1
|
Chen HW, Ma CP, Chin E, Chen YT, Wang TC, Kuo YP, Su CH, Huang PJ, Tan BCM. Imbalance in Unc80 RNA Editing Disrupts Dynamic Neuronal Activity and Olfactory Perception. Int J Mol Sci 2024; 25:5985. [PMID: 38892173 PMCID: PMC11172567 DOI: 10.3390/ijms25115985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
A-to-I RNA editing, catalyzed by the ADAR protein family, significantly contributes to the diversity and adaptability of mammalian RNA signatures, aligning with developmental and physiological needs. Yet, the functions of many editing sites are still to be defined. The Unc80 gene stands out in this context due to its brain-specific expression and the evolutionary conservation of its codon-altering editing event. The precise biological functions of Unc80 and its editing, however, are still largely undefined. In this study, we first demonstrated that Unc80 editing occurs in an ADAR2-dependent manner and is exclusive to the brain. By employing the CRISPR/Cas9 system to generate Unc80 knock-in mouse models that replicate the natural editing variations, our findings revealed that mice with the "gain-of-editing" variant (Unc80G/G) exhibit heightened basal neuronal activity in critical olfactory regions, compared to the "loss-of-editing" (Unc80S/S) counterparts. Moreover, an increase in glutamate levels was observed in the olfactory bulbs of Unc80G/G mice, indicating altered neurotransmitter dynamics. Behavioral analysis of odor detection revealed distinctive responses to novel odors-both Unc80 deficient (Unc80+/-) and Unc80S/S mice demonstrated prolonged exploration times and heightened dishabituation responses. Further elucidating the olfactory connection of Unc80 editing, transcriptomic analysis of the olfactory bulb identified significant alterations in gene expression that corroborate the behavioral and physiological findings. Collectively, our research advances the understanding of Unc80's neurophysiological functions and the impact of its editing on the olfactory sensory system, shedding light on the intricate molecular underpinnings of olfactory perception and neuronal activity.
Collapse
Affiliation(s)
- Hui-Wen Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-W.C.); (C.-P.M.); (E.C.); (Y.-T.C.); (P.-J.H.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Chung-Pei Ma
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-W.C.); (C.-P.M.); (E.C.); (Y.-T.C.); (P.-J.H.)
| | - En Chin
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-W.C.); (C.-P.M.); (E.C.); (Y.-T.C.); (P.-J.H.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Yi-Tung Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-W.C.); (C.-P.M.); (E.C.); (Y.-T.C.); (P.-J.H.)
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan;
| | - Teh-Cheng Wang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Yu-Ping Kuo
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan;
| | - Chia-Hao Su
- Center for General Education, Chang Gung University, Taoyuan 333, Taiwan;
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Po-Jung Huang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-W.C.); (C.-P.M.); (E.C.); (Y.-T.C.); (P.-J.H.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Genomic Medicine Core Laboratory, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Bertrand Chin-Ming Tan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-W.C.); (C.-P.M.); (E.C.); (Y.-T.C.); (P.-J.H.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Division of Colon and Rectal Surgery, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Neurosurgery, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| |
Collapse
|
2
|
Wu J, Li Y, Tian S, Na S, Wei H, Wu Y, Yang Y, Shen Z, Ding J, Bao S, Liu S, Li L, Feng R, Zhu Y, He C, Yue J. CYP1B1 affects the integrity of the blood-brain barrier and oxidative stress in the striatum: An investigation of manganese-induced neurotoxicity. CNS Neurosci Ther 2024; 30:e14633. [PMID: 38429921 PMCID: PMC10907825 DOI: 10.1111/cns.14633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 03/03/2024] Open
Abstract
AIMS Excessive influx of manganese (Mn) into the brain across the blood-brain barrier induces neurodegeneration. CYP1B1 is involved in the metabolism of arachidonic acid (AA) that affects vascular homeostasis. We aimed to investigate the effect of brain CYP1B1 on Mn-induced neurotoxicity. METHOD Brain Mn concentrations and α-synuclein accumulation were measured in wild-type and CYP1B1 knockout mice treated with MnCl2 (30 mg/kg) and biotin (0.2 g/kg) for 21 continuous days. Tight junctions and oxidative stress were analyzed in hCMEC/D3 and SH-SY5Y cells after the treatment with MnCl2 (200 μM) and CYP1B1-derived AA metabolites (HETEs and EETs). RESULTS Mn exposure inhibited brain CYP1B1, and CYP1B1 deficiency increased brain Mn concentrations and accelerated α-synuclein deposition in the striatum. CYP1B1 deficiency disrupted the integrity of the blood-brain barrier (BBB) and increased the ratio of 3, 4-dihydroxyphenylacetic acid (DOPAC) to dopamine in the striatum. HETEs attenuated Mn-induced inhibition of tight junctions by activating PPARγ in endothelial cells. Additionally, EETs attenuated Mn-induced up-regulation of the KLF/MAO-B axis and down-regulation of NRF2 in neuronal cells. Biotin up-regulated brain CYP1B1 and reduced Mn-induced neurotoxicity in mice. CONCLUSIONS Brain CYP1B1 plays a critical role in both cerebrovascular and dopamine homeostasis, which might serve as a novel therapeutic target for the prevention of Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Juan Wu
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhanChina
- Department of PharmacyTaikang Tongji (Wuhan) HospitalWuhuChina
| | - Yueran Li
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhanChina
- Department of PharmacyThe First Affiliated Hospital of Wannan Medical CollegeWuhuChina
| | - Shuwei Tian
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Shufang Na
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan UniversityTransplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on TransplantationWuhanHubeiChina
| | - Hongyan Wei
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Yafei Wu
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Yafei Yang
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Zixia Shen
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Jiayue Ding
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Shenglan Bao
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Siqi Liu
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Lingyun Li
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Rongling Feng
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Yong Zhu
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Chunyan He
- Demonstration Center for Experimental Basic Medicine Education, School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Jiang Yue
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhanChina
- Hubei Province Key Laboratory of Allergy and ImmunologyWuhanChina
| |
Collapse
|
3
|
Washington KM, Solari MG, Zanoun RR, Kwegyir-Afful EE, Su AJA, Carvell GE, Lee WPA, Simons DJ. Cortical reintegration after facial allotransplantation. J Neurophysiol 2023; 129:421-430. [PMID: 36542405 DOI: 10.1152/jn.00349.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Neural plasticity of the brain or its ability to reorganize following injury has likely coincided with the successful clinical correction of severe deformity by facial transplantation since 2005. In this study, we present the cortical reintegration outcomes following syngeneic hemifacial vascularized composite allograft (VCA) in a small animal model. Specifically, changes in the topographic organization and unit response properties of the rodent whisker-barrel somatosensory system were assessed following hemifacial VCA. Clear differences emerged in the barrel-cortex system when comparing naïve and hemiface transplanted animals. Neurons in the somatosensory cortex of transplanted rats had decreased sensitivity albeit increased directional sensitivity compared with naïve rats and evoked responses in transplanted animals were more temporally dispersed. In addition, receptive fields were often topographically mismatched with the indication that the mismatched topography reorganized within adjacent barrel (same row-arc bias following hemifacial transplant). These results suggest subcortical changes in the thalamus and/or brainstem play a role in hemifacial transplantation cortical plasticity and demonstrate the discrete and robust data that can be derived from this clinically relevant small animal VCA model for use in optimizing postsurgical outcomes.NEW & NOTEWORTHY Robust rodent hemifacial transplant model was used to record functional changes in somatosensory cortex after transplantation. Neurons in the somatosensory cortex of face transplant recipients had decreased sensitivity to stimulation of whiskers with increased directional sensitivity vs. naive rats. Transplant recipient cortical unit response was more dispersed in temporary vs. naive rats. Despite histological similarities to naive cortices, transplant recipient cortices had a mix of topographically appropriate and inappropriate whiskered at barrel cortex relationships.
