1
|
Chen Y, Huang X, Chen H, Yi C. An easy-to-perform method for microvessel isolation and primary brain endothelial cell culture to study Alzheimer's disease. Heliyon 2024; 10:e33077. [PMID: 38994107 PMCID: PMC11238044 DOI: 10.1016/j.heliyon.2024.e33077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
Dysfunction of the blood-brain barrier (BBB) has been increasingly recognised as a critical early event in Alzheimer's disease (AD) pathophysiology. Central to this mechanism is the impaired function of brain endothelial cells (BECs), the primary structural constituents of the BBB, the study of which is imperative for understanding AD pathophysiology. However, the published methods to isolate BECs are time-consuming and have a low success rate. Here, we developed a rapid and streamlined protocol for BEC isolation without using transgenic reporters, flow cytometry, and magnetic beads, which are essential for existing methods. Using this novel protocol, we isolated high-purity BECs from cell clusters of cortical microvessels from wild-type and APPswe/PS1dE9 (APP/PS1, a classical AD model) mice at 2, 4 and 9 months of age. Reduced levels of tight junction proteins Claudin-5 and Zonula Occludens-1, as well as glucose transporter 1, were observed in the isolated cortical microvessels from APP/PS1 mice and amyloid-β (Aβ) oligomer-treated BECs from wild-type mice. Trans-well permeability assay showed increased FITC-dextran leakage in BECs treated with Aβ, suggesting impaired BBB permeability. BECs obtained using our novel protocol can undergo various experimental analyses, including immunofluorescence staining, western blotting, real-time PCR, and trans-well permeability assay. In conclusion, our novel protocol represents a reliable and valuable tool for in vitro modelling BBB to study AD-related mechanisms and develop targeted therapeutic strategies.
Collapse
Affiliation(s)
- Yang Chen
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xiaomin Huang
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, 518107, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China
| |
Collapse
|
2
|
Kurtyka M, Wessely F, Bau S, Ifie E, He L, de Wit NM, Pedersen ABV, Keller M, Webber C, de Vries HE, Ansorge O, Betsholtz C, De Bock M, Chaves C, Brodin B, Nielsen MS, Neuhaus W, Bell RD, Letoha T, Meyer AH, Leparc G, Lenter M, Lesuisse D, Cader ZM, Buckley ST, Loryan I, Pietrzik CU. The solute carrier SLC7A1 may act as a protein transporter at the blood-brain barrier. Eur J Cell Biol 2024; 103:151406. [PMID: 38547677 DOI: 10.1016/j.ejcb.2024.151406] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/02/2024] [Accepted: 03/20/2024] [Indexed: 06/29/2024] Open
Abstract
Despite extensive research, targeted delivery of substances to the brain still poses a great challenge due to the selectivity of the blood-brain barrier (BBB). Most molecules require either carrier- or receptor-mediated transport systems to reach the central nervous system (CNS). These transport systems form attractive routes for the delivery of therapeutics into the CNS, yet the number of known brain endothelium-enriched receptors allowing the transport of large molecules into the brain is scarce. Therefore, to identify novel BBB targets, we combined transcriptomic analysis of human and murine brain endothelium and performed a complex screening of BBB-enriched genes according to established selection criteria. As a result, we propose the high-affinity cationic amino acid transporter 1 (SLC7A1) as a novel candidate for transport of large molecules across the BBB. Using RNA sequencing and in situ hybridization assays, we demonstrated elevated SLC7A1 gene expression in both human and mouse brain endothelium. Moreover, we confirmed SLC7A1 protein expression in brain vasculature of both young and aged mice. To assess the potential of SLC7A1 as a transporter for larger proteins, we performed internalization and transcytosis studies using a radiolabelled or fluorophore-labelled anti-SLC7A1 antibody. Our results showed that SLC7A1 internalised a SLC7A1-specific antibody in human colorectal carcinoma (HCT116) cells. Moreover, transcytosis studies in both immortalised human brain endothelial (hCMEC/D3) cells and primary mouse brain endothelial cells clearly demonstrated that SLC7A1 effectively transported the SLC7A1-specific antibody from luminal to abluminal side. Therefore, here in this study, we present for the first time the SLC7A1 as a novel candidate for transport of larger molecules across the BBB.
Collapse
Affiliation(s)
- Magdalena Kurtyka
- Institute for Pathobiochemistry, University Medical Center Mainz, Mainz, Germany
| | - Frank Wessely
- UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Sarah Bau
- Pathology & Imaging, Novo Nordisk A/S, Måløv, Denmark
| | - Eseoghene Ifie
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Nienke M de Wit
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | | | - Maximilian Keller
- Institute for Pathobiochemistry, University Medical Center Mainz, Mainz, Germany
| | - Caleb Webber
- UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Helga E de Vries
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Olaf Ansorge
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden; Department of Medicine (Huddinge), Karolinska Institutet, Huddinge, Sweden
| | - Marijke De Bock
- Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica, Beerse, Belgium
| | - Catarina Chaves
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| | - Birger Brodin
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Morten S Nielsen
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Winfried Neuhaus
- Austrian Institute of Technology GmbH, Vienna, Austria; Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Krems, Austria
| | | | | | - Axel H Meyer
- AbbVie Deutschland GmbH & Co. KG, Quantitative, Translational & ADME Sciences, Ludwigshafen, Germany
| | - Germán Leparc
- Boehringer Ingelheim Pharma GmbH & Co. KG, Translational Medicine & Clinical Pharmacology, Biberach, Germany
| | - Martin Lenter
- Boehringer Ingelheim Pharma GmbH & Co. KG, Drug Discovery Sciences, Biberach, Germany
| | - Dominique Lesuisse
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| | - Zameel M Cader
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | | | - Irena Loryan
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Claus U Pietrzik
- Institute for Pathobiochemistry, University Medical Center Mainz, Mainz, Germany.
| |
Collapse
|
3
|
Yu Y, Yu S, Battaglia G, Tian X. Amyloid-β in Alzheimer's disease: Structure, toxicity, distribution, treatment, and prospects. IBRAIN 2024; 10:266-289. [PMID: 39346788 PMCID: PMC11427815 DOI: 10.1002/ibra.12155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 10/01/2024]
Abstract
Amyloid-β (Aβ) is a pivotal biomarker in Alzheimer's disease (AD), attracting considerable attention from numerous researchers. There is uncertainty regarding whether clearing Aβ is beneficial or harmful to cognitive function. This question has been a central topic of research, especially given the lack of success in developing Aβ-targeted drugs for AD. However, with the Food and Drug Administration's approval of Lecanemab as the first anti-Aβ medication in July 2023, there is a significant shift in perspective on the potential of Aβ as a therapeutic target for AD. In light of this advancement, this review aims to illustrate and consolidate the molecular structural attributes and pathological ramifications of Aβ. Furthermore, it elucidates the determinants influencing its expression levels while delineating the gamut of extant Aβ-targeted pharmacotherapies that have been subjected to clinical or preclinical evaluation. Subsequently, a comprehensive analysis is presented, dissecting the research landscape of Aβ across the domains above, culminating in the presentation of informed perspectives. Concluding reflections contemplate the supplementary advantages conferred by nanoparticle constructs, conceptualized within the framework of multivalent theory, within the milieu of AD diagnosis and therapeutic intervention, supplementing conventional modalities.
Collapse
Affiliation(s)
- Yifan Yu
- Institute for Bioengineering of Catalunya (IBEC)The Barcelona Institute of Science and Technology (BIST), Barcelona (Spain), Carrer Baldiri I ReixacBarcelonaSpain
- Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China HospitalSichuan UniversityChengduChina
| | - Shilong Yu
- Institute for Bioengineering of Catalunya (IBEC)The Barcelona Institute of Science and Technology (BIST), Barcelona (Spain), Carrer Baldiri I ReixacBarcelonaSpain
- Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China HospitalSichuan UniversityChengduChina
| | - Giuseppe Battaglia
- Institute for Bioengineering of Catalunya (IBEC)The Barcelona Institute of Science and Technology (BIST), Barcelona (Spain), Carrer Baldiri I ReixacBarcelonaSpain
- Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China HospitalSichuan UniversityChengduChina
| | - Xiaohe Tian
- Institute for Bioengineering of Catalunya (IBEC)The Barcelona Institute of Science and Technology (BIST), Barcelona (Spain), Carrer Baldiri I ReixacBarcelonaSpain
- Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
4
|
Balczon R, Lin MT, Voth S, Nelson AR, Schupp JC, Wagener BM, Pittet JF, Stevens T. Lung endothelium, tau, and amyloids in health and disease. Physiol Rev 2024; 104:533-587. [PMID: 37561137 PMCID: PMC11281824 DOI: 10.1152/physrev.00006.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/26/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
Lung endothelia in the arteries, capillaries, and veins are heterogeneous in structure and function. Lung capillaries in particular represent a unique vascular niche, with a thin yet highly restrictive alveolar-capillary barrier that optimizes gas exchange. Capillary endothelium surveys the blood while simultaneously interpreting cues initiated within the alveolus and communicated via immediately adjacent type I and type II epithelial cells, fibroblasts, and pericytes. This cell-cell communication is necessary to coordinate the immune response to lower respiratory tract infection. Recent discoveries identify an important role for the microtubule-associated protein tau that is expressed in lung capillary endothelia in the host-pathogen interaction. This endothelial tau stabilizes microtubules necessary for barrier integrity, yet infection drives production of cytotoxic tau variants that are released into the airways and circulation, where they contribute to end-organ dysfunction. Similarly, beta-amyloid is produced during infection. Beta-amyloid has antimicrobial activity, but during infection it can acquire cytotoxic activity that is deleterious to the host. The production and function of these cytotoxic tau and amyloid variants are the subject of this review. Lung-derived cytotoxic tau and amyloid variants are a recently discovered mechanism of end-organ dysfunction, including neurocognitive dysfunction, during and in the aftermath of infection.
Collapse
Affiliation(s)
- Ron Balczon
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Mike T Lin
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Sarah Voth
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, United States
| | - Amy R Nelson
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Jonas C Schupp
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University, New Haven, Connecticut, United States
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
| | - Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| |
Collapse
|
5
|
Varshavskaya KB, Petrushanko IY, Mitkevich VA, Barykin EP, Makarov AA. Post-translational modifications of beta-amyloid alter its transport in the blood-brain barrier in vitro model. Front Mol Neurosci 2024; 17:1362581. [PMID: 38516041 PMCID: PMC10954796 DOI: 10.3389/fnmol.2024.1362581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
One of the hallmarks of Alzheimer's disease (AD) is the accumulation of beta-amyloid peptide (Aβ) leading to formation of soluble neurotoxic Aβ oligomers and insoluble amyloid plaques in various parts of the brain. Aβ undergoes post-translational modifications that alter its pathogenic properties. Aβ is produced not only in brain, but also in the peripheral tissues. Such Aβ, including its post-translationally modified forms, can enter the brain from circulation by binding to RAGE and contribute to the pathology of AD. However, the transport of modified forms of Aβ across the blood-brain barrier (BBB) has not been investigated. Here, we used a transwell BBB model as a controlled environment for permeability studies. We found that Aβ42 containing isomerized Asp7 residue (iso-Aβ42) and Aβ42 containing phosphorylated Ser8 residue (pS8-Aβ42) crossed the BBB better than unmodified Aβ42, which correlated with different contribution of endocytosis mechanisms to the transport of these isoforms. Using microscale thermophoresis, we observed that RAGE binds to iso-Aβ42 an order of magnitude weaker than to Aβ42. Thus, post-translational modifications of Aβ increase the rate of its transport across the BBB and modify the mechanisms of the transport, which may be important for AD pathology and treatment.
