1
|
Bortoletto R, Comacchio C, Garzitto M, Piscitelli F, Balestrieri M, Colizzi M. Palmitoylethanolamide supplementation for human health: A state-of-the-art systematic review of Randomized Controlled Trials in patient populations. Brain Behav Immun Health 2025; 43:100927. [DOI: 10.1016/j.bbih.2024.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
2
|
Grimison P, Mersiades A, Kirby A, Tognela A, Olver I, Morton RL, Haber P, Walsh A, Lee Y, Abdi E, Della-Fiorentina S, Aghmesheh M, Fox P, Briscoe K, Sanmugarajah J, Marx G, Kichenadasse G, Wheeler H, Chan M, Shannon J, Gedye C, Begbie S, Simes RJ, Stockler MR. Oral Cannabis Extract for Secondary Prevention of Chemotherapy-Induced Nausea and Vomiting: Final Results of a Randomized, Placebo-Controlled, Phase II/III Trial. J Clin Oncol 2024; 42:4040-4050. [PMID: 39151115 PMCID: PMC11608591 DOI: 10.1200/jco.23.01836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/20/2023] [Accepted: 06/12/2024] [Indexed: 08/18/2024] Open
Abstract
PURPOSE The aim of this randomized, placebo-controlled, two-stage, phase II/III trial was to determine the efficacy of an oral cannabis extract in adults with refractory nausea and/or vomiting during moderately or highly emetogenic, intravenous chemotherapy despite guideline-consistent antiemetic prophylaxis. Here, we report results of the prespecified combined analysis including the initial phase II and subsequent phase III components. PATIENTS AND METHODS Study treatment consisted of oral capsules containing either tetrahydrocannabinol 2.5 mg plus cannabidiol 2.5 mg capsules (THC:CBD) or matching placebo, taken three times a day from days -1 to 5, in addition to guideline-consistent antiemetics. The primary measure of effect was the difference in the proportions of participants with no vomiting or retching and no use of rescue medications (a complete response) during hours 0-120 after the first cycle of chemotherapy on study (cycle A). RESULTS We recruited 147 evaluable of a planned 250 participants from 2016 to 2022. Background antiemetic prophylaxis included a corticosteroid and 5-hydroxytryptamine antagonist in 97%, a neurokinin-1 antagonist in 80%, and olanzapine in 10%. THC:CBD compared with placebo improved the complete response rate from 8% to 24% (absolute difference 16%, 95% CI, 4 to 28, P = .01), with similar effects for absence of significant nausea, use of rescue medications, daily vomits, and the nausea scale on the Functional Living Index-Emesis quality-of-life questionnaire. More frequent bothersome adverse events of special interest included sedation (18% v 7%), dizziness (10% v 0%), and transient anxiety (4% v 1%). There were no serious adverse events attributed to THC:CBD. CONCLUSION THC:CBD is an effective adjunct for chemotherapy-induced nausea and vomiting despite standard antiemetic prophylaxis, but was associated with additional adverse events. Drug availability, cultural attitudes, legal status, and preferences may affect implementation. Future analyses will evaluate the cost-effectiveness of THC:CBD.
Collapse
Affiliation(s)
- Peter Grimison
- Chris O'Brien Lifehouse, Sydney, NSW, Australia
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
| | - Antony Mersiades
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
- Dept of Medical Oncology, Northern Beaches Hospital, Frenchs Forest, NSW, Australia
| | - Adrienne Kirby
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
| | - Annette Tognela
- Macarthur Cancer Therapy Centre, Campbelltown Hospital, Campbelltown, NSW, Australia
| | - Ian Olver
- University of Adelaide, Adelaide, SA, Australia
| | - Rachael L. Morton
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
| | - Paul Haber
- Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Anna Walsh
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
| | - Yvonne Lee
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
| | | | | | - Morteza Aghmesheh
- Department of Medical Oncology, Wollongong Hospital, Wollongong, NSW, Australia
| | - Peter Fox
- Dept of Medical Oncology, Orange Base Hospital, Orange, NSW, Australia
| | - Karen Briscoe
- Department of Medical Oncology, Coffs Harbour Hospital, Coffs Harbour, NSW, Australia
| | - Jasotha Sanmugarajah
- Department of Medical Oncology, Gold Coast University Hospital, Gold Coast, QLD, Australia
| | - Gavin Marx
- Department of Medical Oncology, Sydney Adventist Hospital, Wahroonga, NSW, Australia
| | | | - Helen Wheeler
- Department of Medical Oncology, Royal North Shore Hospital, Gosford, NSW, Australia
| | - Matthew Chan
- Department of Medical Oncology, Gosford Hospital, Gosford, NSW, Australia
| | - Jenny Shannon
- Department of Medical Oncology, Nepean Hospital, Kingswood, NSW, Australia
| | - Craig Gedye
- Department of Medical Oncology, Calvary Mater Hospital, Newcastle, NSW, Australia
| | - Stephen Begbie
- Department of Medical Oncology, Port Macquarie Hospital, Port Macquarie, NSW, Australia
| | - R. John Simes
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
| | - Martin R. Stockler
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
3
|
Premoli M, Carone M, Mastinu A, Maccarinelli G, Aria F, Mac Sweeney E, Memo M, Bonini SA. Cannabis Sativa Oil Promotes Social Interaction and Ultrasonic Communication by Acting on Oxytocin Pathway. Cannabis Cannabinoid Res 2024; 9:1514-1523. [PMID: 38800950 PMCID: PMC11685290 DOI: 10.1089/can.2024.0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Objective: Cannabis sativa is the most used recreational drug worldwide. In recent years, there has been a growing interest in the potential therapeutic benefits of medicinal cannabis to treat a variety of psychiatric and neurological conditions. In particular, cannabidiol (CBD), a nonpsychoactive cannabis constituent, has been investigated for its potential prosocial effects on behavior, although the molecular mechanisms underlying this effect are still largely unknown. The aim of this study was to investigate the effect of a C. sativa oil CBD rich (CS oil) on social interaction and ultrasonic communication in mice. Study Design: Twenty-seven adult male mice (B6; 129P F2) were treated daily with vehicle or CS oil for 2 weeks. At Day 14, mice were tested for behavior (social interaction test and ultrasonic communication). Forty minutes before the behavioral tests, mice were exposed to intranasal treatment with vehicle or the oxytocin receptor antagonist, L-371,257. After behavioral tests, VH- and CS oil-treated mice were sacrificed, RNA was extracted from the hypothalamus and used for quantitative Real Time-PCR experiments. Results: We found that a 2-week treatment with the CS oil on mice exerted a prosocial effect associated with an increase in ultrasonic vocalizations. These effects were inhibited by pretreating mice with an oxytocin receptor antagonist. In addition, at the molecular level, we found that CS oil treatment caused a significant increase in oxytocin and a decrease in oxytocin receptor expression levels in the brain hypothalamus. Conclusion: Our results suggest that CS oil promotes social behavior by acting on oxytocin pathway.
Collapse
Affiliation(s)
- Marika Premoli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marinella Carone
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Francesca Aria
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Eileen Mac Sweeney
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sara Anna Bonini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
4
|
Lamonarca J, Mintz I, Bayarres L, Kochen S, Oddo S. Psychiatric comorbidities before and after cannabidiol treatment in adult patients with drug resistant focal epilepsy. Epilepsy Behav 2024; 160:110032. [PMID: 39433001 DOI: 10.1016/j.yebeh.2024.110032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 10/23/2024]
Abstract
Cannabidiol oil (CBD) has been approved as an antiseizure medication for the treatment of drug -resistant epilepsy in pediatric patients in 2018 for some special types of epilepsy. Since this time its use was extended to other forms of epilepsy. However, to date, there are few publications on the use of CBD in adult patients with drug-resistant focal epilepsy and psychiatric comorbidities. We conducted a prospective, observational, open cohort study, with a before-after design, in adult patients, we assessed the effectiveness, dosage, and tolerance of adjunctive CBD treatment. Our study concluded that CBD was effective and safe.Our study in line with others examining CBD use in adult patients with drug-resistant epilepsy, omits consideration of psychiatric aspects. The aim of this study was to evaluate, in the same patient population that was part of a previous observational study, depression, quality of life, anxious symptoms and daytime sleepiness before and after CBD treatment. RESULTS: Forty-four patients were enrolled in the study. Prior to CBD treatment, 50 % of participants exhibited symptoms of depression. Following CBD treatment, 95.4 % of these individuals demonstrated a marked improvement (p = 0.001). Among this cohort, 71.5 % of patients reported minimal or no depressive symptoms post-treatment. Moreover, 68 % of patients experienced an enhancement in their overall quality of life. Comparative analysis of BDI-II and QOLIE-10 scores before and after CBD treatment revealed a statistically significant positive correlation (p < 0.036 and < 0.001, respectively). Improvements in depressive symptoms were found to correspond with enhancements in quality of life. In terms of anxiety symptoms, 54.5 % of patients exhibited such symptoms prior to CBD treatment, with 71 % showing improvement post-treatment. Adjunctive CBD treatment in adult patients with drug-resistant focal epilepsy was effective, safe, well tolerated and associated with significant improvement in depressive symptoms, anxiety and quality of life.
Collapse
Affiliation(s)
- Julián Lamonarca
- Neurosciences and Complex Systems Unit (ENyS), Epilepsy Unit, CONICET, El Cruce "N. Kirchner" Hospital.", Univ. Nat. A. Jauretche (UNAJ), F. Varela, Prov. Buenos Aires. Buenos Aires, Argentina
| | - Inés Mintz
- Neurosciences and Complex Systems Unit (ENyS), Epilepsy Unit, CONICET, El Cruce "N. Kirchner" Hospital.", Univ. Nat. A. Jauretche (UNAJ), F. Varela, Prov. Buenos Aires. Buenos Aires, Argentina
| | - Liliana Bayarres
- Neurosciences and Complex Systems Unit (ENyS), Epilepsy Unit, CONICET, El Cruce "N. Kirchner" Hospital.", Univ. Nat. A. Jauretche (UNAJ), F. Varela, Prov. Buenos Aires. Buenos Aires, Argentina
| | - Silvia Kochen
- Neurosciences and Complex Systems Unit (ENyS), Epilepsy Unit, CONICET, El Cruce "N. Kirchner" Hospital.", Univ. Nat. A. Jauretche (UNAJ), F. Varela, Prov. Buenos Aires. Buenos Aires, Argentina
| | - Silvia Oddo
- Neurosciences and Complex Systems Unit (ENyS), Epilepsy Unit, CONICET, El Cruce "N. Kirchner" Hospital.", Univ. Nat. A. Jauretche (UNAJ), F. Varela, Prov. Buenos Aires. Buenos Aires, Argentina.
| |
Collapse
|
5
|
Denis Völker JS, Micluția IV, Vinași RC. Investigating Cannabidiol's potential as a supplementary treatment for schizophrenia: A narrative review. Eur J Pharmacol 2024; 979:176821. [PMID: 39068976 DOI: 10.1016/j.ejphar.2024.176821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/11/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
Schizophrenia presents a complex mental health challenge, often inadequately addressed by existing antipsychotic treatments, leading to persistent symptoms and adverse effects. Hence, developing alternative therapeutic approaches is crucial. Cannabidiol (CBD), a nonpsychoactive compound in Cannabis sativa, has been extensively explored for its therapeutic potential in treating psychiatric disorders, including schizophrenia. CBD exhibits antipsychotic, anxiolytic, and neuroprotective effects. However, distinguishing the individual effects of CBD and THC remains challenging. Therefore, this review aims to critically analyze the potential role of CBD as an adjunctive therapy in schizophrenia treatment. The therapeutic action of CBD may involve activating the 5-hydroxytryptamine 1A receptors and suppressing the G-protein-coupled receptor 55, thereby affecting various neurotransmitter systems. Additionally, the anti-inflammatory and antioxidative effects of CBD may contribute to alleviating neuroinflammation linked to schizophrenia. Compared to typical antipsychotics, CBD demonstrates a lower incidence of side effects and it exhibited favorable tolerability in clinical trials. A 2012 clinical trial demonstrated the efficacy of CBD in reducing both positive and negative symptoms of schizophrenia, presenting a safer profile than that of traditional antipsychotics. However, further research is needed to fully establish the safety and efficacy of CBD as an adjunctive treatment. Future research directions encompass exploring detailed antipsychotic mechanisms, long-term safety profiles, interactions with current antipsychotics, optimal dosing, and patient-specific factors such as genetic predispositions. Despite these research needs, the potential of CBD to enhance the quality of life and symptom management positions it as a promising candidate for innovative schizophrenia treatment approaches.
Collapse
Affiliation(s)
- Jes Sebastian Denis Völker
- Department of Clinical Psychiatry Spitalul Clinic Judeţean de Urgenţă Cluj (Cluj County Emergency Clinical Hospital), Cluj-Napoca, Romania.
| | - Ioana Valentina Micluția
- Department of Clinical Psychiatry Spitalul Clinic Judeţean de Urgenţă Cluj (Cluj County Emergency Clinical Hospital), Cluj-Napoca, Romania.
| | - Ramona-Cristina Vinași
- Department of Clinical Neurosciences (DCN) Spitalul Clinic Judeţean de Urgenţă Cluj (Cluj County Emergency Clinical Hospital), Cluj-Napoca, Romania.
| |
Collapse
|
6
|
Revol B, Bagnolati J, Micallef J, Jouanjus E. Cannabidiol (CBD): Confronting consumers' expectations of therapeutic benefits with pharmacological reality. Therapie 2024; 79:497-504. [PMID: 38383209 DOI: 10.1016/j.therap.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024]
Abstract
In recent years, the increase in cannabidiol (CBD) sales in Europe has raised questions regarding the legal status of this product, as well as its safety of use. Consumers seem to be looking for solutions to various health issues. However, the scientific reality is much more nuanced. The European CBD market emerged in Switzerland in 2016 and subsequently expanded across the continent. This expansion has been facilitated by the establishment of delta-9-tetrahydrocannabinol (THC) concentration limits for these products. However, the current market offers a diverse range of CBD products, often lacking clear information on raw materials, product concentrations and recommended dosages. Regulating these products is challenging, as the appropriate classification of CBD remains uncertain. CBD products are in high demand worldwide, with many people seeking alternative treatments for medical conditions or general health and well-being benefits. However, the use of CBD products often relies on self-medication and lacks sufficient scientific evidence. Improved communication between patients and healthcare professionals is needed to ensure informed decisions and address potential interactions with other medications. Scientific evidence on CBD is currently limited and the efficacy of CBD-containing products has only been proven in clinical trials for Epidyolex® as an add-on therapy. There is no consensus on the long-term safety, appropriate dosage, schedules or administration routes for CBD. Health claims associated with CBD are not consistent with the available scientific research, which is still in its early stages. Further clinical research is needed to establish the efficacy and safety of CBD in various medical conditions. The enthusiasm surrounding CBD-based products should be tempered by the limited scientific evidence of their efficacy, the inadequacy of patient expectations, regulatory concerns and potential drug interactions.
