1
|
Crowley SJ, Iordan AD, Rinna K, Barmada S, Hampstead BM. Comparing high definition transcranial direct current stimulation to left temporoparietal junction and left inferior frontal gyrus for logopenic primary progressive aphasia: A single-case study. Neuropsychol Rehabil 2024; 34:1478-1503. [PMID: 38358112 DOI: 10.1080/09602011.2024.2314878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 11/18/2023] [Indexed: 02/16/2024]
Abstract
Logopenic variant primary progressive aphasia (lvPPA) is characterized by word-finding deficits and phonologic errors in fluent speech. Transcranial direct current stimulation (tDCS) targeting either left temporoparietal junction (TPJ) or left inferior frontal gyrus (IFG) show evidence of improving language function in lvPPA. The present case study evaluated the effects of two separate rounds of high definition tDCS (HD-tDCS) (4 mA; 30 sessions) on language and functional neuroimaging in a 57-year-old woman with lvPPA. Stimulation was centred on two different regions across rounds: (1) left TPJ, and (2) left (IFG). Results showed an improved proportion of content to floorholder words during a naturalistic speech task through both rounds as well as change in confrontation naming after TPJ (improvement) and IFG (worsened) stimulation. fMRI connectivity during task showed left lateralized positive correlations following round 1 and anti-correlations with components of the default mode network following round 2. Resting state segregation of a language-associated functional network increased following both rounds, and task-based segregation of the same network increased following IFG stimulation. These results suggest that stimulation to both regions using HD-tDCS may improve language function in lvPPA, while simultaneously eliciting widespread changes beyond the targeted area in neuronal activity and functional connectivity.
Collapse
Affiliation(s)
- Samuel J Crowley
- Research Program on Cognition and Neuromodulation Based Interventions, Department of Psychiatry, University of Michigan Medicine, Ann Arbor, MI, USA
- Mental Health Service, Veteran Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Alexandru D Iordan
- Research Program on Cognition and Neuromodulation Based Interventions, Department of Psychiatry, University of Michigan Medicine, Ann Arbor, MI, USA
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Kayla Rinna
- Research Program on Cognition and Neuromodulation Based Interventions, Department of Psychiatry, University of Michigan Medicine, Ann Arbor, MI, USA
- Department of Psychology, Eastern Michigan University, Ypsilanti, MI, USA
| | - Sami Barmada
- Department of Neurology, University of Michigan Medicine, Ann Arbor, MI, USA
| | - Benjamin M Hampstead
- Research Program on Cognition and Neuromodulation Based Interventions, Department of Psychiatry, University of Michigan Medicine, Ann Arbor, MI, USA
- Mental Health Service, Veteran Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Coemans S, De Aguiar V, Paquier P, Tsapkini K, Engelborghs S, Struys E, Keulen S. Effects of Cerebellar Transcranial Direct Current Stimulation in Bilingual Logopenic Primary Progressive Aphasia. J Alzheimers Dis Rep 2024; 8:1253-1273. [PMID: 39434819 PMCID: PMC11491977 DOI: 10.3233/adr-240034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/21/2024] [Indexed: 10/23/2024] Open
Abstract
Background Primary progressive aphasia (PPA) is a language-based dementia, causing progressive decline of language functions. Transcranial direct current stimulation (tDCS) can augment effects of speech-and language therapy (SLT). However, this has not been investigated in bilingual patients with PPA. Objective We evaluated the case of Mr. G., a French (native language, L1)/Dutch (second language, L2)-speaking 59-year-old male, with logopenic PPA, associated with Alzheimer's disease pathology. We aimed to characterize his patterns of language decline and evaluate the effects of tDCS applied to the right posterolateral cerebellum on his language abilities and executive control circuits. Methods In a within-subject controlled design, Mr. G received 9 sessions of sham and anodal tDCS combined with semantic and phonological SLT in L2. Changes were evaluated with an oral naming task in L2, the Boston Naming Task and subtests of the Bilingual Aphasia Test in in L2 and L1, the Stroop Test and Attention Network Test, before and after each phase of stimulation (sham/tDCS) and at 2-month follow-up. Results After anodal tDCS, but not after sham, results improved significantly on oral naming in L2, with generalization to untrained tasks and cross-language transfer (CLT) to L1: picture naming in both languages, syntactic comprehension and repetition in L2, and response times in the incongruent condition of the Attention Network Test, indicating increased inhibitory control. Conclusions Our preliminary results are the first to indicate that tDCS applied to the cerebellum may be a valuable tool to enhance the effects of SLT in bilingual patients with logopenic PPA.
Collapse
Affiliation(s)
- Silke Coemans
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Vânia De Aguiar
- Groningen Center for Language and Cognition (CLCG), University of Groningen, Groningen, The Netherlands
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Philippe Paquier
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussels (VUB), Brussels, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, USA
| | - Sebastiaan Engelborghs
- Center for Neurosciences (C4N), Vrije Universiteit Brussels (VUB), Brussels, Belgium
- Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- Department of Biomedical Sciences, Universiteit Antwerpen (UA), Antwerp, Belgium
| | - Esli Struys
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussels (VUB), Brussels, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Stefanie Keulen
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussels (VUB), Brussels, Belgium
| |
Collapse
|
3
|
Singh-Reilly N, Botha H, Duffy JR, Clark HM, Utianski RL, Machulda MM, Graff-Radford J, Schwarz CG, Petersen RC, Lowe VJ, Jack CR, Josephs KA, Whitwell JL. Speech-language within and between network disruptions in primary progressive aphasia variants. Neuroimage Clin 2024; 43:103639. [PMID: 38991435 PMCID: PMC11296005 DOI: 10.1016/j.nicl.2024.103639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/20/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024]
Abstract
Primary progressive aphasia (PPA) variants present with distinct disruptions in speech-language functions with little known about the interplay between affected and spared regions within the speech-language network and their interaction with other functional networks. The Neurodegenerative Research Group, Mayo Clinic, recruited 123 patients with PPA (55 logopenic (lvPPA), 44 non-fluent (nfvPPA) and 24 semantic (svPPA)) who were matched to 60 healthy controls. We investigated functional connectivity disruptions between regions within the left-speech-language network (Broca, Wernicke, anterior middle temporal gyrus (aMTG), supplementary motor area (SMA), planum temporale (PT) and parietal operculum (PO)), and disruptions to other networks (visual association, dorsal-attention, frontoparietal and default mode networks (DMN)). Within the speech-language network, multivariate linear regression models showed reduced aMTG-Broca connectivity in all variants, with lvPPA and nfvPPA findings remaining significant after Bonferroni correction. Additional loss in Wernicke-Broca connectivity in nfvPPA, Wernicke-PT connectivity in lvPPA and greater aMTG-PT connectivity in svPPA were also noted. Between-network connectivity findings in all variants showed reduced aMTG-DMN and increased aMTG-dorsal-attention connectivity, with additional disruptions between aMTG-visual association in both lvPPA and svPPA, aMTG-frontoparietal in lvPPA, and Wernicke-DMN breakdown in svPPA. These findings suggest that aMTG connectivity breakdown is a shared feature in all PPA variants, with lvPPA showing more extensive connectivity disruptions with other networks.
Collapse
Affiliation(s)
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Joseph R Duffy
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Mary M Machulda
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | | |
Collapse
|
4
|
Lang M, Colby S, Ashby-Padial C, Bapna M, Jaimes C, Rincon SP, Buch K. An imaging review of the hippocampus and its common pathologies. J Neuroimaging 2024; 34:5-25. [PMID: 37872430 DOI: 10.1111/jon.13165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/07/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023] Open
Abstract
The hippocampus is a complex structure located in the mesial temporal lobe that plays a critical role in cognitive and memory-related processes. The hippocampal formation consists of the dentate gyrus, hippocampus proper, and subiculum, and its importance in the neural circuitry makes it a key anatomic structure to evaluate in neuroimaging studies. Advancements in imaging techniques now allow detailed assessment of hippocampus internal architecture and signal features that has improved identification and characterization of hippocampal abnormalities. This review aims to summarize the neuroimaging features of the hippocampus and its common pathologies. It provides an overview of the hippocampal anatomy on magnetic resonance imaging and discusses how various imaging techniques can be used to assess the hippocampus. The review explores neuroimaging findings related to hippocampal variants (incomplete hippocampal inversion, sulcal remnant and choroidal fissure cysts), and pathologies of neoplastic (astrocytoma and glioma, ganglioglioma, dysembryoplastic neuroepithelial tumor, multinodular and vacuolating neuronal tumor, and metastasis), epileptic (mesial temporal sclerosis and focal cortical dysplasia), neurodegenerative (Alzheimer's disease, progressive primary aphasia, and frontotemporal dementia), infectious (Herpes simplex virus and limbic encephalitis), vascular (ischemic stroke, arteriovenous malformation, and cerebral cavernous malformations), and toxic-metabolic (transient global amnesia and opioid-associated amnestic syndrome) etiologies.
Collapse
Affiliation(s)
- Min Lang
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Samantha Colby
- Department of Neurosurgery, University of Utah Health, Salt Lake City, Utah, USA
| | | | - Monika Bapna
- School of Medicine, Georgetown University, Washington, DC, USA
| | - Camilo Jaimes
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Sandra P Rincon
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Karen Buch
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Hardy CJD, Taylor‐Rubin C, Taylor B, Harding E, Gonzalez AS, Jiang J, Thompson L, Kingma R, Chokesuwattanaskul A, Walker F, Barker S, Brotherhood E, Waddington C, Wood O, Zimmermann N, Kupeli N, Yong KXX, Camic PM, Stott J, Marshall CR, Oxtoby NP, Rohrer JD, Volkmer A, Crutch SJ, Warren JD. Symptom-led staging for semantic and non-fluent/agrammatic variants of primary progressive aphasia. Alzheimers Dement 2024; 20:195-210. [PMID: 37548125 PMCID: PMC10917001 DOI: 10.1002/alz.13415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023]
Abstract
INTRODUCTION Here we set out to create a symptom-led staging system for the canonical semantic and non-fluent/agrammatic variants of primary progressive aphasia (PPA), which present unique diagnostic and management challenges not well captured by functional scales developed for Alzheimer's disease and other dementias. METHODS An international PPA caregiver cohort was surveyed on symptom development under six provisional clinical stages and feedback was analyzed using a mixed-methods sequential explanatory design. RESULTS Both PPA syndromes were characterized by initial communication dysfunction and non-verbal behavioral changes, with increasing syndromic convergence and functional dependency at later stages. Milestone symptoms were distilled to create a prototypical progression and severity scale of functional impairment: the PPA Progression Planning Aid ("PPA-Squared"). DISCUSSION This work introduces a symptom-led staging scheme and functional scale for semantic and non-fluent/agrammatic variants of PPA. Our findings have implications for diagnostic and care pathway guidelines, trial design, and personalized prognosis and treatment for PPA. HIGHLIGHTS We introduce new symptom-led perspectives on primary progressive aphasia (PPA). The focus is on non-fluent/agrammatic (nfvPPA) and semantic (svPPA) variants. Foregrounding of early and non-verbal features of PPA and clinical trajectories is featured. We introduce a symptom-led staging scheme for PPA. We propose a prototype for a functional impairment scale, the PPA Progression Planning Aid.
Collapse
Affiliation(s)
- Chris J. D. Hardy
- Dementia Research CentreUCL Queen Square Institute of NeurologyUCLLondonUK
| | - Cathleen Taylor‐Rubin
- Uniting War Memorial HospitalSydneyAustralia
- Faculty of MedicineHealth and Human SciencesMacquarie UniversitySydneyAustralia
| | - Beatrice Taylor
- Centre for Medical Image ComputingDepartment of Computer ScienceUCLLondonUK
| | - Emma Harding
- Dementia Research CentreUCL Queen Square Institute of NeurologyUCLLondonUK
| | | | - Jessica Jiang
- Dementia Research CentreUCL Queen Square Institute of NeurologyUCLLondonUK
| | | | | | - Anthipa Chokesuwattanaskul
- Dementia Research CentreUCL Queen Square Institute of NeurologyUCLLondonUK
- Division of NeurologyDepartment of Internal MedicineKing Chulalongkorn Memorial HospitalBangkokThailand
- Cognitive Clinical and Computational Neuroscience Research UnitFaculty of MedicineChulalongkorn UniversityBangkokThailand
| | | | - Suzie Barker
- Dementia Research CentreUCL Queen Square Institute of NeurologyUCLLondonUK
| | - Emilie Brotherhood
- Dementia Research CentreUCL Queen Square Institute of NeurologyUCLLondonUK
| | - Claire Waddington
- Dementia Research CentreUCL Queen Square Institute of NeurologyUCLLondonUK
| | - Olivia Wood
- Dementia Research CentreUCL Queen Square Institute of NeurologyUCLLondonUK
| | - Nikki Zimmermann
- Dementia Research CentreUCL Queen Square Institute of NeurologyUCLLondonUK
| | - Nuriye Kupeli
- Marie Curie Palliative Care Research DepartmentDivision of PsychiatryUCLLondonUK
| | - Keir X. X. Yong
- Dementia Research CentreUCL Queen Square Institute of NeurologyUCLLondonUK
| | - Paul M. Camic
- Dementia Research CentreUCL Queen Square Institute of NeurologyUCLLondonUK
| | - Joshua Stott
- Dementia Research CentreUCL Queen Square Institute of NeurologyUCLLondonUK
- ADAPT LabResearch Department of ClinicalEducational and Health PsychologyUCLLondonUK
| | | | - Neil P. Oxtoby
- Centre for Medical Image ComputingDepartment of Computer ScienceUCLLondonUK
| | - Jonathan D. Rohrer
- Dementia Research CentreUCL Queen Square Institute of NeurologyUCLLondonUK
| | - Anna Volkmer
- Dementia Research CentreUCL Queen Square Institute of NeurologyUCLLondonUK
- Psychology and Language Sciences (PALS)UCLLondonUK
| | | | - Jason D. Warren
- Dementia Research CentreUCL Queen Square Institute of NeurologyUCLLondonUK
| |
Collapse
|
6
|
Ramanan S, Halai AD, Garcia-Penton L, Perry AG, Patel N, Peterson KA, Ingram RU, Storey I, Cappa SF, Catricala E, Patterson K, Rowe JB, Garrard P, Ralph MAL. The neural substrates of transdiagnostic cognitive-linguistic heterogeneity in primary progressive aphasia. Alzheimers Res Ther 2023; 15:219. [PMID: 38102724 PMCID: PMC10724982 DOI: 10.1186/s13195-023-01350-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Clinical variants of primary progressive aphasia (PPA) are diagnosed based on characteristic patterns of language deficits, supported by corresponding neural changes on brain imaging. However, there is (i) considerable phenotypic variability within and between each diagnostic category with partially overlapping profiles of language performance between variants and (ii) accompanying non-linguistic cognitive impairments that may be independent of aphasia magnitude and disease severity. The neurobiological basis of this cognitive-linguistic heterogeneity remains unclear. Understanding the relationship between these variables would improve PPA clinical/research characterisation and strengthen clinical trial and symptomatic treatment design. We address these knowledge gaps using a data-driven transdiagnostic approach to chart cognitive-linguistic differences and their associations with grey/white matter degeneration across multiple PPA variants. METHODS Forty-seven patients (13 semantic, 15 non-fluent, and 19 logopenic variant PPA) underwent assessment of general cognition, errors on language performance, and structural and diffusion magnetic resonance imaging to index whole-brain grey and white matter changes. Behavioural data were entered into varimax-rotated principal component analyses to derive orthogonal dimensions explaining the majority of cognitive variance. To uncover neural correlates of cognitive heterogeneity, derived components were used as covariates in neuroimaging analyses of grey matter (voxel-based morphometry) and white matter (network-based statistics of structural connectomes). RESULTS Four behavioural components emerged: general cognition, semantic memory, working memory, and motor speech/phonology. Performance patterns on the latter three principal components were in keeping with each variant's characteristic profile, but with a spectrum rather than categorical distribution across the cohort. General cognitive changes were most marked in logopenic variant PPA. Regardless of clinical diagnosis, general cognitive impairment was associated with inferior/posterior parietal grey/white matter involvement, semantic memory deficits with bilateral anterior temporal grey/white matter changes, working memory impairment with temporoparietal and frontostriatal grey/white matter involvement, and motor speech/phonology deficits with inferior/middle frontal grey matter alterations. CONCLUSIONS Cognitive-linguistic heterogeneity in PPA closely relates to individual-level variations on multiple behavioural dimensions and grey/white matter degeneration of regions within and beyond the language network. We further show that employment of transdiagnostic approaches may help to understand clinical symptom boundaries and reveal clinical and neural profiles that are shared across categorically defined variants of PPA.
