1
|
Gómez-Oliver F, Fernández de la Rosa R, Brackhan M, Bascuñana P, Pozo MÁ, García-García L. Seizures Triggered by Systemic Administration of 4-Aminopyridine in Rats Lead to Acute Brain Glucose Hypometabolism, as Assessed by [ 18F]FDG PET Neuroimaging. Int J Mol Sci 2024; 25:12774. [PMID: 39684485 DOI: 10.3390/ijms252312774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
4-aminopyridine (4-AP) is a non-selective blocker of voltage-dependent K+ channels used to improve walking in multiple sclerosis patients, and it may be useful in the treatment of cerebellar diseases. In animal models, 4-AP is used as a convulsant agent. When administered intrahippocampally, 4-AP induces acute local glucose hypermetabolism and significant brain damage, while i.p. administration causes less neuronal damage. This study aimed to investigate the effects of a single i.p. administration of 4-AP on acute brain glucose metabolism as well as on neuronal viability and signs of neuroinflammation 3 days after the insult. Brain glucose metabolism was evaluated by [18F]FDG PET neuroimaging. [18F]FDG uptake was analyzed based on volumes of interest (VOIs) as well as by voxel-based (SPM) analyses. The results showed that independently of the type of data analysis used (VOIs or SPM), 4-AP induced acute generalized brain glucose hypometabolism, except in the cerebellum. Furthermore, the SPM analysis normalized by the whole brain uptake revealed a significant cerebellar hypermetabolism. The neurohistochemical assays showed that 4-AP induced hippocampal astrocyte reactivity 3 days after the insult, without inducing changes in neuronal integrity or microglia-mediated neuroinflammation. Thus, acute brain glucose metabolic and neuroinflammatory profiles in response to i.p. 4-AP clearly differed from that reported for intrahippocampal administration. Finally, the results suggest that the cerebellum might be more resilient to the 4-AP-induced hypometabolism.
Collapse
Affiliation(s)
- Francisca Gómez-Oliver
- Unidad de Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - Rubén Fernández de la Rosa
- Unidad de Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Infraestructura Científico-Técnica Singular Bioimagen Complutense (ICTS BIOIMAC), Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Mirjam Brackhan
- Unidad de Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - Pablo Bascuñana
- Unidad de Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - Miguel Ángel Pozo
- Unidad de Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, 28040 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Luis García-García
- Unidad de Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, 28040 Madrid, Spain
| |
Collapse
|
2
|
Arbizu J, Morbelli S, Minoshima S, Barthel H, Kuo P, Van Weehaeghe D, Horner N, Colletti PM, Guedj E. SNMMI Procedure Standard/EANM Practice Guideline for Brain [ 18F]FDG PET Imaging, Version 2.0. J Nucl Med 2024:jnumed.124.268754. [PMID: 39419552 DOI: 10.2967/jnumed.124.268754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
PREAMBLEThe Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and professional organization founded in 1954 to promote the science, technology, and practical application of nuclear medicine. The European Association of Nuclear Medicine (EANM) is a professional nonprofit medical association that facilitates communication worldwide between individuals pursuing clinical and research excellence in nuclear medicine. The EANM was founded in 1985. The EANM was founded in 1985. SNMMI and EANM members are physicians, technologists, and scientists specializing in the research and practice of nuclear medicine.The SNMMI and EANM will periodically define new guidelines for nuclear medicine practice to help advance the science of nuclear medicine and to improve the quality of service to patients throughout the world. Existing practice guidelines will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated.Each practice guideline, representing a policy statement by the SNMMI/EANM, has undergone a thorough consensus process in which it has been subjected to extensive review. The SNMMI and EANM recognize that the safe and effective use of diagnostic nuclear medicine imaging requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guideline by those entities not providing these services is not authorized.These guidelines are an educational tool designed to assist practitioners in providing appropriate care for patients. They are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care. For these reasons and those set forth below, both the SNMMI and the EANM caution against the use of these guidelines in litigation in which the clinical decisions of a practitioner are called into question.The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by the physician or medical physicist in light of all the circumstances presented. Thus, there is no implication that an approach differing from the guidelines, standing alone, is below the standard of care. To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set forth in the guidelines when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations of available resources, or advances in knowledge or technology subsequent to publication of the guidelines.The practice of medicine includes both the art and the science of the prevention, diagnosis, alleviation, and treatment of disease. The variety and complexity of human conditions make it impossible to always reach the most appropriate diagnosis or to predict with certainty a particular response to treatment.Therefore, it should be recognized that adherence to these guidelines will not ensure an accurate diagnosis or a successful outcome. All that should be expected is that the practitioner will follow a reasonable course of action based on current knowledge, available resources, and the needs of the patient to deliver effective and safe medical care. The sole purpose of these guidelines is to assist practitioners in achieving this objective.
Collapse
Affiliation(s)
- Javier Arbizu
- Department of Nuclear Medicine, Clinica Universidad de Navarra, University of Navarra, Pamplona, Spain;
| | - Silvia Morbelli
- Nuclear Medicine Unit, Citta'della Scenza e della Salute di Torino, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Satoshi Minoshima
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| | - Henryk Barthel
- Department of Nuclear Medicine, Leipzig University Medical Centre, Leipzig, Germany
| | | | | | - Neil Horner
- Atlantic Health System, Morristown, New Jersey, and Icahn School of Medicine at Mount Sinai, New York, New York
| | - Patrick M Colletti
- Department of Radiology and Nuclear Medicine, University of Southern California, Los Angeles, California; and
| | - Eric Guedj
- APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, CERIMED, Nuclear Medicine Department, Aix Marseille University, Marseille, France
| |
Collapse
|
3
|
Peterson BS, Li J, Trujillo M, Sawardekar S, Balyozian D, Bansal S, Sun BF, Marcelino C, Nanda A, Xu T, Amen D, Bansal R. A multi-site 99mTc-HMPAO SPECT study of cerebral blood flow in a community sample of patients with major depression. Transl Psychiatry 2024; 14:234. [PMID: 38830866 PMCID: PMC11148018 DOI: 10.1038/s41398-024-02961-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 05/09/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024] Open
Abstract
Prior regional Cerebral Blood Flow (rCBF) studies in Major Depressive Disorder (MDD) have been limited by small, highly selective, non-representative samples that have yielded variable and poorly replicated findings. The aim of this study was to compare rCBF measures in a large, more representative community sample of adults with MDD and healthy control participants. This is a cross-sectional, retrospective multi-site cohort study in which clinical data from 338 patients 18-65 years of age with a primary diagnosis of MDD were retrieved from a central database for 8 privately owned, private-pay outpatient psychiatric centers across the United States. Two 99mTc-HMPAO SPECT brain scans, one at rest and one during performance of a continuous performance task, were acquired as a routine component of their initial clinical evaluation. In total, 103 healthy controls, 18-65 years old and recruited from the community were also assessed and scanned. Depressed patients had significantly higher rCBF in frontal, anterior cingulate, and association cortices, and in basal ganglia, thalamus, and cerebellum, after accounting for significantly higher overall CBF. Depression severity associated positively with rCBF in the basal ganglia, hippocampus, cerebellum, and posterior white matter. Elevated rCBF was especially prominent in women and older patients. Elevated rCBF likely represents pathogenic hypermetabolism in MDD, with its magnitude in direct proportion to depression severity. It is brain-wide, with disproportionate increases in cortical and subcortical attentional networks. Hypermetabolism may be a reasonable target for novel therapeutics in MDD.
Collapse
Affiliation(s)
- Bradley S Peterson
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA.
- Department of Psychiatry, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA.
| | - Jennifer Li
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Manuel Trujillo
- Department of Psychiatry at NYU Grossman School of Medicine, New York, NY, USA
- Amen Clinics Inc., Costa Mesa, CA, USA
| | - Siddhant Sawardekar
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - David Balyozian
- Department of Psychiatry, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Siddharth Bansal
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Bernice F Sun
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Courtney Marcelino
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Anoop Nanda
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Tracy Xu
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | | | - Ravi Bansal
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
4
|
Booth S, Ko JH. Radionuclide Imaging of the Neuroanatomical and Neurochemical Substrate of Cognitive Decline in Parkinson's Disease. Nucl Med Mol Imaging 2024; 58:213-226. [PMID: 38932760 PMCID: PMC11196570 DOI: 10.1007/s13139-024-00842-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 06/28/2024] Open
Abstract
Cognitive impairment is a frequent manifestation of Parkinson's disease (PD), resulting in decrease in patients' quality of life and increased societal and economic burden. However, cognitive decline in PD is highly heterogenous and the mechanisms are poorly understood. Radionuclide imaging techniques like positron emission tomography (PET) and single photon emission computed tomography (SPECT) have been used to investigate the neurochemical and neuroanatomical substrate of cognitive decline in PD. These techniques allow the assessment of different neurotransmitter systems, changes in brain glucose metabolism, proteinopathy, and neuroinflammation in vivo in PD patients. Here, we review current radionuclide imaging research on cognitive deficit in PD with a focus on predicting accelerating cognitive decline. This research could assist in the development of prognostic biomarkers for patient stratification and have utility in the development of ameliorative or disease-modifying therapies targeting cognitive deficit in PD.
Collapse
Affiliation(s)
- Samuel Booth
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, 130-745 Bannatyne Ave, Winnipeg, MB R3E 0J9 Canada
- PrairieNeuro Research Centre, Kleysen Institute of Advanced Medicine, Health Science Centre, Winnipeg, Canada
| | - Ji Hyun Ko
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, 130-745 Bannatyne Ave, Winnipeg, MB R3E 0J9 Canada
- PrairieNeuro Research Centre, Kleysen Institute of Advanced Medicine, Health Science Centre, Winnipeg, Canada
| |
Collapse
|
5
|
Sigurdsson HP, Alcock L, Firbank M, Wilson R, Brown P, Maxwell R, Bennett E, Pavese N, Brooks DJ, Rochester L. Developing a novel dual-injection FDG-PET imaging methodology to study the functional neuroanatomy of gait. Neuroimage 2024; 288:120531. [PMID: 38331333 DOI: 10.1016/j.neuroimage.2024.120531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024] Open
Abstract
Gait is an excellent indicator of physical, emotional, and mental health. Previous studies have shown that gait impairments in ageing are common, but the neural basis of these impairments are unclear. Existing methodologies are suboptimal and novel paradigms capable of capturing neural activation related to real walking are needed. In this study, we used a hybrid PET/MR system and measured glucose metabolism related to both walking and standing with a dual-injection paradigm in a single study session. For this study, 15 healthy older adults (10 females, age range: 60.5-70.7 years) with normal cognition were recruited from the community. Each participant received an intravenous injection of [18F]-2-fluoro-2-deoxyglucose (FDG) before engaging in two distinct tasks, a static postural control task (standing) and a walking task. After each task, participants were imaged. To discern independent neural functions related to walking compared to standing, we applied a bespoke dose correction to remove the residual 18F signal of the first scan (PETSTAND) from the second scan (PETWALK) and proportional scaling to the global mean, cerebellum, or white matter (WM). Whole-brain differences in walking-elicited neural activity measured with FDG-PET were assessed using a one-sample t-test. In this study, we show that a dual-injection paradigm in healthy older adults is feasible with biologically valid findings. Our results with a dose correction and scaling to the global mean showed that walking, compared to standing, increased glucose consumption in the cuneus (Z = 7.03), the temporal gyrus (Z = 6.91) and the orbital frontal cortex (Z = 6.71). Subcortically, we observed increased glucose metabolism in the supraspinal locomotor network including the thalamus (Z = 6.55), cerebellar vermis and the brainstem (pedunculopontine/mesencephalic locomotor region). Exploratory analyses using proportional scaling to the cerebellum and WM returned similar findings. Here, we have established the feasibility and tolerability of a novel method capable of capturing neural activations related to actual walking and extended previous knowledge including the recruitment of brain regions involved in sensory processing. Our paradigm could be used to explore pathological alterations in various gait disorders.
Collapse
Affiliation(s)
- Hilmar P Sigurdsson
- Clinical Ageing Research Unit, Translational and Clinical Research Institute, Faculty of Medical Sciences, Campus for Aging and Vitality, Newcastle University, Newcastle Upon Tyne NE4 5PL, UK.
| | - Lisa Alcock
- Clinical Ageing Research Unit, Translational and Clinical Research Institute, Faculty of Medical Sciences, Campus for Aging and Vitality, Newcastle University, Newcastle Upon Tyne NE4 5PL, UK; National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre (BRC), Newcastle University and The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Michael Firbank
- Clinical Ageing Research Unit, Translational and Clinical Research Institute, Faculty of Medical Sciences, Campus for Aging and Vitality, Newcastle University, Newcastle Upon Tyne NE4 5PL, UK
| | - Ross Wilson
- Clinical Ageing Research Unit, Translational and Clinical Research Institute, Faculty of Medical Sciences, Campus for Aging and Vitality, Newcastle University, Newcastle Upon Tyne NE4 5PL, UK
| | - Philip Brown
- National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre (BRC), Newcastle University and The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Ross Maxwell
- Clinical Ageing Research Unit, Translational and Clinical Research Institute, Faculty of Medical Sciences, Campus for Aging and Vitality, Newcastle University, Newcastle Upon Tyne NE4 5PL, UK
| | | | - Nicola Pavese
- Clinical Ageing Research Unit, Translational and Clinical Research Institute, Faculty of Medical Sciences, Campus for Aging and Vitality, Newcastle University, Newcastle Upon Tyne NE4 5PL, UK; Department of Nuclear Medicine and PET, Institute of Clinical Medicine, Aarhus University, Denmark
| | - David J Brooks
- Clinical Ageing Research Unit, Translational and Clinical Research Institute, Faculty of Medical Sciences, Campus for Aging and Vitality, Newcastle University, Newcastle Upon Tyne NE4 5PL, UK; Department of Nuclear Medicine and PET, Institute of Clinical Medicine, Aarhus University, Denmark
| | - Lynn Rochester
- Clinical Ageing Research Unit, Translational and Clinical Research Institute, Faculty of Medical Sciences, Campus for Aging and Vitality, Newcastle University, Newcastle Upon Tyne NE4 5PL, UK; National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre (BRC), Newcastle University and The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
6
|
Cumming P, Dias AH, Gormsen LC, Hansen AK, Alberts I, Rominger A, Munk OL, Sari H. Single time point quantitation of cerebral glucose metabolism by FDG-PET without arterial sampling. EJNMMI Res 2023; 13:104. [PMID: 38032409 PMCID: PMC10689590 DOI: 10.1186/s13550-023-01049-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Until recently, quantitation of the net influx of 2-[18F]fluorodeoxyglucose (FDG) to brain (Ki) and the cerebrometabolic rate for glucose (CMRglc) required serial arterial blood sampling in conjunction with dynamic positron emission tomography (PET) recordings. Recent technical innovations enable the identification of an image-derived input function (IDIF) from vascular structures, but are frequently still encumbered by the need for interrupted sequences or prolonged recordings that are seldom available outside of a research setting. In this study, we tested simplified methods for quantitation of FDG-Ki by linear graphic analysis relative to the descending aorta IDIF in oncology patients examined using a Biograph Vision 600 PET/CT with continuous bed motion (Aarhus) or using a recently installed Biograph Vision Quadra long-axial field-of-view (FOV) scanner (Bern). RESULTS Correlation analysis of the coefficients of a tri-exponential decomposition of the IDIFs measured during 67 min revealed strong relationships among the total area under the curve (AUC), the terminal normalized arterial integral (theta(52-67 min)), and the terminal image-derived arterial FDG concentration (Ca(52-67 min)). These relationships enabled estimation of the missing AUC from late recordings of the IDIF, from which we then calculated FDG-Ki in brain by two-point linear graphic analysis using a population mean ordinate intercept and the single late frame. Furthermore, certain aspects of the IDIF data from Aarhus showed a marked age-dependence, which was not hitherto reported for the case of FDG pharmacokinetics. CONCLUSIONS The observed interrelationships between pharmacokinetic parameters in the IDIF measured during the PET recording support quantitation of FDG-Ki in brain using a single averaged frame from the interval 52-67 min post-injection, with minimal error relative to calculation from the complete dynamic sequences.
Collapse
Affiliation(s)
- Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Freiburgstrasse 18, INO B 214.C, 3010, Bern, Switzerland.