Collapse
Affiliation(s)
- Bruno Revol
- CEIP-Addictovigilance, CHU de Grenoble Alpes, 38043 Grenoble, France; Université Grenoble Alpes, HP2 Inserm U1300, 38043 Grenoble, France.
| | - Julie Bagnolati
- CEIP-Addictovigilance, CHU de Grenoble Alpes, 38043 Grenoble, France
| | - Joëlle Micallef
- CEIP-Addictovigilance Paca Corse, Hôpital de la Timone, Assistance publique-Hôpitaux de Marseille, 13005 Marseille, France; Aix-Marseille Université, Institut de Neurosciences des Systèmes Inserm UMR1106, 13005 Marseille, France
| | - Emilie Jouanjus
- CEIP-Addictovigilance, CHU de Toulouse, 31000 Toulouse, France; Université Toulouse III, CERPOP Inserm UMR1295, 31000 Toulouse, France
| |
Collapse
|
7
|
Kennedy L, Ku BS, Addington J, Amir CM, Bearden CE, Cannon TD, Carrión R, Cornblatt B, Keshavan M, Perkins D, Mathalon D, Stone W, Walker E, Woods S, Cadenhead KS. Occasional cannabis use is associated with higher premorbid functioning and IQ in youth at clinical high-risk (CHR) for psychosis: Parallel findings to psychosis cohorts. Schizophr Res 2024; 271:319-331. [PMID: 39084107 DOI: 10.1016/j.schres.2024.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Neurocognitive deficits have been widely reported in clinical high-risk for psychosis (CHR) populations. Additionally, rates of cannabis use are high among CHR youth and are associated with greater symptom severity. Cannabis use has been sometimes shown to be associated with better neurocognition in more progressed psychosis cohorts, therefore in this study we aimed to determine whether a similar pattern was present in CHR. METHODS CHR participants ages 12-30 from the North American Prodromal Longitudinal Study (NAPLS-3) (N = 698) were grouped according to: "minimal to no cannabis use" (n = 406), "occasional use" (n = 127), or "frequent use" (n = 165). At baseline, cannabis use groups were compared on neurocognitive tests, clinical, and functional measures. Follow-up analyses were used to model relationships between cannabis use frequency, neurocognition, premorbid, and social functioning. RESULTS Occasional cannabis users performed significantly better than other use-groups on measures of IQ, with similar trend-level patterns observed across neurocognitive domains. Occasional cannabis users demonstrated better social, global, and premorbid functioning compared to the other use-groups and less severe symptoms compared to the frequent use group. Follow-up structural equation modeling/path analyses found significant positive associations between premorbid functioning, social functioning, and IQ, which in turn was associated with occasional cannabis use frequency. DISCUSSION Better premorbid functioning positively predicts both better social functioning and higher IQ which in turn is associated with a moderate cannabis use pattern in CHR, similar to reports in first-episode and chronic psychosis samples. Better premorbid functioning likely represents a protective factor in the CHR population and predicts a better functional outcome.
Collapse
Affiliation(s)
- L Kennedy
- Department of Psychiatry, University of California San Diego, United States
| | - B S Ku
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | | | - C M Amir
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry, University of California Los Angeles, Los Angeles, CA, United States
| | - C E Bearden
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry, University of California Los Angeles, Los Angeles, CA, United States
| | - T D Cannon
- Department of Psychology, Yale University, New Haven, CT, United States; Department of Psychiatry, Yale University, New Haven, CT, United States
| | - R Carrión
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - B Cornblatt
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - M Keshavan
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - D Perkins
- University of North Carolina, Chapel Hill, Chapel Hill, NC, United States
| | - D Mathalon
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco
| | - W Stone
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - E Walker
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - S Woods
- Department of Psychology, Yale University, New Haven, CT, United States; Department of Psychiatry, Yale University, New Haven, CT, United States
| | - K S Cadenhead
- Department of Psychiatry, University of California San Diego, United States.
| |
Collapse
|
8
|
Dołoto A, Bąk E, Batóg G, Piątkowska-Chmiel I, Herbet M. Interactions of antidepressants with concomitant medications-safety of complex therapies in multimorbidities. Pharmacol Rep 2024; 76:714-739. [PMID: 39012418 PMCID: PMC11294384 DOI: 10.1007/s43440-024-00611-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 07/17/2024]
Abstract
Depression is the fourth most serious disease in the world. Left untreated, it is a cause of suicide attempts, emergence or exacerbation worsening of serious diseases, bodily and mental disorders, as well as increased risk of cardiovascular diseases, stroke, diabetes, and obesity, as well as endocrine and neurological diseases. Frequent coexistence of depression and other diseases requires the simultaneous use of several drugs from different therapeutic groups, which very often interact and intensify comorbidities, sometimes unrelated mechanisms. Sufficient awareness of potential drug interactions is critical in clinical practice, as it allows both to avoid disruption of proper pharmacotherapy and achieve substantive results. Therefore, this review aims to analyze the interactions of antidepressants with other concomitant medications. Against the backdrop of experimental research and a thorough analysis of the up-to-date literature, the authors discuss in detail the mechanisms and effects of action of individual drug interactions and adaptogens, including the latest antidepressants.
Collapse
Affiliation(s)
- Anna Dołoto
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8B Street, 20-090, Lublin, Poland
| | - Ewelina Bąk
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8B Street, 20-090, Lublin, Poland
| | - Gabriela Batóg
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8B Street, 20-090, Lublin, Poland
| | - Iwona Piątkowska-Chmiel
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8B Street, 20-090, Lublin, Poland
| | - Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8B Street, 20-090, Lublin, Poland.
| |
Collapse
|
9
|
Cottrell K, Chong J. Impact of Medical Cannabis on Recovery from Playing-Related Musculoskeletal Disorders in Musicians: An Observational Cohort Study. Healthcare (Basel) 2024; 12:1335. [PMID: 38998869 PMCID: PMC11241574 DOI: 10.3390/healthcare12131335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
INTRODUCTION Playing-related musculoskeletal disorders (PRMDs) are musculoskeletal symptoms that interfere with the ability to play at the level a musician is accustomed to. Musicians have an 84% lifetime prevalence of PRMD. Many types of analgesia are inappropriate for this population due to their risks, but cannabidiol (CBD) has been shown to have anti-inflammatory properties and can reduce the perception of pain. Medical cannabis has also been shown to be safer than other analgesia in terms of serious adverse events. This study explores the impact of medical cannabis for PRMD on perceptions of pain and mental health outcomes. METHODS Participants (n = 204) completed questionnaires at baseline and six months: the Musculoskeletal Pain Intensity and Interference Questionnaire for Musicians (MPIIQM) and Depression, Anxiety and Stress Scale (DASS-21). Participants self-selected their group: non-cannabis users (n = 42), new medical cannabis users (n = 61), and long-term medical cannabis users (n = 101). Data were analyzed using paired t-tests for within-group and ANOVA for between-group differences. RESULTS At six months, there was no difference (p = 0.579) in cannabidiol dose between new (24.87 ± 12.86 mg) and long-term users (21.48 ± 12.50 mg). There was a difference in tetrahydrocannabinol (THC) dose (p = 0.003) between new (3.74 ± 4.22 mg) and long-term users (4.41 ± 5.18 mg). At six months, new cannabis users had a significant reduction in pain intensity as measured by The Musculoskeletal Pain Intensity and Interference Questionnaire for Musicians (MPIIQM40) (p = 0.002). Non-users (p = 0.035), new users (p = 0.002), and long-term cannabis users (p = 0.009) all had significant reductions in pain interference (MPIIQM50) at six months. At six months, non-cannabis (p = 0.022) and long-term cannabis users (p = 0.001) had an improvement in DASS-21. The change in pain intensity was the only difference between groups, F(2, 201) = 3.845, p = 0.023. This difference was between long-term (0.83 ± 0.79) and new users (-2.61 ± 7.15). No serious adverse events occurred, and a minority experienced tiredness, cough, and dry mouth. DISCUSSION/CONCLUSIONS This practice-based evidence demonstrated that the multidimensional approach to care provided by the Musicians' Clinics of Canada benefited all groups at six months. Medical cannabis significantly reduced pain intensity in new users of medical cannabis with PRMD, and all groups saw improvements in pain interference. In keeping with prior studies, medical cannabis seems to be effective at reducing perceptions of pain, including for PRMD. CBD/THC dosing was within guideline recommendations, and no patients experienced any serious adverse events. Limitations include multiple factors impacting patients' decisions to opt in or out of medical cannabis. These include cost, comorbidities, and disease chronicity. In conclusion, medical cannabis reduces pain intensity in new users, and when combined with a multidimensional approach to care, patients with PRMD can see improvements in pain as well as mental wellbeing.
Collapse
Affiliation(s)
| | - John Chong
- Musicians' Clinics of Canada, Hamilton, ON L9C 7N4, Canada
| |
Collapse
|
10
|
Cao D, Lin Y, Lin C, Xu M, Wang J, Zeng Z, Wang P, Li Q, Wang X, Wang W, Luo L, Zhao Y, Shi Y, Gao Z, Kang X, Wang S, Zhang Y, Xu X, Liu SL, Liu H. Cannabidiol Inhibits Epithelial Ovarian Cancer: Role of Gut Microbiome. JOURNAL OF NATURAL PRODUCTS 2024; 87:1501-1512. [PMID: 38603577 DOI: 10.1021/acs.jnatprod.3c00782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Epithelial ovarian cancer is among the deadliest gynecological tumors worldwide. Clinical treatment usually consists of surgery and adjuvant chemo- and radiotherapies. Due to the high rate of recurrence and rapid development of drug resistance, the current focus of research is on finding effective natural products with minimal toxic side effects for treating epithelial ovarian tumors. Cannabidiol is among the most abundant cannabinoids and has a non-psychoactive effect compared to tetrahydrocannabinol, which is a key advantage for clinical application. Studies have shown that cannabidiol has antiproliferative, pro-apoptotic, cytotoxic, antiangiogenic, anti-inflammatory, and immunomodulatory properties. However, its therapeutic value for epithelial ovarian tumors remains unclear. This study aims to investigate the effects of cannabidiol on epithelial ovarian tumors and to elucidate the underlying mechanisms. The results showed that cannabidiol has a significant inhibitory effect on epithelial ovarian tumors. In vivo experiments demonstrated that cannabidiol could inhibit tumor growth by modulating the intestinal microbiome and increasing the abundance of beneficial bacteria. Western blot assays showed that cannabidiol bound to EGFR/AKT/MMPs proteins and suppressed EGFR/AKT/MMPs expression in a dose-dependent manner. Network pharmacology and molecular docking results suggested that cannabidiol could affect the EGFR/AKT/MMPs signaling pathway.
Collapse
Affiliation(s)
- Danli Cao
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150081, People's Republic of China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, People's Republic of China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, People's Republic of China
| | - Yiru Lin
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150081, People's Republic of China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, People's Republic of China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, People's Republic of China
| | - Caiji Lin
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150081, People's Republic of China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, People's Republic of China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, People's Republic of China
| | - Mengzhi Xu
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150081, People's Republic of China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, People's Republic of China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, People's Republic of China
| | - Jiaxing Wang
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150081, People's Republic of China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, People's Republic of China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, People's Republic of China
| | - Zheng Zeng
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, People's Republic of China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, People's Republic of China
| | - Pengfei Wang
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150081, People's Republic of China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, People's Republic of China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, People's Republic of China
| | - Qinghai Li
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150081, People's Republic of China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, People's Republic of China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, People's Republic of China
| | - Xiaoyu Wang
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150081, People's Republic of China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, People's Republic of China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, People's Republic of China
| | - Wenxue Wang
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150081, People's Republic of China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, People's Republic of China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, People's Republic of China
| | - Lingjie Luo
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150081, People's Republic of China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, People's Republic of China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, People's Republic of China
| | - Yufan Zhao
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150081, People's Republic of China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, People's Republic of China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, People's Republic of China
| | - Yongwei Shi
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150081, People's Republic of China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, People's Republic of China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, People's Republic of China
| | - Zixiang Gao
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150081, People's Republic of China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, People's Republic of China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, People's Republic of China
| | - Xin Kang
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150081, People's Republic of China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, People's Republic of China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, People's Republic of China
| | - Shuang Wang
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150081, People's Republic of China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, People's Republic of China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, People's Republic of China
| | - Yuanyuan Zhang
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150081, People's Republic of China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, People's Republic of China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, People's Republic of China
| | - Xiaohui Xu
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150081, People's Republic of China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, People's Republic of China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, People's Republic of China
| | - Shu-Lin Liu
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150081, People's Republic of China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, People's Republic of China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, People's Republic of China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, T2N 4N1, Canada
| | - Huidi Liu
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150081, People's Republic of China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, People's Republic of China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, People's Republic of China
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, T2N 4N1, Canada
| |
Collapse
|
11
|
Le K, Le KDR, Nguyen J, Hua J, Munday S. The Role of Medicinal Cannabis as an Emerging Therapy for Opioid Use Disorder. Pain Ther 2024; 13:435-455. [PMID: 38676910 PMCID: PMC11111657 DOI: 10.1007/s40122-024-00599-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/28/2024] [Indexed: 04/29/2024] Open
Abstract
This narrative review explores current insights into the potential use of medicinal cannabis-related products as an emerging therapy for opioid use disorder in the landscape of increasing knowledge about medicinal cannabis-based products, commercialisation and global legalisation. Preclinical studies have provided preliminary insight into the putative neurobiological mechanisms that underpin the potential for medicinal cannabis to be considered a therapeutic in opioid use disorder and addiction. With the progressive legalisation of cannabis in many jurisdictions worldwide, contemporary research has highlighted further evidence that medicinal cannabis may have efficacy in reducing cravings and withdrawal effects, and therefore may be considered as an adjunct or standalone to current medications for opioid use disorder. Despite this potential, the landscape of research in this space draws from a large number of observational studies, with a paucity of rigorous randomised controlled trials to ascertain a true understanding of effect size and safety profile. With current challenges in implementation that arise from political and legal qualms about adopting medicinal cannabis on the background of associated social stigma, significant hurdles remain to be addressed by government, policy-makers, healthcare providers and researchers before medical cannabis can be introduced globally for the treatment of opioid use disorder.
Collapse
Affiliation(s)
- Kelvin Le
- Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| | - Khang Duy Ricky Le
- Department of General Surgical Specialties, The Royal Melbourne Hospital, 300 Grattan St., Parkville, Melbourne, VIC, 3050, Australia.
- Department of Surgical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Geelong Clinical School, Deakin University, Geelong, VIC, Australia.
