1
|
Ye H, Ye L, Hu L, Yang Y, Ge Y, Chen R, Wang S, Jin B, Ming W, Wang Z, Xu S, Xu C, Wang Y, Ding Y, Zhu J, Ding M, Chen Z, Wang S, Chen C. Widespread slow oscillations support interictal epileptiform discharge networks in focal epilepsy. Neurobiol Dis 2024; 191:106409. [PMID: 38218457 DOI: 10.1016/j.nbd.2024.106409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/01/2024] [Accepted: 01/09/2024] [Indexed: 01/15/2024] Open
Abstract
Interictal epileptiform discharges (IEDs) often co-occur across spatially-separated cortical regions, forming IED networks. However, the factors prompting IED propagation remain unelucidated. We hypothesized that slow oscillations (SOs) might facilitate IED propagation. Here, the amplitude and phase synchronization of SOs preceding propagating and non-propagating IEDs were compared in 22 patients with focal epilepsy undergoing intracranial electroencephalography (EEG) evaluation. Intracranial channels were categorized into the irritative zone (IZ) and normal zone (NOZ) regarding the presence of IEDs. During wakefulness, we found that pre-IED SOs within the IZ exhibited higher amplitudes for propagating IEDs than non-propagating IEDs (delta band: p = 0.001, theta band: p < 0.001). This increase in SOs was also concurrently observed in the NOZ (delta band: p = 0.04). Similarly, the inter-channel phase synchronization of SOs prior to propagating IEDs was higher than those preceding non-propagating IEDs in the IZ (delta band: p = 0.04). Through sliding window analysis, we observed that SOs preceding propagating IEDs progressively increased in amplitude and phase synchronization, while those preceding non-propagating IEDs remained relatively stable. Significant differences in amplitude occurred approximately 1150 ms before IEDs. During non-rapid eye movement (NREM) sleep, SOs on scalp recordings also showed higher amplitudes before intracranial propagating IEDs than before non-propagating IEDs (delta band: p = 0.006). Furthermore, the analysis of IED density around sleep SOs revealed that only high-amplitude sleep SOs demonstrated correlation with IED propagation. Overall, our study highlights that transient but widely distributed SOs are associated with IED propagation as well as generation in focal epilepsy during sleep and wakefulness, providing new insight into the EEG substrate supporting IED networks.
Collapse
Affiliation(s)
- Hongyi Ye
- Department of Neurology and Epilepsy Center, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Nanhu Brain-computer Interface Institute, Hangzhou, China
| | - Lingqi Ye
- Department of Neurology and Epilepsy Center, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingli Hu
- Department of Neurology and Epilepsy Center, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuyu Yang
- Department of Neurology and Epilepsy Center, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Ge
- Department of Neurology and Epilepsy Center, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruotong Chen
- Department of Neurology and Epilepsy Center, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shan Wang
- Department of Neurology and Epilepsy Center, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bo Jin
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjie Ming
- Department of Neurology and Epilepsy Center, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongjin Wang
- Department of Neurology and Epilepsy Center, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sha Xu
- Department of Neurology and Epilepsy Center, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yao Ding
- Department of Neurology and Epilepsy Center, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junming Zhu
- Department of Neurosurgery and Epilepsy Center, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meiping Ding
- Department of Neurology and Epilepsy Center, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhong Chen
- Department of Neurology and Epilepsy Center, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuang Wang
- Department of Neurology and Epilepsy Center, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Nanhu Brain-computer Interface Institute, Hangzhou, China.
| | - Cong Chen
- Department of Neurology and Epilepsy Center, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Gallagher A, Wallois F, Obrig H. Functional near-infrared spectroscopy in pediatric clinical research: Different pathophysiologies and promising clinical applications. NEUROPHOTONICS 2023; 10:023517. [PMID: 36873247 PMCID: PMC9982436 DOI: 10.1117/1.nph.10.2.023517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Over its 30 years of existence, functional near-infrared spectroscopy (fNIRS) has matured into a highly versatile tool to study brain function in infants and young children. Its advantages, amongst others, include its ease of application and portability, the option to combine it with electrophysiology, and its relatively good tolerance to movement. As shown by the impressive body of fNIRS literature in the field of cognitive developmental neuroscience, the method's strengths become even more relevant for (very) young individuals who suffer from neurological, behavioral, and/or cognitive impairment. Although a number of studies have been conducted with a clinical perspective, fNIRS cannot yet be considered as a truly clinical tool. The first step has been taken in this direction by studies exploring options in populations with well-defined clinical profiles. To foster further progress, here, we review several of these clinical approaches to identify the challenges and perspectives of fNIRS in the field of developmental disorders. We first outline the contributions of fNIRS in selected areas of pediatric clinical research: epilepsy, communicative and language disorders, and attention-deficit/hyperactivity disorder. We provide a scoping review as a framework to allow the highlighting of specific and general challenges of using fNIRS in pediatric research. We also discuss potential solutions and perspectives on the broader use of fNIRS in the clinical setting. This may be of use to future research, targeting clinical applications of fNIRS in children and adolescents.
Collapse
Affiliation(s)
- Anne Gallagher
- CHU Sainte-Justine University Hospital, Université de Montréal, LIONLab, Cerebrum, Department of Psychology, Montréal, Quebec, Canada
| | - Fabrice Wallois
- Université de Picardie Jules Verne, Inserm U1105, GRAMFC, Amiens, France
| | - Hellmuth Obrig
- University Hospital and Faculty of Medicine Leipzig/Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Clinic for Cognitive Neurology, Leipzig, Germany
| |
Collapse
|
3
|
Nourhashemi M, Mahmoudzadeh M, Heberle C, Wallois F. Preictal neuronal and vascular activity precedes the onset of childhood absence seizure: direct current potential shifts and their correlation with hemodynamic activity. NEUROPHOTONICS 2023; 10:025005. [PMID: 37114185 PMCID: PMC10128878 DOI: 10.1117/1.nph.10.2.025005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
SIGNIFICANCE AIMS The neurovascular mechanisms underlying the initiation of absence seizures and their dynamics are still not well understood. The objective of this study was to better noninvasively characterize the dynamics of the neuronal and vascular network at the transition from the interictal state to the ictal state of absence seizures and back to the interictal state using a combined electroencephalography (EEG), functional near-infrared spectroscopy (fNIRS), and diffuse correlation spectroscopy (DCS) approach. The second objective was to develop hypotheses about the neuronal and vascular mechanisms that propel the networks to the 3-Hz spikes and wave discharges (SWDs) observed during absence seizures. APPROACHES We evaluated the simultaneous changes in electrical (neuronal) and optical dynamics [hemodynamic, with changes in (Hb) and cerebral blood flow] of 8 pediatric patients experiencing 25 typical childhood absence seizures during the transition from the interictal state to the absence seizure by simultaneously performing EEG, fNIRS, and DCS. RESULTS Starting from ∼ 20 s before the onset of the SWD, we observed a transient direct current potential shift that correlated with alterations in functional fNIRS and DCS measurements of the cerebral hemodynamics detecting the preictal changes. DISCUSSION Our noninvasive multimodal approach highlights the dynamic interactions between the neuronal and vascular compartments that take place in the neuronal network near the time of the onset of absence seizures in a very specific cerebral hemodynamic environment. These noninvasive approaches contribute to a better understanding of the electrical hemodynamic environment prior to seizure onset. Whether this may ultimately be relevant for diagnostic and therapeutic approaches requires further evaluation.
Collapse
Affiliation(s)
- Mina Nourhashemi
- Université de Picardie Jules Verne, Inserm U1105, GRAMFC, CURS, Amiens, France
| | - Mahdi Mahmoudzadeh
- Université de Picardie Jules Verne, Inserm U1105, GRAMFC, CURS, Amiens, France
- Amiens University Hospital, Pediatric Neurophysiology Unit, Amiens, France
| | - Claire Heberle
- Amiens University Hospital, Pediatric Neurophysiology Unit, Amiens, France
| | - Fabrice Wallois
- Université de Picardie Jules Verne, Inserm U1105, GRAMFC, CURS, Amiens, France
- Amiens University Hospital, Pediatric Neurophysiology Unit, Amiens, France
| |
Collapse
|
4
|
Nair S, Szaflarski JP, Wang Y, Pizarro D, Killen JF, Allendorfer JB. Assessing dynamic brain activity during verbal associative learning using MEG/fMRI co-processing. NEUROIMAGE: REPORTS 2023. [DOI: 10.1016/j.ynirp.2022.100154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
5
|
Lee YJ, Bae H, Byun JC, Kwon S, Oh SS, Kim S. Clinical Usefulness of Simultaneous Electroencephalography and Functional Magnetic Resonance Imaging in Children With Focal Epilepsy. J Clin Neurol 2022; 18:535-546. [PMID: 36062771 PMCID: PMC9444567 DOI: 10.3988/jcn.2022.18.5.535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022] Open
Abstract
Background and Purpose The current study analyzed the interictal epileptiform discharge (IED)-related hemodynamic response and aimed to determine the clinical usefulness of simultaneous electroencephalography and functional magnetic resonance imaging (EEG-fMRI) in defining the epileptogenic zone (EZ) in children with focal epilepsy. Methods Patients with focal epilepsy showing IEDs on conventional EEG were evaluated using EEG-fMRI. Statistical analyses were performed using the times of spike as events modeled with multiple hemodynamic response functions. The area showing the most significant t-value for blood-oxygen-level-dependent (BOLD) changes was compared with the presumed EZ. Moreover, BOLD responses between -9 and +9 s around the spike times were analyzed to track the hemodynamic response patterns over time. Results Half (n=13) of 26 EEG-fMRI investigations of 19 patients were successful. Two patients showed 2 different types of spikes, resulting in 15 analyses. The maximum BOLD response was concordant with the EZ in 11 (73.3%) of the 15 analyses. In 10 (66.7%) analyses, the BOLD response localized the EZs more specifically. Focal BOLD responses in the EZs occurred before IEDs in 11 analyses and were often widespread after IEDs. Hemodynamic response patterns were consistent in the same epilepsy syndrome or when repeating the investigation in the same patients. Conclusions EEG-fMRI can provide additional information for localizing the EZ in children with focal epilepsy, and also reveal the pathogenesis of pediatric epilepsy by evaluating the patterns in the hemodynamic response across time windows of IEDs.
Collapse
Affiliation(s)
- Yun Jeong Lee
- Department of Pediatrics, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea
| | - Hyunwoo Bae
- Department of Pediatrics, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea
| | - Jun Chul Byun
- Department of Pediatrics, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Korea
| | - Soonhak Kwon
- Department of Pediatrics, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea
| | - Sung Suk Oh
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu, Korea.
| | - Saeyoon Kim
- Department of Pediatrics, Yeungnam University Medical Center, Yeungnam University College of Medicine, Daegu, Korea.
| |
Collapse
|
6
|
Westin K, Cooray G, Beniczky S, Lundqvist D. Interictal epileptiform discharges in focal epilepsy are preceded by increase in low-frequency oscillations. Clin Neurophysiol 2022; 136:191-205. [PMID: 35217349 DOI: 10.1016/j.clinph.2022.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Interictal epileptiform discharges (IEDs) constitute a diagnostic signature of epilepsy. These events reflect epileptogenic hypersynchronization. Previous studies indicated that IEDs arise from slow neuronal activation accompanied by metabolic and hemodynamic changes. These might induce cortical inhibition followed hypersynchronization at IED onset. As cortical inhibition is mediated by low-frequency oscillations, we aimed to analyze the role of low-frequency oscillations prior the IED using magnetencephalography (MEG). METHODS Low-frequency (1-8 Hz) oscillations pre-IED ([-1000 milliseconds (ms), IED onset]) were analyzed using MEG in 14 focal epilepsy patients (median age = 23 years, range = 7-46 age). Occurrence of local pre-IED oscillations was analyzed using Beamformer Dynamical Imaging of Coherent Sources (DICS) and event-related desynchronization/synchronization (ERD-ERS) maps constructed using cluster-based permutation tests. The development of pre-IED oscillations was characterized using Hilbert transformation. RESULTS All patients exhibited statistically significant increase in delta (1-4 Hz) and/or theta (4-8 Hz) oscillations pre-IED compared to baseline [-2000 ms, -1000 ms]. Furthermore, all patients exhibited low-frequency power increase up to IED onset. CONCLUSIONS We demonstrated consistently occurring, low-frequency oscillations prior to IED onset. SIGNIFICANCE As low-frequency activity mediates cortical inhibition, our study demonstrates that a focal inhibition precedes hypersynchronization at IED onset.