Collapse
|
6
|
Wei W, Sun H, Yang B, Song E, Song Y. Coronal ApoE Protein Combines with LRP1 to Inactivate GSK3β That Mitigates Silica Nanoparticle-Induced Brain Lesion. ACS Chem Neurosci 2024; 15:808-815. [PMID: 38315060 DOI: 10.1021/acschemneuro.3c00728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Silica nanoparticles (SiO2 NPs) are widely used engineered materials that warrant their obvious environmental exposure risk. Our previous study has shown that different routes of SiO2 NP exposure on the glycogen synthase kinase 3 beta (GSK3β) activity were related to the serum proteins enriched on the surface of SiO2 NPs, which implied that a particular protein in the serum changed the inherent toxic behavior of SiO2 NPs and inhibited the activation of GSK3β by SiO2 NPs. Here, we identified that the SiO2 NP surface enriched a large amount of apolipoprotein E (ApoE), and the ApoE protein corona bound to the lipoprotein receptor-related protein 1 (LRP1) to inactivate GSK3β, thereby reducing the damage of SiO2 NPs to the brain. This work presented the first evidence that specific biocorona reduced the toxicity of SiO2 NPs at the molecular level, which helped to elucidate the role of specific corona components on nanotoxicity.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Rd, Haidian District, Beijing 100085, China
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
| | - Hang Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Rd, Haidian District, Beijing 100085, China
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
| | - Bingwei Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Rd, Haidian District, Beijing 100085, China
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Rd, Haidian District, Beijing 100085, China
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
| |
Collapse
|
7
|
Lee J, Lee H, Lee H, Shin M, Shin MG, Seo J, Lee EJ, Park SA, Park S. ANKS1A regulates LDL receptor-related protein 1 (LRP1)-mediated cerebrovascular clearance in brain endothelial cells. Nat Commun 2023; 14:8463. [PMID: 38123547 PMCID: PMC10733300 DOI: 10.1038/s41467-023-44319-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Brain endothelial LDL receptor-related protein 1 (LRP1) is involved in the clearance of Aβ peptides across the blood-brain barrier (BBB). Here we show that endothelial deficiency of ankyrin repeat and SAM domain containing 1 A (ANKS1A) reduces both the cell surface levels of LRP1 and the Aβ clearance across the BBB. Association of ANKS1A with the NPXY motifs of LRP1 facilitates the transport of LRP1 from the endoplasmic reticulum toward the cell surface. ANKS1A deficiency in an Alzheimer's disease mouse model results in exacerbated Aβ pathology followed by cognitive impairments. These deficits are reversible by gene therapy with brain endothelial-specific ANKS1A. In addition, human induced pluripotent stem cell-derived BBBs (iBBBs) were generated from endothelial cells lacking ANKS1A or carrying the rs6930932 variant. Those iBBBs exhibit both reduced cell surface LRP1 and impaired Aβ clearance. Thus, our findings demonstrate that ANKS1A regulates LRP1-mediated Aβ clearance across the BBB.
Collapse
Affiliation(s)
- Jiyeon Lee
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Korea
| | - Haeryung Lee
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Korea
| | - Hyein Lee
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, 42988, Korea
| | - Miram Shin
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Korea
| | - Min-Gi Shin
- Department of Brain Science, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Jinsoo Seo
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, 42988, Korea
| | - Eun Jeong Lee
- Department of Brain Science, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Sun Ah Park
- Lab for Neurodegenerative Dementia, Department of Anatomy, and Department of Neurology, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Korea.
| |
Collapse
|
8
|
Hanafy AS, Lamprecht A, Dietrich D. Local perfusion of capillaries reveals disrupted beta-amyloid homeostasis at the blood-brain barrier in Tg2576 murine Alzheimer's model. Fluids Barriers CNS 2023; 20:85. [PMID: 37993886 PMCID: PMC10666337 DOI: 10.1186/s12987-023-00492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Parenchymal accumulation of beta-amyloid (Aβ) characterizes Alzheimer's disease (AD). Aβ homeostasis is maintained by two ATP-binding cassette (ABC) transporters (ABCC1 and ABCB1) mediating efflux, and the receptor for advanced glycation end products (RAGE) mediating influx across the blood-brain barrier (BBB). Altered transporter levels and disruption of tight junctions (TJ) were linked to AD. However, Aβ transport and the activity of ABCC1, ABCB1 and RAGE as well as the functionality of TJ in AD are unclear. METHODS ISMICAP, a BBB model involving microperfusion of capillaries, was used to assess BBB properties in acute cortical brain slices from Tg2576 mice compared to wild-type (WT) controls using two-photon microscopy. TJ integrity was tested by vascularly perfusing biocytin-tetramethylrhodamine (TMR) and quantifying its extravascular diffusion as well as the diffusion of FM1-43 from luminal to abluminal membranes of endothelial cells (ECs). To assess ABCC1 and ABCB1 activity, calcein-AM was perfused, which is converted to fluorescent calcein in ECs and gets actively extruded by both transporters. To probe which transporter is involved, probenecid or Elacridar were applied, individually or combined, to block ABCC1 and ABCB1, respectively. To assess RAGE activity, the binding of 5-FAM-tagged Aβ by ECs was quantified with or without applying FPS-ZM1, a RAGE antagonist. RESULTS In Tg2576 mouse brain, extravascular TMR was 1.8-fold that in WT mice, indicating increased paracellular leakage. FM1-43 staining of abluminal membranes in Tg2576 capillaries was 1.7-fold that in WT mice, indicating reduced TJ integrity in AD. While calcein was undetectable in WT mice, its accumulation was significant in Tg2576 mice, suggesting lower calcein extrusion in AD. Incubation with probenecid or Elacridar in WT mice resulted in a marked calcein accumulation, yet probenecid alone had no effect in Tg2576 mice, implying the absence of probenecid-sensitive ABC transporters. In WT mice, Aβ accumulated along the luminal membranes, which was undetectable after applying FPS-ZM1. In contrast, marginal Aβ fluorescence was observed in Tg2576 vessels, and FPS-ZM1 was without effect, suggesting reduced RAGE binding activity. CONCLUSIONS Disrupted TJ integrity, reduced ABCC1 functionality and decreased RAGE binding were identified as BBB alterations in Tg2576 mice, with the latter finding challenging the current concepts. Our results suggest to manage AD by including modulation of TJ proteins and Aβ-RAGE binding.
Collapse
Affiliation(s)
- Amira Sayed Hanafy
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany.
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany.
| | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - Dirk Dietrich
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
9
|
Akyol O, Akyol S, Chou MC, Chen S, Liu CK, Selek S, Soares JC, Chen CH. Lipids and lipoproteins may play a role in the neuropathology of Alzheimer's disease. Front Neurosci 2023; 17:1275932. [PMID: 38033552 PMCID: PMC10687420 DOI: 10.3389/fnins.2023.1275932] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Alzheimer's disease (AD) and other classes of dementia are important public health problems with overwhelming social, physical, and financial effects for patients, society, and their families and caregivers. The pathophysiology of AD is poorly understood despite the extensive number of clinical and experimental studies. The brain's lipid-rich composition is linked to disturbances in lipid homeostasis, often associated with glucose and lipid abnormalities in various neurodegenerative diseases, including AD. Moreover, elevated low-density lipoprotein (LDL) cholesterol levels may be related to a higher probability of AD. Here, we hypothesize that lipids, and electronegative LDL (L5) in particular, may be involved in the pathophysiology of AD. Although changes in cholesterol, triglyceride, LDL, and glucose levels are seen in AD, the cause remains unknown. We believe that L5-the most electronegative subfraction of LDL-may be a crucial factor in understanding the involvement of lipids in AD pathology. LDL and L5 are internalized by cells through different receptors and mechanisms that trigger separate intracellular pathways. One of the receptors involved in L5 internalization, LOX-1, triggers apoptotic pathways. Aging is associated with dysregulation of lipid homeostasis, and it is believed that alterations in lipid metabolism contribute to the pathogenesis of AD. Proposed mechanisms of lipid dysregulation in AD include mitochondrial dysfunction, blood-brain barrier disease, neuronal signaling, inflammation, and oxidative stress, all of which lead ultimately to memory loss through deficiency of synaptic integration. Several lipid species and their receptors have essential functions in AD pathogenesis and may be potential biomarkers.
Collapse
Affiliation(s)
- Omer Akyol
- Molecular Cardiology, Vascular and Medicinal Research, The Texas Heart Institute, Houston, TX, United States
| | | | - Mei-Chuan Chou
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shioulan Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Kuan Liu
- Institute of Precision Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Salih Selek
- Department of Psychiatry and Behavioral Sciences, UTHealth Houston McGovern Medical School, Houston, TX, United States
| | - Jair C. Soares
- Department of Psychiatry and Behavioral Sciences, UTHealth Houston McGovern Medical School, Houston, TX, United States
| | - Chu-Huang Chen
- Molecular Cardiology, Vascular and Medicinal Research, The Texas Heart Institute, Houston, TX, United States
| |
Collapse
|
10
|
Devignot S, Sha TW, Burkard TR, Schmerer P, Hagelkruys A, Mirazimi A, Elling U, Penninger JM, Weber F. Low-density lipoprotein receptor-related protein 1 (LRP1) as an auxiliary host factor for RNA viruses. Life Sci Alliance 2023; 6:e202302005. [PMID: 37072184 PMCID: PMC10114362 DOI: 10.26508/lsa.202302005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/20/2023] Open
Abstract
Viruses with an RNA genome are often the cause of zoonotic infections. In order to identify novel pro-viral host cell factors, we screened a haploid insertion-mutagenized mouse embryonic cell library for clones that are resistant to Rift Valley fever virus (RVFV). This screen returned the low-density lipoprotein receptor-related protein 1 (LRP1) as a top hit, a plasma membrane protein involved in a wide variety of cell activities. Inactivation of LRP1 in human cells reduced RVFV RNA levels already at the attachment and entry stages of infection. Moreover, the role of LRP1 in promoting RVFV infection was dependent on physiological levels of cholesterol and on endocytosis. In the human cell line HuH-7, LRP1 also promoted early infection stages of sandfly fever Sicilian virus and La Crosse virus, but had a minor effect on late infection by vesicular stomatitis virus, whereas encephalomyocarditis virus was entirely LRP1-independent. Moreover, siRNA experiments in human Calu-3 cells demonstrated that also SARS-CoV-2 infection benefitted from LRP1. Thus, we identified LRP1 as a host factor that supports infection by a spectrum of RNA viruses.
Collapse
Affiliation(s)
- Stephanie Devignot
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany
| | - Tim Wai Sha
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany
| | - Thomas R Burkard
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Patrick Schmerer
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany
| | - Astrid Hagelkruys
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Ali Mirazimi
- Public Health Agency of Sweden, Solna, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, Solna, Sweden
| | - Ulrich Elling
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany
- German Centre for Infection Research (DZIF), Partner Site Giessen, Giessen, Germany
| |
Collapse
|
11
|
Mazura AD, Pietrzik CU. Endocrine Regulation of Microvascular Receptor-Mediated Transcytosis and Its Therapeutic Opportunities: Insights by PCSK9-Mediated Regulation. Pharmaceutics 2023; 15:pharmaceutics15041268. [PMID: 37111752 PMCID: PMC10144601 DOI: 10.3390/pharmaceutics15041268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Currently, many neurological disorders lack effective treatment options due to biological barriers that effectively separate the central nervous system (CNS) from the periphery. CNS homeostasis is maintained by a highly selective exchange of molecules, with tightly controlled ligand-specific transport systems at the blood-brain barrier (BBB) playing a key role. Exploiting or modifying these endogenous transport systems could provide a valuable tool for targeting insufficient drug delivery into the CNS or pathological changes in the microvasculature. However, little is known about how BBB transcytosis is continuously regulated to respond to temporal or chronic changes in the environment. The aim of this mini-review is to draw attention to the sensitivity of the BBB to circulating molecules derived from peripheral tissues, which may indicate a fundamental endocrine-operating regulatory system of receptor-mediated transcytosis at the BBB. We present our thoughts in the context of the recent observation that low-density lipoprotein receptor-related protein 1 (LRP1)-mediated clearance of brain amyloid-β (Aβ) across the BBB is negatively regulated by peripheral proprotein convertase subtilisin/kexin type 9 (PCSK9). We hope that our conclusions will inspire future investigations of the BBB as dynamic communication interface between the CNS and periphery, whose peripheral regulatory mechanisms could be easily exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Alexander D Mazura
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg, University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Claus U Pietrzik
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg, University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| |
Collapse
|
12
|
Passarella D, Ronci M, Di Liberto V, Zuccarini M, Mudò G, Porcile C, Frinchi M, Di Iorio P, Ulrich H, Russo C. Bidirectional Control between Cholesterol Shuttle and Purine Signal at the Central Nervous System. Int J Mol Sci 2022; 23:ijms23158683. [PMID: 35955821 PMCID: PMC9369131 DOI: 10.3390/ijms23158683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 12/07/2022] Open
Abstract
Recent studies have highlighted the mechanisms controlling the formation of cerebral cholesterol, which is synthesized in situ primarily by astrocytes, where it is loaded onto apolipoproteins and delivered to neurons and oligodendrocytes through interactions with specific lipoprotein receptors. The “cholesterol shuttle” is influenced by numerous proteins or carbohydrates, which mainly modulate the lipoprotein receptor activity, function and signaling. These molecules, provided with enzymatic/proteolytic activity leading to the formation of peptide fragments of different sizes and specific sequences, could be also responsible for machinery malfunctions, which are associated with neurological, neurodegenerative and neurodevelopmental disorders. In this context, we have pointed out that purines, ancestral molecules acting as signal molecules and neuromodulators at the central nervous system, can influence the homeostatic machinery of the cerebral cholesterol turnover and vice versa. Evidence gathered so far indicates that purine receptors, mainly the subtypes P2Y2, P2X7 and A2A, are involved in the pathogenesis of neurodegenerative diseases, such as Alzheimer’s and Niemann–Pick C diseases, by controlling the brain cholesterol homeostasis; in addition, alterations in cholesterol turnover can hinder the purine receptor function. Although the precise mechanisms of these interactions are currently poorly understood, the results here collected on cholesterol–purine reciprocal control could hopefully promote further research.