Collapse
Affiliation(s)
- Kia M Washington
- Department of Plastic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Surgery, University of Colorado School of Medicine, CU Anschutz Medical Campus, Aurora, Colorado
| | - Mario G Solari
- Department of Plastic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Rami R Zanoun
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ernest E Kwegyir-Afful
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - An-Jey A Su
- Department of Plastic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Surgery, University of Colorado School of Medicine, CU Anschutz Medical Campus, Aurora, Colorado
| | - George E Carvell
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - W P Andrew Lee
- Department of Plastic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Daniel J Simons
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
4
|
van Vliet EA, Immonen R, Prager O, Friedman A, Bankstahl JP, Wright DK, O'Brien TJ, Potschka H, Gröhn O, Harris NG. A companion to the preclinical common data elements and case report forms for in vivo rodent neuroimaging: A report of the TASK3-WG3 Neuroimaging Working Group of the ILAE/AES Joint Translational Task Force. Epilepsia Open 2022. [PMID: 35962745 DOI: 10.1002/epi4.12643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/01/2022] [Indexed: 11/10/2022] Open
Abstract
The International League Against Epilepsy/American Epilepsy Society (ILAE/AES) Joint Translational Task Force established the TASK3 working groups to create common data elements (CDEs) for various aspects of preclinical epilepsy research studies, which could help improve the standardization of experimental designs. In this article, we discuss CDEs for neuroimaging data that are collected in rodent models of epilepsy, with a focus on adult rats and mice. We provide detailed CDE tables and case report forms (CRFs), and with this companion manuscript, we discuss the methodologies for several imaging modalities and the parameters that can be collected.
Collapse
Affiliation(s)
- Erwin A van Vliet
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC Location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Riikka Immonen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Ofer Prager
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alon Friedman
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Medical Neuroscience and Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jens P Bankstahl
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Terence J O'Brien
- The Royal Melbourne Hospital, The University of Melbourne, The Alfred Hospital, Monash University, Melbourne, Victoria, Australia
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Olli Gröhn
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Neil G Harris
- Department of Neurosurgery UCLA, UCLA Brain Injury Research Center, Los Angeles, California, USA
- Intellectual and Developmental Disabilities Research Center, UCLA, Los Angeles, California, USA
| |
Collapse
|
5
|
Uselman TW, Barto DR, Jacobs RE, Bearer EL. Evolution of brain-wide activity in the awake behaving mouse after acute fear by longitudinal manganese-enhanced MRI. Neuroimage 2020; 222:116975. [PMID: 32474079 PMCID: PMC7805483 DOI: 10.1016/j.neuroimage.2020.116975] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 01/08/2023] Open
Abstract
Life threatening fear after a single exposure evolves in a subset of vulnerable individuals to anxiety, which may persist for their lifetime. Yet neither the whole brain's response to innate acute fear nor how brain activity evolves over time is known. Sustained neuronal activity may be a factor in the development of a persistent fear response. We couple two experimental protocols to provoke acute fear leading to prolonged fear: Predator stress (PS), a naturalistic approach to induce fear in rodents; and Serotonin transporter knockout mouse (SERT-KO) that responds to PS with sustained defensive behavior. Behavior was monitored before, during and at short and long times after PS in wild type (WT) and SERT-KO mice. Both genotypes responded to PS with defensive behavior. SERT-KO retained defensive behavior for 23 days, while WT mice returned to baseline exploratory behavior by 9 days. Thus, differences in neural activity between WT and SERT-KO 9 days after PS identifies neural correlates of persistent defensive behavior, in mice. We used longitudinal manganese-enhanced magnetic resonance imaging (MEMRI) to identify brain-wide neural activity associated with different behaviors. Mn2+ accumulation in active neurons occurs in awake, behaving mice and is retrospectively imaged. Following the same two cohorts of mice, WT and SERT-KO, longitudinally allowed unbiased quantitative comparisons of brain-wide activity by statistical parametric mapping (SPM). During natural behavior in WT, only low levels of activity-induced Mn2+-accumulation were detected, while much more accumulation appeared immediately after PS in both WT and SERT-KO, and evolved at 9 days to a new activity pattern (p < 0.0001, uncorr., T = 5.4). Patterns of accumulation differed between genotypes, with more regions of the brain and larger volumes within regions involved in SERT-KO than WT. A new computational segmentation analysis, using our InVivo Atlas based on a manganese-enhanced MR image of a living mouse, revealed dynamic changes in the volume of significantly enhanced voxels within each segment that differed between genotypes across 45 of 87 segmented regions. At Day 9 after PS, the striatum and ventral pallidum were active in both genotypes but more so in the SERT-KO. SERT-KO also displayed sustained or increased volume of Mn2+ accumulations between Post-Fear and Day 9 in eight segments where activity was decreased or silenced in WT. C-fos staining, an alternative neural activity marker, of brains from the same mice fixed at conclusion of imaging sessions confirmed that MEMRI detected active neurons. Intensity measurements in 12 regions of interest (ROIs) supported the SPM results. Between group comparisons by SPM and of ROI measurements identified specific regions differing between time points and genotypes. We report brain-wide activity in response to a single exposure of acute fear, and, for the first time, its evolution to new activity patterns over time in individuals vulnerable to persistent fear. Our results show multiple regions with dynamic changes in neural activity and that the balance of activity between segments is disordered in the SERT-KO. Thus, longitudinal MEMRI represents a powerful approach to discover how brain-wide activity evolves from the natural state either after an experience or during a disease process.
Collapse
Affiliation(s)
- Taylor W Uselman
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Daniel R Barto
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Russell E Jacobs
- Zilkha Neurogenetics Institute, University of Southern California, Los Angeles, CA, USA; California Institute of Technology, Pasadena, CA, USA
| | - Elaine L Bearer
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
6
|
Physiological Considerations of Functional Magnetic Resonance Imaging in Animal Models. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:522-532. [DOI: 10.1016/j.bpsc.2018.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 02/06/2023]
|
7
|
Androuin A, Abada YS, Ly M, Santin M, Petiet A, Epelbaum S, Bertrand A, Delatour B. Activity-induced MEMRI cannot detect functional brain anomalies in the APPxPS1-Ki mouse model of Alzheimer's disease. Sci Rep 2019; 9:1140. [PMID: 30718666 PMCID: PMC6361936 DOI: 10.1038/s41598-018-37980-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/10/2018] [Indexed: 12/02/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia. Aside neuropathological lesions, abnormal neuronal activity and brain metabolism are part of the core symptoms of the disease. Activity-induced Manganese-Enhanced Magnetic Resonance Imaging (MEMRI) has been proposed as a powerful approach to visualize evoked brain activity in rodents. Here, we evaluated the relevance of MEMRI in measuring neuronal (dys-)function in the APPxPS1 knocked-in (KI) mouse model of AD. Brain anomalies were firstly demonstrated in APPxPS1-Ki mice using cognitive testing (memory impairment) and histological mapping of immediate early gene products (decreased density of fos-positive neurons). Paradoxically, MEMRI analyses were not able to confirm the occurrence of neuronal hypoactivities in vivo. We then performed a neuropathological analysis that highlighted an abnormal increased permeability of the blood-brain barrier (BBB) in APPxPS1-Ki mice. We hypothesized that diffuse weakening of the BBB results in an uncontrolled diffusion of the MR contrast agent and a lack of correlation between manganese accumulation and neuronal activity. These results bring to light a limitation of the activity-induced MEMRI approach when applied to the APPxPS1-Ki mouse model as well as other mouse models harboring a compromised BBB.
Collapse
Affiliation(s)
- Alexandre Androuin
- Institut du Cerveau et de la Moelle épinière, INSERM U1127, CNRS UMR7225, Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - Yah-Se Abada
- Institut du Cerveau et de la Moelle épinière, INSERM U1127, CNRS UMR7225, Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - Myriam Ly
- Institut du Cerveau et de la Moelle épinière, INSERM U1127, CNRS UMR7225, Université Pierre et Marie Curie, Sorbonne Universités, Paris, France.,Institut Roche, Boulogne-Billancourt, France
| | - Mathieu Santin
- Institut du Cerveau et de la Moelle épinière, INSERM U1127, CNRS UMR7225, Université Pierre et Marie Curie, Sorbonne Universités, Paris, France.,Center for Neuroimaging Research, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Alexandra Petiet
- Institut du Cerveau et de la Moelle épinière, INSERM U1127, CNRS UMR7225, Université Pierre et Marie Curie, Sorbonne Universités, Paris, France.,Center for Neuroimaging Research, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Stéphane Epelbaum
- Institut du Cerveau et de la Moelle épinière, INSERM U1127, CNRS UMR7225, Université Pierre et Marie Curie, Sorbonne Universités, Paris, France.,Centre des Maladies Cognitives et Comportementales, Sorbonne Universités, Hôpital de la Salpêtrière, Paris, France.,Aramis Project Team, Inria Research Center of Paris, Paris, France
| | - Anne Bertrand
- Institut du Cerveau et de la Moelle épinière, INSERM U1127, CNRS UMR7225, Université Pierre et Marie Curie, Sorbonne Universités, Paris, France.,Aramis Project Team, Inria Research Center of Paris, Paris, France
| | - Benoît Delatour
- Institut du Cerveau et de la Moelle épinière, INSERM U1127, CNRS UMR7225, Université Pierre et Marie Curie, Sorbonne Universités, Paris, France.
