1
|
Li S, Guo K, Wang Y, Wu D, Wang Y, Feng L, Wang J, Meng X, Ma L, He H, Kang F. Evaluating the Efficacy of CortexID Quantitative Analysis in Localization of the Epileptogenic Zone in Patients with Temporal Lobe Epilepsy. Neurol Ther 2024; 13:1403-1414. [PMID: 39093538 PMCID: PMC11393372 DOI: 10.1007/s40120-024-00646-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
INTRODUCTION There remains a critical need for precise localization of the epileptogenic foci in individuals with drug-resistant epilepsy (DRE). 18F-Fluorodeoxyglucose positron emission tomography (FDG-PET) imaging can reveal hypometabolic regions during the interval between seizures in patients with epilepsy. However, visual-based qualitative analysis is time-consuming and strongly influenced by physician experience. CortexID Suite is a quantitative analysis software that helps to evaluate PET imaging of the human brain. Therefore, we aimed to evaluate the efficacy of CortexID quantitative analysis in the localization of the epileptogenic zone in patients with temporal lobe epilepsy (TLE). METHODS A total of 102 patients with epilepsy who underwent 18F-FDG-PET examinations were included in this retrospective study. The PET visual analysis was interpreted by two nuclear medicine physicians, and the quantitative analysis was performed automatically using CortexID analysis software. The assumed epileptogenic zone was evaluated comprehensively by two skilled neurologists in the preoperative assessment of epilepsy. The accuracy of epileptogenic zone localization in PET visual analysis was compared with that in CortexID quantitative analysis. RESULTS The diagnostic threshold for the difference in the metabolic Z-score between the right and left sides of medial temporal lobe epilepsy (MTLE) was calculated as 0.87, and that for lateral temporal lobe epilepsy (LTLE) was 2.175. In patients with MTLE, the area under the curve (AUC) was 0.922 for PET visual analysis, 0.853 for CortexID quantitative analysis, and 0.971 for the combined diagnosis. In patients with LTLE, the AUC was 0.842 for PET visual analysis, 0.831 for CortexID quantitative analysis, and 0.897 for the combined diagnosis. These results indicate that the diagnostic efficacy of CortexID quantitative analysis is not inferior to PET visual analysis (p > 0.05), while combined analysis significantly increases diagnostic efficacy (p < 0.05). Among the 23 patients who underwent surgery, the sensitivity and specificity of PET visual analysis for localization were 95.4% and 66.7%, and the sensitivity and specificity of CortexID quantitative analysis were 100% and 50%. CONCLUSION The diagnostic efficacy of CortexID quantitative analysis is comparable to PET visual analysis in the localization of the epileptogenic zone in patients with TLE. CortexID quantitative analysis combined with visual analysis can further improve the accuracy of epileptogenic zone localization.
Collapse
Affiliation(s)
- Shuangshuang Li
- Department of Neurology, Xijing Hospital of Air Force Military Medical University, Xi'an, 710032, Shaanxi, China
- Medical School, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Kun Guo
- Department of Nuclear Medicine, Xijing Hospital of Air Force Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yuanyuan Wang
- Department of Neurology, Xijing Hospital of Air Force Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Dianwei Wu
- Department of Neurology, Xijing Hospital of Air Force Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yang Wang
- Department of Neurology, Xijing Hospital of Air Force Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Lanlan Feng
- Department of Neurology, Xijing Hospital of Air Force Military Medical University, Xi'an, 710032, Shaanxi, China
- Medical School, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Junling Wang
- Department of Nuclear Medicine, Xijing Hospital of Air Force Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xiaoli Meng
- Department of Nuclear Medicine, Xijing Hospital of Air Force Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Lei Ma
- Department of Neurology, Xijing Hospital of Air Force Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Hua He
- Department of Ultrasound, Xijing 986 Hospital Department, Air Force Military Medical University, Xi'an, 710054, Shaanxi, China.
| | - Fei Kang
- Department of Nuclear Medicine, Xijing Hospital of Air Force Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
2
|
Jackson RJ, Hyman BT, Serrano-Pozo A. Multifaceted roles of APOE in Alzheimer disease. Nat Rev Neurol 2024; 20:457-474. [PMID: 38906999 DOI: 10.1038/s41582-024-00988-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 06/23/2024]
Abstract
For the past three decades, apolipoprotein E (APOE) has been known as the single greatest genetic modulator of sporadic Alzheimer disease (AD) risk, influencing both the average age of onset and the lifetime risk of developing AD. The APOEε4 allele significantly increases AD risk, whereas the ε2 allele is protective relative to the most common ε3 allele. However, large differences in effect size exist across ethnoracial groups that are likely to depend on both global genetic ancestry and local genetic ancestry, as well as gene-environment interactions. Although early studies linked APOE to amyloid-β - one of the two culprit aggregation-prone proteins that define AD - in the past decade, mounting work has associated APOE with other neurodegenerative proteinopathies and broader ageing-related brain changes, such as neuroinflammation, energy metabolism failure, loss of myelin integrity and increased blood-brain barrier permeability, with potential implications for longevity and resilience to pathological protein aggregates. Novel mouse models and other technological advances have also enabled a number of therapeutic approaches aimed at either attenuating the APOEε4-linked increased AD risk or enhancing the APOEε2-linked AD protection. This Review summarizes this progress and highlights areas for future research towards the development of APOE-directed therapeutics.
Collapse
Affiliation(s)
- Rosemary J Jackson
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.
| | - Alberto Serrano-Pozo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.
| |
Collapse
|
3
|
Wang M, Wei M, Wang L, Song J, Rominger A, Shi K, Jiang J. Tau Protein Accumulation Trajectory-Based Brain Age Prediction in the Alzheimer's Disease Continuum. Brain Sci 2024; 14:575. [PMID: 38928575 PMCID: PMC11201453 DOI: 10.3390/brainsci14060575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
Clinical cognitive advancement within the Alzheimer's disease (AD) continuum is intimately connected with sustained accumulation of tau protein pathology. The biological brain age and its gap show great potential for pathological risk and disease severity. In the present study, we applied multivariable linear support vector regression to train a normative brain age prediction model using tau brain images. We further assessed the predicted biological brain age and its gap for patients within the AD continuum. In the AD continuum, evaluated pathologic tau binding was found in the inferior temporal, parietal-temporal junction, precuneus/posterior cingulate, dorsal frontal, occipital, and inferior-medial temporal cortices. The biological brain age gaps of patients within the AD continuum were notably higher than those of the normal controls (p < 0.0001). Significant positive correlations were observed between the brain age gap and global tau protein accumulation levels for mild cognitive impairment (r = 0.726, p < 0.001), AD (r = 0.845, p < 0.001), and AD continuum (r = 0.797, p < 0.001). The pathologic tau-based age gap was significantly linked to neuropsychological scores. The proposed pathologic tau-based biological brain age model could track the tau protein accumulation trajectory of cognitive impairment and further provide a comprehensive quantification index for the tau accumulation risk.
Collapse
Affiliation(s)
- Min Wang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Min Wei
- Department of Neurology, XuanWu Hospital of Capital Medical University, Beijing 100053, China
| | - Luyao Wang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jun Song
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Computer Aided Medical Procedures, School of Computation, Information and Technology, Technical University of Munich, 85748 Munich, Germany
| | - Jiehui Jiang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
4
|
Toyonaga T, Khattar N, Wu Y, Lu Y, Naganawa M, Gallezot JD, Matuskey D, Mecca AP, Pittman B, Dias M, Nabulsi NB, Finnema SJ, Chen MK, Arnsten A, Radhakrishnan R, Skosnik PD, D'Souza DC, Esterlis I, Huang Y, van Dyck CH, Carson RE. The regional pattern of age-related synaptic loss in the human brain differs from gray matter volume loss: in vivo PET measurement with [ 11C]UCB-J. Eur J Nucl Med Mol Imaging 2024; 51:1012-1022. [PMID: 37955791 DOI: 10.1007/s00259-023-06487-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/21/2023] [Indexed: 11/14/2023]
Abstract
PURPOSE Aging is a major societal concern due to age-related functional losses. Synapses are crucial components of neural circuits, and synaptic density could be a sensitive biomarker to evaluate brain function. [11C]UCB-J is a positron emission tomography (PET) ligand targeting synaptic vesicle glycoprotein 2A (SV2A), which can be used to evaluate brain synaptic density in vivo. METHODS We evaluated age-related changes in gray matter synaptic density, volume, and blood flow using [11C]UCB-J PET and magnetic resonance imaging (MRI) in a wide age range of 80 cognitive normal subjects (21-83 years old). Partial volume correction was applied to the PET data. RESULTS Significant age-related decreases were found in 13, two, and nine brain regions for volume, synaptic density, and blood flow, respectively. The prefrontal cortex showed the largest volume decline (4.9% reduction per decade: RPD), while the synaptic density loss was largest in the caudate (3.6% RPD) and medial occipital cortex (3.4% RPD). The reductions in caudate are consistent with previous SV2A PET studies and likely reflect that caudate is the site of nerve terminals for multiple major tracts that undergo substantial age-related neurodegeneration. There was a non-significant negative relationship between volume and synaptic density reductions in 16 gray matter regions. CONCLUSION MRI and [11]C-UCB-J PET showed age-related decreases of gray matter volume, synaptic density, and blood flow; however, the regional patterns of the reductions in volume and SV2A binding were different. Those patterns suggest that MR-based measures of GM volume may not be directly representative of synaptic density.
Collapse
Affiliation(s)
- Takuya Toyonaga
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - Nikkita Khattar
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Yanjun Wu
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Yihuan Lu
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Mika Naganawa
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Jean-Dominique Gallezot
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - David Matuskey
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Adam P Mecca
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Alzheimer's Disease Research Unit, Yale University School of Medicine, New Haven, CT, USA
| | - Brian Pittman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Mark Dias
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Nabeel B Nabulsi
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Sjoerd J Finnema
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Ming-Kai Chen
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Amy Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University School of Medicine, New Haven, CT, USA
| | - Rajiv Radhakrishnan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Patrick D Skosnik
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Bouvé College of Health Sciences, Northeastern University Schools of Nursing & Pharmacy/Pharmaceutical Sciences, Boston, MA, USA
| | - Deepak Cyril D'Souza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Irina Esterlis
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Yiyun Huang
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Christopher H van Dyck
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Alzheimer's Disease Research Unit, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Richard E Carson
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
5
|
Lu J, Ma X, Zhang H, Xiao Z, Li M, Wu J, Ju Z, Chen L, Zheng L, Ge J, Liang X, Bao W, Wu P, Ding D, Yen TC, Guan Y, Zuo C, Zhao Q. Head-to-head comparison of plasma and PET imaging ATN markers in subjects with cognitive complaints. Transl Neurodegener 2023; 12:34. [PMID: 37381042 PMCID: PMC10308642 DOI: 10.1186/s40035-023-00365-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Gaining more information about the reciprocal associations between different biomarkers within the ATN (Amyloid/Tau/Neurodegeneration) framework across the Alzheimer's disease (AD) spectrum is clinically relevant. We aimed to conduct a comprehensive head-to-head comparison of plasma and positron emission tomography (PET) ATN biomarkers in subjects with cognitive complaints. METHODS A hospital-based cohort of subjects with cognitive complaints with a concurrent blood draw and ATN PET imaging (18F-florbetapir for A, 18F-Florzolotau for T, and 18F-fluorodeoxyglucose [18F-FDG] for N) was enrolled (n = 137). The β-amyloid (Aβ) status (positive versus negative) and the severity of cognitive impairment served as the main outcome measures for assessing biomarker performances. RESULTS Plasma phosphorylated tau 181 (p-tau181) level was found to be associated with PET imaging of ATN biomarkers in the entire cohort. Plasma p-tau181 level and PET standardized uptake value ratios of AT biomarkers showed a similarly excellent diagnostic performance for distinguishing between Aβ+ and Aβ- subjects. An increased tau burden and glucose hypometabolism were significantly associated with the severity of cognitive impairment in Aβ+ subjects. Additionally, glucose hypometabolism - along with elevated plasma neurofilament light chain level - was related to more severe cognitive impairment in Aβ- subjects. CONCLUSION Plasma p-tau181, as well as 18F-florbetapir and 18F-Florzolotau PET imaging can be considered as interchangeable biomarkers in the assessment of Aβ status in symptomatic stages of AD. 18F-Florzolotau and 18F-FDG PET imaging could serve as biomarkers for the severity of cognitive impairment. Our findings have implications for establishing a roadmap to identifying the most suitable ATN biomarkers for clinical use.
Collapse
Affiliation(s)
- Jiaying Lu
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoxi Ma
- National Clinical Research Center for Aging and Medicine and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Huiwei Zhang
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhenxu Xiao
- National Clinical Research Center for Aging and Medicine and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ming Li
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Wu
- National Clinical Research Center for Aging and Medicine and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zizhao Ju
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Chen
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Zheng
- National Clinical Research Center for Aging and Medicine and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingjie Ge
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoniu Liang
- National Clinical Research Center for Aging and Medicine and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Weiqi Bao
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Ping Wu
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Ding Ding
- National Clinical Research Center for Aging and Medicine and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | | | - Yihui Guan
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai, China.
- National Clinical Research Center for Aging and Medicine and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China.
| | - Chuantao Zuo
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai, China.
- National Clinical Research Center for Aging and Medicine and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China.
- Human Phenome Institute, Fudan University, Shanghai, China.
| | - Qianhua Zhao
- National Clinical Research Center for Aging and Medicine and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China.
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China.
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Xu K, Niu N, Li X, Chen Y, Wang D, Zhang J, Chen Y, Li H, Wei D, Chen K, Cui R, Zhang Z, Yao L. The characteristics of glucose metabolism and functional connectivity in posterior default network during nondemented aging: relationship with executive function performance. Cereb Cortex 2023; 33:2901-2911. [PMID: 35909217 PMCID: PMC10388385 DOI: 10.1093/cercor/bhac248] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Understanding the characteristics of intrinsic connectivity networks (ICNs) in terms of both glucose metabolism and functional connectivity (FC) is important for revealing cognitive aging and neurodegeneration, but the relationships between these two aspects during aging has not been well established in older adults. OBJECTIVE This study is to assess the relationship between age-related glucose metabolism and FC in key ICNs, and their direct or indirect effects on cognitive deficits in older adults. METHODS We estimated the individual-level standard uptake value ratio (SUVr) and FC of eleven ICNs in 59 cognitively unimpaired older adults, then analyzed the associations of SUVr and FC of each ICN and their relationships with cognitive performance. RESULTS The results showed both the SUVr and FC in the posterior default mode network (pDMN) had a significant decline with age, and the association between them was also significant. Moreover, both decline of metabolism and FC in the pDMN were significantly correlated with executive function decline. Finally, mediation analysis revealed the glucose metabolism mediated the FC decline with age and FC mediated the executive function deficits. CONCLUSIONS Our findings indicated that covariance between glucose metabolism and FC in the pDMN is one of the main routes that contributes to age-related executive function decline.