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia.
| | - André H Dias
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Lars C Gormsen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Allan K Hansen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Ian Alberts
- Department of Nuclear Medicine, Bern University Hospital, Freiburgstrasse 18, INO B 214.C, 3010, Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Bern University Hospital, Freiburgstrasse 18, INO B 214.C, 3010, Bern, Switzerland
| | - Ole L Munk
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Hasan Sari
- Department of Nuclear Medicine, Bern University Hospital, Freiburgstrasse 18, INO B 214.C, 3010, Bern, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| |
Collapse
|
7
|
Abstract
Introduction: Regional hypermetabolism in Alzheimer's disease (AD), especially in the cerebellum, has been consistently observed but often neglected as an artefact produced by the commonly used proportional scaling procedure in the statistical parametric mapping. We hypothesize that the hypermetabolic regions are also important in disease pathology in AD. Methods: Using fluorodeoxyglucose (FDG)-positron emission tomography (PET) images from 88 AD subjects and 88 age-sex matched normal controls (NL) from the publicly available Alzheimer's Disease Neuroimaging Initiative database, we developed a general linear model-based classifier that differentiated AD patients from normal individuals (sensitivity = 87.50%, specificity = 82.95%). We constructed region-region group-wise correlation matrices and evaluated differences in network organization by using the graph theory analysis between AD and control subjects. Results: We confirmed that hypermetabolism found in AD is not an artefact by replicating it using white matter as the reference region. The role of the hypermetabolic regions has been further investigated by using the graph theory. The differences in betweenness centrality (BC) between AD and NL network were correlated with region weights of FDG PET-based AD classifier. In particular, the hypermetabolism in cerebellum was accompanied with higher BC. The brain regions with higher BC in AD network showed a progressive increase in FDG uptake over 2 years in prodromal AD patients (n = 39). Discussion: This study suggests that hypermetabolism found in AD may play an important role in forming the AD-related metabolic network. In particular, hypermetabolic cerebellar regions represent a good candidate for further investigation in altered network organization in AD.
Collapse
Affiliation(s)
- Vinay Gupta
- Graduate Program in Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada
| | - Samuel Booth
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Ji Hyun Ko
- Graduate Program in Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
8
|
Khodaii J, Nomura Y, Chang NHS, Wong DF, Møller A, Gjedde A. Dopamine D 2/3 Receptor Availabilities in Striatal and Extrastriatal Regions of the Adult Human Brain: Comparison of Four Methods of Analysis. Neurochem Res 2023; 48:1517-1530. [PMID: 36525123 DOI: 10.1007/s11064-022-03825-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/30/2022] [Accepted: 11/12/2022] [Indexed: 12/23/2022]
Abstract
Values of binding potentials (BPND) of dopamine D2/3 receptors differ in different regions of the brain, but we do not know with certainty how much of this difference is due either to different receptor numbers, or to different affinities of tracers to the receptors, or to both. We tested the claim that both striatal and extrastriatal dopamine D2/3 receptor availabilities vary with age in vivo in humans by determining the values of BPND of the specific radioligand [11C]raclopride. We determined values of BPND in striatal and extrastriatal volumes-of-interest (VOI) with the same specific receptor radioligand. We estimated values of BPND in individual voxels of brains of healthy volunteers in vivo, and we obtained regional averages of VOI by dynamic positron emission tomography (PET). We calculated average values of BPND in caudate nucleus and putamen of striatum, and in frontal, occipital, parietal, and temporal cortices of the forebrain, by means of four methods, including the ERLiBiRD (Estimation of Reversible Ligand Binding and Receptor Density) method, the tissue reference methods of Logan and Logan-Ichise, respectively, and the SRTM (Simplified Reference Tissue Method). Voxelwise generation of parametric maps of values of BPND used the multi-linear regression version of SRTM. Age-dependent changes of the binding potential presented with an inverted U-shape with peak binding potentials reached between the ages of 20 and 30. The estimates of BPND declined significantly with age after the peak in both striatal and extrastriatal regions, as determined by all four methods, with the greatest decline observed in posterior (occipital and parietal) cortices (14% per decade) and the lowest decline in caudate nucleus (3% per decade). The sites of the greatest declines are of particular interest because of the clinical implications.
Collapse
Affiliation(s)
- Javad Khodaii
- Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yoshiyuki Nomura
- Department of Radiology, Faculty of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Natalie Hong Siu Chang
- Department of Clinical Research, University of Southern Denmark, 5000, Odense M, Denmark
| | - Dean F Wong
- Radiology, Psychiatry, Neurology and Neurosciences Washington University, St Louis, USA
| | - Arne Møller
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, 8000, Aarhus, Denmark
- Center of Functionally Integrative Neuroscience, Aarhus University, 8000, Aarhus, Denmark
| | - Albert Gjedde
- Department of Clinical Research, University of Southern Denmark, 5000, Odense M, Denmark.
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8000, Aarhus C, Denmark.
- Department of Neuroscience, Panum Institute, University of Copenhagen, 3 Blegdamsvej, DK-2200, Copenhagen N, Denmark.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada.
- Neuroscience Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran.
| |
Collapse
|
9
|
Balfroid T, Warren AE, Dalic LJ, Aeby A, Berlangieri SU, Archer JS. Frontoparietal 18F-FDG-PET hypo-metabolism in Lennox-Gastaut syndrome: further evidence highlighting the key network. Epilepsy Res 2023; 192:107131. [PMID: 37054522 DOI: 10.1016/j.eplepsyres.2023.107131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
INTRODUCTION Lennox Gastaut syndrome (LGS) can be conceptualised as a "secondary network epilepsy", in which the shared electroclinical manifestations reflect epileptic recruitment of a common brain network, despite a range of underlying aetiologies. We aimed to identify the key networks recruited by the epileptic process of LGS using interictal 2-deoxy-2-(18F)fluoro-D-glucose positron emission tomography (18F-FDG-PET). METHODS Group analysis of cerebral 18F-FDG-PET, comparing 21 patients with LGS (mean age = 15 years) and 18 pseudo-controls (mean age = 19 years), studied at Austin Health Melbourne, between 2004 and 2015. To minimise the influence of individual patient lesions in the LGS group, we only studied brain hemispheres without structural MRI abnormalities. The pseudo-control group consisted of age- and sex-matched patients with unilateral temporal lobe epilepsy, using only the hemispheres contralateral to the side of epilepsy. Voxel-wise permutation testing compared 18F-FDG-PET uptake between groups. Associations were explored between areas of altered metabolism and clinical variables (age of seizure onset, proportion of life with epilepsy, and verbal/nonverbal ability). Penetrance maps were calculated to explore spatial consistency of altered metabolic patterns across individual patients with LGS. RESULTS Although not always readily apparent on visual inspection of individual patient scans, group analysis revealed hypometabolism in a network of regions including prefrontal and premotor cortex, anterior and posterior cingulate, inferior parietal lobule, and precuneus (p < 0.05, corrected for family-wise error). These brain regions tended to show a greater reduction in metabolism in non-verbal compared to verbal LGS patients, although this difference was not statistically significant. No areas of hypermetabolism were detected on group analysis, although ∼25 % of individual patients showed increased metabolism (relative to pseudo-controls) in the brainstem, putamen, thalamus, cerebellum, and pericentral cortex. DISCUSSION Interictal hypometabolism in frontoparietal cortex in LGS is compatible with our previous EEG-fMRI and SPECT studies showing that interictal bursts of generalised paroxysmal fast activity and tonic seizures recruit similar cortical regions. This study provides further evidence that these regions are central to the electroclinical expression of LGS.
Collapse
|
10
|
Anazodo UC, Ng JJ, Ehiogu B, Obungoloch J, Fatade A, Mutsaerts HJMM, Secca MF, Diop M, Opadele A, Alexander DC, Dada MO, Ogbole G, Nunes R, Figueiredo P, Figini M, Aribisala B, Awojoyogbe BO, Aduluwa H, Sprenger C, Wagner R, Olakunle A, Romeo D, Sun Y, Fezeu F, Orunmuyi AT, Geethanath S, Gulani V, Nganga EC, Adeleke S, Ntobeuko N, Minja FJ, Webb AG, Asllani I, Dako F. A framework for advancing sustainable magnetic resonance imaging access in Africa. NMR IN BIOMEDICINE 2023; 36:e4846. [PMID: 36259628 DOI: 10.1002/nbm.4846] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Magnetic resonance imaging (MRI) technology has profoundly transformed current healthcare systems globally, owing to advances in hardware and software research innovations. Despite these advances, MRI remains largely inaccessible to clinicians, patients, and researchers in low-resource areas, such as Africa. The rapidly growing burden of noncommunicable diseases in Africa underscores the importance of improving access to MRI equipment as well as training and research opportunities on the continent. The Consortium for Advancement of MRI Education and Research in Africa (CAMERA) is a network of African biomedical imaging experts and global partners, implementing novel strategies to advance MRI access and research in Africa. Upon its inception in 2019, CAMERA sets out to identify challenges to MRI usage and provide a framework for addressing MRI needs in the region. To this end, CAMERA conducted a needs assessment survey (NAS) and a series of symposia at international MRI society meetings over a 2-year period. The 68-question NAS was distributed to MRI users in Africa and was completed by 157 clinicians and scientists from across Sub-Saharan Africa (SSA). On average, the number of MRI scanners per million people remained at less than one, of which 39% were obsolete low-field systems but still in use to meet daily clinical needs. The feasibility of coupling stable energy supplies from various sources has contributed to the growing number of higher-field (1.5 T) MRI scanners in the region. However, these systems are underutilized, with only 8% of facilities reporting clinical scans of 15 or more patients per day, per scanner. The most frequently reported MRI scans were neurological and musculoskeletal. The CAMERA NAS combined with the World Health Organization and International Atomic Energy Agency data provides the most up-to-date data on MRI density in Africa and offers a unique insight into Africa's MRI needs. Reported gaps in training, maintenance, and research capacity indicate ongoing challenges in providing sustainable high-value MRI access in SSA. Findings from the NAS and focused discussions at international MRI society meetings provided the basis for the framework presented here for advancing MRI capacity in SSA. While these findings pertain to SSA, the framework provides a model for advancing imaging needs in other low-resource settings.
Collapse
Affiliation(s)
- Udunna C Anazodo
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jinggang J Ng
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Boaz Ehiogu
- Lawson Health Research Institute, London, Ontario, Canada
| | | | | | - Henk J M M Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
| | | | - Mamadou Diop
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Abayomi Opadele
- Molecular and Cellular Dynamics Research, Graduate School of Biomedical Science and Engineering, Hokkaido University, Hokkaido, Japan
| | | | - Michael O Dada
- Department of Physics, Federal University of Technology, Minna, Niger State, Nigeria
| | - Godwin Ogbole
- Department of Radiology, University College Hospital Ibadan, Ibadan, Nigeria
| | - Rita Nunes
- Department of Bioengineering, Instituto Superior, Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Patricia Figueiredo
- Department of Bioengineering, Instituto Superior, Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Matteo Figini
- Department of Computer Science, University College London, London, UK
| | | | - Bamidele O Awojoyogbe
- Department of Physics, Federal University of Technology, Minna, Niger State, Nigeria
| | | | - Christian Sprenger
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rachel Wagner
- Mbarara University of Science and Technology, Mbarara, Uganda
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | | | - Dominic Romeo
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yusha Sun
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Francis Fezeu
- Neurosurgery & Neurology, BRAIN Global, Salisbury, Maryland, USA
| | - Akintunde T Orunmuyi
- Department of Nuclear Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Sairam Geethanath
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA
| | - Vikas Gulani
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Sola Adeleke
- Department of Oncology, Guy's & St Thomas' Hospital, London, UK
| | - Ntusi Ntobeuko
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Frank J Minja
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, USA
| | - Andrew G Webb
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Iris Asllani
- Department of Neuroscience, University of Sussex, Brighton, UK
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, New York, USA
| | - Farouk Dako
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- RAD-AID International, Chevy Chase, Maryland, USA
| |
Collapse
|
11
|
Segobin S, Renault C, Viader F, Eustache F, Pitel AL, Quinette P. Disruption in normal correlational patterns of metabolic networks in the limbic circuit during transient global amnesia. Brain Commun 2023; 5:fcad082. [PMID: 37101832 PMCID: PMC10123398 DOI: 10.1093/braincomms/fcad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/06/2022] [Accepted: 03/17/2023] [Indexed: 04/28/2023] Open
Abstract
Transient global amnesia is characterized by the sudden apparition of severe episodic amnesia, mainly anterograde, associated with emotional changes. Even though the symptoms are stereotyped, cerebral mechanism underlying transient global amnesia remains unexplained and previous studies using positron emission tomography do not show any clear results or consensus on cerebral regions impacted during transient global amnesia. This study included a group of 10 transient global amnesic patients who underwent 18F-fluorodeoxyglucose positron emission tomography during the acute or recovery phase of the episode and 10 paired healthy controls. Episodic memory was evaluated with the encoding-storage-retrieval paradigm and a story recall test of the Wechsler's memory scale and anxiety was assessed with the Spielberger scale. We used statistical parametric mapping to identify modifications of whole-brain metabolism. Regarding hypometabolism, there was no brain region systematically affected in all transient global amnesic patients and the comparison between amnesic patients and controls did not show any significant differences. To better understand the specific implication of the limbic circuit in the pathophysiology of transient global amnesia, we then conducted a correlational analysis that included regions of this network. Our findings showed that in healthy controls, regions of the limbic circuit seem to operate in a synchronized way with all regions being highly correlated to each other. On the opposite, in transient global amnesic patients, we observed a clear disruption of this normal correlational patterns between regions with the medial temporal lobe (the hippocampus, parahippocampal gyrus and amygdala) included in one cluster and the orbitofrontal cortex, anterior and posterior cingulate gyrus and thalamus gathered in the other one. Given the individual variability in the time course of transient global amnesia, the direct comparison between a group of patients and controls does not seem to favour the identification of subtle and transient alterations in regional metabolism. The involvement of an extended network, such as the limbic circuit, seems more likely to explain the symptoms of patients. Indeed, the synchronization of regions within the limbic circuit seems to be altered during transient global amnesia, which could explain the amnesia and anxiety observed in transient global amnesic patients. The present study thus deepens our understanding of the mechanisms underlying not only amnesia but also the emotional component of transient global amnesia by considering it as a disruption in the normal correlational patterns within the limbic circuit.
Collapse
Affiliation(s)
| | | | - Fausto Viader
- Normandie University, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14032, Caen, Normandie, France
| | - Francis Eustache
- Normandie University, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14032, Caen, Normandie, France
| | | | - Peggy Quinette
- Correspondence to: Peggy Quinette Unité de recherche Inserm-EPHE-Unicaen U1077 Neuropsychologie et Imagerie de la Mémoire Humaine Pôle des Formations et de Recherches en Santé 2, rue des Rochambelles, F-14032 Caen Cedex CS, France E-mail:
| |
Collapse
|
12
|
Conner CR, Quevedo J, Soares JC, Fenoy AJ. Brain metabolic changes and clinical response to superolateral medial forebrain bundle deep brain stimulation for treatment-resistant depression. Mol Psychiatry 2022; 27:4561-4567. [PMID: 35982256 DOI: 10.1038/s41380-022-01726-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 12/14/2022]
Abstract
Deep brain stimulation (DBS) to the superolateral branch of the medial forebrain bundle is an efficacious therapy for treatment-resistant depression, providing rapid antidepressant effects. In this study, we use 18F-fluorodeoxyglucose-positron emission tomography (PET) to identify brain metabolic changes over 12 months post-DBS implantation in ten of our patients, compared to baseline. The primary outcome measure was a 50% reduction in Montgomery-Åsberg Depression Rating Scale (MADRS) score, which was interpreted as a response. Deterministic fiber tracking was used to individually map the target area; probabilistic tractography was used to identify modulated fiber tracts modeled using the cathodal contacts. Eight of the ten patients included in this study were responders. PET imaging revealed significant decreases in bilateral caudate, mediodorsal thalamus, and dorsal anterior cingulate cortex metabolism that was evident at 6 months and continued to 12 months post surgery. At 12 months post-surgery, significant left ventral prefrontal cortical metabolic decreases were also observed. Right caudate metabolic decrease at 12 months was significantly correlated with mean MADRS reduction. Probabilistic tractography modeling revealed that such metabolic changes lay along cortico-limbic nodes structurally connected to the DBS target site. Such observed metabolic changes following DBS correlated with clinical response provide insights into how future studies can elaborate such data to create biomarkers to predict response, the development of which likely will require multimodal imaging analysis.
