1
|
Behrendt T, Quisilima JI, Bielitzki R, Behrens M, Glazachev OS, Brigadski T, Leßmann V, Schega L. Brain-Derived neurotrophic factor and inflammatory biomarkers are unaffected by acute and chronic intermittent hypoxic-hyperoxic exposure in geriatric patients: a randomized controlled trial. Ann Med 2024; 56:2304650. [PMID: 38253008 PMCID: PMC10810628 DOI: 10.1080/07853890.2024.2304650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/24/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Animal and human studies have shown that exposure to hypoxia can increase brain-derived neurotrophic factor (BDNF) protein transcription and reduce systematic inflammatory cytokine response. Therefore, the aim of this study was to investigate the acute and chronic effects of intermittent hypoxic-hyperoxic exposure (IHHE) prior to aerobic exercise on BDNF, interleukin-6 (IL-6), and C-reactive protein (CRP) blood levels in geriatric patients. PATIENTS AND METHODS Twenty-five geriatric patients (83.1 ± 5.0 yrs, 71.1 ± 10.0 kg, 1.8 ± 0.9 m) participated in a placebo-controlled, single-blinded trial and were randomly assigned to either an intervention (IG) or control group (CG) performing an aerobic cycling training (17 sessions, 20 min·session-1, 3 sessions·week-1). Prior to aerobic cycling exercise, the IG was additionally exposed to IHHE for 30 min, whereas the CG received continuous normoxic air. Blood samples were taken immediately before (pre-exercise) and 10 min (post-exercise) after the first session as well as 48 h (post-training) after the last session to determine serum (BDNFS) and plasma BDNF (BDNFP), IL-6, and CRP levels. Intervention effects were analyzed using a 2 x 2 analysis of covariance with repeated measures. Results were interpreted based on effect sizes with a medium effect considered as meaningful (ηp2 ≥ 0.06, d ≥ 0.5). RESULTS CRP was moderately higher (d = 0.51) in the CG compared to the IG at baseline. IHHE had no acute effect on BDNFS (ηp2 = 0.01), BDNFP (ηp2 < 0.01), BDNF serum/plasma-ratio (ηp2 < 0.01), IL-6 (ηp2 < 0.01), or CRP (ηp2 = 0.04). After the 6-week intervention, an interaction was found for BDNF serum/plasma-ratio (ηp2 = 0.06) but not for BDNFS (ηp2 = 0.04), BDNFP (ηp2 < 0.01), IL-6 (ηp2 < 0.01), or CRP (ηp2 < 0.01). BDNF serum/plasma-ratio increased from pre-exercise to post-training (d = 0.67) in the CG compared to the IG (d = 0.51). A main effect of time was found for BDNFP (ηp2 = 0.09) but not for BDNFS (ηp2 = 0.02). Within-group post-hoc analyses revealed a training-related reduction in BDNFP in the IG and CG by 46.1% (d = 0.73) and 24.7% (d = 0.57), respectively. CONCLUSION The addition of 30 min IHHE prior to 20 min aerobic cycling seems not to be effective to increase BDNFS and BDNFP or to reduce IL-6 and CRP levels in geriatric patients after a 6-week intervention.The study was retrospectively registered at drks.de (DRKS-ID: DRKS00025130).
Collapse
Affiliation(s)
- Tom Behrendt
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Jessica Ibanez Quisilima
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Robert Bielitzki
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Martin Behrens
- University of Applied Sciences for Sport and Management Potsdam, Potsdam, Germany
| | - Oleg S. Glazachev
- Department of Human Physiology, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Tanja Brigadski
- Department of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| | - Volkmar Leßmann
- Institute of Physiology, Otto-von-Guericke University Magdeburg, Medical Faculty, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Lutz Schega
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
2
|
Liu HY, Zhang YJ, Zhang WY. Exploring the association of physical activity on cognitive function in older adults from observational and genetic insights: a combined NHANES and Mendelian randomization study. Front Aging Neurosci 2024; 16:1418455. [PMID: 39021706 PMCID: PMC11252077 DOI: 10.3389/fnagi.2024.1418455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024] Open
Abstract
Background Cognitive function (CF) deterioration is a pressing concern in geriatric research. This study aimed to explore the relationship between physical activity (PA) and CF in older adults. Methods This study adopted a dual approach, employing both observational and genetic approaches through data from the National Health and Nutrition Examination Survey (NHANES) 2011-2014 and Mendelian Randomization (MR) analysis. For the NHANES component, PA levels were evaluated using the Global Physical Activity Questionnaire, and CF was assessed via standardized tests. Multivariate regression, threshold effect analysis, smoothing curve fitting, and subgroup analyses were conducted to examine the association between PA and CF. In parallel, MR methods, using genetic variants as instrumental variables, assessed the causal impact of PA on CF and related conditions such as Alzheimer's disease and dementia. Results Observational findings from NHANES demonstrated a positive correlation between PA and CF, notably among female participants. The detailed analysis identified specific thresholds of PA that correlate with cognitive enhancements. However, MR results did not support a significant causal relationship between PA and CF or dementia-related outcomes, indicating an absence of a direct genetic basis for the observational associations. Conclusion Although observational data from NHANES suggest that PA is positively associated with CF in older adults, particularly among women, MR analysis did not confirm these findings as causally related. The discrepancy highlights the complexity of the PA-CF relationship and underscores the need for further research. These results emphasize the potential of PA as a modifiable risk factor for CF, though causal effects remain to be definitively established.
Collapse
Affiliation(s)
- Hai-yan Liu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi-Jing Zhang
- Department of Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wen-you Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
3
|
Pucci IM, Aguiar AF, Pucci RM, Casonatto J, Borghi SM. Systematic review and meta-analysis of randomized controlled trials on the effects of exercise interventions on amyloid beta levels in humans. Exp Brain Res 2024; 242:1011-1024. [PMID: 38551691 DOI: 10.1007/s00221-024-06821-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/13/2024] [Indexed: 06/05/2024]
Abstract
Alzheimer's disease (AD) represents the most common type of dementia. A crucial mechanism attributed to its development is amyloid beta (Aβ) dynamics dysregulation. The extent to which exercise can modulate this phenomenon is uncertain. The aim of this study was to summarize the existing literature evaluating this issue. A comprehensive systematic search was performed in Pubmed, Scopus, Embase, Web of Science, and SciELO databases and completed in August 2023, aiming to identify randomized controlled trials investigating the effect of exercise upon Aβ-related pathology. The keywords "exercise" and "amyloid beta", as well as all their equivalents and similar terms, were used. For the analysis, the negative or positive dementia status of the subjects was initially considered and then the soluble amyloid precursor protein (sAPP) components and Aβ fragments separately. A meta-analysis was performed and involved eight studies (moderate-to-high quality) and 644 assessments, which were 297 for control and 347 for exercise. No overall effect favoring exercise interventions was observed for both negative (SMD95%=0,286 [-0,131; 0,704]; p = 0,179) or positive AD dementia status (SMD95%=0,110 [-0,155; 0,375]; p = 0,416). The absence of an overall effect favoring exercise interventions was also found for Aβ peptides (SMD95%=0,226 [-0,028; 0,480]; p = 0,081) and for sAPP components (SMD95%=-0,038 50 [-0,472; 0,396]; p = 0,863) levels. Our findings suggest that exercise interventions do not improve Aβ-related pathology in both healthy individuals and individuals with dementia (SMD95%=0,157 [-0,059; 0,373]; p = 0,155), indicating that the beneficial effects of exercise for AD reported in previous studies are related to other mechanistic effects rather than direct amyloid effects (PROSPERO registration number: CRD42023426912).
Collapse
Affiliation(s)
- Isabela Mayer Pucci
- Center for Research in Health Sciences, Universidade Norte do Paraná (Unopar), Paraná, Londrina, 86041-140, Brazil
| | - Andreo F Aguiar
- Center for Research in Health Sciences, Universidade Norte do Paraná (Unopar), Paraná, Londrina, 86041-140, Brazil
| | - Rodrigo M Pucci
- Universidade Federal do Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Cuiabá, 79070-900, Brazil
| | - Juliano Casonatto
- Center for Research in Health Sciences, Universidade Norte do Paraná (Unopar), Paraná, Londrina, 86041-140, Brazil
| | - Sergio Marques Borghi
- Center for Research in Health Sciences, Universidade Norte do Paraná (Unopar), Paraná, Londrina, 86041-140, Brazil.