Collapse
Affiliation(s)
- Kai Xu
- School of Artificial Intelligence, Beijing Normal University, Beijing 100875, P.R. China
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, P.R. China
| | - Na Niu
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No1 Shuaifuyuan,Wangfujing St., Dongcheng District, Beijing 100730, P.R. China
| | - Xin Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, P.R. China
- BABRI Centre, Beijing Normal University, Beijing 100875, P.R. China
| | - Yuan Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, P.R. China
- BABRI Centre, Beijing Normal University, Beijing 100875, P.R. China
| | - Dandan Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, P.R. China
- BABRI Centre, Beijing Normal University, Beijing 100875, P.R. China
| | - Junying Zhang
- BABRI Centre, Beijing Normal University, Beijing 100875, P.R. China
- Institute of Basic Research in Clinical Medicine, China Academy of Traditional Chinese Medicine, Beijing 10070, P.R. China
| | - Yaojing Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, P.R. China
- BABRI Centre, Beijing Normal University, Beijing 100875, P.R. China
| | - He Li
- BABRI Centre, Beijing Normal University, Beijing 100875, P.R. China
- Institute of Basic Research in Clinical Medicine, China Academy of Traditional Chinese Medicine, Beijing 10070, P.R. China
| | - Dongfeng Wei
- BABRI Centre, Beijing Normal University, Beijing 100875, P.R. China
- Institute of Basic Research in Clinical Medicine, China Academy of Traditional Chinese Medicine, Beijing 10070, P.R. China
| | - Kewei Chen
- BABRI Centre, Beijing Normal University, Beijing 100875, P.R. China
- Department of Neurology, University of Arizona College of Medicine, Phoenix, AZ 85006, United States
| | - Ruixue Cui
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No1 Shuaifuyuan,Wangfujing St., Dongcheng District, Beijing 100730, P.R. China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, P.R. China
- BABRI Centre, Beijing Normal University, Beijing 100875, P.R. China
| | - Li Yao
- School of Artificial Intelligence, Beijing Normal University, Beijing 100875, P.R. China
| |
Collapse
|
7
|
Li W, Li R, Yan S, Zhao Z, Shan Y, Qi Z, Lu J. Effect of APOE ε4 genotype on amyloid-β, glucose metabolism, and gray matter volume in cognitively normal individuals and amnestic mild cognitive impairment. Eur J Neurol 2023; 30:587-596. [PMID: 36448771 PMCID: PMC10107141 DOI: 10.1111/ene.15656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND AND PURPOSE The presence of apolipoprotein E ε4 (APOE ε4) is associated with an increased risk of developing Alzheimer disease (AD). The aim of this study was to assess the effects of APOE ε4 on amyloid-β (Aβ) pathology, glucose metabolism, and gray matter (GM) volume and their longitudinal changes in healthy control (HC) and amnestic mild cognitive impairment (aMCI). METHODS We included 50 HCs and 109 aMCI patients from the Alzheimer's Disease Neuroimaging Initiative phase 2/GO based on availability of baseline T1-weighted magnetic resonance imaging, 18 F-florbetapir positron emission tomography (PET), and 18 F-fluorodeoxyglucose (FDG) PET. Of these, 35 HCs and 67 aMCI patients who underwent 24-month scans were included for follow-up study. RESULTS Voxelwise analysis revealed that APOE ε4 carriers exhibited greater baseline Aβ deposition than APOE ε4 noncarriers in both diagnostic groups. However, there was no significant difference between APOE ε4 noncarriers and APOE ε4 carriers in terms of 18 F-FDG PET standardized uptake value ratio and GM volume. Region of interest-based analysis showed statistically significant greater Aβ deposition in APOE ε4 carriers than APOE ε4 noncarriers only in aMCI patients. Furthermore, APOE ε4 carriers generally exhibited a greater magnitude and spatial extent of longitudinal changes in Aβ deposition than APOE ε4 noncarriers in both diagnostic groups. CONCLUSIONS Our findings suggest a differential effect of APOE ε4 on Aβ pathology, glucose metabolism, and GM volume. Studying APOE ε4-related brain changes with neuroimaging biomarkers in preclinical AD offers an opportunity to further our understanding of the pathophysiology of AD at an early stage.
Collapse
Affiliation(s)
- Weihua Li
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | | | - Shaozhen Yan
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Zhilian Zhao
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Yi Shan
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Zhigang Qi
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | | |
Collapse
|
8
|
Delaby C, Hirtz C, Lehmann S. Overview of the blood biomarkers in Alzheimer's disease: Promises and challenges. Rev Neurol (Paris) 2023; 179:161-172. [PMID: 36371265 DOI: 10.1016/j.neurol.2022.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/11/2022]
Abstract
The increasing number of people with advanced Alzheimer's disease (AD) represents a significant psychological and financial cost to the world population. Accurate detection of the earliest phase of preclinical AD is of major importance for the success of preventive and therapeutic strategies (Cullen et al., 2021). Advances in analytical techniques have been essential for the development of sensitive, specific and reliable diagnostic tests for AD biomarkers in biological fluids (cerebrospinal fluid and blood). Blood biomarkers hold promising potential for early and minimally invasive detection of AD, but also for differential diagnosis of dementia and for monitoring the course of the disease. The aim of this review is to provide an overview of current blood biomarkers of AD, from tau proteins and amyloid peptides to biomarkers of neuronal degeneration and inflammation, reactive and metabolic factors. We thus discuss the informative value of currently candidate blood biomarkers and their potential to be integrated into clinical practice for the management of AD in the near future.
Collapse
Affiliation(s)
- C Delaby
- LBPC-PPC, Université Montpellier, CHU Montpellier, INM Inserm, Montpellier, France; Hospital de la Santa Creu i Sant Pau - Biomedical Research Institute Sant Pau - Universitat Autònoma de Barcelona, Barcelona, Spain
| | - C Hirtz
- LBPC-PPC, Université Montpellier, CHU Montpellier, INM Inserm, Montpellier, France
| | - S Lehmann
- LBPC-PPC, Université Montpellier, CHU Montpellier, INM Inserm, Montpellier, France.
| |
Collapse
|
9
|
Caminiti SP, Boccalini C, Nicastro N, Garibotto V, Perani D. Sex differences in brain metabolic connectivity architecture in probable dementia with Lewy bodies. Neurobiol Aging 2023; 126:14-24. [PMID: 36905876 DOI: 10.1016/j.neurobiolaging.2023.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/23/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023]
Abstract
We investigated how sex modulates metabolic connectivity alterations in probable dementia with Lewy bodies (pDLB). We included 131 pDLB patients (males/females: 58/73) and similarly aged healthy controls (HC) (male/female: 59/75) with available (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) scans. We assessed (1) sex differences in the whole-brain connectivity, identifying pathological hubs, (2) connectivity alterations in functional pathways of the neurotransmitter systems, (3) Resting State Networks (RSNs) integrity. Both pDLBM (males) and pDLBF (females) shared dysfunctional hubs in the insula, Rolandic operculum, and inferior parietal lobule, but the pDLBM group showed more severe and diffuse whole-brain connectivity alterations. Neurotransmitters connectivity analysis revealed common alterations in dopaminergic and noradrenergic pathways. Sex differences emerged particularly in the Ch4-perisylvian division, with pDLBM showing more severe alterations than pDLBF. The RSNs analysis showed no sex differences, with decreased connectivity strength in the primary visual, posterior default mode, and attention networks in both groups. Extensive connectivity changes characterize both males and females in the dementia stage, with a major vulnerability of cholinergic neurotransmitter systems in males, possibly contributing to the observed different clinical phenotypes.
Collapse
Affiliation(s)
- Silvia Paola Caminiti
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cecilia Boccalini
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolas Nicastro
- Division of Neurorehabilitation, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland; Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Valentina Garibotto
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Geneva, Switzerland; Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland; Center for Biomedical Imaging (CIBM), Geneva, Switzerland
| | - Daniela Perani
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | | |
Collapse
|
10
|
Lu J, Wang M, Wu P, Yakushev I, Zhang H, Ziegler S, Jiang J, Förster S, Wang J, Schwaiger M, Rominger A, Huang SC, Liu F, Zuo C, Shi K. Adjustment for the Age- and Gender-Related Metabolic Changes Improves the Differential Diagnosis of Parkinsonism. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:50-63. [PMID: 36939769 PMCID: PMC9883378 DOI: 10.1007/s43657-022-00079-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 06/18/2023]
Abstract
Age and gender are the important factors for brain metabolic declines in both normal aging and neurodegeneration, and the confounding effects may influence early and differential diagnosis of neurodegenerative diseases based on the [18F]fluorodeoxyglucose positron emission tomography ([18F]FDG PET). We aimed to explore the potential of the adjustment of age- and gender-related confounding factors on [18F]FDG PET images in differentiation of Parkinson's disease (PD), multiple system atrophy (MSA) and progressive supra-nuclear palsy (PSP). Eight hundred and seventy-seven clinically definitely diagnosed Parkinsonian patients from a benchmark Huashan Parkinsonian PET imaging database were included. An age- and gender-adjusted Z (AGAZ) score was established based on the gender-specific longitudinal metabolic changes on healthy subjects. AGAZ scores and standardized uptake value ratio (SUVR) values were quantified at regional-level and support vector machine-based error-correcting output codes method was applied for classification. Additional references of the classifications based on metabolic pattern scores were included. The feature-based AGAZ score showed the best performance in classification (accuracy for PD, MSA, PSP: 93.1%, 96.3%, 94.8%). In both genders, the AGAZ score consistently achieved the best efficiency, and the improvements compared to the conventional SUVR value for PD, MSA, and PSP mainly laid in specificity (Male: 5.7%; Female: 11.1%), sensitivity (Male: 7.2%; Female: 7.3%), and sensitivity (Male: 7.3%; Female: 17.2%). Female patients benefited more from the adjustment on [18F]FDG PET in MSA and PSP groups (absolute net reclassification index, p < 0.001). Collectively, the adjustment of age- and gender-related confounding factors may improve the differential diagnosis of Parkinsonism. Particularly, the diagnosis of female Parkinsonian population has the best improvement from this correction. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-022-00079-6.
Collapse
Affiliation(s)
- Jiaying Lu
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, 518 East Wuzhong Road, Shanghai, 200235 China
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Min Wang
- Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai, 200444 China
- Department of Informatics, Technische Universität München, 80333 Munich, Germany
| | - Ping Wu
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, 518 East Wuzhong Road, Shanghai, 200235 China
- National Research Center for Aging and Medicine and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | - Igor Yakushev
- Department of Nuclear Medicine, Technische Universität München, 80333 Munich, Germany
| | - Huiwei Zhang
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, 518 East Wuzhong Road, Shanghai, 200235 China
| | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital LMU Munich, 80539 Munich, Germany
| | - Jiehui Jiang
- Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai, 200444 China
| | - Stefan Förster
- Department of Nuclear Medicine, Technische Universität München, 80333 Munich, Germany
- Department of Nuclear Medicine, Klinikum Bayreuth, 95445, Bayreuth, Germany
| | - Jian Wang
- National Research Center for Aging and Medicine and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040 China
- Department of Neurology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040 China
| | - Markus Schwaiger
- Klinikum r. d. Isar, Technische Universität München, 95445 Munich, Germany
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Sung-Cheng Huang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, 90095 USA
| | - Fengtao Liu
- National Research Center for Aging and Medicine and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040 China
- Department of Neurology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040 China
| | - Chuantao Zuo
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, 518 East Wuzhong Road, Shanghai, 200235 China
- National Research Center for Aging and Medicine and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040 China
- Human Phenome Institute, Fudan University, Shanghai, 200433 China
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department of Informatics, Technische Universität München, 80333 Munich, Germany
| |
Collapse
|
11
|
Risacher SL, Apostolova LG. Neuroimaging in Dementia. Continuum (Minneap Minn) 2023; 29:219-254. [PMID: 36795879 DOI: 10.1212/con.0000000000001248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
OBJECTIVE Neurodegenerative diseases are significant health concerns with regard to morbidity and social and economic hardship around the world. This review describes the state of the field of neuroimaging measures as biomarkers for detection and diagnosis of both slowly progressing and rapidly progressing neurodegenerative diseases, specifically Alzheimer disease, vascular cognitive impairment, dementia with Lewy bodies or Parkinson disease dementia, frontotemporal lobar degeneration spectrum disorders, and prion-related diseases. It briefly discusses findings in these diseases in studies using MRI and metabolic and molecular-based imaging (eg, positron emission tomography [PET] and single-photon emission computerized tomography [SPECT]). LATEST DEVELOPMENTS Neuroimaging studies with MRI and PET have demonstrated differential patterns of brain atrophy and hypometabolism in different neurodegenerative disorders, which can be useful in differential diagnoses. Advanced MRI sequences, such as diffusion-based imaging, and functional MRI (fMRI) provide important information about underlying biological changes in dementia and new directions for development of novel measures for future clinical use. Finally, advancements in molecular imaging allow clinicians and researchers to visualize dementia-related proteinopathies and neurotransmitter levels. ESSENTIAL POINTS Diagnosis of neurodegenerative diseases is primarily based on symptomatology, although the development of in vivo neuroimaging and fluid biomarkers is changing the scope of clinical diagnosis, as well as the research into these devastating diseases. This article will help inform the reader about the current state of neuroimaging in neurodegenerative diseases, as well as how these tools might be used for differential diagnoses.