Collapse
Affiliation(s)
- Christopher R Conner
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, TX, USA.
| | - Joao Quevedo
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, TX, USA
| | - Jair C Soares
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, TX, USA
| | - Albert J Fenoy
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, TX, USA.
| |
Collapse
|
13
|
Šiško Markoš I, Blažeković I, Peitl V, Jukić T, Supanc V, Karlović D, Fröbe A. Psychiatric Illness or Immune Dysfunction-Brain Perfusion Imaging Providing the Answer in a Case of Anti-NMDAR Encephalitis. Diagnostics (Basel) 2022; 12:diagnostics12102377. [PMID: 36292066 PMCID: PMC9600880 DOI: 10.3390/diagnostics12102377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND We investigated the potential use of SPECT quantification in addition to qualitative brain perfusion analysis for the detection of anti-NMDAR encephalitis. The question is how to normalize brain activity to be able to quantitatively detect perfusion patterns. Usually, brain activity is normalized to a structure considered unaffected by the disease. METHODS Brain [99mTc]-HMPAO SPECT was performed as a method to detect brain perfusion patterns. The patterns of abnormal brain perfusion cannot always be reliably and qualitatively assessed when dealing with rare diseases. Recent advances in SPECT quantification using commercial software have enabled more objective and detailed analysis of brain perfusion. The cerebellum and whole brain were used as the normalization structures and were compared with visual analysis. RESULTS The quantification analysis performed with whole brain normalization confirmed right parietal lobe hypoperfusion while also detecting statistically significant left-to-right perfusion differences between the temporal lobe and thalamus. Whole brain normalization further described bilateral frontal lobe hyperperfusion, predominantly of the left lobe, and was in accordance with visual analysis. CONCLUSION SPECT quantitative brain perfusion analysis, using the whole brain as the normalization structure rather than the cerebellum, in this case, improved confidence in the visual detection of anti-NMDAR encephalitis and provided unexpected solutions to atypical psychiatric dilemmas.
Collapse
Affiliation(s)
- Ines Šiško Markoš
- Department of Oncology and Nuclear Medicine, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-1-3787-620
| | - Ivan Blažeković
- Department of Oncology and Nuclear Medicine, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
| | - Vjekoslav Peitl
- School of Medicine, Catholic University of Croatia, 10000 Zagreb, Croatia
- Department of Psychiatry, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
| | - Tomislav Jukić
- Department of Oncology and Nuclear Medicine, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Višnja Supanc
- Department of Neurology, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
| | - Dalibor Karlović
- School of Medicine, Catholic University of Croatia, 10000 Zagreb, Croatia
- Department of Psychiatry, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
| | - Ana Fröbe
- Department of Oncology and Nuclear Medicine, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
14
|
Ssali T, Narciso L, Hicks J, Liu L, Jesso S, Richardson L, Günther M, Konstandin S, Eickel K, Prato F, Anazodo UC, Finger E, St Lawrence K. Concordance of regional hypoperfusion by pCASL MRI and 15O-water PET in frontotemporal dementia: Is pCASL an efficacious alternative? Neuroimage Clin 2022; 33:102950. [PMID: 35134705 PMCID: PMC8829802 DOI: 10.1016/j.nicl.2022.102950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 12/11/2022]
Abstract
ASL is an alternative to 15O-water for identifying hypoperfusion in FTD patients. ROI-based perfusion by ASL and 15O-water were strongly correlated (R > 0.75). Hypoperfusion patterns identified by 15O-water and ASL were in good agreement. Careful selection of the reference region is required to avoid erroneous results.
Background Clinical diagnosis of frontotemporal dementia (FTD) remains a challenge due to the overlap of symptoms among FTD subtypes and with other psychiatric disorders. Perfusion imaging by arterial spin labeling (ASL) is a promising non-invasive alternative to established PET techniques; however, its sensitivity to imaging parameters can hinder its ability to detect perfusion abnormalities. Purpose This study evaluated the similarity of regional hypoperfusion patterns detected by ASL relative to the gold standard for imaging perfusion, PET with radiolabeled water (15O-water). Methods and materials Perfusion by single-delay pseudo continuous ASL (SD-pCASL), free-lunch Hadamard encoded pCASL (FL_TE-pCASL), and 15O-water data were acquired on a hybrid PET/MR scanner in 13 controls and 9 FTD patients. Cerebral blood flow (CBF) by 15O-water was quantified by a non-invasive approach (PMRFlow). Regional hypoperfusion was determined by comparing individual patients to the control group. This was performed using absolute (aCBF) and CBF normalized to whole-brain perfusion (rCBF). Agreement was assessed based on the fraction of overlapping voxels. Sensitivity and specificity of pCASL was estimated using hypoperfused regions of interest identified by 15O-water. Results Region of interest (ROI) based perfusion measured by 15O-water strongly correlated with SD-pCASL (R = 0.85 ± 0.1) and FL_TE-pCASL (R = 0.81 ± 0.14). Good agreement in terms of regional hypoperfusion patterns was found between 15O-water and SD-pCASL (sensitivity = 70%, specificity = 78%) and between 15O-water and FL_TE-pCASL (sensitivity = 71%, specificity = 73%). However, SD-pCASL showed greater overlap (43.4 ± 21.3%) with 15O-water than FL_TE-pCASL (29.9 ± 21.3%). Although aCBF and rCBF showed no significant differences regarding spatial overlap and metrics of agreement with 15O-water, rCBF showed considerable variability across subtypes, indicating that care must be taken when selecting a reference region. Conclusions This study demonstrates the potential of pCASL for assessing regional hypoperfusion related to FTD and supports its use as a cost-effective alternative to PET.
Collapse
Affiliation(s)
- Tracy Ssali
- Lawson Health Research Institute, London, Canada; Department of Medical Biophysics, Western University, London, Canada.
| | - Lucas Narciso
- Lawson Health Research Institute, London, Canada; Department of Medical Biophysics, Western University, London, Canada
| | - Justin Hicks
- Lawson Health Research Institute, London, Canada; Department of Medical Biophysics, Western University, London, Canada
| | - Linshan Liu
- Lawson Health Research Institute, London, Canada; Department of Medical Biophysics, Western University, London, Canada
| | - Sarah Jesso
- Lawson Health Research Institute, London, Canada; St. Joseph's Health Care, London, Canada
| | - Lauryn Richardson
- Lawson Health Research Institute, London, Canada; St. Joseph's Health Care, London, Canada
| | - Matthias Günther
- Fraunhofer Institute for Medical Image Computing MEVIS, Bremen, Germany; University Bremen, Bremen, Germany
| | - Simon Konstandin
- Fraunhofer Institute for Medical Image Computing MEVIS, Bremen, Germany; Mediri GmbH, Heidelberg, Germany
| | | | - Frank Prato
- Lawson Health Research Institute, London, Canada; Department of Medical Biophysics, Western University, London, Canada
| | - Udunna C Anazodo
- Lawson Health Research Institute, London, Canada; Department of Medical Biophysics, Western University, London, Canada
| | - Elizabeth Finger
- Lawson Health Research Institute, London, Canada; Department of Medical Biophysics, Western University, London, Canada; Department of Clinical Neurological Sciences, Western University, London, Canada
| | - Keith St Lawrence
- Lawson Health Research Institute, London, Canada; Department of Medical Biophysics, Western University, London, Canada
| |
Collapse
|
15
|
Guedj E, Varrone A, Boellaard R, Albert NL, Barthel H, van Berckel B, Brendel M, Cecchin D, Ekmekcioglu O, Garibotto V, Lammertsma AA, Law I, Peñuelas I, Semah F, Traub-Weidinger T, van de Giessen E, Van Weehaeghe D, Morbelli S. EANM procedure guidelines for brain PET imaging using [ 18F]FDG, version 3. Eur J Nucl Med Mol Imaging 2021; 49:632-651. [PMID: 34882261 PMCID: PMC8803744 DOI: 10.1007/s00259-021-05603-w] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022]
Abstract
The present procedural guidelines summarize the current views of the EANM Neuro-Imaging Committee (NIC). The purpose of these guidelines is to assist nuclear medicine practitioners in making recommendations, performing, interpreting, and reporting results of [18F]FDG-PET imaging of the brain. The aim is to help achieve a high-quality standard of [18F]FDG brain imaging and to further increase the diagnostic impact of this technique in neurological, neurosurgical, and psychiatric practice. The present document replaces a former version of the guidelines that have been published in 2009. These new guidelines include an update in the light of advances in PET technology such as the introduction of digital PET and hybrid PET/MR systems, advances in individual PET semiquantitative analysis, and current broadening clinical indications (e.g., for encephalitis and brain lymphoma). Further insight has also become available about hyperglycemia effects in patients who undergo brain [18F]FDG-PET. Accordingly, the patient preparation procedure has been updated. Finally, most typical brain patterns of metabolic changes are summarized for neurodegenerative diseases. The present guidelines are specifically intended to present information related to the European practice. The information provided should be taken in the context of local conditions and regulations.
Collapse
Affiliation(s)
- Eric Guedj
- APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, CERIMED, Nuclear Medicine Department, Aix Marseille Univ, Marseille, France. .,Service Central de Biophysique et Médecine Nucléaire, Hôpital de la Timone, 264 rue Saint Pierre, 13005, Marseille, France.
| | - Andrea Varrone
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Healthcare Services, Stockholm, Sweden
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands.,Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nathalie L Albert
- Department of Nuclear Medicine, Ludwig Maximilians-University of Munich, Munich, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, Leipzig University, Leipzig, Germany
| | - Bart van Berckel
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - Matthias Brendel
- Department of Nuclear Medicine, Ludwig Maximilians-University of Munich, Munich, Germany.,German Centre of Neurodegenerative Diseases (DZNE), Site Munich, Bonn, Germany
| | - Diego Cecchin
- Nuclear Medicine Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy
| | - Ozgul Ekmekcioglu
- Sisli Hamidiye Etfal Education and Research Hospital, Nuclear Medicine Dept., University of Health Sciences, Istanbul, Turkey
| | - Valentina Garibotto
- NIMTLab, Faculty of Medicine, Geneva University, Geneva, Switzerland.,Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland
| | - Adriaan A Lammertsma
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands.,Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Iván Peñuelas
- Department of Nuclear Medicine, Clinica Universidad de Navarra, IdiSNA, University of Navarra, Pamplona, Spain
| | - Franck Semah
- Nuclear Medicine Department, University Hospital, Lille, France
| | - Tatjana Traub-Weidinger
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Elsmarieke van de Giessen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands.,Radiology and Nuclear Medicine, Amsterdam UMC, Location AMC, Meibergdreef 9, Amsterdam, The Netherlands
| | | | - Silvia Morbelli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Nuclear Medicine Unit, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| |
Collapse
|
16
|
Proesmans S, Raedt R, Germonpré C, Christiaen E, Descamps B, Boon P, De Herdt V, Vanhove C. Voxel-Based Analysis of [18F]-FDG Brain PET in Rats Using Data-Driven Normalization. Front Med (Lausanne) 2021; 8:744157. [PMID: 34746179 PMCID: PMC8565796 DOI: 10.3389/fmed.2021.744157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: [18F]-FDG PET is a widely used imaging modality that visualizes cellular glucose uptake and provides functional information on the metabolic state of different tissues in vivo. Various quantification methods can be used to evaluate glucose metabolism in the brain, including the cerebral metabolic rate of glucose (CMRglc) and standard uptake values (SUVs). Especially in the brain, these (semi-)quantitative measures can be affected by several physiological factors, such as blood glucose level, age, gender, and stress. Next to this inter- and intra-subject variability, the use of different PET acquisition protocols across studies has created a need for the standardization and harmonization of brain PET evaluation. In this study we present a framework for statistical voxel-based analysis of glucose uptake in the rat brain using histogram-based intensity normalization. Methods: [18F]-FDG PET images of 28 normal rat brains were coregistered and voxel-wisely averaged. Ratio images were generated by voxel-wisely dividing each of these images with the group average. The most prevalent value in the ratio image was used as normalization factor. The normalized PET images were voxel-wisely averaged to generate a normal rat brain atlas. The variability of voxel intensities across the normalized PET images was compared to images that were either normalized by whole brain normalization, or not normalized. To illustrate the added value of this normal rat brain atlas, 9 animals with a striatal hemorrhagic lesion and 9 control animals were intravenously injected with [18F]-FDG and the PET images of these animals were voxel-wisely compared to the normal atlas by group- and individual analyses. Results: The average coefficient of variation of the voxel intensities in the brain across normal [18F]-FDG PET images was 6.7% for the histogram-based normalized images, 11.6% for whole brain normalized images, and 31.2% when no normalization was applied. Statistical voxel-based analysis, using the normal template, indicated regions of significantly decreased glucose uptake at the site of the ICH lesion in the ICH animals, but not in control animals. Conclusion: In summary, histogram-based intensity normalization of [18F]-FDG uptake in the brain is a suitable data-driven approach for standardized voxel-based comparison of brain PET images.
Collapse
Affiliation(s)
- Silke Proesmans
- 4Brain Lab, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Robrecht Raedt
- 4Brain Lab, Department of Head and Skin, Ghent University, Ghent, Belgium
| | | | - Emma Christiaen
- IbiTech-MEDISIP-Infinity Lab, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Benedicte Descamps
- IbiTech-MEDISIP-Infinity Lab, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Paul Boon
- 4Brain Lab, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Veerle De Herdt
- 4Brain Lab, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Christian Vanhove
- IbiTech-MEDISIP-Infinity Lab, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| |
Collapse
|
17
|
Evaluation of Age and Sex-Related Metabolic Changes in Healthy Subjects: An Italian Brain 18F-FDG PET Study. J Clin Med 2021; 10:jcm10214932. [PMID: 34768454 PMCID: PMC8584846 DOI: 10.3390/jcm10214932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 11/26/2022] Open
Abstract
Background: 18F-fluorodeoxyglucose (18F-FDG) positron-emission-tomography (PET) allows detection of cerebral metabolic alterations in neurological diseases vs. normal aging. We assess age- and sex-related brain metabolic changes in healthy subjects, exploring impact of activity normalization methods. Methods: brain scans of Italian Association of Nuclear Medicine normative database (151 subjects, 67 Males, 84 Females, aged 20–84) were selected. Global mean, white matter, and pons activity were explored as normalization reference. We performed voxel-based and ROI analyses using SPM12 and IBM-SPSS software. Results: SPM proved a negative correlation between age and brain glucose metabolism involving frontal lobes, anterior-cingulate and insular cortices bilaterally. Narrower clusters were detected in lateral parietal lobes, precuneus, temporal pole and medial areas bilaterally. Normalizing on pons activity, we found a more significant negative correlation and no positive one. ROIs analysis confirmed SPM results. Moreover, a significant age × sex interaction effect was revealed, with worse metabolic reduction in posterior-cingulate cortices in females than males, especially in post-menopausal age. Conclusions: this study demonstrated an age-related metabolic reduction in frontal lobes and in some parieto-temporal areas more evident in females. Results suggested pons as the most appropriate normalization reference. Knowledge of age- and sex-related cerebral metabolic changes is critical to correctly interpreting brain 18F-FDG PET imaging.
Collapse
|
18
|
Ssali T, Anazodo UC, Narciso L, Liu L, Jesso S, Richardson L, Günther M, Konstandin S, Eickel K, Prato F, Finger E, St Lawrence K. Sensitivity of arterial Spin labeling for characterization of longitudinal perfusion changes in Frontotemporal dementia and related disorders. NEUROIMAGE-CLINICAL 2021; 35:102853. [PMID: 34697009 PMCID: PMC9421452 DOI: 10.1016/j.nicl.2021.102853] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/24/2021] [Accepted: 10/04/2021] [Indexed: 11/28/2022]
Abstract
This study demonstrates the value of ASL for longitudinal monitoring of perfusion in FTD patients. Good agreement was found in repeat measures of CBF in patients and controls. Transit times were not a significant source of error for the selected post labeling delay (2 s).