- Department of Pathology, Biological Sciences Center, Universidade Estadual de Londrina (UEL), Paraná State, Londrina, 86057-970, Brazil.
| |
Collapse
|
4
|
Ji S, Kang J, Han C, Xu X, Chen M, Chen J, Chhetri JK, Pan J, Chan P. Potential role of APOE ɛ4 allele as a modifier for the association of BDNF Val66Met polymorphisms and cognitive impairment in community-dwelling older adults. Front Aging Neurosci 2024; 16:1330193. [PMID: 38374884 PMCID: PMC10876185 DOI: 10.3389/fnagi.2024.1330193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/16/2024] [Indexed: 02/21/2024] Open
Abstract
Objective To determine whether the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism is associated with cognitive impairment (CI) in community-dwelling Chinese older adults, and to investigate whether this relationship is modified by the Apolipoprotein E (APOE) ɛ4 allele. Methods The study is a secondary analysis of 703 participants aged ≥60 years randomly enrolled from the Beijing Longitudinal Study of Aging II prospective cohort. The education-adjusted Mini-Mental State Examination and the Clinical Dementia Rating Scale were used to measure the cognitive performance of the subjects. The main effects and interactions (additive and multiplicative) of the BDNF Met and the APOE ε4 alleles on CI were estimated by logistic regression models. Results In total, 84 out of 703 older adults aged ≥60 years old had CI. No significant difference was observed in the risk of CI between participants with the BDNF Met allele and that of subjects without the BDNF Met allele (p = 0.213; p = 0.164). Individuals carrying both the BDNF Met and APOE ε4 alleles had an almost 1.5-fold increased odds of CI compared with carriers of the BDNF Met allele but without the APOE ε4 allele. The additive association indicated a positive interaction of both BDNF Met and APOE ε4 alleles with wide CIs (p = 0.021; p = 0.018). Conclusion The results suggest that the APOE ε4 allele may be a potential modifier for the association of the BDNF Val66Met polymorphism with CI in community-dwelling older adults.
Collapse
Affiliation(s)
- Shaozhen Ji
- Department of Neurology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jia Kang
- Department of Neurology, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Chao Han
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xitong Xu
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Meijie Chen
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jie Chen
- Department of Geriatrics, Shenzhen Hospital, Peking University, Shenzhen, China
| | - Jagadish K Chhetri
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Jing Pan
- Department of Neurology, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Piu Chan
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, China
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Iso-Markku P, Aaltonen S, Kujala UM, Halme HL, Phipps D, Knittle K, Vuoksimaa E, Waller K. Physical Activity and Cognitive Decline Among Older Adults: A Systematic Review and Meta-Analysis. JAMA Netw Open 2024; 7:e2354285. [PMID: 38300618 PMCID: PMC10835510 DOI: 10.1001/jamanetworkopen.2023.54285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/11/2023] [Indexed: 02/02/2024] Open
Abstract
Importance Physical activity is associated with the risk for cognitive decline, but much of the evidence in this domain comes from studies with short follow-ups, which is prone to reverse causation bias. Objective To examine how length of follow-up, baseline age, physical activity amount, and study quality modify the longitudinal associations of physical activity with cognition. Data Sources Observational studies of adults with a prospective follow-up of at least 1 year, a valid baseline cognitive measure or midlife cohort, and an estimate of the association of baseline physical activity and follow-up cognition were sought from PsycInfo, Scopus, CINAHL, Web of Science, SPORTDiscus, and PubMed, with the final search conducted on November 2, 2022. Study Selection Two independent researchers screened titles with abstracts and full-text reports. Data Extraction and Synthesis Two reviewers independently assessed study quality and extracted data. Pooled estimates of association were calculated with random-effects meta-analyses. An extensive set of moderators, funnel plots, and scatter plots of physical activity amount were examined. This study is reported following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guideline. Main Outcomes and Measures Pooled estimates of the associations between physical activity and global cognition, as well as specific cognitive domains, were examined. Results A total of 104 studies with 341 471 participants were assessed. Analysis of binary outcomes included 45 studies with 102 452 individuals, analysis of follow-up global cognition included 14 studies with 41 045 individuals, and analysis of change in global cognition included 25 studies with 67 463 individuals. Physical activity was associated with a decreased incidence of cognitive impairment or decline after correction for funnel plot asymmetry (pooled risk ratio, 0.97; 95% CI, 0.97-0.99), but there was no significant association in follow-ups longer than 10 years. Physical activity was associated with follow-up global cognition (standardized regression coefficient, 0.03; 95% CI, 0.02-0.03) and change in global cognition (standardized regression coefficient, 0.01; 95% CI, 0.01 to 0.02) from trim-and-fill analyses, with no clear dose-response or moderation by follow-up length, baseline age, study quality or adjustment for baseline cognition. The specific cognitive domains associated with physical activity were episodic memory (standardized regression coefficient, 0.03; 95% CI, 0.02-0.04) and verbal fluency (standardized regression coefficient, 0.05; 95% CI, 0.03-0.08). Conclusions and Relevance In this meta-analysis of the association of physical activity with cognitive decline, physical activity was associated with better late-life cognition, but the association was weak. However, even a weak association is important from a population health perspective.
Collapse
Affiliation(s)
- Paula Iso-Markku
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital Diagnostic Center, Clinical Physiology and Nuclear Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sari Aaltonen
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Urho M Kujala
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Hanna-Leena Halme
- Helsinki University Hospital Diagnostic Center, Clinical Physiology and Nuclear Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Daniel Phipps
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Keegan Knittle
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Eero Vuoksimaa
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Katja Waller
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
6
|
Liu T, Li C, Zhang R, Millender EF, Miao H, Ormsbee M, Guo J, Westbrook A, Pan Y, Wang J, Kelly TN. A longitudinal study of polygenic score and cognitive function decline considering baseline cognitive function, lifestyle behaviors, and diabetes among middle-aged and older US adults. Alzheimers Res Ther 2023; 15:196. [PMID: 37950263 PMCID: PMC10636974 DOI: 10.1186/s13195-023-01343-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Genomic study of cognition decline while considering baseline cognition and lifestyle behaviors is scarce. We aimed to evaluate the impact of a polygenic score for general cognition on cognition decline rate, while considering baseline cognition and lifestyle behaviors, among the general population and people with diabetes, a patient group commonly affected by cognition impairment. METHODS We tested associations of the polygenic score for general cognition with annual changing rates of cognition measures in 8 years of follow-up among 12,090 White and 3100 Black participants of the Health and Retirement Study (HRS), a nationally representative sample of adults aged 50 years and older in the USA. Cognition measures including word recall, mental status, and total cognitive score were measured biannually. To maximize sample size and length of follow-up, we treated the 2010 wave of survey as baseline, and follow-up data until 2018 were analyzed. Baseline lifestyle behaviors, APOE status, and measured cognition were sequentially adjusted. Given racial differences in polygenic score, all analyses were conducted by race. RESULTS The polygenic score was significantly associated with annual changing rates of all cognition measures independent of lifestyle behaviors and APOE status. Together with age and sex, the polygenic score explained 29.9%, 15.9%, and 26.5% variances of annual changing rates of word recall, mental status, and total cognitive scores among Whites and explained 17.2%, 13.9%, and 18.7% variance of the three traits among Blacks. Among both White and Black participants, those in the top quartile of polygenic score had the three cognition measures increased annually, while those in the bottom quartile had the three cognition measures decreased annually. After further adjusting for the average cognition assessed in 3 visits around baseline, the polygenic score was still positively associated with annual changing rates of all cognition measures for White (P ≤ 2.89E - 19) but not for Black (P ≥ 0.07) participants. In addition, among participants with diabetes, physical activity offset the genetic susceptibility to decline of mental status (interaction P ≤ 0.01) and total cognitive scores (interaction P = 0.03). CONCLUSIONS Polygenic score predicted cognition changes in addition to measured cognition. Physical activity offset genetic risk for cognition decline among diabetes patients.