Collapse
Affiliation(s)
- Shannon L Risacher
- Address correspondence to Dr Shannon L. Risacher, 355 W 16th St, Indianapolis, IN 46202,
| | | |
Collapse
|
12
|
Liu M, Xie X, Xie J, Tian S, Du X, Feng H, Zhang H. Early-onset Alzheimer's disease with depression as the first symptom: a case report with literature review. Front Psychiatry 2023; 14:1192562. [PMID: 37181906 PMCID: PMC10174310 DOI: 10.3389/fpsyt.2023.1192562] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/05/2023] [Indexed: 05/16/2023] Open
Abstract
Background Alzheimer's disease is a common neurodegenerative disease, and patients with early-onset Alzheimer's disease (onset age < 65 years) often have atypical symptoms, which are easily misdiagnosed and missed. Multimodality neuroimaging has become an important diagnostic and follow-up method for AD with its non-invasive and quantitative advantages. Case presentation We report a case of a 59-year-old female with a diagnosis of depression at the age of 50 after a 46-year-old onset and a 9-year follow-up observation, who developed cognitive dysfunction manifested by memory loss and disorientation at the age of 53, and eventually developed dementia. Combined with neuropsychological scales (MMSE and MOCA scores decreased year by year and finally reached the dementia criteria) and the application of multimodal imaging. MRI showed that the hippocampus atrophied year by year and the cerebral cortex was extensively atrophied. 18F-FDG PET image showed hypometabolism in right parietal lobes, bilateral frontal lobes, bilateral joint parieto-temporal areas, and bilateral posterior cingulate glucose metabolism. The 18F-AV45 PET image showed the diagnosis of early-onset Alzheimer's disease was confirmed by the presence of Aβ deposits in the cerebral cortex. Conclusion Early-onset Alzheimer's disease, which starts with depression, often has atypical symptoms and is prone to misdiagnosis. The combination of neuropsychological scales and neuroimaging examinations are good screening tools that can better assist in the early diagnosis of Alzheimer's disease. Graphical Abstract.
Collapse
Affiliation(s)
- Meichen Liu
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xueting Xie
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jinghui Xie
- Department of Nuclear Medicine, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Shiyun Tian
- Department of Radiology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xuemei Du
- Department of Nuclear Medicine, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Hongbo Feng
- Department of Radiology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Huimin Zhang
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
- *Correspondence: Huimin Zhang,
| |
Collapse
|
13
|
Li P, Quan W, Wang Z, Liu Y, Cai H, Chen Y, Wang Y, Zhang M, Tian Z, Zhang H, Zhou Y. Early-stage differentiation between Alzheimer's disease and frontotemporal lobe degeneration: Clinical, neuropsychology, and neuroimaging features. Front Aging Neurosci 2022; 14:981451. [PMID: 36389060 PMCID: PMC9659748 DOI: 10.3389/fnagi.2022.981451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/10/2022] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD) are the two most common forms of neurodegenerative dementia. Although both of them have well-established diagnostic criteria, achieving early diagnosis remains challenging. Here, we aimed to make the differential diagnosis of AD and FTLD from clinical, neuropsychological, and neuroimaging features. MATERIALS AND METHODS In this retrospective study, we selected 95 patients with PET-CT defined AD and 106 patients with PET-CT/biomarker-defined FTLD. We performed structured chart examination to collect clinical data and ascertain clinical features. A series of neuropsychological scales were used to assess the neuropsychological characteristics of patients. Automatic tissue segmentation of brain by Dr. Brain tool was used to collect multi-parameter volumetric measurements from different brain areas. All patients' structural neuroimage data were analyzed to obtain brain structure and white matter hyperintensities (WMH) quantitative data. RESULTS The prevalence of vascular disease associated factors was higher in AD patients than that in FTLD group. 56.84% of patients with AD carried at least one APOE ε4 allele, which is much high than that in FTLD patients. The first symptoms of AD patients were mostly cognitive impairment rather than behavioral abnormalities. In contrast, behavioral abnormalities were the prominent early manifestations of FTLD, and few patients may be accompanied by memory impairment and motor symptoms. In direct comparison, patients with AD had slightly more posterior lesions and less frontal atrophy, whereas patients with FTLD had more frontotemporal atrophy and less posterior lesions. The WMH burden of AD was significantly higher, especially in cortical areas, while the WMH burden of FTLD was higher in periventricular areas. CONCLUSION These results indicate that dynamic evaluation of cognitive function, behavioral and psychological symptoms, and multimodal neuroimaging are helpful for the early diagnosis and differentiation between AD and FTLD.
Collapse
Affiliation(s)
- Pan Li
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital Affiliated to Tianjin Medical University, Tianjin Huanhu Hospital Affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Wei Quan
- Department of Neurosurgery, General Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Zengguang Wang
- Department of Neurosurgery, General Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Ying Liu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital Affiliated to Tianjin Medical University, Tianjin Huanhu Hospital Affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Hao Cai
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital Affiliated to Tianjin Medical University, Tianjin Huanhu Hospital Affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Yuan Chen
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital Affiliated to Tianjin Medical University, Tianjin Huanhu Hospital Affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Yan Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital Affiliated to Tianjin Medical University, Tianjin Huanhu Hospital Affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Miao Zhang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital Affiliated to Tianjin Medical University, Tianjin Huanhu Hospital Affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Zhiyan Tian
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital Affiliated to Tianjin Medical University, Tianjin Huanhu Hospital Affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Huihong Zhang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital Affiliated to Tianjin Medical University, Tianjin Huanhu Hospital Affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Yuying Zhou
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital Affiliated to Tianjin Medical University, Tianjin Huanhu Hospital Affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
14
|
Transcranial Electromagnetic Treatment Stops Alzheimer’s Disease Cognitive Decline over a 2½-Year Period: A Pilot Study. MEDICINES 2022; 9:medicines9080042. [PMID: 36005647 PMCID: PMC9416517 DOI: 10.3390/medicines9080042] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/29/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022]
Abstract
Background: There is currently no therapeutic that can stop or reverse the progressive memory impairment of Alzheimer’s disease (AD). However, we recently published that 2 months of daily, in-home transcranial electromagnetic treatment (TEMT) reversed the cognitive impairment in eight mild/moderate AD subjects. These cognitive enhancements were accompanied by predicted changes in AD markers within both the blood and cerebrospinal fluid (CSF). Methods: In view of these encouraging findings, the initial clinical study was extended twice to encompass a period of 2½ years. The present study reports on the resulting long-term safety, cognitive assessments, and AD marker evaluations from the five subjects who received long-term treatment. Results: TEMT administration was completely safe over the 2½-year period, with no deleterious side effects. In six cognitive/functional tasks (including the ADAS-cog13, Rey AVLT, MMSE, and ADL), no decline in any measure occurred over this 2½-year period. Long-term TEMT induced reductions in the CSF levels of C-reactive protein, p-tau217, Aβ1-40, and Aβ1-42 while modulating CSF oligomeric Aβ levels. In the plasma, long-term TEMT modulated/rebalanced levels of both p-tau217 and total tau. Conclusions: Although only a limited number of AD patients were involved in this study, the results suggest that TEMT can stop the cognitive decline of AD over a period of at least 2½ years and can do so with no safety issues.
Collapse
|
15
|
Kelley CM, Ginsberg SD, Liang WS, Counts SE, Mufson EJ. Posterior cingulate cortex reveals an expression profile of resilience in cognitively intact elders. Brain Commun 2022; 4:fcac162. [PMID: 35813880 PMCID: PMC9263888 DOI: 10.1093/braincomms/fcac162] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/12/2022] [Accepted: 06/17/2022] [Indexed: 12/20/2022] Open
Abstract
The posterior cingulate cortex, a key hub of the default mode network, underlies autobiographical memory retrieval and displays hypometabolic changes early in Alzheimer disease. To obtain an unbiased understanding of the molecular pathobiology of the aged posterior cingulate cortex, we performed RNA sequencing (RNA-seq) on tissue obtained from 26 participants of the Rush Religious Orders Study (11 males/15 females; aged 76-96 years) with a pre-mortem clinical diagnosis of no cognitive impairment and post-mortem neurofibrillary tangle Braak Stages I/II, III, and IV. Transcriptomic data were gathered using next-generation sequencing of RNA extracted from posterior cingulate cortex generating an average of 60 million paired reads per subject. Normalized expression of RNA-seq data was calculated using a global gene annotation and a microRNA profile. Differential expression (DESeq2, edgeR) using Braak staging as the comparison structure isolated genes for dimensional scaling, associative network building and functional clustering. Curated genes were correlated with the Mini-Mental State Examination and semantic, working and episodic memory, visuospatial ability, and a composite Global Cognitive Score. Regulatory mechanisms were determined by co-expression networks with microRNAs and an overlap of transcription factor binding sites. Analysis revealed 750 genes and 12 microRNAs significantly differentially expressed between Braak Stages I/II and III/IV and an associated six groups of transcription factor binding sites. Inputting significantly different gene/network data into a functional annotation clustering model revealed elevated presynaptic, postsynaptic and ATP-related expression in Braak Stages III and IV compared with Stages I/II, suggesting these pathways are integral for cognitive resilience seen in unimpaired elderly subjects. Principal component analysis and Kruskal-Wallis testing did not associate Braak stage with cognitive function. However, Spearman correlations between genes and cognitive test scores followed by network analysis revealed upregulation of classes of synaptic genes positively associated with performance on the visuospatial perceptual orientation domain. Upregulation of key synaptic genes suggests a role for these transcripts and associated synaptic pathways in cognitive resilience seen in elders despite Alzheimer disease pathology and dementia.
Collapse
Affiliation(s)
- Christy M Kelley
- Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Winnie S Liang
- Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Scott E Counts
- Department of Translational Neuroscience, Michigan State University College of Human Medicine, Grand Rapids, MI 49503, USA
- Department of Family Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI 49503, USA
| | - Elliott J Mufson
- Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| |
Collapse
|
16
|
Cao C, Abulaban H, Baranowski R, Wang Y, Bai Y, Lin X, Shen N, Zhang X, Arendash GW. Transcranial Electromagnetic Treatment “Rebalances” Blood and Brain Cytokine Levels in Alzheimer’s Patients: A New Mechanism for Reversal of Their Cognitive Impairment. Front Aging Neurosci 2022; 14:829049. [PMID: 35585867 PMCID: PMC9108275 DOI: 10.3389/fnagi.2022.829049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/05/2022] [Indexed: 01/11/2023] Open
Abstract
Background The immune system plays a critical role in the development and progression of Alzheimer’s disease (AD). However, there is disagreement as to whether development/progression of AD involves an over-activation or an under-activation of the immune system. In either scenario, the immune system’s cytokine levels are abnormal in AD and in need of rebalancing. We have recently published a pilot clinical trial (https://clinicaltrials.gov/ct2/show/NCT02958930) showing that 2 months of daily in-home Transcranial Electromagnetic Treatment (TEMT) was completely safe and resulted in reversal of AD cognitive impairment. Methods For the eight mild/moderate AD subjects in this published work, the present study sought to determine if their TEMT administration had immunologic effects on blood or CSF levels of 12 cytokines. Subjects were given daily in-home TEMT for 2 months by their caregivers, utilizing first-in-class MemorEM™ devices. Results For eight plasma cytokines, AD subjects with lower baseline cytokine levels always showed increases in those cytokines after both a single treatment or after 2-months of daily TEMT. By contrast, those AD subjects with higher baseline cytokine levels in plasma showed treatment-induced decreases in plasma cytokines at both time points. Thus, a gravitation to reported normal plasma cytokine levels (i.e., a “rebalancing”) occurred with both acute and long-term TEMT. In the CSF, TEMT-induced a similar rebalancing for seven measurable cytokines, the direction and extent of changes in individual subjects also being linked to their baseline CSF levels. Conclusion Our results strongly suggest that daily TEMT to AD subjects for 2-months can “rebalance” levels for 11 of 12 cytokines in blood and/or brain, which is associated with reversal of their cognitive impairment. TEMT is likely to be providing these immunoregulatory effects by affecting cytokine secretion from: (1) blood cells traveling through the head’s vasculature, and (2) the brain’s microglia/astrocytes, choroid plexus, or neurons. This rebalancing of so many cytokines, and in both brain and systemic compartments, appears to be a remarkable new mechanism of TEMT action that may contribute substantially to it’s potential to prevent, stop, or reverse AD and other diseases of aging.
Collapse
Affiliation(s)
- Chuanhai Cao
- Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
- MegaNano Biotech, Inc., Tampa, FL, United States
| | - Haitham Abulaban
- Axiom Clinical Research, Tampa, FL, United States
- University of South Florida Health Byrd Alzheimer’s Institute, Tampa, FL, United States
| | | | - Yanhong Wang
- Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Yun Bai
- MegaNano Biotech, Inc., Tampa, FL, United States
| | - Xiaoyang Lin
- Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
- MegaNano Biotech, Inc., Tampa, FL, United States
| | - Ning Shen
- Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
- MegaNano Biotech, Inc., Tampa, FL, United States
| | - Xiaolin Zhang
- Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
- MegaNano Biotech, Inc., Tampa, FL, United States
| | - Gary W. Arendash
- NeuroEM Therapeutics, Inc., Phoenix, AZ, United States
- *Correspondence: Gary W. Arendash,
| |
Collapse
|
17
|
Lee J, Burkett BJ, Min HK, Senjem ML, Lundt ES, Botha H, Graff-Radford J, Barnard LR, Gunter JL, Schwarz CG, Kantarci K, Knopman DS, Boeve BF, Lowe VJ, Petersen RC, Jack CR, Jones DT. Deep learning-based brain age prediction in normal aging and dementia. NATURE AGING 2022; 2:412-424. [PMID: 37118071 PMCID: PMC10154042 DOI: 10.1038/s43587-022-00219-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/29/2022] [Indexed: 11/08/2022]
Abstract
Brain aging is accompanied by patterns of functional and structural change. Alzheimer's disease (AD), a representative neurodegenerative disease, has been linked to accelerated brain aging. Here, we developed a deep learning-based brain age prediction model using a large collection of fluorodeoxyglucose positron emission tomography and structural magnetic resonance imaging and tested how the brain age gap relates to degenerative syndromes including mild cognitive impairment, AD, frontotemporal dementia and Lewy body dementia. Occlusion analysis, performed to facilitate the interpretation of the model, revealed that the model learns an age- and modality-specific pattern of brain aging. The elevated brain age gap was highly correlated with cognitive impairment and the AD biomarker. The higher gap also showed a longitudinal predictive nature across clinical categories, including cognitively unimpaired individuals who converted to a clinical stage. However, regions generating brain age gaps were different for each diagnostic group of which the AD continuum showed similar patterns to normal aging.
Collapse
Affiliation(s)
- Jeyeon Lee
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Hoon-Ki Min
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Matthew L Senjem
- Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | - Emily S Lundt
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | - David T Jones
- Department of Radiology, Mayo Clinic, Rochester, MN, USA.
