonal impregnation during critical periods of development and their influence on maturation of learning and memory processes may explain the sexual dimorphism observed in BPA-induced effects in some studies. Altogether, these data highly support the plausibility that alteration of learning and memory and synaptic plasticity by BPA is essentially mediated by disturbance of the estrogenic pathways. As memory function in humans involves similar signaling pathways, this mode of action of BPA has the potential to alter human cognitive abilities.
Collapse
Affiliation(s)
- Sakina Mhaouty-Kodja
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine, Institut de Biologie Paris Seine, 75005 Paris, France
| | - Luc P Belzunces
- INRA, Laboratoire de Toxicologie Environnementale, UR 406 A&E, CS 40509, 84914 Avignon Cedex 9, France
| | - Marie-Chantal Canivenc
- Centre des Sciences du Goût et de l'Alimentation, INRA, CNRS, agrosup, Université de Bourgogne, Franche-Comté, Dijon, 21000, France
| | - Henri Schroeder
- Calbinotox, EA7488, Faculté des Sciences et Technologies, Université de Lorraine, 54500, Vandoeuvre les Nancy, France
| | - Cécile Chevrier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | | |
Collapse
|
43
|
Horan TS, Pulcastro H, Lawson C, Gerona R, Martin S, Gieske MC, Sartain CV, Hunt PA. Replacement Bisphenols Adversely Affect Mouse Gametogenesis with Consequences for Subsequent Generations. Curr Biol 2018; 28:2948-2954.e3. [PMID: 30220498 PMCID: PMC6156992 DOI: 10.1016/j.cub.2018.06.070] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/24/2018] [Accepted: 06/27/2018] [Indexed: 12/12/2022]
Abstract
20 years ago, accidental bisphenol A (BPA) exposure caused a sudden increase in chromosomally abnormal eggs from our control mice [1]. Subsequent rodent studies demonstrated developmental effects of exposure with repercussions on adult health and fertility (e.g., [2-9]; reviewed in [10-17]). Studies in monkeys, humans, fish, and worms suggest BPA effects extend across species (e.g., [18-30]; reviewed in [31-33]). Widespread use has resulted in ubiquitous environmental contamination and human BPA exposure. Consumer concern resulted in "BPA-free" products produced using structurally similar bisphenols that are now detectable environmental and human contaminants (e.g., [34-41]). We report here studies initiated by meiotic changes mirroring our previous BPA experience and implicating exposure to BPS (a common BPA replacement) from damaged polysulfone cages. Like with BPA [1, 2, 5], our data show that exposure to common replacement bisphenols induces germline effects in both sexes that may affect multiple generations. These findings add to growing evidence of the biological risks posed by this class of chemicals. Rapid production of structural variants of BPA and other EDCs circumvents efforts to eliminate dangerous chemicals, exacerbates the regulatory burden of safety assessment, and increases environmental contamination. Our experience suggests that these environmental contaminants pose a risk not only to reproductive health but also to the integrity of the research environment. EDCs, like endogenous hormones, can affect diverse processes. The sensitivity of the germline allows us to detect effects that, although not immediately apparent in other systems, may induce variability that undermines experimental reproducibility and impedes scientific advancement.
Collapse
Affiliation(s)
- Tegan S Horan
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Hannah Pulcastro
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Crystal Lawson
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Roy Gerona
- School of Medicine, University of California, San Francisco, CA, USA
| | - Spencer Martin
- School of Medicine, University of California, San Francisco, CA, USA
| | - Mary C Gieske
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Caroline V Sartain
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Patricia A Hunt
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, WA, USA.