Collapse
Affiliation(s)
- Tingting Liu
- College of Nursing, Florida State University, Tallahassee, FL, 32306, USA
| | - Changwei Li
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street Suite 2000, New Orleans, LA, 70112, USA.
| | - Ruiyuan Zhang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street Suite 2000, New Orleans, LA, 70112, USA
| | - Eugenia Flores Millender
- College of Nursing, Florida State University, Tallahassee, FL, 32306, USA
- Center of Population Sciences for Health Equity, Florida State University College of Nursing, Tallahassee, FL, 32306, USA
| | - Hongyu Miao
- College of Nursing, Florida State University, Tallahassee, FL, 32306, USA
| | - Michael Ormsbee
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, FL, 32306, USA
| | - Jinzhen Guo
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Adrianna Westbrook
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Yang Pan
- Division of Nephrology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Jing Wang
- College of Nursing, Florida State University, Tallahassee, FL, 32306, USA
| | - Tanika N Kelly
- Division of Nephrology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| |
Collapse
|
7
|
Jaehne EJ, Antolasic EJ, Creutzberg KC, Begni V, Riva MA, van den Buuse M. Impaired fear memory in a rat model of the Brain-Derived Neurotrophic Factor Val66Met polymorphism is reversed by chronic exercise. Neurobiol Learn Mem 2023; 203:107779. [PMID: 37269900 DOI: 10.1016/j.nlm.2023.107779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/08/2023] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
Abstract
The brain-derived neurotrophic factor (BDNF) Val66Met polymorphism is associated with reduced activity-dependent BDNF release in the brain and has been implicated in fear and anxiety disorders, including post-traumatic stress disorder. Exercise has been shown to have benefits in affective disorders but the role of BDNF Val66Met remains unclear. Male and female BDNF Val66Met rats were housed in automated running-wheel cages from weaning while controls were housed in standard cages. During adulthood, all rats underwent standard three-day fear conditioning testing, with three tone/shock pairings on day 1 (acquisition), and extinction learning and memory (40 tones/session) on day 2 and day 3. Expression of BDNF and stress-related genes were measured in the frontal cortex. Extinction testing on day 2 revealed significantly lower freezing in response to initial cue exposure in control Met/Met rats, reflecting impaired fear memory. This deficit was reversed in both male and female Met/Met rats exposed to exercise. There were no genotype effects on acquisition or extinction of fear, however chronic exercise increased freezing in all groups at every stage of testing. Exercise furthermore led to increased expression of Bdnf in the prefrontal cortex of females and its isoforms in both sexes, as well as increased expression of FK506 binding protein 51 (Fkpb5) in females and decreased expression of Serum/glucocorticoid-regulated kinase (Sgk1) in males independent of genotype. These results show that the Met/Met genotype of the Val66Met polymorphism affects fear memory, and that chronic exercise selectively reverses this genotype effect. Chronic exercise also led to an overall increase in freezing in all genotypes which may contribute to results.
Collapse
Affiliation(s)
- Emily J Jaehne
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Emily J Antolasic
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Kerstin C Creutzberg
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; Biological Psychiatry Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Maarten van den Buuse
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Australia; Department of Pharmacology, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
8
|
Barha CK, Starkey SY, Hsiung GYR, Tam R, Liu-Ambrose T. Aerobic exercise improves executive functions in females, but not males, without the BDNF Val66Met polymorphism. Biol Sex Differ 2023; 14:16. [PMID: 37013586 PMCID: PMC10069071 DOI: 10.1186/s13293-023-00499-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/10/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Aerobic exercise promotes cognitive function in older adults; however, variability exists in the degree of benefit. The brain-derived neurotropic factor (BDNF) Val66Met polymorphism and biological sex are biological factors that have been proposed as important modifiers of exercise efficacy. Therefore, we assessed whether the effect of aerobic exercise on executive functions was dependent on the BDNFval66met genotype and biological sex. METHODS We used data from a single-blind randomized controlled trial in older adults with subcortical ischemic vascular cognitive impairment (NCT01027858). Fifty-eight older adults were randomly assigned to either the 6 months, three times per week progressive aerobic training (AT) group or the usual care plus education control (CON) group. The secondary aim of the parent study included executive functions which were assessed with the Trail Making Test (B-A) and the Digit Symbol Substitution Test at baseline and trial completion at 6 months. RESULTS Analysis of covariance, controlling for baseline global cognition and baseline executive functions performance (Trail Making Test or Digit Symbol Substitution Test), tested the three-way interaction between experimental group (AT, CON), BDNFval66met genotype (Val/Val carrier, Met carrier), and biological sex (female, male). Significant three-way interactions were found for the Trail Making Test (F(1,48) = 4.412, p < 0.04) and Digit Symbol Substitution Test (F(1,47) = 10.833, p < 0.002). Posthoc analyses showed female Val/Val carriers benefited the most from 6 months of AT compared with CON for Trail Making Test and Digit Symbol Substitution Test performance. Compared with CON, AT did not improve Trail Making Test performance in male Val/Val carriers or Digit Symbol Substitution Test performance in female Met carriers. CONCLUSIONS These results suggest that future randomized controlled trials should take into consideration BDNF genotype and biological sex to better understand the beneficial effects of AT on cognitive function in vascular cognitive impairment to maximize the beneficial effects of exercise and help establish exercise as medicine for cognitive health.
Collapse
Affiliation(s)
- Cindy K Barha
- Aging, Mobility, and Cognitive Neuroscience Lab, Department of Physical Therapy, University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health C/O Liu-Ambrose Lab, 2215 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
- Centre for Hip Health and Mobility, Vancouver, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Samantha Y Starkey
- Aging, Mobility, and Cognitive Neuroscience Lab, Department of Physical Therapy, University of British Columbia, Vancouver, Canada
- Centre for Hip Health and Mobility, Vancouver, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - G Y Robin Hsiung
- Djavad Mowafaghian Centre for Brain Health C/O Liu-Ambrose Lab, 2215 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
- Division of Neurology, University of British Columbia, Vancouver, Canada
- Vancouver Coastal Health Research Institute and University of British Columbia Hospital Clinic for Alzheimer Disease and Related Disorders, Vancouver, Canada
| | - Roger Tam
- Djavad Mowafaghian Centre for Brain Health C/O Liu-Ambrose Lab, 2215 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| | - Teresa Liu-Ambrose
- Aging, Mobility, and Cognitive Neuroscience Lab, Department of Physical Therapy, University of British Columbia, Vancouver, Canada.
- Djavad Mowafaghian Centre for Brain Health C/O Liu-Ambrose Lab, 2215 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada.
- Centre for Hip Health and Mobility, Vancouver, Canada.
| |
Collapse
|
9
|
Iso-Markku P, Kujala UM, Knittle K, Polet J, Vuoksimaa E, Waller K. Physical activity as a protective factor for dementia and Alzheimer's disease: systematic review, meta-analysis and quality assessment of cohort and case-control studies. Br J Sports Med 2022; 56:701-709. [PMID: 35301183 PMCID: PMC9163715 DOI: 10.1136/bjsports-2021-104981] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2022] [Indexed: 01/20/2023]
Abstract
Objective Physical activity (PA) is associated with a decreased incidence of dementia, but much of the evidence comes from short follow-ups prone to reverse causation. This meta-analysis investigates the effect of study length on the association. Design A systematic review and meta-analysis. Pooled effect sizes, dose–response analysis and funnel plots were used to synthesise the results. Data sources CINAHL (last search 19 October 2021), PsycInfo, Scopus, PubMed, Web of Science (21 October 2021) and SPORTDiscus (26 October 2021). Eligibility criteria Studies of adults with a prospective follow-up of at least 1 year, a valid cognitive measure or cohort in mid-life at baseline and an estimate of the association between baseline PA and follow-up all-cause dementia, Alzheimer’s disease or vascular dementia were included (n=58). Results PA was associated with a decreased risk of all-cause dementia (pooled relative risk 0.80, 95% CI 0.77 to 0.84, n=257 983), Alzheimer’s disease (0.86, 95% CI 0.80 to 0.93, n=128 261) and vascular dementia (0.79, 95% CI 0.66 to 0.95, n=33 870), even in longer follow-ups (≥20 years) for all-cause dementia and Alzheimer’s disease. Neither baseline age, follow-up length nor study quality significantly moderated the associations. Dose–response meta-analyses revealed significant linear, spline and quadratic trends within estimates for all-cause dementia incidence, but only a significant spline trend for Alzheimer’s disease. Funnel plots showed possible publication bias for all-cause dementia and Alzheimer’s disease. Conclusion PA was associated with lower incidence of all-cause dementia and Alzheimer’s disease, even in longer follow-ups, supporting PA as a modifiable protective lifestyle factor, even after reducing the effects of reverse causation.
Collapse
Affiliation(s)
- Paula Iso-Markku
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland .,HUS Diagnostic Center, Clinical Physiology and Nuclear Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Urho M Kujala
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Keegan Knittle
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Juho Polet
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Eero Vuoksimaa
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Katja Waller
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
10
|
Liu T, Hettish L, Lo WJ, Gray M, Li C. FEASibility testing a randomized controlled trial of an exercise program to improve cognition for T2DM patients (the FEAST trial): A study protocol. Res Nurs Health 2021; 44:746-757. [PMID: 34402090 PMCID: PMC8440487 DOI: 10.1002/nur.22174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 11/06/2022]
Abstract
While cognitive dysfunction is an important concern in persons with type 2 diabetes mellitus (T2DM), it has received little attention in the T2DM literature. Although it often remains unrecognized, cognitive dysfunction associated with T2DM can lead to severe consequences. Prior research studies have consistently shown that aerobic exercise enhances cognitive function among healthy subjects. However, very few studies have examined the effects of aerobic exercise on cognitive function in persons with T2DM. In addition, one important single-nucleotide polymorphism that influences cognition in humans is the brain-derived neurotrophic factor (BDNF) Val66Met variant. Despite strong evidence suggesting aerobic exercise has a beneficial effect on cognitive function, there is significant variability in individual response to exercise programs on cognitive outcomes among Val/Val versus Met carriers. However, the evidence on how the BDNF Val66Met variant influences cognitive outcomes following an aerobic exercise intervention among individuals with T2DM is currently lacking. Therefore, the purpose of this randomized controlled trial is to pilot-test a 3-month supervised exercise program to improve plasma BDNF levels and cognition, overall and according to genotypes of the BDNF Val66Met variant. A total of 81 patients with T2DM will be randomly assigned to either aerobic exercise group (n = 54) or attention control group (n = 27) for 3 months. Outcomes of interest include postintervention changes in plasma BDNF levels, fasting blood glucose, hemoglobin A1c, body mass index, executive function, memory, and processing speed. This study will provide further evidence on use of exercise as a non-pharmaceutical, low-cost intervention to improve cognition in this population.