Collapse
Affiliation(s)
- Karin Westin
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Clinical Neurophysiology, Karolinska University Hospital, Stockholm, Sweden.
| | - Gerald Cooray
- Clinical Neurophysiology, Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neurophysiology, Great Ormand Street Hospital for Children, London, UK
| | - Sándor Beniczky
- Department of Clinical Neurophysiology, Aarhus University Hospital, Denmark and Danish Epilepsy Centre, Dianalund, Denmark
| | - Daniel Lundqvist
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
De Campos BM, Centeno M, Coan AC, Cendes F. Editorial: Advances and Applications of the EEG-fMRI Technique on Epilepsies. Front Neurol 2022; 12:827705. [PMID: 35095750 PMCID: PMC8792785 DOI: 10.3389/fneur.2021.827705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/14/2021] [Indexed: 11/18/2022] Open
Affiliation(s)
- Brunno Machado De Campos
- Neuroimaging Laboratory, Department of Neurology, University of Campinas, Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), São Paulo, Brazil
| | - Maria Centeno
- Department of Neurology, Hospital Clinic Barcelona, Barcelona, Spain
| | - Ana Carolina Coan
- Neuroimaging Laboratory, Department of Neurology, University of Campinas, Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), São Paulo, Brazil
| | - Fernando Cendes
- Neuroimaging Laboratory, Department of Neurology, University of Campinas, Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), São Paulo, Brazil
| |
Collapse
|
8
|
Cohen N, Ebrahimi Y, Medvedovsky M, Gurevitch G, Aizenstein O, Hendler T, Fahoum F, Gazit T. Interictal Epileptiform Discharge Dynamics in Peri-sylvian Polymicrogyria Using EEG-fMRI. Front Neurol 2021; 12:658239. [PMID: 34149595 PMCID: PMC8212705 DOI: 10.3389/fneur.2021.658239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
Polymicrogyria (PMG) is a common malformation of cortical development associated with a higher susceptibility to epileptic seizures. Seizures secondary to PMG are characterized by difficult-to-localize cerebral sources due to the complex and widespread lesion structure. Tracing the dynamics of interictal epileptiform discharges (IEDs) in patients with epilepsy has been shown to reveal the location of epileptic activity sources, crucial for successful treatment in cases of focal drug-resistant epilepsy. In this case series IED dynamics were evaluated with simultaneous EEG-fMRI recordings in four patients with unilateral peri-sylvian polymicrogyria (PSPMG) by tracking BOLD activations over time: before, during and following IED appearance on scalp EEG. In all cases, focal BOLD activations within the lesion itself preceded the activity associated with the time of IED appearance on EEG, which showed stronger and more widespread activations. We therefore propose that early hemodynamic activity corresponding to IEDs may hold important localizing information potentially leading to the cerebral sources of epileptic activity. IEDs are suggested to develop within a small area in the PSPMG lesion with structural properties obscuring the appearance of their electric field on the scalp and only later engage widespread structures which allow the production of large currents which are recognized as IEDs on EEG.
Collapse
Affiliation(s)
- Noa Cohen
- Sagol Brain Institute, Wohl Institute for Advanced Imaging, Sourasky Medical Center, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yoram Ebrahimi
- Sagol Brain Institute, Wohl Institute for Advanced Imaging, Sourasky Medical Center, Tel Aviv, Israel
| | - Mordekhay Medvedovsky
- Department of Neurology, Agnes Ginges Center of Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Guy Gurevitch
- Sagol Brain Institute, Wohl Institute for Advanced Imaging, Sourasky Medical Center, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orna Aizenstein
- Sagol Brain Institute, Wohl Institute for Advanced Imaging, Sourasky Medical Center, Tel Aviv, Israel.,Department of Diagnostic Imaging, Sourasky Medical Center, Tel Aviv, Israel
| | - Talma Hendler
- Sagol Brain Institute, Wohl Institute for Advanced Imaging, Sourasky Medical Center, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,School of Psychological Science, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Firas Fahoum
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Electroencephalography and Epilepsy Unit, Sourasky Medical Center, Tel Aviv, Israel
| | - Tomer Gazit
- Sagol Brain Institute, Wohl Institute for Advanced Imaging, Sourasky Medical Center, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
9
|
Deconvolution of hemodynamic responses along the cortical surface using personalized functional near infrared spectroscopy. Sci Rep 2021; 11:5964. [PMID: 33727581 PMCID: PMC7966407 DOI: 10.1038/s41598-021-85386-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 02/26/2021] [Indexed: 11/28/2022] Open
Abstract
In functional near infrared spectroscopy (fNIRS), deconvolution analysis of oxy and deoxy-hemoglobin concentration changes allows estimating specific hemodynamic response functions (HRF) elicited by neuronal activity, taking advantage of the fNIRS excellent temporal resolution. Diffuse optical tomography (DOT) is also becoming the new standard reconstruction procedure as it is more accurate than the modified Beer Lambert law approach at the sensor level. The objective of this study was to assess the relevance of HRF deconvolution after DOT constrained along the cortical surface. We used local personalized fNIRS montages which consists in optimizing the position of fNIRS optodes to ensure maximal sensitivity to subject specific target brain regions. We carefully evaluated the accuracy of deconvolution when applied after DOT, using realistic simulations involving several HRF models at different signal to noise ratio (SNR) levels and on real data related to motor and visual tasks in healthy subjects and from spontaneous pathological activity in one patient with epilepsy. We demonstrated that DOT followed by deconvolution was able to accurately recover a large variability of HRFs over a large range of SNRs. We found good performances of deconvolution analysis for SNR levels usually encountered in our applications and we were able to reconstruct accurately the temporal dynamics of HRFs in real conditions.
Collapse
|
10
|
Arnal-Real C, Mahmoudzadeh M, Manoochehri M, Nourhashemi M, Wallois F. What Triggers the Interictal Epileptic Spike? A Multimodal Multiscale Analysis of the Dynamic of Synaptic and Non-synaptic Neuronal and Vascular Compartments Using Electrical and Optical Measurements. Front Neurol 2021; 12:596926. [PMID: 33643187 PMCID: PMC7907164 DOI: 10.3389/fneur.2021.596926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/21/2021] [Indexed: 11/20/2022] Open
Abstract
Interictal spikes (IISs) may result from a disturbance of the intimate functional balance between various neuronal (synaptic and non-synaptic), vascular, and metabolic compartments. To better characterize the complex interactions within these compartments at different scales we developed a simultaneous multimodal-multiscale approach and measure their activity around the time of the IIS. We performed such measurements in an epileptic rat model (n = 43). We thus evaluated (1) synaptic dynamics by combining electrocorticography and multiunit activity recording in the time and time-frequency domain, (2) non-synaptic dynamics by recording modifications in light scattering induced by changes in the membrane configuration related to cell activity using the fast optical signal, and (3) vascular dynamics using functional near-infrared spectroscopy and, independently but simultaneously to the electrocorticography, the changes in cerebral blood flow using diffuse correlation spectroscopy. The first observed alterations in the measured signals occurred in the hemodynamic compartments a few seconds before the peak of the IIS. These hemodynamic changes were followed by changes in coherence and then synchronization between the deep and superficial neural networks in the 1 s preceding the IIS peaks. Finally, changes in light scattering before the epileptic spikes suggest a change in membrane configuration before the IIS. Our multimodal, multiscale approach highlights the complexity of (1) interactions between the various neuronal, vascular, and extracellular compartments, (2) neural interactions between various layers, (3) the synaptic mechanisms (coherence and synchronization), and (4) non-synaptic mechanisms that take place in the neuronal network around the time of the IISs in a very specific cerebral hemodynamic environment.
Collapse
Affiliation(s)
- Cristian Arnal-Real
- Inserm U1105, GRAMFC, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Mahdi Mahmoudzadeh
- Inserm U1105, GRAMFC, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Mana Manoochehri
- Inserm U1105, GRAMFC, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Mina Nourhashemi
- Inserm U1105, GRAMFC, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Fabrice Wallois
- Inserm U1105, GRAMFC, CURS, Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|
11
|
Van Eyndhoven S, Dupont P, Tousseyn S, Vervliet N, Van Paesschen W, Van Huffel S, Hunyadi B. Augmenting interictal mapping with neurovascular coupling biomarkers by structured factorization of epileptic EEG and fMRI data. Neuroimage 2020; 228:117652. [PMID: 33359347 PMCID: PMC7903163 DOI: 10.1016/j.neuroimage.2020.117652] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/28/2020] [Accepted: 12/04/2020] [Indexed: 12/20/2022] Open
Abstract
EEG-correlated fMRI analysis is widely used to detect regional BOLD fluctuations that are synchronized to interictal epileptic discharges, which can provide evidence for localizing the ictal onset zone. However, the typical, asymmetrical and mass-univariate approach cannot capture the inherent, higher order structure in the EEG data, nor multivariate relations in the fMRI data, and it is nontrivial to accurately handle varying neurovascular coupling over patients and brain regions. We aim to overcome these drawbacks in a data-driven manner by means of a novel structured matrix-tensor factorization: the single-subject EEG data (represented as a third-order spectrogram tensor) and fMRI data (represented as a spatiotemporal BOLD signal matrix) are jointly decomposed into a superposition of several sources, characterized by space-time-frequency profiles. In the shared temporal mode, Toeplitz-structured factors account for a spatially specific, neurovascular 'bridge' between the EEG and fMRI temporal fluctuations, capturing the hemodynamic response's variability over brain regions. By analyzing interictal data from twelve patients, we show that the extracted source signatures provide a sensitive localization of the ictal onset zone (10/12). Moreover, complementary parts of the IOZ can be uncovered by inspecting those regions with the most deviant neurovascular coupling, as quantified by two entropy-like metrics of the hemodynamic response function waveforms (9/12). Hence, this multivariate, multimodal factorization provides two useful sets of EEG-fMRI biomarkers, which can assist the presurgical evaluation of epilepsy. We make all code required to perform the computations available at https://github.com/svaneynd/structured-cmtf.
Collapse
Affiliation(s)
- Simon Van Eyndhoven
- Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Belgium.
| | - Patrick Dupont
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute, Leuven, Belgium
| | - Simon Tousseyn
- Academic Center for Epileptology, Kempenhaeghe and Maastricht UMC+, Heeze, the Netherlands
| | - Nico Vervliet
- Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Belgium
| | - Wim Van Paesschen
- Laboratory for Epilepsy Research, KU Leuven, Leuven, Belgium; Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Sabine Van Huffel
- Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Belgium
| | - Borbála Hunyadi
- Circuits and Systems Group (CAS), Department of Microelectronics, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
12
|
Rosas-Romero R, Guevara E, Peng K, Nguyen DK, Lesage F, Pouliot P, Lima-Saad WE. Prediction of epileptic seizures with convolutional neural networks and functional near-infrared spectroscopy signals. Comput Biol Med 2019; 111:103355. [PMID: 31323603 DOI: 10.1016/j.compbiomed.2019.103355] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 11/28/2022]
Abstract
There have been different efforts to predict epileptic seizures and most of them are based on the analysis of electroencephalography (EEG) signals; however, recent publications have suggested that functional Near-Infrared Spectroscopy (fNIRS), a relatively new technique, could be used to predict seizures. The objectives of this research are to show that the application of fNIRS to epileptic seizure detection yields results that are superior to those based on EEG and to demonstrate that the application of deep learning to this problem is suitable given the nature of fNIRS recordings. A Convolutional Neural Network (CNN) is applied to the prediction of epileptic seizures from fNIRS signals, an optical modality for recording brain waves. The implementation of the proposed method is presented in this work. Application of CNN to fNIRS recordings showed an accuracy ranging between 96.9% and 100%, sensitivity between 95.24% and 100%, specificity between 98.57% and 100%, a positive predictive value between 98.52% and 100%, and a negative predictive value between 95.39% and 100%. The most important aspect of this research is the combination of fNIRS signals with the particular CNN algorithm. The fNIRS modality has not been used in epileptic seizure prediction. A CNN is suitable for this application because fNIRS recordings are high dimensional data and they can be modeled as three-dimensional tensors for classification.