| |
Collapse
|
44
|
Sensitive neurotoxicity assessment of bisphenol A using double immunocytochemistry of DCX and MAP2. Arch Pharm Res 2018; 41:1098-1107. [DOI: 10.1007/s12272-018-1077-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/11/2018] [Indexed: 02/01/2023]
|
45
|
Messinetti S, Mercurio S, Pennati R. Bisphenol A affects neural development of the ascidian Ciona robusta. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 331:5-16. [PMID: 30218549 DOI: 10.1002/jez.2230] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 08/06/2018] [Accepted: 08/21/2018] [Indexed: 11/06/2022]
Abstract
Bisphenol A (BPA) is an organic pollutant derived from plastic degradation that has numerous and variable adverse effects on human health and wildlife. In particular, it has been reported that BPA can alter reproductive processes and nervous system development in vertebrates. Considering BPA presence in marine environment and the scant data available on its interaction with nervous system development, we analyzed the effect of BPA exposure on sperm viability, fertilization, embryogenesis, and neural differentiation of the ascidian Ciona robusta. Ascidians are members of the Phylum Tunicata, the sister group of Vertebrata, sharing with them fundamental developmental processes. Our results showed that first cell division was altered starting from 5 µM concentration. Lethal concentration (LC 50 ) was estimated to be 5.2 µM. Larvae developed from treated embryos showed specific malformations to the pigment cells even at 0.1 µM, corresponding to the highest environmental concentration reported so far. Moreover, GABAergic and dopaminergic neurons proved to be target organs of BPA teratogenic action, in accordance with similar results reported in vertebrate animal models. Overall, our results suggest that BPA can exert its effects on nervous system acting on different pathways and underline that C. robusta is a valuable invertebrate animal model for preliminary screenings of effects of pollutants on vertebrates.
Collapse
Affiliation(s)
- Silvia Messinetti
- Department of Environmental Science and Policy, Università degli Studi di Milano, Italy
| | - Silvia Mercurio
- Department of Environmental Science and Policy, Università degli Studi di Milano, Italy
| | - Roberta Pennati
- Department of Environmental Science and Policy, Università degli Studi di Milano, Italy
| |
Collapse
|
46
|
Almeida S, Raposo A, Almeida-González M, Carrascosa C. Bisphenol A: Food Exposure and Impact on Human Health. Compr Rev Food Sci Food Saf 2018; 17:1503-1517. [PMID: 33350146 DOI: 10.1111/1541-4337.12388] [Citation(s) in RCA: 254] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 07/16/2018] [Accepted: 07/25/2018] [Indexed: 12/18/2022]
Abstract
Bisphenol A (BPA) is an industrial compound used extensively to produce synthetic polymers, such as epoxy resins, which are incorporated into the inner coating of metal cans, and also to manufacture polycarbonates with applications in bottles, including bottles of water. Several studies have reported on the transfer of this compound to food. Regarding human exposure to BPA, food intake can be considered the most serious among all the routes, not only because it potentially reaches more people in different age groups (including infants, an especially vulnerable group), but also because it inadvertently occurs over long time periods. BPA is considered an endocrine disruptor and several studies have proposed a relationship between exposure to BPA and the appearance of adverse health effects, such as cancer, infertility, diabetes, and obesity, among others. In 2015 however, the European Food Safety Authority concluded in its last scientific opinion that this compound does not pose any risk to the exposed population's health. Therefore, the EU regards BPA as an authorized product to be used as food contact material. Although BPA intake through food is apparently below the set limits, research into BPA and its potential negative effects is still ongoing. This review contains the most recent in vitro and in vivo studies on BPA toxicity and its harmful effects on health, and it intends to address human exposure to BPA, namely through dietary exposure and its impact on human health.
Collapse
Affiliation(s)
- Susana Almeida
- CBIOS (Research Center for Biosciences and Health Technologies), Univ. Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024, Lisboa, Portugal
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Univ. Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024, Lisboa, Portugal
| | - Maira Almeida-González
- Toxicology Unit, Research Inst. of Biomedical and Health Sciences (IUIBS), Univ. de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Conrado Carrascosa
- Dept. of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Univ. de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413, Arucas, Spain
| |
Collapse
|
47
|
Georgieff MK, Tran PV, Carlson ES. Atypical fetal development: Fetal alcohol syndrome, nutritional deprivation, teratogens, and risk for neurodevelopmental disorders and psychopathology. Dev Psychopathol 2018; 30:1063-1086. [PMID: 30068419 PMCID: PMC6074054 DOI: 10.1017/s0954579418000500] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Accumulating evidence indicates that the fetal environment plays an important role in brain development and sets the brain on a trajectory across the life span. An abnormal fetal environment results when factors that should be present during a critical period of development are absent or when factors that should not be in the developing brain are present. While these factors may acutely disrupt brain function, the real cost to society resides in the long-term effects, which include important mental health issues. We review the effects of three factors, fetal alcohol exposure, teratogen exposure, and nutrient deficiencies, on the developing brain and the consequent risk for developmental psychopathology. Each is reviewed with respect to the evidence found in epidemiological and clinical studies in humans as well as preclinical molecular and cellular studies that explicate mechanisms of action.