Background Advances in the understanding of the pathophysiology of frontotemporal dementia (FTD) and related disorders, along with the development of novel candidate disease modifying treatments, have stimulated the need for tools to assess the efficacy of new therapies. While perfusion imaging by arterial spin labeling (ASL) is an attractive approach for longitudinal imaging biomarkers of neurodegeneration, sources of variability between sessions including arterial transit times (ATT) and fluctuations in resting perfusion can reduce its sensitivity. Establishing the magnitude of perfusion changes that can be reliably detected is necessary to delineate longitudinal perfusion changes related to disease processes from the effects of these sources of error. Purpose To assess the feasibility of ASL for longitudinal monitoring of patients with FTD by quantifying between-session variability of perfusion on a voxel-by-voxel basis. Methods and materials ASL data were collected in 13 healthy controls and 8 patients with FTD or progressive supra-nuclear palsy. Variability in cerebral blood flow (CBF) by single delay pseudo-continuous ASL (SD-pCASL) acquired one month apart were quantified by the coefficient of variation (CV) and intraclass correlation coefficient (ICC). Additionally, CBF by SD-pCASL and ATT by low-resolution multiple inversion time ASL (LowRes-pCASL) were compared to Hadamard encoded sequences which are able to simultaneously measure CBF and ATT with improved time-efficiency. Results Agreement of grey-matter perfusion between sessions was found for both patients and controls (CV = 10.8% and 8.3% respectively) with good reliability for both groups (ICC > 0.6). Intensity normalization to remove day-to-day fluctuations in resting perfusion reduced the CV by 28%. Less than 5% of voxels had ATTs above the chosen post labelling delay (2 s), indicating that the ATT was not a significant source of error. Hadamard-encoded perfusion imaging yielded systematically higher CBF compared to SD-pCASL, but produced similar transit-time measurements. Power analysis revealed that SD-pCASL has the sensitivity to detect longitudinal changes as low as 10% with as few as 10 patient participants. Conclusion With the appropriate labeling parameters, SD-pCASL is a promising approach for assessing longitudinal changes in CBF associated with FTD.
Collapse
Affiliation(s)
- Tracy Ssali
- Lawson Health Research Institute, London, Canada; Department of Medical Biophysics, Western University, London, Canada.
| | - Udunna C Anazodo
- Lawson Health Research Institute, London, Canada; Department of Medical Biophysics, Western University, London, Canada
| | - Lucas Narciso
- Lawson Health Research Institute, London, Canada; Department of Medical Biophysics, Western University, London, Canada
| | - Linshan Liu
- Lawson Health Research Institute, London, Canada; Department of Medical Biophysics, Western University, London, Canada
| | - Sarah Jesso
- Lawson Health Research Institute, London, Canada; St. Joseph's Health Care, London, Canada
| | - Lauryn Richardson
- Lawson Health Research Institute, London, Canada; St. Joseph's Health Care, London, Canada
| | - Matthias Günther
- Fraunhofer Institute for Medical Image Computing MEVIS, Bremen, Germany; University Bremen, Bremen, Germany
| | - Simon Konstandin
- Fraunhofer Institute for Medical Image Computing MEVIS, Bremen, Germany; Mediri GmbH, Heidelberg, Germany
| | | | - Frank Prato
- Lawson Health Research Institute, London, Canada; Department of Medical Biophysics, Western University, London, Canada
| | - Elizabeth Finger
- Lawson Health Research Institute, London, Canada; Department of Medical Biophysics, Western University, London, Canada; Department of Clinical Neurological Sciences, Western University, London, Canada
| | - Keith St Lawrence
- Lawson Health Research Institute, London, Canada; Department of Medical Biophysics, Western University, London, Canada
| |
Collapse
|
19
|
Effect of blood glucose and body weight on image quality in brain [18F]FDG PET imaging. Nucl Med Commun 2021; 41:1265-1274. [PMID: 32858605 DOI: 10.1097/mnm.0000000000001281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES The aims of the present study were to assess the influence of mild to moderate hyperglycaemia and body weight on brain 2-[F]fluoro-2-deoxy-D-glucose ([F]FDG) PET, and to what extent a simple algorithm for maintaining count density may compensate for these effects. METHODS We prospectively included 63 patients undergoing routine brain [F]FDG PET. Scan time and injected activity were adjusted in patients with hyperglycaemia or increased body weight. Measures of perceived image quality, image noise and image contrast were obtained in both standard scans and intervention scans. RESULTS Elevated blood glucose and increased body weight were associated with reduced count density and increased image noise that in turn were associated with lower scores of perceived image quality. The proposed simple algorithm effectively maintained the image noise level and improved perceived image quality across the full range of elevated blood glucose values and body weights, although the effect of intervention on perceived image quality was attenuated by lower image contrast in patients with moderate hyperglycaemia. In patients with increased body weight or blood glucose, the fraction of scans with poor image quality decreased from 9/29 to 2/29 (P = 0.04) and the fraction with good image quality increased from 7/29 to 20/29 (P = 0.001) when applying the proposed algorithm. CONCLUSIONS Increasing blood glucose and body weight are associated with increased image noise in standard imaging conditions. Improving count density by prolonging scan time and increasing injected activity significantly improves image quality in hyperglycaemic patients, although the image contrast remains reduced in patients with most pronounced hyperglycaemia.
Collapse
|
20
|
Henriksen OM, Gjedde A, Vang K, Law I, Aanerud J, Rostrup E. Regional and interindividual relationships between cerebral perfusion and oxygen metabolism. J Appl Physiol (1985) 2021; 130:1836-1847. [PMID: 33830816 DOI: 10.1152/japplphysiol.00939.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Quantitative measurements of resting cerebral blood flow (CBF) and metabolic rate of oxygen (CMRO2) show large between-subject and regional variability, but the relationships between CBF and CMRO2 measurements regionally and globally are not fully established. Here, we investigated the between-subject and regional associations between CBF and CMRO2 measures with independent and quantitative PET techniques. We included resting CBF and CMRO2 measurements from 50 healthy volunteers (aged 22-81 yr), and calculated the regional and global values of oxygen delivery (Do2) and oxygen extraction fraction (OEF). Linear mixed-model analysis showed that CBF and CMRO2 measurements were closely associated regionally, but no significant between-subject association could be demonstrated, even when adjusting for arterial Pco2 and hemoglobin concentration. The analysis also showed regional differences of OEF, reflecting variable relationship between Do2 and CMRO2, resulting in lower estimates of OEF in thalami, brainstem, and mesial temporal cortices and higher estimates of OEF in occipital cortex. In the present study, we demonstrated no between-subject association of quantitative measurements of CBF and CMRO2 in healthy subjects. Thus, quantitative measurements of CBF did not reflect the underlying between-subject variability of oxygen metabolism measures, mainly because of large interindividual OEF variability not accounted for by Pco2 and hemoglobin concentration.NEW & NOTEWORTHY Using quantitative PET-measurements in healthy human subjects, we confirmed a regional association of CBF and CMRO2, but did not find an association of these values across subjects. This suggests that subjects have an individual coupling between perfusion and metabolism and shows that absolute perfusion measurements does not serve as a surrogate measure of individual measures of oxygen metabolism. The analysis further showed smaller, but significant regional differences of oxygen extraction fraction at rest.
Collapse
Affiliation(s)
- Otto M Henriksen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Albert Gjedde
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Translational Neuropsychiatry Unit, Aarhus University and University Hospital, Aarhus, Denmark.,Department of Nuclear Medicine and PET Centre, Aarhus University and University Hospital, Aarhus, Denmark
| | - Kim Vang
- Department of Nuclear Medicine and PET Centre, Aarhus University and University Hospital, Aarhus, Denmark
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Joel Aanerud
- Department of Nuclear Medicine and PET Centre, Aarhus University and University Hospital, Aarhus, Denmark
| | - Egill Rostrup
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark.,Mental Health Center Glostrup, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Nicastro N, Stripeikyte G, Assal F, Garibotto V, Blanke O. Premotor and fronto-striatal mechanisms associated with presence hallucinations in dementia with Lewy bodies. NEUROIMAGE: CLINICAL 2021; 32:102791. [PMID: 34461436 PMCID: PMC8403753 DOI: 10.1016/j.nicl.2021.102791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION presence hallucinations (PH) are frequent in dementia with Lewy bodies (DLB), but their cortico-subcortical origin is unknown. Recent studies have defined key frontal and temporal areas contributing to the occurrence of PH (PH-network) and tested their relevance in subjects with Parkinson's disease (PD). With the present study, we aimed at disentangling the metabolic and dopaminergic correlates of pH as well as their relation to a recently defined PH brain network in DLB. METHODS for the present study, we included 34 DLB subjects (10 with PH (PH + ); 24 without PH (PH-)), who underwent 18F-FDG PET and 123I-FP-CIT SPECT imaging. We performed 18F-FDG PET group comparisons, as well as interregional correlation analyses using 18F-FDG PH-network regions as a seed. RESULTS PH + versus PH- had reduced 18F-FDG uptake in precentral, superior frontal and parietal gyri, involving ventral premotor cortex (vPMC) of the PH-network that showed strongly reduced functional connectivity with bilateral cortical regions. 18F-FDG vPMC uptake was negatively correlated with caudate 123I-FP-CIT uptake in PH+ (p = 0.028) and interregional correlation analysis seeding from the vPMC showed widespread fronto-parietal 18F-FDG decreases in PH + . DISCUSSION these findings uncover the pivotal role of vPMC (involved in a PH-network) and its cortico-striatal connections in association with PH in DLB, improving our understanding of psychosis in neurodegeneration.
Collapse
Affiliation(s)
- Nicolas Nicastro
- Division of Neurology, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland; Faculty of Medicine, University of Geneva, Switzerland.
| | - Giedre Stripeikyte
- Center for Neuroprosthetics, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland; Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Frédéric Assal
- Division of Neurology, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland; Faculty of Medicine, University of Geneva, Switzerland
| | - Valentina Garibotto
- Faculty of Medicine, University of Geneva, Switzerland; Division of Nuclear Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Olaf Blanke
- Division of Neurology, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland; Center for Neuroprosthetics, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland; Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| |
Collapse
|
22
|
López-González FJ, Silva-Rodríguez J, Paredes-Pacheco J, Niñerola-Baizán A, Efthimiou N, Martín-Martín C, Moscoso A, Ruibal Á, Roé-Vellvé N, Aguiar P. Intensity normalization methods in brain FDG-PET quantification. Neuroimage 2020; 222:117229. [PMID: 32771619 DOI: 10.1016/j.neuroimage.2020.117229] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The lack of standardization of intensity normalization methods and its unknown effect on the quantification output is recognized as a major drawback for the harmonization of brain FDG-PET quantification protocols. The aim of this work is the ground truth-based evaluation of different intensity normalization methods on brain FDG-PET quantification output. METHODS Realistic FDG-PET images were generated using Monte Carlo simulation from activity and attenuation maps directly derived from 25 healthy subjects (adding theoretical relative hypometabolisms on 6 regions of interest and for 5 hypometabolism levels). Single-subject statistical parametric mapping (SPM) was applied to compare each simulated FDG-PET image with a healthy database after intensity normalization based on reference regions methods such as the brain stem (RRBS), cerebellum (RRC) and the temporal lobe contralateral to the lesion (RRTL), and data-driven methods, such as proportional scaling (PS), histogram-based method (HN) and iterative versions of both methods (iPS and iHN). The performance of these methods was evaluated in terms of the recovery of the introduced theoretical hypometabolic pattern and the appearance of unspecific hypometabolic and hypermetabolic findings. RESULTS Detected hypometabolic patterns had significantly lower volumes than the introduced hypometabolisms for all intensity normalization methods particularly for slighter reductions in metabolism . Among the intensity normalization methods, RRC and HN provided the largest recovered hypometabolic volumes, while the RRBS showed the smallest recovery. In general, data-driven methods overcame reference regions and among them, the iterative methods overcame the non-iterative ones. Unspecific hypermetabolic volumes were similar for all methods, with the exception of PS, where it became a major limitation (up to 250 cm3) for extended and intense hypometabolism. On the other hand, unspecific hypometabolism was similar far all methods, and usually solved with appropriate clustering. CONCLUSIONS Our findings showed that the inappropriate use of intensity normalization methods can provide remarkable bias in the detected hypometabolism and it represents a serious concern in terms of false positives. Based on our findings, we recommend the use of histogram-based intensity normalization methods. Reference region methods performance was equivalent to data-driven methods only when the selected reference region is large and stable.
Collapse
Affiliation(s)
- Francisco J López-González
- Molecular Imaging Group, Radiology Department, Faculty of Medicine, Universidade de Santiago de Compostela, Galicia, Spain; Molecular Imaging Unit, Centro de Investigaciones Médico-Sanitarias, General Foundation of the University of Málaga, Málaga, Spain
| | - Jesús Silva-Rodríguez
- R&D Department, Qubiotech Health Intelligence, SL., Rúa Real n° 24, Planta 1, A Coruña, Galicia, Spain; Nuclear Medicine Department & Molecular Imaging Group, University Hospital (SERGAS) & Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana S/N 15706, Santiago de Compostela, Galicia, Spain.
| | - José Paredes-Pacheco
- Molecular Imaging Group, Radiology Department, Faculty of Medicine, Universidade de Santiago de Compostela, Galicia, Spain; Molecular Imaging Unit, Centro de Investigaciones Médico-Sanitarias, General Foundation of the University of Málaga, Málaga, Spain
| | - Aida Niñerola-Baizán
- Nuclear Medicine Department, Hospital Clínic, Barcelona, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Nikos Efthimiou
- Positron Emission Tomography Research Centre, University of Hull, Hull HU6 7RX, United Kingdom
| | | | - Alexis Moscoso
- Molecular Imaging Group, Radiology Department, Faculty of Medicine, Universidade de Santiago de Compostela, Galicia, Spain; Nuclear Medicine Department & Molecular Imaging Group, University Hospital (SERGAS) & Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana S/N 15706, Santiago de Compostela, Galicia, Spain
| | - Álvaro Ruibal
- Molecular Imaging Group, Radiology Department, Faculty of Medicine, Universidade de Santiago de Compostela, Galicia, Spain; Nuclear Medicine Department & Molecular Imaging Group, University Hospital (SERGAS) & Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana S/N 15706, Santiago de Compostela, Galicia, Spain
| | - Núria Roé-Vellvé
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Pablo Aguiar
- Molecular Imaging Group, Radiology Department, Faculty of Medicine, Universidade de Santiago de Compostela, Galicia, Spain; Nuclear Medicine Department & Molecular Imaging Group, University Hospital (SERGAS) & Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana S/N 15706, Santiago de Compostela, Galicia, Spain.