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
18
|
Mertens N, Sunaert S, Van Laere K, Koole M. The Effect of Aging on Brain Glucose Metabolic Connectivity Revealed by [18F]FDG PET-MR and Individual Brain Networks. Front Aging Neurosci 2022; 13:798410. [PMID: 35221983 PMCID: PMC8865456 DOI: 10.3389/fnagi.2021.798410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Contrary to group-based brain connectivity analyses, the aim of this study was to construct individual brain metabolic networks to determine age-related effects on brain metabolic connectivity. Static 40–60 min [18F]FDG positron emission tomography (PET) images of 67 healthy subjects between 20 and 82 years were acquired with an integrated PET-MR system. Network nodes were defined by brain parcellation using the Schaefer atlas, while connectivity strength between two nodes was determined by comparing the distribution of PET uptake values within each node using a Kullback–Leibler divergence similarity estimation (KLSE). After constructing individual brain networks, a linear and quadratic regression analysis of metabolic connectivity strengths within- and between-networks was performed to model age-dependency. In addition, the age dependency of metrics for network integration (characteristic path length), segregation (clustering coefficient and local efficiency), and centrality (number of hubs) was assessed within the whole brain and within predefined functional subnetworks. Overall, a decrease of metabolic connectivity strength with healthy aging was found within the whole-brain network and several subnetworks except within the somatomotor, limbic, and visual network. The same decrease of metabolic connectivity was found between several networks across the whole-brain network and the functional subnetworks. In terms of network topology, a less integrated and less segregated network was observed with aging, while the distribution and the number of hubs did not change with aging, suggesting that brain metabolic networks are not reorganized during the adult lifespan. In conclusion, using an individual brain metabolic network approach, a decrease in metabolic connectivity strength was observed with healthy aging, both within the whole brain and within several predefined networks. These findings can be used in a diagnostic setting to differentiate between age-related changes in brain metabolic connectivity strength and changes caused by early development of neurodegeneration.
Collapse
Affiliation(s)
- Nathalie Mertens
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- *Correspondence: Nathalie Mertens,
| | - Stefan Sunaert
- Translational MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Division of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| |
Collapse
|
19
|
18F-FDG-PET correlates of aging and disease course in ALS as revealed by distinct PVC approaches. Eur J Radiol Open 2022; 9:100394. [PMID: 35059473 PMCID: PMC8760536 DOI: 10.1016/j.ejro.2022.100394] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/23/2021] [Accepted: 01/06/2022] [Indexed: 11/23/2022] Open
|
20
|
Duarte-Abritta B, Sánchez SM, Abulafia C, Gustafson DR, Vázquez S, Sevlever G, Castro MN, Fiorentini L, Villarreal MF, Guinjoan SM. Amyloid and anatomical correlates of executive functioning in middle-aged offspring of patients with late-onset Alzheimer's disease. Psychiatry Res Neuroimaging 2021; 316:111342. [PMID: 34365076 DOI: 10.1016/j.pscychresns.2021.111342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/02/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022]
Abstract
A traditional hallmark of cognitive impairment associated with late-onset Alzheimer´s disease (LOAD) is episodic memory impairment. However, early alterations have been identified in brain regions associated with executive function in asymptomatic, middle-age offspring of patients with LOAD (O-LOAD) compared to those with no family history. We hypothesized that executive function among O-LOAD would correlate with structural and amyloid brain imaging differently from those without a family history of LOAD (control subjects, CS). Executive function, cortical thickness, and in-vivo Aβ deposits were quantified in 30 O-LOAD and 25 CS. Associations were observed among O-LOAD only. Cortical thickness in the left lateral orbitofrontal cortex was positively associated with Design Fluency. The Stroop Color and Word Test, correlated positively with right rostral mid-frontal cortex thickness. Trails Making Test-B was inversely related to left medial orbitofrontal thickness. Tower of London total time was positively associated with β-amyloid deposition in the right precuneus. These results support previous evidence that early executive dysfunction might reflect subtle, early changes in persons at risk of LOAD and suggests that executive function alterations deserve further exploration in the LOAD literature.
Collapse
Affiliation(s)
- Bárbara Duarte-Abritta
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta, Instituto de Neurociencias FLENI-CONICET, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Stella-Maris Sánchez
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta, Instituto de Neurociencias FLENI-CONICET, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Departamento de Física, Facultad de Cs. Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Carolina Abulafia
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta, Instituto de Neurociencias FLENI-CONICET, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Institute for Biomedical Research (BIOMED), Pontifical Catholic University of Argentina, Buenos Aires, Argentina
| | - Deborah R Gustafson
- Department of Neurology, State University of New York University Downstate Health Sciences University, United States
| | - Silvia Vázquez
- Centro de imágenes moleculares (CIM), Fundación FLENI, Argentina
| | - Gustavo Sevlever
- Departamento de Neuropatología y Biología Molecular, Fundación FLENI, Buenos Aires, Argentina
| | - Mariana N Castro
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta, Instituto de Neurociencias FLENI-CONICET, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Departamento de Salud Mental, Facultad de Medicina, Universidad de Buenos Aires, Argentina; Servicio de Psiquiatría, Fundación FLENI, Buenos Aires, Argentina
| | - Leticia Fiorentini
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta, Instituto de Neurociencias FLENI-CONICET, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Servicio de Psiquiatría, Fundación FLENI, Buenos Aires, Argentina
| | - Mirta F Villarreal
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta, Instituto de Neurociencias FLENI-CONICET, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Departamento de Física, Facultad de Cs. Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Salvador M Guinjoan
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta, Instituto de Neurociencias FLENI-CONICET, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Argentina; Departamento de Salud Mental, Facultad de Medicina, Universidad de Buenos Aires, Argentina; Neurofisiología I, Facultad de Psicología, Universidad de Buenos Aires, Argentina; Laureate Institute for Brain Research, OK, United States.
| |
Collapse
|
21
|
van Aalst J, Devrome M, Van Weehaeghe D, Rezaei A, Radwan A, Schramm G, Ceccarini J, Sunaert S, Koole M, Van Laere K. Regional glucose metabolic decreases with ageing are associated with microstructural white matter changes: a simultaneous PET/MR study. Eur J Nucl Med Mol Imaging 2021; 49:664-680. [PMID: 34398271 DOI: 10.1007/s00259-021-05518-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/02/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE Human ageing is associated with a regional reduction in cerebral neuronal activity as assessed by numerous studies on brain glucose metabolism and perfusion, grey matter (GM) density and white matter (WM) integrity. As glucose metabolism may impact energetics to maintain myelin integrity, but changes in functional connectivity may also alter regional metabolism, we conducted a cross-sectional simultaneous FDG PET/MR study in a large cohort of healthy volunteers with a wide age range, to directly assess the underlying associations between reduced glucose metabolism, GM atrophy and decreased WM integrity in a single ageing cohort. METHODS In 94 healthy subjects between 19.9 and 82.5 years (mean 50.1 ± 17.1; 47 M/47F, MMSE ≥ 28), simultaneous FDG-PET, structural MR and diffusion tensor imaging (DTI) were performed. Voxel-wise associations between age and grey matter (GM) density, RBV partial-volume corrected (PVC) glucose metabolism, white matter (WM) fractional anisotropy (FA) and mean diffusivity (MD), and age were assessed. Clusters representing changes in glucose metabolism correlating significantly with ageing were used as seed regions for tractography. Both linear and quadratic ageing models were investigated. RESULTS An expected age-related reduction in GM density was observed bilaterally in the frontal, lateral and medial temporal cortex, striatum and cerebellum. After PVC, relative FDG uptake was negatively correlated with age in the inferior and midfrontal, cingulate and parietal cortex and subcortical regions, bilaterally. FA decreased with age throughout the entire brain WM. Four white matter tracts were identified connecting brain regions with declining glucose metabolism with age. Within these, relative FDG uptake in both origin and target clusters correlated positively with FA (0.32 ≤ r ≤ 0.71) and negatively with MD (- 0.75 ≤ r ≤ - 0.41). CONCLUSION After appropriate PVC, we demonstrated that regional cerebral glucose metabolic declines with age and that these changes are related to microstructural changes in the interconnecting WM tracts. The temporal course and potential causality between ageing effects on glucose metabolism and WM integrity should be further investigated in longitudinal cohort PET/MR studies.
Collapse
Affiliation(s)
- June van Aalst
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Martijn Devrome
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Donatienne Van Weehaeghe
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Division of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Ahmadreza Rezaei
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Ahmed Radwan
- Translational MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Georg Schramm
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Jenny Ceccarini
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Stefan Sunaert
- Translational MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Radiology, University Hospitals Leuven, Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.
- Division of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium.
- UZ Leuven, Campus Gasthuisberg, Nucleaire Geneeskunde, E901, Herestraat 49, BE-3000 , Leuven, Belgium.
| |
Collapse
|
22
|
Strom A, Iaccarino L, Edwards L, Lesman-Segev OH, Soleimani-Meigooni DN, Pham J, Baker SL, Landau S, Jagust WJ, Miller BL, Rosen HJ, Gorno-Tempini ML, Rabinovici GD, La Joie R. Cortical hypometabolism reflects local atrophy and tau pathology in symptomatic Alzheimer's disease. Brain 2021; 145:713-728. [PMID: 34373896 PMCID: PMC9014741 DOI: 10.1093/brain/awab294] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/09/2021] [Accepted: 07/21/2021] [Indexed: 11/14/2022] Open
Abstract
Posterior cortical hypometabolism measured with [18F]-Fluorodeoxyglucose (FDG)-PET is a well-known marker of Alzheimer's disease-related neurodegeneration, but its associations with underlying neuropathological processes are unclear. We assessed cross-sectionally the relative contributions of three potential mechanisms causing hypometabolism in the retrosplenial and inferior parietal cortices: local molecular (amyloid and tau) pathology and atrophy, distant factors including contributions from the degenerating medial temporal lobe or molecular pathology in functionally connected regions, and the presence of the apolipoprotein E (APOE) ε4 allele. Two hundred and thirty-two amyloid-positive cognitively impaired patients from two cohorts (University of California, San Francisco, UCSF, and Alzheimer's Disease Neuroimaging Initiative, ADNI) underwent MRI and PET with FDG, amyloid-PET using [11C]-Pittsburgh Compound B, [18F]-Florbetapir, or [18F]-Florbetaben, and [18F]-Flortaucipir tau-PET within one year. Standard uptake value ratios (SUVR) were calculated using tracer-specific reference regions. Regression analyses were run within cohorts to identify variables associated with retrosplenial or inferior parietal FDG SUVR. On average, ADNI patients were older and were less impaired than UCSF patients. Regional patterns of hypometabolism were similar between cohorts, though there were cohort differences in regional gray matter atrophy. Local cortical thickness and tau-PET (but not amyloid-PET) were independently associated with both retrosplenial and inferior parietal FDG SUVR (ΔR2 = .09 to .21) across cohorts in models that also included age and disease severity (local model). Including medial temporal lobe volume improved the retrosplenial FDG model in ADNI (ΔR2 = .04, p = .008) but not UCSF (ΔR2 < .01, p = .52), and did not improve the inferior parietal models (ΔR2s < .01, ps > .37). Interaction analyses revealed that medial temporal volume was more strongly associated with retrosplenial FDG SUVR at earlier disease stages (p = .06 in UCSF, p = .046 in ADNI). Exploratory analyses across the cortex confirmed overall associations between hypometabolism and local tau pathology and thickness and revealed associations between medial temporal degeneration and hypometabolism in retrosplenial, orbitofrontal, and anterior cingulate cortices. Finally, our data did not support hypotheses of a detrimental effect of pathology in connected regions or of an effect of the APOE ε4 allele in impaired participants. Overall, in two independent groups of patients at symptomatic stages of Alzheimer's disease, cortical hypometabolism mainly reflected structural neurodegeneration and tau, but not amyloid, pathology.
Collapse
Affiliation(s)
- Amelia Strom
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Leonardo Iaccarino
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Lauren Edwards
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Orit H Lesman-Segev
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.,Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - David N Soleimani-Meigooni
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Julie Pham
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Suzanne L Baker
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Susan Landau
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - William J Jagust
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Howard J Rosen
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.,Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
23
|
He JT, Zhao X, Xu L, Mao CY. Vascular Risk Factors and Alzheimer's Disease: Blood-Brain Barrier Disruption, Metabolic Syndromes, and Molecular Links. J Alzheimers Dis 2021; 73:39-58. [PMID: 31815697 DOI: 10.3233/jad-190764] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, marked by cortical and hippocampal deposition of amyloid-β (Aβ) plaques and neurofibrillary tangles and cognitive impairment. Studies indicate a prominent link between cerebrovascular abnormalities and the onset and progression of AD, where blood-brain barrier (BBB) dysfunction and metabolic disorders play key risk factors. Pericyte degeneration, endothelial cell damage, astrocyte depolarization, diminished tight junction integrity, and basement membrane disarray trigger BBB damage. Subsequently, the altered expression of low-density lipoprotein receptor-related protein 1 and receptor for advanced glycation end products at the microvascular endothelial cells dysregulate Aβ transport across the BBB. White matter lesions and microhemorrhages, dyslipidemia, altered brain insulin signaling, and insulin resistance contribute to tau and Aβ pathogenesis, and oxidative stress, mitochondrial damage, inflammation, and hypoperfusion serve as mechanistic links between pathophysiological features of AD and ischemia. Deregulated calcium homeostasis, voltage gated calcium channel functioning, and protein kinase C signaling are also common mechanisms for both AD pathogenesis and cerebrovascular abnormalities. Additionally, APOE polymorphic alleles that characterize impaired cerebrovascular integrity function as primary genetic determinants of AD. Overall, the current review enlightens key vascular risk factors for AD and underscores pathophysiologic relationship between AD and vascular dysfunction.
Collapse
Affiliation(s)
- Jin-Ting He
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Xin Zhao
- Department of Paediatrics, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Lei Xu
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Cui-Ying Mao
- Department of Cardiology, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
24
|
Koval I, Bône A, Louis M, Lartigue T, Bottani S, Marcoux A, Samper-González J, Burgos N, Charlier B, Bertrand A, Epelbaum S, Colliot O, Allassonnière S, Durrleman S. AD Course Map charts Alzheimer's disease progression. Sci Rep 2021; 11:8020. [PMID: 33850174 PMCID: PMC8044144 DOI: 10.1038/s41598-021-87434-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by the progressive alterations seen in brain images which give rise to the onset of various sets of symptoms. The variability in the dynamics of changes in both brain images and cognitive impairments remains poorly understood. This paper introduces AD Course Map a spatiotemporal atlas of Alzheimer's disease progression. It summarizes the variability in the progression of a series of neuropsychological assessments, the propagation of hypometabolism and cortical thinning across brain regions and the deformation of the shape of the hippocampus. The analysis of these variations highlights strong genetic determinants for the progression, like possible compensatory mechanisms at play during disease progression. AD Course Map also predicts the patient's cognitive decline with a better accuracy than the 56 methods benchmarked in the open challenge TADPOLE. Finally, AD Course Map is used to simulate cohorts of virtual patients developing Alzheimer's disease. AD Course Map offers therefore new tools for exploring the progression of AD and personalizing patients care.