Collapse
Affiliation(s)
| | - Phu V Tran
- University of Minnesota School of Medicine
| | | |
Collapse
|
48
|
Nesan D, Sewell LC, Kurrasch DM. Opening the black box of endocrine disruption of brain development: Lessons from the characterization of Bisphenol A. Horm Behav 2018; 101:50-58. [PMID: 29241697 DOI: 10.1016/j.yhbeh.2017.12.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 01/14/2023]
Abstract
Bisphenol A (BPA) is among the best-studied endocrine disrupting chemicals, known to act via multiple steroid hormone receptors to mediate a myriad of cellular effects. Pre-, peri-, and postnatal BPA exposure have been linked to a variety of altered behaviors in multiple model organisms, ranging from zebrafish to frogs to mammalian models. Given that BPA can cross the human placental barrier and has been found in the serum of human fetuses during gestation, BPA has been postulated to adversely affect ongoing neurodevelopment, ultimately leading to behavioral disorders later in life. Indeed, the brain has been identified as a key developmental target for BPA disruption. Despite these known associations between gestational BPA exposure and adverse developmental outcomes, as well as an extensive body of evidence existing in the literature, the mechanisms by which BPA induces its cellular- and tissue-specific effects on neurodevelopmental processes still remains poorly understood at a mechanistic level. In this review we will briefly summarize the effects of gestational BPA exposure on neural developmental mechanisms and resulting behaviors, and then present suggestions for how we might address gaps in our knowledge to develop a fuller understanding of endocrine neurodevelopmental disruption to better inform governmental policy against the use of BPA or other endocrine disruptors.
Collapse
Affiliation(s)
- Dinushan Nesan
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotckhiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Laronna C Sewell
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotckhiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Deborah M Kurrasch
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotckhiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
49
|
Medwid S, Guan H, Yang K. Bisphenol A stimulates adrenal cortical cell proliferation via ERβ-mediated activation of the sonic hedgehog signalling pathway. J Steroid Biochem Mol Biol 2018; 178:254-262. [PMID: 29307715 DOI: 10.1016/j.jsbmb.2018.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/04/2018] [Indexed: 12/21/2022]
Abstract
We previously demonstrated that prenatal exposure to bisphenol A (BPA) resulted in increased adrenal gland weight independent of changes in plasma ACTH levels in adult mouse offspring. This finding suggested that BPA exposure likely had a direct effect on adrenal development. Given that (1) sonic hedgehog (Shh) signaling is essential for adrenal development; (2) deletion of the Shh gene in mice results in adrenal hypoplasia; (3) BPA is known to signal through estrogen receptor β (ERβ); and (4) ERβ is highly expressed in adrenal glands; we hypothesized that BPA stimulates adrenal cell proliferation via ERβ-mediated activation of the Shh pathway. To test this hypothesis, the human adrenal cell line, H295A cells, was used as an in vitro model system. Our main findings were: (1) BPA increased cell number and protein levels of proliferating cell nuclear antigen (PCNA; a universal marker of cell proliferation), cyclin D1 and D2 (key proliferation factors), as well as Shh and its key transcriptional regulator Gli1; (2) cyclopamine, a Shh pathway inhibitor, blocked these stimulatory effects of BPA on cell proliferation; (3) BPA increased the nuclear translocation of ERβ; and (4) the ERβ-specific agonist DPN mimicked while the ERβ-specific antagonist PHTPP abrogated the stimulatory effects of BPA on cell proliferation and Shh signaling. Taken together, these findings demonstrate that BPA stimulates adrenal cell proliferation likely through ERβ-mediated activation of the Shh signaling pathway. Thus, the present study provides novel insights into the molecular mechanisms underlying our previously reported BPA-induced aberrant adrenal phenotype.