Collapse
Affiliation(s)
- Tingting Liu
- Eleanor Mann School of Nursing, University of Arkansas, College of Education and Health Professions, Fayetteville, Arkansas, USA
| | - Lindsey Hettish
- Eleanor Mann School of Nursing, University of Arkansas, College of Education and Health Professions, Fayetteville, Arkansas, USA
| | - Wen-Juo Lo
- Department of Rehabilitation, Human Resources, and Communication Disorders, University of Arkansas College of Education and Health Professions, Fayetteville, Arkansas, USA
| | - Michelle Gray
- Department of Health, Human Performance and Recreation, Exercise Science Research Center, Fayetteville, Arkansas, USA
| | - Changwei Li
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
11
|
Marques-Aleixo I, Beleza J, Sampaio A, Stevanović J, Coxito P, Gonçalves I, Ascensão A, Magalhães J. Preventive and Therapeutic Potential of Physical Exercise in Neurodegenerative Diseases. Antioxid Redox Signal 2021; 34:674-693. [PMID: 32159378 DOI: 10.1089/ars.2020.8075] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: The prevalence and incidence of age-related neurodegenerative diseases (NDDs) tend to increase along with the enhanced average of the world life expectancy. NDDs are a major cause of morbidity and disability, affecting the health care, social and economic systems with a significant impact. Critical Issues and Recent Advances: Despite the worldwide burden of NDDs and the ongoing research efforts to increase the underlying molecular mechanisms involved in NDD pathophysiologies, pharmacological therapies have been presenting merely narrow benefits. On the contrary, absent of detrimental side effects but growing merits, regular physical exercise (PE) has been considered a prone pleiotropic nonpharmacological alternative able to modulate brain structure and function, thereby stimulating a healthier and "fitness" neurological phenotype. Future Directions: This review summarizes the state of the art of some peripheral and central-related mechanisms that underlie the impact of PE on brain plasticity as well as its relevance for the prevention and/or treatment of NDDs. Nevertheless, further studies are needed to better clarify the molecular signaling pathways associated with muscle contractions-related myokines release and its plausible positive effects in the brain. In addition, particular focus of research should address the role of PE in the modulation of mitochondrial metabolism and oxidative stress in the context of NDDs.
Collapse
Affiliation(s)
- Inês Marques-Aleixo
- Faculty of Psychology, Education and Sports, Lusofona University of Porto, Porto, Portugal.,Laboratory of Metabolism and Exercise (LaMetEx), Research Center in Physical Activity Health and Leisure (CIAFEL), Faculty of Sport, University of Porto (FADEUP), Porto, Portugal
| | - Jorge Beleza
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Arnaldina Sampaio
- Laboratory of Metabolism and Exercise (LaMetEx), Research Center in Physical Activity Health and Leisure (CIAFEL), Faculty of Sport, University of Porto (FADEUP), Porto, Portugal
| | - Jelena Stevanović
- Laboratory of Metabolism and Exercise (LaMetEx), Research Center in Physical Activity Health and Leisure (CIAFEL), Faculty of Sport, University of Porto (FADEUP), Porto, Portugal
| | - Pedro Coxito
- Laboratory of Metabolism and Exercise (LaMetEx), Research Center in Physical Activity Health and Leisure (CIAFEL), Faculty of Sport, University of Porto (FADEUP), Porto, Portugal
| | | | - António Ascensão
- Laboratory of Metabolism and Exercise (LaMetEx), Research Center in Physical Activity Health and Leisure (CIAFEL), Faculty of Sport, University of Porto (FADEUP), Porto, Portugal
| | - José Magalhães
- Laboratory of Metabolism and Exercise (LaMetEx), Research Center in Physical Activity Health and Leisure (CIAFEL), Faculty of Sport, University of Porto (FADEUP), Porto, Portugal
| |
Collapse
|
12
|
Liu T, Canon MD, Shen L, Marples BA, Colton JP, Lo WJ, Gray M, Li C. The Influence of the BDNF Val66Met Polymorphism on the Association of Regular Physical Activity With Cognition Among Individuals With Diabetes. Biol Res Nurs 2020; 23:318-330. [PMID: 33063528 DOI: 10.1177/1099800420966648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Diabetes is associated with cognitive dysfunction that comes with substantial lifetime consequences, such as interference with diabetes self-management and reduced quality of life. Although regular physical activity has been consistently shown to enhance cognitive function among healthy subjects, significant interpersonal differences in exercise-induced cognitive outcomes have been reported among brain-derived neurotrophic factor (BDNF) Val/Val vs. Met carriers. However, the evidence on how the BDNF Val66Met variant influences the relationship between regular physical activity and cognition among individuals with diabetes is currently lacking. METHODS A total of 3,040 individuals with diabetes were included in this analysis using data from the Health and Retirement Study. Associations among moderate and vigorous physical activities (MVPA) and measures of cognitive function were evaluated using multivariable linear regression models within each stratum of the Val66Met genotypes. RESULTS MVPA was more strongly associated with total cognitive score, mental status, and words recall among Met/Met carriers, compared to Val/Val and Val/Met carriers. CONCLUSIONS This study provided preliminary findings on how BDNF variants may modulate the exercise-induced cognitive benefits among mid-aged and older adults with diabetes. Given the limitations of the current study, it is necessary for randomized controlled trials to stratify by BDNF genotypes to more conclusively determine whether Met carriers benefit more from increased physical activity. In addition, future research is needed to examine how the interplay of BDNF Val66Met variants, DNA methylation, and physical activity may have an impact on cognitive function among adults with diabetes.
Collapse
Affiliation(s)
- Tingting Liu
- 16081Eleanor Mann School of Nursing, University of Arkansas, Fayetteville, AR, USA
| | - McKenzie D Canon
- 16081Eleanor Mann School of Nursing, University of Arkansas, Fayetteville, AR, USA
| | - Luqi Shen
- Department of Epidemiology and Biostatistics, 1355University of Georgia, Athens, GA, USA
| | - Benjamin A Marples
- 16081Eleanor Mann School of Nursing, University of Arkansas, Fayetteville, AR, USA
| | - Joseph P Colton
- 16081Eleanor Mann School of Nursing, University of Arkansas, Fayetteville, AR, USA
| | - Wen-Juo Lo
- Department of Rehabilitation, Human Resources, and Communication Disorders, 3341University of Arkansas College of Education and Health Professions, Fayetteville, AR, USA
| | - Michelle Gray
- Exercise Science Research Center, Department of Health, Human Performance, and Recreation, 3341University of Arkansas College of Education and Health Professions, Fayetteville, AR, USA
| | - Changwei Li
- Department of Epidemiology, 5783Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| |
Collapse
|
13
|
Park KS, Ganesh AB, Berry NT, Mobley YP, Karper WB, Labban JD, Wahlheim CN, Williams TM, Wideman L, Etnier JL. The effect of physical activity on cognition relative to APOE genotype (PAAD-2): study protocol for a phase II randomized control trial. BMC Neurol 2020; 20:231. [PMID: 32503473 PMCID: PMC7274941 DOI: 10.1186/s12883-020-01732-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/16/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND By 2050, the prevalence of Alzheimer's disease (AD) in the United States is predicted to reach 13.8 million. Despite worldwide research efforts, a cure for AD has not been identified. Thus, it is critical to identify preventive strategies that can reduce the risk of or delay the onset of AD. Physical activity (PA) has potential in this regard. This randomized clinical trial aims to (a) test the causal relationship between PA and AD-associated cognitive function for persons with a family history of AD (FH+), (b) determine the moderating role of apolipoprotein epsilon 4 (APOE4) carrier status on cognition, and (c) assess cerebral structure, cerebral function, and putative biomarkers as mediators of the effects of PA on cognition. METHODS We are recruiting cognitively normal, middle aged (40-65 years) sedentary adults with FH+. Participants are randomly assigned to a 12-month PA intervention for 3 days/week or to a control group maintaining their normal lifestyle. Saliva samples are taken at pre-test to determine APOE genotype. At pre-, mid-, and post-tests, participants complete a series of cognitive tests to assess information-processing speed, verbal and visual episodic memory, constructional praxis, mnemonic discrimination, and higher-order executive functions. At pre- and post-tests, brain imaging and blood biomarkers are assessed. DISCUSSION We hypothesize that 1) the PA group will demonstrate improved cognition compared with controls; 2) PA-derived cognitive changes will be moderated by APOE4 status; and 3) PA-induced changes in neural and blood biomarkers will contribute to cognitive changes and differ as a function of APOE4 status. Our results may provide important insights into the potential of PA to preserve neurocognitive function in people with a heightened risk of AD due to FH+ and as moderated by APOE4 status. By using sophisticated analytic techniques to assess APOE as a moderator and neurobiological mechanisms as mediators across trajectories of cognitive change in response to PA, we will advance our understanding of the potential of PA in protecting against AD. TRIAL REGISTRATION ClinicalTrials.gov NCT03876314. Registered March 15, 2019.