| |
Collapse
|
8
|
Ceftriaxone Treatment for Neuronal Deficits: A Histological and MEMRI Study in a Rat Model of Dementia with Lewy Bodies. Behav Neurol 2018; 2018:4618716. [PMID: 30154934 PMCID: PMC6092970 DOI: 10.1155/2018/4618716] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/22/2018] [Accepted: 03/12/2018] [Indexed: 11/18/2022] Open
Abstract
Dementia with Lewy bodies (DLB) is characterized by neuronal deficits and α-synuclein inclusions in the brain. Ceftriaxone (CEF), a β-lactam antibiotic, has been suggested as a therapeutic agent in several neurodegenerative disorders for its abilities to counteract glutamate-mediated toxicity and to block α-synuclein polymerization. By using manganese-enhanced magnetic resonance imaging (MEMRI) and immunohistochemistry, we measured the effects of CEF on neuronal activity and α-synuclein accumulation in the brain in a DLB rat model. The data showed that CEF corrected neuronal density and activity in the hippocampal CA1 area, suppressed hyperactivity in the subthalamic nucleus, and reduced α-synuclein accumulation, indicating that CEF is a potential agent in the treatment of DLB.
Collapse
|
9
|
Almeida-Corrêa S, Czisch M, Wotjak CT. In Vivo Visualization of Active Polysynaptic Circuits With Longitudinal Manganese-Enhanced MRI (MEMRI). Front Neural Circuits 2018; 12:42. [PMID: 29887796 PMCID: PMC5981681 DOI: 10.3389/fncir.2018.00042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 04/30/2018] [Indexed: 12/23/2022] Open
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) is a powerful tool for in vivo non-invasive whole-brain mapping of neuronal activity. Mn2+ enters active neurons via voltage-gated calcium channels and increases local contrast in T1-weighted images. Given the property of Mn2+ of axonal transport, this technique can also be used for tract tracing after local administration of the contrast agent. However, MEMRI is still not widely employed in basic research due to the lack of a complete description of the Mn2+ dynamics in the brain. Here, we sought to investigate how the activity state of neurons modulates interneuronal Mn2+ transport. To this end, we injected mice with low dose MnCl2 2. (i.p., 20 mg/kg; repeatedly for 8 days) followed by two MEMRI scans at an interval of 1 week without further MnCl2 injections. We assessed changes in T1 contrast intensity before (scan 1) and after (scan 2) partial sensory deprivation (unilateral whisker trimming), while keeping the animals in a sensory enriched environment. After correcting for the general decay in Mn2+ content, whole brain analysis revealed a single cluster with higher signal in scan 1 compared to scan 2: the left barrel cortex corresponding to the right untrimmed whiskers. In the inverse contrast (scan 2 > scan 1), a number of brain structures, including many efferents of the left barrel cortex were observed. These results suggest that continuous neuronal activity elicited by ongoing sensory stimulation accelerates Mn2+ transport from the uptake site to its projection terminals, while the blockage of sensory-input and the resulting decrease in neuronal activity attenuates Mn2+ transport. The description of this critical property of Mn2+ dynamics in the brain allows a better understanding of MEMRI functional mechanisms, which will lead to more carefully designed experiments and clearer interpretation of the results.
Collapse
Affiliation(s)
- Suellen Almeida-Corrêa
- Department of Stress Neurobiology & Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Michael Czisch
- Core Unit Neuroimaging, Max Planck Institute of Psychiatry, Munich, Germany
| | - Carsten T Wotjak
- Department of Stress Neurobiology & Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
10
|
Tang X, Wu D, Gu LH, Nie BB, Qi XY, Wang YJ, Wu FF, Li XL, Bai F, Chen XC, Xu L, Ren QG, Zhang ZJ. Spatial learning and memory impairments are associated with increased neuronal activity in 5XFAD mouse as measured by manganese-enhanced magnetic resonance imaging. Oncotarget 2018; 7:57556-57570. [PMID: 27542275 PMCID: PMC5295372 DOI: 10.18632/oncotarget.11353] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 07/19/2016] [Indexed: 01/13/2023] Open
Abstract
Dysfunction of neuronal activity is a major and early contributor to cognitive impairment in Alzheimer's disease (AD). To investigate neuronal activity alterations at early stage of AD, we encompassed behavioral testing and in vivo manganese-enhanced magnetic resonance imaging (MEMRI) in 5XFAD mice at early ages (1-, 2-, 3- and 5-month). The 5XFAD model over-express human amyloid precursor protein (APP) and presenilin 1 (PS1) harboring five familial AD mutations, which have a high APP expression correlating with a high burden and an accelerated accumulation of the 42 amino acid species of amyloid-β. In the Morris water maze, 5XFAD mice showed longer escape latency and poorer memory retention. In the MEMRI, 5XFAD mice showed increased signal intensity in the brain regions involved in spatial cognition, including the entorhinal cortex, the hippocampus, the retrosplenial cortex and the caudate putamen. Of note, the observed alterations in spatial cognition were associated with increased MEMRI signal intensity. These findings indicate that aberrant increased basal neuronal activity may contribute to the spatial cognitive function impairment at early stage of AD, and may further suggest the potential use of MEMRI to predict cognitive impairments. Early intervention that targets aberrant neuronal activity may be crucial to prevent cognitive impairment.
Collapse
Affiliation(s)
- Xiang Tang
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Di Wu
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Li-Hua Gu
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Bin-Bin Nie
- Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Xin-Yang Qi
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yan-Juan Wang
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Fang-Fang Wu
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xiao-Li Li
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Feng Bai
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xiao-Chun Chen
- Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Lin Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China.,Graduate School of Chinese Academy of Sciences, Beijing, China
| | - Qing-Guo Ren
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Zhi-Jun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Gálosi R, Szalay C, Aradi M, Perlaki G, Pál J, Steier R, Lénárd L, Karádi Z. Identifying non-toxic doses of manganese for manganese-enhanced magnetic resonance imaging to map brain areas activated by operant behavior in trained rats. Magn Reson Imaging 2016; 37:122-133. [PMID: 27889621 DOI: 10.1016/j.mri.2016.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 12/13/2022]
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) offers unique advantages such as studying brain activation in freely moving rats, but its usefulness has not been previously evaluated during operant behavior training. Manganese in a form of MnCl2, at a dose of 20mg/kg, was intraperitoneally infused. The administration was repeated and separated by 24h to reach the dose of 40mg/kg or 60mg/kg, respectively. Hepatotoxicity of the MnCl2 was evaluated by determining serum aspartate aminotransferase, alanine aminotransferase, total bilirubin, albumin and protein levels. Neurological examination was also carried out. The animals were tested in visual cue discriminated operant task. Imaging was performed using a 3T clinical MR scanner. T1 values were determined before and after MnCl2 administrations. Manganese-enhanced images of each animal were subtracted from their baseline images to calculate decrease in the T1 value (ΔT1) voxel by voxel. The subtracted T1 maps of trained animals performing visual cue discriminated operant task, and those of naive rats were compared. The dose of 60mg/kg MnCl2 showed hepatotoxic effect, but even these animals did not exhibit neurological symptoms. The dose of 20 and 40mg/kg MnCl2 increased the number of omissions and did not affect the accuracy of performing the visual cue discriminated operant task. Using the accumulated dose of 40mg/kg, voxels with a significant enhanced ΔT1 value were detected in the following brain areas of the visual cue discriminated operant behavior performed animals compared to those in the controls: the visual, somatosensory, motor and premotor cortices, the insula, cingulate, ectorhinal, entorhinal, perirhinal and piriform cortices, hippocampus, amygdala with amygdalohippocampal areas, dorsal striatum, nucleus accumbens core, substantia nigra, and retrorubral field. In conclusion, the MEMRI proved to be a reliable method to accomplish brain activity mapping in correlation with the operant behavior of freely moving rodents.