| |
Collapse
|
23
|
Huber M, Beyer L, Prix C, Schönecker S, Palleis C, Rauchmann B, Morbelli S, Chincarini A, Bruffaerts R, Vandenberghe R, Van Laere K, Kramberger MG, Trost M, Grmek M, Garibotto V, Nicastro N, Frisoni GB, Lemstra AW, Zande J, Pilotto A, Padovani A, Garcia‐Ptacek S, Savitcheva I, Ochoa‐Figueroa MA, Davidsson A, Camacho V, Peira E, Arnaldi D, Bauckneht M, Pardini M, Sambuceti G, Vöglein J, Schnabel J, Unterrainer M, Perneczky R, Pogarell O, Buerger K, Catak C, Bartenstein P, Cumming P, Ewers M, Danek A, Levin J, Aarsland D, Nobili F, Rominger A, Brendel M. Metabolic Correlates of Dopaminergic Loss in Dementia with Lewy Bodies. Mov Disord 2019; 35:595-605. [DOI: 10.1002/mds.27945] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 12/14/2022] Open
Affiliation(s)
- Maria Huber
- Department of Nuclear Medicine University Hospital of Munich, LMU Munich Munich Germany
| | - Leonie Beyer
- Department of Nuclear Medicine University Hospital of Munich, LMU Munich Munich Germany
| | - Catharina Prix
- Department of Neurology University Hospital of Munich, LMU Munich Munich Germany
| | - Sonja Schönecker
- Department of Neurology University Hospital of Munich, LMU Munich Munich Germany
| | - Carla Palleis
- Department of Neurology University Hospital of Munich, LMU Munich Munich Germany
| | - Boris‐Stephan Rauchmann
- Department of Psychiatry and Psychotherapy University Hospital, LMU Munich Munich Germany
- Department of Radiology University Hospital of Munich, LMU Munich Munich Germany
| | - Silvia Morbelli
- IRCCS Ospedale Policlinico San Martino Genoa Italy
- Nuclear Medicine Unit, Department of Health Sciences University of Genoa Genoa Italy
| | - Andrea Chincarini
- National Institute of Nuclear Physics (INFN), Genoa section Genoa Genoa Italy
| | - Rose Bruffaerts
- Department of Neurosciences Faculty of Medicine, KU Leuven Leuven Belgium
- Department of Neurology University Hospitals Leuven Leuven Belgium
| | - Rik Vandenberghe
- Department of Neurosciences Faculty of Medicine, KU Leuven Leuven Belgium
- Department of Neurology University Hospitals Leuven Leuven Belgium
| | - Koen Van Laere
- Department of Nuclear Medicine University Hospitals Leuven Leuven Belgium
| | | | - Maja Trost
- Department of Neurology University Medical Centre Ljubljana Slovenia
- Department for Nuclear Medicine University Medical Centre Ljubljana Slovenia
| | - Marko Grmek
- Department for Nuclear Medicine University Medical Centre Ljubljana Slovenia
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and NIMTLab Geneva University Geneva Switzerland
| | - Nicolas Nicastro
- Department of Clinical Neurosciences Geneva University Hospitals Geneva Switzerland
- Department of Psychiatry University of Cambridge Cambridge United Kingdom
| | - Giovanni B. Frisoni
- LANVIE (Laboratoire de Neuroimagerie du Vieillissement), Department of Psychiatry Geneva University Hospitals Geneva Switzerland
| | | | - Jessica Zande
- VU Medical Center Alzheimer Center Amsterdam The Netherlands
| | - Andrea Pilotto
- Neurology Unit University of Brescia Brescia Italy
- Parkinson's Disease Rehabilitation Centre FERB ONLUS–S. Isidoro Hospital Trescore Balneario (BG) Italy
| | | | - Sara Garcia‐Ptacek
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society Karolinska Institutet Stockholm Sweden
- Internal Medicine, section for Neurology Sädersjukhuset Stockholm Sweden
| | - Irina Savitcheva
- Medical Radiation Physics and Nuclear Medicine Karolinska University Hospital Stockholm Sweden
| | - Miguel A. Ochoa‐Figueroa
- Department of Clinical Physiology, Institution of Medicine and Health Sciences Linköping University Hospital Linköping Sweden
- Department of Diagnostic Radiology Linköping University Hospital Linköping Sweden
- Center for Medical Image Science and Visualization (CMIV) Linköping University Linköping Sweden
| | - Anette Davidsson
- Department of Clinical Physiology, Institution of Medicine and Health Sciences Linköping University Hospital Linköping Sweden
| | - Valle Camacho
- Servicio de Medicina Nuclear, Hospital de la Santa Creu i Sant Pau Universitat Autònoma de Barcelona Barcelona España
| | - Enrico Peira
- National Institute of Nuclear Physics (INFN), Genoa section Genoa Genoa Italy
- Clinical Neurology, Department of Neuroscience (DINOGMI) University of Genoa Genoa Italy
| | - Dario Arnaldi
- IRCCS Ospedale Policlinico San Martino Genoa Italy
- Clinical Neurology, Department of Neuroscience (DINOGMI) University of Genoa Genoa Italy
| | - Matteo Bauckneht
- IRCCS Ospedale Policlinico San Martino Genoa Italy
- Nuclear Medicine Unit, Department of Health Sciences University of Genoa Genoa Italy
| | - Matteo Pardini
- IRCCS Ospedale Policlinico San Martino Genoa Italy
- Clinical Neurology, Department of Neuroscience (DINOGMI) University of Genoa Genoa Italy
| | - Gianmario Sambuceti
- IRCCS Ospedale Policlinico San Martino Genoa Italy
- Nuclear Medicine Unit, Department of Health Sciences University of Genoa Genoa Italy
| | - Jonathan Vöglein
- Department of Neurology University Hospital of Munich, LMU Munich Munich Germany
- DZNE–German Center for Neurodegenerative Diseases Munich Germany
| | - Jonas Schnabel
- Department of Nuclear Medicine University Hospital of Munich, LMU Munich Munich Germany
| | - Marcus Unterrainer
- Department of Nuclear Medicine University Hospital of Munich, LMU Munich Munich Germany
| | - Robert Perneczky
- Department of Psychiatry and Psychotherapy University Hospital, LMU Munich Munich Germany
- DZNE–German Center for Neurodegenerative Diseases Munich Germany
- Ageing Epidemiology Research Unit (AGE) School of Public Health, Imperial College London United Kingdom
- Institut for Stroke and Dementia Research University of Munich Munich Germany
| | - Oliver Pogarell
- Department of Psychiatry and Psychotherapy University Hospital, LMU Munich Munich Germany
| | - Katharina Buerger
- DZNE–German Center for Neurodegenerative Diseases Munich Germany
- Institut for Stroke and Dementia Research University of Munich Munich Germany
| | - Cihan Catak
- Institut for Stroke and Dementia Research University of Munich Munich Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine University Hospital of Munich, LMU Munich Munich Germany
- Munich Cluster for Systems Neurology (SyNergy) Munich Germany
| | - Paul Cumming
- Department of Nuclear Medicine University of Bern Inselspital Bern Switzerland
- School of Psychology and Counselling and IHBI Queensland University of Technology Brisbane Australia
| | - Michael Ewers
- DZNE–German Center for Neurodegenerative Diseases Munich Germany
| | - Adrian Danek
- Department of Neurology University Hospital of Munich, LMU Munich Munich Germany
| | - Johannes Levin
- Department of Neurology University Hospital of Munich, LMU Munich Munich Germany
- DZNE–German Center for Neurodegenerative Diseases Munich Germany
- Munich Cluster for Systems Neurology (SyNergy) Munich Germany
| | - Dag Aarsland
- Centre for Age‐Related Medicine (SESAM) Stavanger University Hospital Stavanger Norway
- Wolfson Centre for Age‐Related Diseases King's College London London United Kingdom
| | - Flavio Nobili
- IRCCS Ospedale Policlinico San Martino Genoa Italy
- Clinical Neurology, Department of Neuroscience (DINOGMI) University of Genoa Genoa Italy
| | - Axel Rominger
- Department of Nuclear Medicine University Hospital of Munich, LMU Munich Munich Germany
- Munich Cluster for Systems Neurology (SyNergy) Munich Germany
- Department of Nuclear Medicine University of Bern Inselspital Bern Switzerland
| | - Matthias Brendel
- Department of Nuclear Medicine University Hospital of Munich, LMU Munich Munich Germany
- Munich Cluster for Systems Neurology (SyNergy) Munich Germany
| |
Collapse
|
24
|
Aljuaid M, Booth S, Hobson DE, Borys A, Williams K, Katako A, Ryner L, Goertzen AL, Ko JH. Blood Flow and Glucose Metabolism Dissociation in the Putamen Is Predictive of Levodopa Induced Dyskinesia in Parkinson's Disease Patients. Front Neurol 2019; 10:1217. [PMID: 31824400 PMCID: PMC6881455 DOI: 10.3389/fneur.2019.01217] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/01/2019] [Indexed: 12/28/2022] Open
Abstract
Background: The forefront treatment of Parkinson's disease (PD) is Levodopa. When patients are treated with Levodopa cerebral blood flow is increased while cerebral metabolic rate is decreased in key subcortical regions including the putamen. This phenomenon is especially pronounced in patients with Levodopa-induced dyskinesia (LID). Method: To study the effect of clinically-determined anti-parkinsonian medications, 10 PD patients (5 with LID and 5 without LID) have been scanned with FDG-PET (a probe for glucose metabolism) and perfusion MRI (a probe for cerebral blood flow) both when they are ON and OFF medications. Patients additionally underwent resting state fMRI to detect changes in dopamine-mediated cortico-striatal connectivity. The degree of blood flow-glucose metabolism dissociation was quantified by comparing the FDG-PET and perfusion MRI data. Results: A significant interaction effect (imaging modality × medication; blood flow-glucose metabolism dissociation) has been found in the putamen (p = 0.023). Post-hoc analysis revealed that anti-parkinsonian medication consistently normalized the pathologically hyper-metabolic state of the putamen while mixed effects were observed in cerebral blood flow changes. This dissociation was especially predominant in patients with LID compared to those without. Unlike the prior study, this differentiation was not observed when cortico-striatal functional connectivity was assessed. Conclusion: We confirmed striatal neurovascular dissociation between FDG-PET and perfusion MRI in response to clinically determined anti-parkinsonian medication. We further proposed a novel analytical method to quantify the degree of dissociation in the putamen using only the ON condition scans, Putamen-to-thalamus Hyper-perfusion/hypo-metabolism Index (PHI), which may have the potential to be used as a biomarker for LID (correctly classifying 8 out 10 patients). For wider use of PHI, a larger validation study is warranted.
Collapse
Affiliation(s)
- Maram Aljuaid
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, MB, Canada
| | - Samuel Booth
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, MB, Canada
| | - Douglas E Hobson
- Section of Neurology, Department of Internal Medicine, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Andrew Borys
- Section of Neurology, Department of Internal Medicine, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Kelly Williams
- Section of Neurology, Department of Internal Medicine, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Audrey Katako
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, MB, Canada
| | - Lawrence Ryner
- Department of Radiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Andrew L Goertzen
- Department of Radiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Ji Hyun Ko
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, MB, Canada
| |
Collapse
|
25
|
Ko JH, Spetsieris PG, Eidelberg D. Network Structure and Function in Parkinson's Disease. Cereb Cortex 2019; 28:4121-4135. [PMID: 29088324 DOI: 10.1093/cercor/bhx267] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Little is known of the structural and functional properties of abnormal brain networks associated with neurological disorders. We used a social network approach to characterize the properties of the Parkinson's disease (PD) metabolic topography in 4 independent patient samples and in an experimental non-human primate model. The PD network exhibited distinct features. Dense, mutually facilitating functional connections linked the putamen, globus pallidus, and thalamus to form a metabolically active core. The periphery was formed by weaker connections linking less active cortical regions. Notably, the network contained a separate module defined by interconnected, metabolically active nodes in the cerebellum, pons, frontal cortex, and limbic regions. Exaggeration of the small-world property was a consistent feature of disease networks in parkinsonian humans and in the non-human primate model; this abnormality was only partly corrected by dopaminergic treatment. The findings point to disease-related alterations in network structure and function as the basis for faulty information processing in this disorder.
Collapse
Affiliation(s)
- Ji Hyun Ko
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Phoebe G Spetsieris
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - David Eidelberg
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY, USA.,Department of Neurology, Northwell Health, Manhasset, NY, USA
| |
Collapse
|
26
|
Ritz L, Segobin S, Lannuzel C, Laniepce A, Boudehent C, Cabé N, Eustache F, Vabret F, Beaunieux H, Pitel AL. Cerebellar Hypermetabolism in Alcohol Use Disorder: Compensatory Mechanism or Maladaptive Plasticity? Alcohol Clin Exp Res 2019; 43:2212-2221. [DOI: 10.1111/acer.14158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Ludivine Ritz
- UNICAEN LPCN Normandie Univ Caen France
- Neuropsychologie et Imagerie de la Mémoire Humaine CHU de Caen U1077, INSERM EPHE PSL Research University UNICAEN Normandie Univ Caen France
| | - Shailendra Segobin
- Neuropsychologie et Imagerie de la Mémoire Humaine CHU de Caen U1077, INSERM EPHE PSL Research University UNICAEN Normandie Univ Caen France
| | - Coralie Lannuzel
- Neuropsychologie et Imagerie de la Mémoire Humaine CHU de Caen U1077, INSERM EPHE PSL Research University UNICAEN Normandie Univ Caen France
| | - Alice Laniepce
- Neuropsychologie et Imagerie de la Mémoire Humaine CHU de Caen U1077, INSERM EPHE PSL Research University UNICAEN Normandie Univ Caen France
| | - Céline Boudehent
- Neuropsychologie et Imagerie de la Mémoire Humaine CHU de Caen U1077, INSERM EPHE PSL Research University UNICAEN Normandie Univ Caen France
- Service d'Addictologie Centre Hospitalier Universitaire de Caen Caen France
| | - Nicolas Cabé
- Neuropsychologie et Imagerie de la Mémoire Humaine CHU de Caen U1077, INSERM EPHE PSL Research University UNICAEN Normandie Univ Caen France
- Service d'Addictologie Centre Hospitalier Universitaire de Caen Caen France
| | - Francis Eustache
- Neuropsychologie et Imagerie de la Mémoire Humaine CHU de Caen U1077, INSERM EPHE PSL Research University UNICAEN Normandie Univ Caen France
| | - François Vabret
- Neuropsychologie et Imagerie de la Mémoire Humaine CHU de Caen U1077, INSERM EPHE PSL Research University UNICAEN Normandie Univ Caen France
- Service d'Addictologie Centre Hospitalier Universitaire de Caen Caen France
| | - Hélène Beaunieux
- UNICAEN LPCN Normandie Univ Caen France
- Neuropsychologie et Imagerie de la Mémoire Humaine CHU de Caen U1077, INSERM EPHE PSL Research University UNICAEN Normandie Univ Caen France
| | - Anne Lise Pitel
- Neuropsychologie et Imagerie de la Mémoire Humaine CHU de Caen U1077, INSERM EPHE PSL Research University UNICAEN Normandie Univ Caen France
| |
Collapse
|
27
|
Nicastro N, Eger AF, Assal F, Garibotto V. Feeling of presence in dementia with Lewy bodies is related to reduced left frontoparietal metabolism. Brain Imaging Behav 2018; 14:1199-1207. [PMID: 30511120 PMCID: PMC7381475 DOI: 10.1007/s11682-018-9997-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Feeling of presence (FOP) refers to the vivid sensation of a person’s presence near oneself and is common in Dementia with Lewy Bodies (DLB). Based on previous observations on epileptic subjects, we hypothesized that DLB subjects with FOP would harbour 18F-fluorodeoxyglucose PET hypometabolism in left parietal areas. 25 subjects (mean age 71.9 ± 6.7, disease duration at scan 1.7 ± 1.5 years) were included in the study, of whom nine (36%) experienced FOP. No significant between-group difference was observed regarding dopamine transporters striatal uptake (p = 0.64), daily dopaminergic treatment dosage (p = 0.88) and visual hallucinations (p = 0.83). Statistical parametric mapping showed that subjects with FOP had a significantly reduced glucose metabolism in several left frontoparietal areas (p < 0.001), including superior parietal lobule and precuneus. Interregional correlation analysis of these areas showed specific connectivity with right insula and putamen in the FOP subgroup and right orbitofrontal and superior frontal in subjects without FOP. This provides further evidence about the role of a left frontoparietal network and suggest a possible contribution of impaired orbitofrontal reality filtering associated with FOP.
Collapse
Affiliation(s)
- Nicolas Nicastro
- Department of Psychiatry, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK. .,Division of Neurorehabilitation, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland.
| | - Antoine F Eger
- Division of Neurology, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Frederic Assal
- Division of Neurology, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Valentina Garibotto
- Department of Nuclear Medicine, Geneva University Hospitals, Geneva, Switzerland.,NiMTLab, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
28
|
Wang B, Zhao B, Zhang Y, Ge M, Zhao P, Na Sun, Li C, Pang Q, Xu S, Liu Y. Absolute CBV for the differentiation of recurrence and radionecrosis of brain metastases after gamma knife radiotherapy: a comparison with relative CBV. Clin Radiol 2018; 73:758.e1-758.e7. [PMID: 29764622 DOI: 10.1016/j.crad.2018.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/11/2018] [Indexed: 11/29/2022]
Abstract
AIM To investigate the efficiency of absolute cerebral blood volume (CBV) in the differentiation of tumour recurrence (TR) and radionecrosis (RN) in brain metastases (BM) and to evaluate the performance of absolute CBV compared to relative CBV (rCBV). MATERIALS AND METHODS Between March 2015 and June 2017, 46 patients with BM underwent quantitative dynamic susceptibility contrast perfusion-weighted imaging (DSC-PWI) because new enhancement had been demonstrated in irradiated lesions after gamma knife radiotherapy. The patients were assigned to either the TR group or RN group on the basis of MR perfusion follow-up or histopathological outcome. Absolute CBV of lesions (CBVlesion) and contralateral normal appearing white matter (CBVNAWM) in both groups were obtained. Mean rCBV were calculated as CBVlesion/CBVNAWM, which was equal to rCBV using traditional DSC-PWI. RESULTS CBVlesion of TR alone was significantly higher than the other parameters in both groups (p<0.001, separately). CBVlesion had smaller interobserver difference than CBVNAWM and rCBV (p<0.001, separately). Although CBVlesion significantly correlated with rCBV (r=0.914, p<0.001) and both had a similar specificity (96%) in differential diagnosis, CBVlesion had a higher sensitivity (96.9% versus 90.9%) to predict the treatment outcome. The best cut-off value of CBVlesion was 21.8 ml/100 g. CONCLUSION Quantitative DSC-PWI is a powerful method for the assessment of radiosurgically treated brain metastases. Absolute CBV has higher diagnostic efficiency than rCBV, which enables an absolute quantification of the regional CBV and prediction of tumour response. These advantages promote the intra- and inter-patient quantitative image comparison across different institutions.