Collapse
Affiliation(s)
| | - Edgar Guevara
- CONACYT - Universidad Autónoma de San Luis Potosí, Mexico
| | - Ke Peng
- École Polytechnique de Montréal, Canada
| | | | - Frédéric Lesage
- École Polytechnique de Montréal, Canada; Montreal Heart Institute, Canada
| | - Philippe Pouliot
- École Polytechnique de Montréal, Canada; Montreal Heart Institute, Canada
| | | |
Collapse
|
13
|
Spectral entropy indicates electrophysiological and hemodynamic changes in drug-resistant epilepsy - A multimodal MREG study. NEUROIMAGE-CLINICAL 2019; 22:101763. [PMID: 30927607 PMCID: PMC6444290 DOI: 10.1016/j.nicl.2019.101763] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 02/01/2019] [Accepted: 03/10/2019] [Indexed: 12/20/2022]
Abstract
Objective Epilepsy causes measurable irregularity over a range of brain signal frequencies, as well as autonomic nervous system functions that modulate heart and respiratory rate variability. Imaging dynamic neuronal signals utilizing simultaneously acquired ultra-fast 10 Hz magnetic resonance encephalography (MREG), direct current electroencephalography (DC-EEG), and near-infrared spectroscopy (NIRS) can provide a more comprehensive picture of human brain function. Spectral entropy (SE) is a nonlinear method to summarize signal power irregularity over measured frequencies. SE was used as a joint measure to study whether spectral signal irregularity over a range of brain signal frequencies based on synchronous multimodal brain signals could provide new insights in the neural underpinnings of epileptiform activity. Methods Ten patients with focal drug-resistant epilepsy (DRE) and ten healthy controls (HC) were scanned with 10 Hz MREG sequence in combination with EEG, NIRS (measuring oxygenated, deoxygenated, and total hemoglobin: HbO, Hb, and HbT, respectively), and cardiorespiratory signals. After pre-processing, voxelwise SEMREG was estimated from MREG data. Different neurophysiological and physiological subfrequency band signals were further estimated from MREG, DC-EEG, and NIRS: fullband (0–5 Hz, FB), near FB (0.08–5 Hz, NFB), brain pulsations in very-low (0.009–0.08 Hz, VLFP), respiratory (0.12–0.4 Hz, RFP), and cardiac (0.7–1.6 Hz, CFP) frequency bands. Global dynamic fluctuations in MREG and NIRS were analyzed in windows of 2 min with 50% overlap. Results Right thalamus, cingulate gyrus, inferior frontal gyrus, and frontal pole showed significantly higher SEMREG in DRE patients compared to HC. In DRE patients, SE of cortical Hb was significantly reduced in FB (p = .045), NFB (p = .017), and CFP (p = .038), while both HbO and HbT were significantly reduced in RFP (p = .038, p = .045, respectively). Dynamic SE of HbT was reduced in DRE patients in RFP during minutes 2 to 6. Fitting to the frontal MREG and NIRS results, DRE patients showed a significant increase in SEEEG in FB in fronto-central and parieto-occipital regions, in VLFP in parieto-central region, accompanied with a significant decrease in RFP in frontal pole and parietal and occipital (O2, Oz) regions. Conclusion This is the first study to show altered spectral entropy from synchronous MREG, EEG, and NIRS in DRE patients. Higher SEMREG in DRE patients in anterior cingulate gyrus together with SEEEG and SENIRS results in 0.12–0.4 Hz can be linked to altered parasympathetic function and respiratory pulsations in the brain. Higher SEMREG in thalamus in DRE patients is connected to disturbances in anatomical and functional connections in epilepsy. Findings suggest that spectral irregularity of both electrophysiological and hemodynamic signals are altered in specific way depending on the physiological frequency range. Simultaneous imaging methods indicate spectral irregularity in neurovascular and electrophysiological brain pulsations in DRE. Altered spectral entropy in EEG, NIRS and BOLD indicate dysfunctional brain pulsations in respiratory frequency in epilepsy. Spectral irregularity (0-5 Hz) of BOLD in right thalamus supports previous structural and functional findings in epilepsy.
Collapse
|
14
|
Sirpal P, Kassab A, Pouliot P, Nguyen DK, Lesage F. fNIRS improves seizure detection in multimodal EEG-fNIRS recordings. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-9. [PMID: 30734544 PMCID: PMC6992892 DOI: 10.1117/1.jbo.24.5.051408] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/14/2018] [Indexed: 06/01/2023]
Abstract
In the context of epilepsy monitoring, electroencephalography (EEG) remains the modality of choice. Functional near-infrared spectroscopy (fNIRS) is a relatively innovative modality that cannot only characterize hemodynamic profiles of seizures but also allow for long-term recordings. We employ deep learning methods to investigate the benefits of integrating fNIRS measures for seizure detection. We designed a deep recurrent neural network with long short-term memory units and subsequently validated it using the CHBMIT scalp EEG database-a compendium of 896 h of surface EEG seizure recordings. After validating our network using EEG, fNIRS, and multimodal data comprising a corpus of 89 seizures from 40 refractory epileptic patients was used as model input to evaluate the integration of fNIRS measures. Following heuristic hyperparameter optimization, multimodal EEG-fNIRS data provide superior performance metrics (sensitivity and specificity of 89.7% and 95.5%, respectively) in a seizure detection task, with low generalization errors and loss. False detection rates are generally low, with 11.8% and 5.6% for EEG and multimodal data, respectively. Employing multimodal neuroimaging, particularly EEG-fNIRS, in epileptic patients, can enhance seizure detection performance. Furthermore, the neural network model proposed and characterized herein offers a promising framework for future multimodal investigations in seizure detection and prediction.
Collapse
Affiliation(s)
- Parikshat Sirpal
- Université de Montréal, École Polytechnique de Montréal, Montréal, Québec, Canada
| | - Ali Kassab
- Neurology Division, Centre Hospitalier de l’Université de Montréal, Montréal, Québec, Canada
| | - Philippe Pouliot
- Université de Montréal, École Polytechnique de Montréal, Montréal, Québec, Canada
- Montreal Heart Institute, Research Centre, Montreal, Québec, Canada
| | - Dang Khoa Nguyen
- Neurology Division, Centre Hospitalier de l’Université de Montréal, Montréal, Québec, Canada
| | - Frédéric Lesage
- Université de Montréal, École Polytechnique de Montréal, Montréal, Québec, Canada
- Montreal Heart Institute, Research Centre, Montreal, Québec, Canada
| |
Collapse
|
15
|
Zhang Q, Yang F, Hu Z, Xu Q, Bernhardt BC, Quan W, Li Q, Zhang Z, Lu G. Antiepileptic Drug of Levetiracetam Decreases Centrotemporal Spike-Associated Activation in Rolandic Epilepsy. Front Neurosci 2018; 12:796. [PMID: 30542255 PMCID: PMC6277790 DOI: 10.3389/fnins.2018.00796] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/15/2018] [Indexed: 01/16/2023] Open
Abstract
The objective was to study the modulation effects of levetiracetam on the fMRI activation/deactivation patterns associated with centrotemporal spikes (CTS) in Rolandic epilepsy. Forty patients with Rolandic epilepsy, including levetiracetam-medicated patients (n = 20) and drug-naive patients (n = 20), were studied. Single and sequential hemodynamic response functions-based EEG-fMRI analysis was performed to detect dynamic activation/deactivation associated with CTS. Comparisons of spatiotemporal features of activation/deactivation were performed between the two groups. Both the groups (CTS were detected in 12 cases of levetiracetam-medicated group, and 11 cases of drug-naive group) showed CTS-associated activation in the Rolandic cortex, whereas activation strength, time-to-peak delay, and overall activation were diminished in the levetiracetam-medicated group. Moreover, the drug-naive group showed deactivation in the regions engaged in higher cognition networks compared with the levetiracetam-medicated group. Levetiracetam inhibits CTS-associated activation intensity and alters the temporal pattern of this activation in the epileptogenic regions, and it also affects the brain deactivation related to higher cognition networks. The findings sheds a light on the pharmocological mechanism of levetiracetam therapy on Rolandic epilepsy.
Collapse
Affiliation(s)
- Qirui Zhang
- Department of Medical Imaging, Jinling Hospital, Southern Medical University, Nanjing, China.,Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Fang Yang
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Zheng Hu
- Department of Neurology, Nanjing Children's Hospital, Nanjing, China
| | - Qiang Xu
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Boris C Bernhardt
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Wei Quan
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Qian Li
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Zhiqiang Zhang
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, Southern Medical University, Nanjing, China.,Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
16
|
Klamer S, Ethofer T, Torner F, Sahib AK, Elshahabi A, Marquetand J, Martin P, Lerche H, Erb M, Focke NK. Unravelling the brain networks driving spike-wave discharges in genetic generalized epilepsy-common patterns and individual differences. Epilepsia Open 2018; 3:485-494. [PMID: 30525117 PMCID: PMC6276776 DOI: 10.1002/epi4.12252] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2018] [Indexed: 11/08/2022] Open
Abstract
Objective Genetic generalized epilepsies (GGEs) are characterized by generalized spike-wave discharges (GSWDs) in electroencephalography (EEG) recordings without underlying structural brain lesions. The origin of the epileptic activity remains unclear, although several studies have reported involvement of thalamus and default mode network (DMN). The aim of the current study was to investigate the networks involved in the generation and temporal evolution of GSWDs to elucidate the origin and propagation of the underlying generalized epileptic activity. Methods We examined 12 patients with GGE and GSWDs using EEG-functional magnetic resonance imaging (fMRI) and identified involved brain areas on the basis of a classical general linear model (GLM) analysis. The activation time courses of these areas were further investigated to reveal their temporal sequence of activations and deactivations. Dynamic causal modeling (DCM) was used to determine the generator of GSWDs in GGE. Results We observed activity changes in the thalamus, DMN, dorsal attention network (DAN), salience network (SN), basal ganglia, dorsolateral prefrontal cortex, and motor cortex with supplementary motor area, however, with a certain heterogeneity between patients. Investigation of the temporal sequence of activity changes showed deactivations in the DMN and DAN and activations in the SN and thalamus preceding the onset of GSWDs on EEG by several seconds. DCM analysis indicated that the DMN gates GSWDs in GGE. Significance The observed interplay between DMN, DAN, SN, and thalamus may indicate a downregulation of consciousness. The DMN seems to play a leading role as a driving force behind these changes. Overall, however, there were also clear differences in activation patterns between patients, reflecting a certain heterogeneity in this cohort of GGE patients.
Collapse
Affiliation(s)
- Silke Klamer
- Department of Neurology and Epileptology Hertie-Institute for Clinical Brain Research University of Tübingen Tübingen Germany
| | - Thomas Ethofer
- Department of Biomedical Magnetic Resonance University of Tübingen Tübingen Germany.,Department of Psychiatry and Psychotherapy University of Tübingen Tübingen Germany.,Werner Reichardt Centre for Integrative Neuroscience Tübingen Germany
| | - Franziska Torner
- Department of Neurology and Epileptology Hertie-Institute for Clinical Brain Research University of Tübingen Tübingen Germany
| | - Ashish Kaul Sahib
- Department of Neurology and Epileptology Hertie-Institute for Clinical Brain Research University of Tübingen Tübingen Germany.,Department of Biomedical Magnetic Resonance University of Tübingen Tübingen Germany.,Werner Reichardt Centre for Integrative Neuroscience Tübingen Germany
| | - Adham Elshahabi
- Department of Neurology and Epileptology Hertie-Institute for Clinical Brain Research University of Tübingen Tübingen Germany.,Werner Reichardt Centre for Integrative Neuroscience Tübingen Germany.,MEG Center University of Tübingen Tübingen Germany
| | - Justus Marquetand
- Department of Neurology and Epileptology Hertie-Institute for Clinical Brain Research University of Tübingen Tübingen Germany
| | - Pascal Martin
- Department of Neurology and Epileptology Hertie-Institute for Clinical Brain Research University of Tübingen Tübingen Germany
| | - Holger Lerche
- Department of Neurology and Epileptology Hertie-Institute for Clinical Brain Research University of Tübingen Tübingen Germany.,Werner Reichardt Centre for Integrative Neuroscience Tübingen Germany
| | - Michael Erb
- Department of Biomedical Magnetic Resonance University of Tübingen Tübingen Germany
| | - Niels K Focke
- Department of Neurology and Epileptology Hertie-Institute for Clinical Brain Research University of Tübingen Tübingen Germany.,Werner Reichardt Centre for Integrative Neuroscience Tübingen Germany
| |
Collapse
|
17
|
Yang H, Rajah G, Guo A, Wang Y, Wang Q. Pathogenesis of epileptic seizures and epilepsy after stroke. Neurol Res 2018; 40:426-432. [PMID: 29681214 DOI: 10.1080/01616412.2018.1455014] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Huajun Yang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Beijing Institute for Brain Disorders, Beijing, China
| | - Gary Rajah
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Anchen Guo
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Beijing Institute for Brain Disorders, Beijing, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Beijing Institute for Brain Disorders, Beijing, China
| | - Qun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
18
|
Sahib AK, Erb M, Marquetand J, Martin P, Elshahabi A, Klamer S, Vulliemoz S, Scheffler K, Ethofer T, Focke NK. Evaluating the impact of fast-fMRI on dynamic functional connectivity in an event-based paradigm. PLoS One 2018; 13:e0190480. [PMID: 29357371 PMCID: PMC5777653 DOI: 10.1371/journal.pone.0190480] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 12/15/2017] [Indexed: 01/08/2023] Open
Abstract
The human brain is known to contain several functional networks that interact dynamically. Therefore, it is desirable to analyze the temporal features of these networks by dynamic functional connectivity (dFC). A sliding window approach was used in an event-related fMRI (visual stimulation using checkerboards) to assess the impact of repetition time (TR) and window size on the temporal features of BOLD dFC. In addition, we also examined the spatial distribution of dFC and tested the feasibility of this approach for the analysis of interictal epileptiforme discharges. 15 healthy controls (visual stimulation paradigm) and three patients with epilepsy (EEG-fMRI) were measured with EPI-fMRI. We calculated the functional connectivity degree (FCD) by determining the total number of connections of a given voxel above a predefined threshold based on Pearson correlation. FCD could capture hemodynamic changes relative to stimulus onset in controls. A significant effect of TR and window size was observed on FCD estimates. At a conventional TR of 2.6 s, FCD values were marginal compared to FCD values using sub-seconds TRs achievable with multiband (MB) fMRI. Concerning window sizes, a specific maximum of FCD values (inverted u-shape behavior) was found for each TR, indicating a limit to the possible gain in FCD for increasing window size. In patients, a dynamic FCD change was found relative to the onset of epileptiform EEG patterns, which was compatible with their clinical semiology. Our findings indicate that dynamic FCD transients are better detectable with sub-second TR than conventional TR. This approach was capable of capturing neuronal connectivity across various regions of the brain, indicating a potential to study the temporal characteristics of interictal epileptiform discharges and seizures in epilepsy patients or other brain diseases with brief events.