Collapse
Affiliation(s)
- Samantha Medwid
- Children's Health Research Institute & Lawson Health Research Institute, Departments of Obstetrics & Gynaecology and Physiology & Pharmacology, Western University, 800 Commissioners Rd. E., N6C 2V5, London, Ontario, Canada
| | - Haiyan Guan
- Children's Health Research Institute & Lawson Health Research Institute, Departments of Obstetrics & Gynaecology and Physiology & Pharmacology, Western University, 800 Commissioners Rd. E., N6C 2V5, London, Ontario, Canada
| | - Kaiping Yang
- Children's Health Research Institute & Lawson Health Research Institute, Departments of Obstetrics & Gynaecology and Physiology & Pharmacology, Western University, 800 Commissioners Rd. E., N6C 2V5, London, Ontario, Canada.
| |
Collapse
|
50
|
He B, Xu D, Zhang C, Zhang L, Wang H. Prenatal food restriction induces neurobehavioral abnormalities in adult female offspring rats and alters intrauterine programming. Toxicol Res (Camb) 2018; 7:293-306. [PMID: 30090583 DOI: 10.1039/c7tx00133a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 01/21/2018] [Indexed: 12/25/2022] Open
Abstract
The higher risk of adult neuropsychiatric diseases in individuals with low fetal birth weight may be related to brain-derived neurotrophic factor (BDNF) signaling pathway inhibition. Here, we investigated whether prenatal food restriction (PFR) induces neurobehavioral alterations in adult female offspring and explored the underlying intrauterine programming mechanism. Pregnant Wistar rats in the PFR group were fed 50% of the daily food intake of control rats from gestational day (GD) 11 to 20; some pregnant rats were sacrificed at GD20, and the remaining female pups had normal delivery and were fed a post-weaning high-fat diet (HFD) and half of them were exposed to an unpredictable chronic stress (UCS) from postnatal week (PW) 21. All adult female offspring were sacrificed at PW24. At GD20, PFR altered fetal hippocampal structure and function, increased glucocorticoid receptor (GR) expression, and decreased mineralocorticoid receptor (MR), BDNF and synaptic plasticity-related gene expressions. At PW24, PFR induced depression-like behavioral abnormalities in adult rat offspring fed an HFD. These rats exhibited depression- and anxiety-like behavioral changes after HFD/UCS. Furthermore, the hippocampal morphology of the PFR group showed abnormal changes in adult offspring fed an HFD and more serious damage after HFD/UCS. These changes were accompanied by increased serum corticosterone levels, elevated GR expression, and reduced expression of the BDNF signaling pathway and synaptic plasticity-related genes in the hippocampus. In conclusion, PFR may induce neurobehavioral abnormalities in adult offspring, especially those exposed to UCS, through high levels of glucocorticoids, which increase hippocampal GR expression and decrease BDNF expression.
Collapse
Affiliation(s)
- Bo He
- Department of Pharmacology , Wuhan University School of Basic Medical Sciences , Wuhan 430071 , China . ; ; ; Tel: +86 27 68758665.,Hubei Provincial Key Laboratory of Developmentally Originated Disease , Wuhan 430071 , China
| | - Dan Xu
- Department of Pharmacology , Wuhan University School of Basic Medical Sciences , Wuhan 430071 , China . ; ; ; Tel: +86 27 68758665.,Hubei Provincial Key Laboratory of Developmentally Originated Disease , Wuhan 430071 , China
| | - Chong Zhang
- Department of Pharmacology , Wuhan University School of Basic Medical Sciences , Wuhan 430071 , China . ; ; ; Tel: +86 27 68758665
| | - Li Zhang
- Department of Pharmacology , Wuhan University School of Basic Medical Sciences , Wuhan 430071 , China . ; ; ; Tel: +86 27 68758665
| | - Hui Wang
- Department of Pharmacology , Wuhan University School of Basic Medical Sciences , Wuhan 430071 , China . ; ; ; Tel: +86 27 68758665.,Hubei Provincial Key Laboratory of Developmentally Originated Disease , Wuhan 430071 , China
| |
Collapse
|