Collapse
Affiliation(s)
- B Wang
- School of Medicine, Shandong University, Jinan, 250012, PR China
| | - B Zhao
- Shandong Medical Imaging Research Institute, Shandong University, Jinan, 250021, PR China
| | - Y Zhang
- Shandong Medical Imaging Research Institute, Shandong University, Jinan, 250021, PR China
| | - M Ge
- Department of Neurosurgery, Provincial Hospital Affiliated to Shandong University, Jinan, 250021, PR China
| | - P Zhao
- Department of Neurosurgery, Provincial Hospital Affiliated to Shandong University, Jinan, 250021, PR China
| | - Na Sun
- School of Medicine, Shandong University, Jinan, 250012, PR China
| | - C Li
- Shandong Medical Imaging Research Institute, Shandong University, Jinan, 250021, PR China
| | - Q Pang
- Department of Neurosurgery, Provincial Hospital Affiliated to Shandong University, Jinan, 250021, PR China
| | - S Xu
- Department of Neurosurgery, Provincial Hospital Affiliated to Shandong University, Jinan, 250021, PR China
| | - Y Liu
- Department of Neurosurgery, Provincial Hospital Affiliated to Shandong University, Jinan, 250021, PR China.
| |
Collapse
|
29
|
Impact of Global Mean Normalization on Regional Glucose Metabolism in the Human Brain. Neural Plast 2018; 2018:6120925. [PMID: 30008742 PMCID: PMC6020504 DOI: 10.1155/2018/6120925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/20/2018] [Accepted: 04/03/2018] [Indexed: 02/02/2023] Open
Abstract
Because the human brain consumes a disproportionate fraction of the resting body's energy, positron emission tomography (PET) measurements of absolute glucose metabolism (CMRglc) can serve as disease biomarkers. Global mean normalization (GMN) of PET data reveals disease-based differences from healthy individuals as fractional changes across regions relative to a global mean. To assess the impact of GMN applied to metabolic data, we compared CMRglc with and without GMN in healthy awake volunteers with eyes closed (i.e., control) against specific physiological/clinical states, including healthy/awake with eyes open, healthy/awake but congenitally blind, healthy/sedated with anesthetics, and patients with disorders of consciousness. Without GMN, global CMRglc alterations compared to control were detected in all conditions except in congenitally blind where regional CMRglc variations were detected in the visual cortex. However, GMN introduced regional and bidirectional CMRglc changes at smaller fractions of the quantitative delocalized changes. While global information was lost with GMN, the quantitative approach (i.e., a validated method for quantitative baseline metabolic activity without GMN) not only preserved global CMRglc alterations induced by opening eyes, sedation, and varying consciousness but also detected regional CMRglc variations in the congenitally blind. These results caution the use of GMN upon PET-measured CMRglc data in health and disease.
Collapse
|
30
|
Cerebral perfusion alterations in type 2 diabetes and its relation to insulin resistance and cognitive dysfunction. Brain Imaging Behav 2018; 11:1248-1257. [PMID: 27714551 PMCID: PMC5653700 DOI: 10.1007/s11682-016-9583-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
To explore the effect of T2DM on cerebral perfusion, and the relationship between cerebral perfusion changes and cognitive impairment as well as diabetic variables, by using a whole-brain arterial spin-labeling (ASL) MRI technique. This prospective study was approved by the local institutional review board and was performed between November 2012 and October 2013. All subjects provided informed consent. Forty T2DM patients and 41 age-, sex- and education-matched healthy controls were included. Cerebral blood flow (CBF) map was obtained by pulsed ASL perfusion imaging at 3 T MRI. Voxel-wise comparisons on CBF maps with and without partial volume effects (PVEs) correction were performed between groups. Associations between CBF and cognitive functioning, and between CBF and diabetic variables were investigated by using voxel-wise, whole-brain correlation analyses. In T2DM patients, PVEs uncorrected CBF was decreased in the posterior cingulate cortex (PCC), precuneus and bilateral occipital lobe, and increased in the anterior cingulate cortex (corrected P < .05). These changes were largely unchanged after PVEs correction. Correlation analyses revealed that in patients, hypoperfusion in PCC and precuneus regions were related to higher insulin resistance level and deficits in clock-drawing performance, while the occipital hypoperfusion was associated with worse visual-memory performance, regardless of PVEs correction. The cerebral hypoperfusion pattern in T2DM resembles the pattern observed in the early stage of dementia, and increased insulin resistance might be an important risk factor as well as treatment target for such CBF dysregulation.
Collapse
|
31
|
Anazodo UC, Finger E, Kwan BYM, Pavlosky W, Warrington JC, Günther M, Prato FS, Thiessen JD, St Lawrence KS. Using simultaneous PET/MRI to compare the accuracy of diagnosing frontotemporal dementia by arterial spin labelling MRI and FDG-PET. NEUROIMAGE-CLINICAL 2017; 17:405-414. [PMID: 29159053 PMCID: PMC5683801 DOI: 10.1016/j.nicl.2017.10.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/24/2017] [Accepted: 10/28/2017] [Indexed: 11/30/2022]
Abstract
Purpose The clinical utility of FDG-PET in diagnosing frontotemporal dementia (FTD) has been well demonstrated over the past decades. On the contrary, the diagnostic value of arterial spin labelling (ASL) MRI - a relatively new technique - in clinical diagnosis of FTD has yet to be confirmed. Using simultaneous PET/MRI, we evaluated the diagnostic performance of ASL in identifying pathological abnormalities in FTD (FTD) to determine whether ASL can provide similar diagnostic value as FDG-PET. Methods ASL and FDG-PET images were compared in 10 patients with FTD and 10 healthy older adults. Qualitative and quantitative measures of diagnostic equivalency were used to determine the diagnostic utility of ASL compared to FDG-PET. Sensitivity, specificity, and inter-rater reliability were calculated for each modality from scores of subjective visual ratings and from analysis of regional mean values in thirteen a priori regions of interest (ROI). To determine the extent of concordance between modalities in each patient, individual statistical maps generated from comparison of each patient to controls were compared between modalities using the Jaccard similarity index (JI). Results Visual assessments revealed lower sensitivity, specificity and inter-rater reliability for ASL (66.67%/62.12%/0.2) compared to FDG-PET (88.43%/90.91%/0.61). Across all regions, ASL performed lower than FDG-PET in discriminating patients from controls (areas under the receiver operating curve: ASL = 0.75 and FDG-PET = 0.87). In all patients, ASL identified patterns of reduced perfusion consistent with FTD, but areas of hypometabolism exceeded hypoperfused areas (group-mean JI = 0.30 ± 0.22). Conclusion This pilot study demonstrated that ASL can detect similar spatial patterns of abnormalities in individual FTD patients compared to FDG-PET, but its sensitivity and specificity for discriminant diagnosis of a patient from healthy individuals remained unmatched to FDG-PET. Further studies at the individual level are required to confirm the clinical role of ASL in FTD management.
Collapse
Affiliation(s)
- Udunna C Anazodo
- Lawson Health Research Institute, St Joseph's Health Care, 268 Grosvenor St., London, Ontario N6A 4V2, Canada; Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, Medical Sciences Building, Rm M407, London, Ontario N6A 5C1, Canada.
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, Western University, 339 Windermere Road, London, Ontario N6A 5A5, Canada.
| | - Benjamin Yin Ming Kwan
- Department of Medical Imaging, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5W9, Canada
| | - William Pavlosky
- Lawson Health Research Institute, St Joseph's Health Care, 268 Grosvenor St., London, Ontario N6A 4V2, Canada; Department of Medical Imaging, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5W9, Canada.
| | - James Claude Warrington
- Department of Medical Imaging, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5W9, Canada.
| | - Matthias Günther
- Fraunhofer Institute for Medical Image Computing MEVIS, Am Fallturm 1, 28359 Bremen, Germany.; University Bremen, Faculty 1, Otto-Hahn-Allee 1, 28359 Bremen, Germany.
| | - Frank S Prato
- Lawson Health Research Institute, St Joseph's Health Care, 268 Grosvenor St., London, Ontario N6A 4V2, Canada; Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, Medical Sciences Building, Rm M407, London, Ontario N6A 5C1, Canada.
| | - Jonathan D Thiessen
- Lawson Health Research Institute, St Joseph's Health Care, 268 Grosvenor St., London, Ontario N6A 4V2, Canada; Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, Medical Sciences Building, Rm M407, London, Ontario N6A 5C1, Canada.
| | - Keith S St Lawrence
- Lawson Health Research Institute, St Joseph's Health Care, 268 Grosvenor St., London, Ontario N6A 4V2, Canada; Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, Medical Sciences Building, Rm M407, London, Ontario N6A 5C1, Canada.
| |
Collapse
|
32
|
Xu X, Wang B, Ren C, Hu J, Greenberg DA, Chen T, Xie L, Jin K. Age-related Impairment of Vascular Structure and Functions. Aging Dis 2017; 8:590-610. [PMID: 28966804 PMCID: PMC5614324 DOI: 10.14336/ad.2017.0430] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/30/2017] [Indexed: 12/12/2022] Open
Abstract
Among age-related diseases, cardiovascular and cerebrovascular diseases are major causes of death. Vascular dysfunction is a key characteristic of these diseases wherein age is an independent and essential risk factor. The present work will review morphological alterations of aging vessels in-depth, which includes the discussion of age-related microvessel loss and changes to vasculature involving the capillary basement membrane, intima, media, and adventitia as well as the accompanying vascular dysfunctions arising from these alterations.
Collapse
Affiliation(s)
- Xianglai Xu
- 1Zhongshan Hospital, Fudan University, Shanghai 200032, China.,2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| | - Brian Wang
- 2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| | - Changhong Ren
- 2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA.,4Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University. Beijing, China
| | - Jiangnan Hu
- 2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| | | | - Tianxiang Chen
- 6Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Liping Xie
- 3Department of Urology, the First Affiliated Hospital, Zhejiang University, Zhejiang Province, China
| | - Kunlin Jin
- 2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| |
Collapse
|
33
|
Aanerud J, Borghammer P, Rodell A, Jónsdottir KY, Gjedde A. Sex differences of human cortical blood flow and energy metabolism. J Cereb Blood Flow Metab 2017; 37:2433-2440. [PMID: 27629099 PMCID: PMC5531342 DOI: 10.1177/0271678x16668536] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/29/2016] [Accepted: 07/04/2016] [Indexed: 11/16/2022]
Abstract
Brain energy metabolism is held to reflect energy demanding processes in neuropil related to the density and activity of synapses. There is recent evidence that men have higher density of synapses in temporal cortex than women. One consequence of these differences would be different rates of cortical energy turnover and blood flow in men and women. To test the hypotheses that rates of oxygen consumption (CMRO2) and cerebral blood flow are higher in men than in women in regions of cerebral cortex, and that the differences persist with aging, we used positron emission tomography to determine cerebral blood flow and cerebral metabolic rate of oxygen as functions of age in healthy volunteers of both sexes. Cerebral metabolic rate of oxygen did not change with age for either sex and there were no differences of mean values of cerebral metabolic rate of oxygen between men and women in cerebral cortex. Women had significant decreases of cerebral blood flow as function of age in frontal and parietal lobes. Young women had significantly higher cerebral blood flow than men in frontal and temporal lobes, but these differences had disappeared at age 65. The absent sex difference of cerebral energy turnover suggests that the known differences of synaptic density between the sexes are counteracted by opposite differences of individual synaptic activity.
Collapse
Affiliation(s)
- Joel Aanerud
- Department of Nuclear Medicine and PET Center, Aarhus University Hospitals, Aarhus, Denmark
| | - Per Borghammer
- Department of Nuclear Medicine and PET Center, Aarhus University Hospitals, Aarhus, Denmark
| | - Anders Rodell
- Centre for Clinical Research, University of Queensland, Australia
| | | | - Albert Gjedde
- Center for Functionally Integrative Neuroscience, University of Aarhus, Aarhus, Denmark
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| |
Collapse
|
34
|
Different subregional metabolism patterns in patients with cerebellar ataxia by 18F-fluorodeoxyglucose positron emission tomography. PLoS One 2017; 12:e0173275. [PMID: 28319124 PMCID: PMC5358749 DOI: 10.1371/journal.pone.0173275] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/17/2017] [Indexed: 11/19/2022] Open
Abstract
We evaluated cerebellar subregional metabolic alterations in patients with cerebellar ataxia, a representative disease involving the spinocerebellum. We retrospectively analyzed 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) images in 44 patients with multiple system atrophy of the cerebellar type (MSA-C), 9 patients with spinocerebellar ataxia (SCA) type 2, and 14 patients with SCA type 6 and compared with 15 patients with crossed cerebellar diaschisis (CCD) and 89 normal controls. Cerebellar subregional metabolism was assessed using 13 cerebellar subregions (bilateral anterior lobes [ANT], superior/mid/inferior posterior lobes [SUPP/MIDP/INFP], dentate nucleus [DN], anterior vermis [ANTV], and superior/inferior posterior vermis [SUPV/INFV]) to determine FDG uptake ratios. MSA-C and SCA type 2 showed severely decreased metabolic ratios in all cerebellar subregions compared to normal controls (ANT, 0.58 ± 0.08 and 0.50 ± 0.06 vs. 0.82 ± 0.07, respectively, p < 0.001). SCA type 6 showed lower metabolic ratios in almost all cerebellar subregions (ANT, 0.57 ± 0.06, p < 0.001) except INFV. Anterior-posterior lobe ratio measurements revealed that SCA type 2 (Right, 0.81 ± 0.05 vs. 0.88 ± 0.04, p < 0.001; Left, 0.83 ± 0.05 vs. 0.88 ± 0.04, p = 0.003) and SCA type 6 (Right, 0.72 ± 0.05 vs. 0.88 ± 0.04, p < 0.001; Left, 0.72 ± 0.05 vs. 0.88 ± 0.04, p < 0.001) showed preferential hypometabolism in the anterior lobe compared to normal controls, which was not observed in CCD and MSA-C. Asymmetric indices were higher in CCD and MSA-C than in normal controls (p < 0.001), whereas such differences were not found in SCA types 2 and 6. In summary, quantitative analysis of cerebellar subregional metabolism ratios revealed preferential involvement of the anterior lobe, corresponding to the spinocerebellum, in patients with cerebellar ataxia, whereas patients with CCD and MSA-C exhibited more asymmetric hypometabolism in the posterior lobe.
Collapse
|
35
|
Increased cortical capillary transit time heterogeneity in Alzheimer's disease: a DSC-MRI perfusion study. Neurobiol Aging 2017; 50:107-118. [DOI: 10.1016/j.neurobiolaging.2016.11.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/17/2016] [Accepted: 11/11/2016] [Indexed: 01/18/2023]
|
36
|
Network Patterns Associated with Navigation Behaviors Are Altered in Aged Nonhuman Primates. J Neurosci 2016; 36:12217-12227. [PMID: 27903730 DOI: 10.1523/jneurosci.4116-15.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 09/14/2016] [Accepted: 10/07/2016] [Indexed: 12/12/2022] Open
Abstract
The ability to navigate through space involves complex interactions between multiple brain systems. Although it is clear that spatial navigation is impaired during aging, the networks responsible for these altered behaviors are not well understood. Here, we used a within-subject design and [18F]FDG-microPET to capture whole-brain activation patterns in four distinct spatial behaviors from young and aged rhesus macaques: constrained space (CAGE), head-restrained passive locomotion (CHAIR), constrained locomotion in space (TREADMILL), and unconstrained locomotion (WALK). The results reveal consistent networks activated by these behavior conditions that were similar across age. For the young animals, however, the coactivity patterns were distinct between conditions, whereas older animals tended to engage the same networks in each condition. The combined observations of less differentiated networks between distinct behaviors and alterations in functional connections between targeted regions in aging suggest changes in network dynamics as one source of age-related deficits in spatial cognition. SIGNIFICANCE STATEMENT We report how whole-brain networks are involved in spatial navigation behaviors and how normal aging alters these network patterns in nonhuman primates. This is the first study to examine whole-brain network activity in young or old nonhuman primates while they actively or passively traversed an environment. The strength of this study resides in our ability to identify and differentiate whole-brain networks associated with specific navigational behaviors within the same nonhuman primate and to compare how these networks change with age. The use of high-resolution PET (microPET) to capture brain activity of real-world behaviors adds significantly to our understanding of how active circuits critical for navigation are affected by aging.