Collapse
Affiliation(s)
- Daniela Passarella
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Maurizio Ronci
- Department of Pharmacy, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Valentina Di Liberto
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, 90133 Palermo, Italy
| | - Mariachiara Zuccarini
- Department of Medical Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giuseppa Mudò
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, 90133 Palermo, Italy
| | - Carola Porcile
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Monica Frinchi
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, 90133 Palermo, Italy
| | - Patrizia Di Iorio
- Department of Medical Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Henning Ulrich
- Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-060, Brazil
| | - Claudio Russo
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
- Correspondence: ; Tel.: +39-087-440-4897
| |
Collapse
|
13
|
Shi X, Wang Z, Ren W, Chen L, Xu C, Li M, Fan S, Xu Y, Chen M, Zheng F, Zhang W, Zhou X, Zhang Y, Qiu S, Wu L, Zhou P, Lv X, Cui T, Qiao Y, Zhao H, Guo W, Chen W, Li S, Zhong W, Lin J, Yang S. LDL receptor-related protein 1 (LRP1), a novel target for opening the blood-labyrinth barrier (BLB). Signal Transduct Target Ther 2022; 7:175. [PMID: 35680846 PMCID: PMC9184653 DOI: 10.1038/s41392-022-00995-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/16/2022] [Accepted: 04/07/2022] [Indexed: 11/18/2022] Open
Abstract
Inner ear disorders are a cluster of diseases that cause hearing loss in more than 1.5 billion people worldwide. However, the presence of the blood-labyrinth barrier (BLB) on the surface of the inner ear capillaries greatly hinders the effectiveness of systemic drugs for prevention and intervention due to the low permeability, which restricts the entry of most drug compounds from the bloodstream into the inner ear tissue. Here, we report the finding of a novel receptor, low-density lipoprotein receptor-related protein 1 (LRP1), that is expressed on the BLB, as a potential target for shuttling therapeutics across this barrier. As a proof-of-concept, we developed an LRP1-binding peptide, IETP2, and covalently conjugated a series of model small-molecule compounds to it, including potential drugs and imaging agents. All compounds were successfully delivered into the inner ear and inner ear lymph, indicating that targeting the receptor LRP1 is a promising strategy to enhance the permeability of the BLB. The discovery of the receptor LRP1 will illuminate developing strategies for crossing the BLB and for improving systemic drug delivery for inner ear disorders.
Collapse
Affiliation(s)
- Xi Shi
- Department of Pharmacy, Peking University Third Hospital, Beijing, China.,Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, China
| | - Zihao Wang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wei Ren
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Long Chen
- Department of Pharmacy, Peking University Third Hospital, Beijing, China.,Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Innovation Center for Genomics, Peking University, Beijing, China
| | - Cong Xu
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Menghua Li
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, China
| | - Shiyong Fan
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yuru Xu
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Mengbing Chen
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Fanjun Zheng
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Wenyuan Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Innovation Center for Genomics, Peking University, Beijing, China
| | - Xinbo Zhou
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yue Zhang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Shiwei Qiu
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, China
| | - Liyuan Wu
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, China
| | - Peng Zhou
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Innovation Center for Genomics, Peking University, Beijing, China
| | - Xinze Lv
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, China
| | - Tianyu Cui
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, China
| | - Yuehua Qiao
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, China
| | - Hui Zhao
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Weiwei Guo
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Wei Chen
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Song Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wu Zhong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| | - Jian Lin
- Department of Pharmacy, Peking University Third Hospital, Beijing, China. .,Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Innovation Center for Genomics, Peking University, Beijing, China.
| | - Shiming Yang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China. .,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China. .,Key Lab of Hearing Science, Ministry of Education, Beijing, China. .,Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China.
| |
Collapse
|
14
|
PCSK9 acts as a key regulator of Aβ clearance across the blood-brain barrier. Cell Mol Life Sci 2022; 79:212. [PMID: 35344086 PMCID: PMC8960591 DOI: 10.1007/s00018-022-04237-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 12/18/2022]
Abstract
Despite the neurodegenerative disorder Alzheimer's disease (AD) is the most common form of dementia in late adult life, there is currently no therapy available to prevent the onset or slow down the progression of AD. The progressive cognitive decline in AD correlates with a successive accumulation of cerebral amyloid-β (Aβ) due to impaired clearance mechanisms. A significant percentage is removed by low-density lipoprotein receptor-related protein 1 (LRP1)-mediated transport across the blood-brain barrier (BBB) into the periphery. Circulating proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to members of the low-density lipoprotein receptor protein family at the cell surface and targets them for lysosomal degradation, which reduces the number of functional receptors. However, the adverse impact of PCSK9 on LRP1-mediated brain Aβ clearance remains elusive. By using an established BBB model, we identified reduced LRP1-mediated brain-to-blood Aβ clearance due to PCSK9 across different endothelial monolayer in vitro. Consequently, the repetitive application of FDA-approved monoclonal anti-PCSK9 antibodies into 5xFAD mice decreased the cerebral Aβ burden across variants and aggregation state, which was not reproducible in brain endothelial-specific LRP1-/- 5xFAD mice. The peripheral PCSK9 inhibition reduced Aβ pathology in prefrontal cortex and hippocampus-brain areas critically involved in memory processing-and prevented disease-related impairment in hippocampus-dependent memory formation. Our data suggest that peripheral inhibition of PCSK9 by already available therapeutic antibodies may be a novel and easily applicable potential AD treatment.
Collapse
|
15
|
A review of glucoregulatory hormones potentially applicable to the treatment of Alzheimer’s disease: mechanism and brain delivery. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00566-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Cadé M, Muñoz-Garcia J, Babuty A, Paré L, Cochonneau D, Fekir K, Chatelais M, Heymann MF, Lokajczyk A, Boisson-Vidal C, Heymann D. FVIII regulates the molecular profile of endothelial cells: functional impact on the blood barrier and macrophage behavior. Cell Mol Life Sci 2022; 79:145. [PMID: 35190870 PMCID: PMC11072670 DOI: 10.1007/s00018-022-04178-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/10/2022] [Accepted: 01/28/2022] [Indexed: 12/20/2022]
Abstract
Hemophilia A is an inherited X-linked recessive bleeding disorder caused by deficient activity of blood coagulation factor VIII (FVIII). In addition, hemophilia patients show associated diseases including osteopenia, altered inflammation and vascular fragility which may represent the consequence of recurrent bleeding or may be related to the direct FVIII deficiency. Nowadays, recombinant FVIII is proposed to treat hemophilia patients with no circulating FVIII inhibitor. Initially described as a coenzyme to factor IXa for initiating thrombin generation, there is emerging evidence that FVIII is involved in multiple biological systems, including bone, vascular and immune systems. The present study investigated: (i) the functional activities of recombinant human FVIII (rFVIII) on endothelial cells, and (ii) the impact of rFVIII activities on the functional interactions of human monocytes and endothelial cells. We then investigated whether rFVIII had a direct effect on the adhesion of monocytes to the endothelium under physiological flow conditions. We observed that direct biological activities for rFVIII in endothelial cells were characterized by: (i) a decrease in endothelial cell adhesion to the underlying extracellular matrix; (ii) regulation of the transcriptomic and protein profiles of endothelial cells; (iii) an increase in the vascular tubes formed and vascular permeability in vitro; and (iv) an increase in monocyte adhesion activated endothelium and transendothelial migration. By regulating vascular permeability plus leukocyte adhesion and transendothelial migration, the present work highlights new biological functions for FVIII.
Collapse
Affiliation(s)
- Marie Cadé
- Nantes Université, CNRS, US2B, UMR 6286, 44000, Nantes, France
- Institut de Cancérologie de l'Ouest, "Tumor Heterogeneity and Precision Medicine" Laboratory, Blvd Jacques Monod, 44805, Saint-Herblain cedex, France
| | - Javier Muñoz-Garcia
- Institut de Cancérologie de l'Ouest, "Tumor Heterogeneity and Precision Medicine" Laboratory, Blvd Jacques Monod, 44805, Saint-Herblain cedex, France
| | - Antoine Babuty
- Nantes Université, CNRS, US2B, UMR 6286, 44000, Nantes, France
- Department of Hemostasis, CHU de Nantes, Nantes, France
| | - Louis Paré
- Université de Paris, CNRS, Institut Jacques Monod, UMR 7592, Paris, France
| | - Denis Cochonneau
- Institut de Cancérologie de l'Ouest, "Tumor Heterogeneity and Precision Medicine" Laboratory, Blvd Jacques Monod, 44805, Saint-Herblain cedex, France
| | | | | | - Marie-Françoise Heymann
- Institut de Cancérologie de l'Ouest, "Tumor Heterogeneity and Precision Medicine" Laboratory, Blvd Jacques Monod, 44805, Saint-Herblain cedex, France
| | | | | | - Dominique Heymann
- Nantes Université, CNRS, US2B, UMR 6286, 44000, Nantes, France.
- Institut de Cancérologie de l'Ouest, "Tumor Heterogeneity and Precision Medicine" Laboratory, Blvd Jacques Monod, 44805, Saint-Herblain cedex, France.
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK.
| |
Collapse
|
17
|
Leite DM, Seifi M, Ruiz-Perez L, Nguemo F, Plomann M, Swinny JD, Battaglia G. Syndapin-2 mediated transcytosis of amyloid-ß across the blood-brain barrier. Brain Commun 2022; 4:fcac039. [PMID: 35233527 PMCID: PMC8882007 DOI: 10.1093/braincomms/fcac039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/31/2021] [Accepted: 02/15/2022] [Indexed: 11/14/2022] Open
Abstract
A deficient transport of amyloid-β across the blood–brain barrier, and its diminished clearance from the brain, contribute to neurodegenerative and vascular pathologies, such as Alzheimer’s disease and cerebral amyloid angiopathy, respectively. At the blood–brain barrier, amyloid-β efflux transport is associated with the low-density lipoprotein receptor-related protein 1. However, the precise mechanisms governing amyloid-β transport across the blood–brain barrier, in health and disease, remain to be fully understood. Recent evidence indicates that the low-density lipoprotein receptor-related protein 1 transcytosis occurs through a tubulation-mediated mechanism stabilized by syndapin-2. Here, we show that syndapin-2 is associated with amyloid-β clearance via low-density lipoprotein receptor-related protein 1 across the blood–brain barrier. We further demonstrate that risk factors for Alzheimer’s disease, amyloid-β expression and ageing, are associated with a decline in the native expression of syndapin-2 within the brain endothelium. Our data reveals that syndapin-2-mediated pathway, and its balance with the endosomal sorting, are important for amyloid-β clearance proposing a measure to evaluate Alzheimer’s disease and ageing, as well as a target for counteracting amyloid-β build-up. Moreover, we provide evidence for the impact of the avidity of amyloid-β assemblies in their trafficking across the brain endothelium and in low-density lipoprotein receptor-related protein 1 expression levels, which may affect the overall clearance of amyloid-β across the blood–brain barrier.