Collapse
Affiliation(s)
- Kyoung Shin Park
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | - Alexis B Ganesh
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | | | - Yashonda P Mobley
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | - William B Karper
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | - Jeffrey D Labban
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | - Christopher N Wahlheim
- Department of Psychology, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | - Tomika M Williams
- Department of Advanced Nursing Practice and Education, East Carolina University, Greenville, NC, 27858, USA
| | - Laurie Wideman
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | - Jennifer L Etnier
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA.
| |
Collapse
|
14
|
The BDNF Val66Met Polymorphism Modulates Resilience of Neurological Functioning to Brain Ageing and Dementia: A Narrative Review. Brain Sci 2020; 10:brainsci10040195. [PMID: 32218234 PMCID: PMC7226504 DOI: 10.3390/brainsci10040195] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023] Open
Abstract
Brain-derived neurotropic factor (BDNF) is an abundant and multi-function neurotrophin in the brain. It is released following neuronal activity and is believed to be particularly important in strengthening neural networks. A common variation in the BDNF gene, a valine to methionine substitution at codon 66 (Val66Met), has been linked to differential expression of BDNF associated with experience-dependent plasticity. The Met allele has been associated with reduced production of BDNF following neuronal stimulation, which suggests a potential role of this variation with respect to how the nervous system may respond to challenges, such as brain ageing and related neurodegenerative conditions (e.g., dementia and Alzheimer’s disease). The current review examines the potential of the BDNF Val66Met variation to modulate an individual’s susceptibility and trajectory through cognitive changes associated with ageing and dementia. On balance, research to date indicates that the BDNF Met allele at this codon is potentially associated with a detrimental influence on the level of cognitive functioning in older adults and may also impart increased risk of progression to dementia. Furthermore, recent studies also show that this genetic variation may modulate an individual’s response to interventions targeted at building cognitive resilience to conditions that cause dementia.
Collapse
|
15
|
Finan JD, Udani SV, Patel V, Bailes JE. The Influence of the Val66Met Polymorphism of Brain-Derived Neurotrophic Factor on Neurological Function after Traumatic Brain Injury. J Alzheimers Dis 2019; 65:1055-1064. [PMID: 30149456 DOI: 10.3233/jad-180585] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Functional outcomes after traumatic brain injury (TBI) vary widely across patients with apparently similar injuries. This variability hinders prognosis, therapy, and clinical innovation. Recently, single nucleotide polymorphism (SNPs) that influence outcome after TBI have been identified. These discoveries create opportunities to personalize therapy and stratify clinical trials. Both of these changes would propel clinical innovation in the field. This review focuses on one of most well-characterized of these SNPs, the Val66Met SNP in the brain-derived neurotrophic factor (BDNF) gene. This SNP influences neurological function in healthy subjects as well as TBI patients and patients with similar acute insults to the central nervous system. A host of other patient-specific factors including ethnicity, age, gender, injury severity, and post-injury time point modulate this influence. These interactions confound efforts to define a simple relationship between this SNP and TBI outcomes. The opportunities and challenges associated with personalizing TBI therapy around this SNP and other similar SNPs are discussed in light of these results.
Collapse
Affiliation(s)
- John D Finan
- Department of Neurosurgery, NorthShore University Health System, Evanston, IL, USA
| | - Shreya V Udani
- Department of Neurosurgery, NorthShore University Health System, Evanston, IL, USA
| | - Vimal Patel
- Department of Neurosurgery, NorthShore University Health System, Evanston, IL, USA
| | - Julian E Bailes
- Department of Neurosurgery, NorthShore University Health System, Evanston, IL, USA
| |
Collapse
|
16
|
Watts A, Andrews SJ, Anstey KJ. Sex Differences in the Impact of BDNF Genotype on the Longitudinal Relationship between Physical Activity and Cognitive Performance. Gerontology 2018; 64:361-372. [PMID: 29402782 DOI: 10.1159/000486369] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/18/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Physical activity may preserve cognitive function in older adults, but benefits vary by sex and genetic factors. OBJECTIVE We tested the longitudinal association between physical activity and cognitive performance to de termine whether a common genetic polymorphism for brain-derived neurotrophic factor (BDNF Val66Met) moderated this effect. METHODS In a 12-year longitudinal population-based sample of older adults (n = 2,218), we used growth curve modeling to investigate whether the benefits of physical activity on cognitive preservation differed by BDNF genotype and sex across multiple cognitive domains including processing speed, attention, working memory, and episodic verbal memory. RESULTS The relationship between physical activity and cognitive performance was dependent on BDNF carrier status in males (Δχ2 [Δdf] = 12.94 [4], p = 0.01), but not in females (Δχ2 [Δdf] = 4.38 [4], p = 0.36). Cognition benefited from physical activity in male BDNF met noncarriers, but not met carriers, whereas cognition was not statistically significantly related to physical activity in females regardless of genotype. CONCLUSION We observed longitudinal, but not cross-sectional, effects of physical activity on cognitive performance. Our study highlights the importance of longitudinal follow-up and consideration of sex differences in the relationships between physical activity, BDNF genotype, and cognitive decline. The findings contribute to understanding gene-lifestyle interactions in promoting cognitive health.
Collapse
Affiliation(s)
- Amber Watts
- Department of Clinical Psychology, University of Kansas, Lawrence, Kansas, USA
| | - Shea J Andrews
- Centre for Research on Ageing, Health & Wellbeing, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Kaarin J Anstey
- Centre for Research on Ageing, Health & Wellbeing, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
17
|
Canivet A, Albinet CT, Rodríguez-Ballesteros M, Chicherio C, Fagot D, André N, Audiffren M. Interaction between BDNF Polymorphism and Physical Activity on Inhibitory Performance in the Elderly without Cognitive Impairment. Front Hum Neurosci 2017; 11:541. [PMID: 29163114 PMCID: PMC5681928 DOI: 10.3389/fnhum.2017.00541] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/24/2017] [Indexed: 11/19/2022] Open
Abstract
Background: In the elderly, physical activity (PA) enhances cognitive performances, increases brain plasticity and improves brain health. The neurotrophic hypothesis is that the release of brain-derived neurotrophic factor (BDNF), which is implicated in brain plasticity and cognition, is triggered by PA because motoneurons secrete BDNF into the bloodstream during exercise. Individual differences in cognitive performance may be explained by individual differences in genetic predisposition. A single nucleotide polymorphism on the BDNF gene, BDNFVal66Met, affects activity-dependent BDNF secretion. This study investigated the influence of the BDNFVal66Met polymorphism on the relationship between PA and controlled inhibition performance in older adults. Methods: A total of 114 healthy elderly volunteers (mean age = 71.53 years old) were evaluated. Participants were genotyped for the BDNFVal66Met polymorphism. We evaluated inhibitory performance using choice reaction times (RT) and error rates from a Simon-like task and estimated their PA using two self-reported questionnaires. We established four groups according to PA level (active vs. inactive) and BDNFVal66Met genotype (Met carriers vs. Val-homozygous). The results were analyzed using ANOVA and ANCOVA, including age, gender and body mass index as covariates. Results: The BDNFVal66Met polymorphism interacted with PA on controlled inhibition performance. More specifically, inactive Val-homozygous participants exhibited a lower inhibition performance than active Val homozygotes and inactive Met carriers; the former had a higher error rate without differences in RT. Conclusion: Differences between individuals on inhibitory performance may be partially understood by the interaction between genetic influence in BDNF secretion and PA level. The results of this study clearly support the neurotrophic hypothesis that BDNF synthesis is an important mechanism underlying the influence of physical activity on brain structure and functions.