Collapse
Affiliation(s)
- Siddharth Ramanan
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK.
| | - Ajay D Halai
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| | - Lorna Garcia-Penton
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| | - Alistair G Perry
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - Nikil Patel
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Katie A Peterson
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - Ruth U Ingram
- Division of Psychology and Mental Health, University of Manchester, Manchester, UK
| | - Ian Storey
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Stefano F Cappa
- IUSS Cognitive Neuroscience Center (ICoN), University Institute of Advanced Studies IUSS, Pavia, Italy
- Dementia Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Eleonora Catricala
- IUSS Cognitive Neuroscience Center (ICoN), University Institute of Advanced Studies IUSS, Pavia, Italy
- Dementia Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Karalyn Patterson
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| | - James B Rowe
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - Peter Garrard
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Matthew A Lambon Ralph
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| |
Collapse
|
7
|
Ohm DT, Rhodes E, Bahena A, Capp N, Lowe M, Sabatini P, Trotman W, Olm CA, Phillips J, Prabhakaran K, Rascovsky K, Massimo L, McMillan C, Gee J, Tisdall MD, Yushkevich PA, Lee EB, Grossman M, Irwin DJ. Neuroanatomical and cellular degeneration associated with a social disorder characterized by new ritualistic belief systems in a TDP-C patient vs. a Pick patient. Front Neurol 2023; 14:1245886. [PMID: 37900607 PMCID: PMC10600461 DOI: 10.3389/fneur.2023.1245886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/15/2023] [Indexed: 10/31/2023] Open
Abstract
Frontotemporal dementia (FTD) is a spectrum of clinically and pathologically heterogenous neurodegenerative dementias. Clinical and anatomical variants of FTD have been described and associated with underlying frontotemporal lobar degeneration (FTLD) pathology, including tauopathies (FTLD-tau) or TDP-43 proteinopathies (FTLD-TDP). FTD patients with predominant degeneration of anterior temporal cortices often develop a language disorder of semantic knowledge loss and/or a social disorder often characterized by compulsive rituals and belief systems corresponding to predominant left or right hemisphere involvement, respectively. The neural substrates of these complex social disorders remain unclear. Here, we present a comparative imaging and postmortem study of two patients, one with FTLD-TDP (subtype C) and one with FTLD-tau (subtype Pick disease), who both developed new rigid belief systems. The FTLD-TDP patient developed a complex set of values centered on positivity and associated with specific physical and behavioral features of pigs, while the FTLD-tau patient developed compulsive, goal-directed behaviors related to general themes of positivity and spirituality. Neuroimaging showed left-predominant temporal atrophy in the FTLD-TDP patient and right-predominant frontotemporal atrophy in the FTLD-tau patient. Consistent with antemortem cortical atrophy, histopathologic examinations revealed severe loss of neurons and myelin predominantly in the anterior temporal lobes of both patients, but the FTLD-tau patient showed more bilateral, dorsolateral involvement featuring greater pathology and loss of projection neurons and deep white matter. These findings highlight that the regions within and connected to anterior temporal lobes may have differential vulnerability to distinct FTLD proteinopathies and serve important roles in human belief systems.
Collapse
Affiliation(s)
- Daniel T. Ohm
- Penn Digital Neuropathology Laboratory, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Emma Rhodes
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Alejandra Bahena
- Penn Digital Neuropathology Laboratory, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Noah Capp
- Penn Digital Neuropathology Laboratory, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - MaKayla Lowe
- Penn Digital Neuropathology Laboratory, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Philip Sabatini
- Penn Digital Neuropathology Laboratory, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Winifred Trotman
- Penn Digital Neuropathology Laboratory, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Christopher A. Olm
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Jeffrey Phillips
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Karthik Prabhakaran
- Penn Image Computing and Science Lab, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Katya Rascovsky
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Lauren Massimo
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Corey McMillan
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - James Gee
- Penn Image Computing and Science Lab, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - M. Dylan Tisdall
- Center for Advanced Magnetic Resonance Imaging and Spectroscopy, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Paul A. Yushkevich
- Penn Image Computing and Science Lab, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Edward B. Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Murray Grossman
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - David J. Irwin
- Penn Digital Neuropathology Laboratory, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
8
|
Neophytou K, Wiley R, Litovsky C, Tsapkini K, Rapp B. The right hemisphere's capacity for language: evidence from primary progressive aphasia. Cereb Cortex 2023; 33:9971-9985. [PMID: 37522277 PMCID: PMC10502784 DOI: 10.1093/cercor/bhad258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
The role of the right hemisphere (RH) in core language processes is still a matter of intense debate. Most of the relevant evidence has come from studies of gray matter, with relatively little research on RH white matter (WM) connectivity. Using Diffusion Tensor Imaging-based tractography, the current work examined the role of the two hemispheres in language processing in 33 individuals with Primary Progressive Aphasia (PPA), aiming to better characterize the contribution of the RH to language processing in the context of left hemisphere (LH) damage. The findings confirm the impact of PPA on the integrity of the WM language tracts in the LH. Additionally, an examination of the relationship between tract integrity and language behaviors provides robust evidence of the involvement of the WM language tracts of both hemispheres in language processing in PPA. Importantly, this study provides novel evidence of a unique contribution of the RH to language processing (i.e. a contribution independent from that of the language-dominant LH). Finally, we provide evidence that the RH contribution is specific to language processing rather than being domain general. These findings allow us to better characterize the role of RH in language processing, particularly in the context of LH damage.
Collapse
Affiliation(s)
- Kyriaki Neophytou
- Department of Neurology, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Robert Wiley
- Department of Psychology, University of North Carolina at Greensboro, Greensboro, NC, United States
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, United States
| | - Celia Litovsky
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, United States
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins Medicine, Baltimore, MD, United States
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, United States
| | - Brenda Rapp
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
9
|
Hardy CJD, Taylor-Rubin C, Taylor B, Harding E, Gonzalez AS, Jiang J, Thompson L, Kingma R, Chokesuwattanaskul A, Walker F, Barker S, Brotherhood E, Waddington C, Wood O, Zimmermann N, Kupeli N, Yong KXX, Camic PM, Stott J, Marshall CR, Oxtoby NP, Rohrer JD, Volkmer A, Crutch SJ, Warren JD. Symptom-led staging for primary progressive aphasia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.13.23286972. [PMID: 36993460 PMCID: PMC10055437 DOI: 10.1101/2023.03.13.23286972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The primary progressive aphasias (PPA) present complex and diverse challenges of diagnosis, management and prognosis. A clinically-informed, syndromic staging system for PPA would take a substantial step toward meeting these challenges. This study addressed this need using detailed, multi-domain mixed-methods symptom surveys of people with lived experience in a large international PPA cohort. We administered structured online surveys to caregivers of patients with a canonical PPA syndromic variant (nonfluent/agrammatic (nvPPA), semantic (svPPA) or logopenic (lvPPA)). In an 'exploratory' survey, a putative list and ordering of verbal communication and nonverbal functioning (nonverbal thinking, conduct and wellbeing, physical) symptoms was administered to 118 caregiver members of the UK national PPA Support Group. Based on feedback, we expanded the symptom list and created six provisional clinical stages for each PPA subtype. In a 'consolidation' survey, these stages were presented to 110 caregiver members of UK and Australian PPA Support Groups, and refined based on quantitative and qualitative feedback. Symptoms were retained if rated as 'present' by a majority (at least 50%) of respondents representing that PPA syndrome, and assigned to a consolidated stage based on majority consensus; the confidence of assignment was estimated for each symptom as the proportion of respondents in agreement with the final staging for that symptom. Qualitative responses were analysed using framework analysis. For each PPA syndrome, six stages ranging from 1 ('Very mild') to 6 ('Profound') were identified; earliest stages were distinguished by syndromic hallmark symptoms of communication dysfunction, with increasing trans-syndromic convergence and dependency for basic activities of daily living at later stages. Spelling errors, hearing changes and nonverbal behavioural features were reported at early stages in all syndromes. As the illness evolved, swallowing and mobility problems were reported earlier in nfvPPA than other syndromes, while difficulty recognising familiar people and household items characterised svPPA and visuospatial symptoms were more prominent in lvPPA. Overall confidence of symptom staging was higher for svPPA than other syndromes. Across syndromes, functional milestones were identified as key deficits that predict the sequence of major daily life impacts and associated management needs. Qualitatively, we identified five major themes encompassing 15 subthemes capturing respondents' experiences of PPA and suggestions for staging implementation. This work introduces a prototypical, symptom-led staging scheme for canonical PPA syndromes: the PPA Progression Planning Aid (PPA 2 ). Our findings have implications for diagnostic and care pathway guidelines, trial design and personalised prognosis and treatment for people living with these diseases.
Collapse
Affiliation(s)
- Chris JD Hardy
- Dementia Research Centre, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Cathleen Taylor-Rubin
- Uniting War Memorial Hospital, Sydney, Australia
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Beatrice Taylor
- Centre for Medical Image Computing, Department of Computer Science, UCL, London, UK
| | - Emma Harding
- Dementia Research Centre, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Aida Suarez Gonzalez
- Dementia Research Centre, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Jessica Jiang
- Dementia Research Centre, UCL Queen Square Institute of Neurology, UCL, London, UK
| | | | | | - Anthipa Chokesuwattanaskul
- Dementia Research Centre, UCL Queen Square Institute of Neurology, UCL, London, UK
- Division of Neurology, Department of Internal Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Cognitive Clinical and Computational Neuroscience Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Suzie Barker
- Dementia Research Centre, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Emilie Brotherhood
- Dementia Research Centre, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Claire Waddington
- Dementia Research Centre, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Olivia Wood
- Dementia Research Centre, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Nikki Zimmermann
- Dementia Research Centre, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Nuriye Kupeli
- Marie Curie Palliative Care Research Department, Division of Psychiatry, UCL, London, UK
| | - Keir XX Yong
- Dementia Research Centre, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Paul M Camic
- Dementia Research Centre, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Josh Stott
- Dementia Research Centre, UCL Queen Square Institute of Neurology, UCL, London, UK
- ADAPTlab, Research Department of Clinical, Educational and Health Psychology, UCL, London, UK
| | | | - Neil P. Oxtoby
- Centre for Medical Image Computing, Department of Computer Science, UCL, London, UK
| | - Jonathan D Rohrer
- Dementia Research Centre, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Anna Volkmer
- Dementia Research Centre, UCL Queen Square Institute of Neurology, UCL, London, UK
- Psychology and Language Sciences (PALS), UCL, London, UK
| | - Sebastian J Crutch
- Dementia Research Centre, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Jason D Warren
- Dementia Research Centre, UCL Queen Square Institute of Neurology, UCL, London, UK
| |
Collapse
|
10
|
Tafuri B, Filardi M, Urso D, Gnoni V, De Blasi R, Nigro S, Logroscino G. Asymmetry of radiomics features in the white matter of patients with primary progressive aphasia. Front Aging Neurosci 2023; 15:1120935. [PMID: 37213534 PMCID: PMC10196268 DOI: 10.3389/fnagi.2023.1120935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/17/2023] [Indexed: 05/23/2023] Open
Abstract
Introduction Primary Progressive Aphasia (PPA) is a neurological disease characterized by linguistic deficits. Semantic (svPPA) and non-fluent/agrammatic (nfvPPA) variants are the two main clinical subtypes. We applied a novel analytical framework, based on radiomic analysis, to investigate White Matter (WM) asymmetry and to examine whether asymmetry is associated with verbal fluency performance. Methods Analyses were performed on T1-weighted images including 56 patients with PPA (31 svPPA and 25 nfvPPA) and 53 age- and sex-matched controls. Asymmetry Index (AI) was computed for 86 radiomics features in 34 white matter regions. The relationships between AI, verbal fluency performance (semantic and phonemic) and Boston Naming Test score (BNT) were explored through Spearman correlation analysis. Results Relative to controls, WM asymmetry in svPPA patients involved regions adjacent to middle temporal cortex as part of the inferior longitudinal (ILF), fronto-occipital (IFOF) and superior longitudinal fasciculi. Conversely, nfvPPA patients showed an asymmetry of WM in lateral occipital regions (ILF/IFOF). A higher lateralization involving IFOF, cingulum and forceps minor was found in nfvPPA compared to svPPA patients. In nfvPPA patients, semantic fluency was positively correlated to asymmetry in ILF/IFOF tracts. Performances at BNT were associated with AI values of the middle temporal (ILF/SLF) and parahippocampal (ILF/IFOF) gyri in svPPA patients. Discussion Radiomics features depicted distinct pathways of asymmetry in svPPA and nfvPPA involving damage of principal fiber tracts associated with speech and language. Assessing asymmetry of radiomics in PPA allows achieving a deeper insight into the neuroanatomical damage and may represent a candidate severity marker for language impairments in PPA patients.
Collapse
Affiliation(s)
- Benedetta Tafuri
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro, “Pia Fondazione Cardinale G. Panico”, Lecce, Italy
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy
- *Correspondence: Benedetta Tafuri,
| | - Marco Filardi
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro, “Pia Fondazione Cardinale G. Panico”, Lecce, Italy
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - Daniele Urso
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro, “Pia Fondazione Cardinale G. Panico”, Lecce, Italy
- Department of Neurosciences, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom
| | - Valentina Gnoni
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro, “Pia Fondazione Cardinale G. Panico”, Lecce, Italy
- Department of Neurosciences, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom
- Sleep and Brain Plasticity Centre, CNS, IoPPN, King’s College London, London, United Kingdom
| | - Roberto De Blasi
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro, “Pia Fondazione Cardinale G. Panico”, Lecce, Italy
- Department of Diagnostic Imaging, Pia Fondazione di Culto e Religione “Card. G. Panico”, Tricase, Italy
| | - Salvatore Nigro
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro, “Pia Fondazione Cardinale G. Panico”, Lecce, Italy
| | - Giancarlo Logroscino
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro, “Pia Fondazione Cardinale G. Panico”, Lecce, Italy
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | | |
Collapse
|
11
|
Singh NA, Graff-Radford J, Machulda MM, Thu NT, Schwarz CG, Reid RI, Lowe VJ, Petersen RC, Jack CR, Josephs KA, Whitwell JL. Diffusivity Changes in Posterior Cortical Atrophy and Logopenic Progressive Aphasia: A Longitudinal Diffusion Tensor Imaging Study. J Alzheimers Dis 2023; 94:709-725. [PMID: 37302032 PMCID: PMC10785680 DOI: 10.3233/jad-221217] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
BACKGROUND Posterior cortical atrophy (PCA) and logopenic progressive aphasia (LPA) are associated with characteristic patterns of structural network degeneration. Little is known about longitudinal patterns of white matter tract degeneration in these phenotypes. OBJECTIVE To assess longitudinal patterns of white matter degeneration and identify phenotype specific cross-sectional and longitudinal diffusion tensor imaging (DTI) biomarkers in PCA and LPA. METHODS Twenty-five PCA, 22 LPA and 25 cognitively unimpaired (CU) individuals were recruited and underwent structural MRI that included a DTI sequence with a follow-up one year later. Cross-sectional and longitudinal mixed effects models were fit to assess the effects of diagnosis on baseline and annualized change in regional DTI metrics. Discriminatory power was investigated using the area under the receiver operating characteristic curves (AUROC). RESULTS PCA and LPA showed overlapping white matter degeneration profiles predominantly in the left occipital and temporal lobes, the posterior thalamic radiation and sagittal stratum at baseline, as well as the parietal lobe longitudinally. PCA showed degeneration in the occipital and parietal white matter, cross-sectionally and longitudinally, compared to CU, while LPA showed greater degeneration in the temporal and inferior parietal white matter and the inferior fronto-occipital fasciculus cross-sectionally, and in parietal white matter longitudinally compared to CU. Cross-sectionally, integrity of the inferior occipital white matter was best able to differentiate PCA from LPA, with an AUROC of 0.82. CONCLUSION These findings contribute to our understanding of white matter degeneration and support usage of DTI as a useful additional diagnostic biomarker for PCA and LPA.
Collapse
Affiliation(s)
| | | | - Mary M. Machulda
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | - Nha Trang Thu
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Robert I. Reid
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | - Val J. Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | |
Collapse
|
12
|
Coemans S, Keulen S, Savieri P, Tsapkini K, Engelborghs S, Chrispeels N, Vandenborre D, Paquier P, Wilssens I, Declerck M, Struys E. Executive functions in primary progressive aphasia: A meta-analysis. Cortex 2022; 157:304-322. [PMID: 36395634 PMCID: PMC11161026 DOI: 10.1016/j.cortex.2022.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/06/2022] [Accepted: 10/04/2022] [Indexed: 12/15/2022]
Abstract
Executive functions (EFs) refer to a set of cognitive processes, specifically shifting, inhibition, updating of working memory, and are involved in the cognitive control of behavior. Conflicting results have been reported regarding impairments of EFs in Primary Progressive Aphasia (PPA). We performed a multi-level meta-analysis to confirm whether deficits of EFs exist in this population, focusing on a common EFs composite, and the components shifting, inhibition and updating separately. We included 141 studies that report on 294 EFs tasks. The overall mean weighted effect size was large (d = -1,28), indicating poorer EFs in PPA as compared to age-matched cognitively healthy controls. Differences between effect sizes of the EFs components were not significant, indicating all components are affected similarly. Overall, moderator analysis revealed that PPA variant and disease duration were significant moderators of performance, while task modality and years of education were not. The non-fluent/agrammatic PPA and the logopenic PPA variants were similarly affected, but the semantic variant was affected to a lesser extent. We discuss implications for clinical and research settings, and future research.
