1
|
Bhati D, Neha F, Amiruzzaman M. A Survey on Explainable Artificial Intelligence (XAI) Techniques for Visualizing Deep Learning Models in Medical Imaging. J Imaging 2024; 10:239. [PMID: 39452402 PMCID: PMC11508748 DOI: 10.3390/jimaging10100239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/14/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024] Open
Abstract
The combination of medical imaging and deep learning has significantly improved diagnostic and prognostic capabilities in the healthcare domain. Nevertheless, the inherent complexity of deep learning models poses challenges in understanding their decision-making processes. Interpretability and visualization techniques have emerged as crucial tools to unravel the black-box nature of these models, providing insights into their inner workings and enhancing trust in their predictions. This survey paper comprehensively examines various interpretation and visualization techniques applied to deep learning models in medical imaging. The paper reviews methodologies, discusses their applications, and evaluates their effectiveness in enhancing the interpretability, reliability, and clinical relevance of deep learning models in medical image analysis.
Collapse
Affiliation(s)
- Deepshikha Bhati
- Department of Computer Science, Kent State University, Kent, OH 44242, USA;
| | - Fnu Neha
- Department of Computer Science, Kent State University, Kent, OH 44242, USA;
| | - Md Amiruzzaman
- Department of Computer Science, West Chester University, West Chester, PA 19383, USA;
| |
Collapse
|
2
|
Wu Y, Gao H, Zhang C, Ma X, Zhu X, Wu S, Lin L. Machine Learning and Deep Learning Approaches in Lifespan Brain Age Prediction: A Comprehensive Review. Tomography 2024; 10:1238-1262. [PMID: 39195728 PMCID: PMC11359833 DOI: 10.3390/tomography10080093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
The concept of 'brain age', derived from neuroimaging data, serves as a crucial biomarker reflecting cognitive vitality and neurodegenerative trajectories. In the past decade, machine learning (ML) and deep learning (DL) integration has transformed the field, providing advanced models for brain age estimation. However, achieving precise brain age prediction across all ages remains a significant analytical challenge. This comprehensive review scrutinizes advancements in ML- and DL-based brain age prediction, analyzing 52 peer-reviewed studies from 2020 to 2024. It assesses various model architectures, highlighting their effectiveness and nuances in lifespan brain age studies. By comparing ML and DL, strengths in forecasting and methodological limitations are revealed. Finally, key findings from the reviewed articles are summarized and a number of major issues related to ML/DL-based lifespan brain age prediction are discussed. Through this study, we aim at the synthesis of the current state of brain age prediction, emphasizing both advancements and persistent challenges, guiding future research, technological advancements, and improving early intervention strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lan Lin
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; (Y.W.); (H.G.); (C.Z.); (X.M.); (X.Z.); (S.W.)
| |
Collapse
|
3
|
Kim WS, Heo DW, Maeng J, Shen J, Tsogt U, Odkhuu S, Zhang X, Cheraghi S, Kim SW, Ham BJ, Rami FZ, Sui J, Kang CY, Suk HI, Chung YC. Deep Learning-based Brain Age Prediction in Patients With Schizophrenia Spectrum Disorders. Schizophr Bull 2024; 50:804-814. [PMID: 38085061 PMCID: PMC11283195 DOI: 10.1093/schbul/sbad167] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/29/2024]
Abstract
BACKGROUND AND HYPOTHESIS The brain-predicted age difference (brain-PAD) may serve as a biomarker for neurodegeneration. We investigated the brain-PAD in patients with schizophrenia (SCZ), first-episode schizophrenia spectrum disorders (FE-SSDs), and treatment-resistant schizophrenia (TRS) using structural magnetic resonance imaging (sMRI). STUDY DESIGN We employed a convolutional network-based regression (SFCNR), and compared its performance with models based on three machine learning (ML) algorithms. We pretrained the SFCNR with sMRI data of 7590 healthy controls (HCs) selected from the UK Biobank. The parameters of the pretrained model were transferred to the next training phase with a new set of HCs (n = 541). The brain-PAD was analyzed in independent HCs (n = 209) and patients (n = 233). Correlations between the brain-PAD and clinical measures were investigated. STUDY RESULTS The SFCNR model outperformed three commonly used ML models. Advanced brain aging was observed in patients with SCZ, FE-SSDs, and TRS compared to HCs. A significant difference in brain-PAD was observed between FE-SSDs and TRS with ridge regression but not with the SFCNR model. Chlorpromazine equivalent dose and cognitive function were correlated with the brain-PAD in SCZ and FE-SSDs. CONCLUSIONS Our findings indicate that there is advanced brain aging in patients with SCZ and higher brain-PAD in SCZ can be used as a surrogate marker for cognitive dysfunction. These findings warrant further investigations on the causes of advanced brain age in SCZ. In addition, possible psychosocial and pharmacological interventions targeting brain health should be considered in early-stage SCZ patients with advanced brain age.
Collapse
Affiliation(s)
- Woo-Sung Kim
- Department of Psychiatry, Jeonbuk National University, Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Da-Woon Heo
- Department of Artificial Intelligence, Korea University, Seoul, Korea
| | - Junyeong Maeng
- Department of Artificial Intelligence, Korea University, Seoul, Korea
| | - Jie Shen
- Department of Psychiatry, Jeonbuk National University, Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
- Department of Psychiatry, Yanbian University, Medical School, Yanji, China
| | - Uyanga Tsogt
- Department of Psychiatry, Jeonbuk National University, Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Soyolsaikhan Odkhuu
- Department of Psychiatry, Jeonbuk National University, Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Xuefeng Zhang
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Sahar Cheraghi
- Department of Psychiatry, Jeonbuk National University, Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Sung-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Fatima Zahra Rami
- Department of Psychiatry, Jeonbuk National University, Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Jing Sui
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Chae Yeong Kang
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Heung-Il Suk
- Department of Artificial Intelligence, Korea University, Seoul, Korea
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Korea
| | - Young-Chul Chung
- Department of Psychiatry, Jeonbuk National University, Medical School, Jeonju, Korea
- Department of Psychiatry, Jeonbuk National University Hospital, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| |
Collapse
|
4
|
Aghaei A, Ebrahimi Moghaddam M. Brain age gap estimation using attention-based ResNet method for Alzheimer's disease detection. Brain Inform 2024; 11:16. [PMID: 38833039 DOI: 10.1186/s40708-024-00230-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
This study investigates the correlation between brain age and chronological age in healthy individuals using brain MRI images, aiming to identify potential biomarkers for neurodegenerative diseases like Alzheimer's. To achieve this, a novel attention-based ResNet method, 3D-Attention-Resent-SVR, is proposed to accurately estimate brain age and distinguish between Cognitively Normal (CN) and Alzheimer's disease (AD) individuals by computing the brain age gap (BAG). Unlike conventional methods, which often rely on single datasets, our approach addresses potential biases by employing four datasets for training and testing. The results, based on a combined dataset from four public sources comprising 3844 data points, demonstrate the model's efficacy with a mean absolute error (MAE) of 2.05 for brain age gap estimation. Moreover, the model's generalizability is showcased by training on three datasets and testing on a separate one, yielding a remarkable MAE of 2.4. Furthermore, leveraging BAG as the sole biomarker, our method achieves an accuracy of 92% and an AUC of 0.87 in Alzheimer's disease detection on the ADNI dataset. These findings underscore the potential of our approach in assisting with early detection and disease monitoring, emphasizing the strong correlation between BAG and AD.
Collapse
Affiliation(s)
- Atefe Aghaei
- Faculty of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran
| | | |
Collapse
|
5
|
Guo X, Ding Y, Xu W, Wang D, Yu H, Lin Y, Chang S, Zhang Q, Zhang Y. Predicting brain age gap with radiomics and automl: A Promising approach for age-Related brain degeneration biomarkers. J Neuroradiol 2024; 51:265-273. [PMID: 37722591 DOI: 10.1016/j.neurad.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
The Brain Age Gap (BAG), which refers to the difference between chronological age and predicted neuroimaging age, is proposed as a potential biomarker for age-related brain degeneration. However, existing brain age prediction models usually rely on a single marker and can not discover meaningful hidden information in radiographic images. This study focuses on the application of radiomics, an advanced imaging analysis technique, combined with automated machine learning to predict BAG. Our methods achieve a promising result with a mean absolute error of 1.509 using the Alzheimer's Disease Neuroimaging Initiative dataset. Furthermore, we find that the hippocampus and parahippocampal gyrus play a significant role in predicting age with interpretable method called SHapley Additive exPlanations. Additionally, our investigation of age prediction discrepancies between patients with Alzheimer's disease (AD) and those with mild cognitive impairment (MCI) reveals a notable correlation with clinical cognitive assessment scale scores. This suggests that BAG has the potential to serve as a biomarker to support the diagnosis of AD and MCI. Overall, this study presents valuable insights into the application of neuroimaging models in the diagnosis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoliang Guo
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Yanhui Ding
- School of Information Science and Engineering, Shandong Normal University, Jinan, China.
| | - Weizhi Xu
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Dong Wang
- School of Artificial Intelligence, Beijing University of Posts and Telecommunication, Beijing, China
| | - Huiying Yu
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Yongkang Lin
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Shulei Chang
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Qiqi Zhang
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Yongxin Zhang
- School of Mathematics and Statistics, Shandong Normal University, Jinan, China.