Collapse
Affiliation(s)
- Rita Gálosi
- Institute of Physiology, Medical School of University of Pécs, Pécs, Hungary.
| | - Csaba Szalay
- Institute of Physiology, Medical School of University of Pécs, Pécs, Hungary.
| | | | - Gábor Perlaki
- Neurosurgery Clinic, Medical School of University of Pécs, Pécs, Hungary; Pécs Diagnostic Center, Pécs, Hungary
| | - József Pál
- Neurosurgery Clinic, Medical School of University of Pécs, Pécs, Hungary
| | - Roy Steier
- Neurosurgery Clinic, Medical School of University of Pécs, Pécs, Hungary.
| | - László Lénárd
- Institute of Physiology, Medical School of University of Pécs, Pécs, Hungary; Molecular Neuroendocrinology and Neurophysiology Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Zoltán Karádi
- Institute of Physiology, Medical School of University of Pécs, Pécs, Hungary; Molecular Neuroendocrinology and Neurophysiology Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary
| |
Collapse
|
12
|
Weng JC, Tikhonova MA, Chen JH, Shen MS, Meng WY, Chang YT, Chen KH, Liang KC, Hung CS, Amstislavskaya TG, Ho YJ. Ceftriaxone prevents the neurodegeneration and decreased neurogenesis seen in a Parkinson's disease rat model: An immunohistochemical and MRI study. Behav Brain Res 2016; 305:126-39. [PMID: 26940602 DOI: 10.1016/j.bbr.2016.02.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/19/2016] [Accepted: 02/26/2016] [Indexed: 02/06/2023]
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) is a widely used technique for detecting neuronal activity in the brain of a living animal. Ceftriaxone (CEF) has been shown to have neuroprotective effects in neurodegenerative diseases. The present study was aimed at clarifying whether, in an 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) rat model, the known CEF-induced neuronal protection was accompanied by neurogenesis and decreased loss of neuronal activity. After MPTP lesioning (day 0), the rats were treated with CEF (100mg/kg/day, i.p.) or saline for 15 days. They were then injected with MnCl2 (40mg/kg, i.p.) on day 13 and underwent a brain MRI scan on day 14, then the brain was taken for histological evaluation on day 15. The results showed that MPTP lesioning resulted in decreased neuronal activity and density in the nigrostriatal dopaminergic (DAergic) system and the hippocampal CA1, CA3, and dentate gyrus (DG) areas and reduced neurogenesis in the DG, but in hyperactivity in the subthalamic nucleus (STN). These neuronal changes were prevented by CEF treatment. Positive correlations between MEMRI R1 values and neuronal density in the hippocampus were evidenced. Neuronal densities in the hippocampus and SNc were positively correlated. In addition, the R1 value of the STN showed a positive correlation with its neuronal activity but showed a negative correlation with the density of DAergic neurons in the SNc. Therefore, MEMRI R1 value may serve as a good indicator for PD severity and the effect of treatment. To our knowledge, this is the first study showing that CEF prevents loss of neuronal activity and neurogenesis in the brain of PD rats. CEF may therefore have clinical potential in the treatment of PD.
Collapse
Affiliation(s)
- Jun-Cheng Weng
- Department of Medical Imaging and Radiological Sciences, Department of Medical Imaging, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Maria A Tikhonova
- Laboratory of Experimental Models of Neurodegenerative Processes, Federal State Budgetary Scientific Institution "Scientific Research Institute of Physiology and Basic Medicine", Novosibirsk 630117, Russia
| | - Jian-Horng Chen
- School of Physical Therapy, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Mei-Shiuan Shen
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Wan-Yun Meng
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Yen-Ting Chang
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Ke-Hsin Chen
- Department of Psychology, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Keng-Chen Liang
- Department of Psychology, National Taiwan University, Taipei 10617, Taiwan, ROC; Neurobiology and Cognitive Science Center, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Ching-Sui Hung
- Occupational Safety and Health Office, Taipei City Hospital, Taipei 10341, Taiwan, ROC.
| | - Tamara G Amstislavskaya
- Laboratory of Experimental Models of Emotional Pathology, Federal State Budgetary Scientific Institution "Scientific Research Institute of Physiology and Basic Medicine", Novosibirsk 630117, Russia.
| | - Ying-Jui Ho
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 402, Taiwan, ROC.
| |
Collapse
|
13
|
Activity-induced manganese-dependent MRI (AIM-MRI) and functional MRI in awake rabbits during somatosensory stimulation. Neuroimage 2015; 126:72-80. [PMID: 26589332 DOI: 10.1016/j.neuroimage.2015.11.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 10/02/2015] [Accepted: 11/13/2015] [Indexed: 11/20/2022] Open
Abstract
Activity-induced manganese-dependent MRI (AIM-MRI) is a powerful tool to track system-wide neural activity using high resolution, quantitative T1-weighted MRI in animal models and has significant advantages for investigating neural activity over other modalities including BOLD fMRI. With AIM-MRI, Mn(2+) ions enter neurons via voltage-gated calcium channels preferentially active during the time of experimental exposure. A broad range of AIM-MRI studies using different species studying different phenomena have been performed, but few of these studies provide a systematic evaluation of the factors influencing the detection of Mn(2+) such as dosage and the temporal characteristics of Mn(2+) uptake. We identified an optimal dose of Mn(2+) (25 mg/kg, s.c.) in order to characterize the time-course of Mn(2+) accumulation in active neural regions in the rabbit. T1-weighted MRI and functional MRI were collected 0-3, 6-9, and 24-27 h post-Mn(2+) injection while the vibrissae on the right side were vibrated. Significant BOLD activation in the left somatosensory (SS) cortex and left ventral posteromedial (VPM) thalamic nucleus was detected during whisker vibration. T1-weighted signal intensities were extracted from these regions, their corresponding contralateral regions and the visual cortex (to serve as controls). A significant elevation in T1-weighted signal intensity in the left SS cortex (relative to right) was evident 6-9 and 24-27 h post-Mn(2+) injection while the left VPM thalamus showed a significant enhancement (relative to the right) only during the 24-27 h session. Visual cortex showed no hemispheric difference at any timepoint. Our results suggest that studies employing AIM-MRI would benefit by conducting experimental manipulations 6-24 h after subcutaneous MnCl2 injections to optimize the concentration of contrast agent in the regions active during the exposure.
Collapse
|
14
|
Manganese-Enhanced MRI Reflects Both Activity-Independent and Activity-Dependent Uptake within the Rat Habenulomesencephalic Pathway. PLoS One 2015; 10:e0127773. [PMID: 26009889 PMCID: PMC4443977 DOI: 10.1371/journal.pone.0127773] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 04/20/2015] [Indexed: 11/19/2022] Open
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) is a powerful technique for assessing the functional connectivity of neurons within the central nervous system. Despite the widely held proposition that MEMRI signal is dependent on neuronal activity, few studies have directly tested this implicit hypothesis. In the present series of experiments, MnCl2 was injected into the habenula of urethane-anesthetized rats alone or in combination with drugs known to alter neuronal activity by modulating specific voltage- and/or ligand-gated ion channels. Continuous quantitative T1 mapping was used to measure Mn2+ accumulation in the interpeduncular nucleus, a midline structure in which efferents from the medial habenula terminate. Microinjection of MnCl2 into the habenular complex using a protocol that maintained spontaneous neuronal activity resulted in a time-dependent increase in MEMRI signal intensity in the interpeduncular nucleus consistent with fast axonal transport of Mn2+ between these structures. Co-injection of the excitatory amino-acid agonist AMPA, increased the Mn2+-enhanced signal intensity within the interpeduncular nucleus. AMPA-induced increases in MEMRI signal were attenuated by co-injection of either the sodium channel blocker, TTX, or broad-spectrum Ca2+ channel blocker, Ni2+, and were occluded in the presence of both channel blockers. However, neither Ni2+ nor TTX, alone or in combination, attenuated the increase in signal intensity following injection of Mn2+ into the habenula. These results support the premise that changes in neuronal excitability are reflected by corresponding changes in MEMRI signal intensity. However, they also suggest that basal rates of Mn2+ uptake by neurons in the medial habenula may also occur via activity-independent mechanisms.