Collapse
Affiliation(s)
- Silke Coemans
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| | - Stefanie Keulen
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Perseverence Savieri
- Interfaculty Center for Data Processing and Statistics (ICDS), Vrije Universiteit Brussel (VUB), Brussels, Belgium; Biostatistics and Medical Informatics (BISI) Research Group, Department of Public Health, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, USA
| | - Sebastiaan Engelborghs
- Neuroprotection & Neuromodulation, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium; Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium; Department of Biomedical Sciences, Universiteit Antwerpen (UA), Antwerp, Belgium
| | - Nini Chrispeels
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Dorien Vandenborre
- Department of Speech and Language Pathology, Thomas More University of Applied Sciences, Antwerp, Belgium
| | - Philippe Paquier
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussel (VUB), Brussels, Belgium; Center for Research in Cognition and Neurosciences (CRCN), Université Libre de Bruxelles (ULB), Brussels, Belgium; Department of Translational Neurosciences (TNW), Universiteit Antwerpen (UA), Antwerp, Belgium
| | - Ineke Wilssens
- Department of Speech and Language Pathology, Thomas More University of Applied Sciences, Antwerp, Belgium
| | - Mathieu Declerck
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Esli Struys
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussel (VUB), Brussels, Belgium; Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
13
|
Egorova-Brumley N, Liang C, Khlif MS, Brodtmann A. White matter microstructure and verbal fluency. Brain Struct Funct 2022; 227:3017-3025. [PMID: 36251043 PMCID: PMC9653311 DOI: 10.1007/s00429-022-02579-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/06/2022] [Indexed: 12/02/2022]
Abstract
Poor performance on verbal fluency tasks is associated with an increased risk of post-stroke cognitive impairment. Grey matter regions supporting verbal fluency have been identified via lesion–symptom mapping, but the links between verbal fluency and white matter structure remain less well described. We examined white matter correlates of semantic (Category Fluency Animals) and phonemic or lexical fluency (COWAT FAS) after stroke, accounting for stroke severity measured with the National Institutes of health Stroke Scale (NIHSS), age, sex, and level of education. White matter fibre density and cross-section measures were automatically extracted from 72 tracts, using MRtrix and TractSeg software in 72 ischaemic stroke survivors assessed 3 months after their event. We conducted regression analyses separately for phonemic and semantic fluency for each tract. Worse semantic fluency was associated with lower fibre density in several tracts, including the arcuate fasciculus, superior longitudinal fasciculus, inferior occipito-frontal fasciculus, inferior longitudinal fasciculus, optic radiation, striato-occipital, thalamo-occipital tracts, and inferior cerebellar peduncle. Our stroke sample was heterogenous with largely non-overlapping and predominantly right-lateralised lesions (lesion distribution: left N = 27, right N = 43, bilateral N = 2), dissimilar to previous studies of verbal fluency. Yet, the tracts we identified as correlates of semantic fluency were all left-lateralised. No associations between phonemic fluency performance and fibre density metrics in any of the white matter tracts we extracted survived correction for multiple comparisons, possibly due to the limitations in the selection of tracts and sample characteristics. We conclude that when accounting for the effects of stroke severity, sex, age, and education, semantic fluency is associated with white matter microstructure in the left arcuate fasciculus, superior longitudinal fasciculus, and several occipital tracts, possibly reflecting the disconnection in the sagittal stratum. Our results obtained with fixel-based analysis, complement previous findings obtained with lesions–symptom mapping and neurodegenerative approaches.
Collapse
Affiliation(s)
- Natalia Egorova-Brumley
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia. .,The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia.
| | - Chen Liang
- Department of Speech Pathology, University of Melbourne, Melbourne, Australia
| | - Mohamed Salah Khlif
- Cognitive Health Initiative, Central Clinical School, Monash University, Melbourne, Australia.,The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Amy Brodtmann
- Cognitive Health Initiative, Central Clinical School, Monash University, Melbourne, Australia.,The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| |
Collapse
|
14
|
Bruffaerts R, Schaeverbeke J, Radwan A, Grube M, Gabel S, De Weer AS, Dries E, Van Bouwel K, Griffiths TD, Sunaert S, Vandenberghe R. Left Frontal White Matter Links to Rhythm Processing Relevant to Speech Production in Apraxia of Speech. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2022; 3:515-537. [PMID: 37215340 PMCID: PMC10158569 DOI: 10.1162/nol_a_00075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/03/2022] [Indexed: 05/24/2023]
Abstract
Recent mechanistic models argue for a key role of rhythm processing in both speech production and speech perception. Patients with the non-fluent variant (NFV) of primary progressive aphasia (PPA) with apraxia of speech (AOS) represent a specific study population in which this link can be examined. Previously, we observed impaired rhythm processing in NFV with AOS. We hypothesized that a shared neurocomputational mechanism structures auditory input (sound and speech) and output (speech production) in time, a "temporal scaffolding" mechanism. Since considerable white matter damage is observed in NFV, we test here whether white matter changes are related to impaired rhythm processing. Forty-seven participants performed a psychoacoustic test battery: 12 patients with NFV and AOS, 11 patients with the semantic variant of PPA, and 24 cognitively intact age- and education-matched controls. Deformation-based morphometry was used to test whether white matter volume correlated to rhythmic abilities. In 34 participants, we also obtained tract-based metrics of the left Aslant tract, which is typically damaged in patients with NFV. Nine out of 12 patients with NFV displayed impaired rhythmic processing. Left frontal white matter atrophy adjacent to the supplementary motor area (SMA) correlated with poorer rhythmic abilities. The structural integrity of the left Aslant tract also correlated with rhythmic abilities. A colocalized and perhaps shared white matter substrate adjacent to the SMA is associated with impaired rhythmic processing and motor speech impairment. Our results support the existence of a temporal scaffolding mechanism structuring perceptual input and speech output.
Collapse
Affiliation(s)
- Rose Bruffaerts
- Laboratory for Cognitive Neurology, Department of Neurosciences & Leuven Brain Institute, Katholieke Universiteit Leuven, Leuven, Belgium
- Neurology Department, University Hospitals Leuven, Leuven, Belgium
- Computational Neurology, Experimental Neurobiology Unit (ENU), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jolien Schaeverbeke
- Laboratory for Cognitive Neurology, Department of Neurosciences & Leuven Brain Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Ahmed Radwan
- Translational MRI, Department of Imaging and Pathology & Leuven Brain Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Manon Grube
- Biosciences Institute, Medical School, Newcastle University, Newcastle-upon-Tyne, UK
- BIFOLD, Technische Universität Berlin, Germany; Department of Psychology, Ashoka University, India
| | - Silvy Gabel
- Laboratory for Cognitive Neurology, Department of Neurosciences & Leuven Brain Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - An-Sofie De Weer
- Neurology Department, University Hospitals Leuven, Leuven, Belgium
| | - Eva Dries
- Neurology Department, University Hospitals Leuven, Leuven, Belgium
| | - Karen Van Bouwel
- Neurology Department, University Hospitals Leuven, Leuven, Belgium
| | - Timothy D. Griffiths
- Biosciences Institute, Medical School, Newcastle University, Newcastle-upon-Tyne, UK
| | - Stefan Sunaert
- Translational MRI, Department of Imaging and Pathology & Leuven Brain Institute, Katholieke Universiteit Leuven, Leuven, Belgium
- Radiology Department, University Hospitals Leuven, Leuven, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences & Leuven Brain Institute, Katholieke Universiteit Leuven, Leuven, Belgium
- Neurology Department, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Diffusion tractography of superior cerebellar peduncle and dentatorubrothalamic tracts in two autopsy confirmed progressive supranuclear palsy variants: Richardson syndrome and the speech-language variant. Neuroimage Clin 2022; 35:103030. [PMID: 35597031 PMCID: PMC9123268 DOI: 10.1016/j.nicl.2022.103030] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/21/2022]
Abstract
Different changes in DTI metrics in SCP and DRTT can be seen across PSP subtypes. DRTT tractography reconstructions demonstrated specific changes in PSP-RS. DTI and clinical PSP scores are specifically linked across each PSP variant.
Background Progressive supranuclear palsy (PSP) is a 4-repeat tauopathy with neurodegeneration typically observed in the superior cerebellar peduncle (SCP) and dentatorubrothalamic tracts (DRTT). However, it is unclear how these tracts are differentially affected in different clinical variants of PSP. Objectives To determine whether diffusion tractography of the SCP and DRTT can differentiate autopsy-confirmed PSP with Richardson’s syndrome (PSP-RS) and PSP with predominant speech/language disorder (PSP-SL). Methods We studied 22 autopsy-confirmed PSP patients that included 12 with PSP-RS and 10 with PSP-SL. We compared these two groups to 11 patients with autopsy-confirmed Alzheimer’s disease with SL problems, i.e., logopenic progressive aphasia (AD-LPA) (disease controls) and 10 healthy controls. Whole brain tractography was performed to identify the SCP and DRTT, as well as the frontal aslant tract and superior longitudinal fasciculus. We assessed fractional anisotropy and mean diffusivity for each tract. Hierarchical linear modeling was used for statistical comparisons, and correlations were assessed with clinical disease severity, ocular motor impairment, and parkinsonism. DRTT connectomics matrix analysis was also performed across groups. Results The SCP showed decreased fractional anisotropy for PSP-RS and PSP-SL and increased mean diffusivity in PSP-RS, compared to controls and AD-LPA. Right DRTT fibers showed lower fractional anisotropy in PSP-RS and PSP-SL compared to controls and AD-LPA, with PSP-RS also showing lower values compared to PSP-SL. Reductions in connectivity were observed in infratentorial DRTT regions in PSP-RS vs cortical regions in PSP-SL. PSP-SL showed greater abnormalities in the frontal aslant tract and superior longitudinal fasciculus compared to controls, PSP-RS, and AD-LPA. Significant correlations were observed between ocular motor impairment and SCP in PSP-RS (p = 0.042), and DRTT in PSP-SL (p = 0.022). In PSP-SL, the PSP Rating Scale correlated with the SCP (p = 0.045) and DRTT (p = 0.008), and the Unified Parkinson’s Disease Rating Scale correlated with the DRTT (p = 0.014). Conclusions Degeneration of the SCP and DRTT are diagnostic features of both PSP-RS and PSP-SL and associations with clinical metrics validate the role of these tracts in PSP-related clinical features, particularly in PSP-SL.
Collapse
|
16
|
Toller G, Mandelli ML, Cobigo Y, Rosen HJ, Kramer JH, Miller BL, Gorno-Tempini ML, Rankin KP. Right uncinate fasciculus supports socioemotional sensitivity in health and neurodegenerative disease. Neuroimage Clin 2022; 34:102994. [PMID: 35487131 PMCID: PMC9125782 DOI: 10.1016/j.nicl.2022.102994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/24/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022]
Abstract
The uncinate fasciculus (UF) connects fronto-insular and temporal gray matter regions involved in visceral emotional reactivity and semantic appraisal, but the precise role of this tract in socioemotional functioning is not well-understood. Using the Revised-Self Monitoring (RSMS) informant questionnaire, we examined whether fractional anisotropy (FA) in the right UF corresponded to socioemotional sensitivity during face-to-face interactions in 145 individuals (40 healthy older adults [NC], and 105 patients with frontotemporal lobar degeneration [FTLD] syndromes in whom this tract is selectively vulnerable, including 31 behavioral variant frontotemporal dementia [bvFTD], 39 semantic variant primary progressive aphasia [svPPA], and 35 nonfluent variant primary progressive aphasia [nfvPPA]). Voxelwise and region-of-interest-based DWI analyses revealed that FA in the right but not left UF significantly predicted RSMS score in the full sample, and in NC and svPPA subgroups alone. Right UF integrity did not predict RSMS score in the bvFTD group, but gray matter volume in the right orbitofrontal cortex adjacent to the UF was a significant predictor. Our results suggest that better socioemotional sensitivity is specifically supported by right UF white matter, highlighting a key neuro-affective relationship found in both healthy aging and neurologically affected individuals. The finding that poorer socioemotional sensitivity corresponded to right UF damage in svPPA but was more robustly influenced by gray matter atrophy adjacent to the UF in bvFTD may have important implications for endpoint selection in clinical trial design for patients with FTLD.
Collapse
Affiliation(s)
- Gianina Toller
- Memory and Aging Center, University of California, San Francisco, United States.
| | - Maria Luisa Mandelli
- Memory and Aging Center, University of California, San Francisco, United States.
| | - Yann Cobigo
- Memory and Aging Center, University of California, San Francisco, United States.
| | - Howard J Rosen
- Memory and Aging Center, University of California, San Francisco, United States.
| | - Joel H Kramer
- Memory and Aging Center, University of California, San Francisco, United States.
| | - Bruce L Miller
- Memory and Aging Center, University of California, San Francisco, United States.
| | | | - Katherine P Rankin
- Memory and Aging Center, University of California, San Francisco, United States.
| |
Collapse
|
17
|
Savard M, Pascoal TA, Servaes S, Dhollander T, Iturria-Medina Y, Kang MS, Vitali P, Therriault J, Mathotaarachchi S, Benedet AL, Gauthier S, Rosa-Neto P. Impact of long- and short-range fiber depletion on the cognitive deficits of fronto-temporal dementia. eLife 2022; 11:73510. [PMID: 35073256 PMCID: PMC8824472 DOI: 10.7554/elife.73510] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/23/2022] [Indexed: 11/21/2022] Open
Abstract
Recent studies suggest a framework where white-matter (WM) atrophy plays an important role in fronto-temporal dementia (FTD) pathophysiology. However, these studies often overlook the fact that WM tracts bridging different brain regions may have different vulnerabilities to the disease and the relative contribution of grey-matter (GM) atrophy to this WM model, resulting in a less comprehensive understanding of the relationship between clinical symptoms and pathology. Using a common factor analysis to extract a semantic and an executive factor, we aimed to test the relative contribution of WM and GM of specific tracts in predicting cognition in the Frontotemporal Lobar Degeneration Neuroimaging Initiative (FTLDNI). We found that semantic symptoms were mainly dependent on short-range WM fibre disruption, while damage to long-range WM fibres was preferentially associated to executive dysfunction with the GM contribution to cognition being predominant for local processing. These results support the importance of the disruption of specific WM tracts to the core cognitive symptoms associated with FTD. As large-scale WM tracts, which are particularly vulnerable to vascular disease, were highly associated with executive dysfunction, our findings highlight the importance of controlling for risk factors associated with deep WM disease, such as vascular risk factors, in patients with FTD in order not to potentiate underlying executive dysfunction.
Collapse
Affiliation(s)
- Melissa Savard
- Translational Neuroimaging Laboratory, McGill University
| | | | - Stijn Servaes
- Translational Neuroimaging Laboratory, McGill University
| | | | | | - Min Su Kang
- Translational Neuroimaging Laboratory, McGill University
| | - Paolo Vitali
- Department of Neurology and Neurosurgery, McGill University
| | | | | | | | | | | |
Collapse
|
18
|
Ubellacker DM, Hillis AE. The neural underpinnings of word comprehension and production: The critical roles of the temporal lobes. HANDBOOK OF CLINICAL NEUROLOGY 2022; 187:211-220. [PMID: 35964973 DOI: 10.1016/b978-0-12-823493-8.00013-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This chapter explores the involvement of the temporal lobes in distinct language functions. The examination of cases of localized damage to the temporal lobes and the resulting pattern of impairment across language tasks and types of errors made can reveal clear neural regions and associated networks essential for word comprehension, semantics, naming, reading, and spelling. Key regions implicated in these functions include left superior temporal gyrus posterior to the temporal pole in word comprehension, bilateral anterior temporal lobes in semantics, left posterior inferior temporal gyrus (pITG) in naming, and left pITG and fusiform cortex in reading and spelling. Results we review provide evidence that the temporal lobes have a critical role in many language tasks. Although various areas and associated white matter tracts work together in supporting language, damage to specific regions of the temporal lobes results in distinct and relatively predictable impairments of language functions.