| |
Collapse
|
6
|
Dular L, Pernuš F, Špiclin Ž. Extensive T1-weighted MRI preprocessing improves generalizability of deep brain age prediction models. Comput Biol Med 2024; 173:108320. [PMID: 38531250 DOI: 10.1016/j.compbiomed.2024.108320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 01/09/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
Brain age is an estimate of chronological age obtained from T1-weighted magnetic resonance images (T1w MRI), representing a straightforward diagnostic biomarker of brain aging and associated diseases. While the current best accuracy of brain age predictions on T1w MRIs of healthy subjects ranges from two to three years, comparing results across studies is challenging due to differences in the datasets, T1w preprocessing pipelines, and evaluation protocols used. This paper investigates the impact of T1w image preprocessing on the performance of four deep learning brain age models from recent literature. Four preprocessing pipelines, which differed in terms of registration transform, grayscale correction, and software implementation, were evaluated. The results showed that the choice of software or preprocessing steps could significantly affect the prediction error, with a maximum increase of 0.75 years in mean absolute error (MAE) for the same model and dataset. While grayscale correction had no significant impact on MAE, using affine rather than rigid registration to brain atlas statistically significantly improved MAE. Models trained on 3D images with isotropic 1mm3 resolution exhibited less sensitivity to the T1w preprocessing variations compared to 2D models or those trained on downsampled 3D images. Our findings indicate that extensive T1w preprocessing improves MAE, especially when predicting on a new dataset. This runs counter to prevailing research literature, which suggests that models trained on minimally preprocessed T1w scans are better suited for age predictions on MRIs from unseen scanners. We demonstrate that, irrespective of the model or T1w preprocessing used during training, applying some form of offset correction is essential to enable the model's performance to generalize effectively on datasets from unseen sites, regardless of whether they have undergone the same or different T1w preprocessing as the training set.
Collapse
Affiliation(s)
- Lara Dular
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, Ljubljana 1000, Slovenia
| | - Franjo Pernuš
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, Ljubljana 1000, Slovenia
| | - Žiga Špiclin
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, Ljubljana 1000, Slovenia.
| |
Collapse
|
7
|
Chen M, Wang Y, Shi Y, Feng J, Feng R, Guan X, Xu X, Zhang Y, Jin C, Wei H. Brain Age Prediction Based on Quantitative Susceptibility Mapping Using the Segmentation Transformer. IEEE J Biomed Health Inform 2024; 28:1012-1021. [PMID: 38090820 DOI: 10.1109/jbhi.2023.3341629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The process of brain aging is intricate, encompassing significant structural and functional changes, including myelination and iron deposition in the brain. Brain age could act as a quantitative marker to evaluate the degree of the individual's brain evolution. Quantitative susceptibility mapping (QSM) is sensitive to variations in magnetically responsive substances such as iron and myelin, making it a favorable tool for estimating brain age. In this study, we introduce an innovative 3D convolutional network named Segmentation-Transformer-Age-Network (STAN) to predict brain age based on QSM data. STAN employs a two-stage network architecture. The first-stage network learns to extract informative features from the QSM data through segmentation training, while the second-stage network predicts brain age by integrating the global and local features. We collected QSM images from 712 healthy participants, with 548 for training and 164 for testing. The results demonstrate that the proposed method achieved a high accuracy brain age prediction with a mean absolute error (MAE) of 4.124 years and a coefficient of determination (R2) of 0.933. Furthermore, the gaps between the predicted brain age and the chronological age of Parkinson's disease patients were significantly higher than those of healthy subjects (P<0.01). We thus believe that using QSM-based predicted brain age offers a more reliable and accurate phenotype, with the potentiality to serve as a biomarker to explore the process of advanced brain aging.
Collapse
|
8
|
Kalyakulina A, Yusipov I, Moskalev A, Franceschi C, Ivanchenko M. eXplainable Artificial Intelligence (XAI) in aging clock models. Ageing Res Rev 2024; 93:102144. [PMID: 38030090 DOI: 10.1016/j.arr.2023.102144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
XAI is a rapidly progressing field of machine learning, aiming to unravel the predictions of complex models. XAI is especially required in sensitive applications, e.g. in health care, when diagnosis, recommendations and treatment choices might rely on the decisions made by artificial intelligence systems. AI approaches have become widely used in aging research as well, in particular, in developing biological clock models and identifying biomarkers of aging and age-related diseases. However, the potential of XAI here awaits to be fully appreciated. We discuss the application of XAI for developing the "aging clocks" and present a comprehensive analysis of the literature categorized by the focus on particular physiological systems.
Collapse
Affiliation(s)
- Alena Kalyakulina
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod 603022, Russia; Research Center for Trusted Artificial Intelligence, The Ivannikov Institute for System Programming of the Russian Academy of Sciences, Moscow 109004, Russia; Department of Applied Mathematics, Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod 603022, Russia.
| | - Igor Yusipov
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod 603022, Russia; Research Center for Trusted Artificial Intelligence, The Ivannikov Institute for System Programming of the Russian Academy of Sciences, Moscow 109004, Russia; Department of Applied Mathematics, Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod 603022, Russia
| | - Alexey Moskalev
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod 603022, Russia
| | - Claudio Franceschi
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod 603022, Russia
| | - Mikhail Ivanchenko
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod 603022, Russia; Department of Applied Mathematics, Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod 603022, Russia
| |
Collapse
|
9
|
Dular L, Špiclin Ž. BASE: Brain Age Standardized Evaluation. Neuroimage 2024; 285:120469. [PMID: 38065279 DOI: 10.1016/j.neuroimage.2023.120469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/31/2023] [Accepted: 11/20/2023] [Indexed: 01/13/2024] Open
Abstract
Brain age, most commonly inferred from T1-weighted magnetic resonance images (T1w MRI), is a robust biomarker of brain health and related diseases. Superior accuracy in brain age prediction, often falling within a 2-3 year range, is achieved predominantly through deep neural networks. However, comparing study results is difficult due to differences in datasets, evaluation methodologies and metrics. Addressing this, we introduce Brain Age Standardized Evaluation (BASE), which includes (i) a standardized T1w MRI dataset including multi-site, new unseen site, test-retest and longitudinal data, and an associated (ii) evaluation protocol, including repeated model training and upon based comprehensive set of performance metrics measuring accuracy, robustness, reproducibility and consistency aspects of brain age predictions, and (iii) statistical evaluation framework based on linear mixed-effects models for rigorous performance assessment and cross-comparison. To showcase BASE, we comprehensively evaluate four deep learning based brain age models, appraising their performance in scenarios that utilize multi-site, test-retest, unseen site, and longitudinal T1w brain MRI datasets. Ensuring full reproducibility and application in future studies, we have made all associated data information and code publicly accessible at https://github.com/AralRalud/BASE.git.
Collapse
Affiliation(s)
- Lara Dular
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, Ljubljana, 1000, Slovenia
| | - Žiga Špiclin
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, Ljubljana, 1000, Slovenia.
| |
Collapse
|
10
|
Joo Y, Namgung E, Jeong H, Kang I, Kim J, Oh S, Lyoo IK, Yoon S, Hwang J. Brain age prediction using combined deep convolutional neural network and multi-layer perceptron algorithms. Sci Rep 2023; 13:22388. [PMID: 38104173 PMCID: PMC10725434 DOI: 10.1038/s41598-023-49514-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023] Open
Abstract
The clinical applications of brain age prediction have expanded, particularly in anticipating the onset and prognosis of various neurodegenerative diseases. In the current study, we proposed a deep learning algorithm that leverages brain structural imaging data and enhances prediction accuracy by integrating biological sex information. Our model for brain age prediction, built on deep neural networks, employed a dataset of 3004 healthy subjects aged 18 and above. The T1-weighted images were minimally preprocessed and analyzed using the convolutional neural network (CNN) algorithm. The categorical sex information was then incorporated using the multi-layer perceptron (MLP) algorithm. We trained and validated both a CNN-only algorithm (utilizing only brain structural imaging data), and a combined CNN-MLP algorithm (using both structural brain imaging data and sex information) for age prediction. By integrating sex information with T1-weighted imaging data, our proposed CNN-MLP algorithm outperformed not only the CNN-only algorithm but also established algorithms, such as brainageR, in prediction accuracy. Notably, this hybrid CNN-MLP algorithm effectively distinguished between mild cognitive impairment and Alzheimer's disease groups by identifying variances in brain age gaps between them, highlighting the algorithm's potential for clinical application. Overall, these results underscore the enhanced precision of the CNN-MLP algorithm in brain age prediction, achieved through the integration of sex information.
Collapse
Affiliation(s)
- Yoonji Joo
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Eun Namgung
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Hyeonseok Jeong
- Department of Radiology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ilhyang Kang
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Jinsol Kim
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Sohyun Oh
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - In Kyoon Lyoo
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Sujung Yoon
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea.