Collapse
Affiliation(s)
- Anne Canivet
- Université de Poitiers, Centre de Recherches sur la Cognition et l’Apprentissage, CNRS UMR 7295, Poitiers, France
| | - Cédric T. Albinet
- Université de Poitiers, Centre de Recherches sur la Cognition et l’Apprentissage, CNRS UMR 7295, Poitiers, France
- Laboratoire Sciences de la Cognition, Technologie, Ergonomie (SCoTE), Université de Toulouse, INU Champollion, Albi, France
| | | | - Christian Chicherio
- Neuropsychology Unit, Neurology Clinic, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
- Center for Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, Geneva, Switzerland
| | - Delphine Fagot
- Center for Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, Geneva, Switzerland
| | - Nathalie André
- Université de Poitiers, Centre de Recherches sur la Cognition et l’Apprentissage, CNRS UMR 7295, Poitiers, France
| | - Michel Audiffren
- Université de Poitiers, Centre de Recherches sur la Cognition et l’Apprentissage, CNRS UMR 7295, Poitiers, France
- Maison des Sciences de l’Homme et de la Société, CNRS USR 3565, Université de Poitiers, Poitiers, France
| |
Collapse
|
18
|
Xu W, Wang HF, Wan Y, Tan CC, Yu JT, Tan L. Leisure time physical activity and dementia risk: a dose-response meta-analysis of prospective studies. BMJ Open 2017; 7:e014706. [PMID: 29061599 PMCID: PMC5665289 DOI: 10.1136/bmjopen-2016-014706] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND There is considerable evidence of the favourable role of more physical activity (PA) in fighting against dementia. However, the shape of the dose-response relationship is still unclear. OBJECTIVE To quantitatively investigate the relationship between dementia and PA. DESIGN PubMed, EMBASE, Ovid and the Cochrane Library were searched for prospective studies published from 1 January 1995 to 15 October 2016. Two types of meta-analyses were performed with a focus on the dose-response relationship using two stage generalised least squares regression. RESULTS The primary analysis exhibited a dose-response trend for all-cause dementia (ACD), Alzheimer's disease (AD) but not for vascular dementia (VD). In the dose-response analysis, either ACD (ptrend <0.005; pnon-linearity=0.87) or AD (p trend <0.005; pnon-linearity=0.10) exhibited a linear relationship with leisure time PA (LTPA) over the observed range (0-2000 kcal/week or 0-45 metabolic equivalent of task hours per week (MET-h/week)). Specifically, for every 500 kcal or 10 MET-h increase per week, there was, on average, 10% and 13% decrease in the risk of ACD and AD, respectively. CONCLUSIONS We have reported, for the first time, the dose-response relationship between LTPA and dementia, further supporting the international PA guideline from the standpoint of dementia prevention.
Collapse
Affiliation(s)
- Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, China
| | - Hui Fu Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yu Wan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, China
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
19
|
Munoz MJ, Kumar RG, Oh BM, Conley YP, Wang Z, Failla MD, Wagner AK. Cerebrospinal Fluid Cortisol Mediates Brain-Derived Neurotrophic Factor Relationships to Mortality after Severe TBI: A Prospective Cohort Study. Front Mol Neurosci 2017; 10:44. [PMID: 28337122 PMCID: PMC5343043 DOI: 10.3389/fnmol.2017.00044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 02/09/2017] [Indexed: 01/04/2023] Open
Abstract
Distinct regulatory signaling mechanisms exist between cortisol and brain derived neurotrophic factor (BDNF) that may influence secondary injury cascades associated with traumatic brain injury (TBI) and predict outcome. We investigated concurrent CSF BDNF and cortisol relationships in 117 patients sampled days 0–6 after severe TBI while accounting for BDNF genetics and age. We also determined associations between CSF BDNF and cortisol with 6-month mortality. BDNF variants, rs6265 and rs7124442, were used to create a gene risk score (GRS) in reference to previously published hypothesized risk for mortality in “younger patients” (<48 years) and hypothesized BDNF production/secretion capacity with these variants. Group based trajectory analysis (TRAJ) was used to create two cortisol groups (high and low trajectories). A Bayesian estimation approach informed the mediation models. Results show CSF BDNF predicted patient cortisol TRAJ group (P = 0.001). Also, GRS moderated BDNF associations with cortisol TRAJ group. Additionally, cortisol TRAJ predicted 6-month mortality (P = 0.001). In a mediation analysis, BDNF predicted mortality, with cortisol acting as the mediator (P = 0.011), yielding a mediation percentage of 29.92%. Mediation effects increased to 45.45% among younger patients. A BDNF*GRS interaction predicted mortality in younger patients (P = 0.004). Thus, we conclude 6-month mortality after severe TBI can be predicted through a mediation model with CSF cortisol and BDNF, suggesting a regulatory role for cortisol with BDNF's contribution to TBI pathophysiology and mortality, particularly among younger individuals with severe TBI. Based on the literature, cortisol modulated BDNF effects on mortality after TBI may be related to known hormone and neurotrophin relationships to neurological injury severity and autonomic nervous system imbalance.
Collapse
Affiliation(s)
- Miranda J Munoz
- Department of Physical Medicine and Rehabilitation, University of PittsburghPittsburgh, PA, USA; Department of Biological Sciences, Carnegie Mellon UniversityPittsburgh, PA, USA
| | - Raj G Kumar
- Department of Physical Medicine and Rehabilitation, University of PittsburghPittsburgh, PA, USA; Department of Epidemiology, University of PittsburghPittsburgh, PA, USA
| | - Byung-Mo Oh
- Department of Physical Medicine and Rehabilitation, University of PittsburghPittsburgh, PA, USA; Department of Rehabilitation Medicine, Seoul National University HospitalSeoul, South Korea
| | - Yvette P Conley
- Department of Physical Medicine and Rehabilitation, University of PittsburghPittsburgh, PA, USA; Department of Epidemiology, University of PittsburghPittsburgh, PA, USA
| | - Zhensheng Wang
- Department of Nursing, University of PittsburghPittsburgh, PA, USA; Safar Center for Resuscitation Research, University of PittsburghPittsburgh, PA, USA
| | - Michelle D Failla
- Department of Psychiatry, Vanderbilt University Medical Center Nashville, TN, USA
| | - Amy K Wagner
- Department of Physical Medicine and Rehabilitation, University of PittsburghPittsburgh, PA, USA; Safar Center for Resuscitation Research, University of PittsburghPittsburgh, PA, USA; Department of Neuroscience, University of PittsburghPittsburgh, PA, USA; Center for Neuroscience, University of PittsburghPittsburgh, PA, USA
| |
Collapse
|
20
|
Impact of Physical Activity on Cognitive Decline, Dementia, and Its Subtypes: Meta-Analysis of Prospective Studies. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9016924. [PMID: 28271072 PMCID: PMC5320071 DOI: 10.1155/2017/9016924] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/04/2016] [Accepted: 12/27/2016] [Indexed: 01/01/2023]
Abstract
The association of physical activity with dementia and its subtypes has remained controversial in the literature and has continued to be a subject of debate among researchers. A systematic review and meta-analysis of longitudinal studies on the relationship between physical activity and the risk of cognitive decline, all-cause dementia, Alzheimer's disease, and vascular dementia among nondemented subjects are considered. A comprehensive literature search in all available databases was conducted up until April 2016. Well-defined inclusion and exclusion criteria were developed with focus on prospective studies ≥ 12 months. The overall sample from all studies is 117410 with the highest follow-up of 28 years. The analyses are performed with both Bayesian parametric and nonparametric models. Our analysis reveals a protective effect for high physical activity on all-cause dementia, odds ratio of 0.79, 95% CI (0.69, 0.88), a higher and better protective effect for Alzheimer's disease, odds ratio of 0.62, 95% CI (0.49, 0.75), cognitive decline odds ratio of 0.67, 95% CI (0.55, 0.78), and a nonprotective effect for vascular dementia of 0.92, 95% CI (0.62, 1.30). Our findings suggest that physical activity is more protective against Alzheimer's disease than it is for all-cause dementia, vascular dementia, and cognitive decline.
Collapse
|
21
|
Barha CK, Galea LA, Nagamatsu LS, Erickson KI, Liu-Ambrose T. Personalising exercise recommendations for brain health: considerations and future directions. Br J Sports Med 2016; 51:636-639. [DOI: 10.1136/bjsports-2016-096710] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2016] [Indexed: 12/27/2022]
|
22
|
Pedersen BK, Saltin B. Exercise as medicine - evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand J Med Sci Sports 2016; 25 Suppl 3:1-72. [PMID: 26606383 DOI: 10.1111/sms.12581] [Citation(s) in RCA: 1834] [Impact Index Per Article: 203.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2015] [Indexed: 12/12/2022]
Abstract
This review provides the reader with the up-to-date evidence-based basis for prescribing exercise as medicine in the treatment of 26 different diseases: psychiatric diseases (depression, anxiety, stress, schizophrenia); neurological diseases (dementia, Parkinson's disease, multiple sclerosis); metabolic diseases (obesity, hyperlipidemia, metabolic syndrome, polycystic ovarian syndrome, type 2 diabetes, type 1 diabetes); cardiovascular diseases (hypertension, coronary heart disease, heart failure, cerebral apoplexy, and claudication intermittent); pulmonary diseases (chronic obstructive pulmonary disease, asthma, cystic fibrosis); musculo-skeletal disorders (osteoarthritis, osteoporosis, back pain, rheumatoid arthritis); and cancer. The effect of exercise therapy on disease pathogenesis and symptoms are given and the possible mechanisms of action are discussed. We have interpreted the scientific literature and for each disease, we provide the reader with our best advice regarding the optimal type and dose for prescription of exercise.