Collapse
Affiliation(s)
- Delaney M Ubellacker
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
19
|
Borghesani V, DeLeon J, Gorno-Tempini ML. Frontotemporal dementia: A unique window on the functional role of the temporal lobes. HANDBOOK OF CLINICAL NEUROLOGY 2022; 187:429-448. [PMID: 35964986 PMCID: PMC9793689 DOI: 10.1016/b978-0-12-823493-8.00011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Frontotemporal dementia (FTD) is an umbrella term covering a plethora of progressive changes in executive functions, motor abilities, behavior, and/or language. Different clinical syndromes have been described in relation to localized atrophy, informing on the functional networks that underlie these specific cognitive, emotional, and behavioral processes. These functional declines are linked with the underlying neurodegeneration of frontal and/or temporal lobes due to diverse molecular pathologies. Initially, the accumulation of misfolded proteins targets specifically susceptible cell assemblies, leading to relatively focal neurodegeneration that later spreads throughout large-scale cortical networks. Here, we discuss the most recent clinical, neuropathological, imaging, and genetics findings in FTD-spectrum syndromes affecting the temporal lobe. We focus on the semantic variant of primary progressive aphasia and its mirror image, the right temporal variant of FTD. Incipient focal atrophy of the left anterior temporal lobe (ATL) manifests with predominant naming, word comprehension, reading, and object semantic deficits, while cases of predominantly right ATL atrophy present with impairments of socioemotional, nonverbal semantic, and person-specific knowledge. Overall, the observations in FTD allow for crucial clinical-anatomic inferences, shedding light on the role of the temporal lobes in both cognition and complex behaviors. The concerted activity of both ATLs is critical to ensure that percepts are translated into concepts, yet important hemispheric differences should be acknowledged. On one hand, the left ATL attributes meaning to linguistic, external stimuli, thus supporting goal-oriented, action-related behaviors (e.g., integrating sounds and letters into words). On the other hand, the right ATL assigns meaning to emotional, visceral stimuli, thus guiding socially relevant behaviors (e.g., integrating body sensations into feelings of familiarity).
Collapse
Affiliation(s)
- Valentina Borghesani
- Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Montréal, QC, Canada; Department of Psychology, Université de Montréal, Montréal, QC, Canada.
| | - Jessica DeLeon
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, United States; Department of Neurology, Dyslexia Center, University of California, San Francisco, CA, United States
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, United States; Department of Neurology, Dyslexia Center, University of California, San Francisco, CA, United States
| |
Collapse
|
20
|
Coemans S, Struys E, Vandenborre D, Wilssens I, Engelborghs S, Paquier P, Tsapkini K, Keulen S. A Systematic Review of Transcranial Direct Current Stimulation in Primary Progressive Aphasia: Methodological Considerations. Front Aging Neurosci 2021; 13:710818. [PMID: 34690737 PMCID: PMC8530184 DOI: 10.3389/fnagi.2021.710818] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/09/2021] [Indexed: 11/30/2022] Open
Abstract
A variety of tDCS approaches has been used to investigate the potential of tDCS to improve language outcomes, or slow down the decay of language competences caused by Primary Progressive Aphasia (PPA). The employed stimulation protocols and study designs in PPA are generally speaking similar to those deployed in post-stroke aphasic populations. These two etiologies of aphasia however differ substantially in their pathophysiology, and for both conditions the optimal stimulation paradigm still needs to be established. A systematic review was done and after applying inclusion and exclusion criteria, 15 articles were analyzed focusing on differences and similarities across studies especially focusing on PPA patient characteristics (age, PPA variant, language background), tDCS stimulation protocols (intensity, frequency, combined therapy, electrode configuration) and study design as recent reviews and group outcomes for individual studies suggest tDCS is an effective tool to improve language outcomes, while methodological approach and patient characteristics are mentioned as moderators that may influence treatment effects. We found that studies of tDCS in PPA have clinical and methodological and heterogeneity regarding patient populations, stimulation protocols and study design. While positive group results are usually found irrespective of these differences, the magnitude, duration and generalization of these outcomes differ when comparing stimulation locations, and when results are stratified according to the clinical variant of PPA. We interpret the results of included studies in light of patient characteristics and methodological decisions. Further, we highlight the role neuroimaging can play in study protocols and interpreting results and make recommendations for future work.
Collapse
Affiliation(s)
- Silke Coemans
- Clinical and Experimental Neurolinguistics, CLIEN, Vrije Universiteit Brussel, Brussels, Belgium
| | - Esli Struys
- Clinical and Experimental Neurolinguistics, CLIEN, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| | - Dorien Vandenborre
- Department of Speech and Language Pathology, Thomas More University of Applied Sciences, Antwerp, Belgium
| | - Ineke Wilssens
- Department of Speech and Language Pathology, Thomas More University of Applied Sciences, Antwerp, Belgium
| | - Sebastiaan Engelborghs
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
- Department of Neurology, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Reference Center for Biological Markers of Dementia, BIODEM, Institute Born-Bunge, Universiteit Antwerpen, Antwerp, Belgium
| | - Philippe Paquier
- Clinical and Experimental Neurolinguistics, CLIEN, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Research in Cognition and Neurosciences (CRCN), Université Libre de Bruxelles, Antwerp, Belgium
- Department of Translational Neurosciences (TNW), Universiteit Antwerpen, Antwerp, Belgium
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, United States
| | - Stefanie Keulen
- Clinical and Experimental Neurolinguistics, CLIEN, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
21
|
Keator LM, Yourganov G, Faria AV, Hillis AE, Tippett DC. Application of the dual stream model to neurodegenerative disease: Evidence from a multivariate classification tool in primary progressive aphasia. APHASIOLOGY 2021; 36:618-647. [PMID: 35493273 PMCID: PMC9053317 DOI: 10.1080/02687038.2021.1897079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 02/19/2021] [Indexed: 05/20/2023]
Abstract
Background A clinical diagnosis of primary progressive aphasia relies on behavioral characteristics and patterns of atrophy to determine a variant: logopenic; nonfluent/agrammatic; or semantic. The dual stream model (Hickok & Poeppel, 2000; 2004; 2007; 2015) is a contemporary paradigm that has been applied widely to understand brain-behavior relationships; however, applications to neurodegenerative diseases like primary progressive aphasia are limited. Aims The primary aim of this study is to determine if the dual stream model can be applied to a neurodegenerative disease, such as primary progressive aphasia, using both behavioral and neuroimaging data. Methods & Procedures We analyzed behavioral and neuroimaging data to apply a multivariate classification tool (support vector machines) to determine if the dual stream model extends to primary progressive aphasia. Sixty-four individuals with primary progressive aphasia were enrolled (26 logopenic variant, 20 nonfluent/agrammatic variant, and 18 semantic variant) and administered four behavioral tasks to assess three linguistic domains (naming, repetition, and semantic knowledge). We used regions of interest from the dual stream model and calculated the cortical volume for gray matter regions and white matter structural volumes and fractional anisotropy. We applied a multivariate classification tool (support vector machines) to distinguish variants based on behavioral performance and patterns of atrophy. Outcomes & Results Behavioral performance discriminates logopenic from semantic variant and nonfluent/agrammatic from semantic variant. Cortical volume distinguishes all three variants. White matter structural volumes and fractional anisotropy primarily distinguish nonfluent/agrammatic from semantic variant. Regions of interest that contribute to each classification in cortical and white matter analyses demonstrate alignment of logopenic and nonfluent/agrammatic variants to the dorsal stream, while the semantic variant aligns with the ventral stream. Conclusions A novel implementation of an automated multivariate classification suggests that the dual stream model can be extended to primary progressive aphasia. Variants are distinguished by behavioral and neuroanatomical patterns and align to the dorsal and ventral streams of the dual stream model.
Collapse
Affiliation(s)
- Lynsey M. Keator
- Department of Neurology, Johns Hopkins University School of Medicine, Phipps 446, 600 N. Wolfe Street, Baltimore, MD 21287
| | - Grigori Yourganov
- Department of Psychology, McCausland Center for Brain Imaging, 6 Medical Park Road, University of South Carolina, Columbia, South Carolina 29201
| | - Andreia V. Faria
- The Russell H. Morgan Department of Radiology and Radiological Science, 1800 Orleans Street, Johns Hopkins University, Baltimore, MD 21287
| | - Argye E. Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Phipps 446, 600 N. Wolfe Street, Baltimore, MD 21287
- Department of Physical Medicine and Rehabilitation, 600 N. Wolfe Street, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Cognitive Science, Krieger School of Arts and Sciences, 3400 N. Charles Street, Johns Hopkins University, Baltimore, MD 21218
| | - Donna C. Tippett
- Department of Neurology, Johns Hopkins University School of Medicine, Phipps 446, 600 N. Wolfe Street, Baltimore, MD 21287
- Department of Physical Medicine and Rehabilitation, 600 N. Wolfe Street, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Otolaryngology—Head and Neck Surgery, 601 N. Caroline Street, 6 floor, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| |
Collapse
|
22
|
Zhao Y, Ficek B, Webster K, Frangakis C, Caffo B, Hillis AE, Faria A, Tsapkini K. White Matter Integrity Predicts Electrical Stimulation (tDCS) and Language Therapy Effects in Primary Progressive Aphasia. Neurorehabil Neural Repair 2021; 35:44-57. [PMID: 33317422 PMCID: PMC7748290 DOI: 10.1177/1545968320971741] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS), in conjunction with language therapy, improves language therapy outcomes in primary progressive aphasia (PPA). However, no studies show whether white matter integrity predicts language therapy or tDCS effects in PPA. OBJECTIVE We aimed to determine whether white matter integrity, measured by diffusion tensor imaging (DTI), predicts written naming/spelling language therapy effects (letter accuracy on trained and untrained words) with and without tDCS over the left inferior frontal gyrus (IFG) in PPA. METHODS Thirty-nine participants with PPA were randomly assigned to tDCS or sham condition, coupled with language therapy for 15 daily sessions. White matter integrity was measured by mean diffusivity (MD) and fractional anisotropy (FA) in DTI scans before therapy. Written naming outcomes were evaluated before, immediately after, 2 weeks, and 2 months posttherapy. To assess tDCS treatment effect, we used a mixed-effects model with treatment evaluation and time interaction. We considered a forward model selection approach to identify brain regions/fasciculi of which white matter integrity can predict improvement in performance of word naming. RESULTS Both sham and tDCS groups significantly improved in trained items immediately after and at 2 months posttherapy. Improvement in the tDCS group was greater and generalized to untrained words. White matter integrity of ventral language pathways predicted tDCS effects in trained items whereas white matter integrity of dorsal language pathways predicted tDCS effects in untrained items. CONCLUSIONS White matter integrity influences both language therapy and tDCS effects. Thus, it holds promise as a biomarker for deciding which patients will benefit from language therapy and tDCS.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health
| | - Bronte Ficek
- Department of Neurology, Johns Hopkins School of Medicine
| | - Kimberly Webster
- Department of Neurology, Johns Hopkins School of Medicine
- Department of Otolaryngology-Head and Neck Surgery
| | - Constantine Frangakis
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health
- Department of Radiology, Johns Hopkins School of Medicine
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine
| | - Brian Caffo
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health
| | - Argye E. Hillis
- Department of Neurology, Johns Hopkins School of Medicine
- Department of Cognitive Science, Johns Hopkins University
- Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine
| | - Andreia Faria
- Department of Radiology, Johns Hopkins School of Medicine
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins School of Medicine
- Department of Cognitive Science, Johns Hopkins University
| |
Collapse
|
23
|
Benhamou E, Marshall CR, Russell LL, Hardy CJD, Bond RL, Sivasathiaseelan H, Greaves CV, Friston KJ, Rohrer JD, Warren JD, Razi A. The neurophysiological architecture of semantic dementia: spectral dynamic causal modelling of a neurodegenerative proteinopathy. Sci Rep 2020; 10:16321. [PMID: 33004840 PMCID: PMC7530731 DOI: 10.1038/s41598-020-72847-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 09/08/2020] [Indexed: 01/11/2023] Open
Abstract
The selective destruction of large-scale brain networks by pathogenic protein spread is a ubiquitous theme in neurodegenerative disease. Characterising the circuit architecture of these diseases could illuminate both their pathophysiology and the computational architecture of the cognitive processes they target. However, this is challenging using standard neuroimaging techniques. Here we addressed this issue using a novel technique-spectral dynamic causal modelling-that estimates the effective connectivity between brain regions from resting-state fMRI data. We studied patients with semantic dementia-the paradigmatic disorder of the brain system mediating world knowledge-relative to healthy older individuals. We assessed how the effective connectivity of the semantic appraisal network targeted by this disease was modulated by pathogenic protein deposition and by two key phenotypic factors, semantic impairment and behavioural disinhibition. The presence of pathogenic protein in SD weakened the normal inhibitory self-coupling of network hubs in both antero-mesial temporal lobes, with development of an abnormal excitatory fronto-temporal projection in the left cerebral hemisphere. Semantic impairment and social disinhibition were linked to a similar but more extensive profile of abnormally attenuated inhibitory self-coupling within temporal lobe regions and excitatory projections between temporal and inferior frontal regions. Our findings demonstrate that population-level dynamic causal modelling can disclose a core pathophysiological feature of proteinopathic network architecture-attenuation of inhibitory connectivity-and the key elements of distributed neuronal processing that underwrite semantic memory.
Collapse
Affiliation(s)
- Elia Benhamou
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, 8-11 Queen Square, London, WC1N 3AR, UK.
| | - Charles R Marshall
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, 8-11 Queen Square, London, WC1N 3AR, UK
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK
| | - Lucy L Russell
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, 8-11 Queen Square, London, WC1N 3AR, UK
| | - Chris J D Hardy
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, 8-11 Queen Square, London, WC1N 3AR, UK
| | - Rebecca L Bond
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, 8-11 Queen Square, London, WC1N 3AR, UK
| | - Harri Sivasathiaseelan
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, 8-11 Queen Square, London, WC1N 3AR, UK
| | - Caroline V Greaves
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, 8-11 Queen Square, London, WC1N 3AR, UK
| | - Karl J Friston
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, University College London, London, UK
| | - Jonathan D Rohrer
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, 8-11 Queen Square, London, WC1N 3AR, UK
| | - Jason D Warren
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, 8-11 Queen Square, London, WC1N 3AR, UK
| | - Adeel Razi
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, University College London, London, UK
- Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Melbourne, Australia
| |
Collapse
|
24
|
Häkkinen S, Chu SA, Lee SE. Neuroimaging in genetic frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiol Dis 2020; 145:105063. [PMID: 32890771 DOI: 10.1016/j.nbd.2020.105063] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/30/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) have a strong clinical, genetic and pathological overlap. This review focuses on the current understanding of structural, functional and molecular neuroimaging signatures of genetic FTD and ALS. We overview quantitative neuroimaging studies on the most common genes associated with FTD (MAPT, GRN), ALS (SOD1), and both (C9orf72), and summarize visual observations of images reported in the rarer genes (CHMP2B, TARDBP, FUS, OPTN, VCP, UBQLN2, SQSTM1, TREM2, CHCHD10, TBK1).
Collapse
Affiliation(s)
- Suvi Häkkinen
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Stephanie A Chu
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Suzee E Lee
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
25
|
Nuvoli S, Tanda G, Stazza ML, Madeddu G, Spanu A. Qualitative and Quantitative Analyses of Brain 18Fluoro-Deoxy-Glucose Positron Emission Tomography in Primary Progressive Aphasia. Dement Geriatr Cogn Disord 2020; 48:250-260. [PMID: 32062656 DOI: 10.1159/000504938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND A primary progressive aphasia (PPA) diagnosis is generally based on clinical criteria, but often symptoms and signs may overlap in the different forms. Recent data have evidenced that brain 18fluoro-deoxy-glucose positron emission tomography (18F-FDG PET) could support the clinical diagnosis, since specific metabolic patterns are described for the different variants. AIMS We further evaluated the usefulness of 18F-FDG PET, by both visual qualitative (QL) and quantitative (QN) methods in the initial diagnosis of PPA, focusing on the classification of different variants. Moreover, we also analyzed the role of 18F-FDG PET in clarifying the association of PPA with the early phase of Alzheimer's disease (AD) or frontotemporal (FTD) dementias. METHODS We consecutively enrolled 35 patients with clinical symptoms of aphasia, suspect of or attributable to PPA. Patients were classified into two groups: 18 cases with clinical symptoms of aphasia but normal neuropsychological tests and an unclear classification of a specific PPA variant (group A) and 17 cases with clinical and neuropsychological signs attributable to PPA with an uncertain differential diagnosis between AD and FTD (group B). All patients underwent brain 18F-FDG PET/CT, and images were evaluated both by QL and QN, the latter applying an automated analysis program that produced brain regional metabolicmaps and normal age-matched control group comparative analysis (zscore). RESULTS 18F-FDG PET showed different patterns of bilateral cortical hypometabolism in the two groups. The combined use of QL and QN permitted to achieved a correct PPA variant diagnosis in 8 of 18 (44.4%) cases of group A and in 14 of 17 (82.3%) of group B, while only QN could support the correct classification of PPA variants in 10 of 18 (55.6%) cases of group A and in 3 of 17 (17.7%) cases of group B in whom the procedure better localized the hypometabolic areas. CONCLUSIONS Brain 18F-FDG PET had an elevated performance in the early diagnosis of PPA variants and in the advanced PPA AD/FTD classification. QL clarified the development of AD or FTD in advanced PPA cases and supported the differential diagnosis of a PPA variant in a few early cases. QN 18F-FDG PET evaluation better contributed to the early diagnosis of an unclear metabolic pattern. To correctly identify all cases, patients with diffuse cortical hypometabolism were also included. Larger series are necessary to confirm these data.