Collapse
Affiliation(s)
- Ashish Kaul Sahib
- Werner Reichardt Centre for Integrative Neuroscience, Tuebingen, Germany
- Department of Biomedical Magnetic Resonance, University Hospital Tuebingen, Tuebingen, Germany
- Department of Neurology/Epileptology, University Hospital Tuebingen and Hertie Institute of Clinical Brain Research, Tuebingen, Germany
- Graduate School of Neural and Behavioural Sciences/International Max Planck Research School, University of Tuebingen, Tuebingen, Germany
| | - Michael Erb
- Department of Biomedical Magnetic Resonance, University Hospital Tuebingen, Tuebingen, Germany
| | - Justus Marquetand
- Department of Neurology/Epileptology, University Hospital Tuebingen and Hertie Institute of Clinical Brain Research, Tuebingen, Germany
| | - Pascal Martin
- Department of Neurology/Epileptology, University Hospital Tuebingen and Hertie Institute of Clinical Brain Research, Tuebingen, Germany
| | - Adham Elshahabi
- Department of Neurology/Epileptology, University Hospital Tuebingen and Hertie Institute of Clinical Brain Research, Tuebingen, Germany
- MEG-Center, University of Tuebingen, Tuebingen, Germany
| | - Silke Klamer
- Department of Neurology/Epileptology, University Hospital Tuebingen and Hertie Institute of Clinical Brain Research, Tuebingen, Germany
| | - Serge Vulliemoz
- Department of Neurology, University Hospital of Geneva, Geneva, Switzerland
| | - Klaus Scheffler
- Department of Biomedical Magnetic Resonance, University Hospital Tuebingen, Tuebingen, Germany
- Max-Planck-Institute for Biological Cybernetics, Tuebingen, Germany
| | - Thomas Ethofer
- Werner Reichardt Centre for Integrative Neuroscience, Tuebingen, Germany
- Department of Biomedical Magnetic Resonance, University Hospital Tuebingen, Tuebingen, Germany
| | - Niels K. Focke
- Werner Reichardt Centre for Integrative Neuroscience, Tuebingen, Germany
- Department of Neurology/Epileptology, University Hospital Tuebingen and Hertie Institute of Clinical Brain Research, Tuebingen, Germany
- Clinical Neurophysiology, University Medicine, Goettingen, Germany
- * E-mail:
| |
Collapse
|
19
|
Unterberger I, Trinka E, Kaplan PW, Walser G, Luef G, Bauer G. Generalized nonmotor (absence) seizures-What do absence, generalized, and nonmotor mean? Epilepsia 2018; 59:523-529. [PMID: 29327337 DOI: 10.1111/epi.13996] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2017] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Clinical absences are now classified as "generalized nonmotor (absence) seizures" by the International League Against Epilepsy (ILAE). The aim of this paper is to critically review the concept of absences and to put the accompanying focal and motor symptoms into the context of the emerging pathophysiological knowledge. METHODS For this narrative review we performed an extensive literature search on the term "absence," and analyzed the plethora of symptoms observed in clinical absences. RESULTS Arising from the localization and the involved cortical networks, motor symptoms may include bilateral mild eyelid fluttering and mild myoclonic jerks of extremities. These motor symptoms may also occur unilaterally, analogous to a focal motor seizure with Jacksonian march. Furthermore, electroencephalography (EEG) abnormalities may exhibit initial frontal focal spikes and consistent asymmetries. Electroclinical characteristics support the cortical focus theory of absence seizures. Simultaneous EEG/functional magnetic resonance imaging (fMRI) measurements document cortical deactivation and thalamic activation. Cortical deactivation is related to slow waves and disturbances of consciousness of varying degrees. Motor symptoms correspond to the spike component of the 3/s spike-and-wave-discharges. Thalamic activation can be interpreted as a response to overcome cortical deactivation. Furthermore, arousal reaction during drowsiness or sleep triggers spikes in an abnormally excitable cortex. An initial disturbance in arousal mechanisms ("dyshormia") might be responsible for the start of this abnormal sequence. SIGNIFICANCE The classification as "generalized nonfocal and nonmotor (absence) seizure" does not covey the complex semiology of a patient's clinical events.
Collapse
Affiliation(s)
- Iris Unterberger
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Eugen Trinka
- Department of Neurology, Christian-Doppler-Klinik, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | | | - Gerald Walser
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Gerhard Luef
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Gerhard Bauer
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
20
|
Detecting sub-second changes in brain activation patterns during interictal epileptic spike using simultaneous EEG-fMRI. Clin Neurophysiol 2017; 129:377-389. [PMID: 29288994 DOI: 10.1016/j.clinph.2017.11.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/29/2017] [Accepted: 11/16/2017] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Epileptic spikes are associated with rapidly changing brain activation involving the epileptic foci and other brain regions in the "epileptic network". We aim to resolve these activation changes using simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) recordings. METHODS Simultaneous EEG-fMRI recordings from 9 patients with epilepsy were used in the analysis. Our method employed the whole scalp EEG data to generate regressors for the analysis of fMRI data using the general linear model. RESULTS We were able to resolve, with milliseconds temporal resolution, changes in activation patterns involving suspected epileptic foci and other brain regions in the epileptic network during spike and slow wave. Using summary maps (called SSWAS maps) which show the activation frequency of voxels, we found that suspected epileptic foci tend to be significantly active during this interval. SSWAS maps also enabled the detection of the epileptic foci in 4 of 5 patients where the conventional event-timing-based analysis failed to identify. CONCLUSION These findings demonstrated the efficacy of the method and the potential application of SSWAS maps to identify epileptic foci. SIGNIFICANCE The method could help resolve activation changes during epileptic spike and could provide insights into the underlying pathophysiology of these changes.
Collapse
|
21
|
Pushing the Boundaries of Neuroimaging with Optoacoustics. Neuron 2017; 96:966-988. [DOI: 10.1016/j.neuron.2017.10.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/22/2017] [Accepted: 10/16/2017] [Indexed: 02/07/2023]
|
22
|
Xi L, Jin T, Zhou J, Carney P, Jiang H. Hybrid photoacoustic and electrophysiological recording of neurovascular communications in freely-moving rats. Neuroimage 2017; 161:232-240. [DOI: 10.1016/j.neuroimage.2017.08.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 07/06/2017] [Accepted: 08/12/2017] [Indexed: 01/06/2023] Open
|
23
|
Manoochehri M, Mahmoudzadeh M, Bourel-Ponchel E, Wallois F. Cortical light scattering during interictal epileptic spikes in frontal lobe epilepsy in children: A fast optical signal and electroencephalographic study. Epilepsia 2017; 58:2064-2072. [PMID: 29034451 DOI: 10.1111/epi.13926] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Interictal epileptic spikes (IES) represent a signature of the transient synchronous and excessive discharge of a large ensemble of cortical heterogeneous neurons. Epilepsy cannot be reduced to a hypersynchronous activation of neurons whose functioning is impaired, resulting on electroencephalogram (EEG) in epileptic seizures or IES. The complex pathophysiological mechanisms require a global approach to the interactions between neural synaptic and nonsynaptic, vascular, and metabolic systems. In the present study, we focused on the interaction between synaptic and nonsynaptic mechanisms through the simultaneous noninvasive multimodal multiscale recording of high-density EEG (HD-EEG; synaptic) and fast optical signal (FOS; nonsynaptic), which evaluate rapid changes in light scattering related to changes in membrane configuration occurring during neuronal activation of IES. METHODS To evaluate changes in light scattering occurring around IES, three children with frontal IES were simultaneously recorded with HD-EEG and FOS. To evaluate change in synchronization, time-frequency representation analysis of the HD-EEG was performed simultaneously around the IES. To independently evaluate our multimodal method, a control experiment with somatosensory stimuli was designed and applied to five healthy volunteers. RESULTS Alternating increase-decrease-increase in optical signals occurred 200 ms before to 180 ms after the IES peak. These changes started before any changes in EEG signal. In addition, time-frequency domain EEG analysis revealed alternating decrease-increase-decrease in the EEG spectral power concomitantly with changes in the optical signal during IES. These results suggest a relationship between (de)synchronization and neuronal volume changes in frontal lobe epilepsy during IES. SIGNIFICANCE These changes in the neuronal environment around IES in frontal lobe epilepsy observed in children, as they have been in rats, raise new questions about the synaptic/nonsynaptic mechanisms that propel the neurons to hypersynchronization, as occurs during IES. We further demonstrate that this noninvasive multiscale multimodal approach is suitable for studying the pathophysiology of the IES in patients.
Collapse
Affiliation(s)
- Mana Manoochehri
- National Institute of Health and Medical Research Unit 1105, Research Group on Multimodal Analysis of Brain Function, University of Picardie Jules Verne, University Hospital Center South, Amiens, France
| | - Mahdi Mahmoudzadeh
- National Institute of Health and Medical Research Unit 1105, Research Group on Multimodal Analysis of Brain Function, University of Picardie Jules Verne, University Hospital Center South, Amiens, France
| | - Emilie Bourel-Ponchel
- National Institute of Health and Medical Research Unit 1105, Research Group on Multimodal Analysis of Brain Function, University of Picardie Jules Verne, University Hospital Center South, Amiens, France
| | - Fabrice Wallois
- National Institute of Health and Medical Research Unit 1105, Research Group on Multimodal Analysis of Brain Function, University of Picardie Jules Verne, University Hospital Center South, Amiens, France
| |
Collapse
|
24
|
Hemodynamic Changes Associated with Interictal Spikes Induced by Acute Models of Focal Epilepsy in Rats: A Simultaneous Electrocorticography and Near-Infrared Spectroscopy Study. Brain Topogr 2017; 30:390-407. [DOI: 10.1007/s10548-016-0541-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/15/2016] [Indexed: 02/07/2023]
|
25
|
Balasubramanian M, Wells WM, Ives JR, Britz P, Mulkern RV, Orbach DB. RF Heating of Gold Cup and Conductive Plastic Electrodes during Simultaneous EEG and MRI. Neurodiagn J 2017; 57:69-83. [PMID: 28436813 PMCID: PMC5444667 DOI: 10.1080/21646821.2017.1256722] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
PURPOSE To investigate the heating of EEG electrodes during magnetic resonance imaging (MRI) scans and to better understand the underlying physical mechanisms with a focus on the antenna effect. MATERIALS AND METHODS Gold cup and conductive plastic electrodes were placed on small watermelons with fiberoptic probes used to measure electrode temperature changes during a variety of 1.5T and 3T MRI scans. A subset of these experiments was repeated on a healthy human volunteer. RESULTS The differences between gold and plastic electrodes did not appear to be practically significant. For both electrode types, we observed heating below 4°C for straight wires whose lengths were multiples of ½ the radiofrequency (RF) wavelength and stronger heating (over 15°C) for wire lengths that were odd multiples of ¼ RF wavelength, consistent with the antenna effect. CONCLUSIONS The antenna effect, which has received little attention so far in the context of EEG-MRI safety, can play as significant a role as the loop effect (from electromagnetic induction) in the heating of EEG electrodes, and therefore wire lengths that are odd multiples of ¼ RF wavelength should be avoided. These results have important implications for the design of EEG electrodes and MRI studies as they help to minimize the risk to patients undergoing MRI with EEG electrodes in place.
Collapse
Affiliation(s)
- Mukund Balasubramanian
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A
| | - William M Wells
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A
| | - John R Ives
- Department of Neuroscience, University of Western Ontario, London, Ontario, Canada
- Ives EEG Solutions, Inc., Newburyport, Massachusetts, U.S.A
| | | | - Robert V Mulkern
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A
| | - Darren B Orbach
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A
| |
Collapse
|
26
|
Distinctive time-lagged resting-state networks revealed by simultaneous EEG-fMRI. Neuroimage 2017; 145:1-10. [DOI: 10.1016/j.neuroimage.2016.09.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/09/2016] [Accepted: 09/13/2016] [Indexed: 11/21/2022] Open
|
27
|
Usami K, Matsumoto R, Sawamoto N, Murakami H, Inouchi M, Fumuro T, Shimotake A, Kato T, Mima T, Shirozu H, Masuda H, Fukuyama H, Takahashi R, Kameyama S, Ikeda A. Epileptic network of hypothalamic hamartoma: An EEG-fMRI study. Epilepsy Res 2016; 125:1-9. [PMID: 27295078 DOI: 10.1016/j.eplepsyres.2016.05.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 04/20/2016] [Accepted: 05/27/2016] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate the brain networks involved in epileptogenesis/encephalopathy associated with hypothalamic hamartoma (HH) by EEG with functional MRI (EEG-fMRI), and evaluate its efficacy in locating the HH interface in comparison with subtraction ictal SPECT coregistered to MRI (SISCOM). METHODS Eight HH patients underwent EEG-fMRI. All had gelastic seizures (GS) and 7 developed other seizure types. Using a general linear model, spike-related activation/deactivation was analyzed individually by applying a hemodynamic response function before, at, and after spike onset (time-shift model=-8-+4s). Group analysis was also performed. The sensitivity of EEG-fMRI in identifying the HH interface was compared with SISCOM in HH patients having unilateral hypothalamic attachment. RESULTS EEG-fMRI revealed activation and/or deactivation in subcortical structures and neocortices in all patients. 6/8 patients showed activation in or around the hypothalamus with the HH interface with time-shift model before spike onset. Group analysis showed common activation in the ipsilateral hypothalamus, brainstem tegmentum, and contralateral cerebellum. Deactivation occurred in the default mode network (DMN) and bilateral hippocampi. Among 5 patients with unilateral hypothalamic attachment, activation in or around the ipsilateral hypothalamus was seen in 3 using EEG-fMRI, whereas hyperperfusion was seen in 1 by SISCOM. SIGNIFICANCE Group analysis of this preliminary study may suggest that the commonly activated subcortical network is related to generation of GS and that frequent spikes lead to deactivation of the DMN and hippocampi, and eventually to a form of epileptic encephalopathy. Inter-individual variance in neocortex activation explains various seizure types among patients. EEG-fMRI enhances sensitivity in detecting the HH interface compared with SISCOM.