Collapse
Affiliation(s)
- B K Pedersen
- The Centre of Inflammation and Metabolism and The Center for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - B Saltin
- The Copenhagen Muscle Research Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Lack of an association of BDNF Val66Met polymorphism and plasma BDNF with hippocampal volume and memory. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2016; 15:625-43. [PMID: 25784293 DOI: 10.3758/s13415-015-0343-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) has been shown to be important for neuronal survival and synaptic plasticity in the hippocampus in nonhuman animals. The Val66Met polymorphism in the BDNF gene, involving a valine (Val) to methionine (Met) substitution at codon 66, has been associated with lower BDNF secretion in vitro. However, there have been mixed results regarding associations between either circulating BDNF or the BDNF Val66Met polymorphism with hippocampal volume and memory in humans. The current study examined the association of BDNF genotype and plasma BDNF with hippocampal volume and memory in two large independent cohorts of middle-aged and older adults (both cognitively normal and early-stage dementia). Sample sizes ranged from 123 to 649. Measures of the BDNF genotype, plasma BDNF, MRI-based hippocampal volume, and memory performance were obtained from the Knight Alzheimer Disease Research Center (ADRC) and the Alzheimer's Disease Neuroimaging Initiative (ADNI). There were no significant differences between BDNF Met+ and Met- groups on either hippocampal volume or memory in either cohort. In addition, plasma BDNF was not significantly associated with either hippocampal volume or memory in either cohort. Neither age, cognitive status, nor gender moderated any of the relationships. Overall, current findings suggest that BDNF genotype and plasma BDNF may not be robust predictors for variance in hippocampal volume and memory in middle age and older adult cohorts.
Collapse
|
24
|
Rezaei S, Asgari Mobarake K, Saberi A, Keshavarz P, Leili EK. Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism and post-stroke dementia: a hospital-based study from northern Iran. Neurol Sci 2016; 37:935-42. [DOI: 10.1007/s10072-016-2520-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 02/13/2016] [Indexed: 12/31/2022]
|
25
|
Serum BDNF correlates with connectivity in the (pre)motor hub in the aging human brain—a resting-state fMRI pilot study. Neurobiol Aging 2016; 38:181-187. [DOI: 10.1016/j.neurobiolaging.2015.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 10/30/2015] [Accepted: 11/05/2015] [Indexed: 11/19/2022]
|
26
|
Effects of BDNF polymorphism and physical activity on episodic memory in the elderly: a cross sectional study. Eur Rev Aging Phys Act 2015; 12:15. [PMID: 26865879 PMCID: PMC4748321 DOI: 10.1186/s11556-015-0159-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 12/21/2015] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The brain-derived neurotrophic factor (BDNF) concentration is highest in the hippocampus compared with that in other brain structures and affects episodic memory, a cognitive function that is impaired in older adults. According to the neurotrophic hypothesis, BDNF released during physical activity enhances brain plasticity and consequently brain health. However, even if the physical activity level is involved in the secretion of neurotrophin, this protein is also under the control of a specific gene. The aim of the present study was to examine the effect of the interaction between physical activity and BDNF Val66Met (rs6265), a genetic polymorphism, on episodic memory. METHODS Two hundred and five volunteers aged 55 and older with a Mini Mental State Examination score ≥ 24 participated in this study. Four groups of participants were established according to their physical activity level and polymorphism BDNF profile (Active Val homozygous, Inactive Val homozygous, Active Met carriers, Inactive Met carriers). Episodic memory was evaluated based on the delayed recall of the Logical Memory test of the MEM III battery. RESULTS As expected, the physical activity level interacted with BDNF polymorphism to affect episodic memory performance (p < .05). The active Val homozygous participants significantly outperformed the active Met carriers and inactive Val homozygous participants. CONCLUSION This study clearly demonstrates an interaction between physical activity and BDNF Val66Met polymorphism that affects episodic memory in the elderly and confirms that physical activity contributes to the neurotrophic mechanism implicated in cognitive health. The interaction shows that only participants with Val/Val polymorphism benefited from physical activity.
Collapse
|
27
|
van der Kolk NM, Speelman AD, van Nimwegen M, Kessels RP, IntHout J, Hakobjan M, Munneke M, Bloem BR, van de Warrenburg BP. BDNF polymorphism associates with decline in set shifting in Parkinson's disease. Neurobiol Aging 2015; 36:1605.e1-6. [DOI: 10.1016/j.neurobiolaging.2014.08.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 08/14/2014] [Accepted: 08/22/2014] [Indexed: 12/17/2022]
|
28
|
Innovative Research Design Exploring the Effects of Physical Activity and Genetics on Cognitive Performance in Community-Based Older Adults. J Aging Phys Act 2015; 23:559-68. [PMID: 25594264 DOI: 10.1123/japa.2014-0221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Physical activity is predictive of better cognitive performance and lower risk of Alzheimer's disease (AD). The apolipoprotein E gene (APOE) is a susceptibility gene for AD with the e4 allele being associated with a greater risk of AD. Cross-sectional and prospective research shows that physical activity is predictive of better cognitive performance for those at greater genetic risk for AD. However, the moderating role of APOE on the effects of a physical activity intervention on cognitive performance has not been examined. The purpose of this manuscript is to justify the need for such research and to describe the design, methods, and recruitment tactics used in the conductance of a study designed to provide insight as to the extent to which cognitive benefits resulting from an 8-month physical activity program are differentiated by APOE e4 status. The effectiveness of the recruitment strategies and the feasibility of recruiting APOE e4 carriers are discussed.
Collapse
|
29
|
Fong DY, Chi LK, Li F, Chang YK. The benefits of endurance exercise and Tai Chi Chuan for the task-switching aspect of executive function in older adults: an ERP study. Front Aging Neurosci 2014; 6:295. [PMID: 25389403 PMCID: PMC4211410 DOI: 10.3389/fnagi.2014.00295] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 10/08/2014] [Indexed: 11/13/2022] Open
Abstract
This study was designed to determine the relationship between physical activity and the task-switching aspect of executive function by investigating the modulating roles of age, modality of physical activity, and type of cognitive function using behavioral and event-related potential (ERP) assessments. Sixty-four participants were assigned to one of four groups based on age and history of physical activity: older adults performing endurance exercise (OEE), older adults practicing Tai Chi Chuan (OTC), older adults with a sedentary lifestyle (OSL), and young adults (YA). Study participants completed a task-switching task under homogeneous and heterogeneous conditions while ERPs were recorded. The results revealed that YA had shortest reaction times compared with the three older adults groups, with OSL exhibiting the longest reaction time. YA also exhibited shorter P3 latency than OSL. No differences were observed in P3 amplitude between YA, OEE, and OTC; however, all three groups had significantly larger P3 amplitude compared with OSL in both task conditions. In conclusion, age and participation in physical activity influence the relationship between physical activity and task-switching, and a positive relationship was observed regardless of the modality of physical activity and type of cognitive function. Our ERP findings support the model of the scaffolding theory of aging and cognition (STAC) and suggest that regular participation in endurance exercise and Tai Chi Chuan may have equivalent beneficial effects on cognition at the behavioral and neuroelectric levels.