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea.
| | - Jaeuk Hwang
- Department of Psychiatry, Soonchunhyang University College of Medicine, Seoul, South Korea.
| |
Collapse
|
11
|
Moon HS, Mahzarnia A, Stout J, Anderson RJ, Badea CT, Badea A. Feature attention graph neural network for estimating brain age and identifying important neural connections in mouse models of genetic risk for Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.13.571574. [PMID: 38168445 PMCID: PMC10760088 DOI: 10.1101/2023.12.13.571574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Alzheimer's disease (AD) remains one of the most extensively researched neurodegenerative disorders due to its widespread prevalence and complex risk factors. Age is a crucial risk factor for AD, which can be estimated by the disparity between physiological age and estimated brain age. To model AD risk more effectively, integrating biological, genetic, and cognitive markers is essential. Here, we utilized mouse models expressing the major APOE human alleles and human nitric oxide synthase 2 to replicate genetic risk for AD and a humanized innate immune response. We estimated brain age employing a multivariate dataset that includes brain connectomes, APOE genotype, subject traits such as age and sex, and behavioral data. Our methodology used Feature Attention Graph Neural Networks (FAGNN) for integrating different data types. Behavioral data were processed with a 2D Convolutional Neural Network (CNN), subject traits with a 1D CNN, brain connectomes through a Graph Neural Network using quadrant attention module. The model yielded a mean absolute error for age prediction of 31.85 days, with a root mean squared error of 41.84 days, outperforming other, reduced models. In addition, FAGNN identified key brain connections involved in the aging process. The highest weights were assigned to the connections between cingulum and corpus callosum, striatum, hippocampus, thalamus, hypothalamus, cerebellum, and piriform cortex. Our study demonstrates the feasibility of predicting brain age in models of aging and genetic risk for AD. To verify the validity of our findings, we compared Fractional Anisotropy (FA) along the tracts of regions with the highest connectivity, the Return-to-Origin Probability (RTOP), Return-to-Plane Probability (RTPP), and Return-to-Axis Probability (RTAP), which showed significant differences between young, middle-aged, and old age groups. Younger mice exhibited higher FA, RTOP, RTAP, and RTPP compared to older groups in the selected connections, suggesting that degradation of white matter tracts plays a critical role in aging and for FAGNN's selections. Our analysis suggests a potential neuroprotective role of APOE2, relative to APOE3 and APOE4, where APOE2 appears to mitigate age-related changes. Our findings highlighted a complex interplay of genetics and brain aging in the context of AD risk modeling.
Collapse
Affiliation(s)
- Hae Sol Moon
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Quantitative Imaging and Analysis Laboratory, Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Ali Mahzarnia
- Quantitative Imaging and Analysis Laboratory, Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Jacques Stout
- Quantitative Imaging and Analysis Laboratory, Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Robert J Anderson
- Quantitative Imaging and Analysis Laboratory, Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Cristian T. Badea
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Quantitative Imaging and Analysis Laboratory, Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Alexandra Badea
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Quantitative Imaging and Analysis Laboratory, Department of Radiology, Duke University School of Medicine, Durham, NC, USA
- Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
12
|
He S, Guan Y, Cheng CH, Moore TL, Luebke JI, Killiany RJ, Rosene DL, Koo BB, Ou Y. Human-to-monkey transfer learning identifies the frontal white matter as a key determinant for predicting monkey brain age. Front Aging Neurosci 2023; 15:1249415. [PMID: 38020785 PMCID: PMC10646581 DOI: 10.3389/fnagi.2023.1249415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
The application of artificial intelligence (AI) to summarize a whole-brain magnetic resonance image (MRI) into an effective "brain age" metric can provide a holistic, individualized, and objective view of how the brain interacts with various factors (e.g., genetics and lifestyle) during aging. Brain age predictions using deep learning (DL) have been widely used to quantify the developmental status of human brains, but their wider application to serve biomedical purposes is under criticism for requiring large samples and complicated interpretability. Animal models, i.e., rhesus monkeys, have offered a unique lens to understand the human brain - being a species in which aging patterns are similar, for which environmental and lifestyle factors are more readily controlled. However, applying DL methods in animal models suffers from data insufficiency as the availability of animal brain MRIs is limited compared to many thousands of human MRIs. We showed that transfer learning can mitigate the sample size problem, where transferring the pre-trained AI models from 8,859 human brain MRIs improved monkey brain age estimation accuracy and stability. The highest accuracy and stability occurred when transferring the 3D ResNet [mean absolute error (MAE) = 1.83 years] and the 2D global-local transformer (MAE = 1.92 years) models. Our models identified the frontal white matter as the most important feature for monkey brain age predictions, which is consistent with previous histological findings. This first DL-based, anatomically interpretable, and adaptive brain age estimator could broaden the application of AI techniques to various animal or disease samples and widen opportunities for research in non-human primate brains across the lifespan.
Collapse
Affiliation(s)
- Sheng He
- Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Yi Guan
- Department of Anatomy & Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Chia Hsin Cheng
- Department of Anatomy & Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Tara L. Moore
- Department of Anatomy & Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Jennifer I. Luebke
- Department of Anatomy & Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Ronald J. Killiany
- Department of Anatomy & Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Douglas L. Rosene
- Department of Anatomy & Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Bang-Bon Koo
- Department of Anatomy & Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Yangming Ou
- Department of Anatomy & Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| |
Collapse
|
13
|
Dular L, Pernuš F, Špiclin Ž. Extensive T1-weighted MRI Preprocessing Improves Generalizability of Deep Brain Age Prediction Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540134. [PMID: 37214863 PMCID: PMC10197652 DOI: 10.1101/2023.05.10.540134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Brain age is an estimate of chronological age obtained from T1-weighted magnetic resonance images (T1w MRI) and represents a simple diagnostic biomarker of brain ageing and associated diseases. While the current best accuracy of brain age predictions on T1w MRIs of healthy subjects ranges from two to three years, comparing results from different studies is challenging due to differences in the datasets, T1w preprocessing pipelines, and performance metrics used. This paper investigates the impact of T1w image preprocessing on the performance of four deep learning brain age models presented in recent literature. Four preprocessing pipelines were evaluated, differing in terms of registration, grayscale correction, and software implementation. The results showed that the choice of software or preprocessing steps can significantly affect the prediction error, with a maximum increase of 0.7 years in mean absolute error (MAE) for the same model and dataset. While grayscale correction had no significant impact on MAE, the affine registration, compared to the rigid registration of T1w images to brain atlas was shown to statistically significantly improve MAE. Models trained on 3D images with isotropic 1 mm3 resolution exhibited less sensitivity to the T1w preprocessing variations compared to 2D models or those trained on downsampled 3D images. Some proved invariant to the preprocessing pipeline, however only after offset correction. Our findings generally indicate that extensive T1w preprocessing enhances the MAE, especially when applied to a new dataset. This runs counter to prevailing research literature which suggests that models trained on minimally preprocessed T1w scans are better poised for age predictions on MRIs from unseen scanners. Regardless of model or T1w preprocessing used, we show that to enable generalization of model's performance on a new dataset with either the same or different T1w preprocessing than the one applied in model training, some form of offset correction should be applied.
Collapse
Affiliation(s)
- Lara Dular
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, Ljubljana 1000, Slovenia
| | - Franjo Pernuš
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, Ljubljana 1000, Slovenia
| | - Žiga Špiclin
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, Ljubljana 1000, Slovenia
| |
Collapse
|
14
|
Sihag S, Mateos G, McMillan C, Ribeiro A. Explainable Brain Age Prediction using coVariance Neural Networks. ARXIV 2023:arXiv:2305.18370v3. [PMID: 37808092 PMCID: PMC10557794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
In computational neuroscience, there has been an increased interest in developing machine learning algorithms that leverage brain imaging data to provide estimates of "brain age" for an individual. Importantly, the discordance between brain age and chronological age (referred to as "brain age gap") can capture accelerated aging due to adverse health conditions and therefore, can reflect increased vulnerability towards neurological disease or cognitive impairments. However, widespread adoption of brain age for clinical decision support has been hindered due to lack of transparency and methodological justifications in most existing brain age prediction algorithms. In this paper, we leverage coVariance neural networks (VNN) to propose an explanation-driven and anatomically interpretable framework for brain age prediction using cortical thickness features. Specifically, our brain age prediction framework extends beyond the coarse metric of brain age gap in Alzheimer's disease (AD) and we make two important observations: (i) VNNs can assign anatomical interpretability to elevated brain age gap in AD by identifying contributing brain regions, (ii) the interpretability offered by VNNs is contingent on their ability to exploit specific eigenvectors of the anatomical covariance matrix. Together, these observations facilitate an explainable and anatomically interpretable perspective to the task of brain age prediction.
Collapse
|
15
|
Hu L, Wan Q, Huang L, Tang J, Huang S, Chen X, Bai X, Kong L, Deng J, Liang H, Liu G, Liu H, Lu L. MRI-based brain age prediction model for children under 3 years old using deep residual network. Brain Struct Funct 2023; 228:1771-1784. [PMID: 37603065 DOI: 10.1007/s00429-023-02686-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023]
Abstract
Early identification and intervention of abnormal brain development individual subjects are of great significance, especially during the earliest and most active stage of brain development in children aged under 3. Neuroimage-based brain's biological age has been associated with health, ability, and remaining life. However, the existing brain age prediction models based on neuroimage are predominantly adult-oriented. Here, we collected 658 T1-weighted MRI scans from 0 to 3 years old healthy controls and developed an accurate brain age prediction model for young children using deep learning techniques with high accuracy in capturing age-related changes. The performance of the deep learning-based model is comparable to that of the SVR-based model, showcasing remarkable precision and yielding a noteworthy correlation of 91% between the predicted brain age and the chronological age. Our results demonstrate the accuracy of convolutional neural network (CNN) brain-predicted age using raw T1-weighted MRI data with minimum preprocessing necessary. We also applied our model to children with low birth weight, premature delivery history, autism, and ADHD, and discovered that the brain age was delayed in children with extremely low birth weight (less than 1000 g) while ADHD may cause accelerated aging of the brain. Our child-specific brain age prediction model can be a valuable quantitative tool to detect abnormal brain development and can be helpful in the early identification and intervention of age-related brain disorders.