Collapse
|
15
|
Auffret M, Samim I, Lepore M, Gruetter R, Just N. Quantitative activity-induced manganese-dependent MRI for characterizing cortical layers in the primary somatosensory cortex of the rat. Brain Struct Funct 2014; 221:695-707. [PMID: 25366973 DOI: 10.1007/s00429-014-0933-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 10/24/2014] [Indexed: 11/29/2022]
Abstract
The ability of Mn(2+) to follow Ca(2+) pathways upon stimulation transform them into remarkable surrogate markers of neuronal activity using activity-induced manganese-dependent MRI (AIM-MRI). In the present study, a precise follow-up of physiological parameters during MnCl2 and mannitol infusions improved the reproducibility of AIM-MRI allowing in-depth evaluation of the technique. Pixel-by-pixel T1 data were investigated using histogram distributions in the barrel cortex (BC) and the thalamus before and after Mn(2+) infusion, after blood brain barrier opening and after BC activation. Mean BC T1 values dropped significantly upon trigeminal nerve (TGN) stimulation (-38 %, P = 0.02) in accordance with previous literature findings. T1 histogram distributions showed that 34 % of T1s in the range 600-1500 ms after Mn(2+ )+ mannitol infusions shifted to 50-350 ms after TGN stimulation corresponding to a twofold increase of the percentage of pixels with the lowest T1s in BC. Moreover, T1 changes in response to stimulation increased significantly from superficial cortical layers (I-III) to deeper layers (V-VI). Cortical cytoarchitecture detection during a functional paradigm was performed extending the potential of AIM-MRI. Quantitative AIM-MRI could thus offer a means to interpret local neural activity across cortical layers while identification of the role of calcium dynamics in vivo during brain activation could play a key role in resolving neurovascular coupling mechanisms.
Collapse
Affiliation(s)
- Matthieu Auffret
- Laboratory for Functional and Metabolic Imaging (LIFMET), Centre d'Imagerie Biomédicale-Animal Imaging and Technology Core (CIBM-AIT), Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Idrees Samim
- Laboratory for Functional and Metabolic Imaging (LIFMET), Centre d'Imagerie Biomédicale-Animal Imaging and Technology Core (CIBM-AIT), Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Mario Lepore
- Laboratory for Functional and Metabolic Imaging (LIFMET), Centre d'Imagerie Biomédicale-Animal Imaging and Technology Core (CIBM-AIT), Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging (LIFMET), Centre d'Imagerie Biomédicale-Animal Imaging and Technology Core (CIBM-AIT), Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Nathalie Just
- Laboratory for Functional and Metabolic Imaging (LIFMET), Centre d'Imagerie Biomédicale-Animal Imaging and Technology Core (CIBM-AIT), Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
16
|
Lei BH, Chen JH, Yin HS. Repeated amphetamine treatment alters spinal magnetic resonance signals and pain sensitivity in mice. Neurosci Lett 2014; 583:70-5. [PMID: 25246351 DOI: 10.1016/j.neulet.2014.09.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/10/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) has been extensively used in studying the structural and functional features of the central nervous system (CNS). Divalent manganese ion (Mn(2+)) not only enhances MRI contrast, but also enters cells via voltage-gated calcium channels or ionotropic glutamate receptors, which represents an index of neural activities. In the current mouse model, following the repeated amphetamine (Amph) treatment, a reduction of reactivity to thermal pain stimulus was noticed. Since the spinal dorsal horn is the first relay station for pain transmission in CNS, we examined the changes of neural activity in the dorsal spinal cord, particularly the superficial dorsal horn, by analyzing manganese-enhanced T1-weighted MR images (T1WIs). Our data revealed a temporal correlation between reduced pain sensitivity and increased MEMR signals in the spinal dorsal horn subsequent to repeated Amph treatments.
Collapse
Affiliation(s)
- Bing-Hsuan Lei
- Interdisciplinary MRI/MRS Lab, Graduate Institute of Electrical Engineering, National Taiwan University, Taiwan, ROC; National Taiwan University Molecular Imaging Center, Taiwan, ROC
| | - Jyh-Horng Chen
- Interdisciplinary MRI/MRS Lab, Graduate Institute of Electrical Engineering, National Taiwan University, Taiwan, ROC; National Taiwan University Molecular Imaging Center, Taiwan, ROC; Neurobiology and Cognitive Science Center, National Taiwan University, Taiwan, ROC.
| | - Hsiang-Shu Yin
- Neurobiology and Cognitive Science Center, National Taiwan University, Taiwan, ROC; Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taiwan, ROC.
| |
Collapse
|
17
|
Malheiros JM, Persike DS, Castro LUCD, Sanches TRC, Andrade LDC, Tannús A, Covolan L. Reduced hippocampal manganese-enhanced MRI (MEMRI) signal during pilocarpine-induced status epilepticus: edema or apoptosis? Epilepsy Res 2014; 108:644-52. [PMID: 24630048 DOI: 10.1016/j.eplepsyres.2014.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/13/2014] [Accepted: 02/04/2014] [Indexed: 10/25/2022]
Abstract
Manganese-enhanced MRI (MEMRI) has been considered a surrogate marker of Ca(+2) influx into activated cells and tracer of neuronal active circuits. However, the induction of status epilepticus (SE) by kainic acid does not result in hippocampal MEMRI hypersignal, in spite of its high cell activity. Similarly, short durations of status (5 or 15min) induced by pilocarpine did not alter the hippocampal MEMRI, while 30 min of SE even reduced MEMRI signal Thus, this study was designed to investigate possible explanations for the absence or decrease of MEMRI signal after short periods of SE. We analyzed hippocampal caspase-3 activation (to evaluate apoptosis), T2 relaxometry (tissue water content) and aquaporin 4 expression (water-channel protein) of rats subjected to short periods of pilocarpine-induced SE. For the time periods studied here, apoptotic cell death did not contribute to the decrease of the hippocampal MEMRI signal. However, T2 relaxation was higher in the group of animals subjected to 30min of SE than in the other SE or control groups. This result is consistent with higher AQP-4 expression during the same time period. Based on apoptosis and tissue water content analysis, the low hippocampal MEMRI signal 30min after SE can potentially be attributed to local edema rather than to cell death.
Collapse
Affiliation(s)
- Jackeline Moraes Malheiros
- Departamento de Fisiologia, Universidade Federal de São Paulo-UNIFESP, São Paulo 04023-06, SP, Brazil; Centro de Imagens e Espectroscopia in vivo por Ressonância Magnética (CIERMag), Instituto de Física de São Carlos, Universidade de São Paulo (IFSC-USP), São Carlos 13566-590, SP, Brazil
| | - Daniele Suzete Persike
- Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo-UNIFESP, São Paulo, SP, Brazil
| | | | | | | | - Alberto Tannús
- Centro de Imagens e Espectroscopia in vivo por Ressonância Magnética (CIERMag), Instituto de Física de São Carlos, Universidade de São Paulo (IFSC-USP), São Carlos 13566-590, SP, Brazil
| | - Luciene Covolan
- Departamento de Fisiologia, Universidade Federal de São Paulo-UNIFESP, São Paulo 04023-06, SP, Brazil.
| |
Collapse
|
18
|
Zhang R, Fa Z, Liu Y, Sun H, Li P, Li S, Wang X, Lei H, Jiang X. Dynamic MRI of rat brain following manganese administration through the internal carotid artery. Neurol Res 2013; 36:679-86. [DOI: 10.1179/1743132813y.0000000291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
19
|
Fa Z, Zhang P, Wu W, Wang Z, Huang F, Yang L, Chang H, Xu R, Wen Z, Zhang J, Zeng Y, Jiang X. Functional mapping of rat brain activation following rTMS using activity-induced manganese-dependent contrast. Neurol Res 2013; 33:563-71. [DOI: 10.1179/1743132810y.0000000009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
20
|
Grünecker B, Kaltwasser SF, Zappe AC, Bedenk BT, Bicker Y, Spoormaker VI, Wotjak CT, Czisch M. Regional specificity of manganese accumulation and clearance in the mouse brain: implications for manganese-enhanced MRI. NMR IN BIOMEDICINE 2013; 26:542-556. [PMID: 23168745 DOI: 10.1002/nbm.2891] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 10/17/2012] [Accepted: 10/21/2012] [Indexed: 06/01/2023]
Abstract
Manganese-enhanced MRI has recently become a valuable tool for the assessment of in vivo functional cerebral activity in animal models. As a result of the toxicity of manganese at higher dosages, fractionated application schemes have been proposed to reduce the toxic side effects by using lower concentrations per injection. Here, we present data on regional-specific manganese accumulation during a fractionated application scheme over 8 days of 30 mg/kg MnCl2 , as well as on the clearance of manganese chloride over the course of several weeks after the termination of the whole application protocol supplying an accumulative dose of 240 mg/kg MnCl2 . Our data show most rapid accumulation in the superior and inferior colliculi, amygdala, bed nucleus of the stria terminalis, cornu ammonis of the hippocampus and globus pallidus. The data suggest that no ceiling effects occur in any region using the proposed application protocol. Therefore, a comparison of basal neuronal activity differences in different animal groups based on locally specific manganese accumulation is possible using fractionated application. Half-life times of manganese clearance varied between 5 and 7 days, and were longest in the periaqueductal gray, amygdala and entorhinal cortex. As the hippocampal formation shows one of the highest T1 -weighted signal intensities after manganese application, and manganese-induced memory impairment has been suggested, we assessed hippocampus-dependent learning as well as possible manganese-induced atrophy of the hippocampal volume. No interference of manganese application on learning was detected after 4 days of Mn(2+) application or 2 weeks after the application protocol. In addition, no volumetric changes induced by manganese application were found for the hippocampus at any of the measured time points. For longitudinal measurements (i.e. repeated manganese applications), a minimum of at least 8 weeks should be considered using the proposed protocol to allow for sufficient clearance of the paramagnetic ion from cerebral tissue.