Collapse
Affiliation(s)
- Dong-Yang Fong
- Physical Education Office, National Taipei University of TechnologyTaipei, Taiwan
| | - Li-Kang Chi
- Department of Physical Education, National Taiwan Normal UniversityTaipei, Taiwan
| | - Fuzhong Li
- Oregon Research InstituteEugene, OR, USA
| | - Yu-Kai Chang
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport UniversityTaoyuan, Taiwan
| |
Collapse
|
30
|
Blondell SJ, Hammersley-Mather R, Veerman JL. Does physical activity prevent cognitive decline and dementia?: A systematic review and meta-analysis of longitudinal studies. BMC Public Health 2014; 14:510. [PMID: 24885250 PMCID: PMC4064273 DOI: 10.1186/1471-2458-14-510] [Citation(s) in RCA: 538] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/08/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND By 2050, it has been estimated that approximately one-fifth of the population will be made up of older adults (aged ≥60 years). Old age often comes with cognitive decline and dementia. Physical activity may prevent cognitive decline and dementia. METHODS We reviewed and synthesised prospective studies into physical activity and cognitive decline, and physical activity and dementia, published until January 2014. Forty-seven cohorts, derived from two previous systematic reviews and an updated database search, were used in the meta-analyses. Included participants were aged ≥40 years, in good health and/or randomly selected from the community. Studies were assessed for methodological quality. RESULTS Twenty-one cohorts on physical activity and cognitive decline and twenty-six cohorts on physical activity and dementia were included. Meta-analysis, using the quality-effects model, suggests that participants with higher levels of physical activity, when compared to those with lower levels, are at reduced risk of cognitive decline, RR 0.65, 95% CI 0.55-0.76, and dementia, RR 0.86, 95% CI 0.76-0.97. Sensitivity analyses revealed a more conservative estimate of the impact of physical activity on cognitive decline and dementia for high quality studies, studies reporting effect sizes as ORs, greater number of adjustments (≥10), and longer follow-up time (≥10 years). When one heavily weighted study was excluded, physical activity was associated with an 18% reduction in the risk of dementia (RR 0.82; 0.73-0.91). CONCLUSIONS Longitudinal observational studies show an association between higher levels of physical activity and a reduced risk of cognitive decline and dementia. A case can be made for a causal interpretation. Future research should use objective measures of physical activity, adjust for the full range of confounders and have adequate follow-up length. Ideally, randomised controlled trials will be conducted. Regardless of any effect on cognition, physical activity should be encouraged, as it has been shown to be beneficial on numerous levels.
Collapse
Affiliation(s)
- Sarah J Blondell
- The University of Queensland, School of Population Health, 4006 Herston, Queensland, Australia
| | - Rachel Hammersley-Mather
- Counselling and Health at Student Services, University of Southern Queensland, 4350 Toowoomba, Queensland, Australia
| | - J Lennert Veerman
- The University of Queensland, School of Population Health, 4006 Herston, Queensland, Australia
| |
Collapse
|
31
|
Taylor JL, Scanlon BK, Farrell M, Hernandez B, Adamson MM, Ashford JW, Noda A, Murphy GM, Weiner MW. APOE-epsilon4 and aging of medial temporal lobe gray matter in healthy adults older than 50 years. Neurobiol Aging 2014; 35:2479-2485. [PMID: 24929969 DOI: 10.1016/j.neurobiolaging.2014.05.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 04/23/2014] [Accepted: 05/11/2014] [Indexed: 12/31/2022]
Abstract
Atrophy of the hippocampus and surrounding temporal regions occurs in Alzheimer's disease (AD). APOE ε4, the major genetic risk factor for late-onset AD, has been associated with smaller volume in these regions before amyloidosis can be detected by AD biomarkers. To examine APOE ε4 effects in relation to aging, we performed a longitudinal magnetic resonance imaging study involving cognitively normal adults (25 APOE ε4 carriers and 31 ε3 homozygotes), initially aged 51-75 years. We used growth curve analyses, which can provide information about APOE ε4-related differences initially and later in life. Hippocampal volume was the primary outcome; nearby medial temporal regions were secondary outcomes. Brain-derived neurotrophic factor, val66met was a secondary covariate. APOE ε4 carriers had significantly smaller initial hippocampal volumes than ε3 homozygotes. Rate of hippocampal atrophy was not greater in the APOE ε4 group, although age-related atrophy was detected in the overall sample. The findings add to the growing evidence that effects of APOE ε4 on hippocampal size begin early in life, underscoring the importance of early interventions to increase reserve.
Collapse
Affiliation(s)
- Joy L Taylor
- Veterans Affairs Palo Alto Health Care System, Sierra-Pacific MIRECC, Palo Alto CA, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| | - Blake K Scanlon
- Veterans Affairs Palo Alto Health Care System, Sierra-Pacific MIRECC, Palo Alto CA, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle Farrell
- Veterans Affairs Palo Alto Health Care System, Sierra-Pacific MIRECC, Palo Alto CA, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Beatriz Hernandez
- Veterans Affairs Palo Alto Health Care System, Sierra-Pacific MIRECC, Palo Alto CA, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Maheen M Adamson
- Veterans Affairs Palo Alto Health Care System, Sierra-Pacific MIRECC, Palo Alto CA, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - J Wesson Ashford
- Veterans Affairs Palo Alto Health Care System, Sierra-Pacific MIRECC, Palo Alto CA, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Art Noda
- Veterans Affairs Palo Alto Health Care System, Sierra-Pacific MIRECC, Palo Alto CA, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Greer M Murphy
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael W Weiner
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA; Department of Radiology, University of California, San Francisco, CA, USA
| |
Collapse
|
32
|
Novelty Interventions to Enhance Broad Cognitive Abilities and Prevent Dementia. PROGRESS IN BRAIN RESEARCH 2013; 207:403-34. [DOI: 10.1016/b978-0-444-63327-9.00017-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Gajewski PD, Hengstler JG, Golka K, Falkenstein M, Beste C. The Met-allele of the BDNF Val66Met polymorphism enhances task switching in elderly. Neurobiol Aging 2011; 32:2327.e7-19. [PMID: 21803453 DOI: 10.1016/j.neurobiolaging.2011.06.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 05/31/2011] [Accepted: 06/13/2011] [Indexed: 11/15/2022]
Abstract
In this study we examined the relevance of the functional brain-derived neurotrophic factor (BDNF) Val66Met polymorphism as a modulator of task-switching performance in healthy elderly by using behavioral and event-related potential (ERP) measures. Task switching was examined in a cue-based and a memory-based paradigm. Val/Val carriers were generally slower, showed enhanced reaction time variability and higher error rates, particularly during memory-based task switching than the Met-allele individuals. On a neurophysiological level these dissociative effects were reflected by variations in the N2 and P3 ERP components. The task switch-related N2 was increased while the P3 was decreased in Met-allele carriers, while the Val/Val genotype group revealed the opposite pattern of results. In cue-based task-switching no behavioral and ERP differences were seen between the genotypes. These data suggest that superior memory-based task-switching performance in elderly Met-allele carriers may emerge due to more efficient response selection processes. The results implicate that under special circumstances the Met-allele renders cognitive processes more efficient than the Val/Val genotype in healthy elderly, corroborating recent findings in young subjects.
Collapse
Affiliation(s)
- Patrick D Gajewski
- Leibniz Research Centre for Working Environment and Human Factors at Technical University of Dortmund (IfADo), Dortmund, Germany.
| | | | | | | | | |
Collapse
|
34
|
Abstract
Both healthy aging and the pathologic incidence of disorders associated with aging involve an array of debilities. Physical exercise harnesses implicit and inherent biologic characteristics amenable to the putative interventional influences under clinical, institutional or laboratory conditions. The neurodegenerative and pathophysiologic progressions that constitute Alzheimer's disease (AD), amnestic mild cognitive impairment (aMCI), normal aging, and different animal models of AD have shown the existence of several putative mechanisms. A large variety of moderating factors have demonstrated that the ever-proliferating plethora of neurotrophic factors, neurogenesis as observed through generality of expression and neuronal arborization. The insistent efficacy of brain vascular angiogenesis may delay also the comorbid incidence of depressive disorders with dementia pathology. The pathogenesis of aging may be contained by selective treatments: these diverse conditions, linked to the basis of the aging concept, have been shown, to greater or lesser extents, to respond to a variety of scheduled applications of physical exercise. The range of reports that provide accounts of the mechanisms mediating the positive progressive response to exercise intervention is far-ranging; these studies indicate that subtle changes at molecular, neuronal, vascular and epigenetic levels may exert notable consequence at functional expression and, perhaps most essentially, offer convincing expectancy of significant benefits.
Collapse
Affiliation(s)
- T Archer
- Department of Psychology, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
35
|
Eckert MA. Slowing down: age-related neurobiological predictors of processing speed. Front Neurosci 2011; 5:25. [PMID: 21441995 PMCID: PMC3061488 DOI: 10.3389/fnins.2011.00025] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 02/15/2011] [Indexed: 11/21/2022] Open
Abstract
Processing speed, or the rate at which tasks can be performed, is a robust predictor of age-related cognitive decline and an indicator of independence among older adults. This review examines evidence for neurobiological predictors of age-related changes in processing speed, which is guided in part by our source based morphometry findings that unique patterns of frontal and cerebellar gray matter predict age-related variation in processing speed. These results, together with the extant literature on morphological predictors of age-related changes in processing speed, suggest that specific neural systems undergo declines and as a result slow processing speed. Future studies of processing speed – dependent neural systems will be important for identifying the etiologies for processing speed change and the development of interventions that mitigate gradual age-related declines in cognitive functioning and enhance healthy cognitive aging.
Collapse
Affiliation(s)
- Mark A Eckert
- Hearing Research Program, Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina Charleston, SC, USA
| |
Collapse
|