Collapse
Affiliation(s)
- Kiyohide Usami
- Department of Neurology, Kyoto University, Graduate School of Medicine, Kyoto, Japan
| | - Riki Matsumoto
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University, Graduate School of Medicine, Kyoto, Japan.
| | - Nobukatsu Sawamoto
- Department of Neurology, Kyoto University, Graduate School of Medicine, Kyoto, Japan; Human Brain Research Center, Kyoto University, Graduate School of Medicine, Kyoto, Japan
| | - Hiroatsu Murakami
- Department of Neurosurgery, Nishi-Niigata Chuo National Hospital, Niigata, Japan
| | - Morito Inouchi
- Department of Neurology, Kyoto University, Graduate School of Medicine, Kyoto, Japan; Department of Respiratory Medicine, Kyoto University, Graduate School of Medicine, Kyoto, Japan
| | - Tomoyuki Fumuro
- Research and Educational Unit of Leaders for Integrated Medical System, Kyoto University, Kyoto, Japan
| | - Akihiro Shimotake
- Department of Neurology, Kyoto University, Graduate School of Medicine, Kyoto, Japan
| | - Takeo Kato
- Department of Pediatrics, Kyoto University, Graduate School of Medicine, Kyoto, Japan
| | - Tatsuya Mima
- Human Brain Research Center, Kyoto University, Graduate School of Medicine, Kyoto, Japan
| | - Hiroshi Shirozu
- Department of Neurosurgery, Nishi-Niigata Chuo National Hospital, Niigata, Japan
| | - Hiroshi Masuda
- Department of Neurosurgery, Nishi-Niigata Chuo National Hospital, Niigata, Japan
| | - Hidenao Fukuyama
- Human Brain Research Center, Kyoto University, Graduate School of Medicine, Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University, Graduate School of Medicine, Kyoto, Japan
| | - Shigeki Kameyama
- Department of Neurosurgery, Nishi-Niigata Chuo National Hospital, Niigata, Japan
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University, Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
28
|
Pellegrino G, Machado A, von Ellenrieder N, Watanabe S, Hall JA, Lina JM, Kobayashi E, Grova C. Hemodynamic Response to Interictal Epileptiform Discharges Addressed by Personalized EEG-fNIRS Recordings. Front Neurosci 2016; 10:102. [PMID: 27047325 PMCID: PMC4801878 DOI: 10.3389/fnins.2016.00102] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/29/2016] [Indexed: 11/13/2022] Open
Abstract
Objective: We aimed at studying the hemodynamic response (HR) to Interictal Epileptic Discharges (IEDs) using patient-specific and prolonged simultaneous ElectroEncephaloGraphy (EEG) and functional Near InfraRed Spectroscopy (fNIRS) recordings. Methods: The epileptic generator was localized using Magnetoencephalography source imaging. fNIRS montage was tailored for each patient, using an algorithm to optimize the sensitivity to the epileptic generator. Optodes were glued using collodion to achieve prolonged acquisition with high quality signal. fNIRS data analysis was handled with no a priori constraint on HR time course, averaging fNIRS signals to similar IEDs. Cluster-permutation analysis was performed on 3D reconstructed fNIRS data to identify significant spatio-temporal HR clusters. Standard (GLM with fixed HRF) and cluster-permutation EEG-fMRI analyses were performed for comparison purposes. Results: fNIRS detected HR to IEDs for 8/9 patients. It mainly consisted oxy-hemoglobin increases (seven patients), followed by oxy-hemoglobin decreases (six patients). HR was lateralized in six patients and lasted from 8.5 to 30 s. Standard EEG-fMRI analysis detected an HR in 4/9 patients (4/9 without enough IEDs, 1/9 unreliable result). The cluster-permutation EEG-fMRI analysis restricted to the region investigated by fNIRS showed additional strong and non-canonical BOLD responses starting earlier than the IEDs and lasting up to 30 s. Conclusions: (i) EEG-fNIRS is suitable to detect the HR to IEDs and can outperform EEG-fMRI because of prolonged recordings and greater chance to detect IEDs; (ii) cluster-permutation analysis unveils additional HR features underestimated when imposing a canonical HR function (iii) the HR is often bilateral and lasts up to 30 s.
Collapse
Affiliation(s)
- Giovanni Pellegrino
- Multimodal Functional Imaging Laboratory, Biomedical Engineering Department, Montreal Neurological Institute, McGill University Montreal, QC, Canada
| | - Alexis Machado
- Multimodal Functional Imaging Laboratory, Biomedical Engineering Department, Montreal Neurological Institute, McGill University Montreal, QC, Canada
| | - Nicolas von Ellenrieder
- Multimodal Functional Imaging Laboratory, Biomedical Engineering Department, Montreal Neurological Institute, McGill University Montreal, QC, Canada
| | - Satsuki Watanabe
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital Montreal, QC, Canada
| | - Jeffery A Hall
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital Montreal, QC, Canada
| | - Jean-Marc Lina
- Departement de Génie Electrique, Ecole de Technologie SupérieureMontreal, QC, Canada; Center of Advanced Research in Sleep Medicine, Hospital Du Sacre-CœurMontreal, QC, Canada; Centre de Recherches Mathematiques, University of MontréalMontreal, QC, Canada
| | - Eliane Kobayashi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital Montreal, QC, Canada
| | - Christophe Grova
- Multimodal Functional Imaging Laboratory, Biomedical Engineering Department, Montreal Neurological Institute, McGill UniversityMontreal, QC, Canada; Department of Neurology and Neurosurgery, Montreal Neurological Institute and HospitalMontreal, QC, Canada; Centre de Recherches Mathematiques, University of MontréalMontreal, QC, Canada; Physics Department and Perform Center, Concordia UniversityMontreal, QC, Canada
| |
Collapse
|
29
|
Warren AEL, Abbott DF, Vaughan DN, Jackson GD, Archer JS. Abnormal cognitive network interactions in Lennox-Gastaut syndrome: A potential mechanism of epileptic encephalopathy. Epilepsia 2016; 57:812-22. [DOI: 10.1111/epi.13342] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Aaron E. L. Warren
- Department of Medicine; The University of Melbourne; Heidelberg Victoria Australia
| | - David F. Abbott
- Department of Medicine; The University of Melbourne; Heidelberg Victoria Australia
- The Florey Institute of Neuroscience and Mental Health; Heidelberg Victoria Australia
| | - David N. Vaughan
- The Florey Institute of Neuroscience and Mental Health; Heidelberg Victoria Australia
- Department of Neurology; Austin Health; Heidelberg Victoria Australia
| | - Graeme D. Jackson
- Department of Medicine; The University of Melbourne; Heidelberg Victoria Australia
- The Florey Institute of Neuroscience and Mental Health; Heidelberg Victoria Australia
- Department of Neurology; Austin Health; Heidelberg Victoria Australia
| | - John S. Archer
- Department of Medicine; The University of Melbourne; Heidelberg Victoria Australia
- The Florey Institute of Neuroscience and Mental Health; Heidelberg Victoria Australia
- Department of Neurology; Austin Health; Heidelberg Victoria Australia
| |
Collapse
|
30
|
Using patient-specific hemodynamic response function in epileptic spike analysis of human epilepsy: a study based on EEG-fNIRS. Neuroimage 2015; 126:239-55. [PMID: 26619785 DOI: 10.1016/j.neuroimage.2015.11.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/24/2015] [Accepted: 11/16/2015] [Indexed: 11/23/2022] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) can be combined with electroencephalography (EEG) to continuously monitor the hemodynamic signal evoked by epileptic events such as seizures or interictal epileptiform discharges (IEDs, aka spikes). As estimation methods assuming a canonical shape of the hemodynamic response function (HRF) might not be optimal, we sought to model patient-specific HRF (sHRF) with a simple deconvolution approach for IED-related analysis with EEG-fNIRS data. Furthermore, a quadratic term was added to the model to account for the nonlinearity in the response when IEDs are frequent. Prior to analyzing clinical data, simulations were carried out to show that the HRF was estimable by the proposed deconvolution methods under proper conditions. EEG-fNIRS data of five patients with refractory focal epilepsy were selected due to the presence of frequent clear IEDs and their unambiguous focus localization. For each patient, both the linear sHRF and the nonlinear sHRF were estimated at each channel. Variability of the estimated sHRFs was seen across brain regions and different patients. Compared with the SPM8 canonical HRF (cHRF), including these sHRFs in the general linear model (GLM) analysis led to hemoglobin activations with higher statistical scores as well as larger spatial extents on all five patients. In particular, for patients with frequent IEDs, nonlinear sHRFs were seen to provide higher sensitivity in activation detection than linear sHRFs. These observations support using sHRFs in the analysis of IEDs with EEG-fNIRS data.
Collapse
|
31
|
Baciu M, Perrone-Bertolotti M. What do patients with epilepsy tell us about language dynamics? A review of fMRI studies. Rev Neurosci 2015; 26:323-41. [PMID: 25741734 DOI: 10.1515/revneuro-2014-0074] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 11/20/2014] [Indexed: 11/15/2022]
Abstract
The objective of this review is to resume major neuroimaging findings on language organization and plasticity in patients with focal and refractory epilepsy, to discuss the effect of modulatory variables that should be considered alongside patterns of reorganization, and to propose possible models of language reorganization. The focal and refractory epilepsy provides a real opportunity to investigate various types of language reorganization in different conditions. The 'chronic' condition (induced by the epileptogenic zone or EZ) is associated with either recruitment of homologous regions of the opposite hemisphere or recruitment of intrahemispheric, nonlinguistic regions. In the 'acute' condition (neurosurgery and EZ resection), the initial interhemispheric shift (induced by the chronic EZ) could follow a reverse direction, back to the initial hemisphere. These different patterns depend on several modulatory factors and are associated with various levels of language performance. As a neuroimaging tool, functional magnetic resonance imaging enables the detailed investigation of both hemispheres simultaneously and allows for comparison with healthy controls, potentially creating a more comprehensive and more realistic picture of brain-language relations. Importantly, functional neuroimaging approaches demonstrate a good degree of concordance on a theoretical level, but also a considerable degree of individual variability, attesting to the clinical importance with these methods to establish, empirically, language localization in individual patients. Overall, the unique features of epilepsy, combined with ongoing advances in technology, promise further improvement in understanding of language substrate.
Collapse
|
32
|
Beers CA, Williams RJ, Gaxiola-Valdez I, Pittman DJ, Kang AT, Aghakhani Y, Pike GB, Goodyear BG, Federico P. Patient specific hemodynamic response functions associated with interictal discharges recorded via simultaneous intracranial EEG-fMRI. Hum Brain Mapp 2015; 36:5252-64. [PMID: 26417648 DOI: 10.1002/hbm.23008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/26/2015] [Accepted: 09/18/2015] [Indexed: 11/10/2022] Open
Abstract
Simultaneous collection of scalp EEG and fMRI has become an important tool for studying the hemodynamic changes associated with interictal epileptiform discharges (IEDs) in persons with epilepsy, and has become a standard presurgical assessment tool in some centres. We previously demonstrated that performing EEG-fMRI using intracranial electrodes (iEEG-fMRI) is of low risk to patients in our research centre, and offers unique insight into BOLD signal changes associated with IEDs recorded from very discrete sources. However, it is unknown whether the BOLD response corresponding to IEDs recorded by iEEG-fMRI follows the canonical hemodynamic response. We therefore scanned 11 presurgical epilepsy patients using iEEG-fMRI, and assessed the hemodynamic response associated with individual IEDs using two methods: assessment of BOLD signal changes associated with isolated IEDs at the location of the active intracranial electrode, and by estimating subject-specific impulse response functions to isolated IEDs. We found that the hemodynamic response associated with the intracranially recorded discharges varied by patient and by spike location. The observed shape and timing differences also deviated from the canonical hemodynamic response function traditionally used in many fMRI experiments. It is recommended that future iEEG-fMRI studies of IEDs use a flexible hemodynamic response model when performing parametric tests to accurately characterize these data.