Collapse
Affiliation(s)
- Igor Koval
- Institut du Cerveau et de la Moelle épinière (ICM) & Inserm, U 1127 & CNRS, UMR 7225, Sorbonne Université, 75013, Paris, France
- Inria, Aramis project-team, Paris, France
- Centre de Mathématiques Appliquées, Ecole Polytechnique, Palaiseau, France
| | - Alexandre Bône
- Institut du Cerveau et de la Moelle épinière (ICM) & Inserm, U 1127 & CNRS, UMR 7225, Sorbonne Université, 75013, Paris, France
- Inria, Aramis project-team, Paris, France
| | - Maxime Louis
- Institut du Cerveau et de la Moelle épinière (ICM) & Inserm, U 1127 & CNRS, UMR 7225, Sorbonne Université, 75013, Paris, France
- Inria, Aramis project-team, Paris, France
| | - Thomas Lartigue
- Institut du Cerveau et de la Moelle épinière (ICM) & Inserm, U 1127 & CNRS, UMR 7225, Sorbonne Université, 75013, Paris, France
- Inria, Aramis project-team, Paris, France
- Centre de Mathématiques Appliquées, Ecole Polytechnique, Palaiseau, France
| | - Simona Bottani
- Institut du Cerveau et de la Moelle épinière (ICM) & Inserm, U 1127 & CNRS, UMR 7225, Sorbonne Université, 75013, Paris, France
- Inria, Aramis project-team, Paris, France
| | - Arnaud Marcoux
- Institut du Cerveau et de la Moelle épinière (ICM) & Inserm, U 1127 & CNRS, UMR 7225, Sorbonne Université, 75013, Paris, France
- Inria, Aramis project-team, Paris, France
| | - Jorge Samper-González
- Institut du Cerveau et de la Moelle épinière (ICM) & Inserm, U 1127 & CNRS, UMR 7225, Sorbonne Université, 75013, Paris, France
- Inria, Aramis project-team, Paris, France
| | - Ninon Burgos
- Institut du Cerveau et de la Moelle épinière (ICM) & Inserm, U 1127 & CNRS, UMR 7225, Sorbonne Université, 75013, Paris, France
- Inria, Aramis project-team, Paris, France
| | - Benjamin Charlier
- Institut du Cerveau et de la Moelle épinière (ICM) & Inserm, U 1127 & CNRS, UMR 7225, Sorbonne Université, 75013, Paris, France
- Inria, Aramis project-team, Paris, France
- Laboratoire Alexandre Grotendieck, Université de Montpellier, Montpellier, France
| | - Anne Bertrand
- Institut du Cerveau et de la Moelle épinière (ICM) & Inserm, U 1127 & CNRS, UMR 7225, Sorbonne Université, 75013, Paris, France
- Inria, Aramis project-team, Paris, France
- AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Stéphane Epelbaum
- Institut du Cerveau et de la Moelle épinière (ICM) & Inserm, U 1127 & CNRS, UMR 7225, Sorbonne Université, 75013, Paris, France
- Inria, Aramis project-team, Paris, France
- AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Olivier Colliot
- Institut du Cerveau et de la Moelle épinière (ICM) & Inserm, U 1127 & CNRS, UMR 7225, Sorbonne Université, 75013, Paris, France
- Inria, Aramis project-team, Paris, France
- AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Stéphanie Allassonnière
- Centre de Recherche des Cordeliers, Université Paris Descartes, Paris, France
- Centre de Mathématiques Appliquées, Ecole Polytechnique, Palaiseau, France
| | - Stanley Durrleman
- Institut du Cerveau et de la Moelle épinière (ICM) & Inserm, U 1127 & CNRS, UMR 7225, Sorbonne Université, 75013, Paris, France.
- Inria, Aramis project-team, Paris, France.
| |
Collapse
|
25
|
Burgos N, Cardoso MJ, Samper-González J, Habert MO, Durrleman S, Ourselin S, Colliot O. Anomaly detection for the individual analysis of brain PET images. J Med Imaging (Bellingham) 2021; 8:024003. [PMID: 33842668 PMCID: PMC8021015 DOI: 10.1117/1.jmi.8.2.024003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/12/2021] [Indexed: 11/14/2022] Open
Abstract
Purpose: In clinical practice, positron emission tomography (PET) images are mostly analyzed visually, but the sensitivity and specificity of this approach greatly depend on the observer's experience. Quantitative analysis of PET images would alleviate this problem by helping define an objective limit between normal and pathological findings. We present an anomaly detection framework for the individual analysis of PET images. Approach: We created subject-specific abnormality maps that summarize the pathology's topographical distribution in the brain by comparing the subject's PET image to a model of healthy PET appearance that is specific to the subject under investigation. This model was generated from demographically and morphologically matched PET scans from a control dataset. Results: We generated abnormality maps for healthy controls, patients at different stages of Alzheimer's disease and with different frontotemporal dementia syndromes. We showed that no anomalies were detected for the healthy controls and that the anomalies detected from the patients with dementia coincided with the regions where abnormal uptake was expected. We also validated the proposed framework using the abnormality maps as inputs of a classifier and obtained higher classification accuracies than when using the PET images themselves as inputs. Conclusions: The proposed method was able to automatically locate and characterize the areas characteristic of dementia from PET images. The abnormality maps are expected to (i) help clinicians in their diagnosis by highlighting, in a data-driven fashion, the pathological areas, and (ii) improve the interpretability of subsequent analyses, such as computer-aided diagnosis or spatiotemporal modeling.
Collapse
Affiliation(s)
- Ninon Burgos
- Paris Brain Institute, Hôpital Pitié-Salpêtrière, Paris, France
- INSERM, U 1127, Hôpital Pitié-Salpêtrière, Paris, France
- CNRS, UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
- Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
- Inria, Aramis Project-Team, Hôpital Pitié-Salpêtrière, Paris, France
| | - M. Jorge Cardoso
- King’s College London, Department of Imaging and Biomedical Engineering, London, United Kingdom
| | - Jorge Samper-González
- Paris Brain Institute, Hôpital Pitié-Salpêtrière, Paris, France
- INSERM, U 1127, Hôpital Pitié-Salpêtrière, Paris, France
- CNRS, UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
- Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
- Inria, Aramis Project-Team, Hôpital Pitié-Salpêtrière, Paris, France
| | - Marie-Odile Habert
- AP-HP, Hôpital Pitié-Salpêtrière, Department of Nuclear Medicine, Paris, France
- Laboratoire d’Imagerie Biomédicale, Sorbonne Université, Inserm U 1146, CNRS UMR 7371, Hôpital Pitié-Salpêtrière, Paris, France
- Centre Acquisition et Traitement des Images, Hôpital Pitié-Salpêtrière, Paris, France
| | - Stanley Durrleman
- Paris Brain Institute, Hôpital Pitié-Salpêtrière, Paris, France
- INSERM, U 1127, Hôpital Pitié-Salpêtrière, Paris, France
- CNRS, UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
- Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
- Inria, Aramis Project-Team, Hôpital Pitié-Salpêtrière, Paris, France
| | - Sébastien Ourselin
- King’s College London, Department of Imaging and Biomedical Engineering, London, United Kingdom
| | - Olivier Colliot
- Paris Brain Institute, Hôpital Pitié-Salpêtrière, Paris, France
- INSERM, U 1127, Hôpital Pitié-Salpêtrière, Paris, France
- CNRS, UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
- Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
- Inria, Aramis Project-Team, Hôpital Pitié-Salpêtrière, Paris, France
| | | | | |
Collapse
|
26
|
Krell-Roesch J, Syrjanen JA, Vassilaki M, Lowe VJ, Vemuri P, Mielke MM, Machulda MM, Stokin GB, Christianson TJ, Kremers WK, Jack CR, Knopman DS, Petersen RC, Geda YE. Brain Regional Glucose Metabolism, Neuropsychiatric Symptoms, and the Risk of Incident Mild Cognitive Impairment: The Mayo Clinic Study of Aging. Am J Geriatr Psychiatry 2021; 29:179-191. [PMID: 32646634 PMCID: PMC7744363 DOI: 10.1016/j.jagp.2020.06.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/20/2020] [Accepted: 06/09/2020] [Indexed: 01/04/2023]
Abstract
OBJECTIVE The authors conducted a prospective cohort study to examine the risk of incident mild cognitive impairment (MCI) as predicted by baseline neuropsychiatric symptoms (NPS) and brain regional glucose metabolic dysfunction. METHODS About 1,363 cognitively unimpaired individuals (52.8% males) aged ≥50 years were followed for a median of 4.8 years to the outcome of incident MCI. NPS were assessed using Beck Depression and Anxiety Inventories and Neuropsychiatric Inventory Questionnaire. Glucose hypometabolism was measured by fluorodeoxyglucose positron emission tomography and defined as standardized uptake value ratio ≤ 1.47 in regions typically affected in Alzheimer disease. Cox proportional hazards models were adjusted for age, sex, education, and APOE ε4 status. RESULTS Participants with regional glucose hypometabolism and depression (Beck Depression Inventory-II ≥13) had a more than threefold increased risk of incident MCI (hazard ratio [95% confidence interval], 3.66 [1.75, 7.65], p <0.001, χ2 = 11.83, degree of freedom [df] = 1) as compared to the reference group (normal regional glucose metabolism and no depression), and the risk was also significantly elevated (7.21 [3.54, 14.7], p <0.001, χ2 = 29.68, df = 1) for participants with glucose hypometabolism and anxiety (Beck Anxiety Inventory ≥10). Having glucose hypometabolism and ≥1 NPS (3.74 [2.40, 5.82], p <0.001, χ2 = 34.13, df = 1) or ≥2 NPS (3.89 [2.20, 6.86], p <0.001, χ2 = 21.92, df = 1) increased the risk of incident MCI by more than three times, and having ≥3 NPS increased the risk by more than four times (4.12 [2.03, 8.37], p <0.001, χ2 = 15.39, df = 1). CONCLUSION Combined presence of NPS with regional glucose hypometabolism is associated with an increased risk of incident MCI, with fluorodeoxyglucose positron emission tomography appearing to be a stronger driving force of cognitive decline than NPS.
Collapse
|
27
|
Targeting metabolic pathways for extension of lifespan and healthspan across multiple species. Ageing Res Rev 2020; 64:101188. [PMID: 33031925 DOI: 10.1016/j.arr.2020.101188] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/20/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022]
Abstract
Metabolism plays a significant role in the regulation of aging at different levels, and metabolic reprogramming represents a major driving force in aging. Metabolic reprogramming leads to impaired organismal fitness, an age-dependent increase in susceptibility to diseases, decreased ability to mount a stress response, and increased frailty. The complexity of age-dependent metabolic reprogramming comes from the multitude of levels on which metabolic changes can be connected to aging and regulation of lifespan. This is further complicated by the different metabolic requirements of various tissues, cross-organ communication via metabolite secretion, and direct effects of metabolites on epigenetic state and redox regulation; however, not all of these changes are causative to aging. Studies in yeast, flies, worms, and mice have played a crucial role in identifying mechanistic links between observed changes in various metabolic traits and their effects on lifespan. Here, we review how changes in the organismal and organ-specific metabolome are associated with aging and how targeting of any one of over a hundred different targets in specific metabolic pathways can extend lifespan. An important corollary is that restriction or supplementation of different metabolites can change activity of these metabolic pathways in ways that improve healthspan and extend lifespan in different organisms. Due to the high levels of conservation of metabolism in general, translating findings from model systems to human beings will allow for the development of effective strategies for human health- and lifespan extension.
Collapse
|
28
|
Relationship between the disrupted topological efficiency of the structural brain connectome and glucose hypometabolism in normal aging. Neuroimage 2020; 226:117591. [PMID: 33248254 DOI: 10.1016/j.neuroimage.2020.117591] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/02/2020] [Accepted: 11/19/2020] [Indexed: 12/18/2022] Open
Abstract
Normal aging is accompanied by structural degeneration and glucose hypometabolism in the human brain. However, the relationship between structural network disconnections and hypometabolism in normal aging remains largely unknown. In the present study, by combining MRI and PET techniques, we investigated the metabolic mechanism of the structural brain connectome and its relationship with normal aging in a cross-sectional, community-based cohort of 42 cognitively normal elderly individuals aged 57-84 years. The structural connectome was constructed based on diffusion MRI tractography, and the network efficiency metrics were quantified using graph theory analyses. FDG-PET scanning was performed to evaluate the glucose metabolic level in the cortical regions of the individuals. The results of this study demonstrated that both network efficiency and cortical metabolism decrease with age (both p < 0.05). In the subregions of the bilateral thalamus, significant correlations between nodal efficiency and cortical metabolism could be observed across subjects. Individual-level analyses indicated that brain regions with higher nodal efficiency tend to exhibit higher metabolic levels, implying a tight coupling between nodal efficiency and glucose metabolism (r = 0.56, p = 1.15 × 10-21). Moreover, efficiency-metabolism coupling coefficient significantly increased with age (r = 0.44, p = 0.0046). Finally, the main findings were also reproducible in the ADNI dataset. Together, our results demonstrate a close coupling between structural brain connectivity and cortical metabolism in normal elderly individuals and provide new insight that improve the present understanding of the metabolic mechanisms of structural brain disconnections in normal aging.
Collapse
|
29
|
Carbonell F, Zijdenbos AP, Bedell BJ. Spatially Distributed Amyloid-β Reduces Glucose Metabolism in Mild Cognitive Impairment. J Alzheimers Dis 2020; 73:543-557. [PMID: 31796668 PMCID: PMC7029335 DOI: 10.3233/jad-190560] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background: Several positron emission tomography (PET) studies have explored the relationship between amyloid-β (Aβ), glucose metabolism, and the APOEɛ4 genotype. It has been reported that APOEɛ4, and not aggregated Aβ, contributes to glucose hypometabolism in pre-clinical stages of Alzheimer’s disease (AD) pathology. Objective: We hypothesize that typical measurements of Aβ taken either from composite regions-of-interest with relatively high burden actually cover significant patterns of the relationship with glucose metabolism. In contrast, spatially weighted measures of Aβ are more related to glucose metabolism in cognitively normal (CN) aging and mild cognitive impairment (MCI). Methods: We have generated a score of amyloid burden based on a joint singular value decomposition (SVD) of the cross-correlation structure between glucose metabolism, as measured by [18F]2-fluoro-2-deoxyglucose (FDG) PET, and Aβ, as measured by [18F]florbetapir PET, from the Alzheimer’s Disease Neuroimaging Initiative study. This SVD-based score reveals cortical regions where a reduced glucose metabolism is maximally correlated with distributed patterns of Aβ. Results: From an older population of CN and MCI subjects, we found that the SVD-based Aβ score was significantly correlated with glucose metabolism in several cortical regions. Additionally, the corresponding Aβ network has hubs that contribute to distributed glucose hypometabolism, which, in turn, are not necessarily foci of Aβ deposition. Conclusions: Our approach uncovered hidden patterns of the glucose metabolism-Aβ relationship. We showed that the SVD-based Aβ score produces a stronger relationship with decreasing glucose metabolism than either APOEɛ4 genotype or global measures of Aβ burden.
