1
|
Wu D, Kang L, Li H, Ba R, Cao Z, Liu Q, Tan Y, Zhang Q, Li B, Yuan J. Developing an AI-empowered head-only ultra-high-performance gradient MRI system for high spatiotemporal neuroimaging. Neuroimage 2024; 290:120553. [PMID: 38403092 DOI: 10.1016/j.neuroimage.2024.120553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024] Open
Abstract
Recent advances in neuroscience requires high-resolution MRI to decipher the structural and functional details of the brain. Developing a high-performance gradient system is an ongoing effort in the field to facilitate high spatial and temporal encoding. Here, we proposed a head-only gradient system NeuroFrontier, dedicated for neuroimaging with an ultra-high gradient strength of 650 mT/m and 600 T/m/s. The proposed system features in 1) ultra-high power of 7MW achieved by running two gradient power amplifiers using a novel paralleling method; 2) a force/torque balanced gradient coil design with a two-step mechanical structure that allows high-efficiency and flexible optimization of the peripheral nerve stimulation; 3) a high-density integrated RF system that is miniaturized and customized for the head-only system; 4) an AI-empowered compressed sensing technique that enables ultra-fast acquisition of high-resolution images and AI-based acceleration in q-t space for diffusion MRI (dMRI); and 5) a prospective head motion correction technique that effectively corrects motion artifacts in real-time with 3D optical tracking. We demonstrated the potential advantages of the proposed system in imaging resolution, speed, and signal-to-noise ratio for 3D structural MRI (sMRI), functional MRI (fMRI) and dMRI in neuroscience applications of submillimeter layer-specific fMRI and dMRI. We also illustrated the unique strength of this system for dMRI-based microstructural mapping, e.g., enhanced lesion contrast at short diffusion-times or high b-values, and improved estimation accuracy for cellular microstructures using diffusion-time-dependent dMRI or for neurite microstructures using q-space approaches.
Collapse
Affiliation(s)
- Dan Wu
- Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, China.
| | - Liyi Kang
- Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, China
| | - Haotian Li
- Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Ruicheng Ba
- Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Zuozhen Cao
- Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Qian Liu
- United Imaging Healthcare Co., Ltd, Shanghai, China
| | - Yingchao Tan
- United Imaging Healthcare Co., Ltd, Shanghai, China
| | - Qinwei Zhang
- Beijing United Imaging Research Institute of Intelligent Imaging, Beijing, China
| | - Bo Li
- United Imaging Healthcare Co., Ltd, Shanghai, China
| | - Jianmin Yuan
- United Imaging Healthcare Co., Ltd, Shanghai, China
| |
Collapse
|
2
|
Krijnen EA, Russo AW, Salim Karam E, Lee H, Chiang FL, Schoonheim MM, Huang SY, Klawiter EC. Detection of grey matter microstructural substrates of neurodegeneration in multiple sclerosis. Brain Commun 2023; 5:fcad153. [PMID: 37274832 PMCID: PMC10233898 DOI: 10.1093/braincomms/fcad153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/16/2023] [Accepted: 05/22/2023] [Indexed: 06/07/2023] Open
Abstract
Multiple sclerosis features complex pathological changes in grey matter that begin early and eventually lead to diffuse atrophy. Novel approaches to image grey-matter microstructural alterations in vivo are highly sought after and would enable more sensitive monitoring of disease activity and progression. This cross-sectional study aimed to assess the sensitivity of high-gradient diffusion MRI for microstructural tissue damage in cortical and deep grey matter in people with multiple sclerosis and test the hypothesis that reduced cortical cell body density is associated with cortical and deep grey-matter volume loss. Forty-one people with multiple sclerosis (age 24-72, 14 females) and 37 age- and sex-matched healthy controls were scanned on a 3 T Connectom MRI scanner equipped with 300 mT/m gradients using a multi-shell diffusion MRI protocol. The soma and neurite density imaging model was fitted to high-gradient diffusion MRI data to obtain estimates of intra-neurite, intra-cellular and extra-cellular signal fractions and apparent soma radius. Cortical and deep grey-matter microstructural imaging metrics were compared between multiple sclerosis and healthy controls and correlated with grey-matter volume, clinical disability and cognitive outcomes. People with multiple sclerosis showed significant cortical and deep grey-matter volume loss compared with healthy controls. People with multiple sclerosis showed trends towards lower cortical intra-cellular signal fraction and significantly lower intra-cellular and higher extra-cellular signal fractions in deep grey matter, especially the thalamus and caudate, compared with healthy controls. Changes were most pronounced in progressive disease and correlated with the Expanded Disability Status Scale, but not the Symbol Digit Modalities Test. In multiple sclerosis, normalized thalamic volume was associated with thalamic microstructural imaging metrics. Whereas thalamic volume loss did not correlate with cortical volume loss, cortical microstructural imaging metrics were significantly associated with thalamic volume, and not with cortical volume. Compared with the short diffusion time (Δ = 19 ms) achievable on the Connectom scanner, at the longer diffusion time of Δ = 49 ms attainable on clinical scanners, multiple sclerosis-related changes in imaging metrics were generally less apparent with lower effect sizes in cortical and deep grey matter. Soma and neurite density imaging metrics obtained from high-gradient diffusion MRI data provide detailed grey-matter characterization beyond cortical and thalamic volumes and distinguish multiple sclerosis-related microstructural pathology from healthy controls. Cortical cell body density correlates with thalamic volume, appears sensitive to the microstructural substrate of neurodegeneration and reflects disability status in people with multiple sclerosis, becoming more pronounced as disability worsens.