Collapse
Affiliation(s)
- Diana M. Leite
- Department of Chemistry, University College London, London, United Kingdom
- Institute for the Physics of Living Systems, University College London, London, United Kingdom
| | - Mohsen Seifi
- Leicester School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, Leicester, United Kingdom
| | - Lorena Ruiz-Perez
- Department of Chemistry, University College London, London, United Kingdom
- Institute for the Physics of Living Systems, University College London, London, United Kingdom
| | - Filomain Nguemo
- Institute for Neurophysiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Markus Plomann
- Institute of Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Jerome D. Swinny
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, United Kingdom
| | - Giuseppe Battaglia
- Department of Chemistry, University College London, London, United Kingdom
- Institute for the Physics of Living Systems, University College London, London, United Kingdom
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
18
|
Platelet-derived growth factor-BB and white matter hyperintensity burden in APOE4 carriers. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2022; 3. [PMID: 35844252 PMCID: PMC9286493 DOI: 10.1016/j.cccb.2022.100131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Background The apolipoprotein-e4 (APOE4) gene increases risk for developing late-onset Alzheimer's disease (AD) and has been linked to increased microvascular dysfunction, including pericyte degeneration and blood-brain barrier breakdown. Platelet-derived growth factor-BB (PDGF-BB) is a glycoprotein involved in blood-brain barrier and pericyte maintenance. Increased PDGF-BB levels have been reported in white matter in AD brain tissue. However, the association between circulating levels of PDGF-BB and cerebral white matter damage in older adults remains unknown. Methods Participants included community-dwelling older adults (age range 55–90 years, M = 73.1 years; SD = 7.5; 61.0% male) from the Alzheimer's Disease Neuroimaging Initiative who underwent venipuncture and blood plasma immunoassay for PDGF-BB, brain MRI scanning with T2-FLAIR for volumetric quantification of white matter hyperintensities (WMH) and APOE4 genotyping (N = 64). Linear regression analyses examined the relationship between plasma PDGF-BB levels and WMH volume, adjusting for age, sex, intracranial volume (ICV) and stratifying by APOE4 status. Results Greater levels of circulating PDGF-BB were related to greater WMH volume, even after accounting for age, sex, ICV and APOE4 carrier status (p = 0.040). Nineteen (29.2%) were APOE4 carriers. When stratified by APOE4 status, the relationship between PDGF-BB and WMH volume was only significant for APOE4 carriers (p = 0.007), but not non-carriers (p = 0.448), after adjusting for age, sex and ICV. Discussion These findings reveal a differential relationship between PDGF-BB and WMH volume for APOE4 carriers versus non-carriers. The APOE4 variant leads to accelerated cerebrovascular injury and cognitive decline. Elevated levels of PDGF-BB in carriers may suggest a role for pericytes and blood-brain barrier dysfunction in white matter damage, vascular cognitive impairment and AD. Additional studies will elucidate the role of PDGF ligands and receptors in these conditions.
Collapse
|
19
|
Jiang J, Liu Y, Wu Q. Revisit the Cellular Transmission and Emerging Techniques in Understanding the Mechanisms of Proteinopathies. Front Neurosci 2021; 15:781722. [PMID: 34867177 PMCID: PMC8636772 DOI: 10.3389/fnins.2021.781722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s and Parkinson’s diseases (AD and PD) are amongst top of the prevalent neurodegenerative disease. One-third of PD patients are diagnosed with dementia, a pre-symptom of AD, but the underlying mechanism is elusive. Amyloid beta (Aβ) and α-synuclein are two of the most investigated proteins, whose pathological aggregation and spreading are crucial to the pathogenesis of AD and PD, respectively. Transcriptomic studies of the mammalian central nervous system shed light on gene expression profiles at molecular levels, regarding the complexity of neuronal morphologies and electrophysiological inputs/outputs. In the last decade, the booming of the single-cell RNA sequencing technique helped to understand gene expression patterns, alternative splicing, novel transcripts, and signal pathways in the nervous system at single-cell levels, providing insight for molecular taxonomy and mechanistic targets of the degenerative nervous system. Here, we re-visited the cell-cell transmission mechanisms of Aβ and α-synuclein in mediating disease propagation, and summarized recent single-cell transcriptome sequencing from different perspectives and discussed its understanding of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jinwen Jiang
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Yu Liu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Qihui Wu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Nagano H, Ito S, Masuda T, Ohtsuki S. Effect of Insulin Receptor-Knockdown on the Expression Levels of Blood-Brain Barrier Functional Proteins in Human Brain Microvascular Endothelial Cells. Pharm Res 2021; 39:1561-1574. [PMID: 34811625 DOI: 10.1007/s11095-021-03131-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/20/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE The insulin receptor (INSR) mediates insulin signaling to modulate cellular functions. Although INSR is expressed at the blood-brain barrier (BBB), its role in the modulation of BBB function is poorly understood. Therefore, in this study, we aimed to analyze the effect of INSR knockdown on the expression levels of functional proteins at the BBB. METHODS We established the INSR-knockdown cell line (shINSR) using human cerebral microvascular endothelial cells (hCMEC/D3). The cellular proteome was analyzed using quantitative proteomics. RESULTS INSR mRNA and protein expressions were decreased in shINSR cells. The suppression of INSR-mediated signaling in shINSR cells was evaluated. The proteins involved in glycolysis and glycogenolysis were suppressed in shINSR cells. As amyloid-β peptide-related proteins, the expressions of presenilin-1 was increased, and those of the insulin-degrading enzyme and neprilysin were decreased. The expressions of BBB transporters, including the ABCB1/MDR1, ABCG2/BCRP, and SLCO2A1/OATP2A1 were significantly decreased by more than 50% in shINSR cells. The efflux activity of ABCB1/MDR1 was also suppressed. The expressions of the low-density lipoprotein receptor-related protein 1 were significantly increased, and those of the transferrin receptor were significantly decreased in shINSR cells. The expression of claudin-5 was also suppressed in shINSR cells. CONCLUSIONS The present study suggests that INSR-mediated signaling is involved in the regulation of functional protein expression at the BBB and contributes to the maintenance of BBB function. Changes in the expressions of amyloid-β peptide-related proteins may contribute to the development of cerebral amyloid angiopathy via the suppression of INSR-mediated signaling.
Collapse
Affiliation(s)
- Hinako Nagano
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Shingo Ito
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| |
Collapse
|
21
|
Qu J, Fourman S, Fitzgerald M, Liu M, Nair S, Oses-Prieto J, Burlingame A, Morris JH, Davidson WS, Tso P, Bhargava A. Low-density lipoprotein receptor-related protein 1 (LRP1) is a novel receptor for apolipoprotein A4 (APOA4) in adipose tissue. Sci Rep 2021; 11:13289. [PMID: 34168225 PMCID: PMC8225859 DOI: 10.1038/s41598-021-92711-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 06/11/2021] [Indexed: 11/29/2022] Open
Abstract
Apolipoprotein A4 (APOA4) is one of the most abundant and versatile apolipoproteins facilitating lipid transport and metabolism. APOA4 is synthesized in the small intestine, packaged onto chylomicrons, secreted into intestinal lymph and transported via circulation to several tissues, including adipose. Since its discovery nearly 4 decades ago, to date, only platelet integrin αIIbβ3 has been identified as APOA4 receptor in the plasma. Using co-immunoprecipitation coupled with mass spectrometry, we probed the APOA4 interactome in mouse gonadal fat tissue, where ApoA4 gene is not transcribed but APOA4 protein is abundant. We demonstrate that lipoprotein receptor-related protein 1 (LRP1) is the cognate receptor for APOA4 in adipose tissue. LRP1 colocalized with APOA4 in adipocytes; it interacted with APOA4 under fasting condition and their interaction was enhanced during lipid feeding concomitant with increased APOA4 levels in plasma. In 3T3-L1 mature adipocytes, APOA4 promoted glucose uptake both in absence and presence of insulin in a dose-dependent manner. Knockdown of LRP1 abrogated APOA4-induced glucose uptake as well as activation of phosphatidylinositol 3 kinase (PI3K)-mediated protein kinase B (AKT). Taken together, we identified LRP1 as a novel receptor for APOA4 in promoting glucose uptake. Considering both APOA4 and LRP1 are multifunctional players in lipid and glucose metabolism, our finding opens up a door to better understand the molecular mechanisms along APOA4-LRP1 axis, whose dysregulation leads to obesity, cardiovascular disease, and diabetes.
Collapse
Affiliation(s)
- Jie Qu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 2180 E Galbraith Road, Cincinnati, 45237-0507, USA
| | - Sarah Fourman
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 2180 E Galbraith Road, Cincinnati, 45237-0507, USA
| | - Maureen Fitzgerald
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 2180 E Galbraith Road, Cincinnati, 45237-0507, USA
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 2180 E Galbraith Road, Cincinnati, 45237-0507, USA
| | - Supna Nair
- Departments of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street, San Francisco, CA, 94158, USA
| | - Juan Oses-Prieto
- Departments of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street, San Francisco, CA, 94158, USA
| | - Alma Burlingame
- Departments of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street, San Francisco, CA, 94158, USA
| | - John H Morris
- Departments of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street, San Francisco, CA, 94158, USA
| | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 2180 E Galbraith Road, Cincinnati, 45237-0507, USA
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 2180 E Galbraith Road, Cincinnati, 45237-0507, USA
| | - Aditi Bhargava
- Department of Obstetrics and Gynecology, Center for Reproductive Sciences, University of California San Francisco, 513 Parnassus Avenue, Rm HSE1636, San Francisco, CA, 94143-0556, USA.
| |
Collapse
|
22
|
Analysis of the role of Purα in the pathogenesis of Alzheimer's disease based on RNA-seq and ChIP-seq. Sci Rep 2021; 11:12178. [PMID: 34108502 PMCID: PMC8190037 DOI: 10.1038/s41598-021-90982-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/19/2021] [Indexed: 11/18/2022] Open
Abstract
Purine rich element binding protein A (Purα), encoded by the Purα gene, is an important transcriptional regulator that binds to DNA and RNA and is involved in processes such as DNA replication and RNA translation. Purα also plays an important role in the nervous system. To identify the function of Pura, we performed RNA sequence (RNA-seq) analysis of Purɑ-KO mouse hippocampal neuron cell line (HT22) to analyze the effect of Purα deletion on neuronal expression profiles. And combined with ChIP-seq analysis to explore the mechanism of Purα on gene regulation. In the end, totaly 656 differentially expressed genes between HT22 and Purα-KO HT22 cells have been found, which include 7 Alzheimer’s disease (AD)-related genes and 5 Aβ clearance related genes. 47 genes were regulated by Purα directly, the evidence based on CHIP-seq, which include Insr, Mapt, Vldlr, Jag1, etc. Our study provides the important informations of Purα in neuro-development. The possible regulative effects of Purα on AD-related genes consist inthe direct and indirect pathways of Purα in the pathogenesis of AD.
Collapse
|
23
|
Laval K, Enquist LW. The Potential Role of Herpes Simplex Virus Type 1 and Neuroinflammation in the Pathogenesis of Alzheimer's Disease. Front Neurol 2021; 12:658695. [PMID: 33889129 PMCID: PMC8055853 DOI: 10.3389/fneur.2021.658695] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease affecting ~50 million people worldwide. To date, there is no cure and current therapies have not been effective in delaying disease progression. Therefore, there is an urgent need for better understanding of the pathogenesis of AD and to rethink possible therapies. Herpes simplex virus type 1 (HSV1) has recently received growing attention for its potential role in sporadic AD. The virus is a ubiquitous human pathogen that infects mucosal epithelia and invades the peripheral nervous system (PNS) of its host to establish a reactivable, latent infection. Upon reactivation, HSV1 spreads back to the epithelium and initiates a new infection, causing epithelial lesions. Occasionally, the virus spreads from the PNS to the brain after reactivation. In this review, we discuss current work on the pathogenesis of AD and summarize research results that support a potential role for HSV1 in the infectious hypothesis of AD. We also highlight recent findings on the neuroinflammatory response, which has been proposed to be the main driving force of AD, starting early in the course of the disease. Relevant rodent models to study neuroinflammation in AD and novel therapeutic approaches are also discussed. Throughout this review, we focus on several aspects of HSV1 pathogenesis, including its primary role as an invader of the PNS, that should be considered in the etiology of AD. We also point out some of the contradictory data and remaining knowledge gaps that require further research to finally fully understand the cause of AD in humans.