Collapse
Affiliation(s)
- Lianting Hu
- Guangzhou Women and Children's Medical Center, Guangzhou, 510623, Guangdong, China
- Medical Big Data Center, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
- Guangdong Cardiovascular Institute, Guangzhou, 510080, Guangdong, China
| | - Qirong Wan
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 4330060, Hubei, China
| | - Li Huang
- School of Information Management, Wuhan University, Wuhan, 430072, Hubei, China
| | - Jiajie Tang
- Guangzhou Women and Children's Medical Center, Guangzhou, 510623, Guangdong, China
- School of Information Management, Wuhan University, Wuhan, 430072, Hubei, China
| | - Shuai Huang
- Medical Big Data Center, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
- Guangdong Cardiovascular Institute, Guangzhou, 510080, Guangdong, China
| | - Xuanhui Chen
- Medical Big Data Center, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
- Guangdong Cardiovascular Institute, Guangzhou, 510080, Guangdong, China
| | - Xiaohe Bai
- School of Physical Sciences, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Lingcong Kong
- Medical Big Data Center, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Jingyi Deng
- School of Information Management, Wuhan University, Wuhan, 430072, Hubei, China
| | - Huiying Liang
- Medical Big Data Center, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
- Guangdong Cardiovascular Institute, Guangzhou, 510080, Guangdong, China
| | - Guangjian Liu
- Medical Big Data Center, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
- Guangdong Cardiovascular Institute, Guangzhou, 510080, Guangdong, China
| | - Hongsheng Liu
- Guangzhou Women and Children's Medical Center, Guangzhou, 510623, Guangdong, China.
| | - Long Lu
- Guangzhou Women and Children's Medical Center, Guangzhou, 510623, Guangdong, China.
- School of Information Management, Wuhan University, Wuhan, 430072, Hubei, China.
| |
Collapse
|
16
|
Ray B, Chen J, Fu Z, Suresh P, Thapaliya B, Farahdel B, Calhoun VD, Liu J. Replication and Refinement of Brain Age Model for adolescent development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.16.553472. [PMID: 37645839 PMCID: PMC10462059 DOI: 10.1101/2023.08.16.553472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The discrepancy between chronological age and estimated brain age, known as the brain age gap, may serve as a biomarker to reveal brain development and neuropsychiatric problems. This has motivated many studies focusing on the accurate estimation of brain age using different features and models, of which the generalizability is yet to be tested. Our recent study has demonstrated that conventional machine learning models can achieve high accuracy on brain age prediction during development using only a small set of selected features from multimodal brain imaging data. In the current study, we tested the replicability of various brain age models on the Adolescent Brain Cognitive Development (ABCD) cohort. We proposed a new refined model to improve the robustness of brain age prediction. The direct replication test for existing brain age models derived from the age range of 8-22 years onto the ABCD participants at baseline (9 to 10 years old) and year-two follow-up (11 to 12 years old) indicate that pre-trained models could capture the overall mean age failed precisely estimating brain age variation within a narrow range. The refined model, which combined broad prediction of the pre-trained model and granular information with the narrow age range, achieved the best performance with a mean absolute error of 0.49 and 0.48 years on the baseline and year-two data, respectively. The brain age gap yielded by the refined model showed significant associations with the participants' information processing speed and verbal comprehension ability on baseline data.
Collapse
Affiliation(s)
- Bhaskar Ray
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
- Department of Computer Science, Georgia State University, Atlanta, USA
| | - Jiayu Chen
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
| | - Zening Fu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
| | - Pranav Suresh
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
- Department of Computer Science, Georgia State University, Atlanta, USA
| | - Bishal Thapaliya
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
- Department of Computer Science, Georgia State University, Atlanta, USA
| | - Britny Farahdel
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
- Department of Computer Science, Georgia State University, Atlanta, USA
| | - Vince D. Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
- Department of Computer Science, Georgia State University, Atlanta, USA
| | - Jingyu Liu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
- Department of Computer Science, Georgia State University, Atlanta, USA
| |
Collapse
|
17
|
Cai H, Gao Y, Liu M. Graph Transformer Geometric Learning of Brain Networks Using Multimodal MR Images for Brain Age Estimation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:456-466. [PMID: 36374874 DOI: 10.1109/tmi.2022.3222093] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Brain age is considered as an important biomarker for detecting aging-related diseases such as Alzheimer's Disease (AD). Magnetic resonance imaging (MRI) have been widely investigated with deep neural networks for brain age estimation. However, most existing methods cannot make full use of multimodal MRIs due to the difference in data structure. In this paper, we propose a graph transformer geometric learning framework to model the multimodal brain network constructed by structural MRI (sMRI) and diffusion tensor imaging (DTI) for brain age estimation. First, we build a two-stream convolutional autoencoder to learn the latent representations for each imaging modality. The brain template with prior knowledge is utilized to calculate the features from the regions of interest (ROIs). Then, a multi-level construction of the brain network is proposed to establish the hybrid ROI connections in space, feature and modality. Next, a graph transformer network is proposed to model the cross-modal interaction and fusion by geometric learning for brain age estimation. Finally, the difference between the estimated age and the chronological age is used as an important biomarker for AD diagnosis. Our method is evaluated with the sMRI and DTI data from UK Biobank and Alzheimer's Disease Neuroimaging Initiative database. Experimental results demonstrate that our method has achieved promising performances for brain age estimation and AD diagnosis.
Collapse
|
18
|
Rao VM, Wan Z, Arabshahi S, Ma DJ, Lee PY, Tian Y, Zhang X, Laine AF, Guo J. Improving across-dataset brain tissue segmentation for MRI imaging using transformer. FRONTIERS IN NEUROIMAGING 2022; 1:1023481. [PMID: 37555170 PMCID: PMC10406272 DOI: 10.3389/fnimg.2022.1023481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/24/2022] [Indexed: 08/10/2023]
Abstract
Brain tissue segmentation has demonstrated great utility in quantifying MRI data by serving as a precursor to further post-processing analysis. However, manual segmentation is highly labor-intensive, and automated approaches, including convolutional neural networks (CNNs), have struggled to generalize well due to properties inherent to MRI acquisition, leaving a great need for an effective segmentation tool. This study introduces a novel CNN-Transformer hybrid architecture designed to improve brain tissue segmentation by taking advantage of the increased performance and generality conferred by Transformers for 3D medical image segmentation tasks. We first demonstrate the superior performance of our model on various T1w MRI datasets. Then, we rigorously validate our model's generality applied across four multi-site T1w MRI datasets, covering different vendors, field strengths, scan parameters, and neuropsychiatric conditions. Finally, we highlight the reliability of our model on test-retest scans taken in different time points. In all situations, our model achieved the greatest generality and reliability compared to the benchmarks. As such, our method is inherently robust and can serve as a valuable tool for brain related T1w MRI studies. The code for the TABS network is available at: https://github.com/raovish6/TABS.
Collapse
Affiliation(s)
- Vishwanatha M. Rao
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Zihan Wan
- Department of Applied Mathematics, Columbia University, New York, NY, United States
| | - Soroush Arabshahi
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - David J. Ma
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Pin-Yu Lee
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Ye Tian
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Xuzhe Zhang
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Andrew F. Laine
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Jia Guo
- Department of Psychiatry, Columbia University, New York, NY, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| |
Collapse
|
19
|
Sone D, Beheshti I. Neuroimaging-Based Brain Age Estimation: A Promising Personalized Biomarker in Neuropsychiatry. J Pers Med 2022; 12:jpm12111850. [PMID: 36579560 PMCID: PMC9695293 DOI: 10.3390/jpm12111850] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 11/10/2022] Open
Abstract
It is now possible to estimate an individual's brain age via brain scans and machine-learning models. This validated technique has opened up new avenues for addressing clinical questions in neurology, and, in this review, we summarize the many clinical applications of brain-age estimation in neuropsychiatry and general populations. We first provide an introduction to typical neuroimaging modalities, feature extraction methods, and machine-learning models that have been used to develop a brain-age estimation framework. We then focus on the significant findings of the brain-age estimation technique in the field of neuropsychiatry as well as the usefulness of the technique for addressing clinical questions in neuropsychiatry. These applications may contribute to more timely and targeted neuropsychiatric therapies. Last, we discuss the practical problems and challenges described in the literature and suggest some future research directions.