Collapse
Affiliation(s)
- Susanna Nuvoli
- Unit of Nuclear Medicine, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy,
| | - Giovanna Tanda
- Unit of Nuclear Medicine, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Maria Lina Stazza
- Unit of Nuclear Medicine, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Giuseppe Madeddu
- Unit of Nuclear Medicine, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Angela Spanu
- Unit of Nuclear Medicine, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
26
|
Crespi C, Dodich A, Iannaccone S, Marcone A, Falini A, Cappa SF, Cerami C. Diffusion tensor imaging evidence of corticospinal pathway involvement in frontotemporal lobar degeneration. Cortex 2020; 125:1-11. [PMID: 31954961 DOI: 10.1016/j.cortex.2019.11.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/02/2019] [Accepted: 11/29/2019] [Indexed: 12/11/2022]
Abstract
Motor neuron dysfunctions (MNDys) in Frontotemporal Lobar Degeneration (FTLD) have been consistently reported. Clinical and neurophysiological findings proved a variable range of pathological changes, also affecting the corticospinal tract (CST). This study aims to assess white-matter microstructural alterations in a sample of patients with FTLD, and to evaluate the relationship with MNDys. Fifty-four FTLD patients (21 bvFTD, 16 PPA, 17 CBS) and 36 healthy controls participated in a Diffusion Tensor Imaging (DTI) study. We analyzed distinctive and common microstructural alteration patterns across FTLD subtypes, including those affecting the CST, and performed an association analysis between CST integrity and the presence of clinical and/or neurophysiological signs of MNDys. The majority of FTLD patients showed microstructural changes in the motor pathway with a high prevalence of CST alterations also in patients not displaying clinical and/or neurophysiological signs of MNDys. Our results suggest that subtle CST alterations characterize FTLD patients regardless to the subtype. This may be due to the spread of the pathological process to the motor system, even without a clear clinical manifestation of MNDys.
Collapse
Affiliation(s)
- Chiara Crespi
- Scuola Universitaria Superiore IUSS Pavia, Pavia, Italy.
| | - Alessandra Dodich
- NIMTlab, Neuroimaging and Innovative Molecular Tracers Laboratory, University of Geneva, Geneva, Switzerland
| | - Sandro Iannaccone
- Department of Clinical Neuroscience, San Raffaele Hospital, Milan, Italy
| | - Alessandra Marcone
- Department of Clinical Neuroscience, San Raffaele Hospital, Milan, Italy
| | - Andrea Falini
- Department of Neuroradiology and CERMAC, Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy
| | - Stefano F Cappa
- Scuola Universitaria Superiore IUSS Pavia, Pavia, Italy; IRCCS Mondino Foundation, Pavia, Italy
| | - Chiara Cerami
- Scuola Universitaria Superiore IUSS Pavia, Pavia, Italy
| |
Collapse
|
27
|
Middle longitudinal fascicle is associated with semantic processing deficits in primary progressive aphasia. NEUROIMAGE-CLINICAL 2019; 25:102115. [PMID: 31865024 PMCID: PMC6931233 DOI: 10.1016/j.nicl.2019.102115] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 02/05/2023]
Abstract
The middle longitudinal fascicle (MdLF) is a recently delineated association cortico-cortical fiber pathway in humans, connecting superior temporal gyrus and temporal pole principally with the angular gyrus, and is likely to be involved in language processing. However, the MdLF has not been studied in language disorders as primary progressive aphasia (PPA). We hypothesized that the MdLF will exhibit evidence of neurodegeneration in PPA patients. In this study, 20 PPA patients and 25 healthy controls were recruited in the Primary Progressive Aphasia program in the Massachusetts General Hospital Frontotemporal Disorders Unit. We used diffusion tensor imaging (DTI) tractography to reconstruct the MdLF and extract tract-specific DTI metrics (fractional anisotropy (FA), radial diffusivity (RD), mean diffusivity (MD) and axial diffusivity (AD)) to assess white matter changes in PPA and their relationship with language impairments. We found severe WM damage in the MdLF in PPA patients, which was principally pronounced in the left hemisphere. Moreover, the WM alterations in the MdLF in the dominant hemisphere were significantly correlated with impairments in word comprehension and naming, but not with articulation and fluency. In addition, asymmetry analysis revealed that the DTI metrics of controls were similar for each hemisphere, whereas PPA patients had clear laterality differences in MD, AD and RD. These findings add new insight into the localization and severity of white matter fiber bundle neurodegeneration in PPA, and provide evidence that degeneration of the MdLF contribute to impairment in semantic processing and lexical retrieval in PPA. Integrity loss of middle longitudinal fascicle (MdLF) in PPA. MdLF degeneration correlated with impairments in word comprehension and retrieval. MdLF not significantly correlated with articulation or fluency. Connectivity model: gray/white matter areas involved in human semantic processing.
Collapse
|
28
|
Reyes PA, Rueda ADP, Uriza F, Matallana DL. Networks Disrupted in Linguistic Variants of Frontotemporal Dementia. Front Neurol 2019; 10:903. [PMID: 31507513 PMCID: PMC6716200 DOI: 10.3389/fneur.2019.00903] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/05/2019] [Indexed: 11/13/2022] Open
Abstract
The non-fluent/agrammatic variant of primary progressive aphasia (nfvPPA) and semantic variant (svPPA) of frontotemporal dementia (FTD) are neurodegenerative diseases. Previous works have shown alterations of fractional anisotropy (FA) and mean diffusivity (MD) from diffusion tensor images (DTIs). This manuscript is aimed at using DTI images to build a global tractography and to identify atrophy patterns of white matter in each variant. Twenty patients with svPPA, 20 patients with nfvPPA, 26 patients with behavioral variant of FTD (bvFTD) and, 33 controls were included. An analysis based on the connectivity of structural networks showed changes in FA and MD in svPPA and nfvPPA with respect to bvFTD. Much damage in the internal networks of the left temporal lobe was found in svPPA patients; in contrast, patients with nfvPPA showed atrophy in networks from the basal ganglia to motor and premotor areas. Those findings support the dual stream model of speech and language.
Collapse
Affiliation(s)
- Pablo Alexander Reyes
- Radiology Department, Hospital Universitario San Ignacio, Bogotá, Colombia.,Medicine School, Aging Institute, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - Felipe Uriza
- Radiology Department, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Diana L Matallana
- Medicine School, Aging Institute, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
29
|
Abstract
BACKGROUND The semantic variant of primary progressive aphasia (svPPA) is a form of dementia, mainly featuring language impairment, for which the extent of white matter (WM) damage is less described than its associated grey matter (GM) atrophy. Our study aimed to characterise the extent of this damage using a sensitive and unbiased approach. METHODS We conducted a between-group study comparing 10 patients with a clinical diagnosis of svPPA, recruited between 2011 and 2014 at a tertiary reference centre, with 9 cognitively healthy, age-matched controls. From diffusion tensor imaging (DTI) data, we extracted fractional anisotropy (FA) values using a tract-based spatial statistics approach. We further obtained GM volumetric data using the Freesurfer automated segmentation tool. We compared both groups using non-parametric Wilcoxon rank-sum tests, correcting for multiple comparisons. RESULTS Demographic data showed that patients and controls were comparable. As expected, clinical data showed lower results in svPPA than controls on cognitive screening tests. Tractography showed impaired diffusion in svPPA patients, with FA mostly decreased in the longitudinal, uncinate, cingulum and external capsule fasciculi. Volumetric data show significant atrophy in svPPA patients, mostly in the left entorhinal, amygdala, inferior temporal, middle temporal, superior temporal and temporal pole cortices, and bilateral fusiform gyri. CONCLUSIONS This syndrome appears to be associated not only with GM but also significant WM degeneration. Thus, DTI could play a role in the differential diagnosis of atypical dementia by specifying WM damage specific to svPPA.
Collapse
|
30
|
Leyton CE, Landin-Romero R, Liang CT, Burrell JR, Kumfor F, Hodges JR, Piguet O. Correlates of anomia in non-semantic variants of primary progressive aphasia converge over time. Cortex 2019; 120:201-211. [PMID: 31325799 DOI: 10.1016/j.cortex.2019.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/08/2019] [Accepted: 06/18/2019] [Indexed: 12/12/2022]
Abstract
To track neural correlates of naming performance with disease progression, we estimated key areas affected in nonfluent/agrammatic (nfvPPA) and logopenic (lvPPA) primary progressive aphasia variants over time and changes in naming correlates over time. Twenty-nine non-semantic PPA participants (17 nfvPPA and 12 lvPPA) were selected based upon current diagnostic criteria and PiB-PET status and conducted a confrontation-naming task and a structural MRI. Linear mixed-effect models implemented in FreeSurfer were used for tracking cortical thickness and epicenters of atrophy over time. Using averaged cortical thickness of epicenters and naming performance as variables of interest, two sets of multivariate analyses were conducted to compare atrophy progression and naming correlates across groups. While all PPA participants demonstrated naming deterioration and progressive cortical thinning in the left temporal lobe and the left inferior frontal gyrus, the lvPPA cohort showed greater naming deterioration and thinning in the left posterior inferior parietal cortex over time than it did the nfvPPA cohort. The multivariate analyses confirmed a widespread cortical thinning in lvPPA over time, but a more rapid thinning in the right superior frontal gyrus of nfvPPA participants. Impaired naming correlated with common cortical regions in both groups. These regions included the left anterior superior temporal gyrus and the posterior middle temporal gyrus, which was primarily affected in lvPPA. Non-semantic PPA variants initially present with separate epicenters of atrophy and different spatial-temporal patterns of neurodegeneration over time, but the common involvement in key cortical regions of the left temporal lobe accounts for naming deterioration in both groups.
Collapse
Affiliation(s)
- Cristian E Leyton
- The University of Sydney, Brain and Mind Centre, Faculty of Health Sciences, Sydney, NSW, Australia; Frontotemporal Disorders Unit, Department of Neurology Massachusetts, General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Ramon Landin-Romero
- The University of Sydney, Brain and Mind Centre, School of Psychology, Sydney, NSW, Australia.
| | - Cheng Tao Liang
- The University of Sydney, Brain and Mind Centre, School of Psychology, Sydney, NSW, Australia.
| | - James R Burrell
- Concord Repatriation General Hospital, Sydney, NSW, Australia.
| | - Fiona Kumfor
- The University of Sydney, Brain and Mind Centre, School of Psychology, Sydney, NSW, Australia.
| | - John R Hodges
- The University of Sydney, Brain and Mind Centre, School of Psychology, Sydney, NSW, Australia.
| | - Olivier Piguet
- The University of Sydney, Brain and Mind Centre, School of Psychology, Sydney, NSW, Australia.
| |
Collapse
|
31
|
Whitwell JL. FTD spectrum: Neuroimaging across the FTD spectrum. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 165:187-223. [PMID: 31481163 DOI: 10.1016/bs.pmbts.2019.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Frontotemporal dementia is a complex and heterogeneous neurodegenerative disease that encompasses many clinical syndromes, pathological diseases, and genetic mutations. Neuroimaging has played a critical role in our understanding of the underlying pathophysiology of frontotemporal dementia and provided biomarkers to aid diagnosis. Early studies defined patterns of neurodegeneration and hypometabolism associated with the clinical, pathological and genetic aspects of frontotemporal dementia, with more recent studies highlighting how the breakdown of structural and functional brain networks define frontotemporal dementia. Molecular positron emission tomography ligands allowing the in vivo imaging of tau proteins have also provided important insights, although more work is needed to understand the biology of the currently available ligands.
Collapse
|
32
|
Alemán-Gómez Y, Poch C, Toledano R, Jiménez-Huete A, García-Morales I, Gil-Nagel A, Campo P. Morphometric correlates of anomia in patients with small left temporopolar lesions. J Neuropsychol 2019; 14:260-282. [PMID: 31059211 DOI: 10.1111/jnp.12184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 03/06/2019] [Indexed: 10/26/2022]
Abstract
Visual object naming is a complex cognitive process that engages an interconnected network of cortical regions moving from occipitotemporal to anterior-inferior temporal cortices, and extending into the inferior frontal cortex. Naming can fail for diverse reasons, and different stages of the naming multi-step process appear to be reliant upon the integrity of different neuroanatomical locations. While the neural correlates of semantic errors have been extensively studied, the neural basis of omission errors remains relatively unspecified. Although a strong line of evidence supports an association between anterior temporal lobe damage and semantic errors, there are some studies suggesting that the anterior temporal lobe could be also associated with omissions. However, support for this hypothesis comes from studies with patients in whom damage affected extensive brain regions, sometimes bilaterally. Here, we availed of a group of 12 patients with epilepsy associated with a small lesion at the tip of the left temporal pole. Using an unbiased surface-based morphometry methodology, we correlated two morphological features with errors observed during visual naming. Analyses revealed a correlation between omission errors and reduced local gyrification index in three cortical clusters: one in the left anteromedial temporal lobe region (AMTL) and two in the left anterior cingulate cortex (ACC). Our findings support the view that regions in ACC and AMTL are critical structures within a network engaged in word selection from semantics.
Collapse
Affiliation(s)
- Yasser Alemán-Gómez
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Switzerland.,Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Switzerland.,Medical Image Analysis Laboratory (MIAL), Centre d'Imagerie BioMédicale (CIBM), Lausanne, Switzerland
| | - Claudia Poch
- Department of Basic Psychology, University Complutense of Madrid, Spain.,Instituto Pluridisciplinar, University Complutense of Madrid, Spain.,Facultad de Lenguas y Educación, Universidad Nebrija, Madrid, Spain
| | - Rafael Toledano
- Epilepsy Unit, Neurology Department, Hospital Ruber Internacional, Madrid, Spain.,Epilepsy Unit, Neurology Department, University Hospital of Ramón y Cajal, Madrid, Spain
| | - Adolfo Jiménez-Huete
- Epilepsy Unit, Neurology Department, Hospital Ruber Internacional, Madrid, Spain
| | - Irene García-Morales
- Epilepsy Unit, Neurology Department, Hospital Ruber Internacional, Madrid, Spain.,Epilepsy Unit, Neurology Department, University Hospital of San Carlos, Madrid, Spain
| | - Antonio Gil-Nagel
- Epilepsy Unit, Neurology Department, Hospital Ruber Internacional, Madrid, Spain
| | - Pablo Campo
- Department of Basic Psychology, Autonoma University of Madrid, Spain
| |
Collapse
|
33
|
Odolil A, Wright AE, Keator LM, Sheppard SM, Breining B, Tippett DC, Hillis AE. Leukoaraiosis Severity Predicts Rate of Decline in Primary Progressive Aphasia. APHASIOLOGY 2019; 34:365-375. [PMID: 32377026 PMCID: PMC7202552 DOI: 10.1080/02687038.2019.1594152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/07/2019] [Indexed: 06/11/2023]
Abstract
BACKGROUND The rate of decline in language in Primary Progressive Aphasia (PPA) is highly variable and difficult to predict at baseline. The severity of diffuse white matter disease (leukoaraiosis), a marker of overall brain health, may substantially influence the rate of decline. AIMS To test the hypothesis that leukoaraiosis is associated with a steeper decline in naming in PPA. METHODS AND PROCEDURES In this longitudinal, observational study, 29 individuals with PPA (all variants) were administered the Boston Naming Test (BNT) at baseline and 1 year later. Two raters evaluated leukoaraiosis on baseline MRI, using the Cardiovascular Health Study scale. We evaluated the effects of leukoaraiosis severity, age, education, and baseline BNT on decline measured by change in BNT accuracy with multivariable linear regression. We also evaluated the effects of these variables on the dichotomized outcome of faster decline in BNT (worst 50%) versus slower decline (best 50%) using logistic regression. RESULTS Together, leukoaraiosis, age, education, and baseline BNT score predicted change in BNT score (F(3, 25) = 8.12; p=0.0006). Change in BNT score was predicted by severity of leukoaraiosis (t =-3.81; p=0.001) and education (t= -2.45; p=0.022), independently of the other variables. When we dichotomized outcome into upper 50th percentile versus lower 50th percentile (faster decline), faster decline was predicted by all variables together (chi squared = 13.91; p = 0.008). However, only leukoaraiosis independently predicted outcome (OR=2.80; 95%CI: 1.11 to 7.03). For every 1 point increase on the CHS rating scale, there was 2.8 times higher chance of showing faster decline in naming. CONCLUSION Severity of leukoaraiosis is associated with steeper decline in naming in PPA. This imaging marker can aide in prognosis and planning by caregivers and stratification of participants in clinical trials.