Collapse
|
37
|
Lange C, Suppa P, Frings L, Brenner W, Spies L, Buchert R. Optimization of Statistical Single Subject Analysis of Brain FDG PET for the Prognosis of Mild Cognitive Impairment-to-Alzheimer's Disease Conversion. J Alzheimers Dis 2016; 49:945-959. [PMID: 26577523 DOI: 10.3233/jad-150814] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Positron emission tomography (PET) with the glucose analog F-18-fluorodeoxyglucose (FDG) is widely used in the diagnosis of neurodegenerative diseases. Guidelines recommend voxel-based statistical testing to support visual evaluation of the PET images. However, the performance of voxel-based testing strongly depends on each single preprocessing step involved. OBJECTIVE To optimize the processing pipeline of voxel-based testing for the prognosis of dementia in subjects with amnestic mild cognitive impairment (MCI). METHODS The study included 108 ADNI MCI subjects grouped as 'stable MCI' (n = 77) or 'MCI-to-AD converter' according to their diagnostic trajectory over 3 years. Thirty-two ADNI normals served as controls. Voxel-based testing was performed with the statistical parametric mapping software (SPM8) starting with default settings. The following modifications were added step-by-step: (i) motion correction, (ii) custom-made FDG template, (iii) different reference regions for intensity scaling, and (iv) smoothing was varied between 8 and 18 mm. The t-sum score for hypometabolism within a predefined AD mask was compared between the different settings using receiver operating characteristic (ROC) analysis with respect to differentiation between 'stable MCI' and 'MCI-to-AD converter'. The area (AUC) under the ROC curve was used as performance measure. RESULTS The default setting provided an AUC of 0.728. The modifications of the processing pipeline improved the AUC up to 0.832 (p = 0.046). Improvement of the AUC was confirmed in an independent validation sample of 241 ADNI MCI subjects (p = 0.048). CONCLUSION The prognostic value of voxel-based single subject analysis of brain FDG PET in MCI subjects can be improved considerably by optimizing the processing pipeline.
Collapse
Affiliation(s)
- Catharina Lange
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Per Suppa
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.,jung diagnostics GmbH, Hamburg, Germany
| | - Lars Frings
- Department of Nuclear Medicine, University of Freiburg, Freiburg, Germany
| | - Winfried Brenner
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Ralph Buchert
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
38
|
Ssali T, Anazodo UC, Bureau Y, MacIntosh BJ, Günther M, St. Lawrence K. Mapping Long-Term Functional Changes in Cerebral Blood Flow by Arterial Spin Labeling. PLoS One 2016; 11:e0164112. [PMID: 27706218 PMCID: PMC5051683 DOI: 10.1371/journal.pone.0164112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/20/2016] [Indexed: 12/02/2022] Open
Abstract
Although arterial spin labeling (ASL) is appealing for mapping long-term changes in functional activity, inter-sessional variations in basal blood flow, arterial transit times (ATTs), and alignment errors, can result in significant false activation when comparing images from separate sessions. By taking steps to reduce these sources of noise, this study assessed the ability of ASL to detect functional CBF changes between sessions. ASL data were collected in three sessions to image ATT, resting CBF and CBF changes associated with motor activation (7 participants). Activation maps were generated using rest and task images acquired in the same session and from sessions separated by up to a month. Good agreement was found when comparing between-session activation maps to within-session activation maps with only a 16% decrease in precision (within-session: 90 ± 7%) and a 13% decrease in the Dice similarity (within-session: 0.75 ± 0.07) coefficient after a month. In addition, voxel-wise reproducibility (within-session: 4.7 ± 4.5%) and reliability (within-session: 0.89 ± 0.20) of resting grey-matter CBF decreased by less than 18% for the between-session analysis relative to within-session values. ATT variability between sessions (5.0 ± 2.7%) was roughly half the between-subject variability, indicating that its effects on longitudinal CBF were minimal. These results demonstrate that conducting voxel-wise analysis on CBF images acquired on different days is feasible with only modest loss in precision, highlighting the potential of ASL for longitudinal studies.
Collapse
Affiliation(s)
- Tracy Ssali
- Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
- * E-mail:
| | - Udunna C. Anazodo
- Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
| | - Yves Bureau
- Lawson Health Research Institute, London, ON, Canada
| | | | - Matthias Günther
- Fraunhofer Institute for Medical Image Computing MEVIS, Bremen, Germany
- Mediri GmbH, Heidelberg, Germany
| | - Keith St. Lawrence
- Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
| |
Collapse
|
39
|
Zhang H, Wu P, Ziegler SI, Guan Y, Wang Y, Ge J, Schwaiger M, Huang SC, Zuo C, Förster S, Shi K. Data-driven identification of intensity normalization region based on longitudinal coherency of 18F-FDG metabolism in the healthy brain. Neuroimage 2016; 146:589-599. [PMID: 27693611 DOI: 10.1016/j.neuroimage.2016.09.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/06/2016] [Accepted: 09/13/2016] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVES In brain 18F-FDG PET data intensity normalization is usually applied to control for unwanted factors confounding brain metabolism. However, it can be difficult to determine a proper intensity normalization region as a reference for the identification of abnormal metabolism in diseased brains. In neurodegenerative disorders, differentiating disease-related changes in brain metabolism from age-associated natural changes remains challenging. This study proposes a new data-driven method to identify proper intensity normalization regions in order to improve separation of age-associated natural changes from disease related changes in brain metabolism. METHODS 127 female and 128 male healthy subjects (age: 20 to 79) with brain18F-FDG PET/CT in the course of a whole body cancer screening were included. Brain PET images were processed using SPM8 and were parcellated into 116 anatomical regions according to the AAL template. It is assumed that normal brain 18F-FDG metabolism has longitudinal coherency and this coherency leads to better model fitting. The coefficient of determination R2 was proposed as the coherence coefficient, and the total coherence coefficient (overall fitting quality) was employed as an index to assess proper intensity normalization strategies on single subjects and age-cohort averaged data. Age-associated longitudinal changes of normal subjects were derived using the identified intensity normalization method correspondingly. In addition, 15 subjects with clinically diagnosed Parkinson's disease were assessed to evaluate the clinical potential of the proposed new method. RESULTS Intensity normalizations by paracentral lobule and cerebellar tonsil, both regions derived from the new data-driven coherency method, showed significantly better coherence coefficients than other intensity normalization regions, and especially better than the most widely used global mean normalization. Intensity normalization by paracentral lobule was the most consistent method within both analysis strategies (subject-based and age-cohort averaging). In addition, the proposed new intensity normalization method using the paracentral lobule generates significantly higher differentiation from the age-associated changes than other intensity normalization methods. CONCLUSION Proper intensity normalization can enhance the longitudinal coherency of normal brain glucose metabolism. The paracentral lobule followed by the cerebellar tonsil are shown to be the two most stable intensity normalization regions concerning age-dependent brain metabolism. This may provide the potential to better differentiate disease-related changes from age-related changes in brain metabolism, which is of relevance in the diagnosis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Huiwei Zhang
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Ping Wu
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Sibylle I Ziegler
- Dept. Nuclear Medicine, Technische Universität München, Munich, Germany
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuetao Wang
- Department Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Soochow, China
| | - Jingjie Ge
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Markus Schwaiger
- Dept. Nuclear Medicine, Technische Universität München, Munich, Germany
| | - Sung-Cheng Huang
- Department Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Chuantao Zuo
- PET Center, Huashan Hospital, Fudan University, Shanghai, China.
| | - Stefan Förster
- Dept. Nuclear Medicine, Technische Universität München, Munich, Germany; TUM Neuroimaging Center (TUM-NIC), Technische Universität München, Munich, Germany
| | - Kuangyu Shi
- Dept. Nuclear Medicine, Technische Universität München, Munich, Germany
| |
Collapse
|
40
|
Ritz L, Segobin S, Lannuzel C, Boudehent C, Vabret F, Eustache F, Beaunieux H, Pitel AL. Direct voxel-based comparisons between grey matter shrinkage and glucose hypometabolism in chronic alcoholism. J Cereb Blood Flow Metab 2016; 36:1625-40. [PMID: 26661206 PMCID: PMC5012518 DOI: 10.1177/0271678x15611136] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 07/08/2015] [Indexed: 11/15/2022]
Abstract
Alcoholism is associated with widespread brain structural abnormalities affecting mainly the frontocerebellar and the Papez's circuits. Brain glucose metabolism has received limited attention, and few studies used regions of interest approach and showed reduced global brain metabolism predominantly in the frontal and parietal lobes. Even though these studies have examined the relationship between grey matter shrinkage and hypometabolism, none has performed a direct voxel-by-voxel comparison between the degrees of structural and metabolic abnormalities. Seventeen alcoholic patients and 16 control subjects underwent both structural magnetic resonance imaging and (18)F-2-fluoro-deoxy-glucose-positron emission tomography examinations. Structural abnormalities and hypometabolism were examined in alcoholic patients compared with control subjects using two-sample t-tests. Then, these two patterns of brain damage were directly compared with a paired t-test. Compared to controls, alcoholic patients had grey matter shrinkage and hypometabolism in the fronto-cerebellar circuit and several nodes of Papez's circuit. The direct comparison revealed greater shrinkage than hypometabolism in the cerebellum, cingulate cortex, thalamus and hippocampus and parahippocampal gyrus. Conversely, hypometabolism was more severe than shrinkage in the dorsolateral, premotor and parietal cortices. The distinct profiles of abnormalities found within the Papez's circuit, the fronto-cerebellar circuit and the parietal gyrus in chronic alcoholism suggest the involvement of different pathological mechanisms.
Collapse
Affiliation(s)
- Ludivine Ritz
- INSERM, Caen, France Université de Caen Basse-Normandie, Caen, France Ecole Pratique des Hautes Etudes, Caen, France Centre Hospitalier Universitaire, Caen, France
| | - Shailendra Segobin
- INSERM, Caen, France Université de Caen Basse-Normandie, Caen, France Ecole Pratique des Hautes Etudes, Caen, France Centre Hospitalier Universitaire, Caen, France
| | - Coralie Lannuzel
- INSERM, Caen, France Université de Caen Basse-Normandie, Caen, France Ecole Pratique des Hautes Etudes, Caen, France Centre Hospitalier Universitaire, Caen, France
| | - Céline Boudehent
- INSERM, Caen, France Université de Caen Basse-Normandie, Caen, France Ecole Pratique des Hautes Etudes, Caen, France Centre Hospitalier Universitaire, Caen, France Centre Hospitalier Universitaire, Service D'Addictologie, Caen, France
| | - François Vabret
- INSERM, Caen, France Université de Caen Basse-Normandie, Caen, France Ecole Pratique des Hautes Etudes, Caen, France Centre Hospitalier Universitaire, Caen, France Centre Hospitalier Universitaire, Service D'Addictologie, Caen, France
| | - Francis Eustache
- INSERM, Caen, France Université de Caen Basse-Normandie, Caen, France Ecole Pratique des Hautes Etudes, Caen, France Centre Hospitalier Universitaire, Caen, France
| | - Hélène Beaunieux
- INSERM, Caen, France Université de Caen Basse-Normandie, Caen, France Ecole Pratique des Hautes Etudes, Caen, France Centre Hospitalier Universitaire, Caen, France
| | - Anne L Pitel
- INSERM, Caen, France Université de Caen Basse-Normandie, Caen, France Ecole Pratique des Hautes Etudes, Caen, France Centre Hospitalier Universitaire, Caen, France
| |
Collapse
|
41
|
Arnaldi D, Morbelli S, Brugnolo A, Girtler N, Picco A, Ferrara M, Accardo J, Buschiazzo A, de Carli F, Pagani M, Nobili F. Functional neuroimaging and clinical features of drug naive patients with de novo Parkinson’s disease and probable RBD. Parkinsonism Relat Disord 2016; 29:47-53. [DOI: 10.1016/j.parkreldis.2016.05.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/25/2016] [Accepted: 05/29/2016] [Indexed: 11/26/2022]
|
42
|
Dai W, Fong T, Jones RN, Marcantonio E, Schmitt E, Inouye SK, Alsop DC. Effects of arterial transit delay on cerebral blood flow quantification using arterial spin labeling in an elderly cohort. J Magn Reson Imaging 2016; 45:472-481. [PMID: 27384230 DOI: 10.1002/jmri.25367] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/16/2016] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To investigate whether measurement of arterial transit time (ATT) can improve the accuracy of arterial spin labeling (ASL) cerebral blood flow (CBF) quantification in an elderly cohort due to the potentially prolonged ATT in the cohort. MATERIALS AND METHODS We employed a 1-minute, low-resolution (12 mm in-plane), sequential multidelay ATT measurement (both with and without vessel suppression) approach to characterize and correct ATT errors in CBF imaging of an elderly, clinical cohort. In all, 140 nondemented subjects greater than 70 years old were imaged at 3T with a single delay, volumetric continuous ASL sequence and also with the fast ATT measurement method. Nine healthy young subjects (28 ± 6 years old) were also imaged. RESULTS ATTs measured without vessel suppression (superior frontal: 1.51 ± 0.27 sec) in the elderly were significantly shorter than those with suppression (P < 0.0001). Correction of CBF for ATT significantly increased average CBF in multiple brain regions where ATT was longer than the postlabeling delay (P < 0.01) and decreased intersubject variability of CBF in frontal, parietal, and occipital regions (P < 10-8 ). Measured ATT with vessel suppression was significantly longer in the elderly subjects (eg, superior frontal: 1.76 ± 0.25 sec) compared to the younger adults (superior frontal: 1.59 ± 0.19 sec) in basal ganglia and frontal cortical regions (P < 0.05). CONCLUSION The ATT measurement is beneficial for imaging of elderly clinical populations. If ATT mapping is not feasible or available, postlabeling delays of 2-2.3 seconds should be used for elderly populations based on longest measured regional ATTs. LEVEL OF EVIDENCE 1 J. Magn. Reson. Imaging 2017;45:472-481.
Collapse
Affiliation(s)
- Weiying Dai
- Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Department of Computer Science, State University of New York at Binghamton, Binghamton, New York, USA
| | - Tamara Fong
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Richard N Jones
- Department of Psychiatry and Human Behavior and Neurology, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Edward Marcantonio
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Eva Schmitt
- Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts, USA
| | - Sharon K Inouye
- Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts, USA.,Department of Gerontology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - David C Alsop
- Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
43
|
Hyder F, Herman P, Bailey CJ, Møller A, Globinsky R, Fulbright RK, Rothman DL, Gjedde A. Uniform distributions of glucose oxidation and oxygen extraction in gray matter of normal human brain: No evidence of regional differences of aerobic glycolysis. J Cereb Blood Flow Metab 2016; 36:903-16. [PMID: 26755443 PMCID: PMC4853838 DOI: 10.1177/0271678x15625349] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 12/03/2015] [Indexed: 11/17/2022]
Abstract
Regionally variable rates of aerobic glycolysis in brain networks identified by resting-state functional magnetic resonance imaging (R-fMRI) imply regionally variable adenosine triphosphate (ATP) regeneration. When regional glucose utilization is not matched to oxygen delivery, affected regions have correspondingly variable rates of ATP and lactate production. We tested the extent to which aerobic glycolysis and oxidative phosphorylation power R-fMRI networks by measuring quantitative differences between the oxygen to glucose index (OGI) and the oxygen extraction fraction (OEF) as measured by positron emission tomography (PET) in normal human brain (resting awake, eyes closed). Regionally uniform and correlated OEF and OGI estimates prevailed, with network values that matched the gray matter means, regardless of size, location, and origin. The spatial agreement between oxygen delivery (OEF≈0.4) and glucose oxidation (OGI ≈ 5.3) suggests that no specific regions have preferentially high aerobic glycolysis and low oxidative phosphorylation rates, with globally optimal maximum ATP turnover rates (VATP ≈ 9.4 µmol/g/min), in good agreement with (31)P and (13)C magnetic resonance spectroscopy measurements. These results imply that the intrinsic network activity in healthy human brain powers the entire gray matter with ubiquitously high rates of glucose oxidation. Reports of departures from normal brain-wide homogeny of oxygen extraction fraction and oxygen to glucose index may be due to normalization artefacts from relative PET measurements.