Collapse
Affiliation(s)
| | | | - Barry J Bedell
- Biospective Inc., Montreal, QC, Canada.,Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | | |
Collapse
|
30
|
Gamache J, Yun Y, Chiba-Falek O. Sex-dependent effect of APOE on Alzheimer's disease and other age-related neurodegenerative disorders. Dis Model Mech 2020; 13:dmm045211. [PMID: 32859588 PMCID: PMC7473656 DOI: 10.1242/dmm.045211] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The importance of apolipoprotein E (APOE) in late-onset Alzheimer's disease (LOAD) has been firmly established, but the mechanisms through which it exerts its pathogenic effects remain elusive. In addition, the sex-dependent effects of APOE on LOAD risk and endophenotypes have yet to be explained. In this Review, we revisit the different aspects of APOE involvement in neurodegeneration and neurological diseases, with particular attention to sex differences in the contribution of APOE to LOAD susceptibility. We discuss the role of APOE in a broader range of age-related neurodegenerative diseases, and summarize the biological factors linking APOE to sex hormones, drawing on supportive findings from rodent models to identify major mechanistic themes underlying the exacerbation of LOAD-associated neurodegeneration and pathology in the female brain. Additionally, we list sex-by-genotype interactions identified across neurodegenerative diseases, proposing APOE variants as a shared etiology for sex differences in the manifestation of these diseases. Finally, we present recent advancements in 'omics' technologies, which provide a new platform for more in-depth investigations of how dysregulation of this gene affects the development and progression of neurodegenerative diseases. Collectively, the evidence summarized in this Review highlights the interplay between APOE and sex as a key factor in the etiology of LOAD and other age-related neurodegenerative diseases. We emphasize the importance of careful examination of sex as a contributing factor in studying the underpinning genetics of neurodegenerative diseases in general, but particularly for LOAD.
Collapse
Affiliation(s)
- Julia Gamache
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27708, USA
| | - Young Yun
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27708, USA
| | - Ornit Chiba-Falek
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27708, USA
| |
Collapse
|
31
|
Brandt J, Buchholz A, Henry-Barron B, Vizthum D, Avramopoulos D, Cervenka MC. Preliminary Report on the Feasibility and Efficacy of the Modified Atkins Diet for Treatment of Mild Cognitive Impairment and Early Alzheimer's Disease. J Alzheimers Dis 2020; 68:969-981. [PMID: 30856112 DOI: 10.3233/jad-180995] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ketone bodies, the products of fat metabolism, are a source of energy for the brain and are available even when glucose supplies are inadequate (such as with severe carbohydrate deprivation) or its metabolism is faulty (as it is in Alzheimer's disease). This phase I/II randomized clinical trial examined the feasibility of using a modified Atkins diet (MAD) to induce ketogenesis in persons with mild cognitive impairment (MCI) or early AD, and the effect of this diet on memory and other clinical outcomes. In the first 2.5 years of active recruitment, only 27 eligible and willing patients enrolled. After extensive assessment and education, they and their study partners were randomly assigned for 12 weeks to either the MAD or the National Institute on Aging (NIA) recommended diet for seniors. As of April 2018, 9 patients in the MAD arm and 5 in the NIA arm have completed the trial. In spite of extensive teaching, coaching, and monitoring, adherence to both diets was only fair. Among those in the MAD arm who generated at least trace amounts of urinary ketones, there was a large (effect size = 0.53) and statistically significant (p = 0.03) increase in Memory Composite Score between the baseline and week-6 assessment. MAD participants also reported increased energy between baseline and week-6 assessment. Despite challenges to implementing this trial, resulting in a small sample, our preliminary data suggest that the generation of even trace ketones might enhance episodic memory and patient-reported vitality in very early AD.
Collapse
Affiliation(s)
- Jason Brandt
- Department of Psychiatry & Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alison Buchholz
- Department of Psychiatry & Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bobbie Henry-Barron
- Institute for Clinical and Translational Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Diane Vizthum
- Institute for Clinical and Translational Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dimitrios Avramopoulos
- Department of Psychiatry & Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mackenzie C Cervenka
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
32
|
Yassine HN, Finch CE. APOE Alleles and Diet in Brain Aging and Alzheimer's Disease. Front Aging Neurosci 2020; 12:150. [PMID: 32587511 PMCID: PMC7297981 DOI: 10.3389/fnagi.2020.00150] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
The APOE gene alleles modify human aging and the response to the diet at many levels with diverse pleotropic effects from gut to brain. To understand the interactions of APOE isoforms and diet, we analyze how cellular trafficking of apoE proteins affects energy metabolism, the immune system, and reproduction. The age-accelerating APOE4 allele alters the endosomal trafficking of cell surface receptors that mediate lipid and glucose metabolism. The APOE4 allele is the ancestral human allele, joined by APOE3 and then APOE2 in the human species. Under conditions of high infection, uncertain food, and shorter life expectancy, APOE4 may be adaptive for reducing mortality. As humans transitioned into modern less-infectious environments and longer life spans, APOE4 increased risks of aging-related diseases, particularly impacting arteries and the brain. The association of APOE4 with glucose dysregulation and body weight promotes many aging-associated diseases. Additionally, the APOE gene locus interacts with adjacent genes on chromosome 19 in haplotypes that modify neurodegeneration and metabolism, for which we anticipate complex gene-environment interactions. We summarize how diet and Alzheimer's disease (AD) risk are altered by APOE genotype in both animal and human studies and identify gaps. Much remains obscure in how APOE alleles modify nutritional factors in human aging. Identifying risk variant haplotypes in the APOE gene complex will clarify homeostatic adaptive responses to environmental conditions.
Collapse
Affiliation(s)
- Hussein N. Yassine
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Caleb E. Finch
- Leonard Davis School of Gerontology and Dornsife College, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
33
|
Nugent S, Croteau E, Potvin O, Castellano CA, Dieumegarde L, Cunnane SC, Duchesne S. Selection of the optimal intensity normalization region for FDG-PET studies of normal aging and Alzheimer's disease. Sci Rep 2020; 10:9261. [PMID: 32518360 PMCID: PMC7283334 DOI: 10.1038/s41598-020-65957-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 05/07/2020] [Indexed: 11/20/2022] Open
Abstract
The primary method for measuring brain metabolism in humans is positron emission tomography (PET) imaging using the tracer 18F-fluorodeoxyglucose (FDG). Standardized uptake value ratios (SUVR) are commonly calculated from FDG-PET images to examine intra- and inter-subject effects. Various reference regions are used in the literature of FDG-PET studies of normal aging, making comparison between studies difficult. Our primary objective was to determine the optimal SUVR reference region in the context of healthy aging, using partial volume effect (PVE) and non-PVE corrected data. We calculated quantitative cerebral metabolic rates of glucose (CMRg) from PVE-corrected and non-corrected images from young and older adults. We also investigated regional atrophy using magnetic resonance (MR) images. FreeSurfer 6.0 atlases were used to explore possible reference regions of interest (ROI). Multiple regression was used to predict CMRg data, in each FreeSurfer ROI, with age and sex as predictors. Age had the least effect in predicting CMRg for PVE corrected data in the pons (r2 = 2.83 × 10-3, p = 0.67). For non-PVE corrected data age also had the least effect in predicting CMRg in the pons (r2 = 3.12 × 10-3, p = 0.67). We compared the effects of using the whole brain or the pons as a reference region in PVE corrected data in two regions susceptible to hypometabolism in Alzheimer's disease, the posterior cingulate and precuneus. Using the whole brain as a reference region resulted in non-significant group differences in the posterior cingulate while there were significant differences between all three groups in the precuneus (all p < 0.004). When using the pons as a reference region there was significant differences between all groups for both the posterior cingulate and the precuneus (all p < 0.001). Therefore, the use of the pons as a reference region is more sensitive to hypometabism changes associated with Alzheimer's disease than the whole brain.
Collapse
Affiliation(s)
- Scott Nugent
- CERVO Research Centre, Quebec Mental Health Institute, Quebec, Canada.
| | - Etienne Croteau
- Research Center on Aging, Health and Social Sciences Center, Geriatrics Institute, Sherbrooke, Canada
| | - Olivier Potvin
- CERVO Research Centre, Quebec Mental Health Institute, Quebec, Canada
| | | | - Louis Dieumegarde
- CERVO Research Centre, Quebec Mental Health Institute, Quebec, Canada
| | - Stephen C Cunnane
- Research Center on Aging, Health and Social Sciences Center, Geriatrics Institute, Sherbrooke, Canada
| | - Simon Duchesne
- CERVO Research Centre, Quebec Mental Health Institute, Quebec, Canada
- Radiology and Nuclear Medicine Department, Université Laval, Québec, Canada
| |
Collapse
|
34
|
Ricci M, Chiaravalloti A, Martorana A, Koch G, De Lucia V, Barbagallo G, Schillaci O. The role of epsilon phenotype in brain glucose consumption in Alzheimer's disease. Ann Nucl Med 2020; 34:254-262. [PMID: 32016694 DOI: 10.1007/s12149-020-01441-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The aim of our study was to investigate the impact of the epsilon phenotype in brain glucose consumption in a population with Alzheimer's disease. METHODS Statistical Parametric Mapping (SPM8) was used to investigate differences in brain glucose consumption (as detectable by means of 18F FDG-PET/CT) in the population examined. A total of 129 patients (72 females and 57 males) with a diagnosis of probable AD according to the NINCDS-ADRDA criteria underwent the PET/CT examination. The mean (SD) age of the patients was 70 (± 7) years; the mean Mini-Mental State Examination was 19(± 5.6). 59 expressed epsilon 4 phenotype (E4) and 70 expressed the epsilon 3 phenotype (E3). Cerebral spinal fluid amyloid, tau, and t-tau have been measured resulting equal to 367.4 (± 149.1), 584.7 (± 312.1), and 79.2(± 45.9) pg/ml, respectively. Patients with confirmed amyloid and Tau changes were classified as AD. Patients with amyloid changes but negative Tau, considered as high risk of AD, were classified as IAD. Age, sex, MMSE, scholarship, and CSF parameters were used as a covariate in the SPM analyses. RESULTS We did not find significant differences in age, gender, and MMSE and CSF parameters among groups. In the analysis of the AD group as compared to AD-E3, AD-E4 subjects show a significant reduction of brain glucose consumption in inferior frontal gyrus bilaterally (BA 45, BA 47). In the analysis of the IAD group as compared to IAD-E3, IAD-E4 subjects show a significant reduction of brain glucose consumption in right in medial, middle, and superior frontal gyrus (BA10, BA11), and in left medial and middle frontal gyrus (BA10, BA11). The differences between IAD-E3 and AD-E3 and between IAD-E4 and AD-E4 (and vice versa analysis) resulted not significant. CONCLUSIONS APO-e4 is related to a major involvement of the frontal cortex confirming its role of risk factor in AD, while APO-3 seems not related to a specific pattern, supporting the hypothesis of neutral/protective role in AD.
Collapse
Affiliation(s)
- Maria Ricci
- Department of Radiological, Oncological and Pathological Sciences, Faculty of Medicine and Surgery, La Sapienza University, Rome, Italy.
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, Tor Vergata University, Rome, Italy
- IRCCS Neuromed, UOC Medicina Nucleare, Pozzilli, IS, Italy
| | - Alessandro Martorana
- UOSD Centro Demenze PTV, System Medicine, Faculty of Medicine and Surgery, Tor Vergata University, Rome, Italy
| | - Giacomo Koch
- UOSD Centro Demenze PTV, System Medicine, Faculty of Medicine and Surgery, Tor Vergata University, Rome, Italy
- Non Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Vincenzo De Lucia
- UOSD Centro Demenze PTV, System Medicine, Faculty of Medicine and Surgery, Tor Vergata University, Rome, Italy
| | - Gaetano Barbagallo
- Institute of Neurology, Magna Græcia University, 88100, Catanzaro, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, Tor Vergata University, Rome, Italy
- IRCCS Neuromed, UOC Medicina Nucleare, Pozzilli, IS, Italy
| |
Collapse
|
35
|
Sun Y, Ma C, Sun H, Wang H, Peng W, Zhou Z, Wang H, Pi C, Shi Y, He X. Metabolism: A Novel Shared Link between Diabetes Mellitus and Alzheimer's Disease. J Diabetes Res 2020; 2020:4981814. [PMID: 32083135 PMCID: PMC7011481 DOI: 10.1155/2020/4981814] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/29/2019] [Accepted: 01/14/2020] [Indexed: 12/14/2022] Open
Abstract
As a chronic metabolic disease, diabetes mellitus (DM) is broadly characterized by elevated levels of blood glucose. Novel epidemiological studies demonstrate that some diabetic patients have an increased risk of developing dementia compared with healthy individuals. Alzheimer's disease (AD) is the most frequent cause of dementia and leads to major progressive deficits in memory and cognitive function. Multiple studies have identified an increased risk for AD in some diabetic populations, but it is still unclear which diabetic patients will develop dementia and which biological characteristics can predict cognitive decline. Although few mechanistic metabolic studies have shown clear pathophysiological links between DM and AD, there are several plausible ways this may occur. Since AD has many characteristics in common with impaired insulin signaling pathways, AD can be regarded as a metabolic disease. We conclude from the published literature that the body's diabetic status under certain circumstances such as metabolic abnormalities can increase the incidence of AD by affecting glucose transport to the brain and reducing glucose metabolism. Furthermore, due to its plentiful lipid content and high energy requirement, the brain's metabolism places great demands on mitochondria. Thus, the brain may be more susceptible to oxidative damage than the rest of the body. Emerging evidence suggests that both oxidative stress and mitochondrial dysfunction are related to amyloid-β (Aβ) pathology. Protein changes in the unfolded protein response or endoplasmic reticulum stress can regulate Aβ production and are closely associated with tau protein pathology. Altogether, metabolic disorders including glucose/lipid metabolism, oxidative stress, mitochondrial dysfunction, and protein changes caused by DM are associated with an impaired insulin signal pathway. These metabolic factors could increase the prevalence of AD in diabetic patients via the promotion of Aβ pathology.