Collapse
Affiliation(s)
- Craig A Beers
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Seaman Family MR Research Centre, University of Calgary, Calgary, Alberta, Canada
| | - Rebecca J Williams
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Seaman Family MR Research Centre, University of Calgary, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | - Ismael Gaxiola-Valdez
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Seaman Family MR Research Centre, University of Calgary, Calgary, Alberta, Canada
| | - Daniel J Pittman
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Seaman Family MR Research Centre, University of Calgary, Calgary, Alberta, Canada
| | - Anita T Kang
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Yahya Aghakhani
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - G Bruce Pike
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Seaman Family MR Research Centre, University of Calgary, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | - Bradley G Goodyear
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Seaman Family MR Research Centre, University of Calgary, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Paolo Federico
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Seaman Family MR Research Centre, University of Calgary, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
33
|
Mankinen K, Ipatti P, Harila M, Nikkinen J, Paakki JJ, Rytky S, Starck T, Remes J, Tokariev M, Carlson S, Tervonen O, Rantala H, Kiviniemi V. Reading, listening and memory-related brain activity in children with early-stage temporal lobe epilepsy of unknown cause-an fMRI study. Eur J Paediatr Neurol 2015; 19:561-71. [PMID: 26026490 DOI: 10.1016/j.ejpn.2015.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 01/25/2015] [Accepted: 05/05/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS The changes in functional brain organization associated with paediatric epilepsy are largely unknown. Since children with epilepsy are at risk of developing learning difficulties even before or shortly after the onset of epilepsy, we assessed the functional organization of memory and language in paediatric patients with temporal lobe epilepsy (TLE) at an early stage in epilepsy. METHODS Functional magnetic resonance imaging was used to measure the blood oxygenation level-dependent (BOLD) response to four cognitive tasks measuring reading, story listening, memory encoding and retrieval in a population-based group of children with TLE of unknown cause (n = 21) and of normal intelligence and a healthy age and gender-matched control group (n = 21). RESULTS Significant BOLD response differences were found only in one of the four tasks. In the story listening task, significant differences were found in the right hemispheric temporal structures, thalamus and basal ganglia. Both activation and deactivation differed significantly between the groups, activation being increased and deactivation decreased in the TLE group. Furthermore, the patients with abnormal electroencephalograms (EEGs) showed significantly increased activation bilaterally in the temporal structures, basal ganglia and thalamus relative to those with normal EEGs. The patients with normal interictal EEGs had a significantly stronger deactivation than those with abnormal EEGs or the controls, the differences being located outside the temporal structures. CONCLUSIONS Our results suggest that TLE entails a widespread disruption of brain networks. This needs to be taken into consideration when evaluating learning abilities in patients with TLE. The thalamus seems to play an active role in TLE. The changes in deactivation may reflect neuronal inhibition.
Collapse
Affiliation(s)
- Katariina Mankinen
- Department of Paediatrics, Oulu University Hospital, PB 29, 90014 Oulu, Finland.
| | - Pieta Ipatti
- Clinic of Diagnostic Radiology, Oulu University Hospital, Finland
| | - Marika Harila
- Department of Neurology, Oulu University Hospital, Finland
| | - Juha Nikkinen
- Clinic of Diagnostic Radiology, Oulu University Hospital, Finland
| | | | - Seppo Rytky
- Department of Clinical Neurophysiology, Oulu University Hospital, Finland
| | - Tuomo Starck
- Clinic of Diagnostic Radiology, Oulu University Hospital, Finland
| | - Jukka Remes
- Clinic of Diagnostic Radiology, Oulu University Hospital, Finland
| | - Maksym Tokariev
- Brain Research Unit, O.V. Lounasmaa Laboratory, Aalto University School of Science, P.B. 15100, 00076 Aalto, Finland; Neuroscience Unit, Institute of Biomedicine/Physiology, University of Helsinki, P.B. 63, 00014 University of Helsinki, Finland
| | - Synnöve Carlson
- Brain Research Unit, O.V. Lounasmaa Laboratory, Aalto University School of Science, P.B. 15100, 00076 Aalto, Finland; Neuroscience Unit, Institute of Biomedicine/Physiology, University of Helsinki, P.B. 63, 00014 University of Helsinki, Finland
| | - Osmo Tervonen
- Clinic of Diagnostic Radiology, Oulu University Hospital, Finland
| | - Heikki Rantala
- Department of Paediatrics, Oulu University Hospital, PB 29, 90014 Oulu, Finland
| | - Vesa Kiviniemi
- Clinic of Diagnostic Radiology, Oulu University Hospital, Finland
| |
Collapse
|
34
|
Maloney TC, Tenney JR, Szaflarski JP, Vannest J. Simultaneous Electroencephalography and Functional Magnetic Resonance Imaging and the Identification of Epileptic Networks in Children. JOURNAL OF PEDIATRIC EPILEPSY 2015; 4:174-183. [PMID: 26744634 DOI: 10.1055/s-0035-1559812] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
EEG/fMRI takes advantage of the high temporal resolution of EEG in combination with the high spatial resolution of fMRI. These features make it particularly applicable to the study of epilepsy in which the event duration (e.g., interictal epileptiform discharges) is short, typically less than 200 milliseconds. Interictal or ictal discharges can be identified on EEG and be used for source localization in fMRI analyses. The acquisition of simultaneous EEG/fMRI involves the use of specialized EEG hardware that is safe in the MR environment and comfortable to the participant. Advanced data analysis approaches such as independent component analysis conducted alone or sometimes combined with other, e.g., Granger Causality or "sliding window" analyses are currently thought to be most appropriate for EEG/fMRI data. These approaches make it possible to identify networks of brain regions associated with ictal and/or interictal events allowing examination of the mechanisms critical for generation and propagation through these networks. After initial evaluation in adults, EEG/fMRI has been applied to the examination of the pediatric epilepsy syndromes including Childhood Absence Epilepsy, Benign Epilepsy with Centrotemporal Spikes (BECTS), Dravet Syndrome, and Lennox-Gastaut Syndrome. Results of EEG/fMRI studies suggest that the hemodynamic response measured by fMRI may have a different shape in response to epileptic events compared to the response to external stimuli; this may be especially true in the developing brain. Thus, the main goal of this review is to provide an overview of the pediatric applications of EEG/fMRI and its associated findings up until this point.
Collapse
|
35
|
Tang J, Xi L, Zhou J, Huang H, Zhang T, Carney PR, Jiang H. Noninvasive high-speed photoacoustic tomography of cerebral hemodynamics in awake-moving rats. J Cereb Blood Flow Metab 2015; 35:1224-32. [PMID: 26082016 PMCID: PMC4527999 DOI: 10.1038/jcbfm.2015.138] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/10/2015] [Accepted: 05/06/2015] [Indexed: 11/09/2022]
Abstract
We present a noninvasive method of photoacoustic tomography (PAT) for imaging cerebral hemodynamics in awake-moving rats. The wearable PAT (wPAT) system has a size of 15 mm in height and 33 mm in diameter, and a weight of ~8 g (excluding cabling). The wPAT achieved an imaging rate of 3.33 frames/s with a lateral resolution of 243 μm. Animal experiments were designed to show wPAT feasibility for imaging cerebral hemodynamics on awake-moving animals. Results showed that the cerebral oxy-hemoglobin and deoxy-hemoglobin changed significantly in response to hyperoxia; and, after the injection of pentylenetetrazol (PTZ), cerebral blood volume changed faster over time and larger in amplitude for rats in awake-moving state compared with rats under anesthesia. By providing a light-weight, high-resolution technology for in vivo monitoring of cerebral hemodynamics in awake-behaving animals, it will be possible to develop a comprehensive understanding on how activity alters hemodynamics in normal and diseased states.
Collapse
Affiliation(s)
- Jianbo Tang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Lei Xi
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Junli Zhou
- Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Hua Huang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Tao Zhang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Paul R Carney
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
- Department of Pediatrics, University of Florida, Gainesville, Florida, USA
- Department of Neurology, University of Florida, Gainesville, Florida, USA
- Department of Neuroscience, University of Florida, Gainesville, Florida, USA
| | - Huabei Jiang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
36
|
Rollings DT, Assecondi S, Ostwald D, Porcaro C, McCorry D, Bagary M, Soryal I, Bagshaw AP. Early haemodynamic changes observed in patients with epilepsy, in a visual experiment and in simulations. Clin Neurophysiol 2015. [PMID: 26220731 DOI: 10.1016/j.clinph.2015.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The objective of this study was to investigate whether previously reported early blood oxygen level dependent (BOLD) changes in epilepsy could occur as a result of the modelling techniques rather than physiological changes. METHODS EEG-fMRI data were analysed from seven patients with focal epilepsy, six control subjects undergoing a visual experiment, in addition to simulations. In six separate analyses the event timing was shifted by either -9,-6,-3,+3,+6 or +9 s relative to the onset of the interictal epileptiform discharge (IED) or stimulus. RESULTS The visual dataset and simulations demonstrated an overlap between modelled haemodynamic response function (HRF) at event onset and at ± 3 s relative to onset, which diminished at ± 6s. Pre-spike analysis at -6s improved concordance with the assumed IED generating lobe relative to the standard HRF in 43% of patients. CONCLUSION The visual and simulated dataset findings indicate a form of "temporal bleeding", an overlap between the modelled HRF at time 0 and at ± 3s which attenuated at ± 6s. Pre-spike analysis at -6s may improve concordance. SIGNIFICANCE This form of analysis should be performed at 6s prior to onset of IED to minimise temporal bleeding effect. The results support the presence of relevant BOLD responses occurring prior to IEDs.
Collapse
Affiliation(s)
- David T Rollings
- School of Psychology, University of Birmingham, Birmingham, UK; Birmingham University Imaging Centre (BUIC), University of Birmingham, Birmingham, UK; Department of Neuroscience, Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham, UK.
| | - Sara Assecondi
- School of Psychology, University of Birmingham, Birmingham, UK; Birmingham University Imaging Centre (BUIC), University of Birmingham, Birmingham, UK
| | - Dirk Ostwald
- Center for Cognitive Neuroscience Berlin, Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany; Center for Adaptive Rationality, Max-Planck-Institute for Human Development, Berlin, Germany
| | - Camillo Porcaro
- Laboratory of Electrophysiology for Translational Neuroscience (LET'S) - ISTC - CNR, Department of Neuroscience, Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy; Institute of Neuroscience, Newcastle University, Medical School, Newcastle upon Tyne, UK
| | - Dougall McCorry
- Department of Neuroscience, Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham, UK
| | - Manny Bagary
- Department of Neuropsychiatry, The Barberry, Birmingham, UK
| | - Imad Soryal
- Department of Neuroscience, Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham, UK
| | - Andrew P Bagshaw
- School of Psychology, University of Birmingham, Birmingham, UK; Birmingham University Imaging Centre (BUIC), University of Birmingham, Birmingham, UK
| |
Collapse
|
37
|
Murta T, Leite M, Carmichael DW, Figueiredo P, Lemieux L. Electrophysiological correlates of the BOLD signal for EEG-informed fMRI. Hum Brain Mapp 2015; 36:391-414. [PMID: 25277370 PMCID: PMC4280889 DOI: 10.1002/hbm.22623] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 07/04/2014] [Accepted: 08/20/2014] [Indexed: 12/11/2022] Open
Abstract
Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are important tools in cognitive and clinical neuroscience. Combined EEG-fMRI has been shown to help to characterise brain networks involved in epileptic activity, as well as in different sensory, motor and cognitive functions. A good understanding of the electrophysiological correlates of the blood oxygen level-dependent (BOLD) signal is necessary to interpret fMRI maps, particularly when obtained in combination with EEG. We review the current understanding of electrophysiological-haemodynamic correlates, during different types of brain activity. We start by describing the basic mechanisms underlying EEG and BOLD signals and proceed by reviewing EEG-informed fMRI studies using fMRI to map specific EEG phenomena over the entire brain (EEG-fMRI mapping), or exploring a range of EEG-derived quantities to determine which best explain colocalised BOLD fluctuations (local EEG-fMRI coupling). While reviewing studies of different forms of brain activity (epileptic and nonepileptic spontaneous activity; cognitive, sensory and motor functions), a significant attention is given to epilepsy because the investigation of its haemodynamic correlates is the most common application of EEG-informed fMRI. Our review is focused on EEG-informed fMRI, an asymmetric approach of data integration. We give special attention to the invasiveness of electrophysiological measurements and the simultaneity of multimodal acquisitions because these methodological aspects determine the nature of the conclusions that can be drawn from EEG-informed fMRI studies. We emphasise the advantages of, and need for, simultaneous intracranial EEG-fMRI studies in humans, which recently became available and hold great potential to improve our understanding of the electrophysiological correlates of BOLD fluctuations.