Collapse
Affiliation(s)
- Fahmeed Hyder
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, CT, USA Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Peter Herman
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, CT, USA Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Christopher J Bailey
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Arne Møller
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Ronen Globinsky
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Robert K Fulbright
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Douglas L Rothman
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, CT, USA Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Albert Gjedde
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
44
|
Buchholz HG, Wenzel F, Gartenschläger M, Thiele F, Young S, Reuss S, Schreckenberger M. Construction and comparative evaluation of different activity detection methods in brain FDG-PET. Biomed Eng Online 2015; 14:79. [PMID: 26281849 PMCID: PMC4539694 DOI: 10.1186/s12938-015-0073-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 08/06/2015] [Indexed: 12/01/2022] Open
Abstract
Aim We constructed and evaluated reference brain FDG-PET databases for usage by three software programs (Computer-aided diagnosis for dementia (CAD4D), Statistical Parametric Mapping (SPM) and NEUROSTAT), which allow a user-independent detection of dementia-related hypometabolism in patients’ brain FDG-PET. Methods Thirty-seven healthy volunteers were scanned in order to construct brain FDG reference databases, which reflect the normal, age-dependent glucose consumption in human brain, using either software. Databases were compared to each other to assess the impact of different stereotactic normalization algorithms used by either software package. In addition, performance of the new reference databases in the detection of altered glucose consumption in the brains of patients was evaluated by calculating statistical maps of regional hypometabolism in FDG-PET of 20 patients with confirmed Alzheimer’s dementia (AD) and of 10 non-AD patients. Extent (hypometabolic volume referred to as cluster size) and magnitude (peak z-score) of detected hypometabolism was statistically analyzed. Results Differences between the reference databases built by CAD4D, SPM or NEUROSTAT were observed. Due to the different normalization methods, altered spatial FDG patterns were found. When analyzing patient data with the reference databases created using CAD4D, SPM or NEUROSTAT, similar characteristic clusters of hypometabolism in the same brain regions were found in the AD group with either software. However, larger z-scores were observed with CAD4D and NEUROSTAT than those reported by SPM. Better concordance with CAD4D and NEUROSTAT was achieved using the spatially normalized images of SPM and an independent z-score calculation. The three software packages identified the peak z-scores in the same brain region in 11 of 20 AD cases, and there was concordance between CAD4D and SPM in 16 AD subjects. Conclusion The clinical evaluation of brain FDG-PET of 20 AD patients with either CAD4D-, SPM- or NEUROSTAT-generated databases from an identical reference dataset showed similar patterns of hypometabolism in the brain regions known to be involved in AD. The extent of hypometabolism and peak z-score appeared to be influenced by the calculation method used in each software package rather than by different spatial normalization parameters.
Collapse
Affiliation(s)
- Hans-Georg Buchholz
- Department of Nuclear Medicine, University Medical Center Mainz, Langenbeckstrasse 1, 55101, Mainz, Germany.
| | | | - Martin Gartenschläger
- Department of Nuclear Medicine, University Medical Center Mainz, Langenbeckstrasse 1, 55101, Mainz, Germany.
| | | | | | - Stefan Reuss
- Department of Nuclear Medicine, University Medical Center Mainz, Langenbeckstrasse 1, 55101, Mainz, Germany.
| | - Mathias Schreckenberger
- Department of Nuclear Medicine, University Medical Center Mainz, Langenbeckstrasse 1, 55101, Mainz, Germany.
| |
Collapse
|
45
|
Cerebellum-specific 18F-FDG PET analysis for the detection of subregional glucose metabolism changes in spinocerebellar ataxia. Neuroreport 2015; 25:1198-202. [PMID: 25144395 DOI: 10.1097/wnr.0000000000000247] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The cerebellum (CB) consists of complex anatomical and functional subregions. To better investigate the complicated functional anatomy, a detailed subregional analysis and/or a precise spatial normalization of the fluorine-18 fluorodeoxyglucose (F-FDG) PET imaging data are essential. Here, the 28 MRIcron CB volumes of interests (VOIs) template merged into eight cerebellar subregional VOIs (bilateral anterior, superior, and inferior posterior lobes of the CB cortex, and the superior and inferior vermis) on mean F-FDG PET templates. We also developed a new spatial normalization method using a study-specific and CB-specific template (CBSST) to better localize the VOIs and to minimize interparticipant differences for the locations of whole and subregional CB VOIs, as well as to increase the accuracy of the subregional mean F-FDG uptake. Using VOIs of individual F-FDG PET images normalized to the F-FDG template, we analyzed subregional cerebellar glucose metabolism in patients with spinocerebellar ataxia, a representative disease involving the spinocerebellum, and compared them with age-matched and sex-matched healthy normal controls. We achieved significant improvement over the Montreal Neurological Institute template in spatial normalization accuracy using our CBSST approach for CB VOI location agreement increases (79 vs. 90%) and VOI uptake error decreases in many CB subregions. We also found significant decreases in the anterior/posterior ratio of F-FDG uptake in patients with spinocerebellar ataxia (0.45) compared with those in normal controls (0.73) only using our CBSST approach. Therefore, we established an accurate CB subregional VOI analysis framework, and this may be useful for understanding and differentiating many of the cerebellar ataxia diseases.
Collapse
|
46
|
Anazodo UC, Thiessen JD, Ssali T, Mandel J, Günther M, Butler J, Pavlosky W, Prato FS, Thompson RT, St Lawrence KS. Feasibility of simultaneous whole-brain imaging on an integrated PET-MRI system using an enhanced 2-point Dixon attenuation correction method. Front Neurosci 2015; 8:434. [PMID: 25601825 PMCID: PMC4283546 DOI: 10.3389/fnins.2014.00434] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 12/10/2014] [Indexed: 02/05/2023] Open
Abstract
PURPOSE To evaluate a potential approach for improved attenuation correction (AC) of PET in simultaneous PET and MRI brain imaging, a straightforward approach that adds bone information missing on Dixon AC was explored. METHODS Bone information derived from individual T1-weighted MRI data using segmentation tools in SPM8, were added to the standard Dixon AC map. Percent relative difference between PET reconstructed with Dixon+bone and with Dixon AC maps were compared across brain regions of 13 oncology patients. The clinical potential of the improved Dixon AC was investigated by comparing relative perfusion (rCBF) measured with arterial spin labeling to relative glucose uptake (rPETdxbone) measured simultaneously with (18)F-flurodexoyglucose in several regions across the brain. RESULTS A gradual increase in PET signal from center to the edge of the brain was observed in PET reconstructed with Dixon+bone. A 5-20% reduction in regional PET signals were observed in data corrected with standard Dixon AC maps. These regional underestimations of PET were either reduced or removed when Dixon+bone AC was applied. The mean relative correlation coefficient between rCBF and rPETdxbone was r = 0.53 (p < 0.001). Marked regional variations in rCBF-to-rPET correlation were observed, with the highest associations in the caudate and cingulate and the lowest in limbic structures. All findings were well matched to observations from previous studies conducted with PET data reconstructed with computed tomography derived AC maps. CONCLUSION Adding bone information derived from T1-weighted MRI to Dixon AC maps can improve underestimation of PET activity in hybrid PET-MRI neuroimaging.
Collapse
Affiliation(s)
- Udunna C Anazodo
- Lawson Health Research Institute London, ON, Canada ; Medical Biophysics, Western University London, ON, Canada
| | - Jonathan D Thiessen
- Lawson Health Research Institute London, ON, Canada ; Medical Biophysics, Western University London, ON, Canada
| | - Tracy Ssali
- Lawson Health Research Institute London, ON, Canada ; Medical Biophysics, Western University London, ON, Canada
| | - Jonathan Mandel
- Diagnostic Imaging, St. Joseph's Health Care London, ON, Canada
| | - Matthias Günther
- Fraunhofer Institute for Medical Image Computing MEVIS Bremen, Germany
| | - John Butler
- Lawson Health Research Institute London, ON, Canada
| | | | - Frank S Prato
- Lawson Health Research Institute London, ON, Canada ; Medical Biophysics, Western University London, ON, Canada
| | - R Terry Thompson
- Lawson Health Research Institute London, ON, Canada ; Medical Biophysics, Western University London, ON, Canada
| | - Keith S St Lawrence
- Lawson Health Research Institute London, ON, Canada ; Medical Biophysics, Western University London, ON, Canada
| |
Collapse
|
47
|
Lacalle-Aurioles M, Alemán-Gómez Y, Guzmán-De-Villoria JA, Cruz-Orduña I, Olazarán J, Mateos-Pérez JM, Martino ME, Desco M. Is the cerebellum the optimal reference region for intensity normalization of perfusion MR studies in early Alzheimer's disease? PLoS One 2013; 8:e81548. [PMID: 24386081 PMCID: PMC3873914 DOI: 10.1371/journal.pone.0081548] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/22/2013] [Indexed: 01/08/2023] Open
Abstract
The cerebellum is the region most commonly used as a reference when normalizing the intensity of perfusion images acquired using magnetic resonance imaging (MRI) in Alzheimer's disease (AD) studies. In addition, the cerebellum provides unbiased estimations with nuclear medicine techniques. However, no reports confirm the cerebellum as an optimal reference region in MRI studies or evaluate the consequences of using different normalization regions. In this study, we address the effect of using the cerebellum, whole-brain white matter, and whole-brain cortical gray matter in the normalization of cerebral blood flow (CBF) parametric maps by comparing patients with stable mild cognitive impairment (MCI), patients with AD and healthy controls. According to our results, normalization by whole-brain cortical gray matter enables more sensitive detection of perfusion abnormalities in AD patients and reveals a larger number of affected regions than data normalized by the cerebellum or whole-brain white matter. Therefore, the cerebellum is not the most valid reference region in MRI studies for early stages of AD. After normalization by whole-brain cortical gray matter, we found a significant decrease in CBF in both parietal lobes and an increase in CBF in the right medial temporal lobe. We found no differences in perfusion between patients with stable MCI and healthy controls either before or after normalization.
Collapse
Affiliation(s)
- María Lacalle-Aurioles
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Yasser Alemán-Gómez
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | | | - Isabel Cruz-Orduña
- Servicio de Neurología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Javier Olazarán
- Servicio de Neurología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - José María Mateos-Pérez
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | | | - Manuel Desco
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| |
Collapse
|
48
|
Brain metabolism in patients with hepatic encephalopathy studied by PET and MR. Arch Biochem Biophys 2013; 536:131-42. [PMID: 23726863 DOI: 10.1016/j.abb.2013.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/07/2013] [Accepted: 05/13/2013] [Indexed: 01/15/2023]
Abstract
We review PET- and MR studies on hepatic encephalopathy (HE) metabolism in human subjects from the point of views of methods, methodological assumptions and use in studies of cirrhotic patients with clinically overt HE, cirrhotic patients with minimal HE, cirrhotic patients with no history of HE and healthy subjects. Key results are: (1) Cerebral oxygen uptake and blood flow are reduced to 2/3 in cirrhotic patients with clinically overt HE but not in cirrhotic patients with minimal HE or no HE compared to healthy subjects. (2) Cerebral ammonia metabolism is enhanced due to increased blood ammonia in cirrhotic patients but the kinetics of cerebral ammonia uptake and metabolism is not affected by hyperammonemia. (3) Recent advantages in MR demonstrate low-grade cerebral oedema not only in astrocytes but also in the white matter in cirrhotic patients with HE.
Collapse
|
49
|
Thiele F, Young S, Buchert R, Wenzel F. Voxel-based classification of FDG PET in dementia using inter-scanner normalization. Neuroimage 2013; 77:62-9. [PMID: 23541799 DOI: 10.1016/j.neuroimage.2013.03.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/03/2013] [Accepted: 03/13/2013] [Indexed: 10/27/2022] Open
Abstract
Statistical mapping of FDG PET brain images has become a common tool in differential diagnosis of patients with dementia. We present a voxel-based classification system of neurodegenerative dementias based on partial least squares (PLS). Such a classifier relies on image databases of normal controls and dementia cases as training data. Variations in PET image characteristics can be expected between databases, for example due to differences in instrumentation, patient preparation, and image reconstruction. This study evaluates (i) the impact of databases from different scanners on classification accuracy and (ii) a method to improve inter-scanner classification. Brain FDG PET databases from three scanners (A, B, C) at two clinical sites were evaluated. Diagnostic categories included normal controls (NC, nA=26, nB=20, nC=24 for each scanner respectively), Alzheimer's disease (AD, nA=44, nB=11, nC=16), and frontotemporal dementia (FTD, nA=13, nB=13, nC=5). Spatially normalized images were classified as NC, AD, or FTD using partial least squares. Supervised learning was employed to determine classifier parameters, whereby available data is sub-divided into training and test sets. Four different database setups were evaluated: (i) "in-scanner": training and test data from the same scanner, (ii) "x-scanner": training and test data from different scanners, (iii) "train other": train on both x-scanners, and (iv) "train all": train on all scanners. In order to moderate the impact of inter-scanner variations on image evaluation, voxel-by-voxel scaling was applied based on "ratio images". Good classification accuracy of on average 94% was achieved for the in-scanner setups. Accuracy deteriorated for setups with mismatched scanners (79-91%). Ratio-image normalization improved all results with mismatched scanners (85-92%). In conclusion, automatic classification of individual FDG PET in differential diagnosis of dementia is feasible. Accuracy can vary with respect to scanner or acquisition characteristics of the training image data. The adopted approach of ratio-image normalization has been demonstrated to effectively moderate these effects.
Collapse
Affiliation(s)
- Frank Thiele
- Molecular Imaging Systems, Philips Research, Aachen, Germany.
| | | | | | | |
Collapse
|
50
|
Dhawan V, Tang CC, Ma Y, Spetsieris P, Eidelberg D. Abnormal network topographies and changes in global activity: absence of a causal relationship. Neuroimage 2012; 63:1827-32. [PMID: 22951259 PMCID: PMC3474325 DOI: 10.1016/j.neuroimage.2012.08.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 08/13/2012] [Accepted: 08/15/2012] [Indexed: 10/28/2022] Open
Abstract
Changes in regional brain activity can be observed following global normalization procedures to reduce variability in the data. In particular, spurious regional differences may appear when scans from patients with low global activity are compared to those from healthy subjects. It has thus been suggested that the consistent increases in subcortical activity that characterize the abnormal Parkinson's disease-related metabolic covariance pattern (PDRP) are artifacts of global normalization, and that similar topographies can be identified in scans from healthy subjects with varying global activity. To address this issue, we examined the effects of experimental reductions in global metabolic activity on PDRP expression. Ten healthy subjects underwent ¹⁸F-fluorodeoxyglucose PET in wakefulness and following sleep induction. In all subjects, the global metabolic rate (GMR) declined with sleep (mean -34%, range: -17 to -56%), exceeding the test-retest differences of the measure (p<0.001). By contrast, sleep-wake differences in PDRP expression did not differ from test-retest differences, and did not correlate (R²=0.04) with concurrent declines in global metabolic activity. Indeed, despite significant GMR reductions in sleep, PDRP values remained within the normal range. Likewise, voxel weights on the principal component patterns resulting from combined analysis of the sleep and wake scans did not correlate (R²<0.07) with the corresponding regional loadings on the PDRP topography. In aggregate, the data demonstrate that abnormal PDRP expression is not induced by reductions in global activity. Moreover, significant declines in GMR are not associated with the appearance of PDRP-like spatial topographies.
Collapse
Affiliation(s)
- Vijay Dhawan
- Center for Neurosciences, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA
| | - Chris C. Tang
- Center for Neurosciences, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA
| | - Yilong Ma
- Center for Neurosciences, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA
| | - Phoebe Spetsieris
- Center for Neurosciences, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA
| | - David Eidelberg
- Center for Neurosciences, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA
| |
Collapse
|