Collapse
Affiliation(s)
- Kathlyn Laval
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | | |
Collapse
|
24
|
Nikolakopoulou AM, Wang Y, Ma Q, Sagare AP, Montagne A, Huuskonen MT, Rege SV, Kisler K, Dai Z, Körbelin J, Herz J, Zhao Z, Zlokovic BV. Endothelial LRP1 protects against neurodegeneration by blocking cyclophilin A. J Exp Med 2021; 218:211750. [PMID: 33533918 PMCID: PMC7863706 DOI: 10.1084/jem.20202207] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022] Open
Abstract
The low-density lipoprotein receptor–related protein 1 (LRP1) is an endocytic and cell signaling transmembrane protein. Endothelial LRP1 clears proteinaceous toxins at the blood–brain barrier (BBB), regulates angiogenesis, and is increasingly reduced in Alzheimer’s disease associated with BBB breakdown and neurodegeneration. Whether loss of endothelial LRP1 plays a direct causative role in BBB breakdown and neurodegenerative changes remains elusive. Here, we show that LRP1 inactivation from the mouse endothelium results in progressive BBB breakdown, followed by neuron loss and cognitive deficits, which is reversible by endothelial-specific LRP1 gene therapy. LRP1 endothelial knockout led to a self-autonomous activation of the cyclophilin A–matrix metalloproteinase-9 pathway in the endothelium, causing loss of tight junctions underlying structural BBB impairment. Cyclophilin A inhibition in mice with endothelial-specific LRP1 knockout restored BBB integrity and reversed and prevented neuronal loss and behavioral deficits. Thus, endothelial LRP1 protects against neurodegeneration by inhibiting cyclophilin A, which has implications for the pathophysiology and treatment of neurodegeneration linked to vascular dysfunction.
Collapse
Affiliation(s)
- Angeliki Maria Nikolakopoulou
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA
| | - Yaoming Wang
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA
| | - Qingyi Ma
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA
| | - Abhay P Sagare
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA
| | - Axel Montagne
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA
| | - Mikko T Huuskonen
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA
| | - Sanket V Rege
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA
| | - Kassandra Kisler
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA
| | - Zhonghua Dai
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA
| | - Jakob Körbelin
- Hubertus Wald Cancer Center, Department of Oncology and Hematology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joachim Herz
- Departments of Neuroscience, Molecular Genetics, and Neurology, University of Texas Southwestern Medical Center, Dallas, TX.,Center for Neuroscience, University of Freiburg, Freiburg, Germany
| | - Zhen Zhao
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA
| |
Collapse
|
25
|
Neuronal Activity Regulates Blood-Brain Barrier Efflux Transport through Endothelial Circadian Genes. Neuron 2020; 108:937-952.e7. [PMID: 32979312 DOI: 10.1016/j.neuron.2020.09.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/22/2020] [Accepted: 08/31/2020] [Indexed: 01/11/2023]
Abstract
The blood vessels in the central nervous system (CNS) have a series of unique properties, termed the blood-brain barrier (BBB), which stringently regulate the entry of molecules into the brain, thus maintaining proper brain homeostasis. We sought to understand whether neuronal activity could regulate BBB properties. Using both chemogenetics and a volitional behavior paradigm, we identified a core set of brain endothelial genes whose expression is regulated by neuronal activity. In particular, neuronal activity regulates BBB efflux transporter expression and function, which is critical for excluding many small lipophilic molecules from the brain parenchyma. Furthermore, we found that neuronal activity regulates the expression of circadian clock genes within brain endothelial cells, which in turn mediate the activity-dependent control of BBB efflux transport. These results have important clinical implications for CNS drug delivery and clearance of CNS waste products, including Aβ, and for understanding how neuronal activity can modulate diurnal processes.
Collapse
|
26
|
Yu X, Ji C, Shao A. Neurovascular Unit Dysfunction and Neurodegenerative Disorders. Front Neurosci 2020; 14:334. [PMID: 32410936 PMCID: PMC7201055 DOI: 10.3389/fnins.2020.00334] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
The neurovascular unit (NVU), composed of vascular cells, glial cells, and neurons, is the minimal functional unit of the brain. The NVU maintains integrity of the blood–brain barrier (BBB) and regulates supply of the cerebral blood flow (CBF), both of which are keys to maintaining normal brain function. BBB dysfunction and a decreased CBF are early pathophysiological changes in neurodegenerative disorders, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). In this review, we primarily focus on the NVU in AD as much research has been performed on the connection between NVU dysfunction and AD. We also discuss the role of NVU dysfunction in the pathophysiological mechanisms of PD and ALS. As most neurodegenerative diseases are difficult to treat, we discuss several potential drug targets that focus on the NVU that may inform novel vascular-targeted therapies for AD, PD, and ALS.
Collapse
Affiliation(s)
- Xing Yu
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Caihong Ji
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
27
|
Chung B, Kim J, Nam J, Kim H, Jeong Y, Liu HW, Cho Y, Kim YH, Oh HJ, Chung S. Evaluation of Cell-Penetrating Peptides Using Microfluidic In Vitro 3D Brain Endothelial Barrier. Macromol Biosci 2020; 20:e1900425. [PMID: 32329170 DOI: 10.1002/mabi.201900425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/27/2020] [Indexed: 02/06/2023]
Abstract
In drug delivery to the human brain, blood vessels are a significant hurdle because they restrict the entry of most solutes to protect brain. To overcome this hurdle, an in vitro 3D model for brain endothelial barrier is developed using a microfluidic device with hydrogel providing a 3D extracellular matrix scaffold. Using the model, peptides known to utilize receptor-mediated transcytosis are verified, which has been one of the most promising mechanisms for brain-specific penetration. The cytotoxicity and cellular damage to the peptide are investigated and the receptor-mediated transcytosis and brain endothelial specific penetrating abilities of the peptides in a quantitative manner are demonstrated. As a preclinical test, applying the quantification assays conducted in this study are suggested, including the penetrating ability, cytotoxicity, endothelial damage, and receptor specificity. Using this microfluidic device as an in vitro platform for evaluating various brain targeting drugs and drug carrier candidates is also proposed.
Collapse
Affiliation(s)
- Bohye Chung
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Jaehoon Kim
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea
| | - Jiyoung Nam
- Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyunho Kim
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea
| | - Yeju Jeong
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea
| | - Hui-Wen Liu
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea
| | - Youngkyu Cho
- Department of IT Convergence, Korea University, Seoul, Republic of Korea
| | - Yong Ho Kim
- Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyun Jeong Oh
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea
| | - Seok Chung
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,School of Mechanical Engineering, Korea University, Seoul, Republic of Korea.,Department of IT Convergence, Korea University, Seoul, Republic of Korea
| |
Collapse
|
28
|
Nyberg S, Abbott NJ, Shi X, Steyger PS, Dabdoub A. Delivery of therapeutics to the inner ear: The challenge of the blood-labyrinth barrier. Sci Transl Med 2020; 11:11/482/eaao0935. [PMID: 30842313 DOI: 10.1126/scitranslmed.aao0935] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 12/01/2017] [Accepted: 03/22/2018] [Indexed: 12/20/2022]
Abstract
Permanent hearing loss affects more than 5% of the world's population, yet there are no nondevice therapies that can protect or restore hearing. Delivery of therapeutics to the cochlea and vestibular system of the inner ear is complicated by their inaccessible location. Drug delivery to the inner ear via the vasculature is an attractive noninvasive strategy, yet the blood-labyrinth barrier at the luminal surface of inner ear capillaries restricts entry of most blood-borne compounds into inner ear tissues. Here, we compare the blood-labyrinth barrier to the blood-brain barrier, discuss invasive intratympanic and intracochlear drug delivery methods, and evaluate noninvasive strategies for drug delivery to the inner ear.
Collapse
Affiliation(s)
- Sophie Nyberg
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - N Joan Abbott
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, UK
| | - Xiaorui Shi
- Oregon Hearing Research Center, Department of Otolaryngology, Head & Neck Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Peter S Steyger
- Oregon Hearing Research Center, Department of Otolaryngology, Head & Neck Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alain Dabdoub
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada. .,Department of Otolaryngology-Head & Neck Surgery, University of Toronto, Toronto, ON M5G 2C4, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
29
|
von Rüden EL, Zellinger C, Gedon J, Walker A, Bierling V, Deeg CA, Hauck SM, Potschka H. Regulation of Alzheimer's disease-associated proteins during epileptogenesis. Neuroscience 2019; 424:102-120. [PMID: 31705965 DOI: 10.1016/j.neuroscience.2019.08.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 07/26/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022]
Abstract
Clinical evidence and pathological studies suggest a bidirectional link between temporal lobe epilepsy and Alzheimer's disease (AD). Data analysis from omic studies offers an excellent opportunity to identify the overlap in molecular alterations between the two pathologies. We have subjected proteomic data sets from a rat model of epileptogenesis to a bioinformatics analysis focused on proteins functionally linked with AD. The data sets have been obtained for hippocampus (HC) and parahippocampal cortex samples collected during the course of epileptogenesis. Our study confirmed a relevant dysregulation of proteins linked with Alzheimer pathogenesis. When comparing the two brain areas, a more prominent regulation was evident in parahippocampal cortex samples as compared to the HC. Dysregulated protein groups comprised those affecting mitochondrial function and calcium homeostasis. Differentially expressed mitochondrial proteins included proteins of the mitochondrial complexes I, III, IV, and V as well as of the accessory subunit of complex I. The analysis also revealed a regulation of the microtubule associated protein Tau in parahippocampal cortex tissue during the latency phase. This was further confirmed by immunohistochemistry. Moreover, we demonstrated a complex epileptogenesis-associated dysregulation of proteins involved in amyloid β processing and its regulation. Among others, the amyloid precursor protein and the α-secretase alpha disintegrin metalloproteinase 17 were included. Our analysis revealed a relevant regulation of key proteins known to be associated with AD pathogenesis. The analysis provides a comprehensive overview of shared molecular alterations characterizing epilepsy development and manifestation as well as AD development and progression.
Collapse
Affiliation(s)
- Eva-Lotta von Rüden
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Christina Zellinger
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Julia Gedon
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Andreas Walker
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Vera Bierling
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Cornelia A Deeg
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University (LMU), Munich, Germany; Experimental Ophthalmology, Philipps University of Marburg, Marburg, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, Neuherberg, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany.
| |
Collapse
|
30
|
Brain-targeted drug delivery by manipulating protein corona functions. Nat Commun 2019; 10:3561. [PMID: 31395892 PMCID: PMC6687821 DOI: 10.1038/s41467-019-11593-z] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/23/2019] [Indexed: 12/21/2022] Open
Abstract
Protein corona presents a major obstacle to bench-to-bedside translation of targeted drug delivery systems, severely affecting targeting yields and directing unfavorable biodistribution. Corona-mediated targeting provides a new impetus for specific drug delivery by precisely manipulating interaction modes of functional plasma proteins on nano-surface. Here bio-inspired liposomes (SP-sLip) were developed by modifying liposomal surface with a short nontoxic peptide derived from Aβ1-42 that specifically interacts with the lipid-binding domain of exchangeable apolipoproteins. SP-sLip absorb plasma apolipoproteins A1, E and J, consequently exposing receptor-binding domain of apolipoproteins to achieve brain-targeted delivery. Doxorubicin loaded SP-sLip (SP-sLip/DOX) show significant enhancement of brain distribution and anti-brain cancer effect in comparison to doxorubicin loaded plain liposomes. SP-sLip preserve functions of the absorbed human plasma ApoE, and the corona-mediated targeting strategy works in SP modified PLGA nanoparticles. The present study may pave a new avenue to facilitate clinical translation of targeted drug delivery systems. Plasma proteins may severely affect the in vivo performance of liposomes. Here, the authors develop bio-inspired liposomes that specifically absorb brain-targeted apolipoproteins and preserve their bioactivities, thereby achieving efficient brain targeting with minor influence on immunocompatibility of liposomes.
Collapse
|
31
|
Van Gool B, Storck SE, Reekmans SM, Lechat B, Gordts PLSM, Pradier L, Pietrzik CU, Roebroek AJM. LRP1 Has a Predominant Role in Production over Clearance of Aβ in a Mouse Model of Alzheimer's Disease. Mol Neurobiol 2019; 56:7234-7245. [PMID: 31004319 PMCID: PMC6728278 DOI: 10.1007/s12035-019-1594-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/02/2019] [Indexed: 01/01/2023]
Abstract
The low-density lipoprotein receptor-related protein-1 (LRP1) has a dual role in the metabolism of the amyloid precursor protein (APP). In cellular models, LRP1 enhances amyloid-β (Aβ) generation via APP internalization and thus its amyloidogenic processing. However, conditional knock-out studies in mice define LRP1 as an important mediator for the clearance of extracellular Aβ from brain via cellular degradation or transcytosis across the blood-brain barrier (BBB). In order to analyze the net effect of LRP1 on production and clearance of Aβ in vivo, we crossed mice with impaired LRP1 function with a mouse model of Alzheimer's disease (AD). Analysis of Aβ metabolism showed that, despite reduced Aβ clearance due to LRP1 inactivation in vivo, less Aβ was found in cerebrospinal fluid (CSF) and brain interstitial fluid (ISF). Further analysis of APP metabolism revealed that impairment of LRP1 in vivo shifted APP processing from the Aβ-generating amyloidogenic cleavage by beta-secretase to the non-amyloidogenic processing by alpha-secretase as shown by a decrease in extracellular Aβ and an increase of soluble APP-α (sAPP-α). This shift in APP processing resulted in overall lower Aβ levels and a reduction in plaque burden. Here, we present for the first time clear in vivo evidence that global impairment of LRP1's endocytosis function favors non-amyloidogenic processing of APP due to its reduced internalization and subsequently, reduced amyloidogenic processing. By inactivation of LRP1, the inhibitory effect on Aβ generation overrules the simultaneous impaired Aβ clearance, resulting in less extracellular Aβ and reduced plaque deposition in a mouse model of AD.