- Department of Medical Education, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia.
| | - Johnny Nguyen
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Parkville, VIC, Australia
- Department of Pharmacy, Alfred Health, Melbourne, VIC, Australia
| | - Jean Hua
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Parkville, VIC, Australia
- Department of Pharmacy, The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Sarah Munday
- The Royal Children's Hospital, Melbourne, VIC, Australia
- Monash Bioethics Centre, Faculty of Arts, Monash University, Clayton, VIC, Australia
| |
Collapse
|
12
|
Bawa Z, Lewis D, Gavin PD, Libinaki R, Joubran L, El-Tamimy M, Taylor G, Meltzer R, Bedoya-Pérez M, Kevin RC, McGregor IS. An open-label feasibility trial of transdermal cannabidiol for hand osteoarthritis. Sci Rep 2024; 14:11792. [PMID: 38783008 PMCID: PMC11116491 DOI: 10.1038/s41598-024-62428-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Hand osteoarthritis (OA) is an irreversible degenerative condition causing chronic pain and impaired functionality. Existing treatment options are often inadequate. Cannabidiol (CBD) has demonstrated analgesic and anti-inflammatory effects in preclinical models of arthritis. In this open-label feasibility trial, participants with symptomatically active hand OA applied a novel transdermal CBD gel (4% w/w) three times a day for four weeks to their most painful hand. Changes in daily self-reported pain scores were measured on a 0-10 Numeric Pain Rating Scale (NPRS). Hand functionality was determined via daily grip strength measures using a Bluetooth equipped squeeze ball and self-report questionnaire. Quality of life (QoL) ratings around sleep, anxiety, stiffness and fatigue were also measured. All self-report measures and grip strength data were gathered via smartphone application. Urinalysis was conducted at trial end to determine systemic absorption of CBD. Eighteen participants were consented and 15 completed the trial. Pain ratings were significantly reduced over time from pre-treatment baseline including current pain (- 1.91 ± 0.35, p < 0.0001), average pain (- 1.92 ± 0.35, p < 0.0001) and maximum pain (- 1.97 ± 0.34, p < 0.0001) (data represent mean reduction on a 0-10 NPRS scale ± standard error of the mean (SEM)). A significant increase in grip strength in the treated hand (p < 0.0001) was observed although self-reported functionality did not improve. There were significant (p < 0.005) improvements in three QoL measures: fatigue, stiffness and anxiety. CBD and its metabolites were detected at low concentrations in all urine samples. Measured reductions in pain and increases in grip strength seen during treatment reverted back towards baseline during the washout phase. In summary, pain, grip strength and QoL measures, using smartphone technology, was shown to improve over time following transdermal CBD application suggesting feasibility of this intervention in relieving osteoarthritic hand pain. Proof of efficacy, however, requires further confirmation in a placebo-controlled randomised trial.Trial registration: ANZCTR public trials registry (ACTRN12621001512819, 05/11/2021).
Collapse
Affiliation(s)
- Zeeta Bawa
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Pharmacy School, The University of Sydney, Sydney, New South Wales, Australia
| | - Daniel Lewis
- The Daniel Lewis Rheumatology Centre, Melbourne, Victoria, Australia
| | - Paul D Gavin
- Avecho Biotechnology, Melbourne , Victoria, Australia
| | | | - Lida Joubran
- Avecho Biotechnology, Melbourne , Victoria, Australia
| | | | - Greg Taylor
- The NTF Group, Sydney, New South Wales, Australia
| | - Ryan Meltzer
- The NTF Group, Sydney, New South Wales, Australia
| | - Miguel Bedoya-Pérez
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia
- School of Psychology, The University of Sydney, Sydney, New South Wales, Australia
| | - Richard C Kevin
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Pharmacy School, The University of Sydney, Sydney, New South Wales, Australia
| | - Iain S McGregor
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia.
- School of Psychology, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
13
|
Bawa Z, McCartney D, Bedoya-Pérez M, Lau NS, Fox R, MacDougall H, McGregor IS. Effects of cannabidiol on psychosocial stress, situational anxiety and nausea in a virtual reality environment: a protocol for a single-centre randomised clinical trial. BMJ Open 2024; 14:e082927. [PMID: 38531572 PMCID: PMC10966725 DOI: 10.1136/bmjopen-2023-082927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
INTRODUCTION The non-intoxicating plant-derived cannabinoid, cannabidiol (CBD), has demonstrated therapeutic potential in a number of clinical conditions. Most successful clinical trials have used relatively high (≥300 mg) oral doses of CBD. Relatively few studies have investigated the efficacy of lower (<300 mg) oral doses, typical of those available in over-the-counter CBD products. METHODS We present a protocol for a randomised, double-blind, placebo-controlled, parallel-group clinical trial investigating the effects of a low oral dose (150 mg) of CBD on acute psychosocial stress, situational anxiety, motion sickness and cybersickness in healthy individuals. Participants (n=74) will receive 150 mg of CBD or a matched placebo 90 min before completing three virtual reality (VR) challenges (tasks) designed to induce transient stress and motion sickness: (a) a 15 min 'Public Speaking' task; (b) a 5 min 'Walk the Plank' task (above a sheer drop); and (c) a 5 min 'Rollercoaster Ride' task. The primary outcomes will be self-reported stress and nausea measured on 100 mm Visual Analogue Scales. Secondary outcomes will include salivary cortisol concentrations, skin conductance, heart rate and vomiting episodes (if any). Statistical analyses will test the hypothesis that CBD reduces nausea and attenuates subjective, endocrine and physiological responses to stress compared with placebo. This study will indicate whether low-dose oral CBD has positive effects in reducing acute psychosocial stress, situational anxiety, motion sickness and cybersickness. ETHICS AND DISSEMINATION The University of Sydney Human Research Ethics Committee has granted approval (2023/307, version 1.6, 16 February 2024). Study findings will be disseminated in a peer-reviewed journal and at academic conferences. TRIAL REGISTRATION NUMBER Australian New Zealand Clinical Trials Registry (ACTRN12623000872639).
Collapse
Affiliation(s)
- Zeeta Bawa
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia
- The Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Pharmacy School, The University of Sydney, Sydney, New South Wales, Australia
| | - Danielle McCartney
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia
- The Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Psychology, The University of Sydney, Sydney, New South Wales, Australia
| | - Miguel Bedoya-Pérez
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia
- The Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Psychology, The University of Sydney, Sydney, New South Wales, Australia
| | - Namson S Lau
- The Boden Initiative, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Richard Fox
- Yellow Dog Man Studios s.r.o, Ostrava-jih-Zábřeh, Czechia
| | - Hamish MacDougall
- RPA Institute of Academic Surgery, Sydney Local Health District, Sydney, New South Wales, Australia
| | - Iain S McGregor
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia
- The Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Psychology, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
14
|
Yadav-Samudrala BJ, Gorman BL, Barmada KM, Ravula HP, Huguely CJ, Wallace ED, Peace MR, Poklis JL, Jiang W, Fitting S. Effects of acute cannabidiol on behavior and the endocannabinoid system in HIV-1 Tat transgenic female and male mice. Front Neurosci 2024; 18:1358555. [PMID: 38505774 PMCID: PMC10949733 DOI: 10.3389/fnins.2024.1358555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/12/2024] [Indexed: 03/21/2024] Open
Abstract
Background Some evidence suggests that cannabidiol (CBD) has potential to help alleviate HIV symptoms due to its antioxidant and anti-inflammatory properties. Here we examined acute CBD effects on various behaviors and the endocannabinoid system in HIV Tat transgenic mice. Methods Tat transgenic mice (female/male) were injected with CBD (3, 10, 30 mg/kg) and assessed for antinociception, activity, coordination, anxiety-like behavior, and recognition memory. Brains were taken to quantify endocannabinoids, cannabinoid receptors, and cannabinoid catabolic enzymes. Additionally, CBD and metabolite 7-hydroxy-CBD were quantified in the plasma and cortex. Results Tat decreased supraspinal-related nociception and locomotion. CBD and sex had little to no effects on any of the behavioral measures. For the endocannabinoid system male sex was associated with elevated concentration of the proinflammatory metabolite arachidonic acid in various CNS regions, including the cerebellum that also showed higher FAAH expression levels for Tat(+) males. GPR55 expression levels in the striatum and cerebellum were higher for females compared to males. CBD metabolism was altered by sex and Tat expression. Conclusion Findings indicate that acute CBD effects are not altered by HIV Tat, and acute CBD has no to minimal effects on behavior and the endocannabinoid system.
Collapse
Affiliation(s)
- Barkha J. Yadav-Samudrala
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Benjamin L. Gorman
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Karenna M. Barmada
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Havilah P. Ravula
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Caitlin J. Huguely
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - E. Diane Wallace
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Michelle R. Peace
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Justin L. Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Sylvia Fitting
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
15
|
Bhardwaj AK, Mills L, Doyle M, Sahid A, Montebello M, Monds L, Arunogiri S, Haber P, Lorenzetti V, Lubman DI, Malouf P, Harrod ME, Dunlop A, Freeman T, Lintzeris N. A phase III multisite randomised controlled trial to compare the efficacy of cannabidiol to placebo in the treatment of cannabis use disorder: the CBD-CUD study protocol. BMC Psychiatry 2024; 24:175. [PMID: 38433233 PMCID: PMC10910760 DOI: 10.1186/s12888-024-05616-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Cannabis use disorder (CUD) is increasingly common and contributes to a range of health and social problems. Cannabidiol (CBD) is a non-intoxicating cannabinoid recognised for its anticonvulsant, anxiolytic and antipsychotic effects with no habit-forming qualities. Results from a Phase IIa randomised clinical trial suggest that treatment with CBD for four weeks reduced non-prescribed cannabis use in people with CUD. This study examines the efficacy, safety and quality of life of longer-term CBD treatment for patients with moderate-to-severe CUD. METHODS/DESIGN A phase III multi-site, randomised, double-blinded, placebo controlled parallel design of a 12-week course of CBD to placebo, with follow-up at 24 weeks after enrolment. Two hundred and fifty adults with moderate-to-severe CUD (target 20% Aboriginal), with no significant medical, psychiatric or other substance use disorders from seven drug and alcohol clinics across NSW and VIC, Australia will be enrolled. Participants will be administered a daily dose of either 4 mL (100 mg/mL) of CBD or a placebo dispensed every 3-weeks. All participants will receive four-sessions of Cognitive Behavioural Therapy (CBT) based counselling. Primary endpoints are self-reported cannabis use days and analysis of cannabis metabolites in urine. Secondary endpoints include severity of CUD, withdrawal severity, cravings, quantity of use, motivation to stop and abstinence, medication safety, quality of life, physical/mental health, cognitive functioning, and patient treatment satisfaction. Qualitative research interviews will be conducted with Aboriginal participants to explore their perspectives on treatment. DISCUSSION Current psychosocial and behavioural treatments for CUD indicate that over 80% of patients relapse within 1-6 months of treatment. Pharmacological treatments are highly effective with other substance use disorders but there are no approved pharmacological treatments for CUD. CBD is a promising candidate for CUD treatment due to its potential efficacy for this indication and excellent safety profile. The anxiolytic, antipsychotic and neuroprotective effects of CBD may have added benefits by reducing many of the mental health and cognitive impairments reported in people with regular cannabis use. TRIAL REGISTRATION Australian and New Zealand Clinical Trial Registry: ACTRN12623000526673 (Registered 19 May 2023).
Collapse
Affiliation(s)
- Anjali K Bhardwaj
- Faculty of Medicine, University of Sydney, Camperdown, NSW, Australia.
- Drug and Alcohol Services, South East Sydney Local Health District, Sydney, NSW, Australia.
| | - Llew Mills
- Faculty of Medicine, University of Sydney, Camperdown, NSW, Australia
- Drug and Alcohol Services, South East Sydney Local Health District, Sydney, NSW, Australia
| | - Michael Doyle
- Faculty of Medicine, University of Sydney, Camperdown, NSW, Australia
| | - Arshman Sahid
- Faculty of Medicine, University of Sydney, Camperdown, NSW, Australia
- Drug and Alcohol Services, South East Sydney Local Health District, Sydney, NSW, Australia
| | - Mark Montebello
- Faculty of Medicine, University of Sydney, Camperdown, NSW, Australia
- Drug and Alcohol Services, North Sydney Local Health District, St Leonards, NSW, Australia
| | - Lauren Monds
- Faculty of Medicine, University of Sydney, Camperdown, NSW, Australia
- Drug and Alcohol Services, North Sydney Local Health District, St Leonards, NSW, Australia
| | - Shalini Arunogiri
- Centre for Addiction and Mental Health, Turning Point, Victoria, Australia
| | - Paul Haber
- Faculty of Medicine, University of Sydney, Camperdown, NSW, Australia
- Drug Health Services, Sydney Local Health District, Sydney, Australia
| | | | - Dan I Lubman
- Centre for Addiction and Mental Health, Turning Point, Victoria, Australia
| | - Peter Malouf
- Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Mary E Harrod
- NSW Users and AIDS Association, Sydney, NSW, Australia
| | - Adrian Dunlop
- Drug and Alcohol Clinical Services, Hunter New England Local Health District, Newcastle, NSW, Australia
| | - Tom Freeman
- Addiction and Mental Health Group, University of Bath, Bath, UK
| | - Nicholas Lintzeris
- Faculty of Medicine, University of Sydney, Camperdown, NSW, Australia
- Drug and Alcohol Services, South East Sydney Local Health District, Sydney, NSW, Australia
| |
Collapse
|
16
|
Rice LJ, Cannon L, Dadlani N, Cheung MMY, Einfeld SL, Efron D, Dossetor DR, Elliott EJ. Efficacy of cannabinoids in neurodevelopmental and neuropsychiatric disorders among children and adolescents: a systematic review. Eur Child Adolesc Psychiatry 2024; 33:505-526. [PMID: 36864363 PMCID: PMC10869397 DOI: 10.1007/s00787-023-02169-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/14/2023] [Indexed: 03/04/2023]
Abstract
A better understanding of the endocannabinoid system and a relaxation in regulatory control of cannabis globally has increased interest in the medicinal use of cannabinoid-based products (CBP). We provide a systematic review of the rationale and current clinical trial evidence for CBP in the treatment of neuropsychiatric and neurodevelopmental disorders in children and adolescents. A systematic search of MEDLINE, Embase, PsycINFO, and the Cochrane Central Register of Trials was performed to identify articles published after 1980 about CBP for medical purposes in individuals aged 18 years or younger with selected neuropsychiatric or neurodevelopmental conditions. Risk of bias and quality of evidence was assessed for each article. Of 4466 articles screened, 18 were eligible for inclusion, addressing eight conditions (anxiety disorders (n = 1); autism spectrum disorder (n = 5); foetal alcohol spectrum disorder (n = 1); fragile X syndrome (n = 2); intellectual disability (n = 1); mood disorders (n = 2); post-traumatic stress disorder (n = 3); and Tourette syndrome (n = 3)). Only one randomised controlled trial (RCT) was identified. The remaining seventeen articles included one open-label trial, three uncontrolled before-and-after trials, two case series and 11 case reports, thus the risk of bias was high. Despite growing community and scientific interest, our systematic review identified limited and generally poor-quality evidence for the efficacy of CBP in neuropsychiatric and neurodevelopmental disorders in children and adolescents. Large rigorous RCTs are required to inform clinical care. In the meantime, clinicians must balance patient expectations with the limited evidence available.
Collapse
Affiliation(s)
- Lauren J Rice
- The University of Sydney, Faculty of Medicine and Health, Specialty of Child and Adolescent Health, Sydney, NSW, Australia.
- Sydney Children's Hospitals Network, Kids Research, Sydney, Australia.