Collapse
Affiliation(s)
- B Grünecker
- Max Planck Institute of Psychiatry, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Mørch YA, Sandvig I, Olsen O, Donati I, Thuen M, Skjåk-Braek G, Haraldseth O, Brekken C. Mn-alginate gels as a novel system for controlled release of Mn2+ in manganese-enhanced MRI. CONTRAST MEDIA & MOLECULAR IMAGING 2012; 7:265-75. [PMID: 22434640 DOI: 10.1002/cmmi.493] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The aim of the present study was to test alginate gels of different compositions as a system for controlled release of manganese ions (Mn(2+)) for application in manganese-enhanced MRI (MEMRI), in order to circumvent the challenge of achieving optimal MRI resolution without resorting to high, potentially cytotoxic doses of Mn(2+). Elemental analysis and stability studies of Mn-alginate revealed marked differences in ion binding capacity, rendering Mn/Ba-alginate gels with high guluronic acid content most stable. The findings were corroborated by corresponding differences in the release rate of Mn(2+) from alginate beads in vitro using T(1)-weighted MRI. Furthermore, intravitreal (ivit) injection of Mn-alginate beads yielded significant enhancement of the rat retina and retinal ganglion cell (RGC) axons 24 h post-injection. Subsequent compartmental modelling and simulation of ivit Mn(2+) transport and concentration revealed that application of slow release contrast agents can achieve a significant reduction of ivit Mn(2+) concentration compared with bolus injection. This is followed by a concomitant increase in the availability of ivit Mn(2+) for uptake by RGC, corresponding to significantly increased time constants. Our results provide proof-of-concept for the applicability of Mn-alginate gels as a system for controlled release of Mn(2+) for optimized MEMRI application.
Collapse
Affiliation(s)
- Yrr A Mørch
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Gildish I, Manor D, David O, Sharma V, Williams D, Agarwala U, Wang X, Kenney JW, Proud CG, Rosenblum K. Impaired associative taste learning and abnormal brain activation in kinase-defective eEF2K mice. Learn Mem 2012; 19:116-25. [PMID: 22366775 DOI: 10.1101/lm.023937.111] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Memory consolidation is defined temporally based on pharmacological interventions such as inhibitors of mRNA translation (molecular consolidation) or post-acquisition deactivation of specific brain regions (systems level consolidation). However, the relationship between molecular and systems consolidation are poorly understood. Molecular consolidation mechanisms involved in translation initiation and elongation have previously been studied in the cortex using taste-learning paradigms. For example, the levels of phosphorylation of eukaryotic elongation factor 2 (eEF2) were found to be correlated with taste learning in the gustatory cortex (GC), minutes following learning. In order to isolate the role of the eEF2 phosphorylation state at Thr-56 in both molecular and system consolidation, we analyzed cortical-dependent taste learning in eEF2K (the only known kinase for eEF2) ki mice, which exhibit reduced levels of eEF2 phosphorylation but normal levels of eEF2 and eEF2K. These mice exhibit clear attenuation of cortical-dependent associative, but not of incidental, taste learning. In order to gain a better understanding of the underlying mechanisms, we compared brain activity as measured by MEMRI (manganese-enhanced magnetic resonance imaging) between eEF2K ki mice and WT mice during conditioned taste aversion (CTA) learning and observed clear differences between the two but saw no differences under basal conditions. Our results demonstrate that adequate levels of phosphorylation of eEF2 are essential for cortical-dependent associative learning and suggest that malfunction of memory processing at the systems level underlies this associative memory impairment.
Collapse
Affiliation(s)
- Iness Gildish
- Department of Neurobiology, University of Haifa, Haifa 31905, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Silva AC. Using manganese-enhanced MRI to understand BOLD. Neuroimage 2012; 62:1009-13. [PMID: 22245640 DOI: 10.1016/j.neuroimage.2012.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 12/12/2011] [Accepted: 01/01/2012] [Indexed: 10/14/2022] Open
Abstract
The 1990s were designated "The Decade of the Brain" by U.S. Congress, perhaps in great anticipation of the impact that functional neuroimaging techniques would have on advancing our understanding of how the brain is functionally organized. While it is impossible to overestimate the impact of functional MRI in neuroscience, many aspects of the blood oxygenation level-dependent (BOLD) contrast remain poorly understood, in great part due to the complex relationship between neural activity and hemodynamic changes. To better understand such relationship, it is important to probe neural activity independently. Manganese-enhanced MRI (MEMRI), when used to monitor neural activity, is a technique that uses the divalent manganese ion, Mn(2+), as a surrogate measure of calcium influx. A major advantage of using Mn(2+) as a functional marker is that the contrast obtained is directly related to the accumulation of the ion in excitable cells in an activity dependent manner. As such, the contrast in MEMRI is more directly related to neural activity then hemodynamic-based fMRI techniques. In the present work, the early conceptualization of MEMRI is reviewed, and the comparative experiments that have helped provide a better understanding of the spatial specificity of BOLD signal changes in the cortex is discussed.
Collapse
Affiliation(s)
- Afonso C Silva
- Cerebral Microcirculation Unit, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1065, USA.
| |
Collapse
|
24
|
Lehallier B, Coureaud G, Maurin Y, Bonny JM. Effects of manganese injected into rat nostrils: implications for in vivo functional study of olfaction using MEMRI. Magn Reson Imaging 2012; 30:62-9. [DOI: 10.1016/j.mri.2011.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 07/05/2011] [Accepted: 08/13/2011] [Indexed: 10/15/2022]
|
25
|
Lehallier B, Andrey P, Maurin Y, Bonny JM. Iterative algorithm for spatial and intensity normalization of MEMRI images. Application to tract-tracing of rat olfactory pathways. Magn Reson Imaging 2011; 29:1304-16. [PMID: 21908129 DOI: 10.1016/j.mri.2011.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 07/05/2011] [Accepted: 07/06/2011] [Indexed: 11/28/2022]
|
26
|
Fa Z, Zhang R, Li P, Zhang J, Zhang P, Zhu S, Wu Q, Huang F, Liu Y, Yang L, Chang H, Wen Z, Gao D, Zeng Y, Jiang X. Effects of temporarily disrupting BBB on activity-induced manganese-dependent functional MRI. Brain Imaging Behav 2011; 5:181-8. [DOI: 10.1007/s11682-011-9122-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Abstract
The use of manganese ions (Mn(2+)) as an MRI contrast agent was introduced over 20 years ago in studies of Mn(2+) toxicity in anesthetized rats (1). Manganese-enhanced MRI (MEMRI) evolved in the late nineties when Koretsky and associates pioneered the use of MEMRI for brain activity measurements (2) as well as neuronal tract tracing (3). Currently, MEMRI has three primary applications in biological systems: (1) contrast enhancement for anatomical detail, (2) activity-dependent assessment and (3) tracing of neuronal connections or tract tracing. MEMRI relies upon the following three main properties of Mn(2+): (1) it is a paramagnetic ion that shortens the spin lattice relaxation time constant (T(1)) of tissues, where it accumulates and hence functions as an excellent T(1) contrast agent; (2) it is a calcium (Ca(2+)) analog that can enter excitable cells, such as neurons and cardiac cells via voltage-gated Ca(2+) channels; and (3) once in the cells Mn(2+) can be transported along axons by microtubule-dependent axonal transport and can also cross synapses trans-synaptically to neighboring neurons. This chapter will emphasize the methodological approaches towards the use of MEMRI in biological systems.