Collapse
Affiliation(s)
- Bart Van Gool
- Laboratory for Experimental Mouse Genetics, Department of Human Genetics, KU Leuven, Herestraat 49, Box 604, 3000, Leuven, Belgium
| | - Steffen E Storck
- Institute for Pathobiochemistry, University Medical Center, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Sara M Reekmans
- Laboratory for Experimental Mouse Genetics, Department of Human Genetics, KU Leuven, Herestraat 49, Box 604, 3000, Leuven, Belgium
| | - Benoit Lechat
- Laboratory for Experimental Mouse Genetics, Department of Human Genetics, KU Leuven, Herestraat 49, Box 604, 3000, Leuven, Belgium
| | - Philip L S M Gordts
- Laboratory for Experimental Mouse Genetics, Department of Human Genetics, KU Leuven, Herestraat 49, Box 604, 3000, Leuven, Belgium
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA, 92093, USA
| | - Laurent Pradier
- SANOFI, Neuroscience Therapeutic Area, 1 Avenue P. Brossolette, 91385, Chilly-Mazarin, France
| | - Claus U Pietrzik
- Institute for Pathobiochemistry, University Medical Center, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Anton J M Roebroek
- Laboratory for Experimental Mouse Genetics, Department of Human Genetics, KU Leuven, Herestraat 49, Box 604, 3000, Leuven, Belgium.
| |
Collapse
|
32
|
Bres EE, Faissner A. Low Density Receptor-Related Protein 1 Interactions With the Extracellular Matrix: More Than Meets the Eye. Front Cell Dev Biol 2019; 7:31. [PMID: 30931303 PMCID: PMC6428713 DOI: 10.3389/fcell.2019.00031] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/25/2019] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) is a biological substrate composed of collagens, proteoglycans and glycoproteins that ensures proper cell migration and adhesion and keeps the cell architecture intact. The regulation of the ECM composition is a vital process strictly controlled by, among others, proteases, growth factors and adhesion receptors. As it appears, ECM remodeling is also essential for proper neuronal and glial development and the establishment of adequate synaptic signaling. Hence, disturbances in ECM functioning are often present in neurodegenerative diseases like Alzheimer’s disease. Moreover, mutations in ECM molecules are found in some forms of epilepsy and malfunctioning of ECM-related genes and pathways can be seen in, for example, cancer or ischemic injury. Low density lipoprotein receptor-related protein 1 (Lrp1) is a member of the low density lipoprotein receptor family. Lrp1 is involved not only in ligand uptake, receptor mediated endocytosis and lipoprotein transport—functions shared by low density lipoprotein receptor family members—but also regulates cell surface protease activity, controls cellular entry and binding of toxins and viruses, protects against atherosclerosis and acts on many cell signaling pathways. Given the plethora of functions, it is not surprising that Lrp1 also impacts the ECM and is involved in its remodeling. This review focuses on the role of Lrp1 and some of its major ligands on ECM function. Specifically, interactions with two Lrp1 ligands, integrins and tissue plasminogen activator are described in more detail.
Collapse
Affiliation(s)
- Ewa E Bres
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
33
|
Abstract
Mechanisms for elimination of metabolites from ISF include metabolism, blood-brain barrier transport and non-selective, perivascular efflux, this last being assessed by measuring the clearance of markers like inulin. Clearance describes elimination. Clearance of a metabolite generated within the brain is determined as its elimination rate divided by its concentration in interstitial fluid (ISF). However, the more frequently measured parameter is the rate constant for elimination determined as elimination rate divided by amount present, which thus depends on both the elimination processes and the distribution of the metabolite in the brain. The relative importance of the various elimination mechanisms depends on the particular metabolite. Little is known about the effects of sleep on clearance via metabolism or blood-brain barrier transport, but studies with inulin in mice comparing perivascular effluxes during sleep and wakefulness reveal a 4.2-fold increase in clearance. Amongst the important brain metabolites considered, CO2 is eliminated so rapidly across the blood-brain barrier that clearance is blood flow limited and elimination quickly balances production. Glutamate is removed from ISF primarily by uptake into astrocytes and conversion to glutamine, but also by transport across the blood-brain barrier. Both lactate and amyloid-β are eliminated by metabolism, blood-brain barrier transport and perivascular efflux and both show decreased production, decreased ISF concentration and increased perivascular clearance during sleep. Taken altogether available data indicate that sleep increases perivascular and non-perivascular clearances for amyloid-β which reduces its concentration and may have long-term consequences for the formation of plaques and cerebral arterial deposits.
Collapse
Affiliation(s)
- Stephen B Hladky
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK.
| | - Margery A Barrand
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK
| |
Collapse
|
34
|
Hladky SB, Barrand MA. Elimination of substances from the brain parenchyma: efflux via perivascular pathways and via the blood-brain barrier. Fluids Barriers CNS 2018; 15:30. [PMID: 30340614 PMCID: PMC6194691 DOI: 10.1186/s12987-018-0113-6] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023] Open
Abstract
This review considers efflux of substances from brain parenchyma quantified as values of clearances (CL, stated in µL g-1 min-1). Total clearance of a substance is the sum of clearance values for all available routes including perivascular pathways and the blood-brain barrier. Perivascular efflux contributes to the clearance of all water-soluble substances. Substances leaving via the perivascular routes may enter cerebrospinal fluid (CSF) or lymph. These routes are also involved in entry to the parenchyma from CSF. However, evidence demonstrating net fluid flow inwards along arteries and then outwards along veins (the glymphatic hypothesis) is still lacking. CLperivascular, that via perivascular routes, has been measured by following the fate of exogenously applied labelled tracer amounts of sucrose, inulin or serum albumin, which are not metabolized or eliminated across the blood-brain barrier. With these substances values of total CL ≅ 1 have been measured. Substances that are eliminated at least partly by other routes, i.e. across the blood-brain barrier, have higher total CL values. Substances crossing the blood-brain barrier may do so by passive, non-specific means with CLblood-brain barrier values ranging from < 0.01 for inulin to > 1000 for water and CO2. CLblood-brain barrier values for many small solutes are predictable from their oil/water partition and molecular weight. Transporters specific for glucose, lactate and many polar substrates facilitate efflux across the blood-brain barrier producing CLblood-brain barrier values > 50. The principal route for movement of Na+ and Cl- ions across the blood-brain barrier is probably paracellular through tight junctions between the brain endothelial cells producing CLblood-brain barrier values ~ 1. There are large fluxes of amino acids into and out of the brain across the blood-brain barrier but only small net fluxes have been observed suggesting substantial reuse of essential amino acids and α-ketoacids within the brain. Amyloid-β efflux, which is measurably faster than efflux of inulin, is primarily across the blood-brain barrier. Amyloid-β also leaves the brain parenchyma via perivascular efflux and this may be important as the route by which amyloid-β reaches arterial walls resulting in cerebral amyloid angiopathy.
Collapse
Affiliation(s)
- Stephen B. Hladky
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| | - Margery A. Barrand
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| |
Collapse
|
35
|
Storck SE, Hartz AM, Bernard J, Wolf A, Kachlmeier A, Mahringer A, Weggen S, Pahnke J, Pietrzik CU. The concerted amyloid-beta clearance of LRP1 and ABCB1/P-gp across the blood-brain barrier is linked by PICALM. Brain Behav Immun 2018; 73:21-33. [PMID: 30041013 PMCID: PMC7748946 DOI: 10.1016/j.bbi.2018.07.017] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/10/2018] [Accepted: 07/20/2018] [Indexed: 01/18/2023] Open
Abstract
The accumulation of neurotoxic amyloid-beta (Aβ) in the brain is a characteristic hallmark of Alzheimer's disease (AD). The blood-brain barrier (BBB) provides a large surface area and has been shown to be an important mediator for removal of brain Aβ. Both, the ABC transporter P-glycoprotein (ABCB1/P-gp) and the receptor low-density lipoprotein receptor-related protein 1 (LRP1) have been implicated to play crucial roles in Aβ efflux from brain. Here, with immunoprecipitation experiments, co-immunostainings and dual inhibition of ABCB1/P-gp and LRP1, we show that both proteins are functionally linked, mediating a concerted transcytosis of Aβ through endothelial cells. Late-onset AD risk factor Phosphatidylinositol binding clathrin assembly protein (PICALM) is associated with both ABCB1/P-gp and LRP1 representing a functional link and guiding both proteins through the brain endothelium. Together, our results give more mechanistic insight on Aβ transport across the BBB and show that the functional interplay of different clearance proteins is needed for the rapid removal of Aβ from the brain.
Collapse
Affiliation(s)
- Steffen E. Storck
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Anika M.S. Hartz
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States,Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Jessica Bernard
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Andrea Wolf
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN, United States
| | - André Kachlmeier
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Anne Mahringer
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Germany
| | - Sascha Weggen
- Department of Neuropathology, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Jens Pahnke
- University of Oslo (UiO) & Oslo University Hospital (OUS), Department of Neuro-/Pathology, Oslo, Norway,University of Lübeck (UzL), LIED, Lübeck, Germany,Leibniz-Institute of Plant Biochemistry (IPB), Department for Bioorganic Chemistry, Halle, Germany,University of Latvia (UL), Department of Pharmacology, Riga, Latvia
| | - Claus U. Pietrzik
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany,Corresponding author at: University Medical Center of the Johannes Gutenberg-University of Mainz, Institute for Pathobiochemistry, Molecular Neurodegeneration, Duesbergweg 6, 55099 Mainz, Germany. (C.U. Pietrzik)
| |
Collapse
|
36
|
Li M, Shi K, Tang X, Wei J, Cun X, Chen X, Yu Q, Zhang Z, He Q. pH-sensitive folic acid and dNP2 peptide dual-modified liposome for enhanced targeted chemotherapy of glioma. Eur J Pharm Sci 2018; 124:240-248. [PMID: 30071282 DOI: 10.1016/j.ejps.2018.07.055] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/27/2018] [Accepted: 07/27/2018] [Indexed: 02/07/2023]
Abstract
Effective chemotherapy for clinical glioma treatment is still lacking due to the poor penetration of blood-brain barrier (BBB) and the poor internalization into tumor cells. To facilitate the transmigration across the BBB as well as the glioma targeting of chemotherapeutics, we constructed cell penetrating peptide dNP2 and tumor microenvironment-cleavable folic acid (FA) dual modified, paclitaxel (PTX) loaded liposome for the targeted delivery of glioma. The modification of dNP2 significantly enhanced the transmigration across the BBB in an in vitro BBB model. The acid-cleavable cFd-Lip/PTX exhibited sensitive cleavage of FA at pH 6.8, which led to enhanced cellular uptake mediated by both cell penetrating peptide dNP2 and the interaction between FA and folate receptor (FR) on the glioma cells. After intravenous injection, compared with non-cleavable Fd-Lip and single modified liposomes, cFd-Lip enhanced the accumulation in orthotropic glioma and improved the anti-tumor effect of glioma-bearing mice. The dual modified liposomes also facilitated deep penetration into tumor cells and consequently enhanced the cytotoxicity of PTX-loaded liposomes. The acid-cleavable dual modified strategy retained the BBB penetrating and tumor targeting ability, meanwhile, the cleavage of FA further maximized the cell permeability of dNP2, exhibiting enhanced tumor targeting effect. The multi-targeting strategy provides a promising approach towards targeted chemotherapy for glioma.