Collapse
Affiliation(s)
- Eva A Krijnen
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- MS Center Amsterdam, Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC location VUmc, 1081 HV Amsterdam, The Netherlands
| | - Andrew W Russo
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Elsa Salim Karam
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hansol Lee
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Florence L Chiang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Menno M Schoonheim
- MS Center Amsterdam, Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC location VUmc, 1081 HV Amsterdam, The Netherlands
| | - Susie Y Huang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Eric C Klawiter
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
3
|
Caporale A, Bonomo GB, Tani Raffaelli G, Tata AM, Avallone B, Wehrli FW, Capuani S. Transient Anomalous Diffusion MRI in Excised Mouse Spinal Cord: Comparison Among Different Diffusion Metrics and Validation With Histology. Front Neurosci 2022; 15:797642. [PMID: 35242002 PMCID: PMC8885723 DOI: 10.3389/fnins.2021.797642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/21/2021] [Indexed: 11/24/2022] Open
Abstract
Neural tissue is a hierarchical multiscale system with intracellular and extracellular diffusion compartments at different length scales. The normal diffusion of bulk water in tissues is not able to detect the specific features of a complex system, providing nonlocal, diffusion measurement averaged on a 10-20 μm length scale. Being able to probe tissues with sub-micrometric diffusion length and quantify new local parameters, transient anomalous diffusion (tAD) would dramatically increase the diagnostic potential of diffusion MRI (DMRI) in detecting collective and sub-micro architectural changes of human tissues due to pathological damage. In DMRI, the use of tAD parameters quantified using specific DMRI acquisition protocols and their interpretation has often aroused skepticism. Although the derived formulas may accurately fit experimental diffusion-weighted data, the relationships between the postulated dynamical feature and the underlying geometrical structure remains elusive, or at most only suggestive. This work aimed to elucidate and validate the image contrast and information that can be obtained using the tAD model in white matter (WM) through a direct comparison between different diffusion metrics and histology. Towards this goal, we compared tAD metrics extracted from pure subdiffusion (α-imaging) and super-pseudodiffusion (γ-imaging) in excised mouse spinal cord WM, together with T2 and T2* relaxometry, conventional (normal diffusion-based) diffusion tensor imaging (DTI) and q-space imaging (QSI), with morphologic measures obtained by optical microscopy, to determine which structural and topological characteristics of myelinated axons influenced tAD contrast. Axon diameter (AxDiam), the standard deviation of diameters (SDax.diam), axonal density (AxDens) and effective local density (ELD) were extracted from optical images in several WM tracts. Among all the diffusion parameters obtained at 9.4 T, γ-metrics confirmed a strong dependence on magnetic in-homogeneities quantified by R2* = 1/T2* and showed the strongest associations with AxDiam and ELD. On the other hand, α-metrics showed strong associations with SDax.diam and was significantly related to AxDens, suggesting its ability to quantify local heterogeneity degree in neural tissue. These results elucidate the biophysical mechanism underpinning tAD parameters and show the clinical potential of tAD-imaging, considering that both physiologic and pathologic neurodegeneration translate into alterations of WM morphometry and topology.