Collapse
Affiliation(s)
- Cynthia A Massaad
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA.
| | | |
Collapse
|
28
|
Yang PF, Chen DY, Hu JW, Chen JH, Yen CT. Functional tracing of medial nociceptive pathways using activity-dependent manganese-enhanced MRI. Pain 2011; 152:194-203. [DOI: 10.1016/j.pain.2010.10.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 10/09/2010] [Accepted: 10/20/2010] [Indexed: 11/30/2022]
|
29
|
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) relies on contrasts that are due to the shortening of the T (1) relaxation time of tissue water protons that become exposed to paramagnetic manganese ions. In experimental animals, the technique combines the high spatial resolution achievable by MRI with the biological information gathered by tissue-specific or functionally induced accumulations of manganese. After in vivo administration, manganese ions may enter cells via voltage-gated calcium channels. In the nervous system, manganese ions are actively transported along the axon. Based on these properties, MEMRI is increasingly used to delineate neuroanatomical structures, assess differences in functional brain activity, and unravel neuronal connectivities in both healthy animals and models of neurological disorders. Because of the cellular toxicity of manganese, a major challenge for a successful MEMRI study is to achieve the lowest possible dose for a particular biological question. Moreover, the interpretation of MEMRI findings requires a profound knowledge of the behavior of manganese in complex organ systems under physiological and pathological conditions. Starting with an overview of manganese pharmacokinetics and mechanisms of toxicity, this chapter covers experimental methods and protocols for applications in neuroscience.
Collapse
Affiliation(s)
- Susann Boretius
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, 37077 Göttingen, Germany.
| | | |
Collapse
|
30
|
Grünecker B, Kaltwasser SF, Peterse Y, Sämann PG, Schmidt MV, Wotjak CT, Czisch M. Fractionated manganese injections: effects on MRI contrast enhancement and physiological measures in C57BL/6 mice. NMR IN BIOMEDICINE 2010; 23:913-921. [PMID: 20878969 DOI: 10.1002/nbm.1508] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Manganese-enhanced MRI (MEMRI) is an increasingly used imaging method in animal research, which enables improved T(1)-weighted tissue contrast. Furthermore accumulation of manganese in activated neurons allows visualization of neuronal activity. However, at higher concentrations manganese (Mn2+) exhibits toxic side effects that interfere with the animals' behaviour and well-being. Therefore, when optimizing MEMRI protocols, a compromise has to be found between minimizing side effects and intensifying image contrast. Recently, a low concentrated fractionated Mn2+ application scheme has been proposed as a promising alternative. In this study, we investigated effects of different fractionated Mn2+ dosing schemes on vegetative, behavioural and endocrine markers, and MEMRI signal contrast in C57BL/6N mice. Measurements of the animals' well-being included telemetric monitoring of body temperature and locomotion, control of weight and observation of behavioural parameters during the time course of the injection protocols. Corticosterone levels after Mn2+ application served as endocrine marker of the stress response. We compared three MnCl2 x 4H2O application protocols: 3 times 60 mg/kg with an inter-injection interval of 48 h, six times 30 mg/kg with an inter-injection interval of 48 h, and 8 times 30 mg/kg with an inter-injection interval of 24 h (referred to as 3 x 60/48, 6 x 30/48 and 8 x 30/24, respectively). Both the 6 x 30/48 and the 8 x 30/24 protocols showed attenuated effects on animals' well-being as compared to the 3 x 60/48 scheme. Best MEMRI signal contrast was observed for the 8 x 30/24 protocol. Together, these results argue for a fractionated application scheme such as 30 mg/kg every 24 h for 8 days to provide sufficient MEMRI signal contrast while minimizing toxic side effects and distress.
Collapse
|
31
|
Activity-induced manganese-dependent functional MRI of the rat visual cortex following intranasal manganese chloride administration. Neurosci Lett 2010; 481:110-4. [DOI: 10.1016/j.neulet.2010.06.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 06/10/2010] [Accepted: 06/22/2010] [Indexed: 11/20/2022]
|
32
|
|
33
|
Tucciarone J, Chuang KH, Dodd SJ, Silva A, Pelled G, Koretsky AP. Layer specific tracing of corticocortical and thalamocortical connectivity in the rodent using manganese enhanced MRI. Neuroimage 2009; 44:923-31. [PMID: 18755280 PMCID: PMC6329463 DOI: 10.1016/j.neuroimage.2008.07.036] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 07/03/2008] [Accepted: 07/09/2008] [Indexed: 11/20/2022] Open
Abstract
Information about layer specific connections in the brain comes mainly from classical neuronal tracers that rely on histology. Manganese Enhanced MRI (MEMRI) has mapped connectivity along a number of brain pathways in several animal models. It is not clear at what level of specificity neuronal connectivity measured using MEMRI tracing can resolve. The goal of this work was to determine if neural tracing using MEMRI could distinguish layer inputs of major pathways of the cortex. To accomplish this, tracing was performed between hemispheres of the somatosensory (S1) cortex and between the thalamus and S1 cortex. T(1) mapping and T(1) weighted pulse sequences detected layer specific tracing after local injection of MnCl(2). Approximately 12 h following injections into S1 cortex, maximal T(1) reductions were observed at 0.6+/-0.07 and 1.1+/-0.12 mm from the brain surface in the contralateral S1. These distances correspond to the positions of layer 3 and 5 consistent with the known callosal inputs along this pathway. Four to six hours following injection of MnCl(2) into the thalamus there were maximal T(1) reductions between 0.7+/-0.08 and 0.8+/-0.08 mm from the surface of the brain, which corresponds to layer 4. This is consistent with terminations of the known thalamocortical projections. In order to observe the first synapse projection, it was critical to perform MRI at the right time after injections to detect layer specificity with MEMRI. At later time points, tracing through the cortical network led to more uniform contrast throughout the cortex due to its complex neuronal connections. These results are consistent with well established neuronal pathways within the somatosensory cortex and demonstrate that layer specific somatosensory connections can be detected in vivo using MEMRI.
Collapse
Affiliation(s)
- Jason Tucciarone
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1065, USA
| | | | | | | | | | | |
Collapse
|
34
|
Cha MH, Lee C, Cho JH, Chung MA, Sohn JH, Cheong C, Lee HJ, Lee BH. Manganese-Enhanced Magnetic Resonance Imaging of the Spinal Cord in Rats. Exp Neurobiol 2009. [DOI: 10.5607/en.2009.18.1.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Myeoung Hoon Cha
- Department of Physiology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Chulhyun Lee
- Korea Basic Science Institute, Daejeon 350-333, Korea
| | - Jee Hyun Cho
- Korea Basic Science Institute, Daejeon 350-333, Korea
| | - Myung-Ae Chung
- Electronics and Telecommunications Research Institute, Daejeon 305-350, Korea
| | - Jin-Hun Sohn
- Department of Psychology, Chungnam Nat'l University, Daejeon 305-764, Korea
| | | | - Hye-Jung Lee
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul 130-701, Korea
| | - Bae Hwan Lee
- Department of Physiology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| |
Collapse
|
35
|
Waghorn B, Edwards T, Yang Y, Chuang KH, Yanasak N, Hu TCC. Monitoring dynamic alterations in calcium homeostasis by T (1)-weighted and T (1)-mapping cardiac manganese-enhanced MRI in a murine myocardial infarction model. NMR IN BIOMEDICINE 2008; 21:1102-1111. [PMID: 18780285 DOI: 10.1002/nbm.1287] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Manganese has been used as a T(1)-weighted MRI contrast agent in a variety of applications. Because manganese ions (Mn(2+)) enter viable myocardial cells via voltage-gated Ca(2+) channels, manganese-enhanced MRI is sensitive to the viability and inotropic state of the heart. In spite of the established importance of Ca(2+) regulation in the heart both before and after myocardial injury, monitoring strategies to assess Ca(2+) homeostasis in affected cardiac tissues are limited. This study implements a T(1)-mapping method to obtain quantitative information both dynamically and over a range of MnCl(2) infusion doses. To optimize the current Mn(2+) infusion protocols, we performed both dose-dependent and temporal washout studies. A non-linear relationship between infused MnCl(2) solution dose and increase in left ventricular wall relaxation rate (DeltaR(1)) was observed. Control mice also exhibited significant Mn(2+) clearance over time, with a decrease in DeltaR(1) of approximately 50% occurring in just 2.5 h. The complicated efflux time dependence possibly suggests multiple efflux mechanisms. With the use of the measured relationship between infused Mn(2+) dose, DeltaR(1), and inductively coupled plasma mass spectrometry data analysis provided a means of estimating the absolute heart Mn concentration in vivo. We show that this technique has the sensitivity to observe or monitor potential alterations in Ca(2+) handling in vivo because of the physiological remodeling after myocardial infarction. Left ventricular free wall DeltaR(1) values were significantly lower (P = 0.005) in the adjacent zone, surrounding the injured myocardial tissue, than in healthy tissue. This inferred reduction in Mn concentration can be used to estimate potentially salvageable myocardium in vivo for future treatment or evaluation of disease progression.