- The University of Sydney, Faculty of Medicine and Health, Brain and Mind Centre, Sydney, NSW, Australia.
| | - Lisa Cannon
- The University of Sydney, Faculty of Medicine and Health, Specialty of Child and Adolescent Health, Sydney, NSW, Australia
- Telethon Kids Institute, Perth Children's Hospital, Perth, WA, Australia
| | - Navin Dadlani
- The University of Sydney, Faculty of Medicine and Health, Brain and Mind Centre, Sydney, NSW, Australia
| | - Melissa Mei Yin Cheung
- The University of Sydney, Faculty of Medicine and Health, Specialty of Child and Adolescent Health, Sydney, NSW, Australia
- Sydney Children's Hospitals Network, Kids Research, Sydney, Australia
| | - Stewart L Einfeld
- The University of Sydney, Faculty of Medicine and Health, Brain and Mind Centre, Sydney, NSW, Australia
| | - Daryl Efron
- Department of General Paediatrics, Health Services, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - David R Dossetor
- Sydney Children's Hospitals Network, Kids Research, Sydney, Australia
| | - Elizabeth J Elliott
- The University of Sydney, Faculty of Medicine and Health, Specialty of Child and Adolescent Health, Sydney, NSW, Australia
- Sydney Children's Hospitals Network, Kids Research, Sydney, Australia
| |
Collapse
|
17
|
Saleska JL, Bryant C, Kolobaric A, D'Adamo CR, Colwell CS, Loewy D, Chen J, Pauli EK. The Safety and Comparative Effectiveness of Non-Psychoactive Cannabinoid Formulations for the Improvement of Sleep: A Double-Blinded, Randomized Controlled Trial. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:1-11. [PMID: 37162192 DOI: 10.1080/27697061.2023.2203221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/11/2023] [Indexed: 05/11/2023]
Abstract
BACKGROUND Clinical evidence on the use of cannabidiol (CBD) for sleep remains limited. Even fewer studies have tested the comparative effectiveness of cannabinoid formulations found within CBD products used for sleep or how they compare to other complementary therapies such as melatonin. METHODS Participants (N = 1,793 adults experiencing symptoms of sleep disturbance) were randomly assigned to receive a 4-week supply of 1 of 6 products (all capsules) containing either 15 mg CBD or 5 mg melatonin, alone or in combination with minor cannabinoids. Sleep disturbance was assessed over a period of 5 weeks (baseline week and 4 weeks of product use) using Patient-Reported Outcomes Measurement Information System (PROMIS™) Sleep Disturbance SF 8A, administered via weekly online surveys. A linear mixed-effects regression model was used to assess the differences in the change in sleep disturbance through time between each active product arm and CBD isolate. RESULTS All formulations exhibited a favorable safety profile (12% of participants reported a side effect and none were severe) and led to significant improvements in sleep disturbance (p < 0.001 in within-group comparisons). Most participants (56% to 75%) across all formulations experienced a clinically important improvement in their sleep quality. There were no significant differences in effect, however, between 15 mg CBD isolate and formulations containing 15 mg CBD and 15 mg cannabinol (CBN), alone or in combination with 5 mg cannabichromene (CBC). There were also no significant differences in effect between 15 mg CBD isolate and formulations containing 5 mg melatonin, alone or in combination with 15 mg CBD and 15 mg CBN. CONCLUSIONS Our findings suggest that chronic use of a low dose of CBD is safe and could improve sleep quality, though these effects do not exceed that of 5 mg melatonin. Moreover, the addition of low doses of CBN and CBC may not improve the effect of formulations containing CBD or melatonin isolate.
Collapse
Affiliation(s)
| | | | - Antonija Kolobaric
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christopher R D'Adamo
- Center for Integrative Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Christopher S Colwell
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California, USA
| | - Derek Loewy
- Scripps Clinic Sleep Center, San Diego, California, USA
| | - Jeff Chen
- Radicle Science, Encinitas, California, USA
| | | |
Collapse
|
18
|
Ghelani A. Perspectives toward cannabidiol (CBD) among youth in Early Psychosis Intervention programs: A qualitative study. Early Interv Psychiatry 2024; 18:10-17. [PMID: 37038248 DOI: 10.1111/eip.13428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/30/2022] [Accepted: 03/28/2023] [Indexed: 04/12/2023]
Abstract
AIM Cannabis is used by one third of youth in Early Psychosis Intervention (EPI) programs and high dose consumption of the primary constituent Δ-9 tetrahydrocannabinol (THC) is associated with higher risk for relapse in this group. Cannabidiol (CBD) is a secondary cannabis constituent that may have antipsychotic properties, though its health risks are only beginning to be understood. Little is known about the views of youth in EPI programs toward CBD, including their reasons for use and perceptions of risk. METHODS This qualitative study used Interpretive Phenomenological Analysis to investigate the perspectives of a sample (n = 15) of cannabis-consuming youth in EPI programs toward CBD. RESULTS Those who used CBD (n = 13) did so for pain relief, THC substitution, relaxation, social reasons, and sleep enhancement. CBD was perceived to be beneficial for health and wellness, though many consumers were disappointed with its effects. Most believed there were no risks associated with its use or were unaware of any risks, and all believed CBD could be used safely. CONCLUSION Clinicians should assess THC and CBD consumption patterns, motives for use, and perceptions of risk separately to tailor interventions accordingly. Youth in EPI programs would benefit from education related to the known health risks and benefits associated with this drug. Clinicians in regions where cannabis is regulated should be open to discussing CBD as a safer substitute for THC. The potential for CBD to serve as viable treatment for psychosis requires further study.
Collapse
Affiliation(s)
- Amar Ghelani
- Faculty of Social Work, Wilfrid Laurier University, Waterloo, Ontario, Canada
| |
Collapse
|
19
|
Petti T, Gupta M, Fradkin Y, Gupta N. Management of sleep disorders in autism spectrum disorder with co-occurring attention-deficit hyperactivity disorder: update for clinicians. BJPsych Open 2023; 10:e11. [PMID: 38088185 PMCID: PMC10755553 DOI: 10.1192/bjo.2023.589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 12/31/2023] Open
Abstract
AIMS To update and examine available literature germane to the recognition, assessment and treatment of comorbid autism spectrum disorder (ASD), attention-deficit hyperactivity disorder (ADHD) and sleep disruption, with a predominant focus on children, adolescents and emerging adults. BACKGROUND Considerable overlaps exist among ASD, ADHD and sleep disruption. Literature and guidance for clinicians, administrators, policy makers and families have been limited, as such deliberations were rarely considered until 2013. METHOD This narrative review of the literature addressing sleep disruption issues among those with ASD, ADHD and comorbid ASD and ADHD involved searching multiple databases and use of reverse citations up to the end of September 2022. Emphasis is placed on secondary sources and relevant data for clinical practice. RESULTS Complex clinical presentations of ASD/ADHD/sleep disruption are frequently encountered in clinical practice. Prior to 2013, prevalence, clinical presentation, pathophysiology, prognosis, other sleep-related factors and interventions were determined separately for each disorder, often with overlapping objective and subjective methods employed in the process. High percentages of ADHD and ASD patients have both disorders and sleep disruption. Here, the extant literature is integrated to provide a multidimensional understanding of the relevant issues and insights, allowing enhanced awareness and better care of this complex clinical population. Database limitations are considered. CONCLUSIONS Assessment of ASD symptomatology in youth with ADHD, and the reverse, in cases with disrupted sleep is critical to address the special challenges for case formulation and treatment. Evidence-based approaches to treatment planning and multi-treatment modalities should consider combining psychosocial and biological interventions to address the complexities of each case.
Collapse
Affiliation(s)
- Theodore Petti
- Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Mayank Gupta
- Southwood Psychiatric Hospital, Pittsburgh, Pennsylvania, USA
| | - Yuli Fradkin
- Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | | |
Collapse
|
20
|
Bartončíková M, Lapčíková B, Lapčík L, Valenta T. Hemp-Derived CBD Used in Food and Food Supplements. Molecules 2023; 28:8047. [PMID: 38138537 PMCID: PMC10745805 DOI: 10.3390/molecules28248047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Cannabis sativa L., a plant historically utilized for textile fibers, oil, and animal feed, is progressively being recognized as a potential food source. This review elucidates the nutritional and functional attributes of hemp and cannabidiol (CBD) within the context of food science. Hemp is characterized by the presence of approximately 545 secondary metabolites, among which around 144 are bioactive cannabinoids of primary importance. The study looks in detail at the nutritional components of cannabis and the potential health benefits of CBD, encompassing anti-inflammatory, anxiolytic, and antipsychotic effects. The review deals with the legislation and potential applications of hemp in the food industry and with the future directions of cannabis applications as well. The paper emphasizes the need for more scientific investigation to validate the safety and efficacy of hemp components in food products, as current research suggests that CBD may have great benefits for a wide range of consumers.
Collapse
Affiliation(s)
- Michaela Bartončíková
- Department of Foodstuff Technology, Faculty of Technology, Tomas Bata University in Zlin, Nám. T.G. Masaryka 5555, CZ-760 01 Zlin, Czech Republic; (M.B.); (T.V.)
| | - Barbora Lapčíková
- Department of Foodstuff Technology, Faculty of Technology, Tomas Bata University in Zlin, Nám. T.G. Masaryka 5555, CZ-760 01 Zlin, Czech Republic; (M.B.); (T.V.)
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, CZ-771 46 Olomouc, Czech Republic
| | - Lubomír Lapčík
- Department of Foodstuff Technology, Faculty of Technology, Tomas Bata University in Zlin, Nám. T.G. Masaryka 5555, CZ-760 01 Zlin, Czech Republic; (M.B.); (T.V.)
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, CZ-771 46 Olomouc, Czech Republic
| | - Tomáš Valenta
- Department of Foodstuff Technology, Faculty of Technology, Tomas Bata University in Zlin, Nám. T.G. Masaryka 5555, CZ-760 01 Zlin, Czech Republic; (M.B.); (T.V.)
| |
Collapse
|
21
|
Le K, Au J, Hua J, Le KDR. The Therapeutic Potential of Cannabidiol in Revolutionising Opioid Use Disorder Management. Cureus 2023; 15:e50634. [PMID: 38226097 PMCID: PMC10789504 DOI: 10.7759/cureus.50634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2023] [Indexed: 01/17/2024] Open
Abstract
Opioid use disorder (OUD) is a significant cause of morbidity and mortality worldwide and is linked to a complex interplay of biopsychosocial factors as well as the increasing overprescription and availability of opioid medications. Current OUD management relies on the controlled provision of opioid medications, such as methadone or buprenorphine, known as opioid replacement therapy. There is variable evidence regarding the long-term efficacy of these medications in improving the management of OUD, thereby necessitating an exploration into innovative approaches to complement, or even take the place of, existing treatment paradigms. Cannabidiol (CBD), a non-psychoactive compound derived from the cannabis plant, has garnered attention for its diverse pharmacological properties, including anti-inflammatory, analgesic, and anxiolytic effects. Preliminary studies suggest that CBD may target opioid withdrawal pathways that make CBD a potential therapeutic option for OUD. This narrative review synthesises current literature surrounding OUD and offers a nuanced review of the current and future role of CBD in managing this condition. In doing so, we highlight the potential avenues to explore with respect to CBD research for the guidance and development of further research opportunities, framework and policy development, and clinical considerations before medicinal CBD can be integrated into evidence-based clinical guidelines.
Collapse
Affiliation(s)
- Kelvin Le
- Melbourne Medical School, The University of Melbourne, Melbourne, AUS
| | - Joanne Au
- Department of Anaesthesia & Pain Management, The Royal Melbourne Hospital, Melbourne, AUS
| | - Jean Hua
- Department of Pharmacy, The Royal Melbourne Hospital, Melbourne, AUS
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, AUS
| | - Khang Duy Ricky Le
- Geelong Clinical School, Deakin University, Geelong, AUS
- Department of General Surgical Specialties, The Royal Melbourne Hospital, Melbourne, AUS
- Department of Surgical Oncology, Peter MacCallum Cancer Centre, Melbourne, AUS
- Department of Medical Education, Melbourne Medical School, The University of Melbourne, Melbourne, AUS
| |
Collapse
|
22
|
Wilson G, Yang L, Su X, Ding S, Li L, Yang Y, Wang X, Wang W, Sa Y, Zhang Y, Chen J, Ma X. Exploring the therapeutic potential of natural compounds modulating the endocannabinoid system in various diseases and disorders: review. Pharmacol Rep 2023; 75:1410-1444. [PMID: 37906390 DOI: 10.1007/s43440-023-00544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023]
Abstract
Cannabinoid receptors, endogenous cannabinoids (endocannabinoids), and the enzymes involved in the biosynthesis and degradation of the endocannabinoids make up the endocannabinoid system (ECS). The components of the ECS are proven to modulate a vast bulk of various physiological and pathological processes due to their abundance throughout the human body. Such discoveries have attracted the researchers' attention and emerged as a potential therapeutical target for the treatment of various diseases. In the present article, we reviewed the discoveries of natural compounds, herbs, herbs formula, and their therapeutic properties in various diseases and disorders by modulating the ECS. We also summarize the molecular mechanisms through which these compounds elicit their properties by interacting with the ECS based on the existing findings. Our study provides the insight into the use of natural compounds that modulate ECS in various diseases and disorders, which in turn may facilitate future studies exploiting natural lead compounds as novel frameworks for designing more effective and safer therapeutics.
Collapse
Affiliation(s)
- Gidion Wilson
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Lingling Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Xiaojuan Su
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Shuqin Ding
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Liuyan Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Youyue Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Xiaoying Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Weibiao Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Yuping Sa
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Yue Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Jianyu Chen
- Fujian University of Traditional Chinese Medicine, No. 1, Huatuo Road, Minhoushangjie, Fuzhou, 350122, China.
| | - Xueqin Ma
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China.
| |
Collapse
|
23
|
Wang X, Zhang H, Liu Y, Xu Y, Yang B, Li H, Chen L. An overview on synthetic and biological activities of cannabidiol (CBD) and its derivatives. Bioorg Chem 2023; 140:106810. [PMID: 37659147 DOI: 10.1016/j.bioorg.2023.106810] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023]
Abstract
(-)-Cannabidiol is a class of non-psychoactive plant cannabinoids derived from cannabis plants. Currently, Epidiolex (Cannabidiol) has been approved by the FDA for the treatment of two rare and severe forms of epilepsy related diseases, namely Lennox-Gastaut syndrome (LGS) and Dravet (DS). In addition, Cannabidiol and its structural analogues have received increasing attention due to their potential therapeutic effects such as neuroprotection, anti-epilepsy, anti-inflammation, anti-anxiety, and anti-cancer. Based on literature review, no comprehensive reviews on the synthesis of Cannabidiol and its derivatives have been found in recent years. Therefore, this article summarizes the published synthesis methods of Cannabidiol and the synthesis routes of Cannabidiol derivatives, and introduces the biological activities of some Cannabidiol analogues that have been studied extensively and have significant activities.