Collapse
Affiliation(s)
- Teresa Murta
- Department of Clinical and Experimental EpilepsyUCL Institute of Neurology, Queen SquareLondonUnited Kingdom
- Department of BioengineeringInstitute for systems and robotics, Instituto Superior Técnico, Universidade de LisboaLisbonPortugal
| | - Marco Leite
- Department of Clinical and Experimental EpilepsyUCL Institute of Neurology, Queen SquareLondonUnited Kingdom
- Department of BioengineeringInstitute for systems and robotics, Instituto Superior Técnico, Universidade de LisboaLisbonPortugal
| | - David W. Carmichael
- Imaging and Biophysics UnitUCL Institute of Child HealthLondonUnited Kingdom
| | - Patrícia Figueiredo
- Department of BioengineeringInstitute for systems and robotics, Instituto Superior Técnico, Universidade de LisboaLisbonPortugal
| | - Louis Lemieux
- Department of Clinical and Experimental EpilepsyUCL Institute of Neurology, Queen SquareLondonUnited Kingdom
- MRI Unit, Epilepsy SocietyChalfont St. PeterUnited Kingdom
| |
Collapse
|
38
|
Abstract
Electroencephalography (EEG) has been used to study and characterize epilepsy for decades, but has a limited ability to localize epileptiform activity to a specific brain region. With recent technological advances, high-quality EEG can now be recorded during functional magnetic resonance imaging (fMRI), which characterizes brain activity through local changes in blood oxygenation. By combining these techniques, the specific timing of interictal events can be identified on the EEG at millisecond resolution and spatially localized with fMRI at millimeter resolution. As a result, simultaneous EEG-fMRI provides the opportunity to better investigate the spatiotemporal mechanisms of the generation of epileptiform activity in the brain. This article discusses the technical considerations and their solutions for recording simultaneous EEG-fMRI and the results of studies to date. It also addresses the application of EEG-fMRI to epilepsy in humans, including clinical applications and ongoing challenges.
Collapse
|
39
|
Pittau F, Mégevand P, Sheybani L, Abela E, Grouiller F, Spinelli L, Michel CM, Seeck M, Vulliemoz S. Mapping epileptic activity: sources or networks for the clinicians? Front Neurol 2014; 5:218. [PMID: 25414692 PMCID: PMC4220689 DOI: 10.3389/fneur.2014.00218] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/08/2014] [Indexed: 01/03/2023] Open
Abstract
Epileptic seizures of focal origin are classically considered to arise from a focal epileptogenic zone and then spread to other brain regions. This is a key concept for semiological electro-clinical correlations, localization of relevant structural lesions, and selection of patients for epilepsy surgery. Recent development in neuro-imaging and electro-physiology and combinations, thereof, have been validated as contributory tools for focus localization. In parallel, these techniques have revealed that widespread networks of brain regions, rather than a single epileptogenic region, are implicated in focal epileptic activity. Sophisticated multimodal imaging and analysis strategies of brain connectivity patterns have been developed to characterize the spatio-temporal relationships within these networks by combining the strength of both techniques to optimize spatial and temporal resolution with whole-brain coverage and directional connectivity. In this paper, we review the potential clinical contribution of these functional mapping techniques as well as invasive electrophysiology in human beings and animal models for characterizing network connectivity.
Collapse
Affiliation(s)
- Francesca Pittau
- EEG and Epilepsy Unit, Neurology Department, University Hospitals and Faculty of Medicine of Geneva , Geneva , Switzerland
| | - Pierre Mégevand
- Laboratory for Multimodal Human Brain Mapping, Hofstra North Shore LIJ School of Medicine , Manhasset, NY , USA
| | - Laurent Sheybani
- Functional Brain Mapping Laboratory, Department of Fundamental Neurosciences, University of Geneva , Geneva , Switzerland
| | - Eugenio Abela
- Support Center of Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, University Hospital Inselspital , Bern , Switzerland
| | - Frédéric Grouiller
- Radiology Department, University Hospitals and Faculty of Medicine of Geneva , Geneva , Switzerland
| | - Laurent Spinelli
- EEG and Epilepsy Unit, Neurology Department, University Hospitals and Faculty of Medicine of Geneva , Geneva , Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neurosciences, University of Geneva , Geneva , Switzerland
| | - Margitta Seeck
- EEG and Epilepsy Unit, Neurology Department, University Hospitals and Faculty of Medicine of Geneva , Geneva , Switzerland
| | - Serge Vulliemoz
- EEG and Epilepsy Unit, Neurology Department, University Hospitals and Faculty of Medicine of Geneva , Geneva , Switzerland
| |
Collapse
|
40
|
Archer JS, Warren AEL, Jackson GD, Abbott DF. Conceptualizing lennox-gastaut syndrome as a secondary network epilepsy. Front Neurol 2014; 5:225. [PMID: 25400619 PMCID: PMC4214194 DOI: 10.3389/fneur.2014.00225] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/15/2014] [Indexed: 12/22/2022] Open
Abstract
Lennox–Gastaut Syndrome (LGS) is a category of severe, disabling epilepsy, characterized by frequent, treatment-resistant seizures, and cognitive impairment. Electroencephalography (EEG) shows characteristic generalized epileptic activity that is similar in those with lesional, genetic, or unknown causes, suggesting a common underlying mechanism. The condition typically begins in young children, leaving many severely disabled with recurring seizures throughout their adult life. Scalp EEG of the tonic seizures of LGS is characterized by a diffuse high-voltage slow transient evolving into generalized low-voltage fast activity, likely reflecting sustained fast neuronal firing over a wide cortical area. The typical interictal discharges (runs of slow spike-and-wave and bursts of generalized paroxysmal fast activity) also have a “generalized” electrical field, suggesting widespread cortical involvement. Recent brain mapping studies have begun to reveal which cortical and subcortical regions are active during these “generalized” discharges. In this critical review, we examine findings from neuroimaging studies of LGS and place these in the context of the electrical and clinical features of the syndrome. We suggest that LGS can be conceptualized as “secondary network epilepsy,” where the epileptic activity is expressed through large-scale brain networks, particularly the attention and default-mode networks. Cortical lesions, when present, appear to chronically interact with these networks to produce network instability rather than triggering each individual epileptic discharge. LGS can be considered as “secondary” network epilepsy because the epileptic manifestations of the disorder reflect the networks being driven, rather than the specific initiating process. In this review, we begin with a summation of the clinical manifestations of LGS and what this has revealed about the underlying etiology of the condition. We then undertake a systematic review of the functional neuroimaging literature in LGS, which leads us to conclude that LGS can best be conceptualized as “secondary network epilepsy.”
Collapse
Affiliation(s)
- John S Archer
- Department of Medicine, Austin Health, The University of Melbourne , Heidelberg, VIC , Australia ; Florey Institute of Neuroscience and Mental Health , Heidelberg, VIC , Australia ; Department Neurology, Austin Health , Heidelberg, VIC , Australia
| | - Aaron E L Warren
- Department of Medicine, Austin Health, The University of Melbourne , Heidelberg, VIC , Australia
| | - Graeme D Jackson
- Department of Medicine, Austin Health, The University of Melbourne , Heidelberg, VIC , Australia ; Florey Institute of Neuroscience and Mental Health , Heidelberg, VIC , Australia ; Department Neurology, Austin Health , Heidelberg, VIC , Australia
| | - David F Abbott
- Department of Medicine, Austin Health, The University of Melbourne , Heidelberg, VIC , Australia ; Florey Institute of Neuroscience and Mental Health , Heidelberg, VIC , Australia
| |
Collapse
|
41
|
Faizo NL, Burianová H, Gray M, Hocking J, Galloway G, Reutens D. Identification of pre-spike network in patients with mesial temporal lobe epilepsy. Front Neurol 2014; 5:222. [PMID: 25389415 PMCID: PMC4211386 DOI: 10.3389/fneur.2014.00222] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/13/2014] [Indexed: 11/23/2022] Open
Abstract
Background: Seizures and interictal spikes in mesial temporal lobe epilepsy (MTLE) affect a network of brain regions rather than a single epileptic focus. Simultaneous electroencephalography and functional magnetic resonance imaging (EEG-fMRI) studies have demonstrated a functional network in which hemodynamic changes are time-locked to spikes. However, whether this reflects the propagation of neuronal activity from a focus, or conversely the activation of a network linked to spike generation remains unknown. The functional connectivity (FC) changes prior to spikes may provide information about the connectivity changes that lead to the generation of spikes. We used EEG-fMRI to investigate FC changes immediately prior to the appearance of interictal spikes on EEG in patients with MTLE. Methods/principal findings: Fifteen patients with MTLE underwent continuous EEG-fMRI during rest. Spikes were identified on EEG and three 10 s epochs were defined relative to spike onset: spike (0–10 s), pre-spike (−10 to 0 s), and rest (−20 to −10 s, with no previous spikes in the preceding 45s). Significant spike-related activation in the hippocampus ipsilateral to the seizure focus was found compared to the pre-spike and rest epochs. The peak voxel within the hippocampus ipsilateral to the seizure focus was used as a seed region for FC analysis in the three conditions. A significant change in FC patterns was observed before the appearance of electrographic spikes. Specifically, there was significant loss of coherence between both hippocampi during the pre-spike period compared to spike and rest states. Conclusion/significance: In keeping with previous findings of abnormal inter-hemispheric hippocampal connectivity in MTLE, our findings specifically link reduced connectivity to the period immediately before spikes. This brief decoupling is consistent with a deficit in mutual (inter-hemispheric) hippocampal inhibition that may predispose to spike generation.
Collapse
Affiliation(s)
- Nahla L Faizo
- Centre for Advanced Imaging, University of Queensland , Brisbane, QLD , Australia
| | - Hana Burianová
- Centre for Advanced Imaging, University of Queensland , Brisbane, QLD , Australia ; ARC Centre of Excellence in Cognition and its Disorders, Macquarie University , Sydney, NSW , Australia
| | - Marcus Gray
- Centre for Advanced Imaging, University of Queensland , Brisbane, QLD , Australia
| | - Julia Hocking
- Centre for Advanced Imaging, University of Queensland , Brisbane, QLD , Australia ; School of Psychology and Counseling, Queensland University of Technology , Brisbane, QLD , Australia
| | - Graham Galloway
- Centre for Advanced Imaging, University of Queensland , Brisbane, QLD , Australia
| | - David Reutens
- Centre for Advanced Imaging, University of Queensland , Brisbane, QLD , Australia ; Royal Brisbane and Women's Hospital , Brisbane, QLD , Australia
| |
Collapse
|
42
|
Lopes R, Moeller F, Besson P, Ogez F, Szurhaj W, Leclerc X, Siniatchkin M, Chipaux M, Derambure P, Tyvaert L. Study on the Relationships between Intrinsic Functional Connectivity of the Default Mode Network and Transient Epileptic Activity. Front Neurol 2014; 5:201. [PMID: 25346721 PMCID: PMC4193009 DOI: 10.3389/fneur.2014.00201] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 09/24/2014] [Indexed: 12/04/2022] Open
Abstract
Rationale: Simultaneous recording of electroencephalogram and functional MRI (EEG–fMRI) is a powerful tool for localizing epileptic networks via the detection of hemodynamic changes correlated with interictal epileptic discharges (IEDs). fMRI can be used to study the long-lasting effect of epileptic activity by assessing stationary functional connectivity during the resting-state period [especially, the connectivity of the default mode network (DMN)]. Temporal lobe epilepsy (TLE) and idiopathic generalized epilepsy (IGE) are associated with low responsiveness and disruption of DMN activity. A dynamic functional connectivity approach might enable us to determine the effect of IEDs on DMN connectivity and to better understand the correlation between DMN connectivity changes and altered consciousness. Method: We studied dynamic changes in DMN intrinsic connectivity and their relation to IEDs. Six IGE patients (with generalized spike and slow-waves) and 6 TLE patients (with unilateral left temporal spikes) were included. Functional connectivity before, during, and after IEDs was estimated using a sliding window approach and compared with the baseline period. Results: No dependence on window size was observed. The baseline DMN connectivity was decreased in the left hemisphere (ipsilateral to the epileptic focus) in TLEs and was less strong but remained bilateral in IGEs. We observed an overall increase in DMN intrinsic connectivity prior to the onset of IEDs in both IGEs and TLEs. After IEDs in TLEs, we found that DMN connectivity increased before it returned to baseline values. Most of the DMN regions with increased connectivity before and after IEDs were lateralized to the left hemisphere in TLE (i.e., ipsilateral to the epileptic focus). Conclusion: Results suggest that DMN connectivity may facilitate IED generation and may be affected at the time of the IED. However, these results need to be confirmed in a larger independent cohort.
Collapse
Affiliation(s)
- Renaud Lopes
- UMR 1046, University of Lille 2 , Lille , France ; In vivo Imaging Core Facility, IMPRT-IFR114, Lille University Medical Center , Lille , France
| | - Friederike Moeller
- Department of Neuropaediatrics, Christian-Albrechts-University , Kiel , Germany
| | - Pierre Besson
- UMR 1046, University of Lille 2 , Lille , France ; Department of Clinical Neurophysiology, Lille University Medical Center , Lille , France
| | | | - William Szurhaj
- UMR 1046, University of Lille 2 , Lille , France ; Department of Clinical Neurophysiology, Lille University Medical Center , Lille , France
| | - Xavier Leclerc
- UMR 1046, University of Lille 2 , Lille , France ; In vivo Imaging Core Facility, IMPRT-IFR114, Lille University Medical Center , Lille , France
| | - Michael Siniatchkin
- Department of Neuropaediatrics, Christian-Albrechts-University , Kiel , Germany
| | - Mathilde Chipaux
- Department of Pediatric Neurosurgery, Fondation Ophtalmologique A. de Rothschild , Paris , France
| | - Philippe Derambure
- UMR 1046, University of Lille 2 , Lille , France ; Department of Clinical Neurophysiology, Lille University Medical Center , Lille , France
| | - Louise Tyvaert
- UMR 1046, University of Lille 2 , Lille , France ; Department of Clinical Neurophysiology, Lille University Medical Center , Lille , France
| |
Collapse
|
43
|
Formaggio E, Storti SF, Boscolo Galazzo I, Bongiovanni LG, Cerini R, Fiaschi A, Manganotti P. Reproducibility of EEG-fMRI results in a patient with fixation-off sensitivity. Clin EEG Neurosci 2014; 45:212-7. [PMID: 24048241 DOI: 10.1177/1550059413497946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Blood oxygenation level-dependent (BOLD) activation associated with interictal epileptiform discharges in a patient with fixation-off sensitivity (FOS) was studied using a combined electroencephalography-functional magnetic resonance imaging (EEG-fMRI) technique. An automatic approach for combined EEG-fMRI analysis and a subject-specific hemodynamic response function was used to improve general linear model analysis of the fMRI data. The EEG showed the typical features of FOS, with continuous epileptiform discharges during elimination of central vision by eye opening and closing and fixation; modification of this pattern was clearly visible and recognizable. During all 3 recording sessions EEG-fMRI activations indicated a BOLD signal decrease related to epileptiform activity in the parietal areas. This study can further our understanding of this EEG phenomenon and can provide some insight into the reliability of the EEG-fMRI technique in localizing the irritative zone.