Collapse
Affiliation(s)
- Daichi Sone
- Department of Psychiatry, Jikei University School of Medicine, Tokyo 105-8461, Japan
- Correspondence: ; Tel.: +81-03-3433
| | - Iman Beheshti
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| |
Collapse
|
20
|
Li Y, Zhang X, Nie J, Zhang G, Fang R, Xu X, Wu Z, Hu D, Wang L, Zhang H, Lin W, Li G. Brain Connectivity Based Graph Convolutional Networks and Its Application to Infant Age Prediction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:2764-2776. [PMID: 35500083 PMCID: PMC10041448 DOI: 10.1109/tmi.2022.3171778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Infancy is a critical period for the human brain development, and brain age is one of the indices for the brain development status associated with neuroimaging data. The difference between the predicted age based on neuroimaging and the chronological age can provide an important early indicator of deviation from the normal developmental trajectory. In this study, we utilize the Graph Convolutional Network (GCN) to predict the infant brain age based on resting-state fMRI data. The brain connectivity obtained from rs-fMRI can be represented as a graph with brain regions as nodes and functional connections as edges. However, since the brain connectivity is a fully connected graph with features on edges, current GCN cannot be directly used for it is a node-based method for sparse graphs. Hence, we propose an edge-based Graph Path Convolution (GPC) method, which aggregates the information from different paths and can be naturally applied on dense graphs. We refer the whole model as Brain Connectivity Graph Convolutional Networks (BC-GCN). Further, two upgraded network structures are proposed by including the residual and attention modules, referred as BC-GCN-Res and BC-GCN-SE to emphasize the information of the original data and enhance influential channels. Moreover, we design a two-stage coarse-to-fine framework, which determines the age group first and then predicts the age using group-specific BC-GCN-SE models. To avoid accumulated errors from the first stage, a cross-group training strategy is adopted for the second stage regression models. We conduct experiments on infant fMRI scans from 6 to 811 days of age. The coarse-to-fine framework shows significant improvements when being applied to several models (reducing error over 10 days). Comparing with state-of-the-art methods, our proposed model BC-GCN-SE with coarse-to-fine framework reduces the mean absolute error of the prediction from >70 days to 49.9 days. The code is now available at https://github.com/SCUT-Xinlab/BC-GCN.
Collapse
|
21
|
He S, Feng Y, Grant PE, Ou Y. Deep Relation Learning for Regression and Its Application to Brain Age Estimation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:2304-2317. [PMID: 35320092 PMCID: PMC9782832 DOI: 10.1109/tmi.2022.3161739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Most deep learning models for temporal regression directly output the estimation based on single input images, ignoring the relationships between different images. In this paper, we propose deep relation learning for regression, aiming to learn different relations between a pair of input images. Four non-linear relations are considered: "cumulative relation," "relative relation," "maximal relation" and "minimal relation." These four relations are learned simultaneously from one deep neural network which has two parts: feature extraction and relation regression. We use an efficient convolutional neural network to extract deep features from the pair of input images and apply a Transformer for relation learning. The proposed method is evaluated on a merged dataset with 6,049 subjects with ages of 0-97 years using 5-fold cross-validation for the task of brain age estimation. The experimental results have shown that the proposed method achieved a mean absolute error (MAE) of 2.38 years, which is lower than the MAEs of 8 other state-of-the-art algorithms with statistical significance (p<0.05) in paired T-test (two-side).
Collapse
|
22
|
Liu C, Zhu N, Sun H, Zhang J, Feng X, Gjerswold-Selleck S, Sikka D, Zhu X, Liu X, Nuriel T, Wei HJ, Wu CC, Vaughan JT, Laine AF, Provenzano FA, Small SA, Guo J. Deep learning of MRI contrast enhancement for mapping cerebral blood volume from single-modal non-contrast scans of aging and Alzheimer's disease brains. Front Aging Neurosci 2022; 14:923673. [PMID: 36034139 PMCID: PMC9407020 DOI: 10.3389/fnagi.2022.923673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
While MRI contrast agents such as those based on Gadolinium are needed for high-resolution mapping of brain metabolism, these contrast agents require intravenous administration, and there are rising concerns over their safety and invasiveness. Furthermore, non-contrast MRI scans are more commonly performed than those with contrast agents and are readily available for analysis in public databases such as the Alzheimer's Disease Neuroimaging Initiative (ADNI). In this article, we hypothesize that a deep learning model, trained using quantitative steady-state contrast-enhanced structural MRI datasets, in mice and humans, can generate contrast-equivalent information from a single non-contrast MRI scan. The model was first trained, optimized, and validated in mice, and was then transferred and adapted to humans. We observe that the model can substitute for Gadolinium-based contrast agents in approximating cerebral blood volume, a quantitative representation of brain activity, at sub-millimeter granularity. Furthermore, we validate the use of our deep-learned prediction maps to identify functional abnormalities in the aging brain using locally obtained MRI scans, and in the brain of patients with Alzheimer's disease using publicly available MRI scans from ADNI. Since it is derived from a commonly-acquired MRI protocol, this framework has the potential for broad clinical utility and can also be applied retrospectively to research scans across a host of neurological/functional diseases.
Collapse
Affiliation(s)
- Chen Liu
- Department of Electrical Engineering, Columbia University, New York, NY, United States
| | - Nanyan Zhu
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Haoran Sun
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Junhao Zhang
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Xinyang Feng
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | | | - Dipika Sikka
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Xuemin Zhu
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Xueqing Liu
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Tal Nuriel
- Department of Radiation Oncology, Columbia University, New York, NY, United States
| | - Hong-Jian Wei
- Department of Radiation Oncology, Columbia University, New York, NY, United States
| | - Cheng-Chia Wu
- Department of Radiation Oncology, Columbia University, New York, NY, United States
| | - J. Thomas Vaughan
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Andrew F. Laine
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | | | - Scott A. Small
- Department of Neurology, Columbia University, New York, NY, United States
- Department of Psychiatry, Columbia University, New York, NY, United States
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Jia Guo
- Department of Psychiatry, Columbia University, New York, NY, United States
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
- *Correspondence: Jia Guo
| |
Collapse
|
23
|
Hofmann SM, Beyer F, Lapuschkin S, Goltermann O, Loeffler M, Müller KR, Villringer A, Samek W, Witte AV. Towards the Interpretability of Deep Learning Models for Multi-modal Neuroimaging: Finding Structural Changes of the Ageing Brain. Neuroimage 2022; 261:119504. [PMID: 35882272 DOI: 10.1016/j.neuroimage.2022.119504] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
Brain-age (BA) estimates based on deep learning are increasingly used as neuroimaging biomarker for brain health; however, the underlying neural features have remained unclear. We combined ensembles of convolutional neural networks with Layer-wise Relevance Propagation (LRP) to detect which brain features contribute to BA. Trained on magnetic resonance imaging (MRI) data of a population-based study (n=2637, 18-82 years), our models estimated age accurately based on single and multiple modalities, regionally restricted and whole-brain images (mean absolute errors 3.37-3.86 years). We find that BA estimates capture aging at both small and large-scale changes, revealing gross enlargements of ventricles and subarachnoid spaces, as well as white matter lesions, and atrophies that appear throughout the brain. Divergence from expected aging reflected cardiovascular risk factors and accelerated aging was more pronounced in the frontal lobe. Applying LRP, our study demonstrates how superior deep learning models detect brain-aging in healthy and at-risk individuals throughout adulthood.
Collapse
Affiliation(s)
- Simon M Hofmann
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany; Department of Artificial Intelligence, Fraunhofer Institute Heinrich Hertz, 10587 Berlin, Germany; Clinic for Cognitive Neurology, University of Leipzig Medical Center, 04103 Leipzig, Germany.
| | - Frauke Beyer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany; Clinic for Cognitive Neurology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Sebastian Lapuschkin
- Department of Artificial Intelligence, Fraunhofer Institute Heinrich Hertz, 10587 Berlin, Germany
| | - Ole Goltermann
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany; Max Planck School of Cognition, 04103 Leipzig, Germany; Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Germany
| | | | - Klaus-Robert Müller
- Department of Electrical Engineering and Computer Science, Technical University Berlin, 10623 Berlin, Germany; Department of Artificial Intelligence, Korea University, 02841 Seoul, Korea (the Republic of); Brain Team, Google Research, 10117 Berlin, Germany; Max Planck Institute for Informatics, 66123 Saarbrücken, Germany; BIFOLD - Berlin Institute for the Foundations of Learning and Data, 10587 Berlin, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany; Clinic for Cognitive Neurology, University of Leipzig Medical Center, 04103 Leipzig, Germany; MindBrainBody Institute, Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, 10099 Berlin, Germany; Center for Stroke Research, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Wojciech Samek
- Department of Artificial Intelligence, Fraunhofer Institute Heinrich Hertz, 10587 Berlin, Germany; Department of Electrical Engineering and Computer Science, Technical University Berlin, 10623 Berlin, Germany; BIFOLD - Berlin Institute for the Foundations of Learning and Data, 10587 Berlin, Germany
| | - A Veronica Witte
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany; Clinic for Cognitive Neurology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| |
Collapse
|
24
|
The overlapping modular organization of human brain functional networks across the adult lifespan. Neuroimage 2022; 253:119125. [PMID: 35331872 DOI: 10.1016/j.neuroimage.2022.119125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/02/2022] [Accepted: 03/19/2022] [Indexed: 01/06/2023] Open
Abstract
Previous studies have demonstrated that the brain functional modular organization, which is a fundamental feature of the human brain, would change along the adult lifespan. However, these studies assumed that each brain region belonged to a single functional module, although there has been convergent evidence supporting the existence of overlap among functional modules in the human brain. To reveal how age affects the overlapping functional modular organization, this study applied an overlapping module detection algorithm that requires no prior knowledge to the resting-state fMRI data of a healthy cohort (N = 570) aged from 18 to 88 years old. A series of measures were derived to delineate the characteristics of the overlapping modular structure and the set of overlapping nodes (brain regions participating in two or more modules) identified from each participant. Age-related regression analyses on these measures found linearly decreasing trends in the overlapping modularity and the modular similarity. The number of overlapping nodes was found increasing with age, but the increment was not even over the brain. In addition, across the adult lifespan and within each age group, the nodal overlapping probability consistently had positive correlations with both functional gradient and flexibility. Further, by correlation and mediation analyses, we showed that the influence of age on memory-related cognitive performance might be explained by the change in the overlapping functional modular organization. Together, our results revealed age-related decreased segregation from the brain functional overlapping modular organization perspective, which could provide new insight into the adult lifespan changes in brain function and the influence of such changes on cognitive performance.