Collapse
Affiliation(s)
- Yanan Sun
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Cao Ma
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- Department of Pathology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Hui Sun
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Huan Wang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Wei Peng
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- Department of Clinical Medicine, Jilin University, Changchun 130021, China
| | - Zibo Zhou
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- Department of Clinical Medicine, Jilin University, Changchun 130021, China
| | - Hongwei Wang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- Department of Clinical Medicine, Jilin University, Changchun 130021, China
| | - Chenchen Pi
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- The First Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Yingai Shi
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xu He
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
36
|
Lee WJ, Liao YC, Wang YF, Lin YS, Wang SJ, Fuh JL. Summative Effects of Vascular Risk Factors on the Progression of Alzheimer Disease. J Am Geriatr Soc 2019; 68:129-136. [PMID: 31587263 DOI: 10.1111/jgs.16181] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVES To investigate the summative effects of vascular risk factors (VRFs) on the progression of Alzheimer disease (AD). DESIGN Longitudinal follow-up cohort study. SETTING AD patients from two teaching hospitals in Taiwan with 3-year follow-ups. PARTICIPANTS A total of 330 AD patients with a mean age of 80.7 years, a mean Mini-Mental State Examination (MMSE) score 18.7, and a mean Clinical Dementia Rating Sum of Boxes (CDRSB) score of 6.9. MEASUREMENTS All patients completed a clinically functional assessment and a neuropsychological test battery at baseline and yearly follow-ups. The VRF burden was combined into a summative VRF index at baseline (ie, having one, two, or more VRFs); VRFs included coronary heart disease, cardiac arrhythmia, hypertension, cerebrovascular disease, diabetes mellitus, obesity, smoking, and physical inactivity. The generalized estimating equation (GEE) method was used to analyze the correlations between the VRFs and longitudinal MMSE and CDRSB changes. RESULTS The results of the GEE adjusted for age, years of education, sex, disease duration, baseline MMSE score, time, apolipoprotein E (APOE) ε4 carrier status, use of medications (acetylcholinesterase inhibitors or N-methyl-D-aspartate receptor antagonists), and hospitalization rates and showed that patients with more than three VRFs had more rapid cognitive decline than patients without VRFs (MMSE, P = .02; CDRSB, P = .001) as well as patients with three or fewer VRFs (MMSE, P = .009; CDRSB, P = .02). Subsequent analyses of APOE ε4 carriers with more than three VRFs also showed their more rapid cognitive decline compared with patients without VRFs (MMSE, P = .02; CDRSB, P = .001) and patients with three or fewer VRFs (MMSE, P = .009; CDRSB, P = .02), but no significant difference was found in APOE ε4 noncarriers. CONCLUSION Multiple VRFs have summative effects on the progression of AD, especially in APOE ε4 carriers. J Am Geriatr Soc 68:129-136, 2019.
Collapse
Affiliation(s)
- Wei-Ju Lee
- Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan.,Faculty of Medicine, National Yang-Ming University Schools of Medicine, Taipei, Taiwan.,Dementia and Parkinson's Disease Integrated Center, Taichung Veterans General Hospital, Taichung, Taiwan.,Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Chu Liao
- Faculty of Medicine, National Yang-Ming University Schools of Medicine, Taipei, Taiwan.,Division of Peripheral Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yen-Feng Wang
- Faculty of Medicine, National Yang-Ming University Schools of Medicine, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Division of General Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yung-Shuan Lin
- Faculty of Medicine, National Yang-Ming University Schools of Medicine, Taipei, Taiwan.,Division of General Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shuu-Jiun Wang
- Faculty of Medicine, National Yang-Ming University Schools of Medicine, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Division of General Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jong-Ling Fuh
- Faculty of Medicine, National Yang-Ming University Schools of Medicine, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Division of General Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
37
|
Govindpani K, McNamara LG, Smith NR, Vinnakota C, Waldvogel HJ, Faull RL, Kwakowsky A. Vascular Dysfunction in Alzheimer's Disease: A Prelude to the Pathological Process or a Consequence of It? J Clin Med 2019; 8:E651. [PMID: 31083442 PMCID: PMC6571853 DOI: 10.3390/jcm8050651] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia. Despite decades of research following several theoretical and clinical lines, all existing treatments for the disorder are purely symptomatic. AD research has traditionally been focused on neuronal and glial dysfunction. Although there is a wealth of evidence pointing to a significant vascular component in the disease, this angle has been relatively poorly explored. In this review, we consider the various aspects of vascular dysfunction in AD, which has a significant impact on brain metabolism and homeostasis and the clearance of β-amyloid and other toxic metabolites. This may potentially precede the onset of the hallmark pathophysiological and cognitive symptoms of the disease. Pathological changes in vessel haemodynamics, angiogenesis, vascular cell function, vascular coverage, blood-brain barrier permeability and immune cell migration may be related to amyloid toxicity, oxidative stress and apolipoprotein E (APOE) genotype. These vascular deficits may in turn contribute to parenchymal amyloid deposition, neurotoxicity, glial activation and metabolic dysfunction in multiple cell types. A vicious feedback cycle ensues, with progressively worsening neuronal and vascular pathology through the course of the disease. Thus, a better appreciation for the importance of vascular dysfunction in AD may open new avenues for research and therapy.
Collapse
Affiliation(s)
- Karan Govindpani
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Laura G McNamara
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Nicholas R Smith
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Chitra Vinnakota
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Henry J Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Richard Lm Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
38
|
Paranjpe MD, Chen X, Liu M, Paranjpe I, Leal JP, Wang R, Pomper MG, Wong DF, Benzinger TLS, Zhou Y. The effect of ApoE ε4 on longitudinal brain region-specific glucose metabolism in patients with mild cognitive impairment: a FDG-PET study. Neuroimage Clin 2019; 22:101795. [PMID: 30991617 PMCID: PMC6449776 DOI: 10.1016/j.nicl.2019.101795] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 03/12/2019] [Accepted: 03/24/2019] [Indexed: 11/02/2022]
Abstract
While the ApoE ε4 allele is a known risk factor for mild cognitive impairment (MCI) and Alzheimer's disease, brain region specific effects remain elusive. In this study, we investigate whether the ApoE ε4 allele exhibits brain region specific effects in longitudinal glucose uptake among patients with MCI from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Preprocessed FDG PET images, MRIs, and demographic information were downloaded from the ADNI database. An iterative reblurred Van Cittertiteration method was used for partial volume correction (PVC) on all PET images. Structural MRIs were used for PET spatial normalization and region of interest (ROI) definition in standard space. Longitudinal changes in ROI FDG standardized uptake value ratio (SUVR) relative to cerebellum in 24 ApoE ε4 carriers and 24 age-matched ApoE ε4 non-carriers were measured for up to 84-months (median 72 months, SD = 11.2 months) and compared using a generalized linear mixed effects model controlling for gender, education, baseline age, and follow-up period. Additionally, voxelwise analysis was performed by implementing a paired t-test comparing matched baseline and 72 month FDG SUVR images in ApoE carriers and non-carriers separately. Results with PVC were compared with ones from non-PVC based analysis. After applying PVC, the superior fontal, parietal, lateral temporal, medial temporal, caudate, thalamus, and post-cingulate, and amygdala regions had greater longitudinal decreases in FDG uptake in ApoE ε4 carriers with MCI compared to non-carriers with MCI. Similar forebrain and limbic clusters were found through voxelwise analysis. Compared to the PVC based analysis, fewer significant ApoE-associated regions and clusters were found in the non-PVC based PET analysis. Our findings suggest that the ApoE ε4 genotype is associated with a longitudinal decline in glucose uptake in 8 forebrain and limbic brain regions in the context of MCI. In conclusion, this 84-months longitudinal FDG PET study demonstrates a novel ApoE ε4-associated brain-region specific glucose metabolism pattern in patients with MCI. Partial volume correction improved FDG PET quantification.
Collapse
Affiliation(s)
- Manish D Paranjpe
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Xueqi Chen
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Min Liu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States; Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Ishan Paranjpe
- Icahn School of Medicine at Mount Sinai, NY, New York, United States
| | - Jeffrey P Leal
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Rongfu Wang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Martin G Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Dean F Wong
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Tammie L S Benzinger
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
| | - Yun Zhou
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States; Department of Nuclear Medicine, Peking University First Hospital, Beijing, China; Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States.
| |
Collapse
|
39
|
Wilson H, Pagano G, Politis M. Dementia spectrum disorders: lessons learnt from decades with PET research. J Neural Transm (Vienna) 2019; 126:233-251. [PMID: 30762136 PMCID: PMC6449308 DOI: 10.1007/s00702-019-01975-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/21/2019] [Indexed: 02/07/2023]
Abstract
The dementia spectrum encompasses a range of disorders with complex diagnosis, pathophysiology and limited treatment options. Positron emission tomography (PET) imaging provides insights into specific neurodegenerative processes underlying dementia disorders in vivo. Here we focus on some of the most common dementias: Alzheimer's disease, Parkinsonism dementias including Parkinson's disease with dementia, dementia with Lewy bodies, progressive supranuclear palsy and corticobasal syndrome, and frontotemporal lobe degeneration. PET tracers have been developed to target specific proteinopathies (amyloid, tau and α-synuclein), glucose metabolism, cholinergic system and neuroinflammation. Studies have shown distinct imaging abnormalities can be detected early, in some cases prior to symptom onset, allowing disease progression to be monitored and providing the potential to predict symptom onset. Furthermore, advances in PET imaging have identified potential therapeutic targets and novel methods to accurately discriminate between different types of dementias in vivo. There are promising imaging markers with a clinical application on the horizon, however, further studies are required before they can be implantation into clinical practice.
Collapse
Affiliation(s)
- Heather Wilson
- Neurodegeneration Imaging Group, Maurice Wohl Clinical Neuroscience Institute, 125 Coldharbour Lane, Camberwell, London, SE5 9NU, UK
| | - Gennaro Pagano
- Neurodegeneration Imaging Group, Maurice Wohl Clinical Neuroscience Institute, 125 Coldharbour Lane, Camberwell, London, SE5 9NU, UK
| | - Marios Politis
- Neurodegeneration Imaging Group, Maurice Wohl Clinical Neuroscience Institute, 125 Coldharbour Lane, Camberwell, London, SE5 9NU, UK.
| |
Collapse
|
40
|
Burns CM, Kaszniak AW, Chen K, Lee W, Bandy DJ, Caselli RJ, Reiman EM. Longitudinal Changes in Serum Glucose Levels are Associated with Metabolic Changes in Alzheimer's Disease Related Brain Regions. J Alzheimers Dis 2019; 62:833-840. [PMID: 29480176 DOI: 10.3233/jad-170767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The association between longitudinal changes in serum glucose level and longitudinal changes in [18F] Fluorodeoxyglucose-PET (FDG PET) measurements of Alzheimer's disease (AD) risk are unknown. OBJECTIVE To investigate whether variation in serum glucose levels across time are associated with changes in FDG PET measurements of cerebral metabolic rate for glucose (rCMRgl) in brain regions preferentially affected by Alzheimer's disease (AD). METHODS Participants are a subset of a prospective cohort study investigating FDG PET, apolipoprotein E (APOE) ɛ4, and risk for AD which includes data from baseline, interim, and follow up visits over 4.4±1.0-years. An automated brain-mapping algorithm was utilized to characterize and compare associations between longitudinal changes in serum glucose levels and longitudinal changes in rCMRgl. RESULTS This study included 80 adults aged 61.5±5 years, including 38 carriers and 42 non-carriers of the APOE ɛ4 allele. Longitudinal increases in serum glucose levels were associated with longitudinal CMRgl decline in the vicinity of parietotemporal, precuneus/posterior cingulate, and prefrontal brain regions preferentially affected by AD (p < 0.05, corrected for multiple comparisons). Findings remained significant when controlled for APOE ɛ4 status and baseline and advancing age. CONCLUSIONS Additional studies are needed to clarify and confirm the relationship between longitudinal changes in peripheral glucose and FDG PET measurements of AD risk. Future findings will set the stage on the use of FDG PET in the evaluation of possible interventions that target risk factors for the development of AD.
Collapse
Affiliation(s)
- Christine M Burns
- Minneapolis Medical Research Foundation, Minneapolis, MN, USA.,Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Alfred W Kaszniak
- Department of Psychology, University of Arizona, Tucson, AZ, USA.,Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Kewei Chen
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA.,Banner Alzheimer's Institute, Phoenix, AZ, USA.,Department of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, USA
| | - Wendy Lee
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA.,Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Daniel J Bandy
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA.,Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Richard J Caselli
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA.,Mayo Clinic Scottsdale, Scottsdale, AZ, USA
| | - Eric M Reiman
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA.,Banner Alzheimer's Institute, Phoenix, AZ, USA.,Department of Psychiatry, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
41
|
Wang D, Hu L, Xu X, Ma X, Li Y, Liu Y, Wang Q, Zhuo C. KIBRA and APOE Gene Variants Affect Brain Functional Network Connectivity in Healthy Older People. J Gerontol A Biol Sci Med Sci 2019; 74:1725-1733. [PMID: 30715155 DOI: 10.1093/gerona/glz004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Indexed: 12/25/2022] Open
Abstract
Abstract
Genetic factors play a critical role in the development of Alzheimer’s disease (AD). Kidney and brain expressed protein (KIBRA) and apolipoprotein E (APOE) are involved in episodic memory performance and AD. However, the interactions between KIBRA and APOE on brain functional network connectivity (FNC) remain unknown in healthy older people. Using independent component analysis, we systematically investigated additive and epistatic interactions of KIBRA rs1707045 and APOE on FNC in 170 healthy older Chinese people of Han ethnicity. We found significant additive KIBRA–APOE interactions on brain FNC in the right medial prefrontal cortex, the posterior cingulate cortex in the default-mode network, and the dorsal anterior cingulate cortex in the salience network. We also found significant epistatic KIBRA–APOE interactions on brain FNC in the left superior frontal gyrus and left angular gyrus in default-mode network. No significant KIBRA–APOE interactions were detected in other brain resting-state networks. These findings suggest that healthy older people have additive and epistatic interactions of KIBRA and APOE gene variants, which modulate brain FNC and may partly elucidate their association with episodic memory performance and AD.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Radiology, Qilu Hospital of Shangdong University, China
| | - Li Hu
- Department of Radiology, Qilu Hospital of Shangdong University, China
| | - Xinghua Xu
- Department of Radiology, Qilu Hospital of Shangdong University, China
| | - Xiangxing Ma
- Department of Radiology, Qilu Hospital of Shangdong University, China
| | - Yi Li
- Department of Neurology, Qilu Hospital of Shangdong University, China
| | - Yong Liu
- Brainnetome Center, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Qing Wang
- Department of Radiology, Qilu Hospital of Shangdong University, China
| | - Chuanjun Zhuo
- Department of Psychiatric-Neuroimaging-Genetics and Comorbidity Laboratory (PNGC-Lab), Tianjin Anding Hospital, China
| |
Collapse
|
42
|
Chornenkyy Y, Wang W, Wei A, Nelson PT. Alzheimer's disease and type 2 diabetes mellitus are distinct diseases with potential overlapping metabolic dysfunction upstream of observed cognitive decline. Brain Pathol 2019; 29:3-17. [PMID: 30106209 PMCID: PMC6427919 DOI: 10.1111/bpa.12655] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/09/2018] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) are highly prevalent aging-related diseases associated with significant morbidity and mortality. Some findings in human and animal models have linked T2DM to AD-type dementia. Despite epidemiological associations between the T2DM and cognitive impairment, the interrelational mechanisms are unclear. The preponderance of evidence in longitudinal studies with autopsy confirmation have indicated that vascular mechanisms, rather than classic AD-type pathologies, underlie the cognitive decline often seen in self-reported T2DM. T2DM is associated with cardiovascular and cerebrovascular disease (CVD), and is associated with increased risk of infarcts and small vessel disease in the brain and other organs. Neuropathological examinations of post-mortem brains demonstrated evidence of cerebrovascular disease and little to no correlation between T2DM and β-amyloid deposits or neurofibrillary tangles. Nevertheless, the mechanisms upstream of early AD-specific pathology remain obscure. In this regard, there may indeed be overlap between the pathologic mechanisms of T2DM/"metabolic syndrome," and AD. More specifically, cerebral insulin processing, glucose metabolism, mitochondrial function, and/or lipid metabolism could be altered in patients in early AD and directly influence symptomatology and/or neuropathology.