Collapse
Affiliation(s)
- Xiuli Wang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huanbang Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Heilongjiang 150006, China
| | - Yang Xu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Heilongjiang 150006, China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
24
|
Pillay L, Thompson C, Tabane C, Kirby J, Hendricks S, Swart J, van Rensburg DCJ, Zondi P, Rotunno A, Bayever D. South African Institute of Drug-Free Sport Position Statement on CBD (Cannabidiol) and THC (Tetrahydrocannabinol). SOUTH AFRICAN JOURNAL OF SPORTS MEDICINE 2023; 35:v35i1a16097. [PMID: 38249774 PMCID: PMC10798604 DOI: 10.17159/2078-516x/2023/v35i1a16097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
Cannabidiol (CBD) and Tetrahydrocannabinol (THC) have become easily available to athletes over the years. Using these substances may inadvertently expose an athlete to the possibility of an adverse analytical finding (a "positive" test) and a sanction. Athletes need to understand the risk of an anti-doping rule violation or adverse analytical finding should these products be used, especially if no therapeutic use exemption exists. This position statement attempts to clarify the use of CBD and THC and their associated risks with Anti-Doping Rule Violations (ADRV) in the athletic population. The South African Sports Medicine Association supports this position statement.
Collapse
Affiliation(s)
- L Pillay
- South African Institute for Drug-free Sport (SAIDS), Sport Science Institute of South Africa, 4th Floor, Newlands, Cape Town,
South Africa
- South African Sports Medicine Association (SASMA), 668 Corelli Street, Les Marais Pretoria,
South Africa
- Section Sports Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria,
South Africa
- Faculty of Health, University of Witwatersrand, Johannesburg,
South Africa
| | - C Thompson
- South African Institute for Drug-free Sport (SAIDS), Sport Science Institute of South Africa, 4th Floor, Newlands, Cape Town,
South Africa
- South African Sports Medicine Association (SASMA), 668 Corelli Street, Les Marais Pretoria,
South Africa
- Institute of Sport and Exercise Medicine, Department of Exercise, Sport and Lifestyle Medicine, Faculty of Medicine of Health Sciences, Stellenbosch University,
South Africa
| | - C Tabane
- South African Institute for Drug-free Sport (SAIDS), Sport Science Institute of South Africa, 4th Floor, Newlands, Cape Town,
South Africa
- South African Sports Medicine Association (SASMA), 668 Corelli Street, Les Marais Pretoria,
South Africa
| | - J Kirby
- South African Institute for Drug-free Sport (SAIDS), Sport Science Institute of South Africa, 4th Floor, Newlands, Cape Town,
South Africa
- South African Sports Medicine Association (SASMA), 668 Corelli Street, Les Marais Pretoria,
South Africa
- Institute of Sport and Exercise Medicine, Department of Exercise, Sport and Lifestyle Medicine, Faculty of Medicine of Health Sciences, Stellenbosch University,
South Africa
| | - S Hendricks
- South African Sports Medicine Association (SASMA), 668 Corelli Street, Les Marais Pretoria,
South Africa
- HPALS Research Center, Division of Physiological Sciences, Department of Human Biology, University of Cape Town, Cape Town,
South Africa
| | - J Swart
- South African Institute for Drug-free Sport (SAIDS), Sport Science Institute of South Africa, 4th Floor, Newlands, Cape Town,
South Africa
- South African Sports Medicine Association (SASMA), 668 Corelli Street, Les Marais Pretoria,
South Africa
- International Federation of Sports Medicine (FIMS), Maison du Sport International, Av. de Rhodanie 54, Lausanne,
Switzerland
- HPALS Research Center, Division of Physiological Sciences, Department of Human Biology, University of Cape Town, Cape Town,
South Africa
| | - DC Janse van Rensburg
- South African Sports Medicine Association (SASMA), 668 Corelli Street, Les Marais Pretoria,
South Africa
- International Federation of Sports Medicine (FIMS), Maison du Sport International, Av. de Rhodanie 54, Lausanne,
Switzerland
- Section Sports Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria,
South Africa
| | - P Zondi
- South African Institute for Drug-free Sport (SAIDS), Sport Science Institute of South Africa, 4th Floor, Newlands, Cape Town,
South Africa
- South African Sports Medicine Association (SASMA), 668 Corelli Street, Les Marais Pretoria,
South Africa
| | - A Rotunno
- South African Sports Medicine Association (SASMA), 668 Corelli Street, Les Marais Pretoria,
South Africa
- HPALS Research Center, Division of Physiological Sciences, Department of Human Biology, University of Cape Town, Cape Town,
South Africa
| | - D Bayever
- South African Institute for Drug-free Sport (SAIDS), Sport Science Institute of South Africa, 4th Floor, Newlands, Cape Town,
South Africa
- Faculty of Health, University of Witwatersrand, Johannesburg,
South Africa
| |
Collapse
|
25
|
Lemos-Santos P, Blumrich L, Debia JB, Castaldelli-Maia JM, Suen PJC, Malbergier A. Drug use among medical students in São Paulo, Brazil: a cross-sectional study during the coronavirus disease 2019 pandemic. SAO PAULO MED J 2023; 142:e2022493. [PMID: 37703121 PMCID: PMC10495101 DOI: 10.1590/1516-3180.2022.0493.r1.150623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 05/09/2023] [Accepted: 06/15/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Medical students demonstrate higher rates of substance use than other university students and the general population. The challenges imposed by the coronavirus disease 2019 (COVID-19) pandemic raised significant concerns about mental health and substance use. OBJECTIVES Assess the current prevalence of substance use among medical students at the University of São Paulo and evaluate the impact of the COVID-19 pandemic on drug consumption. DESIGN AND SETTING A cross-sectional study was conducted on 275 medical students from the University of São Paulo Medical School (São Paulo, Brazil) in August 2020. METHODS Substance use (lifetime, previous 12 months, and frequency of use before and during the COVID-19 pandemic) and socioeconomic data were assessed using an online self-administered questionnaire. Symptoms of depression were assessed using the Patient Health Questionnaire-9. RESULTS Alcohol was the most consumed substance in their lifetime (95.6%), followed by illicit drugs (61.1%), marijuana (60%), and tobacco (57.5%). The most commonly consumed substances in the previous year were alcohol (82.9%), illicit drugs (44.7%), marijuana (42.5%), and tobacco (36%). Students in the first two academic years consumed fewer substances than those from higher years. There was a decreasing trend in the prevalence of most substances used after the COVID-19 pandemic among sporadic users. However, frequent users maintained their drug use patterns. CONCLUSION The prevalence of substance use was high in this population and increased from the basic to the clinical cycle. The COVID-19 pandemic may have affected the frequency of drug use and prevalence estimates.
Collapse
Affiliation(s)
- Pedro Lemos-Santos
- Undergraduate Student, Faculdade de Medicina da Universidade de
São Paulo (FMUSP), São Paulo (SP), Brazil
| | - Lukas Blumrich
- Undergraduate Student, Faculdade de Medicina da Universidade de
São Paulo (FMUSP), São Paulo (SP), Brazil; Doctoral Student, Department of
Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São
Paulo (SP), Brazil
| | - Jordi Blanes Debia
- Undergraduate Student, Faculdade de Medicina da Universidade
de São Paulo (FMUSP), São Paulo (SP), Brazil
| | - João Mauricio Castaldelli-Maia
- PhD, Postgraduate Sponsor, Department of Psychiatry, Faculdade
de Medicina da Universidade de São Paulo (FMUSP), São Paulo (SP), Brazil;
Assistant (Aux.) Professor, Department of Neuroscience, Centro Universitário
Faculdade de Medicina do ABC (FMABC), Santo André (SP), Brazil
| | - Paulo Jeng Chian Suen
- Undergraduate Student, Faculdade de Medicina da Universidade de
São Paulo (FMUSP), São Paulo (SP), Brazil; Doctoral Student, Department of
Psychiatry, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São
Paulo (SP), Brazil
| | - André Malbergier
- PhD, General Coordinator, Interdisciplinary Group of Studies on
Alcohol and Drugs (GREA), Institute of Psychiatry (IPq), Hospital das Clínicas
da Universidade de São Paulo (HCFMUSP), São Paulo (SP), Brazil; Collaborating
Professor, Department of Psychiatry, Faculdade de Medicina da Universidade de
São Paulo (FMUSP), São Paulo (SP), Brazil
| |
Collapse
|
26
|
Yang S, Zhu G. Phytotherapy of abnormality of fear memory: A narrative review of mechanisms. Fitoterapia 2023; 169:105618. [PMID: 37482307 DOI: 10.1016/j.fitote.2023.105618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
It is generally believed that in post-traumatic stress disorder (PTSD), the high expression of fear memory is mainly determined by amygdala hyperactivity and hippocampus hypoactivity. In this review, we firstly updated the mechanisms of fear memory, and then searched the experimental evidence of phytotherapy for fear memory in the past five years. Based on the summary of those experimental studies, we further discussed the future research strategies of plant medicines, including the study of the mechanism of specific brain regions, the optimal time for the prevention and treatment of fear memory-related diseases such as PTSD, and the development of new drugs with active components of plant medicines. Accordingly, plant medicines play a clear role in improving fear memory abnormalities and have the drug development potential in the treatment of fear-related disorders.
Collapse
Affiliation(s)
- Shaojie Yang
- The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230061, China; Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, Anhui 230012, China.
| |
Collapse
|
27
|
Lo LA, MacCallum CA, Nanson K, Koehn M, Mitchell I, Milloy MJ, Walsh Z, Fehr F. Cannabidiol as a Harm Reduction Strategy for People Who Use Drugs: A Rapid Review. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2023; 68:557-571. [PMID: 37376827 PMCID: PMC10411365 DOI: 10.1177/07067437231183525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
OBJECTIVE The drug poisoning crisis throughout North America necessitates novel harm reduction approaches. Emerging evidence suggests that cannabidiol (CBD) may have some utility as a harm reduction modality for those with problematic substance use. This rapid review aimed to synthesize available evidence on CBD as a potential harm reduction tool for people who use drugs while providing clinical and research insights. METHOD A systematic search in EMBASE, MEDLINE, CENTRAL, and CINAHL was completed in July 2022. For inclusion, studies had to meet the following criteria: (1) drawn from an adult population of people who use drugs; (2) investigates CBD as an intervention for problematic substance use or harm reduction-related outcomes; (3) be published after the year 2000 and in English; and (4) be primary research or a review article. A narrative synthesis was used to group outcomes relevant to harm reduction and provide clinical and research insights. RESULTS We screened 3,134 records, of which 27 studies (5 randomized trials) were included. The evidence remains limited, but available studies support the potential utility of CBD to reduce drug-induced craving and anxiety in opioid use disorder. There were low-quality studies suggesting that CBD may improve mood and general well-being of people who use drugs. Evidence suggests that CBD monotherapy may not be an adequate harm reduction strategy for problematic substance use but rather an adjunct to the standard of care. CONCLUSION Low-quality evidence suggests that CBD may reduce drug cravings and other addiction-related symptoms and that CBD may have utility as an adjunct harm reduction strategy for people who use drugs. However, there is a significant need for more research that accurately reflects CBD dosing and administration regimens used in a real-world context.
Collapse
Affiliation(s)
- Lindsay A. Lo
- Department of Public Health Sciences, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Caroline A. MacCallum
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kate Nanson
- School of Nursing, Thompson Rivers University, Kamloops, BC, Canada
| | | | - Ian Mitchell
- Department of Emergency Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Michael-John Milloy
- BC Centre on Substance Use and Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Zach Walsh
- Department of Psychology, University of British Columbia, Kelowna, BC, Canada
| | - Florriann Fehr
- School of Nursing, Thompson Rivers University, Kamloops, BC, Canada
| |
Collapse
|
28
|
Bortoletto R, Piscitelli F, Candolo A, Bhattacharyya S, Balestrieri M, Colizzi M. Questioning the role of palmitoylethanolamide in psychosis: a systematic review of clinical and preclinical evidence. Front Psychiatry 2023; 14:1231710. [PMID: 37533892 PMCID: PMC10390736 DOI: 10.3389/fpsyt.2023.1231710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/30/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction The endocannabinoid (eCB) system disruption has been suggested to underpin the development of psychosis, fueling the search for novel, better-tolerated antipsychotic agents that target the eCB system. Among these, palmitoylethanolamide (PEA), an N-acylethanolamine (AE) with neuroprotective, anti-inflammatory, and analgesic properties, has drawn attention for its antipsychotic potential. Methods This Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020-compliant systematic review aimed at reappraising all clinical and preclinical studies investigating the biobehavioral role of PEA in psychosis. Results Overall, 13 studies were eligible for data extraction (11 human, 2 animal). Observational studies investigating PEA tone in psychosis patients converged on the evidence for increased PEA plasma (6 human) and central nervous system (CNS; 1 human) levels, as a potential early compensatory response to illness and its severity, that seems to be lost in the longer-term (CNS; 1 human), opening to the possibility of exogenously supplementing it to sustain control of the disorder. Consistently, PEA oral supplementation reduced negative psychotic and manic symptoms among psychosis patients, with no serious adverse events (3 human). No PEA changes emerged in either preclinical psychosis model (2 animal) studied. Discussion Evidence supports PEA signaling as a potential psychosis biomarker, also indicating a therapeutic role of its supplementation in the disorder. Systematic review registration https://doi.org/10.17605/OSF.IO/AFMTK.
Collapse
Affiliation(s)
- Riccardo Bortoletto
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Fabiana Piscitelli
- Department of Chemical Sciences and Materials Technologies, Institute of Biomolecular Chemistry, National Research Council (CNR), Pozzuoli, Italy
| | - Anna Candolo
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Matteo Balestrieri
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Marco Colizzi
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
29
|
Gunasekera B, Wilson R, O'Neill A, Blest-Hopley G, O'Daly O, Bhattacharyya S. Cannabidiol attenuates insular activity during motivational salience processing in patients with early psychosis. Psychol Med 2023; 53:4732-4741. [PMID: 35775365 DOI: 10.1017/s0033291722001672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND The mechanisms underlying the antipsychotic potential of cannabidiol (CBD) remain unclear but growing evidence indicates that dysfunction in the insula, a key brain region involved in the processing of motivationally salient stimuli, may have a role in the pathophysiology of psychosis. Here, we investigate whether the antipsychotic mechanisms of CBD are underpinned by their effects on insular activation, known to be involved in salience processing. METHODS A within-subject, crossover, double-blind, placebo-controlled investigation of 19 healthy controls and 15 participants with early psychosis was conducted. Administration of a single dose of CBD was compared with placebo in psychosis participants while performing the monetary incentive delay task, an fMRI paradigm. Anticipation of reward and loss were used to contrast motivationally salient stimuli against a neutral control condition. RESULTS No group differences in brain activation between psychosis patients compared with healthy controls were observed. Attenuation of insula activation was observed following CBD, compared to placebo. Sensitivity analyses controlling for current cannabis use history did not affect the main results. CONCLUSION Our findings are in accordance with existing evidence suggesting that CBD modulates brain regions involved in salience processing. Whether such effects underlie the putative antipsychotic effects of CBD remains to be investigated.