Collapse
Affiliation(s)
- Adam Odolil
- Department of Neurology, Johns Hopkins University School of Medicine
| | - Amy E. Wright
- Department of Neurology, Johns Hopkins University School of Medicine
| | - Lynsey M. Keator
- Department of Neurology, Johns Hopkins University School of Medicine
| | | | - Bonnie Breining
- Department of Neurology, Johns Hopkins University School of Medicine
| | - Donna C. Tippett
- Department of Neurology, Johns Hopkins University School of Medicine
- Department of Physical Medicine & Rehabilitation, Johns Hopkins University School of Medicine
- Department of Otolaryngology & Head & Neck Surgery, Johns Hopkins University School of Medicine
| | - Argye E. Hillis
- Department of Neurology, Johns Hopkins University School of Medicine
- Department of Physical Medicine & Rehabilitation, Johns Hopkins University School of Medicine
- Department of Cognitive Science, Johns Hopkins University
| |
Collapse
|
34
|
Jiskoot LC, Panman JL, Meeter LH, Dopper EGP, Donker Kaat L, Franzen S, van der Ende EL, van Minkelen R, Rombouts SARB, Papma JM, van Swieten JC. Longitudinal multimodal MRI as prognostic and diagnostic biomarker in presymptomatic familial frontotemporal dementia. Brain 2019; 142:193-208. [PMID: 30508042 PMCID: PMC6308313 DOI: 10.1093/brain/awy288] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 09/26/2018] [Accepted: 10/02/2018] [Indexed: 12/12/2022] Open
Abstract
Developing and validating sensitive biomarkers for the presymptomatic stage of familial frontotemporal dementia is an important step in early diagnosis and for the design of future therapeutic trials. In the longitudinal Frontotemporal Dementia Risk Cohort, presymptomatic mutation carriers and non-carriers from families with familial frontotemporal dementia due to microtubule-associated protein tau (MAPT) and progranulin (GRN) mutations underwent a clinical assessment and multimodal MRI at baseline, 2-, and 4-year follow-up. Of the cohort of 73 participants, eight mutation carriers (three GRN, five MAPT) developed clinical features of frontotemporal dementia ('converters'). Longitudinal whole-brain measures of white matter integrity (fractional anisotropy) and grey matter volume in these converters (n = 8) were compared with healthy mutation carriers ('non-converters'; n = 35) and non-carriers (n = 30) from the same families. We also assessed the prognostic performance of decline within white matter and grey matter regions of interest by means of receiver operating characteristic analyses followed by stepwise logistic regression. Longitudinal whole-brain analyses demonstrated lower fractional anisotropy values in extensive white matter regions (genu corpus callosum, forceps minor, uncinate fasciculus, and superior longitudinal fasciculus) and smaller grey matter volumes (prefrontal, temporal, cingulate, and insular cortex) over time in converters, present from 2 years before symptom onset. White matter integrity loss of the right uncinate fasciculus and genu corpus callosum provided significant classifiers between converters, non-converters, and non-carriers. Converters' within-individual disease trajectories showed a relatively gradual onset of clinical features in MAPT, whereas GRN mutations had more rapid changes around symptom onset. MAPT converters showed more decline in the uncinate fasciculus than GRN converters, and more decline in the genu corpus callosum in GRN than MAPT converters. Our study confirms the presence of spreading predominant frontotemporal pathology towards symptom onset and highlights the value of multimodal MRI as a prognostic biomarker in familial frontotemporal dementia.
Collapse
Affiliation(s)
- Lize C Jiskoot
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jessica L Panman
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lieke H Meeter
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Elise G P Dopper
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurology, VU Medical Center, Amsterdam, The Netherlands
| | - Laura Donker Kaat
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Sanne Franzen
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Rick van Minkelen
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Serge A R B Rombouts
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Institute of Psychology, Leiden University, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Janne M Papma
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - John C van Swieten
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
35
|
Sintini I, Schwarz CG, Martin PR, Graff-Radford J, Machulda MM, Senjem ML, Reid RI, Spychalla AJ, Drubach DA, Lowe VJ, Jack CR, Josephs KA, Whitwell JL. Regional multimodal relationships between tau, hypometabolism, atrophy, and fractional anisotropy in atypical Alzheimer's disease. Hum Brain Mapp 2018; 40:1618-1631. [PMID: 30549156 DOI: 10.1002/hbm.24473] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/20/2018] [Accepted: 10/25/2018] [Indexed: 11/10/2022] Open
Abstract
Alzheimer's disease (AD) can present with atypical clinical forms where the prominent domain of deficit is not memory, that is, atypical AD. Atypical AD patients show cortical atrophy on MRI, hypometabolism on [18 F]fluorodeoxyglucose (FDG) PET, tau uptake on [18 F]AV-1451 PET, and white matter tract degeneration on diffusion tensor imaging (DTI). How these disease processes relate to each other locally and distantly remains unclear. We aimed to examine multimodal neuroimaging relationships in individuals with atypical AD, using univariate and multivariate techniques at region- and voxel-level. Forty atypical AD patients underwent MRI, FDG-PET, tau-PET, beta-amyloid PET, and DTI. Patients were all beta-amyloid positive. Partial Pearson's correlations were performed between tau and FDG standardized uptake value ratios, gray matter MRI-volumes and white matter tract fractional anisotropy. Sparse canonical correlation analysis was applied to identify multivariate relationships between the same quantities. Voxel-level associations across modalities were also assessed. Tau showed strong local negative correlations with FDG metabolism in the occipital and frontal lobes. Tau in frontal and parietal regions was negatively associated with temporoparietal gray matter MRI-volume. Fractional anisotropy in a set of posterior white matter tracts, including the splenium of the corpus callosum, cingulum, and posterior thalamic radiation, was negatively correlated with parietal and occipital tau, atrophy and, predominantly, with hypometabolism. These results support the view that tau is the driving force behind neurodegeneration in atypical AD, and that a breakdown in structural connectivity is related to cortical neurodegeneration, particularly hypometabolism.
Collapse
Affiliation(s)
- Irene Sintini
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | | | - Peter R Martin
- Department of Health Science Research (Biostatistics), Mayo Clinic, Rochester, Minnesota
| | | | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota
| | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, Rochester, Minnesota.,Department of Information Technology, Mayo Clinic, Rochester, Minnesota
| | - Robert I Reid
- Department of Information Technology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | | | | | | |
Collapse
|
36
|
Canu E, Agosta F, Imperiale F, Fontana A, Caso F, Spinelli EG, Magnani G, Falini A, Comi G, Filippi M. Added value of multimodal MRI to the clinical diagnosis of primary progressive aphasia variants. Cortex 2018; 113:58-66. [PMID: 30605869 DOI: 10.1016/j.cortex.2018.11.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/08/2018] [Accepted: 11/23/2018] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To determine the added value of multimodal structural magnetic resonance imaging (MRI) to language assessment in the differential diagnosis of primary progressive aphasia (PPA) variants. METHODS 59 PPA patients [29 nonfluent (nfvPPA), 15 semantic (svPPA), 15 logopenic (lvPPA)] and 38 healthy controls underwent 3D T1-weighted and diffusion tensor (DT) MRI. PPA patients also performed a comprehensive language assessment. Cortical thickness measures and DT MRI indices of white matter tract integrity were obtained. A random forest analysis identified MRI features associated with each clinical variant. Using ROC curves, the discriminatory power of the language features alone ("language model") and the added contribution of multimodal MRI variables were assessed ("language + MRI model"). RESULTS The 'language model' alone was able to differentiate svPPA from both nfvPPA and lvPPA patients with high accuracy (area under the curve [AUC] = .95 and .99, respectively). When left inferior parietal cortical thickness and DT MRI metrics of the genu of the corpus callosum and left frontal aslant tract were added to the "language model", the ability to discriminate between nfvPPA and lvPPA cases increased from AUC .82 ("language model" only) to .94 ("language + MRI model"). CONCLUSIONS Language measures alone are able to distinguish svPPA from the other two PPA variants with the highest accuracy. Multimodal structural MRI improves the distinction of nfvPPA and lvPPA, which is challenging in the clinical practice.
Collapse
Affiliation(s)
- Elisa Canu
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Francesca Imperiale
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea Fontana
- Unit of Biostatistics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Francesca Caso
- Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Edoardo Gioele Spinelli
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Giuseppe Magnani
- Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea Falini
- Department of Neuroradiology and CERMAC, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Giancarlo Comi
- Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
37
|
Routier A, Habert MO, Bertrand A, Kas A, Sundqvist M, Mertz J, David PM, Bertin H, Belliard S, Pasquier F, Bennys K, Martinaud O, Etcharry-Bouyx F, Moreaud O, Godefroy O, Pariente J, Puel M, Couratier P, Boutoleau-Bretonnière C, Laurent B, Migliaccio R, Dubois B, Colliot O, Teichmann M. Structural, Microstructural, and Metabolic Alterations in Primary Progressive Aphasia Variants. Front Neurol 2018; 9:766. [PMID: 30279675 PMCID: PMC6153366 DOI: 10.3389/fneur.2018.00766] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/23/2018] [Indexed: 01/18/2023] Open
Abstract
Neuroimaging studies have described the brain alterations in primary progressive aphasia (PPA) variants (semantic, logopenic, nonfluent/agrammatic). However, few studies combined T1, FDG-PET, and diffusion MRI techniques to study atrophy, hypometabolism, and tract alterations across the three PPA main variants. We therefore explored a large early-stage cohort of semantic, logopenic and nonfluent/agrammatic variants (N = 86) and of 23 matched healthy controls with anatomical MRI (cortical thickness), FDG PET (metabolism) and diffusion MRI (white matter tracts analyses), aiming at identifying cortical and sub-cortical brain alterations, and confronting these alterations across imaging modalities and aphasia variants. In the semantic variant, there was cortical thinning and hypometabolism in anterior temporal cortices, with left-hemisphere predominance, extending toward posterior temporal regions, and affecting tracts projecting to the anterior temporal lobes (inferior longitudinal fasciculus, uncinate fasciculus) and tracts projecting to or running nearby posterior temporal cortices: (superior longitudinal fasciculus, inferior frontal-occipital fasciculus). In the logopenic variant metabolic alterations were more extensive than atrophy affecting mainly the left temporal-parietal junction and extending toward more anterior temporal cortices. Metabolic and tract data were coherent given the alterations of the left superior and inferior longitudinal fasciculus and the left inferior frontal-occipital fasciculus. In the nonfluent/agrammatic variant cortical thinning and hypometabolism were located in the left frontal cortex but Broca's area was only affected on metabolic measures. Metabolic and tract alterations were coherent as reflected by damage to the left uncinate fasciculus connecting with Broca's area. Our findings provide a full-blown statistically robust picture of brain alterations in early-stage variants of primary progressive aphasia which has implications for diagnosis, classification and future therapeutic strategies. They demonstrate that in logopenic and semantic variants patterns of brain damage display a non-negligible overlap in temporal regions whereas they are substantially distinct in the nonfluent/agrammatic variant (frontal regions). These results also indicate that frontal networks (combinatorial syntax/phonology) and temporal networks (lexical/semantic representations) constitute distinct anatomo-functional entities with differential vulnerability to degenerative processes in aphasia variants. Finally, the identification of the specific damage patterns could open an avenue for trans-cranial stimulation approaches by indicating the appropriate target-entry into the damaged language system.
Collapse
Affiliation(s)
- Alexandre Routier
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, FrontLab, Paris, France.,Inria, Aramis Project-Team, Paris, France
| | - Marie-Odile Habert
- Laboratoire d'Imagerie Biomédicale, Sorbonne Université, Inserm U 1146, CNRS UMR, Paris, France.,AP-HP, Hôpital Pitié-Salpêtrière, Department of Nuclear Medicine, Paris, France.,Centre Acquisition et Traitement des Images, Paris, France
| | - Anne Bertrand
- Inria, Aramis Project-Team, Paris, France.,Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, AP-HP, Paris, France.,AP-HP, Hôpital Saint Antoine, Department of Radiology, Paris, France
| | - Aurélie Kas
- Laboratoire d'Imagerie Biomédicale, Sorbonne Université, Inserm U 1146, CNRS UMR, Paris, France.,AP-HP, Hôpital Pitié-Salpêtrière, Department of Nuclear Medicine, Paris, France
| | - Martina Sundqvist
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, FrontLab, Paris, France.,Inria, Aramis Project-Team, Paris, France
| | | | - Pierre-Maxime David
- Department of Nuclear Medicine, European Hospital Georges Pompidou, Paris, France
| | - Hugo Bertin
- Laboratoire d'Imagerie Biomédicale, Sorbonne Université, Inserm U 1146, CNRS UMR, Paris, France.,AP-HP, Hôpital Pitié-Salpêtrière, Department of Nuclear Medicine, Paris, France.,Centre Acquisition et Traitement des Images, Paris, France
| | - Serge Belliard
- Normandie University, UNICAEN, EPHE, INSERM, U1077, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France.,Department of Neurology, Memory Research and Resource Center for Alzheimer's Disease, University Hospital Pontchaillou, Rennes, France
| | - Florence Pasquier
- Department of Neurology, University Hospital of Lille, Lille, France
| | - Karim Bennys
- Department of Neurology, Memory Research and Resource Center for Alzheimer's Disease, University Hospital of Montpellier, Montpellier, France
| | - Olivier Martinaud
- Normandie University, UNICAEN, EPHE, INSERM, U1077, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France.,Department of Neurology, University Hospital of Rouen, Rouen, France
| | - Frédérique Etcharry-Bouyx
- Department of Neurology, Memory Research and Resource Center for Alzheimer's Disease, University Hospital of Angers, Angers, France
| | - Olivier Moreaud
- Department of Psychiatry, Neurology and Rehabilitation University Hospital of Grenoble, Memory Research and Resource Center for Alzheimer's Disease, Grenoble, France
| | - Olivier Godefroy
- Department of Neurology and Laboratory of Functional Neurosciences (EA 4559), University Hospital of Amiens, Amiens, France
| | - Jérémie Pariente
- CHU Toulouse, Neurology Department, Toulouse, France.,INSERM/UPS, UMR 1214-ToNIC, Toulouse NeuroImaging Center, University of Toulouse III, Toulouse, France
| | - Michèle Puel
- CHU Toulouse, Neurology Department, Toulouse, France
| | - Philippe Couratier
- Department of Neurology, University Hospital of Limoges, Limoges, France
| | | | - Bernard Laurent
- Department of Neurology, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Raphaëlla Migliaccio
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, FrontLab, Paris, France.,Department of Neurology, Institute for Memory and Alzheimer's Disease, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Bruno Dubois
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, FrontLab, Paris, France.,Department of Neurology, Institute for Memory and Alzheimer's Disease, Pitié-Salpêtrière Hospital, AP-HP, Paris, France.,National Reference Center for "PPA and rare dementias", Institute for Memory and Alzheimer's Disease, AP-HP, Paris, France
| | - Olivier Colliot
- Inria, Aramis Project-Team, Paris, France.,Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France.,AP-HP, Departments of Neuroradiology and Neurology, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Marc Teichmann
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, FrontLab, Paris, France.,Department of Neurology, Institute for Memory and Alzheimer's Disease, Pitié-Salpêtrière Hospital, AP-HP, Paris, France.,National Reference Center for "PPA and rare dementias", Institute for Memory and Alzheimer's Disease, AP-HP, Paris, France
| |
Collapse
|
38
|
Jiskoot LC, Bocchetta M, Nicholas JM, Cash DM, Thomas D, Modat M, Ourselin S, Rombouts SA, Dopper EG, Meeter LH, Panman JL, van Minkelen R, van der Ende EL, Donker Kaat L, Pijnenburg YA, Borroni B, Galimberti D, Masellis M, Tartaglia MC, Rowe J, Graff C, Tagliavini F, Frisoni GB, Laforce R, Finger E, de Mendonça A, Sorbi S, Papma JM, van Swieten JC, Rohrer JD. Presymptomatic white matter integrity loss in familial frontotemporal dementia in the GENFI cohort: A cross-sectional diffusion tensor imaging study. Ann Clin Transl Neurol 2018; 5:1025-1036. [PMID: 30250860 PMCID: PMC6144447 DOI: 10.1002/acn3.601] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/08/2018] [Indexed: 12/12/2022] Open
Abstract
Objective We aimed to investigate mutation-specific white matter (WM) integrity changes in presymptomatic and symptomatic mutation carriers of the C9orf72,MAPT, and GRN mutations by use of diffusion-weighted imaging within the Genetic Frontotemporal dementia Initiative (GENFI) study. Methods One hundred and forty mutation carriers (54 C9orf72, 30 MAPT, 56 GRN), 104 presymptomatic and 36 symptomatic, and 115 noncarriers underwent 3T diffusion tensor imaging. Linear mixed effects models were used to examine the association between diffusion parameters and years from estimated symptom onset in C9orf72,MAPT, and GRN mutation carriers versus noncarriers. Post hoc analyses were performed on presymptomatic mutation carriers only, as well as left-right asymmetry analyses on GRN mutation carriers versus noncarriers. Results Diffusion changes in C9orf72 mutation carriers are present significantly earlier than both MAPT and GRN mutation carriers - characteristically in the posterior thalamic radiation and more posteriorly located tracts (e.g., splenium of the corpus callosum, posterior corona radiata), as early as 30 years before estimated symptom onset. MAPT mutation carriers showed early involvement of the uncinate fasciculus and cingulum, sparing the internal capsule, whereas involvement of the anterior and posterior internal capsule was found in GRN. Restricting analyses to presymptomatic mutation carriers only, similar - albeit less extensive - patterns were found: posteriorly located WM tracts (e.g., posterior thalamic radiation, splenium of the corpus callosum, posterior corona radiata) in presymptomatic C9orf72, the uncinate fasciculus in presymptomatic MAPT, and the internal capsule (anterior and posterior limbs) in presymptomatic GRN mutation carriers. In GRN, most tracts showed significant left-right differences in one or more diffusion parameter, with the most consistent results being found in the UF, EC, RPIC, and ALIC. Interpretation This study demonstrates the presence of early and widespread WM integrity loss in presymptomatic FTD, and suggests a clear genotypic "fingerprint." Our findings corroborate the notion of FTD as a network-based disease, where changes in connectivity are some of the earliest detectable features, and identify diffusion tensor imaging as a potential neuroimaging biomarker for disease-tracking and -staging in presymptomatic to early-stage familial FTD.