Collapse
Affiliation(s)
- Man Li
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Kairong Shi
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xian Tang
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jiaojie Wei
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xingli Cun
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xiaoxiao Chen
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Qianwen Yu
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Qin He
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China.
| |
Collapse
|
37
|
Lamartinière Y, Boucau MC, Dehouck L, Krohn M, Pahnke J, Candela P, Gosselet F, Fenart L. ABCA7 Downregulation Modifies Cellular Cholesterol Homeostasis and Decreases Amyloid-β Peptide Efflux in an in vitro Model of the Blood-Brain Barrier. J Alzheimers Dis 2018; 64:1195-1211. [DOI: 10.3233/jad-170883] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yordenca Lamartinière
- Université d’Artois, EA 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), France
| | - Marie-Christine Boucau
- Université d’Artois, EA 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), France
| | - Lucie Dehouck
- Université d’Artois, EA 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), France
| | - Markus Krohn
- Department of Neuro-/Pathology, University of Oslo (UiO) & Oslo University Hospital (OUS), Oslo, Norway
| | - Jens Pahnke
- Department of Neuro-/Pathology, University of Oslo (UiO) & Oslo University Hospital (OUS), Oslo, Norway
- University of Lübeck (UzL), LIED, Lübeck, Germany
- Leibniz Institute of Plant Biochemistry (IPB), Halle, Germany
| | - Pietra Candela
- Université d’Artois, EA 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), France
| | - Fabien Gosselet
- Université d’Artois, EA 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), France
| | - Laurence Fenart
- Université d’Artois, EA 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), France
| |
Collapse
|
38
|
Medoro A, Bartollino S, Mignogna D, Passarella D, Porcile C, Pagano A, Florio T, Nizzari M, Guerra G, Di Marco R, Intrieri M, Raimo G, Russo C. Complexity and Selectivity of γ-Secretase Cleavage on Multiple Substrates: Consequences in Alzheimer's Disease and Cancer. J Alzheimers Dis 2018; 61:1-15. [PMID: 29103038 DOI: 10.3233/jad-170628] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The processing of the amyloid-β protein precursor (AβPP) by β- and γ-secretases is a pivotal event in the genesis of Alzheimer's disease (AD). Besides familial mutations on the AβPP gene, or upon its overexpression, familial forms of AD are often caused by mutations or deletions in presenilin 1 (PSEN1) and 2 (PSEN2) genes: the catalytic components of the proteolytic enzyme γ-secretase (GS). The "amyloid hypothesis", modified over time, states that the aberrant processing of AβPP by GS induces the formation of specific neurotoxic soluble amyloid-β (Aβ) peptides which, in turn, cause neurodegeneration. This theory, however, has recently evidenced significant limitations and, in particular, the following issues are debated: 1) the concept and significance of presenilin's "gain of function" versus "loss of function"; and 2) the presence of several and various GS substrates, which interact with AβPP and may influence Aβ formation. The latter consideration is suggestive: despite the increasing number of GS substrates so far identified, their reciprocal interaction with AβPP itself, even in the AD field, is significantly unexplored. On the other hand, GS is also an important pharmacological target in the cancer field; inhibitors or GS activity are investigated in clinical trials for treating different tumors. Furthermore, the function of AβPP and PSENs in brain development and in neuronal migration is well known. In this review, we focused on a specific subset of GS substrates that directly interact with AβPP and are involved in its proteolysis and signaling, by evaluating their role in neurodegeneration and in cell motility or proliferation, as a possible connection between AD and cancer.
Collapse
Affiliation(s)
- Alessandro Medoro
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Silvia Bartollino
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Donatella Mignogna
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Daniela Passarella
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Carola Porcile
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Aldo Pagano
- Department of Experimental Medicine, University of Genoa and Ospedale Policlinico San Martino, IRCCS per l'Oncologia, Genoa, Italy
| | - Tullio Florio
- Department of Internal Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Mario Nizzari
- Department of Internal Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Roberto Di Marco
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Mariano Intrieri
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Gennaro Raimo
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Claudio Russo
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
39
|
Leclerc JL, Santiago-Moreno J, Dang A, Lampert AS, Cruz PE, Rosario AM, Golde TE, Doré S. Increased brain hemopexin levels improve outcomes after intracerebral hemorrhage. J Cereb Blood Flow Metab 2018; 38:1032-1046. [PMID: 27864463 PMCID: PMC5999006 DOI: 10.1177/0271678x16679170] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Following intracerebral hemorrhage (ICH), extracellular heme precipitates secondary brain injury, which results in irreversible brain damage and enduring neurological deficits. Hemopexin (Hpx) is an endogenous protein responsible for scavenging heme, thereby modulating its intrinsic proxidant/proinflammatory properties. Although Hpx is present in the brain, the endogenous levels are insufficient to combat the massive heme overload following ICH. We hypothesized that increasing brain Hpx levels would improve ICH outcomes. Unique recombinant adeno-associated viral vectors were designed to specifically overexpress Hpx within the mouse brain. Western blotting, ELISA, and immunohistochemistry of brain homogenates/sections, CSF, and serum were performed. As compared to controls, Hpx mice have increased Hpx protein levels in all three types of biospecimens evaluated, which results in 45.6 ± 6.9% smaller lesions and improved functional recovery after ICH (n=14-19/group, p < 0.05). Local mechanistic analyses show significantly less tissue injury, trends toward smaller hematoma volumes, unchanged heme oxygenase 1 and iron levels, and significantly increased microgliosis and decreased astrogliosis and lipid peroxidation. Peripheral levels of heme-related markers indicate a positive modulation of iron-binding capacity. These findings reveal that high local Hpx levels improve ICH outcomes, likely through both central and peripheral clearance mechanisms, and establish the potential for therapeutically administering clinical-grade Hpx for ICH.
Collapse
Affiliation(s)
- Jenna L Leclerc
- 1 Department of Anesthesiology, University of Florida, Gainesville, FL, USA.,2 Department of Neuroscience, McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | | | - Alex Dang
- 1 Department of Anesthesiology, University of Florida, Gainesville, FL, USA
| | - Andrew S Lampert
- 1 Department of Anesthesiology, University of Florida, Gainesville, FL, USA
| | - Pedro E Cruz
- 2 Department of Neuroscience, McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Awilda M Rosario
- 2 Department of Neuroscience, McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Todd E Golde
- 2 Department of Neuroscience, McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Sylvain Doré
- 1 Department of Anesthesiology, University of Florida, Gainesville, FL, USA.,2 Department of Neuroscience, McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.,3 Departments of Neurology, Psychology, Psychiatry, and Pharmaceutics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
40
|
Xin SH, Tan L, Cao X, Yu JT, Tan L. Clearance of Amyloid Beta and Tau in Alzheimer's Disease: from Mechanisms to Therapy. Neurotox Res 2018; 34:733-748. [PMID: 29626319 DOI: 10.1007/s12640-018-9895-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 01/02/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease. Pathological proteins of AD mainly contain amyloid-beta (Aβ) and tau. Their deposition will lead to neuron damage by a series of pathways, and then induce memory and cognitive impairment. Thus, it is pivotal to understand the clearance pathways of Aβ and tau in order to delay or even halt AD. Aβ clearance mechanisms include ubiquitin-proteasome system, autophagy-lysosome, proteases, microglial phagocytosis, and transport from the brain to the blood via the blood-brain barrier (BBB), arachnoid villi and blood-CSF barrier, which can be named blood circulatory clearance. Recently, lymphatic clearance has been demonstrated to play a key role in transport of Aβ into cervical lymph nodes. The discovery of meningeal lymphatic vessels is another direct evidence for lymphatic clearance in the brain. Furthermore, periphery clearance also contributes to Aβ clearance. Tau clearance is almost the same as Aβ clearance. In this review, we will mainly introduce the clearance mechanisms of Aβ and tau proteins, and summarize corresponding targeted drug therapies for AD.
Collapse
Affiliation(s)
- Shu-Hui Xin
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No.5 Donghai Middle Road, Qingdao, 266071, Shandong, China
| | - Lin Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No.5 Donghai Middle Road, Qingdao, 266071, Shandong, China
| | - Xipeng Cao
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No.5 Donghai Middle Road, Qingdao, 266071, Shandong, China. .,Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No.5 Donghai Middle Road, Qingdao, 266071, Shandong, China.
| |
Collapse
|
41
|
Zhao N, Liu CC, Qiao W, Bu G. Apolipoprotein E, Receptors, and Modulation of Alzheimer's Disease. Biol Psychiatry 2018; 83:347-357. [PMID: 28434655 PMCID: PMC5599322 DOI: 10.1016/j.biopsych.2017.03.003] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 12/31/2022]
Abstract
Apolipoprotein E (apoE) is a lipid carrier in both the peripheral and the central nervous systems. Lipid-loaded apoE lipoprotein particles bind to several cell surface receptors to support membrane homeostasis and injury repair in the brain. Considering prevalence and relative risk magnitude, the ε4 allele of the APOE gene is the strongest genetic risk factor for late-onset Alzheimer's disease (AD). ApoE4 contributes to AD pathogenesis by modulating multiple pathways, including but not limited to the metabolism, aggregation, and toxicity of amyloid-β peptide, tauopathy, synaptic plasticity, lipid transport, glucose metabolism, mitochondrial function, vascular integrity, and neuroinflammation. Emerging knowledge on apoE-related pathways in the pathophysiology of AD presents new opportunities for AD therapy. We describe the biochemical and biological features of apoE and apoE receptors in the central nervous system. We also discuss the evidence and mechanisms addressing differential effects of apoE isoforms and the role of apoE receptors in AD pathogenesis, with a particular emphasis on the clinical and preclinical studies related to amyloid-β pathology. Finally, we summarize the current strategies of AD therapy targeting apoE, and postulate that effective strategies require an apoE isoform-specific approach.
Collapse
Affiliation(s)
- Na Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Wenhui Qiao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida; Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
42
|
Gangoda SVS, Avadhanam B, Jufri NF, Sohn EH, Butlin M, Gupta V, Chung R, Avolio AP. Pulsatile stretch as a novel modulator of amyloid precursor protein processing and associated inflammatory markers in human cerebral endothelial cells. Sci Rep 2018; 8:1689. [PMID: 29374229 PMCID: PMC5786097 DOI: 10.1038/s41598-018-20117-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 01/15/2018] [Indexed: 01/22/2023] Open
Abstract
Amyloid β (Aβ) deposition is a hallmark of Alzheimer’s disease (AD). Vascular modifications, including altered brain endothelial cell function and structural viability of the blood-brain barrier due to vascular pulsatility, are implicated in AD pathology. Pulsatility of phenomena in the cerebral vasculature are often not considered in in vitro models of the blood-brain barrier. We demonstrate, for the first time, that pulsatile stretch of brain vascular endothelial cells modulates amyloid precursor protein (APP) expression and the APP processing enzyme, β-secretase 1, eventuating increased-Aβ generation and secretion. Concurrent modulation of intercellular adhesion molecule 1 and endothelial nitric oxide synthase (eNOS) signaling (expression and phosphorylation of eNOS) in response to pulsatile stretch indicates parallel activation of endothelial inflammatory pathways. These findings mechanistically support vascular pulsatility contributing towards cerebral Aβ levels.