Collapse
|
25
|
He S, Grant PE, Ou Y. Global-Local Transformer for Brain Age Estimation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:213-224. [PMID: 34460370 PMCID: PMC9746186 DOI: 10.1109/tmi.2021.3108910] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Deep learning can provide rapid brain age estimation based on brain magnetic resonance imaging (MRI). However, most studies use one neural network to extract the global information from the whole input image, ignoring the local fine-grained details. In this paper, we propose a global-local transformer, which consists of a global-pathway to extract the global-context information from the whole input image and a local-pathway to extract the local fine-grained details from local patches. The fine-grained information from the local patches are fused with the global-context information by the attention mechanism, inspired by the transformer, to estimate the brain age. We evaluate the proposed method on 8 public datasets with 8,379 healthy brain MRIs with the age range of 0-97 years. 6 datasets are used for cross-validation and 2 datasets are used for evaluating the generality. Comparing with other state-of-the-art methods, the proposed global-local transformer reduces the mean absolute error of the estimated ages to 2.70 years and increases the correlation coefficient of the estimated age and the chronological age to 0.9853. In addition, our proposed method provides regional information of which local patches are most informative for brain age estimation. Our source code is available on: https://github.com/shengfly/global-local-transformer.
Collapse
|
26
|
Morton SU, Leyshon BJ, Tamilia E, Vyas R, Sisitsky M, Ladha I, Lasekan JB, Kuchan MJ, Grant PE, Ou Y. A Role for Data Science in Precision Nutrition and Early Brain Development. Front Psychiatry 2022; 13:892259. [PMID: 35815018 PMCID: PMC9259898 DOI: 10.3389/fpsyt.2022.892259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Multimodal brain magnetic resonance imaging (MRI) can provide biomarkers of early influences on neurodevelopment such as nutrition, environmental and genetic factors. As the exposure to early influences can be separated from neurodevelopmental outcomes by many months or years, MRI markers can serve as an important intermediate outcome in multivariate analyses of neurodevelopmental determinants. Key to the success of such work are recent advances in data science as well as the growth of relevant data resources. Multimodal MRI assessment of neurodevelopment can be supplemented with other biomarkers of neurodevelopment such as electroencephalograms, magnetoencephalogram, and non-imaging biomarkers. This review focuses on how maternal nutrition impacts infant brain development, with three purposes: (1) to summarize the current knowledge about how nutrition in stages of pregnancy and breastfeeding impact infant brain development; (2) to discuss multimodal MRI and other measures of early neurodevelopment; and (3) to discuss potential opportunities for data science and artificial intelligence to advance precision nutrition. We hope this review can facilitate the collaborative march toward precision nutrition during pregnancy and the first year of life.
Collapse
Affiliation(s)
- Sarah U Morton
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, United States.,Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | | | - Eleonora Tamilia
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, United States.,Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Rutvi Vyas
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, United States.,Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, United States
| | - Michaela Sisitsky
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, United States.,Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, United States
| | - Imran Ladha
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, United States
| | | | | | - P Ellen Grant
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, United States.,Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States.,Department of Radiology, Boston Children's Hospital, Boston, MA, United States
| | - Yangming Ou
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, United States.,Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States.,Department of Radiology, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
27
|
Zou J, Park D, Johnson A, Feng X, Pardo M, France J, Tomljanovic Z, Brickman AM, Devanand DP, Luchsinger JA, Kreisl WC, Provenzano FA. Deep learning improves utility of tau PET in the study of Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12264. [PMID: 35005197 PMCID: PMC8719427 DOI: 10.1002/dad2.12264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Positron emission tomography (PET) imaging targeting neurofibrillary tau tangles is increasingly used in the study of Alzheimer's disease (AD), but its utility may be limited by conventional quantitative or qualitative evaluation techniques in earlier disease states. Convolutional neural networks (CNNs) are effective in learning spatial patterns for image classification. METHODS 18F-MK6240 (n = 320) and AV-1451 (n = 446) PET images were pooled from multiple studies. We performed iterations with differing permutations of radioligands, heuristics, and architectures. Performance was compared to a standard region of interest (ROI)-based approach on prediction of memory impairment. We visualized attention of the network to illustrate decision making. RESULTS Overall, models had high accuracy (> 80%) with good average sensitivity and specificity (75% and 82%, respectively), and had comparable or higher accuracy to the ROI standard. Visualizations of model attention highlight known characteristics of tau radioligand binding. DISCUSSION CNNs could improve tau PET's role in early disease and extend the utility of tau PET across generations of radioligands.
Collapse
Affiliation(s)
- James Zou
- The Taub Institute for Research on Alzheimer's Disease and the Aging BrainNew YorkNew YorkUSA
| | - David Park
- The Taub Institute for Research on Alzheimer's Disease and the Aging BrainNew YorkNew YorkUSA
| | - Aubrey Johnson
- The Taub Institute for Research on Alzheimer's Disease and the Aging BrainNew YorkNew YorkUSA
| | - Xinyang Feng
- The Taub Institute for Research on Alzheimer's Disease and the Aging BrainNew YorkNew YorkUSA
| | - Michelle Pardo
- Department of MedicineColumbia University Medical CenterNew YorkNew YorkUSA
| | - Jeanelle France
- The Taub Institute for Research on Alzheimer's Disease and the Aging BrainNew YorkNew YorkUSA
| | - Zeljko Tomljanovic
- The Taub Institute for Research on Alzheimer's Disease and the Aging BrainNew YorkNew YorkUSA
| | - Adam M. Brickman
- The Taub Institute for Research on Alzheimer's Disease and the Aging BrainNew YorkNew YorkUSA
- Department of NeurologyCollege of Physicians and SurgeonsColumbia UniversityNew YorkNew YorkUSA
| | - Devangere P. Devanand
- The Taub Institute for Research on Alzheimer's Disease and the Aging BrainNew YorkNew YorkUSA
- New York State Psychiatric Institute and Department of PsychiatryColumbia University Medical CenterNew YorkNew YorkUSA
| | - José A. Luchsinger
- Department of MedicineColumbia University Medical CenterNew YorkNew YorkUSA
- Department of EpidemiologyColumbia University Medical CenterNew YorkNew YorkUSA
| | - William C. Kreisl
- The Taub Institute for Research on Alzheimer's Disease and the Aging BrainNew YorkNew YorkUSA
| | - Frank A. Provenzano
- The Taub Institute for Research on Alzheimer's Disease and the Aging BrainNew YorkNew YorkUSA
- Department of NeurologyCollege of Physicians and SurgeonsColumbia UniversityNew YorkNew YorkUSA
| | | |
Collapse
|
28
|
Ren B, Wu Y, Huang L, Zhang Z, Huang B, Zhang H, Ma J, Li B, Liu X, Wu G, Zhang J, Shen L, Liu Q, Ni J. Deep transfer learning of structural magnetic resonance imaging fused with blood parameters improves brain age prediction. Hum Brain Mapp 2021; 43:1640-1656. [PMID: 34913545 PMCID: PMC8886664 DOI: 10.1002/hbm.25748] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/14/2021] [Accepted: 12/01/2021] [Indexed: 12/27/2022] Open
Abstract
Machine learning has been applied to neuroimaging data for estimating brain age and capturing early cognitive impairment in neurodegenerative diseases. Blood parameters like neurofilament light chain are associated with aging. In order to improve brain age predictive accuracy, we constructed a model based on both brain structural magnetic resonance imaging (sMRI) and blood parameters. Healthy subjects (n = 93; 37 males; aged 50–85 years) were recruited. A deep learning network was firstly pretrained on a large set of MRI scans (n = 1,481; 659 males; aged 50–85 years) downloaded from multiple open‐source datasets, to provide weights on our recruited dataset. Evaluating the network on the recruited dataset resulted in mean absolute error (MAE) of 4.91 years and a high correlation (r = .67, p <.001) against chronological age. The sMRI data were then combined with five blood biochemical indicators including GLU, TG, TC, ApoA1 and ApoB, and 9 dementia‐associated biomarkers including ApoE genotype, HCY, NFL, TREM2, Aβ40, Aβ42, T‐tau, TIMP1, and VLDLR to construct a bilinear fusion model, which achieved a more accurate prediction of brain age (MAE, 3.96 years; r = .76, p <.001). Notably, the fusion model achieved better improvement in the group of older subjects (70–85 years). Extracted attention maps of the network showed that amygdala, pallidum, and olfactory were effective for age estimation. Mediation analysis further showed that brain structural features and blood parameters provided independent and significant impact. The constructed age prediction model may have promising potential in evaluation of brain health based on MRI and blood parameters.