Collapse
Affiliation(s)
- Alessandra Caporale
- NMR and Medical Physics Laboratory, Institute for Complex Systems of National Research Council (CNR-ISC), Rome, Italy
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | | | | | - Ada Maria Tata
- Department of Biology and Biotechnologies Charles Darwin, Sapienza University of Rome, Rome, Italy
- Research Center of Neurobiology Daniel Bovet, Rome, Italy
| | - Bice Avallone
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Felix Werner Wehrli
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Silvia Capuani
- NMR and Medical Physics Laboratory, Institute for Complex Systems of National Research Council (CNR-ISC), Rome, Italy
- Centro Fermi, Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy
- *Correspondence: Silvia Capuani,
| |
Collapse
|
4
|
Huang SY, Witzel T, Keil B, Scholz A, Davids M, Dietz P, Rummert E, Ramb R, Kirsch JE, Yendiki A, Fan Q, Tian Q, Ramos-Llordén G, Lee HH, Nummenmaa A, Bilgic B, Setsompop K, Wang F, Avram AV, Komlosh M, Benjamini D, Magdoom KN, Pathak S, Schneider W, Novikov DS, Fieremans E, Tounekti S, Mekkaoui C, Augustinack J, Berger D, Shapson-Coe A, Lichtman J, Basser PJ, Wald LL, Rosen BR. Connectome 2.0: Developing the next-generation ultra-high gradient strength human MRI scanner for bridging studies of the micro-, meso- and macro-connectome. Neuroimage 2021; 243:118530. [PMID: 34464739 PMCID: PMC8863543 DOI: 10.1016/j.neuroimage.2021.118530] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/10/2021] [Accepted: 08/27/2021] [Indexed: 11/26/2022] Open
Abstract
The first phase of the Human Connectome Project pioneered advances in MRI technology for mapping the macroscopic structural connections of the living human brain through the engineering of a whole-body human MRI scanner equipped with maximum gradient strength of 300 mT/m, the highest ever achieved for human imaging. While this instrument has made important contributions to the understanding of macroscale connectional topology, it has also demonstrated the potential of dedicated high-gradient performance scanners to provide unparalleled in vivo assessment of neural tissue microstructure. Building on the initial groundwork laid by the original Connectome scanner, we have now embarked on an international, multi-site effort to build the next-generation human 3T Connectome scanner (Connectome 2.0) optimized for the study of neural tissue microstructure and connectional anatomy across multiple length scales. In order to maximize the resolution of this in vivo microscope for studies of the living human brain, we will push the diffusion resolution limit to unprecedented levels by (1) nearly doubling the current maximum gradient strength from 300 mT/m to 500 mT/m and tripling the maximum slew rate from 200 T/m/s to 600 T/m/s through the design of a one-of-a-kind head gradient coil optimized to minimize peripheral nerve stimulation; (2) developing high-sensitivity multi-channel radiofrequency receive coils for in vivo and ex vivo human brain imaging; (3) incorporating dynamic field monitoring to minimize image distortions and artifacts; (4) developing new pulse sequences to integrate the strongest diffusion encoding and highest spatial resolution ever achieved in the living human brain; and (5) calibrating the measurements obtained from this next-generation instrument through systematic validation of diffusion microstructural metrics in high-fidelity phantoms and ex vivo brain tissue at progressively finer scales with accompanying diffusion simulations in histology-based micro-geometries. We envision creating the ultimate diffusion MRI instrument capable of capturing the complex multi-scale organization of the living human brain - from the microscopic scale needed to probe cellular geometry, heterogeneity and plasticity, to the mesoscopic scale for quantifying the distinctions in cortical structure and connectivity that define cyto- and myeloarchitectonic boundaries, to improvements in estimates of macroscopic connectivity.