Collapse
Affiliation(s)
- Ben Waghorn
- Small Animal Imaging, Department of Radiology, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | |
Collapse
|
36
|
Bissig D, Berkowitz BA. Manganese-enhanced MRI of layer-specific activity in the visual cortex from awake and free-moving rats. Neuroimage 2008; 44:627-35. [PMID: 19015035 DOI: 10.1016/j.neuroimage.2008.10.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 10/08/2008] [Accepted: 10/12/2008] [Indexed: 10/21/2022] Open
Abstract
Cortical responses to visual stimulation have been studied extensively in the rodent, but often require post-stimulation ex vivo examination of the tissue. Here, we test the hypothesis that visual stimulus-dependent cortical activity from awake and free-moving rats can be encoded following systemically administered MnCl(2), and activity subsequently readout using manganese-enhanced MRI (MEMRI), a technique that can be performed without sacrificing the animal. Unanesthetized Sprague-Dawley rats, with or without systemic injection of MnCl(2), were maintained for 8 h in either a visually stimulating environment or darkness. To identify vision-dependent changes in cortical activity, animals were anesthetized and cortices were examined by 3D RARE MEMRI. Mean signal intensities in sub-cortical regions (e.g., superior colliculus and the lateral geniculate), and cortical regions (primary and accessory visual cortices) were compared. Cortex linearization was performed to aid in layer-specific signal intensity comparisons. Manganese administration alone globally increased signal intensity in the brain (P<0.0001). In visually stimulated and unstimulated rats, layer-specific analysis revealed that stimulated rats had on average significantly (P<0.05) higher signal intensities in layers IV and V of the primary visual cortex, as well as in deeper portions of the superficial superior colliculus, relative to dark adapted rats. Such differences went undetected without layer-specific analysis. We demonstrate, for the first time, the feasibility of layer-specific stimulus-dependant non-invasive MEMRI readout after encoding activity in awake and free moving rats. Future MEMRI studies are envisioned that measure the effects on cortical activity of sensory stimulation, as well as normal development, disease, plasticity, and therapy in longitudinal studies.
Collapse
Affiliation(s)
- David Bissig
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI 48201, USA
| | | |
Collapse
|
37
|
Abstract
The metal manganese is a potent magnetic resonance imaging (MRI) contrast agent that is essential in cell biology. Manganese-enhanced magnetic resonance imaging (MEMRI) is providing unique information in an ever-growing number of applications aimed at understanding the anatomy, the integration, and the function of neural circuits both in normal brain physiology as well as in translational models of brain disease. A major drawback to the use of manganese as a contrast agent, however, is its cellular toxicity. Therefore, paramount to the successful application of MEMRI is the ability to deliver Mn2+ to the site of interest using as low a dose as possible while preserving detectability by MRI. In the present work, the different approaches to MEMRI in translational neuroimaging are reviewed and challenges for future identified from a practical standpoint.
Collapse
Affiliation(s)
- Afonso C. Silva
- Cerebral Microcirculation Unit, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA,To whom correspondence should be addressed: Cerebral Microcirculation Unit, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive MSC1065, Building 10, Room B1D106, Bethesda, MD 20892-1065; tel: 301-402-9703, fax: 301-480-2558, e-mail:
| | - Nicholas A. Bock
- Cerebral Microcirculation Unit, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
38
|
Sanganahalli BG, Herman P, Hyder F. Frequency-dependent tactile responses in rat brain measured by functional MRI. NMR IN BIOMEDICINE 2008; 21:410-6. [PMID: 18435491 PMCID: PMC2774500 DOI: 10.1002/nbm.1259] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We measured frequency-dependent functional MRI (fMRI) activations (at 11.7 T) in the somatosensory cortex with whisker and forepaw stimuli in the same alpha-chloralose anesthetized rats. Whisker and forepaw stimuli were attained by computer-controlled pulses of air puffs and electrical currents, respectively. Air puffs deflected (+/-2 mm) the chosen whisker(s) in the right snout in the rostral to caudal direction, and electrical currents (2 mA amplitude, 0.3 ms duration) stimulated the left forepaw with subcutaneous copper electrodes placed between the second and fourth digits. In the same subject, unimodal stimulation of whisker and forepaw gave rise to significant blood oxygen level-dependent (BOLD) signal increases in corresponding contralateral somatosensory areas of whisker barrel field (S1BF) and forelimb (S1FL), respectively, with no significant spatial overlap between these regions. The BOLD responses in S1(BF) and S1(FL) regions were found to be differentially variable with frequency of each stimulus type. In the S1BF, a linear increase in the BOLD response was observed with whisker stimulation frequency of up to approximately 12 Hz, beyond which the response seemed to saturate (and/or slightly attenuate) up to the maximum frequency studied (i.e. 30 Hz). In the S1FL, the magnitude of the BOLD response was largest at forepaw stimulation frequency between 1.5 and 3 Hz, beyond which the response diminished with little or no activity at frequencies higher than 20 Hz. The volume of tissue activated by each stimulus type followed a similar pattern to that of the stimulation frequency dependence. These results of bimodal whisker and forepaw stimuli in the same subject may provide a framework to study interactions of different tactile modules, with both fMRI and neurophysiology (i.e. inside and outside the magnet).
Collapse
Affiliation(s)
- Basavaraju G. Sanganahalli
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT 06520, USA
- Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT 06520, USA
- Department of Diagnostic Radiology, Yale University, New Haven, CT 06520, USA
| | - Peter Herman
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT 06520, USA
- Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT 06520, USA
- Department of Diagnostic Radiology, Yale University, New Haven, CT 06520, USA
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Fahmeed Hyder
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT 06520, USA
- Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT 06520, USA
- Department of Diagnostic Radiology, Yale University, New Haven, CT 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
39
|
Silva AC, Lee JH, Wu CWH, Tucciarone J, Pelled G, Aoki I, Koretsky AP. Detection of cortical laminar architecture using manganese-enhanced MRI. J Neurosci Methods 2007; 167:246-57. [PMID: 17936913 DOI: 10.1016/j.jneumeth.2007.08.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 08/21/2007] [Accepted: 08/21/2007] [Indexed: 11/16/2022]
Abstract
Changes in manganese-enhanced MRI (MEMRI) contrast across the rodent somatosensory cortex were compared to the cortical laminae as identified by tissue histology and administration of an anatomical tracer to cortex and thalamus. Across the cortical thickness, MEMRI signal intensity was low in layer I, increased in layer II, decreased in layer III until mid-layer IV, and increased again, peaking in layer V, before decreasing through layer VI. The reeler mouse mutant was used to confirm that the cortical alternation in MEMRI contrast was related to laminar architecture. Unlike in wild-type mice, the reeler cortex showed no appreciable changes in MEMRI signal, consistent with absence of cortical laminae in histological slides. The tract tracing ability of MEMRI was used to further confirm assignments and demonstrate laminar specificity. Twelve to 16 h after stereotaxic injections of MnCl(2) to the ventroposterior thalamic nuclei, an overall increase in signal intensity was detected in primary somatosensory cortex compared to other brain regions. Maximum intensity projection images revealed a distinctly bright stripe located 600-700 microm below the pial surface, in layer IV. The data show that both systemic and tract tracing forms of MEMRI are useful for studying laminar architecture in the brain.
Collapse
Affiliation(s)
- Afonso C Silva
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institute of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|