Collapse
Affiliation(s)
- Sumudu V S Gangoda
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Bhargava Avadhanam
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Nurul F Jufri
- Programme of Biomedical Science, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia
| | - Eun Hwa Sohn
- Department of Herbal Medicine Resources, Kangwon National University, Samcheok, 25949, Republic of Korea
| | - Mark Butlin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.
| | - Vivek Gupta
- Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Roger Chung
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Alberto P Avolio
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
43
|
Zandl-Lang M, Fanaee-Danesh E, Sun Y, Albrecher NM, Gali CC, Čančar I, Kober A, Tam-Amersdorfer C, Stracke A, Storck SM, Saeed A, Stefulj J, Pietrzik CU, Wilson MR, Björkhem I, Panzenboeck U. Regulatory effects of simvastatin and apoJ on APP processing and amyloid-β clearance in blood-brain barrier endothelial cells. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:40-60. [DOI: 10.1016/j.bbalip.2017.09.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/31/2017] [Accepted: 09/18/2017] [Indexed: 10/18/2022]
|
44
|
Niño SA, Martel-Gallegos G, Castro-Zavala A, Ortega-Berlanga B, Delgado JM, Hernández-Mendoza H, Romero-Guzmán E, Ríos-Lugo J, Rosales-Mendoza S, Jiménez-Capdeville ME, Zarazúa S. Chronic Arsenic Exposure Increases Aβ (1-42) Production and Receptor for Advanced Glycation End Products Expression in Rat Brain. Chem Res Toxicol 2017; 31:13-21. [PMID: 29155576 DOI: 10.1021/acs.chemrestox.7b00215] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chronic arsenic exposure during development is associated with alterations of chemical transmission and demyelination, which result in cognitive deficits and peripheral neuropathies. At the cellular level, arsenic toxicity involves increased generation of reactive species that induce severe cellular alterations such as DNA fragmentation, apoptosis, and lipid peroxidation. It has been proposed that arsenic-associated neurodegeneration could evolve to Alzheimer disease in later life.1,2 In this study, the effects of chronic exposure to inorganic arsenic (3 ppm by drinking water) in Wistar rats on the production and elimination of Amyloid-β (Aβ) were evaluated. Male Wistar rats were exposed to 3 ppm of arsenic in drinking water from fetal development until 4 months of age. After behavioral deficits induced by arsenic exposure through contextual fear conditioning were verified, the brains were collected for the determination of total arsenic by inductively coupled plasma-mass spectrometry, the levels of amyloid precursor protein and receptor for advanced glycation end products (RAGE) by Western blot analysis as well as their transcript levels by RT-qPCR, Aβ(1-42) estimation by ELISA assay and the enzymatic activity of β-secretase (BACE1). Our results demonstrate that chronic arsenic exposure induces behavioral deficits accompanied of higher levels of soluble and membranal RAGE and the increase of Aβ(1-42) cleaved. In addition, BACE1 enzymatic activity was increased, while immunoblot assays showed no differences in the low-density lipoprotein receptor-related protein 1 (LRP1) receptor among groups. These results provide evidence of the effects of arsenic exposure on the production of Aβ(1-42) and cerebral amyloid clearance through RAGE in an in vivo model that displays behavioral alterations. This work supports the hypothesis that early exposure to metals may contribute to neurodegeneration associated with amyloid accumulation.
Collapse
Affiliation(s)
| | | | | | | | | | - Héctor Hernández-Mendoza
- Laboratorio Nacional Forense Nuclear, Instituto Nacional de Investigaciones Nucleares , Carretera México-Toluca s/n, CP 52750 La Marquesa Ocoyoacac, México.,Centro de Biociencias, Universidad Autónoma de San Luis Potosí , Km. 14.5 carretera San Luis Potosí - Matehuala, Ejido "Palma de la Cruz", CP 78321 Soledad de Graciano Sánchez, San Luis Potosí, México
| | - Elizabeth Romero-Guzmán
- Laboratorio Nacional Forense Nuclear, Instituto Nacional de Investigaciones Nucleares , Carretera México-Toluca s/n, CP 52750 La Marquesa Ocoyoacac, México
| | | | | | | | | |
Collapse
|
45
|
Trafficking in Alzheimer's Disease: Modulation of APP Transport and Processing by the Transmembrane Proteins LRP1, SorLA, SorCS1c, Sortilin, and Calsyntenin. Mol Neurobiol 2017; 55:5809-5829. [PMID: 29079999 DOI: 10.1007/s12035-017-0806-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/17/2017] [Indexed: 12/11/2022]
Abstract
The amyloid precursor protein (APP), one key player in Alzheimer's disease (AD), is extensively processed by different proteases. This leads to the generation of diverging fragments including the amyloid β (Aβ) peptide, which accumulates in brains of AD patients. Subcellular trafficking of APP is an important aspect for its proteolytic conversion, since the various secretases which cleave APP are located in different cellular compartments. As a consequence, altered subcellular targeting of APP is thought to directly affect the degree to which Aβ is generated. The mechanisms underlying intracellular APP transport are critical to understand AD pathogenesis and can serve as a target for future pharmacological interventions. In the recent years, a number of APP interacting proteins were identified which are implicated in sorting of APP, thereby influencing APP processing at different angles of the secretory or endocytic pathway. This review provides an update on the proteolytic processing of APP and the interplay of the transmembrane proteins low-density lipoprotein receptor-related protein 1, sortilin-receptor with A-type repeats, SorCS1c, sortilin, and calsyntenin. We discuss the specific interactions with APP, the capacity to modulate the intracellular itinerary and the proteolytic conversion of APP, a possible involvement in the clearance of Aβ, and the implications of these transmembrane proteins in AD and other neurodegenerative diseases.
Collapse
|
46
|
Storck SE, Pietrzik CU. Endothelial LRP1 - A Potential Target for the Treatment of Alzheimer's Disease : Theme: Drug Discovery, Development and Delivery in Alzheimer's Disease Guest Editor: Davide Brambilla. Pharm Res 2017; 34:2637-2651. [PMID: 28948494 DOI: 10.1007/s11095-017-2267-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/15/2017] [Indexed: 12/19/2022]
Abstract
The accumulation of the neurotoxin beta-amyloid (Aβ) is a major hallmark in Alzheimer's disease (AD). Aβ homeostasis in the brain is governed by its production and various clearance mechanisms. Both pathways are influenced by the ubiquitously expressed low-density lipoprotein receptor-related protein 1 (LRP1). In cerebral blood vessels, LRP1 is an important mediator for the rapid removal of Aβ from brain via transport across the blood-brain barrier (BBB). Here, we summarize recent findings on LRP1 function and discuss the targeting of LRP1 as a modulator for AD pathology and drug delivery into the brain.
Collapse
Affiliation(s)
- Steffen E Storck
- Molecular Neurodegeneration, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55099, Mainz, Germany
| | - Claus U Pietrzik
- Molecular Neurodegeneration, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55099, Mainz, Germany.
| |
Collapse
|
47
|
Yamazaki Y, Kanekiyo T. Blood-Brain Barrier Dysfunction and the Pathogenesis of Alzheimer's Disease. Int J Mol Sci 2017; 18:ijms18091965. [PMID: 28902142 PMCID: PMC5618614 DOI: 10.3390/ijms18091965] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 01/22/2023] Open
Abstract
Brain capillary endothelial cells form the blood-brain barrier (BBB), which is covered with basement membranes and is also surrounded by pericytes and astrocyte end-feet in the neurovascular unit. The BBB tightly regulates the molecular exchange between the blood flow and brain parenchyma, thereby regulating the homeostasis of the central nervous system (CNS). Thus, dysfunction of the BBB is likely involved in the pathogenesis of several neurological diseases, including Alzheimer’s disease (AD). While amyloid-β (Aβ) deposition and neurofibrillary tangle formation in the brain are central pathological hallmarks in AD, cerebrovascular lesions and BBB alteration have also been shown to frequently coexist. Although further clinical studies should clarify whether BBB disruption is a specific feature of AD pathogenesis, increasing evidence indicates that each component of the neurovascular unit is significantly affected in the presence of AD-related pathologies in animal models and human patients. Conversely, since some portions of Aβ are eliminated along the neurovascular unit and across the BBB, disturbing the pathways may result in exacerbated Aβ accumulation in the brain. Thus, current evidence suggests that BBB dysfunction may causatively and consequently contribute to AD pathogenesis, forming a vicious cycle between brain Aβ accumulation and neurovascular unit impairments during disease progression.
Collapse
Affiliation(s)
- Yu Yamazaki
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| |
Collapse
|
48
|
Mao H, Xie L, Pi X. Low-Density Lipoprotein Receptor-Related Protein-1 Signaling in Angiogenesis. Front Cardiovasc Med 2017; 4:34. [PMID: 28589128 PMCID: PMC5438976 DOI: 10.3389/fcvm.2017.00034] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/01/2017] [Indexed: 11/13/2022] Open
Abstract
Low-density lipoprotein receptor-related protein-1 (LRP1) plays multifunctional roles in lipid homeostasis, signaling transduction, and endocytosis. It has been recognized as an endocytic receptor for many ligands and is involved in the signaling pathways of many growth factors or cytokines. Dysregulation of LRP1-dependent signaling events contributes to the development of pathophysiologic processes such as Alzheimer’s disease, atherosclerosis, inflammation, and coagulation. Interestingly, recent studies have linked LRP1 with endothelial function and angiogenesis, which has been underappreciated for a long time. During zebrafish embryonic development, LRP1 is required for the formation of vascular network, especially for the venous development. LRP1 depletion in the mouse embryo proper leads to angiogenic defects and disruption of endothelial integrity. Moreover, in a mouse oxygen-induced retinopathy model, specific depletion of LRP1 in endothelial cells results in abnormal development of neovessels. These loss-of-function studies suggest that LRP1 plays a pivotal role in angiogenesis. The review addresses the recent advances in the roles of LRP1-dependent signaling during angiogenesis.
Collapse
Affiliation(s)
- Hua Mao
- Department of Medicine, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Liang Xie
- Department of Medicine, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Xinchun Pi
- Department of Medicine, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
49
|
Shinohara M, Tachibana M, Kanekiyo T, Bu G. Role of LRP1 in the pathogenesis of Alzheimer's disease: evidence from clinical and preclinical studies. J Lipid Res 2017; 58:1267-1281. [PMID: 28381441 DOI: 10.1194/jlr.r075796] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/02/2017] [Indexed: 12/16/2022] Open
Abstract
Among the LDL receptor (LDLR) family members, the roles of LDLR-related protein (LRP)1 in the pathogenesis of Alzheimer's disease (AD), especially late-onset AD, have been the most studied by genetic, neuropathological, and biomarker analyses (clinical studies) or cellular and animal model systems (preclinical studies) over the last 25 years. Although there are some conflicting reports, accumulating evidence from preclinical studies indicates that LRP1 not only regulates the metabolism of amyloid-β peptides (Aβs) in the brain and periphery, but also maintains brain homeostasis, impairment of which likely contributes to AD development in Aβ-independent manners. Several preclinical studies have also demonstrated an involvement of LRP1 in regulating the pathogenic role of apoE, whose gene is the strongest genetic risk factor for AD. Nonetheless, evidence from clinical studies is not sufficient to conclude how LRP1 contributes to AD development. Thus, despite very promising results from preclinical studies, the role of LRP1 in AD pathogenesis remains to be further clarified. In this review, we discuss the potential mechanisms underlying how LRP1 affects AD pathogenesis through Aβ-dependent and -independent pathways by reviewing both clinical and preclinical studies. We also discuss potential therapeutic strategies for AD by targeting LRP1.
Collapse
Affiliation(s)
| | | | | | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL
| |
Collapse
|
50
|
Mohamed LA, Zhu H, Mousa YM, Wang E, Qiu WQ, Kaddoumi A. Amylin Enhances Amyloid-β Peptide Brain to Blood Efflux Across the Blood-Brain Barrier. J Alzheimers Dis 2017; 56:1087-1099. [PMID: 28059785 PMCID: PMC5466167 DOI: 10.3233/jad-160800] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Findings from Alzheimer's disease (AD) mouse models showed that amylin treatment improved AD pathology and enhanced amyloid-β (Aβ) brain to blood clearance; however, the mechanism was not investigated. Using the Tg2576 AD mouse model, a single intraperitoneal injection of amylin significantly increased Aβ serum levels, and the effect was abolished by AC253, an amylin receptor antagonist, suggesting that amylin effect could be mediated by its receptor. Subsequent mechanistic studies showed amylin enhanced Aβ transport across a cell-based model of the blood-brain barrier (BBB), an effect that was abolished when the amylin receptor was inhibited by two amylin antagonists and by siRNA knockdown of amylin receptor Ramp3. To explain this finding, amylin effect on Aβ transport proteins expressed at the BBB was evaluated. Findings indicated that cells treated with amylin induced LRP1 expression, a major receptor involved in brain Aβ efflux, in plasma membrane fraction, suggesting intracellular translocation of LRP1 from the cytoplasmic pool. Increased LRP1 in membrane fraction could explain, at least in part, the enhanced uptake and transport of Aβ across the BBB. Collectively, our findings indicated that amylin induced Aβ brain to blood clearance through amylin receptor by inducing LRP1 subcellular translocation to the plasma membrane of the BBB endothelium.
Collapse
Affiliation(s)
- Loqman A. Mohamed
- Department of Basic Pharmaceutical Science, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Haihao Zhu
- Departments of Pharmacology & Experimental Therapeutics, Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Youssef M. Mousa
- Department of Basic Pharmaceutical Science, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Erming Wang
- Departments of Pharmacology & Experimental Therapeutics, Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Wei Qiao Qiu
- Departments of Pharmacology & Experimental Therapeutics, Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Amal Kaddoumi
- Department of Basic Pharmaceutical Science, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| |
Collapse
|