Collapse
Affiliation(s)
- Susie Y Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | | | - Boris Keil
- Institute of Medical Physics and Radiation Protection (IMPS), TH-Mittelhessen University of Applied Sciences (THM), Giessen, Germany
| | - Alina Scholz
- Institute of Medical Physics and Radiation Protection (IMPS), TH-Mittelhessen University of Applied Sciences (THM), Giessen, Germany
| | - Mathias Davids
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | - John E Kirsch
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anastasia Yendiki
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Qiuyun Fan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gabriel Ramos-Llordén
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hong-Hsi Lee
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Aapo Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kawin Setsompop
- Radiological Sciences Laboratory, Department of Radiology, Stanford University, Stanford, CA, USA
| | - Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexandru V Avram
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Michal Komlosh
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Dan Benjamini
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Kulam Najmudeen Magdoom
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Sudhir Pathak
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Walter Schneider
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dmitry S Novikov
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY, USA
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY, USA
| | - Slimane Tounekti
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Choukri Mekkaoui
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jean Augustinack
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel Berger
- Department of Molecular and Cell Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Alexander Shapson-Coe
- Department of Molecular and Cell Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Jeff Lichtman
- Department of Molecular and Cell Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Peter J Basser
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bruce R Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Mattucci S, Speidel J, Liu J, Tetzlaff W, Oxland TR. Temporal Progression of Acute Spinal Cord Injury Mechanisms in a Rat Model: Contusion, Dislocation, and Distraction. J Neurotrauma 2021; 38:2103-2121. [PMID: 33820470 DOI: 10.1089/neu.2020.7255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic spinal cord injuries (SCIs) occur due to different spinal column injury patterns, including burst fracture, dislocation, and flexion-distraction. Pre-clinical studies modeling different SCI mechanisms have shown distinct histological differences between these injuries both acutely (3 h and less) and chronically (8 weeks), but there remains a temporal gap. Different rates of injury progression at specific regions of the spinal cord may provide insight into the pathologies that are initiated by specific SCI mechanisms. Therefore, the objective of this study was to evaluate the temporal progression of injury at specific tracts within the white matter, for time-points of 3 h, 24 h, and 7 days, for three distinct SCI mechanisms. In this study, 96 male Sprague Dawley rats underwent one of three SCI mechanisms: contusion, dislocation, or distraction. Animals were sacrificed at one of three times post-injury: 3 h, 24 h, or 7 days. Histological analysis using eriochrome cyanide and immunostaining for MBP, SMI-312, neurofilament-H (NF-H), and β-III tubulin were used to characterize white matter sparing and axon and myelinated axon counts. The regions analyzed were the gracile fasciculus, cuneate fasciculus, dorsal corticospinal tract, and ventrolateral white matter. Contusion, dislocation, and distraction SCIs demonstrated distinct damage patterns that progressed differently over time. Myelinated axon counts were significantly reduced after dislocation and contusion injuries in most locations and time-points analyzed (compared with sham). This indicates early myelin damage often within 3 h. Myelinated axon counts after distraction dropped early and did not demonstrate any significant progression over the next 7 days. Important differences in white matter degeneration were identified between injury types, with distraction injuries showing the least variability across time-points These findings and the observation that white matter injury occurs early, and in many cases, without much dynamic change, highlight the importance of injury type in SCI research-both clinically and pre-clinically.
Collapse
Affiliation(s)
- Stephen Mattucci
- Department of Orthopedics, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jason Speidel
- Department of Orthopedics, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jie Liu
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wolfram Tetzlaff
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Thomas R Oxland
- Department of Orthopedics, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Gomez-Tames J, Asai A, Hirata A. Multiscale Computational Model Reveals Nerve Response in a Mouse Model for Temporal Interference Brain Stimulation. Front Neurosci 2021; 15:684465. [PMID: 34276293 PMCID: PMC8277927 DOI: 10.3389/fnins.2021.684465] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022] Open
Abstract
There has been a growing interest in the non-invasive stimulation of specific brain tissues, while reducing unintended stimulation in surrounding regions, for the medical treatment of brain disorders. Traditional methods for non-invasive brain stimulation, such as transcranial direct current stimulation (tDCS) or transcranial magnetic stimulation (TMS), can stimulate brain regions, but they also simultaneously stimulate the brain and non-brain regions that lie between the target and the stimulation site of the source. Temporal interference (TI) stimulation has been suggested to selectively stimulate brain regions by superposing two alternating currents with slightly different frequencies injected through electrodes attached to the scalp. Previous studies have reported promising results for TI applied to the motor area in mice, but the mechanisms are yet to be clarified. As computational techniques can help reveal different aspects of TI, in this study, we computationally investigated TI stimulation using a multiscale model that computes the generated interference current pattern effects in a neural cortical model of a mouse head. The results indicated that the threshold increased with the carrier frequency and that the beat frequency did not influence the threshold. It was also found that the intensity ratio between the alternating currents changed the location of the responding nerve, which is in agreement with previous experiments. Moreover, particular characteristics of the envelope were investigated to predict the stimulation region intuitively. It was found that regions with high modulation depth (| maximum| − | minimum| values of the envelope) and low minimum envelope (near zero) corresponded with the activation region obtained via neural computation.