Collapse
|
39
|
Mandelli ML, Welch AE, Vilaplana E, Watson C, Battistella G, Brown JA, Possin KL, Hubbard HI, Miller ZA, Henry ML, Marx GA, Santos-Santos MA, Bajorek LP, Fortea J, Boxer A, Rabinovici G, Lee S, Deleon J, Rosen HJ, Miller BL, Seeley WW, Gorno-Tempini ML. Altered topology of the functional speech production network in non-fluent/agrammatic variant of PPA. Cortex 2018; 108:252-264. [PMID: 30292076 DOI: 10.1016/j.cortex.2018.08.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/07/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022]
Abstract
Non-fluent/agrammatic primary progressive aphasia (nfvPPA) is caused by neurodegeneration within the left fronto-insular speech and language production network (SPN). Graph theory is a branch of mathematics that studies network architecture (topology) by quantifying features based on its elements (nodes and connections). This approach has been recently applied to neuroimaging data to explore the complex architecture of the brain connectome, though few studies have exploited this technique in PPA. Here, we used graph theory on functional MRI resting state data from a group of 20 nfvPPA patients and 20 matched controls to investigate topological changes in response to focal neurodegeneration. We hypothesized that changes in the network architecture would be specific to the affected SPN in nfvPPA, while preserved in the spared default mode network (DMN). Topological configuration was quantified by hub location and global network metrics. Our findings showed a less efficiently wired and less optimally clustered SPN, while no changes were detected in the DMN. The SPN in the nfvPPA group showed a loss of hubs in the left fronto-parietal-temporal area and new critical nodes in the anterior left inferior-frontal and right frontal regions. Behaviorally, speech production score and rule violation errors correlated with the strength of functional connectivity of the left (lost) and right (new) regions respectively. This study shows that focal neurodegeneration within the SPN in nfvPPA is associated with network-specific topological alterations, with the loss and gain of crucial hubs and decreased global efficiency that were better accounted for through functional rather than structural changes. These findings support the hypothesis of selective network vulnerability in nfvPPA and may offer biomarkers for future behavioral intervention.
Collapse
Affiliation(s)
- Maria Luisa Mandelli
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA.
| | - Ariane E Welch
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA
| | - Eduard Vilaplana
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau - Biomedical Research Institute Sant Pau - Universitat Autonoma de Barcelona, Spain; Centro de Investigacion Biomedica en Red de Enfermedades Neurodegenerativas - CIBERNED, Spain
| | - Christa Watson
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA
| | - Giovanni Battistella
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA
| | - Jesse A Brown
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA
| | - Katherine L Possin
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA
| | - Honey I Hubbard
- Department of Communication Science and Disorders, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Zachary A Miller
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA
| | - Maya L Henry
- Department of Communication Sciences and Disorders, University of Texas, Austin, USA
| | - Gabe A Marx
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA
| | - Miguel A Santos-Santos
- Cognition and Brain Plasticity Group [Bellvitge Biomedical Research Institute-IDIBELL], L'Hospitalet de Llobregat, Barcelona, Spain; Fundació ACE Memory Clinic and Research Center, Institut Catalá de Neurociències Aplicades, Barcelona, Spain
| | - Lynn P Bajorek
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA
| | - Juan Fortea
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau - Biomedical Research Institute Sant Pau - Universitat Autonoma de Barcelona, Spain
| | - Adam Boxer
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA
| | - Gil Rabinovici
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA
| | - Suzee Lee
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA
| | - Jessica Deleon
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA
| | - Howard J Rosen
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA
| | - Bruce L Miller
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA
| | - William W Seeley
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA; Department of Pathology, University of California San Francisco, CA, USA
| | | |
Collapse
|
40
|
Ohm DT, Kim G, Gefen T, Rademaker A, Weintraub S, Bigio EH, Mesulam MM, Rogalski E, Geula C. Prominent microglial activation in cortical white matter is selectively associated with cortical atrophy in primary progressive aphasia. Neuropathol Appl Neurobiol 2018; 45:216-229. [PMID: 29679378 DOI: 10.1111/nan.12494] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 04/02/2018] [Indexed: 02/04/2023]
Abstract
AIMS Primary progressive aphasia (PPA) is a clinical syndrome characterized by selective language impairments associated with focal cortical atrophy favouring the language dominant hemisphere. PPA is associated with Alzheimer's disease (AD), frontotemporal lobar degeneration (FTLD) and significant accumulation of activated microglia. Activated microglia can initiate an inflammatory cascade that may contribute to neurodegeneration, but their quantitative distribution in cortical white matter and their relationship with cortical atrophy remain unknown. We investigated white matter activated microglia and their association with grey matter atrophy in 10 PPA cases with either AD or FTLD-TDP pathology. METHODS Activated microglia were quantified with optical density measures of HLA-DR immunoreactivity in two regions with peak cortical atrophy, and one nonatrophied region within the language dominant hemisphere of each PPA case. Nonatrophied contralateral homologues of the language dominant regions were examined for hemispheric asymmetry. RESULTS Qualitatively, greater densities of activated microglia were observed in cortical white matter when compared to grey matter. Quantitative analyses revealed significantly greater densities of activated microglia in the white matter of atrophied regions compared to nonatrophied regions in the language dominant hemisphere (P < 0.05). Atrophied regions of the language dominant hemisphere also showed significantly more activated microglia compared to contralateral homologues (P < 0.05). CONCLUSIONS White matter activated microglia accumulate more in atrophied regions in the language dominant hemisphere of PPA. While microglial activation may constitute a response to neurodegenerative processes in white matter, the resultant inflammatory processes may also exacerbate disease progression and contribute to cortical atrophy.
Collapse
Affiliation(s)
- D T Ohm
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - G Kim
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - T Gefen
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - A Rademaker
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - S Weintraub
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - E H Bigio
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - M-M Mesulam
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - E Rogalski
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - C Geula
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
41
|
Fang Y, Wang X, Zhong S, Song L, Han Z, Gong G, Bi Y. Semantic representation in the white matter pathway. PLoS Biol 2018; 16:e2003993. [PMID: 29624578 PMCID: PMC5906027 DOI: 10.1371/journal.pbio.2003993] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 04/18/2018] [Accepted: 02/05/2018] [Indexed: 11/29/2022] Open
Abstract
Object conceptual processing has been localized to distributed cortical regions that represent specific attributes. A challenging question is how object semantic space is formed. We tested a novel framework of representing semantic space in the pattern of white matter (WM) connections by extending the representational similarity analysis (RSA) to structural lesion pattern and behavioral data in 80 brain-damaged patients. For each WM connection, a neural representational dissimilarity matrix (RDM) was computed by first building machine-learning models with the voxel-wise WM lesion patterns as features to predict naming performance of a particular item and then computing the correlation between the predicted naming score and the actual naming score of another item in the testing patients. This correlation was used to build the neural RDM based on the assumption that if the connection pattern contains certain aspects of information shared by the naming processes of these two items, models trained with one item should also predict naming accuracy of the other. Correlating the neural RDM with various cognitive RDMs revealed that neural patterns in several WM connections that connect left occipital/middle temporal regions and anterior temporal regions associated with the object semantic space. Such associations were not attributable to modality-specific attributes (shape, manipulation, color, and motion), to peripheral picture-naming processes (picture visual similarity, phonological similarity), to broad semantic categories, or to the properties of the cortical regions that they connected, which tended to represent multiple modality-specific attributes. That is, the semantic space could be represented through WM connection patterns across cortical regions representing modality-specific attributes. One of the most challenging questions in cognitive neuroscience is how semantic knowledge, for example, that “scissors” and “knives” are related in meaning, can emerge from primary sensory dimensions such as visual forms. It is often assumed that in the human brain, semantics are stored in regions of the brain cortex, where distinct types of modality-specific information are transferred to and bind together. We tested an alternative hypothesis—“representation by connection”—in which higher-order semantic information could be coded by means of connection patterns between cortical regions. Combining data from behavior and brain imaging of 80 patients with brain lesions, we applied machine learning to construct the mapping models between the lesion patterns on axonal tracts (white matter) and item-specific object-naming performances. We found that specific white matter lesions produced deficits in object naming associated with the object’s semantic space, but not relevant to its primary dimension. The naming performances of semantically related objects were better predicted from white matter lesion-pattern models. That is, the higher-order semantic space could be coded in patterns of brain connections by linking cortical areas that do not necessarily contain such information.
Collapse
Affiliation(s)
- Yuxing Fang
- National Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Xiaosha Wang
- National Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Suyu Zhong
- National Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Luping Song
- Rehabilitation College of Capital Medical University, China Rehabilitation Research Center, Beijing, China
| | - Zaizhu Han
- National Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Gaolang Gong
- National Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Yanchao Bi
- National Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- * E-mail:
| |
Collapse
|
42
|
Andreotti J, Dierks T, Wahlund LO, Grieder M. Diverging Progression of Network Disruption and Atrophy in Alzheimer's Disease and Semantic Dementia. J Alzheimers Dis 2018; 55:981-993. [PMID: 27802229 PMCID: PMC5147505 DOI: 10.3233/jad-160571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The progression of cognitive deficits in Alzheimer's disease and semantic dementia is accompanied by grey matter atrophy and white matter deterioration. The impact of neuronal loss on the structural network connectivity in these dementia subtypes is, however, not well understood. In order to gain a more refined knowledge of the topological organization of white matter alterations in dementia, we used a network-based approach to analyze the brain's structural connectivity network. Diffusion-weighted and anatomical MRI images of groups with eighteen Alzheimer's disease and six semantic dementia patients, as well as twenty-one healthy controls were recorded to reconstruct individual connectivity networks. Additionally, voxel-based morphometry, using grey and white matter volume, served to relate atrophy to altered structural connectivity. The analyses showed that Alzheimer's disease is characterized by decreased connectivity strength in various cortical regions. An overlap with grey matter loss was found only in the inferior frontal and superior temporal areas. In semantic dementia, significantly reduced network strength was found in the temporal lobes, which converged with grey and white matter atrophy. Therefore, this study demonstrated that the structural disconnection in early Alzheimer's disease goes beyond grey matter atrophy and is independent of white matter volume loss, an observation that was not found in semantic dementia.
Collapse
Affiliation(s)
- Jennifer Andreotti
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Thomas Dierks
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Lars-Olof Wahlund
- Karolinska Institute, Department of Neurobiology, Care Sciences and Society (NVS), Division of Clinical Geriatrics, Stockholm, Sweden
| | - Matthias Grieder
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| |
Collapse
|
43
|
Tetzloff KA, Duffy JR, Clark HM, Strand EA, Machulda MM, Schwarz CG, Senjem ML, Reid RI, Spychalla AJ, Tosakulwong N, Lowe VJ, Jack, Jr CR, Josephs KA, Whitwell JL. Longitudinal structural and molecular neuroimaging in agrammatic primary progressive aphasia. Brain 2018; 141:302-317. [PMID: 29228180 PMCID: PMC5837339 DOI: 10.1093/brain/awx293] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 04/11/2017] [Accepted: 09/20/2017] [Indexed: 12/12/2022] Open
Abstract
The agrammatic variant of primary progressive aphasia affects normal grammatical language production, often occurs with apraxia of speech, and is associated with left frontal abnormalities on cross-sectional neuroimaging studies. We aimed to perform a detailed assessment of longitudinal change on structural and molecular neuroimaging to provide a complete picture of neurodegeneration in these patients, and to determine how patterns of progression compare to patients with isolated apraxia of speech (primary progressive apraxia of speech). We assessed longitudinal structural MRI, diffusion tensor imaging and 18F-fluorodeoxyglucose PET in 11 agrammatic aphasia subjects, 20 primary progressive apraxia of speech subjects, and 62 age and gender-matched controls with two serial assessments. Rates of change in grey matter volume and hypometabolism, and white matter fractional anisotropy, mean diffusivity, radial diffusivity and axial diffusivity were assessed at the voxel-level and for numerous regions of interest. The greatest rates of grey matter atrophy in agrammatic aphasia were observed in inferior, middle, and superior frontal gyri, premotor and motor cortices, as well as medial temporal lobe, insula, basal ganglia, and brainstem compared to controls. Longitudinal decline in metabolism was observed in the same regions, with additional findings in medial and lateral parietal lobe. Diffusion tensor imaging changes were prominent bilaterally in inferior and middle frontal white matter and superior longitudinal fasciculus, as well as right inferior fronto-occipital fasciculus, superior frontal and precentral white matter. More focal patterns of degeneration of motor and premotor cortex were observed in primary progressive apraxia of speech. Agrammatic aphasia showed greater rates of grey matter atrophy, decline in metabolism, and white matter degeneration compared to primary progressive apraxia of speech in the left frontal lobe, predominantly inferior and middle frontal grey and white matter. Correlations were also assessed between rates of change on neuroimaging and rates of clinical decline. Progression of aphasia correlated with rates of degeneration in frontal and temporal regions within the language network, while progression of parkinsonism and limb apraxia correlated with degeneration of motor cortex and brainstem. These findings demonstrate that disease progression in agrammatic aphasia is associated with widespread neurodegeneration throughout regions of the language network, as well as connecting white matter tracts, but also with progression to regions outside of the language network that are responsible for the development of motor symptoms. The fact that patterns of progression differed from primary progressive apraxia of speech supports the clinical distinction of these syndromes.
Collapse
Affiliation(s)
| | - Joseph R Duffy
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Mary M Machulda
- Department of Psychology and Psychiatry, Mayo Clinic, Rochester, MN, USA
| | | | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | - Robert I Reid
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- Department of Psychology and Psychiatry, Mayo Clinic, Rochester, MN, USA
| | | | - Nirubol Tosakulwong
- Department of Health Sciences Research (Biostatistics), Mayo Clinic, Rochester, MN, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | | |
Collapse
|
44
|
Staffaroni AM, Elahi FM, McDermott D, Marton K, Karageorgiou E, Sacco S, Paoletti M, Caverzasi E, Hess CP, Rosen HJ, Geschwind MD. Neuroimaging in Dementia. Semin Neurol 2017; 37:510-537. [PMID: 29207412 PMCID: PMC5823524 DOI: 10.1055/s-0037-1608808] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Although the diagnosis of dementia still is primarily based on clinical criteria, neuroimaging is playing an increasingly important role. This is in large part due to advances in techniques that can assist with discriminating between different syndromes. Magnetic resonance imaging remains at the core of differential diagnosis, with specific patterns of cortical and subcortical changes having diagnostic significance. Recent developments in molecular PET imaging techniques have opened the door for not only antemortem but early, even preclinical, diagnosis of underlying pathology. This is vital, as treatment trials are underway for pharmacological agents with specific molecular targets, and numerous failed trials suggest that earlier treatment is needed. This article provides an overview of classic neuroimaging findings as well as new and cutting-edge research techniques that assist with clinical diagnosis of a range of dementia syndromes, with an emphasis on studies using pathologically proven cases.