Collapse
Affiliation(s)
- Bingyu Ren
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yingtong Wu
- Medical AI Lab, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Liumei Huang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhiguo Zhang
- MIND Lab, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Bingsheng Huang
- Medical AI Lab, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Huajie Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jinting Ma
- Medical AI Lab, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Bing Li
- Medical AI Lab, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Xukun Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Guangyao Wu
- Radiology Department, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, China
| | - Jian Zhang
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,Health Science Center, Shenzhen University, Shenzhen, China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, China
| | - Jiazuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
29
|
Ray B, Duan K, Chen J, Fu Z, Suresh P, Johnson S, Calhoun VD, Liu J. Multimodal Brain Age Prediction with Feature Selection and Comparison. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:3858-3864. [PMID: 34892076 DOI: 10.1109/embc46164.2021.9631007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Brain age, an estimated biological age from anatomical and/or functional brain imaging data, and its deviation from the chronological age (brain age gap) have shown the potential to serve as biomarkers for characterizing typical brain development, the abnormal aging process, and early indicators of clinical neuropsychiatric problems. In this study, we leverage multimodal brain imaging data for brain age prediction. We studied and compared the performance of individual data modalities (gray matter density in components and regions of interest, cortical and subcortical anatomical features, resting-state functional connectivity) and different combinations of multiple data modalities using data collected from 1417 participants with age between 8 and 22 years. The result indicates that feature selection and multimodal imaging data can improve brain age prediction with linear support vector and partial least squares regression models. We have achieved a mean absolute error of 1.22 years on the test data with 188 features selected equally from all data sources, better than any individual source. After bias correction, the brain age gap was significantly associated with attention accuracy/speed and motor speed in addition to age. Our results conclude that traditional machine learning with proper feature selection can achieve similar if not better performance compared to complex deep learning neural network methods for the used sample size.
Collapse
|
30
|
Bocancea DI, van Loenhoud AC, Groot C, Barkhof F, van der Flier WM, Ossenkoppele R. Measuring Resilience and Resistance in Aging and Alzheimer Disease Using Residual Methods: A Systematic Review and Meta-analysis. Neurology 2021; 97:474-488. [PMID: 34266918 PMCID: PMC8448552 DOI: 10.1212/wnl.0000000000012499] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND OBJECTIVE There is a lack of consensus on how to optimally define and measure resistance and resilience in brain and cognitive aging. Residual methods use residuals from regression analysis to quantify the capacity to avoid (resistance) or cope (resilience) "better or worse than expected" given a certain level of risk or cerebral damage. We reviewed the rapidly growing literature on residual methods in the context of aging and Alzheimer disease (AD) and performed meta-analyses to investigate associations of residual method-based resilience and resistance measures with longitudinal cognitive and clinical outcomes. METHODS A systematic literature search of PubMed and Web of Science databases (consulted until March 2020) and subsequent screening led to 54 studies fulfilling eligibility criteria, including 10 studies suitable for the meta-analyses. RESULTS We identified articles using residual methods aimed at quantifying resistance (n = 33), cognitive resilience (n = 23), and brain resilience (n = 2). Critical examination of the literature revealed that there is considerable methodologic variability in how the residual measures were derived and validated. Despite methodologic differences across studies, meta-analytic assessments showed significant associations of levels of resistance (hazard ratio [HR] [95% confidence interval (CI)] 1.12 [1.07-1.17]; p < 0.0001) and levels of resilience (HR [95% CI] 0.46 [0.32-0.68]; p < 0.001) with risk of progression to dementia/AD. Resilience was also associated with rate of cognitive decline (β [95% CI] 0.05 [0.01-0.08]; p < 0.01). DISCUSSION This review and meta-analysis supports the usefulness of residual methods as appropriate measures of resilience and resistance, as they capture clinically meaningful information in aging and AD. More rigorous methodologic standardization is needed to increase comparability across studies and, ultimately, application in clinical practice.
Collapse
Affiliation(s)
- Diana I Bocancea
- From the Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience (D.I.B., A.C.v.L., C.G., W.M.v.d.F., R.O.), and Department of Radiology and Nuclear Medicine (F.B.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; Institutes of Neurology and Healthcare Engineering (F.B.), University College London, UK; Department of Epidemiology and Biostatistics (W.M.v.d.F.), VU University Medical Center, Amsterdam, the Netherlands; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Anna C van Loenhoud
- From the Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience (D.I.B., A.C.v.L., C.G., W.M.v.d.F., R.O.), and Department of Radiology and Nuclear Medicine (F.B.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; Institutes of Neurology and Healthcare Engineering (F.B.), University College London, UK; Department of Epidemiology and Biostatistics (W.M.v.d.F.), VU University Medical Center, Amsterdam, the Netherlands; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Colin Groot
- From the Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience (D.I.B., A.C.v.L., C.G., W.M.v.d.F., R.O.), and Department of Radiology and Nuclear Medicine (F.B.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; Institutes of Neurology and Healthcare Engineering (F.B.), University College London, UK; Department of Epidemiology and Biostatistics (W.M.v.d.F.), VU University Medical Center, Amsterdam, the Netherlands; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Frederik Barkhof
- From the Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience (D.I.B., A.C.v.L., C.G., W.M.v.d.F., R.O.), and Department of Radiology and Nuclear Medicine (F.B.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; Institutes of Neurology and Healthcare Engineering (F.B.), University College London, UK; Department of Epidemiology and Biostatistics (W.M.v.d.F.), VU University Medical Center, Amsterdam, the Netherlands; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Wiesje M van der Flier
- From the Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience (D.I.B., A.C.v.L., C.G., W.M.v.d.F., R.O.), and Department of Radiology and Nuclear Medicine (F.B.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; Institutes of Neurology and Healthcare Engineering (F.B.), University College London, UK; Department of Epidemiology and Biostatistics (W.M.v.d.F.), VU University Medical Center, Amsterdam, the Netherlands; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Rik Ossenkoppele
- From the Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience (D.I.B., A.C.v.L., C.G., W.M.v.d.F., R.O.), and Department of Radiology and Nuclear Medicine (F.B.), Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands; Institutes of Neurology and Healthcare Engineering (F.B.), University College London, UK; Department of Epidemiology and Biostatistics (W.M.v.d.F.), VU University Medical Center, Amsterdam, the Netherlands; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| |
Collapse
|
31
|
He S, Pereira D, David Perez J, Gollub RL, Murphy SN, Prabhu S, Pienaar R, Robertson RL, Ellen Grant P, Ou Y. Multi-channel attention-fusion neural network for brain age estimation: Accuracy, generality, and interpretation with 16,705 healthy MRIs across lifespan. Med Image Anal 2021; 72:102091. [PMID: 34038818 PMCID: PMC8316301 DOI: 10.1016/j.media.2021.102091] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/10/2021] [Accepted: 04/14/2021] [Indexed: 12/31/2022]
Abstract
Brain age estimated by machine learning from T1-weighted magnetic resonance images (T1w MRIs) can reveal how brain disorders alter brain aging and can help in the early detection of such disorders. A fundamental step is to build an accurate age estimator from healthy brain MRIs. We focus on this step, and propose a framework to improve the accuracy, generality, and interpretation of age estimation in healthy brain MRIs. For accuracy, we used one of the largest sample sizes (N = 16,705). For each subject, our proposed algorithm first explicitly splits the T1w image, which has been commonly treated as a single-channel 3D image in other studies, into two 3D image channels representing contrast and morphometry information. We further proposed a "fusion-with-attention" deep learning convolutional neural network (FiA-Net) to learn how to best fuse the contrast and morphometry image channels. FiA-Net recognizes varying contributions across image channels at different brain anatomy and different feature layers. In contrast, multi-channel fusion does not exist for brain age estimation, and is mostly attention-free in other medical image analysis tasks (e.g., image synthesis, or segmentation), where treating channels equally may not be optimal. For generality, we used lifespan data 0-97 years of age for real-world utility; and we thoroughly tested FiA-Net for multi-site and multi-scanner generality by two phases of cross-validations in discovery and replication data, compared to most other studies with only one phase of cross-validation. For interpretation, we directly measured each artificial neuron's correlation with the chronological age, compared to other studies looking at the saliency of features where salient features may or may not predict age. Overall, FiA-Net achieved a mean absolute error (MAE) of 3.00 years and Pearson correlation r=0.9840 with known chronological ages in healthy brain MRIs 0-97 years of age, comparing favorably with state-of-the-art algorithms and studies for accuracy and generality across sites and datasets. We also provided interpretations on how different artificial neurons and real neuroanatomy contribute to the age estimation.
Collapse
Affiliation(s)
- Sheng He
- Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave., Boston, MA, USA
| | - Diana Pereira
- Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave., Boston, MA, USA
| | - Juan David Perez
- Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave., Boston, MA, USA
| | - Randy L Gollub
- Massachusetts General Hospital and Harvard Medical School, 55 Fruit St., Boston, MA, USA
| | - Shawn N Murphy
- Massachusetts General Hospital and Harvard Medical School, 55 Fruit St., Boston, MA, USA
| | - Sanjay Prabhu
- Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave., Boston, MA, USA
| | - Rudolph Pienaar
- Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave., Boston, MA, USA
| | - Richard L Robertson
- Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave., Boston, MA, USA
| | - P Ellen Grant
- Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave., Boston, MA, USA
| | - Yangming Ou
- Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave., Boston, MA, USA.
| |
Collapse
|
32
|
Lombardi A, Diacono D, Amoroso N, Monaco A, Tavares JMRS, Bellotti R, Tangaro S. Explainable Deep Learning for Personalized Age Prediction With Brain Morphology. Front Neurosci 2021; 15:674055. [PMID: 34122000 PMCID: PMC8192966 DOI: 10.3389/fnins.2021.674055] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/26/2021] [Indexed: 12/29/2022] Open
Abstract
Predicting brain age has become one of the most attractive challenges in computational neuroscience due to the role of the predicted age as an effective biomarker for different brain diseases and conditions. A great variety of machine learning (ML) approaches and deep learning (DL) techniques have been proposed to predict age from brain magnetic resonance imaging scans. If on one hand, DL models could improve performance and reduce model bias compared to other less complex ML methods, on the other hand, they are typically black boxes as do not provide an in-depth understanding of the underlying mechanisms. Explainable Artificial Intelligence (XAI) methods have been recently introduced to provide interpretable decisions of ML and DL algorithms both at local and global level. In this work, we present an explainable DL framework to predict the age of a healthy cohort of subjects from ABIDE I database by using the morphological features extracted from their MRI scans. We embed the two local XAI methods SHAP and LIME to explain the outcomes of the DL models, determine the contribution of each brain morphological descriptor to the final predicted age of each subject and investigate the reliability of the two methods. Our findings indicate that the SHAP method can provide more reliable explanations for the morphological aging mechanisms and be exploited to identify personalized age-related imaging biomarker.