Collapse
Affiliation(s)
| | - Wang‐Xia Wang
- University of Kentucky College of MedicineLexingtonKY
- Sanders‐Brown Center on Aging, Department of PathologyUniversity of KentuckyLexingtonKY
| | - Angela Wei
- Department of BiologyUniversity of KentuckyLexingtonKY
| | - Peter T. Nelson
- University of Kentucky College of MedicineLexingtonKY
- Sanders‐Brown Center on Aging, Department of PathologyUniversity of KentuckyLexingtonKY
| |
Collapse
|
43
|
Morris G, Berk M, Maes M, Puri BK. Could Alzheimer's Disease Originate in the Periphery and If So How So? Mol Neurobiol 2019; 56:406-434. [PMID: 29705945 PMCID: PMC6372984 DOI: 10.1007/s12035-018-1092-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 04/17/2018] [Indexed: 12/11/2022]
Abstract
The classical amyloid cascade model for Alzheimer's disease (AD) has been challenged by several findings. Here, an alternative molecular neurobiological model is proposed. It is shown that the presence of the APOE ε4 allele, altered miRNA expression and epigenetic dysregulation in the promoter region and exon 1 of TREM2, as well as ANK1 hypermethylation and altered levels of histone post-translational methylation leading to increased transcription of TNFA, could variously explain increased levels of peripheral and central inflammation found in AD. In particular, as a result of increased activity of triggering receptor expressed on myeloid cells 2 (TREM-2), the presence of the apolipoprotein E4 (ApoE4) isoform, and changes in ANK1 expression, with subsequent changes in miR-486 leading to altered levels of protein kinase B (Akt), mechanistic (previously mammalian) target of rapamycin (mTOR) and signal transducer and activator of transcription 3 (STAT3), all of which play major roles in microglial activation, proliferation and survival, there is activation of microglia, leading to the subsequent (further) production of cytokines, chemokines, nitric oxide, prostaglandins, reactive oxygen species, inducible nitric oxide synthase and cyclooxygenase-2, and other mediators of inflammation and neurotoxicity. These changes are associated with the development of amyloid and tau pathology, mitochondrial dysfunction (including impaired activity of the electron transport chain, depleted basal mitochondrial potential and oxidative damage to key tricarboxylic acid enzymes), synaptic dysfunction, altered glycogen synthase kinase-3 (GSK-3) activity, mTOR activation, impairment of autophagy, compromised ubiquitin-proteasome system, iron dyshomeostasis, changes in APP translation, amyloid plaque formation, tau hyperphosphorylation and neurofibrillary tangle formation.
Collapse
Affiliation(s)
- Gerwyn Morris
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, P.O. Box 291, Geelong, Victoria, Australia
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, P.O. Box 291, Geelong, Victoria, Australia
- Department of Psychiatry, Level 1 North, Main Block, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Florey Institute for Neuroscience and Mental Health, Kenneth Myer Building, University of Melbourne, 30 Royal Parade, Parkville, Victoria, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, 35 Poplar Rd, Parkville, Victoria, Australia
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, P.O. Box 291, Geelong, Victoria, Australia
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | - Basant K Puri
- Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK.
| |
Collapse
|
44
|
Li L, Kang J, Lockhart SN, Adams J, Jagust WJ. Spatially Adaptive Varying Correlation Analysis for Multimodal Neuroimaging Data. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:113-123. [PMID: 30028695 PMCID: PMC6324929 DOI: 10.1109/tmi.2018.2857221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this paper, we study a central problem in multimodal neuroimaging analysis, i.e., identification of significantly correlated brain regions between multiple imaging modalities. We propose a spatially varying correlation model and the associated inference procedure, which improves substantially over the common alternative solutions of voxel-wise and region-wise analysis. Compared with voxel-wise analysis, our method aggregates voxels with similar correlations into regions, takes into account spatial continuity of correlations at nearby voxels, and enjoys a much higher detection power. Compared with region-wise analysis, our method does not rely on any pre-specified brain region map, but instead finds homogenous correlation regions adaptively given the data. We applied our method to a multimodal positron emission tomography study, and found brain regions with significant correlation between tau and glucose metabolism that voxel-wise or region-wise analysis failed to identify. Our findings conform and lend additional support to prior hypotheses about how the two pathological proteins of Alzheimer's disease, tau and amyloid, interact with glucose metabolism in the aging human brain.
Collapse
|
45
|
Shinohara M, Sato N. The Roles of Apolipoprotein E, Lipids, and Glucose in the Pathogenesis of Alzheimer’s Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1128:85-101. [DOI: 10.1007/978-981-13-3540-2_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
46
|
Arendash G, Cao C, Abulaban H, Baranowski R, Wisniewski G, Becerra L, Andel R, Lin X, Zhang X, Wittwer D, Moulton J, Arrington J, Smith A. A Clinical Trial of Transcranial Electromagnetic Treatment in Alzheimer's Disease: Cognitive Enhancement and Associated Changes in Cerebrospinal Fluid, Blood, and Brain Imaging. J Alzheimers Dis 2019; 71:57-82. [PMID: 31403948 PMCID: PMC6839500 DOI: 10.3233/jad-190367] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Small aggregates (oligomers) of the toxic proteins amyloid-β (Aβ) and phospho-tau (p-tau) are essential contributors to Alzheimer's disease (AD). In mouse models for AD or human AD brain extracts, Transcranial Electromagnetic Treatment (TEMT) disaggregates both Aβ and p-tau oligomers, and induces brain mitochondrial enhancement. These apparent "disease-modifying" actions of TEMT both prevent and reverse memory impairment in AD transgenic mice. OBJECTIVE To evaluate the safety and initial clinical efficacy of TEMT against AD, a comprehensive open-label clinical trial was performed. METHODS Eight mild/moderate AD patients were treated with TEMT in-home by their caregivers for 2 months utilizing a unique head device. TEMT was given for two 1-hour periods each day, with subjects primarily evaluated at baseline, end-of-treatment, and 2 weeks following treatment completion. RESULTS No deleterious behavioral effects, discomfort, or physiologic changes resulted from 2 months of TEMT, as well as no evidence of tumor or microhemorrhage induction. TEMT induced clinically important and statistically significant improvements in ADAS-cog, as well as in the Rey AVLT. TEMT also produced increases in cerebrospinal fluid (CSF) levels of soluble Aβ1-40 and Aβ1-42, cognition-related changes in CSF oligomeric Aβ, a decreased CSF p-tau/Aβ1-42 ratio, and reduced levels of oligomeric Aβ in plasma. Pre- versus post-treatment FDG-PET brain scans revealed stable cerebral glucose utilization, with several subjects exhibiting enhanced glucose utilization. Evaluation of diffusion tensor imaging (fractional anisotropy) scans in individual subjects provided support for TEMT-induced increases in functional connectivity within the cognitively-important cingulate cortex/cingulum. CONCLUSION TEMT administration to AD subjects appears to be safe, while providing cognitive enhancement, changes to CSF/blood AD markers, and evidence of stable/enhanced brain connectivity.
Collapse
Affiliation(s)
| | - Chuanhai Cao
- College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Haitham Abulaban
- University of South Florida Health/Byrd Alzheimer’s Institute, Tampa, FL, USA
| | | | | | | | - Ross Andel
- School of Aging Studies, University of South Florida, Tampa, FL, USA
- Department of Neurology, 2nd Faculty of Medicine, Charles University/Motol University Hospital, Prague, Czech Republic
| | - Xiaoyang Lin
- College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Xiaolin Zhang
- College of Pharmacy, University of South Florida, Tampa, FL, USA
| | | | | | | | - Amanda Smith
- University of South Florida Health/Byrd Alzheimer’s Institute, Tampa, FL, USA
| |
Collapse
|
47
|
Quantification of the Biological Age of the Brain Using Neuroimaging. HEALTHY AGEING AND LONGEVITY 2019. [DOI: 10.1007/978-3-030-24970-0_19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
Risacher SL, Saykin AJ. Neuroimaging in aging and neurologic diseases. HANDBOOK OF CLINICAL NEUROLOGY 2019; 167:191-227. [PMID: 31753134 DOI: 10.1016/b978-0-12-804766-8.00012-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neuroimaging biomarkers for neurologic diseases are important tools, both for understanding pathology associated with cognitive and clinical symptoms and for differential diagnosis. This chapter explores neuroimaging measures, including structural and functional measures from magnetic resonance imaging (MRI) and molecular measures primarily from positron emission tomography (PET), in healthy aging adults and in a number of neurologic diseases. The spectrum covers neuroimaging measures from normal aging to a variety of dementias: late-onset Alzheimer's disease [AD; including mild cognitive impairment (MCI)], familial and nonfamilial early-onset AD, atypical AD syndromes, posterior cortical atrophy (PCA), logopenic aphasia (lvPPA), cerebral amyloid angiopathy (CAA), vascular dementia (VaD), sporadic and familial behavioral-variant frontotemporal dementia (bvFTD), semantic dementia (SD), progressive nonfluent aphasia (PNFA), frontotemporal dementia with motor neuron disease (FTD-MND), frontotemporal dementia with amyotrophic lateral sclerosis (FTD-ALS), corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), dementia with Lewy bodies (DLB), Parkinson's disease (PD) with and without dementia, and multiple systems atrophy (MSA). We also include a discussion of the appropriate use criteria (AUC) for amyloid imaging and conclude with a discussion of differential diagnosis of neurologic dementia disorders in the context of neuroimaging.
Collapse
Affiliation(s)
- Shannon L Risacher
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
49
|
Panayides AS, Pattichis MS, Leandrou S, Pitris C, Constantinidou A, Pattichis CS. Radiogenomics for Precision Medicine With a Big Data Analytics Perspective. IEEE J Biomed Health Inform 2018; 23:2063-2079. [PMID: 30596591 DOI: 10.1109/jbhi.2018.2879381] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Precision medicine promises better healthcare delivery by improving clinical practice. Using evidence-based substratification of patients, the objective is to achieve better prognosis, diagnosis, and treatment that will transform existing clinical pathways toward optimizing care for the specific needs of each patient. The wealth of today's healthcare data, often characterized as big data, provides invaluable resources toward new knowledge discovery that has the potential to advance precision medicine. The latter requires interdisciplinary efforts that will capitalize the information, know-how, and medical data of newly formed groups fusing different backgrounds and expertise. The objective of this paper is to provide insights with respect to the state-of-the-art research in precision medicine. More specifically, our goal is to highlight the fundamental challenges in emerging fields of radiomics and radiogenomics by reviewing the case studies of Cancer and Alzheimer's disease, describe the computational challenges from a big data analytics perspective, and discuss standardization and open data initiatives that will facilitate the adoption of precision medicine methods and practices.
Collapse
|
50
|
Cortical thickness, brain metabolic activity, and in vivo amyloid deposition in asymptomatic, middle-aged offspring of patients with late-onset Alzheimer's disease. J Psychiatr Res 2018; 107:11-18. [PMID: 30308328 DOI: 10.1016/j.jpsychires.2018.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/30/2018] [Accepted: 10/04/2018] [Indexed: 11/20/2022]
Abstract
The natural history of preclinical late-onset Alzheimer's disease (LOAD) remains obscure and has received less attention than that of early-onset AD (EOAD), in spite of accounting for more than 99% of cases of AD. With the purpose of detecting early structural and functional traits associated with the disorder, we sought to characterize cortical thickness and subcortical grey matter volume, cerebral metabolism, and amyloid deposition in persons at risk for LOAD in comparison with a similar group without family history of AD. We obtained 3T T1 images for gray matter volume, FDG-PET to evaluate regional cerebral metabolism, and PET-PiB to detect fibrillar amyloid deposition in 30 middle-aged, asymptomatic, cognitively normal individuals with one parent diagnosed with LOAD (O-LOAD), and 25 comparable controls (CS) without family history of neurodegenerative disorders (CS). We observed isocortical thinning in AD-relevant areas including posterior cingulate, precuneus, and areas of the prefrontal and temporoparietal cortex in O-LOAD. Unexpectedly, this group displayed increased cerebral metabolism, in some cases overlapping with the areas of cortical thinning, and no differences in bilateral hippocampal volume and hippocampal metabolism. Given the importance of age in this sample of individuals potentially developing early AD-related changes, we controlled results for age and observed that most differences in cortical thickness and metabolism became nonsignificant; however, greater deposition of β-amyloid was observed in the right hemisphere including temporoparietal cortex, postcentral gyrus, fusiform inferior and middle temporal and lingual gyri. If replicated, the present observations of morphological, metabolic, and amyloid changes in cognitively normal persons with family history of LOAD may bear important implications for the definition of very early phenotypes of this disorder.
Collapse
|