Collapse
Affiliation(s)
- Adam M. Staffaroni
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Fanny M. Elahi
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Dana McDermott
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Kacey Marton
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Elissaios Karageorgiou
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
- Neurological Institute of Athens, Athens, Greece
| | - Simone Sacco
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
- Institute of Radiology, Department of Clinical Surgical Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Matteo Paoletti
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
- Institute of Radiology, Department of Clinical Surgical Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Eduardo Caverzasi
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Christopher P. Hess
- Division of Neuroradiology, Department of Radiology, University of California, San Francisco (UCSF), California
| | - Howard J. Rosen
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Michael D. Geschwind
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| |
Collapse
|
45
|
Perrone-Bertolotti M, Kauffmann L, Pichat C, Vidal JR, Baciu M. Effective Connectivity between Ventral Occipito-Temporal and Ventral Inferior Frontal Cortex during Lexico-Semantic Processing. A Dynamic Causal Modeling Study. Front Hum Neurosci 2017; 11:325. [PMID: 28690506 PMCID: PMC5480016 DOI: 10.3389/fnhum.2017.00325] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 06/06/2017] [Indexed: 11/13/2022] Open
Abstract
It has been suggested that dorsal and ventral pathways support distinct aspects of language processing. Yet, the full extent of their involvement and their inter-regional connectivity in visual word recognition is still unknown. Studies suggest that they might reflect the dual-route model of reading, with the dorsal pathway more involved in grapho-phonological conversion during phonological tasks, and the ventral pathway performing lexico-semantic access during semantic tasks. Furthermore, this subdivision is also suggested at the level of the inferior frontal cortex, involving ventral and dorsal parts for lexico-semantic and phonological processing, respectively. In the present study, we assessed inter-regional brain connectivity and task-induced modulations of brain activity during a phoneme detection and semantic categorization tasks, using fMRI in healthy subject. We used a dynamic causal modeling approach to assess inter-regional connectivity and task demand modulation within the dorsal and ventral pathways, including the following network components: the ventral occipito-temporal cortex (vOTC; dorsal and ventral), the superior temporal gyrus (STG; dorsal), the dorsal inferior frontal gyrus (dIFG; dorsal), and the ventral IFG (vIFG; ventral). We report three distinct inter-regional interactions supporting orthographic information transfer from vOTC to other language regions (vOTC -> STG, vOTC -> vIFG and vOTC -> dIFG) regardless of task demands. Moreover, we found that (a) during semantic processing (direct ventral pathway) the vOTC -> vIFG connection strength specifically increased and (b) a lack of modulation of the vOTC -> dIFG connection strength by the task that could suggest a more general involvement of the dorsal pathway during visual word recognition. Results are discussed in terms of anatomo-functional connectivity of visual word recognition network.
Collapse
Affiliation(s)
| | - Louise Kauffmann
- Department of Psychology, Université Grenoble Alpes, CNRS, LPNC UMR 51055105Grenoble, France.,Neural Mechanisms of Human Communication Research group, Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany
| | - Cédric Pichat
- Department of Psychology, Université Grenoble Alpes, CNRS, LPNC UMR 51055105Grenoble, France
| | - Juan R Vidal
- Department of Psychology, Université Grenoble Alpes, CNRS, LPNC UMR 51055105Grenoble, France
| | - Monica Baciu
- Department of Psychology, Université Grenoble Alpes, CNRS, LPNC UMR 51055105Grenoble, France
| |
Collapse
|
46
|
Meeter LH, Kaat LD, Rohrer JD, van Swieten JC. Imaging and fluid biomarkers in frontotemporal dementia. Nat Rev Neurol 2017. [PMID: 28621768 DOI: 10.1038/nrneurol.2017.75] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Frontotemporal dementia (FTD), the second most common type of presenile dementia, is a heterogeneous neurodegenerative disease characterized by progressive behavioural and/or language problems, and includes a range of clinical, genetic and pathological subtypes. The diagnostic process is hampered by this heterogeneity, and correct diagnosis is becoming increasingly important to enable future clinical trials of disease-modifying treatments. Reliable biomarkers will enable us to better discriminate between FTD and other forms of dementia and to predict disease progression in the clinical setting. Given that different underlying pathologies probably require specific pharmacological interventions, robust biomarkers are essential for the selection of patients with specific FTD subtypes. This Review emphasizes the increasing availability and potential applications of structural and functional imaging biomarkers, and cerebrospinal fluid and blood fluid biomarkers in sporadic and genetic FTD. The relevance of new MRI modalities - such as voxel-based morphometry, diffusion tensor imaging and arterial spin labelling - in the early stages of FTD is discussed, together with the ability of these modalities to classify FTD subtypes. We highlight promising new fluid biomarkers for staging and monitoring of FTD, and underline the importance of large, multicentre studies of individuals with presymptomatic FTD. Harmonization in the collection and analysis of data across different centres is crucial for the implementation of new biomarkers in clinical practice, and will become a great challenge in the next few years.
Collapse
Affiliation(s)
- Lieke H Meeter
- Department of Neurology, Erasmus Medical Center, 's Gravendijkwal 230, 3015 CE Rotterdam, Netherlands
| | - Laura Donker Kaat
- Department of Neurology, Erasmus Medical Center, 's Gravendijkwal 230, 3015 CE Rotterdam, Netherlands.,Department of Clinical Genetics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative diseases, Institute of Neurology, Queen Square, University College London, London WC1N 3BG, UK
| | - John C van Swieten
- Department of Neurology, Erasmus Medical Center, 's Gravendijkwal 230, 3015 CE Rotterdam, Netherlands.,Department of Clinical Genetics, VU University Medical Center, De Boelelaan 1118, 1081 HZ Amsterdam, Netherlands
| |
Collapse
|
47
|
Gordon E, Rohrer JD, Fox NC. Advances in neuroimaging in frontotemporal dementia. J Neurochem 2017; 138 Suppl 1:193-210. [PMID: 27502125 DOI: 10.1111/jnc.13656] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 12/12/2022]
Abstract
Frontotemporal dementia (FTD) is a clinically and neuroanatomically heterogeneous neurodegenerative disorder with multiple underlying genetic and pathological causes. Whilst initial neuroimaging studies highlighted the presence of frontal and temporal lobe atrophy or hypometabolism as the unifying feature in patients with FTD, more detailed studies have revealed diverse patterns across individuals, with variable frontal or temporal predominance, differing degrees of asymmetry, and the involvement of other cortical areas including the insula and cingulate, as well as subcortical structures such as the basal ganglia and thalamus. Recent advances in novel imaging modalities including diffusion tensor imaging, resting-state functional magnetic resonance imaging and molecular positron emission tomography imaging allow the possibility of investigating alterations in structural and functional connectivity and the visualisation of pathological protein deposition. This review will cover the major imaging modalities currently used in research and clinical practice, focusing on the key insights they have provided into FTD, including the onset and evolution of pathological changes and also importantly their utility as biomarkers for disease detection and staging, differential diagnosis and measurement of disease progression. Validating neuroimaging biomarkers that are able to accomplish these tasks will be crucial for the ultimate goal of powering upcoming clinical trials by correctly stratifying patient enrolment and providing sensitive markers for evaluating the effects and efficacy of disease-modifying therapies. This review describes the key insights provided by research into the major neuroimaging modalities currently used in research and clinical practice, including what they tell us about the onset and evolution of FTD and how they may be used as biomarkers for disease detection and staging, differential diagnosis and measurement of disease progression. This article is part of the Frontotemporal Dementia special issue.
Collapse
Affiliation(s)
- Elizabeth Gordon
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Nick C Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| |
Collapse
|
48
|
Abstract
Early-onset Alzheimer disease (EOAD), with onset in individuals younger than 65 years, although overshadowed by the more common late-onset AD (LOAD), differs significantly from LOAD. EOAD comprises approximately 5% of AD and is associated with delays in diagnosis, aggressive course, and age-related psychosocial needs. One source of confusion is that a substantial percentage of EOAD are phenotypic variants that differ from the usual memory-disordered presentation of typical AD. The management of EOAD is similar to that for LOAD, but special emphasis should be placed on targeting the specific cognitive areas involved and more age-appropriate psychosocial support and education.
Collapse
Affiliation(s)
- Mario F Mendez
- Behavioral Neurology Program, David Geffen School of Medicine at UCLA, 300 Westwood Plaza, Suite B-200, Box 956975, Los Angeles, CA 90095, USA; Neurobehavior Unit, VA Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Building 206, Los Angeles, CA 90073, USA.
| |
Collapse
|
49
|
Bejanin A, Desgranges B, La Joie R, Landeau B, Perrotin A, Mézenge F, Belliard S, de La Sayette V, Eustache F, Chételat G. Distinct white matter injury associated with medial temporal lobe atrophy in Alzheimer's versus semantic dementia. Hum Brain Mapp 2017; 38:1791-1800. [PMID: 27981671 PMCID: PMC6866822 DOI: 10.1002/hbm.23482] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/15/2016] [Accepted: 11/21/2016] [Indexed: 01/31/2023] Open
Abstract
This study aims at further understanding the distinct vulnerability of brain networks in Alzheimer's disease (AD) versus semantic dementia (SD) investigating the white matter injury associated with medial temporal lobe (MTL) atrophy in both conditions. Twenty-six AD patients, twenty-one SD patients, and thirty-nine controls underwent a high-resolution T1-MRI scan allowing to obtain maps of grey matter volume and white matter density. A statistical conjunction approach was used to identify MTL regions showing grey matter atrophy in both patient groups. The relationship between this common grey matter atrophy and white matter density maps was then assessed within each patient group. Patterns of grey matter atrophy were distinct in AD and SD but included a common region in the MTL, encompassing the hippocampus and amygdala. This common atrophy was associated with alterations in different white matter areas in AD versus SD, mainly including the cingulum and corpus callosum in AD, while restricted to the temporal lobe - essentially the uncinate and inferior longitudinal fasciculi - in SD. Complementary analyses revealed that these relationships remained significant when controlling for global atrophy or disease severity. Overall, this study provides the first evidence that atrophy of the same MTL region is related to damage in distinct white matter fibers in AD and SD. These different patterns emphasize the vulnerability of distinct brain networks related to the MTL in these two disorders, which might underlie the discrepancy in their symptoms. These results further suggest differences between AD and SD in the neuropathological processes occurring in the MTL. Hum Brain Mapp 38:1791-1800, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alexandre Bejanin
- U1077, InsermCaenFrance
- UMR‐S1077, Université de Caen ‐ NormandieCaenFrance
- UMR‐S1077, Ecole Pratique des Hautes EtudesCaenFrance
- U1077, CHU de CaenCaenFrance
| | - Béatrice Desgranges
- U1077, InsermCaenFrance
- UMR‐S1077, Université de Caen ‐ NormandieCaenFrance
- UMR‐S1077, Ecole Pratique des Hautes EtudesCaenFrance
- U1077, CHU de CaenCaenFrance
| | - Renaud La Joie
- U1077, InsermCaenFrance
- UMR‐S1077, Université de Caen ‐ NormandieCaenFrance
- UMR‐S1077, Ecole Pratique des Hautes EtudesCaenFrance
- U1077, CHU de CaenCaenFrance
| | - Brigitte Landeau
- U1077, InsermCaenFrance
- UMR‐S1077, Université de Caen ‐ NormandieCaenFrance
- UMR‐S1077, Ecole Pratique des Hautes EtudesCaenFrance
- U1077, CHU de CaenCaenFrance
| | - Audrey Perrotin
- U1077, InsermCaenFrance
- UMR‐S1077, Université de Caen ‐ NormandieCaenFrance
- UMR‐S1077, Ecole Pratique des Hautes EtudesCaenFrance
- U1077, CHU de CaenCaenFrance
| | - Florence Mézenge
- U1077, InsermCaenFrance
- UMR‐S1077, Université de Caen ‐ NormandieCaenFrance
- UMR‐S1077, Ecole Pratique des Hautes EtudesCaenFrance
- U1077, CHU de CaenCaenFrance
| | - Serge Belliard
- U1077, InsermCaenFrance
- UMR‐S1077, Université de Caen ‐ NormandieCaenFrance
- UMR‐S1077, Ecole Pratique des Hautes EtudesCaenFrance
- Service de NeurologieCHU PontchaillouRennesFrance
| | - Vincent de La Sayette
- U1077, InsermCaenFrance
- UMR‐S1077, Université de Caen ‐ NormandieCaenFrance
- UMR‐S1077, Ecole Pratique des Hautes EtudesCaenFrance
- U1077, CHU de CaenCaenFrance
- Service de NeurologieCHU de CaenCaenFrance
| | - Francis Eustache
- U1077, InsermCaenFrance
- UMR‐S1077, Université de Caen ‐ NormandieCaenFrance
- UMR‐S1077, Ecole Pratique des Hautes EtudesCaenFrance
- U1077, CHU de CaenCaenFrance
| | - Gaël Chételat
- U1077, InsermCaenFrance
- UMR‐S1077, Université de Caen ‐ NormandieCaenFrance
- UMR‐S1077, Ecole Pratique des Hautes EtudesCaenFrance
- U1077, CHU de CaenCaenFrance
| |
Collapse
|
50
|
Marcotte K, Graham NL, Fraser KC, Meltzer JA, Tang-Wai DF, Chow TW, Freedman M, Leonard C, Black SE, Rochon E. White Matter Disruption and Connected Speech in Non-Fluent and Semantic Variants of Primary Progressive Aphasia. Dement Geriatr Cogn Dis Extra 2017; 7:52-73. [PMID: 28611820 PMCID: PMC5465709 DOI: 10.1159/000456710] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/06/2017] [Indexed: 02/04/2023] Open
Abstract
Differential patterns of white matter disruption have recently been reported in the non-fluent (nfvPPA) and semantic (svPPA) variants of primary progressive aphasia (PPA). No single measure is sufficient to distinguish between the PPA variants, but connected speech allows for the quantification of multiple measures. The aim of the present study was to further investigate the white matter correlates associated with connected speech features in PPA. We examined the relationship between white matter metrics and connected speech deficits using an automated analysis of transcriptions of connected speech and diffusion tensor imaging in language-related tracts. Syntactic, lexical, and semantic features were automatically extracted from transcriptions of topic-directed interviews conducted with groups of individuals with nfvPPA or svPPA as well as with a group of healthy controls. A principal component analysis was performed in order to reduce the number of language measures and yielded a five-factor solution. The results indicated that nfvPPA patients differed from healthy controls on a syntactic factor, and svPPA patients differed from controls on two semantic factors. However, the patient groups did not differ on any factor. Moreover, a correlational analysis revealed that the lexical richness factor was significantly correlated with radial diffusivity in the left inferior longitudinal fasciculus, which suggests that semantic deficits in connected speech reflect a disruption of this ventral pathway, and which is largely consistent with the results of previous studies. Using an automated approach for the analysis of connected speech combined with probabilistic tractography, the present findings demonstrate that nfvPPA patients are impaired relative to healthy controls on syntactic measures and have increased radial diffusivity in the left superior longitudinal fasciculus, whereas the svPPA group was impaired on lexico-semantic measures relative to controls and showed increased radial diffusivity in the uncinate and inferior longitudinal fasciculus bilaterally.
Collapse
Affiliation(s)
- Karine Marcotte
- aToronto Rehabilitation Institute - University Health Network, Toronto, Ontario, Canada.,bÉcole d'orthophonie et d'audiologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada.,cCentre de recherche de l'Hôpital du Sacré-Cœur de Montréal, Montreal, Québec, Canada
| | - Naida L Graham
- aToronto Rehabilitation Institute - University Health Network, Toronto, Ontario, Canada.,dDepartment of Speech-Language Pathology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kathleen C Fraser
- eDepartment of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Jed A Meltzer
- dDepartment of Speech-Language Pathology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,fRotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada.,gDepartment of Psychology, University of Toronto, Toronto, Ontario, Canada.,hHeart and Stroke Foundation, Center for Stroke Recovery, Ottawa, Ontario, Canada
| | - David F Tang-Wai
- iDepartment of Medicine (Neurology), University of Toronto, Toronto, Ontario, Canada.,jUniversity Health Network Memory Clinic, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Tiffany W Chow
- fRotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada.,iDepartment of Medicine (Neurology), University of Toronto, Toronto, Ontario, Canada.,kDepartment of Clinical Neurology, University of Southern California, Los Angeles, California, USA
| | - Morris Freedman
- fRotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada.,lDepartment of Medicine, Division of Neurology, Baycrest Health Sciences, University of Toronto, and Mt. Sinai Hospital, Toronto, Ontario, Canada.,mSam and Ida Ross Memory Clinic, Baycrest Health Sciences, Toronto, Ontario, Canada
| | - Carol Leonard
- dDepartment of Speech-Language Pathology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,hHeart and Stroke Foundation, Center for Stroke Recovery, Ottawa, Ontario, Canada.,nSchool of Rehabilitation Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Sandra E Black
- aToronto Rehabilitation Institute - University Health Network, Toronto, Ontario, Canada.,fRotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada.,hHeart and Stroke Foundation, Center for Stroke Recovery, Ottawa, Ontario, Canada.,iDepartment of Medicine (Neurology), University of Toronto, Toronto, Ontario, Canada.,oInstitute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,pL.C. Campbell Cognitive Neurology Research Unit, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,qBrain Sciences Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Elizabeth Rochon
- aToronto Rehabilitation Institute - University Health Network, Toronto, Ontario, Canada.,dDepartment of Speech-Language Pathology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,hHeart and Stroke Foundation, Center for Stroke Recovery, Ottawa, Ontario, Canada.,rRehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|