Collapse
Affiliation(s)
- Emanuela Formaggio
- Department of Neurophysiology, Foundation IRCCS San Camillo Hospital, Venice, Italy
| | - Silvia Francesca Storti
- Clinical Neurophysiology and Functional Neuroimaging Unit, Department of Neurological and Movement Sciences, University Hospital, Verona, Italy
| | - Ilaria Boscolo Galazzo
- Clinical Neurophysiology and Functional Neuroimaging Unit, Department of Neurological and Movement Sciences, University Hospital, Verona, Italy
| | - Luigi Giuseppe Bongiovanni
- Clinical Neurophysiology and Functional Neuroimaging Unit, Department of Neurological and Movement Sciences, University Hospital, Verona, Italy
| | - Roberto Cerini
- Department of Pathology and Diagnostics, Section of Radiology, G.B. Rossi Hospital, University of Verona, Verona, Italy
| | - Antonio Fiaschi
- Department of Neurophysiology, Foundation IRCCS San Camillo Hospital, Venice, Italy
- Clinical Neurophysiology and Functional Neuroimaging Unit, Department of Neurological and Movement Sciences, University Hospital, Verona, Italy
| | - Paolo Manganotti
- Department of Neurophysiology, Foundation IRCCS San Camillo Hospital, Venice, Italy
- Clinical Neurophysiology and Functional Neuroimaging Unit, Department of Neurological and Movement Sciences, University Hospital, Verona, Italy
| |
Collapse
|
44
|
Proulx S, Safi-Harb M, LeVan P, An D, Watanabe S, Gotman J. Increased sensitivity of fast BOLD fMRI with a subject-specific hemodynamic response function and application to epilepsy. Neuroimage 2014; 93 Pt 1:59-73. [DOI: 10.1016/j.neuroimage.2014.02.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/14/2014] [Accepted: 02/18/2014] [Indexed: 11/24/2022] Open
|
45
|
Bartolini E, Pesaresi I, Fabbri S, Cecchi P, Giorgi FS, Sartucci F, Bonuccelli U, Cosottini M. Abnormal response to photic stimulation in Juvenile Myoclonic Epilepsy: An EEG-fMRI study. Epilepsia 2014; 55:1038-47. [DOI: 10.1111/epi.12634] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2014] [Indexed: 12/01/2022]
Affiliation(s)
- Emanuele Bartolini
- Department of Clinical and Experimental Medicine; University of Pisa; Italy
| | | | - Serena Fabbri
- Department of Clinical and Experimental Medicine; University of Pisa; Italy
| | - Paolo Cecchi
- Department of Clinical and Experimental Medicine; University of Pisa; Italy
| | | | | | - Ubaldo Bonuccelli
- Department of Clinical and Experimental Medicine; University of Pisa; Italy
| | - Mirco Cosottini
- Department of Translational Research and New Technologies in Medicine and Surgery; University of Pisa; Pisa Italy
| |
Collapse
|
46
|
Pittau F, Grouiller F, Spinelli L, Seeck M, Michel CM, Vulliemoz S. The role of functional neuroimaging in pre-surgical epilepsy evaluation. Front Neurol 2014. [PMID: 24715886 DOI: 10.3389/fneur.2014.00031.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The prevalence of epilepsy is about 1% and one-third of cases do not respond to medical treatment. In an eligible subset of patients with drug-resistant epilepsy, surgical resection of the epileptogenic zone is the only treatment that can possibly cure the disease. Non-invasive techniques provide information for the localization of the epileptic focus in the majority of cases, whereas in others invasive procedures are required. In the last years, non-invasive neuroimaging techniques, such as simultaneous recording of functional magnetic resonance imaging and electroencephalogram (EEG-fMRI), positron emission tomography (PET), single photon emission computed tomography (SPECT), electric and magnetic source imaging (MSI, ESI), spectroscopy (MRS), have proved their usefulness in defining the epileptic focus. The combination of these functional techniques can yield complementary information and their concordance is crucial for guiding clinical decision, namely the planning of invasive EEG recordings or respective surgery. The aim of this review is to present these non-invasive neuroimaging techniques, their potential combination, and their role in the pre-surgical evaluation of patients with pharmaco-resistant epilepsy.
Collapse
Affiliation(s)
- Francesca Pittau
- Presurgical Epilepsy Evaluation Unit, Neurology Department, University Hospital of Geneva , Geneva , Switzerland
| | - Frédéric Grouiller
- Department of Radiology and Medical Informatics, University Hospital of Geneva , Geneva , Switzerland
| | - Laurent Spinelli
- Presurgical Epilepsy Evaluation Unit, Neurology Department, University Hospital of Geneva , Geneva , Switzerland
| | - Margitta Seeck
- Presurgical Epilepsy Evaluation Unit, Neurology Department, University Hospital of Geneva , Geneva , Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neurosciences, University of Geneva , Geneva , Switzerland
| | - Serge Vulliemoz
- Presurgical Epilepsy Evaluation Unit, Neurology Department, University Hospital of Geneva , Geneva , Switzerland
| |
Collapse
|
47
|
Pittau F, Grouiller F, Spinelli L, Seeck M, Michel CM, Vulliemoz S. The role of functional neuroimaging in pre-surgical epilepsy evaluation. Front Neurol 2014; 5:31. [PMID: 24715886 PMCID: PMC3970017 DOI: 10.3389/fneur.2014.00031] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 03/06/2014] [Indexed: 12/25/2022] Open
Abstract
The prevalence of epilepsy is about 1% and one-third of cases do not respond to medical treatment. In an eligible subset of patients with drug-resistant epilepsy, surgical resection of the epileptogenic zone is the only treatment that can possibly cure the disease. Non-invasive techniques provide information for the localization of the epileptic focus in the majority of cases, whereas in others invasive procedures are required. In the last years, non-invasive neuroimaging techniques, such as simultaneous recording of functional magnetic resonance imaging and electroencephalogram (EEG-fMRI), positron emission tomography (PET), single photon emission computed tomography (SPECT), electric and magnetic source imaging (MSI, ESI), spectroscopy (MRS), have proved their usefulness in defining the epileptic focus. The combination of these functional techniques can yield complementary information and their concordance is crucial for guiding clinical decision, namely the planning of invasive EEG recordings or respective surgery. The aim of this review is to present these non-invasive neuroimaging techniques, their potential combination, and their role in the pre-surgical evaluation of patients with pharmaco-resistant epilepsy.
Collapse
Affiliation(s)
- Francesca Pittau
- Presurgical Epilepsy Evaluation Unit, Neurology Department, University Hospital of Geneva , Geneva , Switzerland
| | - Frédéric Grouiller
- Department of Radiology and Medical Informatics, University Hospital of Geneva , Geneva , Switzerland
| | - Laurent Spinelli
- Presurgical Epilepsy Evaluation Unit, Neurology Department, University Hospital of Geneva , Geneva , Switzerland
| | - Margitta Seeck
- Presurgical Epilepsy Evaluation Unit, Neurology Department, University Hospital of Geneva , Geneva , Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neurosciences, University of Geneva , Geneva , Switzerland
| | - Serge Vulliemoz
- Presurgical Epilepsy Evaluation Unit, Neurology Department, University Hospital of Geneva , Geneva , Switzerland
| |
Collapse
|
48
|
Ingram J, Zhang C, Cressman JR, Hazra A, Wei Y, Koo YE, Žiburkus J, Kopelman R, Xu J, Schiff SJ. Oxygen and seizure dynamics: I. Experiments. J Neurophysiol 2014; 112:205-12. [PMID: 24598521 DOI: 10.1152/jn.00540.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We utilized a novel ratiometric nanoquantum dot fluorescence resonance energy transfer (NQD-FRET) optical sensor to quantitatively measure oxygen dynamics from single cell microdomains during hypoxic episodes as well as during 4-aminopyridine (4-AP)-induced spontaneous seizure-like events in rat hippocampal slices. Coupling oxygen sensing with electrical recordings, we found the greatest reduction in the O2 concentration ([O2]) in the densely packed cell body stratum (st.) pyramidale layer of the CA1 and differential layer-specific O2 dynamics between the st. pyramidale and st. oriens layers. These hypoxic decrements occurred up to several seconds before seizure onset could be electrically measured extracellularly. Without 4-AP, we quantified a narrow range of [O2], similar to the endogenous hypoxia found before epileptiform activity, which permits a quiescent network to enter into a seizure-like state. We demonstrated layer-specific patterns of O2 utilization accompanying layer-specific neuronal interplay in seizure. None of the oxygen overshoot artifacts seen with polarographic measurement techniques were observed. We therefore conclude that endogenously generated hypoxia may be more than just a consequence of increased cellular excitability but an influential and critical factor for orchestrating network dynamics associated with epileptiform activity.
Collapse
Affiliation(s)
- Justin Ingram
- Center for Neural Engineering, The Pennsylvania State University, University Park, Pennsylvania; Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania
| | - Chunfeng Zhang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania; Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing, China
| | - John R Cressman
- Department of Physics, Astronomy, and Computational Sciences, George Mason University, Fairfax, Virginia
| | - Anupam Hazra
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Yina Wei
- Center for Neural Engineering, The Pennsylvania State University, University Park, Pennsylvania; Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania
| | - Yong-Eun Koo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan; and
| | - Jokūbas Žiburkus
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Raoul Kopelman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan; and
| | - Jian Xu
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania
| | - Steven J Schiff
- Center for Neural Engineering, The Pennsylvania State University, University Park, Pennsylvania; Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania; Departments of Neurosurgery and Physics, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
49
|
Modern Techniques of Epileptic Focus Localization. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 114:245-78. [DOI: 10.1016/b978-0-12-418693-4.00010-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
50
|
Vaudano AE, Avanzini P, Tassi L, Ruggieri A, Cantalupo G, Benuzzi F, Nichelli P, Lemieux L, Meletti S. Causality within the Epileptic Network: An EEG-fMRI Study Validated by Intracranial EEG. Front Neurol 2013; 4:185. [PMID: 24294210 PMCID: PMC3827676 DOI: 10.3389/fneur.2013.00185] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/30/2013] [Indexed: 11/13/2022] Open
Abstract
Accurate localization of the Seizure Onset Zone (SOZ) is crucial in patients with drug-resistance focal epilepsy. EEG with fMRI recording (EEG-fMRI) has been proposed as a complementary non-invasive tool, which can give useful additional information in the pre-surgical work-up. However, fMRI maps related to interictal epileptiform activities (IED) often show multiple regions of signal change, or "networks," rather than highly focal ones. Effective connectivity approaches like Dynamic Causal Modeling (DCM) applied to fMRI data potentially offers a framework to address which brain regions drives the generation of seizures and IED within an epileptic network. Here, we present a first attempt to validate DCM on EEG-fMRI data in one patient affected by frontal lobe epilepsy. Pre-surgical EEG-fMRI demonstrated two distinct clusters of blood oxygenation level dependent (BOLD) signal increases linked to IED, one located in the left frontal pole and the other in the ipsilateral dorso-lateral frontal cortex. DCM of the IED-related BOLD signal favored a model corresponding to the left dorso-lateral frontal cortex as driver of changes in the fronto-polar region. The validity of DCM was supported by: (a) the results of two different non-invasive analysis obtained on the same dataset: EEG source imaging (ESI), and "psycho-physiological interaction" analysis; (b) the failure of a first surgical intervention limited to the fronto-polar region; (c) the results of the intracranial EEG monitoring performed after the first surgical intervention confirming a SOZ located over the dorso-lateral frontal cortex. These results add evidence that EEG-fMRI together with advanced methods of BOLD signal analysis is a promising tool that can give relevant information within the epilepsy surgery diagnostic work-up.
Collapse
Affiliation(s)
- Anna Elisabetta Vaudano
- Department of Biomedical Sciences, Metabolism, and Neuroscience, NOCSE Hospital, University of Modena and Reggio Emilia , Modena , Italy ; Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery , London , UK
| | | | | | | | | | | | | | | | | |
Collapse
|