Collapse
Affiliation(s)
- Brandon Gunasekera
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Robin Wilson
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Aisling O'Neill
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Grace Blest-Hopley
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Owen O'Daly
- Department of Neuroimaging, Centre for Neuroimaging Sciences, King's College London, UK
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| |
Collapse
|
30
|
Han YH, He XM, Jin MH, Sun HN, Kwon T. Lipophagy: A potential therapeutic target for nonalcoholic and alcoholic fatty liver disease. Biochem Biophys Res Commun 2023; 672:36-44. [PMID: 37336123 DOI: 10.1016/j.bbrc.2023.06.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Lipid droplets are unique lipid storage organelles in hepatocytes. Lipophagy is a key mechanism of selective degradation of lipid droplets through lysosomes. It plays a crucial role in the prevention of metabolic liver disease, including nonalcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD), and is a potential therapeutic target for treating these dysfunctions. In this review, we highlighted recent research and discussed advances in key proteins and molecular mechanisms related to lipophagy in liver disease. Reactive oxygen species (ROS) is an inevitable product of metabolism in alcohol-treated or high-fat-treated cells. Under this light, the potential role of ROS in autophagy in lipid droplet removal was initially explored to provide insights into the link between oxidative stress and metabolic liver disease. Subsequently, the current measures and drugs that treat NAFLD and AFLD through lipophagy regulation were summarized. The complexity of molecular mechanisms underlying lipophagy in hepatocytes and the need for further studies for their elucidation, as well as the status and limitations of current therapeutic measures and drugs, were also discussed.
Collapse
Affiliation(s)
- Ying-Hao Han
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Xin-Mei He
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Mei-Hua Jin
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Hu-Nan Sun
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, 56216, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
31
|
Cairns EA, Benson MJ, Bedoya-Pérez MA, Macphail SL, Mohan A, Cohen R, Sachdev PS, McGregor IS. Medicinal cannabis for psychiatry-related conditions: an overview of current Australian prescribing. Front Pharmacol 2023; 14:1142680. [PMID: 37346297 PMCID: PMC10279775 DOI: 10.3389/fphar.2023.1142680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Objective: Evidence is accumulating that components of the Cannabis sativa plant may have therapeutic potential in treating psychiatric disorders. Medicinal cannabis (MC) products are legally available for prescription in Australia, primarily through the Therapeutic Goods Administration (TGA) Special Access Scheme B (SAS-B). Here we investigated recent prescribing practices for psychiatric indications under SAS-B by Australian doctors. Methods: The dataset, obtained from the TGA, included information on MC applications made by doctors through the SAS-B process between 1st November 2016 and 30th September 2022 inclusive. Details included the primary conditions treated, patient demographics, prescriber location, product type (e.g., oil, flower or capsule) and the general cannabinoid content of products. The conditions treated were categorized according to the Diagnostic and Statistical Manual of Mental Disorders, 5th edition, text revision (DSM-5-TR). Trends in prescribing for conditions over time were analyzed via polynomial regression, and relationships between categorical variables determined via correspondence analyses. Results: Approximately 300,000 SAS-B approvals to prescribe MC had been issued in the time period under investigation. This included approvals for 38 different DSM-5-TR defined psychiatric conditions (33.9% of total approvals). The majority of approvals were for anxiety disorders (66.7% of psychiatry-related prescribing), sleep-wake disorders (18.2%), trauma- and stressor-related disorders (5.8%), and neurodevelopmental disorders (4.4%). Oil products were most prescribed (53.0%), followed by flower (31.2%) and other inhaled products (12.4%). CBD-dominant products comprised around 20% of total prescribing and were particularly prevalent in the treatment of autism spectrum disorder. The largest proportion of approvals was for patients aged 25-39 years (46.2% of approvals). Recent dramatic increases in prescribing for attention deficit hyperactivity disorder were identified. Conclusion: A significant proportion of MC prescribing in Australia is for psychiatry-related indications. This prescribing often appears somewhat "experimental", given it involves conditions (e.g., ADHD, depression) for which definitive clinical evidence of MC efficacy is lacking. The high prevalence of THC-containing products being prescribed is of possible concern given the psychiatric problems associated with this drug. Evidence-based clinical guidance around the use of MC products in psychiatry is lacking and would clearly be of benefit to prescribers.
Collapse
Affiliation(s)
- Elizabeth A. Cairns
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Melissa J. Benson
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW, Australia
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
- Faculty of Science, School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - Miguel A. Bedoya-Pérez
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW, Australia
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
- Faculty of Science, School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - Sara L. Macphail
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW, Australia
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
- Faculty of Science, School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - Adith Mohan
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Neuropsychiatric Institute, The Prince of Wales Hospital, Randwick, NSW, Australia
| | - Rhys Cohen
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW, Australia
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Neuropsychiatric Institute, The Prince of Wales Hospital, Randwick, NSW, Australia
| | - Iain S. McGregor
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW, Australia
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
- Faculty of Science, School of Psychology, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
32
|
Wilson J, Mills KL, Sunderland M, Freeman TP, Teesson M, Haber PS, Marel C. Different Tokes for Different Folks: Use of Cannabis Products Among a Longitudinal Cohort of People with Heroin Dependence. Int J Ment Health Addict 2023:1-17. [PMID: 37363767 PMCID: PMC10184640 DOI: 10.1007/s11469-023-01071-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 06/28/2023] Open
Abstract
Co-occurring cannabis use is common among those with opioid use disorder (OUD), but the extent to which it is harmful may be due to its preparation and concentration of various cannabinoids. The current study aimed to examine the prevalence of, and long-term associations with, the use of varying cannabis products among a naturalistic longitudinal cohort of people with heroin dependence. A total of 615 people, most of whom were entering treatment, were recruited to the Australian Treatment Outcome Study (ATOS) in 2001-2002. This analysis focuses on the 401 participants followed up at 18-20 years post baseline. Structured interviews assessed the use of cannabis products, as well as demographic and health covariates. High-potency/indoor-grown cannabis was the most common type ever used (68.8%), and in the past 12 months (80.4%), followed by low potency/outdoor grown (22.4%; 14.4%), and less so for other types of cannabis. After controlling for covariates, older age at baseline was associated with lower odds of high-potency cannabis being used as the primary type in the past 12 months. In contrast to studies of non-opioid dependent populations, common use of high-potency cannabis was not associated with more severe health outcomes. Supplementary Information The online version contains supplementary material available at 10.1007/s11469-023-01071-5.
Collapse
Affiliation(s)
- Jack Wilson
- The Matilda Centre for Research in Mental Health and Substance Use, Level 6, Jane Foss Russell Building, G02, The University of Sydney, Sydney, NSW 2006 Australia
| | - Katherine L. Mills
- The Matilda Centre for Research in Mental Health and Substance Use, Level 6, Jane Foss Russell Building, G02, The University of Sydney, Sydney, NSW 2006 Australia
| | - Matthew Sunderland
- The Matilda Centre for Research in Mental Health and Substance Use, Level 6, Jane Foss Russell Building, G02, The University of Sydney, Sydney, NSW 2006 Australia
| | - Tom P. Freeman
- Addiction and Mental Health Group (AIM), University of Bath, Bath, BA2 7AY UK
| | - Maree Teesson
- The Matilda Centre for Research in Mental Health and Substance Use, Level 6, Jane Foss Russell Building, G02, The University of Sydney, Sydney, NSW 2006 Australia
| | - Paul S. Haber
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006 Australia
- Drug Health Services, Royal Prince Alfred Hospital, Camperdown, NSW 2050 Australia
| | - Christina Marel
- The Matilda Centre for Research in Mental Health and Substance Use, Level 6, Jane Foss Russell Building, G02, The University of Sydney, Sydney, NSW 2006 Australia
| |
Collapse
|
33
|
Suzuki J, Prostko S, Szpak V, Chai PR, Spagnolo PA, Tenenbaum RE, Ahmed S, Weiss RD. Impact of cannabidiol on reward- and stress-related neurocognitive processes among individuals with opioid use disorder: A pilot, double-blind, placebo-controlled, randomized cross-over trial. Front Psychiatry 2023; 14:1155984. [PMID: 37065899 PMCID: PMC10098189 DOI: 10.3389/fpsyt.2023.1155984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/10/2023] [Indexed: 04/18/2023] Open
Abstract
Introduction Opioid use disorder (OUD) continues to be a significant public health concern. Medications for OUD (MOUD) such as buprenorphine reduce overdose mortality, but relapses occur often, leading to adverse outcomes. Preliminary data suggest that cannabidiol (CBD) may be a potential adjunctive treatment to MOUD by attenuating cue-reactivity. This pilot study sought to evaluate the impact of a single dose of CBD on reward- and stress-related neurocognitive processes implicated in relapse among those with OUD. Methods The study was a pilot, double-blind, placebo-controlled, randomized cross-over trial aimed at assessing the effects of a single dose of CBD (Epidiolex®) 600 mg or matching placebo administered to participants with OUD receiving either buprenorphine or methadone. Vital signs, mood states, pain, opioid withdrawal, cue-induced craving, attentional bias, decision-making, delayed discount, distress tolerance, and stress-reactivity were examined at each testing session on two separate testing days at least 1 week apart. Results Ten participants completed all study procedures. Receipt of CBD was associated with a significant decrease in cue-induced craving (0.2 vs. 1.3, p = 0.040), as well as reduced attentional bias toward drug-related cues as measured by the visual probe task (-80.4 vs. 100.3, p = 0.041). No differences were found among all the other outcomes examined. Discussion CBD may have promise as an adjunct to MOUD treatment by attenuating the brain response to drug-related cues, which, in turn, may reduce the risk of relapse and overdoses. Further research is warranted to evaluate the potential for CBD as an adjunctive therapy for individuals in treatment for OUD. Clinical Trial Registration https://clinicaltrials.gov/ct2/show/NCT04982029.
Collapse
Affiliation(s)
- Joji Suzuki
- Department of Psychiatry, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Sara Prostko
- Department of Psychiatry, Brigham and Women’s Hospital, Boston, MA, United States
| | - Veronica Szpak
- Department of Psychiatry, Brigham and Women’s Hospital, Boston, MA, United States
| | - Peter R. Chai
- Harvard Medical School, Boston, MA, United States
- Department of Emergency Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Psychosocial Oncology and Palliative Care, Dana Farber Cancer Institute, Boston, MA, United States
- The Koch Institute for Integrated Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- The Fenway Institute, Boston, MA, United States
| | - Primavera A. Spagnolo
- Department of Psychiatry, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | | | - Saeed Ahmed
- Rutland Regional Medical Center, Rutland, VT, United States
| | - Roger D. Weiss
- Harvard Medical School, Boston, MA, United States
- Division of Alcohol, Drugs, and Addiction, McLean Hospital, Belmont, MA, United States
| |
Collapse
|
34
|
Pintori N, Caria F, De Luca MA, Miliano C. THC and CBD: Villain versus Hero? Insights into Adolescent Exposure. Int J Mol Sci 2023; 24:ijms24065251. [PMID: 36982327 PMCID: PMC10048857 DOI: 10.3390/ijms24065251] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Cannabis is the most used drug of abuse worldwide. It is well established that the most abundant phytocannabinoids in this plant are Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). These two compounds have remarkably similar chemical structures yet vastly different effects in the brain. By binding to the same receptors, THC is psychoactive, while CBD has anxiolytic and antipsychotic properties. Lately, a variety of hemp-based products, including CBD and THC, have become widely available in the food and health industry, and medical and recreational use of cannabis has been legalized in many states/countries. As a result, people, including youths, are consuming CBD because it is considered “safe”. An extensive literature exists evaluating the harmful effects of THC in both adults and adolescents, but little is known about the long-term effects of CBD exposure, especially in adolescence. The aim of this review is to collect preclinical and clinical evidence about the effects of cannabidiol.
Collapse
Affiliation(s)
- Nicholas Pintori
- Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy
| | - Francesca Caria
- Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy
| | - Maria Antonietta De Luca
- Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy
- Correspondence: ; Tel.: +39-070-6758633
| | - Cristina Miliano
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
35
|
Corsato Alvarenga I, Panickar KS, Hess H, McGrath S. Scientific Validation of Cannabidiol for Management of Dog and Cat Diseases. Annu Rev Anim Biosci 2023; 11:227-246. [PMID: 36790884 DOI: 10.1146/annurev-animal-081122-070236] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Cannabidiol (CBD) is a non-psychotropic phytocannabinoid of the plant Cannabis sativa L. CBD is increasingly being explored as an alternative to conventional therapies to treat health disorders in dogs and cats. Mechanisms of action of CBD have been investigated mostly in rodents and in vitro and include modulation of CB1, CB2, 5-HT, GPR, and opioid receptors. In companion animals, CBD appears to have good bioavailability and safety profile with few side effects at physiological doses. Some dog studies have found CBD to improve clinical signs associated with osteoarthritis, pruritus, and epilepsy. However, further studies are needed to conclude a therapeutic action of CBD for each of these conditions, as well as for decreasing anxiety and aggression in dogs and cats. Herein, we summarize the available scientific evidence associated with the mechanisms of action of CBD, including pharmacokinetics, safety, regulation, and efficacy in ameliorating various health conditions in dogs and cats.
Collapse
Affiliation(s)
- Isabella Corsato Alvarenga
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA;
| | - Kiran S Panickar
- Science & Technology Center, Hill's Pet Nutrition, Inc., Topeka, Kansas, USA
| | - Hannah Hess
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA;
| | - Stephanie McGrath
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA;
| |
Collapse
|
36
|
Reddy TS, Zomer R, Mantri N. Nanoformulations as a strategy to overcome the delivery limitations of cannabinoids. Phytother Res 2023; 37:1526-1538. [PMID: 36748949 DOI: 10.1002/ptr.7742] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 02/08/2023]
Abstract
Medical cannabis has received significant interest in recent years due to its promising benefits in the management of pain, anxiety, depression and neurological and movement disorders. Specifically, the major phytocannabinoids derived from the cannabis plant such as (-) trans-Δ9 -tetrahydrocannabinol (THC) and cannabidiol (CBD), have been shown to be responsible for the pharmacological and therapeutic properties. Recently, these phytocannabinoids have also attracted special attention in cancer treatment due to their well-known palliative benefits in chemotherapy-induced nausea, vomiting, pain and loss of appetite along with their anticancer activities. Despite the enormous pharmacological benefits, the low aqueous solubility, high instability (susceptibility to extensive first pass metabolism) and poor systemic bioavailability restrict their utilization at clinical perspective. Therefore, drug delivery strategies based on nanotechnology are emerging to improve pharmacokinetic profile and bioavailability of cannabinoids as well as enhance their targeted delivery. Here, we critically review the nano-formulation systems engineered for overcoming the delivery limitations of native phytocannabinoids including polymeric and lipid-based nanoparticles (lipid nano capsules (LNCs), nanostructured lipid carriers (NLCs), nanoemulsions (NE) and self-emulsifying drug delivery systems (SEDDS)), ethosomes and cyclodextrins as well as their therapeutic applications.