Collapse
Affiliation(s)
- Angela Lombardi
- Dipartimento di Fisica, Universitá degli Studi di Bari Aldo Moro, Bari, Italy.,Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| | - Domenico Diacono
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| | - Nicola Amoroso
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy.,Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Alfonso Monaco
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| | - João Manuel R S Tavares
- Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Departamento de Engenharia Mecânica, Faculdade de Engenharia, Universidade Do Porto, Porto, Portugal
| | - Roberto Bellotti
- Dipartimento di Fisica, Universitá degli Studi di Bari Aldo Moro, Bari, Italy.,Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| | - Sabina Tangaro
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy.,Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Bari, Italy
| |
Collapse
|
33
|
Kuo CY, Tai TM, Lee PL, Tseng CW, Chen CY, Chen LK, Lee CK, Chou KH, See S, Lin CP. Improving Individual Brain Age Prediction Using an Ensemble Deep Learning Framework. Front Psychiatry 2021; 12:626677. [PMID: 33833699 PMCID: PMC8021919 DOI: 10.3389/fpsyt.2021.626677] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/22/2021] [Indexed: 01/02/2023] Open
Abstract
Brain age is an imaging-based biomarker with excellent feasibility for characterizing individual brain health and may serve as a single quantitative index for clinical and domain-specific usage. Brain age has been successfully estimated using extensive neuroimaging data from healthy participants with various feature extraction and conventional machine learning (ML) approaches. Recently, several end-to-end deep learning (DL) analytical frameworks have been proposed as alternative approaches to predict individual brain age with higher accuracy. However, the optimal approach to select and assemble appropriate input feature sets for DL analytical frameworks remains to be determined. In the Predictive Analytics Competition 2019, we proposed a hierarchical analytical framework which first used ML algorithms to investigate the potential contribution of different input features for predicting individual brain age. The obtained information then served as a priori knowledge for determining the input feature sets of the final ensemble DL prediction model. Systematic evaluation revealed that ML approaches with multiple concurrent input features, including tissue volume and density, achieved higher prediction accuracy when compared with approaches with a single input feature set [Ridge regression: mean absolute error (MAE) = 4.51 years, R 2 = 0.88; support vector regression, MAE = 4.42 years, R 2 = 0.88]. Based on this evaluation, a final ensemble DL brain age prediction model integrating multiple feature sets was constructed with reasonable computation capacity and achieved higher prediction accuracy when compared with ML approaches in the training dataset (MAE = 3.77 years; R 2 = 0.90). Furthermore, the proposed ensemble DL brain age prediction model also demonstrated sufficient generalizability in the testing dataset (MAE = 3.33 years). In summary, this study provides initial evidence of how-to efficiency for integrating ML and advanced DL approaches into a unified analytical framework for predicting individual brain age with higher accuracy. With the increase in large open multiple-modality neuroimaging datasets, ensemble DL strategies with appropriate input feature sets serve as a candidate approach for predicting individual brain age in the future.
Collapse
Affiliation(s)
- Chen-Yuan Kuo
- Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | | | - Pei-Lin Lee
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | | | | | - Liang-Kung Chen
- Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | - Kun-Hsien Chou
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Simon See
- NVIDIA AI Technology Center, NVIDIA, Taipei, Taiwan
| | - Ching-Po Lin
- Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
34
|
Bellantuono L, Marzano L, La Rocca M, Duncan D, Lombardi A, Maggipinto T, Monaco A, Tangaro S, Amoroso N, Bellotti R. Predicting brain age with complex networks: From adolescence to adulthood. Neuroimage 2020; 225:117458. [PMID: 33099008 DOI: 10.1016/j.neuroimage.2020.117458] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/13/2020] [Indexed: 01/21/2023] Open
Abstract
In recent years, several studies have demonstrated that machine learning and deep learning systems can be very useful to accurately predict brain age. In this work, we propose a novel approach based on complex networks using 1016 T1-weighted MRI brain scans (in the age range 7-64years). We introduce a structural connectivity model of the human brain: MRI scans are divided in rectangular boxes and Pearson's correlation is measured among them in order to obtain a complex network model. Brain connectivity is then characterized through few and easy-to-interpret centrality measures; finally, brain age is predicted by feeding a compact deep neural network. The proposed approach is accurate, robust and computationally efficient, despite the large and heterogeneous dataset used. Age prediction accuracy, in terms of correlation between predicted and actual age r=0.89and Mean Absolute Error MAE =2.19years, compares favorably with results from state-of-the-art approaches. On an independent test set including 262 subjects, whose scans were acquired with different scanners and protocols we found MAE =2.52. The only imaging analysis steps required in the proposed framework are brain extraction and linear registration, hence robust results are obtained with a low computational cost. In addition, the network model provides a novel insight on aging patterns within the brain and specific information about anatomical districts displaying relevant changes with aging.
Collapse
Affiliation(s)
- Loredana Bellantuono
- Dipartimento Interateneo di Fisica, Universitá degli Studi di Bari Aldo Moro, Bari, Italy
| | - Luca Marzano
- Dipartimento Interateneo di Fisica, Universitá degli Studi di Bari Aldo Moro, Bari, Italy
| | - Marianna La Rocca
- University of Southern California, Laboratory of NeuroImaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Dominique Duncan
- University of Southern California, Laboratory of NeuroImaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Angela Lombardi
- Istituto Nazionale di Fisica Nucleare, Sez. di Bari, Bari, Italy
| | - Tommaso Maggipinto
- Dipartimento Interateneo di Fisica, Universitá degli Studi di Bari Aldo Moro, Bari, Italy
| | - Alfonso Monaco
- Istituto Nazionale di Fisica Nucleare, Sez. di Bari, Bari, Italy.
| | - Sabina Tangaro
- Istituto Nazionale di Fisica Nucleare, Sez. di Bari, Bari, Italy; Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Universitá degli Studi di Bari Aldo Moro, Bari, Italy
| | - Nicola Amoroso
- Dipartimento di Farmacia - Scienze del Farmaco, Universitá degli Studi di Bari Aldo Moro, Bari, Italy; Istituto Nazionale di Fisica Nucleare, Sez. di Bari, Bari, Italy
| | - Roberto Bellotti
- Istituto Nazionale di Fisica Nucleare, Sez. di Bari, Bari, Italy; Dipartimento Interateneo di Fisica, Universitá degli Studi di Bari Aldo Moro, Bari, Italy
| |
Collapse
|
35
|
Lombardi A, Monaco A, Donvito G, Amoroso N, Bellotti R, Tangaro S. Brain Age Prediction With Morphological Features Using Deep Neural Networks: Results From Predictive Analytic Competition 2019. Front Psychiatry 2020; 11:619629. [PMID: 33551880 PMCID: PMC7854554 DOI: 10.3389/fpsyt.2020.619629] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/18/2020] [Indexed: 12/05/2022] Open
Abstract
Morphological changes in the brain over the lifespan have been successfully described by using structural magnetic resonance imaging (MRI) in conjunction with machine learning (ML) algorithms. International challenges and scientific initiatives to share open access imaging datasets also contributed significantly to the advance in brain structure characterization and brain age prediction methods. In this work, we present the results of the predictive model based on deep neural networks (DNN) proposed during the Predictive Analytic Competition 2019 for brain age prediction of 2638 healthy individuals. We used FreeSurfer software to extract some morphological descriptors from the raw MRI scans of the subjects collected from 17 sites. We compared the proposed DNN architecture with other ML algorithms commonly used in the literature (RF, SVR, Lasso). Our results highlight that the DNN models achieved the best performance with MAE = 4.6 on the hold-out test, outperforming the other ML strategies. We also propose a complete ML framework to perform a robust statistical evaluation of feature importance for the clinical interpretability of the results.
Collapse
Affiliation(s)
- Angela Lombardi
- Istituto Nazionale di Fisica Nucleare, Bari, Italy.,Dipartimento Interateneo di Fisica, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | | | | | - Nicola Amoroso
- Istituto Nazionale di Fisica Nucleare, Bari, Italy.,Dipartimento di Farmacia - Scienze del Farmaco, Universitá degli Studi di Bari Aldo Moro, Bari, Italy
| | - Roberto Bellotti
- Istituto Nazionale di Fisica Nucleare, Bari, Italy.,Dipartimento Interateneo di Fisica, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Sabina Tangaro
- Istituto Nazionale di Fisica Nucleare, Bari, Italy.,Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Bari, Italy
| |
Collapse
|