Collapse
Affiliation(s)
- T Srinivasa Reddy
- The Pangenomics Group, Biosciences and Food Technology, School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Roby Zomer
- MGC Pharmaceuticals Limited, West Perth, Western Australia, Australia
| | - Nitin Mantri
- The Pangenomics Group, Biosciences and Food Technology, School of Science, RMIT University, Melbourne, Victoria, Australia.,The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
37
|
Cunha RZ, Felisardo LL, Salamanca G, Marchioni GG, Neto OI, Chiocchetti R. The use of cannabidiol as a novel treatment for oral stereotypic behaviour (crib-biting) in a horse. Vet Anim Sci 2023; 19:100289. [PMID: 36824298 PMCID: PMC9941357 DOI: 10.1016/j.vas.2023.100289] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
Behaviour is the response of living things to their environment and external stimulation, and is one of the parameters to be observed when assessing animal welfare. Any alteration from the conditions found in nature can lead to the occurrence of some specific behaviours, called stereotypies which are characterised as repetitive, consistent patterns of behaviour usually defined as having no apparent ultimate or proximal functions. It has been reported that once stabled or subjected to stressful activities, horses have more susceptibility of developing behavioural disturbances; therefore, behavioural disorders in horses are a strong indicator of poor welfare. Cannabis spp.-derived molecules have been studied under different medical conditions; the therapeutic potentials of phytocannabinoids are related to the effects of delta-9-tetrahydrocannabinol, cannabidiol (CBD), and other compounds. Cannabidiol has many activities within the central nervous system, such as anxiolytic, antidepressant, antipsychotic, anticonvulsant, and anti-inflammatory activities. Some studies have recently shown the potential and successful therapeutic use of phytocannabinoids in veterinary medicine. This clinical case report described a 22-year-old mare suffering from chronic crib-biting and wind-sucking, and the successful outcome of four weeks-therapy with CBD. This is the first report of the successful therapeutic use of phytocannabinoids in equine behavioural disorders.
Collapse
Affiliation(s)
- Rodrigo Zamith Cunha
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy,Corresponding author.
| | | | - Giulia Salamanca
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy
| | | | - Orlando Iazzetti Neto
- Department of Veterinary Medical Sciences, University Metodista of São Paulo, Brazil
| | - Roberto Chiocchetti
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy
| |
Collapse
|
38
|
Effects of Cannabidiol on Innate Immunity: Experimental Evidence and Clinical Relevance. Int J Mol Sci 2023; 24:ijms24043125. [PMID: 36834537 PMCID: PMC9964491 DOI: 10.3390/ijms24043125] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/18/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Cannabidiol (CBD) is the main non-psychotropic cannabinoid derived from cannabis (Cannabis sativa L., fam. Cannabaceae). CBD has received approval by the Food and Drug Administration (FDA) and European Medicines Agency (EMA) for the treatment of seizures associated with Lennox-Gastaut syndrome or Dravet syndrome. However, CBD also has prominent anti-inflammatory and immunomodulatory effects; evidence exists that it could be beneficial in chronic inflammation, and even in acute inflammatory conditions, such as those due to SARS-CoV-2 infection. In this work, we review available evidence concerning CBD's effects on the modulation of innate immunity. Despite the lack so far of clinical studies, extensive preclinical evidence in different models, including mice, rats, guinea pigs, and even ex vivo experiments on cells from human healthy subjects, shows that CBD exerts a wide range of inhibitory effects by decreasing cytokine production and tissue infiltration, and acting on a variety of other inflammation-related functions in several innate immune cells. Clinical studies are now warranted to establish the therapeutic role of CBD in diseases with a strong inflammatory component, such as multiple sclerosis and other autoimmune diseases, cancer, asthma, and cardiovascular diseases.
Collapse
|
39
|
Arnold JC, McCartney D, Suraev A, McGregor IS. The safety and efficacy of low oral doses of cannabidiol: An evaluation of the evidence. Clin Transl Sci 2023; 16:10-30. [PMID: 36259271 PMCID: PMC9841308 DOI: 10.1111/cts.13425] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 02/04/2023] Open
Abstract
Global interest in the non-intoxicating cannabis constituent, cannabidiol (CBD), is increasing with claims of therapeutic effects across a diversity of health conditions. At present, there is sufficient clinical trial evidence to support the use of high oral doses of CBD (e.g., 10-50 mg/kg) in treating intractable childhood epilepsies. However, a question remains as to whether "low-dose" CBD products confer any therapeutic benefits. This is an important question to answer, as low-dose CBD products are widely available in many countries, often as nutraceutical formulations. The present review therefore evaluated the efficacy and safety of low oral doses of CBD. The review includes interventional studies that measured the clinical efficacy in any health condition and/or safety and tolerability of oral CBD dosed at less than or equal to 400 mg per day in adult populations (i.e., ≥18 years of age). Studies were excluded if the product administered had a Δ9 -tetrahydrocannabinol content greater than 2.0%. Therapeutic benefits of CBD became more clearly evident at doses greater than or equal to 300 mg. Increased dosing from 60 to 400 mg/day did not appear to be associated with an increased frequency of adverse effects. At doses of 300-400 mg, there is evidence of efficacy with respect to reduced anxiety, as well as anti-addiction effects in drug-dependent individuals. More marginal and less consistent therapeutic effects on insomnia, neurological disorders, and chronic pain were also apparent. Larger more robust clinical trials are needed to confirm the therapeutic potential of lower (i.e., <300 mg/day) oral doses of CBD.
Collapse
Affiliation(s)
- Jonathon C. Arnold
- Lambert Initiative for Cannabinoid TherapeuticsThe University of SydneySydneyNew South WalesAustralia
- Brain and Mind CentreThe University of SydneySydneyNew South WalesAustralia
- Faculty of Medicine and Health, Discipline of Pharmacology, Sydney Pharmacy SchoolThe University of SydneySydneyNew South WalesAustralia
| | - Danielle McCartney
- Lambert Initiative for Cannabinoid TherapeuticsThe University of SydneySydneyNew South WalesAustralia
- Brain and Mind CentreThe University of SydneySydneyNew South WalesAustralia
- Faculty of Science, School of PsychologyThe University of SydneySydneyNew South WalesAustralia
| | - Anastasia Suraev
- Lambert Initiative for Cannabinoid TherapeuticsThe University of SydneySydneyNew South WalesAustralia
- Brain and Mind CentreThe University of SydneySydneyNew South WalesAustralia
- Faculty of Science, School of PsychologyThe University of SydneySydneyNew South WalesAustralia
| | - Iain S. McGregor
- Lambert Initiative for Cannabinoid TherapeuticsThe University of SydneySydneyNew South WalesAustralia
- Brain and Mind CentreThe University of SydneySydneyNew South WalesAustralia
- Faculty of Science, School of PsychologyThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
40
|
Franz S, Herzog J, Skopp G, Musshoff F. Will tetrahydrocannabinol be formed from cannabidiol in gastric fluid? An in vivo experiment. Int J Legal Med 2023; 137:79-87. [PMID: 36190564 DOI: 10.1007/s00414-022-02896-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/19/2022] [Indexed: 01/10/2023]
Abstract
Cannabidiol (CBD) products have ascribed an uprising trend for their health-promoting effects worldwide. In contrast to Δ9-tetrahydrocannabinol (THC), CBD exhibits no state of euphoria. Since conversion of CBD into THC in an acidic environment has been reported, it has not been proved whether this degradation will also occur in human gastric fluid. A total of 9 subjects ingested 400 mg CBD as a water-soluble liquid together with lecithin as an emulsifier and ethanol as a solubilizer. Blood samples were taken up to 4 h, and urine samples were submitted up to 48 h. THC, 11-hydroxy-Δ9-THC (THC-OH), 11-nor-9-carboxy-Δ9-THC (THC-COOH), CBD, 7-hydroxy cannabidiol (7-OH-CBD), and 7-carboxy cannabidiol (7-CBD-COOH) were determined in blood and THC-COOH and 7-CBD-COOH in urine by LC-MS/MS. Neither THC, THC-OH, nor THC-COOH were detectable in any serum specimen. Only two urine samples revealed THC-COOH values slightly above the threshold of 10 ng/ml, which could also be caused by trace amounts of THC being present in the CBD liquid. It can be concluded that negative consequences for participants of a drug testing program due to a conversion of CBD into THC in human gastric fluid appear unlikely, especially considering a single intake of dosages of less than 400 mg. Nevertheless, there is a reasonable risk for consumers of CBD products being tested positive for THC or THC metabolites. However, this is probably not caused by CBD cyclization into THC in human gastric fluid but is most likely due to THC being present as an impurity of CBD products.
Collapse
Affiliation(s)
- Simon Franz
- Forensic Toxicological Center (FTC) Munich, Dessauerstr. 13-15, 80992, Munich, Germany.
| | - Josefine Herzog
- Forensic Toxicological Center (FTC) Munich, Dessauerstr. 13-15, 80992, Munich, Germany
| | - Gisela Skopp
- Forensic Toxicological Center (FTC) Munich, Dessauerstr. 13-15, 80992, Munich, Germany
| | - Frank Musshoff
- Forensic Toxicological Center (FTC) Munich, Dessauerstr. 13-15, 80992, Munich, Germany
| |
Collapse
|
41
|
Bawa Z, McCartney D, Manocha R, McGregor IS. Knowledge, experiences, and attitudes of Australian General Practitioners towards medicinal cannabis: a 2021-2022 survey. BMC PRIMARY CARE 2022; 23:330. [PMID: 36529730 PMCID: PMC9760535 DOI: 10.1186/s12875-022-01946-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Medicinal cannabis (MC) products have been available on prescription in Australia for around six years. General practitioners (GPs) are at the forefront of MC prescribing and recent years have seen substantial increases in prescription numbers. This study examined the current knowledge, experiences, and attitudes of Australian GPs around MC. We also compared our findings to those of an earlier 2017 investigation. METHOD We conducted a cross-sectional study using a 42-item on-line questionnaire adapted from our earlier 2017 survey. The current survey was completed by GPs attending an on-line, multi-topic educational seminar. Australian GPs (n = 505) completed the survey between November 2021 and February 2022. Data were synthesised using descriptive statistics. MC 'prescribers' and 'non-prescribers' responses were compared using Pearson's χ2 tests. RESULTS While most GPs (85.3%) had received patient enquiries about MC during the last three months, only half (52.3%) felt comfortable discussing MC with patients. Around one fifth (21.8%) had prescribed a MC product. GPs strongly supported MC prescribing for palliative care, cancer pain, chemotherapy-induced nausea and vomiting, and epilepsy, more so than in our 2017 survey. Prescribing for mental health conditions (e.g., depression, anxiety) and insomnia received less support. Opioids, benzodiazepines, and chemotherapy drugs were rated as more hazardous than MC. GPs correctly endorsed concerns around Δ9-tetrahydrocannabinol-related driving impairment and drug-seeking behaviour. However, additional concerns endorsed around cannabidiol causing addiction and driving impairment do not agree with current evidence. Consistent with this, many GPs (66.9%) felt they had inadequate knowledge of MC. CONCLUSION Acceptance of MC as a treatment option has increased among Australian GPs since 2017. However, there is a clear need for improved training and education of GPs around cannabis-based medicines to provide increased numbers of skilled prescribers in the community.
Collapse
Affiliation(s)
- Zeeta Bawa
- The University of Sydney, Lambert Initiative for Cannabinoid Therapeutics, Sydney, NSW, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Science, School of Psychology, The University of Sydney, Sydney, NSW, Australia
- Sydney Pharmacy School, The University of Sydney, Sydney, NSW, Australia
| | - Danielle McCartney
- The University of Sydney, Lambert Initiative for Cannabinoid Therapeutics, Sydney, NSW, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Science, School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | | | - Iain S McGregor
- The University of Sydney, Lambert Initiative for Cannabinoid Therapeutics, Sydney, NSW, Australia.
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.
- Faculty of Science, School of Psychology, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
42
|
Marçal AP, Soares N, Asth L, Moreira FA, Ferreira AVM, Aguiar DC. Cannabidiol ameliorates the anxiogenic and compulsive-like behaviors induced by chronic consumption of a high-carbohydrate diet in male mice. Metab Brain Dis 2022; 37:2711-2718. [PMID: 36040711 DOI: 10.1007/s11011-022-01071-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/10/2022] [Indexed: 10/14/2022]
Abstract
The excessive consumption of ultra-processed foods and the development of obesity has been associated with several comorbidities, including psychiatric disorders. Excess fat tissue promotes a low-intensity inflammatory state, mainly in the white tissue, which is essential in developing metabolic alterations and influences brain homeostasis. In this scenario, Cannabidiol (CBD), a compound from Cannabis sativa, has presented anxiolytic and anti-inflammatory effects in murine models. This study verified whether CBD treatment would ameliorate the compulsive-like and anxiety-like behaviors observed after mice's chronic consumption of a high-refined carbohydrate (HC) diet. BALB/c male mice received a control or HC diet for 12 weeks followed by vehicle and CBD (30 mg/Kg, i.p.) administration, and their behavior was evaluated in the Marble Burying test (MB) and Novel Suppressing Feeding test (NSF). The sub-chronic, but not acute, treatment with CBD attenuated the compulsive-like and anxiogenic-like behavior induced by the HC diet. Our data reinforced the harmful effects of the HC diet's chronic consumption on compulsive and anxious behaviors and the potential of CBD as a drug treatment for psychiatric disorders associated with obesity.
Collapse
Affiliation(s)
- Anna Paula Marçal
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Nícia Soares
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Laila Asth
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Fabricio A Moreira
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Adaliene V M Ferreira
- Departmento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais Belo Horizonte, Belo Horizonte, MG, Brazil
| | - Daniele C Aguiar
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
43
|
Tang Y, Tonkovich KL, Rudisill TM. The Effectiveness and Safety of Cannabidiol in Non-seizure-related Indications: A Systematic Review of Published Randomized Clinical Trials. Pharmaceut Med 2022; 36:353-385. [PMID: 36271316 PMCID: PMC9708636 DOI: 10.1007/s40290-022-00446-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Legislative changes have fueled the global availability of cannabis and cannabis-derived compounds, such as cannabidiol. Little is known about the effectiveness and safety of cannabidiol for treating health conditions other than seizure disorders. OBJECTIVE A systematic review of the literature was performed to investigate other health conditions, characteristics of the studied populations, and the effectiveness of cannabidiol in randomized clinical trials. METHODS Seven publication databases were searched from February to March 2021. The inclusion criteria for studies were: (1) utilized a randomized clinical trial design; (2) published in a peer-reviewed journal or thesis/dissertation; (3) published in English; (4) investigated either prescription (i.e., Epidiolex) or non-prescription CBD that was derived from the Cannabis sativa plant with < 3% ∆9-tetrahydrocannabinol; and (5) reported at least one outcome. This review excluded seizure-related disorders as several previous reviews have been done on this topic; it also excluded published protocols, other systematic reviews, or meta-analyses of randomized clinical trials that investigated cannabidiol. Independent reviewing, risk of bias assessment, and data abstraction were performed by two authors. RESULTS Fifty-eight studies from eight countries were included in this review. Twenty-seven studies (47%) were conducted in healthy populations, 14% were restricted to male individuals (n = 8), and 72% had sample sizes of fewer than 40 participants. Doses of cannabidiol used in these studies ranged from 400 µg to 6000 mg. The effect of cannabidiol on mental health was the most studied topic (53%), which focused mainly on anxiety, psychosis, schizophrenia, and substance use disorders. The remaining studies investigated neurological conditions (19%) and a myriad of other health conditions or outcomes. While cannabidiol appears to be anxiolytic, its effectiveness for other conditions was highly variable. CONCLUSIONS This review highlights the inconsistencies of cannabidiol as a treatment for non-seizure-related health conditions or outcomes. Studies incorporating larger sample sizes in more diverse populations are encouraged. While cannabidiol was generally safe and well tolerated even in high doses among the included studies, clearer dosing guidelines and increased regulation of cannabidiol products are also needed.
Collapse
Affiliation(s)
- Yuni Tang
- Department of Epidemiology and Biostatistics, School of Public Health, West Virginia University, PO BOX 9190, Morgantown, WV, 26506, USA
| | - Kolbi L Tonkovich
- Department of Family Medicine, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Toni Marie Rudisill
- Department of Epidemiology and Biostatistics, School of Public Health, West Virginia University, PO BOX 9190, Morgantown, WV, 26506, USA.
| |
Collapse
|
44
|
Domingos LB, Silva NR, Chaves Filho AJM, Sales AJ, Starnawska A, Joca S. Regulation of DNA Methylation by Cannabidiol and Its Implications for Psychiatry: New Insights from In Vivo and In Silico Models. Genes (Basel) 2022; 13:2165. [PMID: 36421839 PMCID: PMC9690868 DOI: 10.3390/genes13112165] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2023] Open
Abstract
Cannabidiol (CBD) is a non-psychotomimetic compound present in cannabis sativa. Many recent studies have indicated that CBD has a promising therapeutic profile for stress-related psychiatric disorders, such as anxiety, schizophrenia and depression. Such a diverse profile has been associated with its complex pharmacology, since CBD can target different neurotransmitter receptors, enzymes, transporters and ion channels. However, the precise contribution of each of those mechanisms for CBD effects is still not yet completely understood. Considering that epigenetic changes make the bridge between gene expression and environment interactions, we review and discuss herein how CBD affects one of the main epigenetic mechanisms associated with the development of stress-related psychiatric disorders: DNA methylation (DNAm). Evidence from in vivo and in silico studies indicate that CBD can regulate the activity of the enzymes responsible for DNAm, due to directly binding to the enzymes and/or by indirectly regulating their activities as a consequence of neurotransmitter-mediated signaling. The implications of this new potential pharmacological target for CBD are discussed in light of its therapeutic and neurodevelopmental effects.
Collapse
Affiliation(s)
- Luana B. Domingos
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Nicole R. Silva
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Adriano J. M. Chaves Filho
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Amanda J. Sales
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil
| | - Anna Starnawska
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8000 Aarhus, Denmark
- Center for Genomics and Personalized Medicine, CGPM, Center for Integrative Sequencing, iSEQ, 8000 Aarhus, Denmark
| | - Sâmia Joca
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
45
|
The association between cannabis use and facial emotion recognition in schizophrenia, siblings, and healthy controls: Results from the EUGEI study. Eur Neuropsychopharmacol 2022; 63:47-59. [PMID: 36055075 DOI: 10.1016/j.euroneuro.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022]
Abstract
Schizophrenia is frequently accompanied with social cognitive disturbances. Cannabis represents one established environmental factor associated with the onset and progression of schizophrenia. The present cross-sectional study aimed to investigate the association of facial emotion recognition (FER) performance with cannabis use in 2039 patients with schizophrenia, 2141 siblings, and 2049 healthy controls (HC). FER performance was measured using the Degraded Facial Affect Recognition Task (DFAR). Better FER performance as indicated by higher DFAR-total scores was associated with lifetime regular cannabis use in schizophrenia (B = 1.36, 95% CI 0.02 to 2.69), siblings (B = 2.17, 95% CI 0.79 to 3.56), and HC (B = 3.10, 95% CI 1.14 to 5.06). No associations were found between DFAR-total and current cannabis use. Patients with schizophrenia who started to use cannabis after the age of 16 showed better FER performance than patients who started earlier (B = 2.50, 95% CI 0.15 to 4.84) and non-users (B = 3.72, 95 CI 1.96 to 5.49). Better FER performance was found also in siblings who started to use cannabis after 16 compared to non-users (B = 2.37, 95% CI 0.58 to 4.16), while HC using cannabis performed better than non-users at DFAR-total regardless of the age at onset. Our findings suggest that lifetime regular cannabis use may be associated with better FER regardless of the psychosis risk, but that FER might be moderated by age at first use in people with higher genetic risk. Longitudinal studies may clarify whether there is a cause-and-effect relationship between cannabis use and FER performance in psychotic and non-psychotic samples.
Collapse
|
46
|
Kluger BM, Huang AP, Miyasaki JM. Cannabinoids in movement disorders. Parkinsonism Relat Disord 2022; 102:124-130. [PMID: 36038457 DOI: 10.1016/j.parkreldis.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
Abstract
INTRODUCTION On the basis of both scientific progress and popular lore, there is growing optimism in the therapeutic potential of cannabis (marijuana) and cannabinoid-based chemicals for movement disorders. There is also notable skepticism regarding the scientific basis for this therapeutic optimism and significant concerns regarding the safety and regulation of cannabinoid products, particularly those available without prescription. METHODS In recognition of the high interest and controversial nature of this subject, the meeting committee of the International Parkinson and Movement Disorders Society arranged for a talk on cannabis at the 2019 annual meeting's Controversies in Movement Disorders plenary session. This paper summarizes the highlights of this session. RESULTS The endocannabinoid system is strongly tied to motor function and dysfunction, with basic research suggesting several promising therapeutic targets related to cannabinoids for movement disorders. Clinical research on cannabinoids for motor and nonmotor symptoms in Parkinson's disease, Huntington's disease, Tourette's syndrome, dystonia, and other movement disorders to date are promising at best and inconclusive or negative at worst. Research in other populations suggest efficacy for common symptoms like pain. While social campaigns against recreational cannabinoid use focus on cognitive changes in adolescents, the long-term sequelae of regulated medical use in older adults with movement disorders is unknown. The overall risks of cannabinoids may be similar to other commonly used medications and include falls and apathy. CONCLUSION Further research is greatly needed to better understand the actual clinical benefits and long-term side effects of medical cannabis products for movement disorders indications and populations.
Collapse
Affiliation(s)
- Benzi M Kluger
- Departments of Neurology and Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Andrew P Huang
- Departments of Neurology and Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Janis M Miyasaki
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
47
|
Suzuki J, Martin B, Prostko S, Chai PR, Weiss RD. Cannabidiol Effect on Cue-Induced Craving for Individuals with Opioid Use Disorder Treated with Buprenorphine: A Small Proof-of-Concept Open-Label Study. INTEGRATIVE MEDICINE REPORTS 2022; 1:157-163. [PMID: 36105269 PMCID: PMC9462449 DOI: 10.1089/imr.2022.0070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 07/28/2022] [Indexed: 12/02/2022]
Abstract
Background: Opioid use disorder (OUD) remains a major public health concern. Despite the use of medications for OUD such as buprenorphine, the current gold-standard treatment, relapse in the context of increased craving remains common. Cannabidiol (CBD) has been shown to reduce cue-induced craving in individuals with OUD, but among those who were not receiving any buprenorphine treatment. This small proof-of-concept open-label study sought to evaluate the effect of CBD on cue-induced craving among individuals with OUD who were being actively treated with buprenorphine. Methods: Participants (n = 5) received CBD (Epidiolex®) 600 mg once daily for 3 consecutive days in an open-label manner. Primary outcome was cue-induced craving measured on a visual analog scale of 0 to 10, calculated as the difference in craving in response to drug-related versus neutral cues. The cue-reactivity paradigm was performed at baseline before CBD administration, and was repeated after 3 days of CBD. Secondary outcomes included scores on depression, anxiety, pain, opioid withdrawal, and side effects. Results: All participants were actively taking buprenorphine for an average of 37.8 months (range 1–120 months). Cue-induced craving was significantly lower after CBD dosing compared with baseline (0.4 vs. 3.2, paired t-test, p = 0.0046). No significant changes in scores for depression, anxiety, pain, or opioid withdrawal were noted. CBD was well tolerated, although one participant experienced moderate sedation; otherwise, no other adverse effects were reported. Conclusions: Given the high risk for bias in a small uncontrolled open label study such as this, results must be interpreted with caution. A larger adequately powered trial with a suitable control group is needed to confirm the finding that CBD may help to reduce cue-induced craving among individuals with OUD currently on buprenorphine treatment. Research should further evaluate whether adjunctive use of CBD can improve clinical outcomes for individuals with OUD maintained on buprenorphine. ClinicalTrials.gov (NCT04192370).
Collapse
Affiliation(s)
- Joji Suzuki
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bianca Martin
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
| | - Sara Prostko
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
| | - Peter R. Chai
- Harvard Medical School, Boston, MA, USA
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Psychosocial Oncology and Palliative Care, Dana Farber Cancer Institute, Boston, MA, USA
- The Koch Institute for Integrated Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Fenway Institute, Boston, MA, USA
| | - Roger D. Weiss
- Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| |
Collapse
|
48
|
Henson JD, Vitetta L, Hall S. Tetrahydrocannabinol and cannabidiol medicines for chronic pain and mental health conditions. Inflammopharmacology 2022; 30:1167-1178. [PMID: 35796920 PMCID: PMC9294022 DOI: 10.1007/s10787-022-01020-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/13/2022] [Indexed: 01/07/2023]
Abstract
Combination tetrahydrocannabinol (THC)/cannabidiol (CBD) medicines or CBD-only medicines are prospective treatments for chronic pain, stress, anxiety, depression, and insomnia. THC and CBD increase signaling from cannabinoid receptors, which reduces synaptic transmission in parts of the central and peripheral nervous systems and reduces the secretion of inflammatory factors from immune and glial cells. The overall effect of adding CBD to THC medicines is to enhance the analgesic effect but counteract some of the adverse effects. There is substantial evidence for the effectiveness of THC/CBD combination medicines for chronic pain, especially neuropathic and nociplastic pain or pain with an inflammatory component. For CBD-only medication, there is substantial evidence for stress, moderate evidence for anxiety and insomnia, and minimal evidence for depression and pain. THC/CBD combination medicines have a good tolerability and safety profile relative to opioid analgesics and have negligible dependence and abuse potential; however, should be avoided in patients predisposed to depression, psychosis and suicide as these conditions appear to be exacerbated. Non-serious adverse events are usually dose-proportional, subject to tachyphylaxis and are rarely dose limiting when patients are commenced on a low dose with gradual up-titration. THC and CBD inhibit several Phase I and II metabolism enzymes, which increases the exposure to a wide range of drugs and appropriate care needs to be taken. Low-dose CBD that appears effective for chronic pain and mental health has good tolerability and safety, with few adverse effects and is appropriate as an initial treatment.
Collapse
Affiliation(s)
- Jeremy D. Henson
- Prince of Wales Clinical School, University of NSW, Sydney, NSW 2052 Australia
- Medlab Clinical Ltd, Sydney, NSW 2015 Australia
| | - Luis Vitetta
- Prince of Wales Clinical School, University of NSW, Sydney, NSW 2052 Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006 Australia
| | - Sean Hall
- Medlab Clinical Ltd, Sydney, NSW 2015 Australia
| |
Collapse
|
49
|
Anticonvulsant Action and Long-Term Effects of Chronic Cannabidiol Treatment in the Rat Pentylenetetrazole-Kindling Model of Epilepsy. Biomedicines 2022; 10:biomedicines10081811. [PMID: 36009358 PMCID: PMC9405483 DOI: 10.3390/biomedicines10081811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Cannabidiol (CBD) showed anticonvulsant action in several preclinical models and is currently approved by regulatory agencies to treat childhood epilepsy syndromes. However, CBD treatment has limited benefits, and its long-term effects on cognition are not fully understood yet. This study aimed to examine the impact of long-term CBD treatment in the pentylenetetrazole (PTZ)-kindling model of epilepsy. Adult male Wistar rats (N = 24) received PTZ (35 mg/kg intraperitoneally) every other day until two consecutive generalized seizures occurred. CBD (60 mg/kg body weight) was administered daily by the oral route until the kindled state was achieved (n = 12). To confirm that the formulation and administration techniques were not of concern, liquid chromatography–mass spectrometry was performed to test the brain penetration of the CBD formula. As a result of CBD treatment, a lower mortality rate and significantly prolonged generalized seizure latency (925.3 ± 120.0 vs. 550.1 ± 69.62 s) were observed, while the frequency and duration of generalized seizures were not influenced. The CBD-treated group showed a significant decrease in vertical exploration in the open field test and a significant decrease in the discrimination index in the novel object recognition (NOR) test (−0.01 ± 0.17 vs. 0.57 ± 0.15, p = 0.04). The observed behavioral characteristics may be connected to the decreased thickness of the stratum pyramidale or the decreased astrogliosis observed in the hippocampus. In conclusion, CBD treatment did not prevent kindling, nor did it affect seizure frequency or duration. However, it did increase the latency to the first seizure and decreased the prolonged status epilepticus-related mortality in PTZ-kindled rats. The cognitive impairment observed in the NOR test may be related to the high dose used in this study, which may warrant further investigation.
Collapse
|
50
|
Metz VG, da Rosa JLO, Rossato DR, Burger ME, Pase CS. Cannabidiol treatment prevents drug reinstatement and the molecular alterations evoked by amphetamine on receptors and enzymes from dopaminergic and endocannabinoid systems in rats. Pharmacol Biochem Behav 2022; 218:173427. [PMID: 35810923 DOI: 10.1016/j.pbb.2022.173427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/19/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022]
Abstract
In psychostimulant drug addiction, relapse is the most concerning outcome to be managed, considering there is no approved treatment for this neuropsychiatric condition. Here, we investigated the effects of the CBD treatment on the relapse behavior triggered by stress, after being submitted to the amphetamine (AMPH)-induced conditioned place preference (CPP) in rats. To elucidate the mechanisms of action underlying the CBD treatment, we evaluated the neuroadaptations on dopaminergic and endocannabinoid targets in the ventral striatum (VS) and ventral tegmental area (VTA) of the brain. Animals received d,l-AMPH (4 mg/kg, i.p.) or vehicle in the CPP paradigm for 8 days. Following the first CPP test, animals were treated with CBD (10 mg/kg, i.p.) or its vehicle for 5 days and subsequently submitted to forced swim stress protocol to induce AMPH-CPP relapse. Behavioral findings showed that CBD treatment prevented AMPH-reinstatement, also exerting anxiolytic activity. At the molecular level, in the VTA, CBD restored the CB1R levels decreased by AMPH-exposure, increased NAPE-PLD, and decreased FAAH levels. In the VS, the increase of D1R and D2R, as well as the decrease of DAT levels induced by AMPH were restored by CBD treatment. The current outcomes evidence a substantial preventive action of the CBD on the AMPH-reinstatement evoked by stress, also involving neuroadaptations in both dopaminergic and endocannabinoid systems in brain areas closely involved in the addiction. Although further studies are needed, these findings support the therapeutic potential of CBD in AMPH-relapse prevention.
Collapse
Affiliation(s)
- Vinícia Garzella Metz
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | | | | | | | - Camila Simonetti Pase
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil; Universidade Federal do Pampa, Campus Uruguaiana, RS, Brazil.
| |
Collapse
|