Collapse
Affiliation(s)
- Jose Gomez-Tames
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan.,Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya, Japan
| | - Akihiro Asai
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Akimasa Hirata
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan.,Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya, Japan
| |
Collapse
|
7
|
Jeong K, Shah LM, Lee YJ, Thapa B, Sapkota N, Bisson E, Carlson NG, Jeong EK, Rose JW. High-b diffusivity of MS lesions in cervical spinal cord using ultrahigh-b DWI (UHb-DWI). Neuroimage Clin 2021; 30:102610. [PMID: 33752076 PMCID: PMC7985401 DOI: 10.1016/j.nicl.2021.102610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/11/2021] [Accepted: 02/18/2021] [Indexed: 12/27/2022]
Abstract
PURPOSE The purpose of this study was to investigate UHb-rDWI signal in white matter tracts of the cervical spinal cord (CSC) and compare quantitative values between healthy control WM with both MS NAWM and MS WM lesions. METHODS UHb-rDWI experiments were performed on (a) 7 MS patients with recently active or chronic lesions in CSC and on (b) 7 healthy control of similar age range and gender distribution to MS subjects. All MRI data were acquired using clinical 3T MRI system. Axial high-b diffusion images were acquired using 2D single-shot DW stimulated EPI with reduced FOV and a CSC-dedicated 8 channel array coil. High-b diffusion coefficient DH was estimated by fitting the signal-b curve to a double or single-exponential function. RESULTS The high-b diffusivity DH values were measured as (0.767 ± 0.297) × 10-3 mm2/s in the posterior column lesions, averaged over 6 MS patients, and 0.587 × 10-3 mm2/s in the corticospinal tract for another patient. The averaged DH values of the 7 healthy volunteers from the posterior and lateral column were (0.0312 ± 0.0306) × 10-3 and (0.0505 ± 0.0205) × 10-3 mm2/s, respectively. UHb-rDWI signal-b curves of the MS patients revealed to noticeably behave differently to that of the healthy controls. The patient signal-b curves decayed with greater high-b decay constants to reach lower signal intensities relative to signal-b curves of the healthy controls. CONCLUSION UHb-DWI of the CSC reveals a marked difference in signal-b-curves and DH values in MS lesions compared to NAWM and healthy control WM. Based on physical principles, we interpret these altered observations of quantitative diffusion values to be indicative of demyelination. Further studies in animal models will be required to fully interpret UHb-DWI quantitative diffusion values during demyelination and remyelination.
Collapse
Affiliation(s)
- Kyle Jeong
- Utah Center for Advanced Imaging Research, University of Utah, Utah, USA
| | - Lubdha M Shah
- Department of Radiology and Imaging Sciences, University of Utah, Utah, USA
| | - You-Jung Lee
- Utah Center for Advanced Imaging Research, University of Utah, Utah, USA
| | - Bijaya Thapa
- Utah Center for Advanced Imaging Research, University of Utah, Utah, USA
| | - Nabraj Sapkota
- Utah Center for Advanced Imaging Research, University of Utah, Utah, USA
| | - Erica Bisson
- Department of Neurosurgery, University of Utah, Utah, USA
| | - Noel G Carlson
- Neuroimmunology and Neurovirology Division, Department of Neurology, University of Utah, Utah, USA; GRECC, VA Salt Lake City Health Care System, Utah, USA; Department of Neurobiology, University of Utah, Utah, USA
| | - E K Jeong
- Utah Center for Advanced Imaging Research, University of Utah, Utah, USA; Department of Radiology and Imaging Sciences, University of Utah, Utah, USA
| | - John W Rose
- Neuroimmunology and Neurovirology Division, Department of Neurology, University of Utah, Utah, USA; Neurology Service, VA Salt Lake City Health Care System, Utah, USA.
| |
Collapse
|
8
|
Olesen JL, Østergaard L, Shemesh N, Jespersen SN. Beyond the diffusion standard model in fixed rat spinal cord with combined linear and planar encoding. Neuroimage 2021; 231:117849. [PMID: 33582270 DOI: 10.1016/j.neuroimage.2021.117849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/20/2021] [Accepted: 02/04/2021] [Indexed: 10/22/2022] Open
Abstract
Information about tissue on the microscopic and mesoscopic scales can be accessed by modelling diffusion MRI signals, with the aim of extracting microstructure-specific biomarkers. The standard model (SM) of diffusion, currently the most broadly adopted microstructural model, describes diffusion in white matter (WM) tissues by two Gaussian components, one of which has zero radial diffusivity, to represent diffusion in intra- and extra-axonal water, respectively. Here, we reappraise these SM assumptions by collecting comprehensive double diffusion encoded (DDE) MRI data with both linear and planar encodings, which was recently shown to substantially enhance the ability to estimate SM parameters. We find however, that the SM is unable to account for data recorded in fixed rat spinal cord at an ultrahigh field of 16.4 T, suggesting that its underlying assumptions are violated in our experimental data. We offer three model extensions to mitigate this problem: first, we generalize the SM to accommodate finite radii (axons) by releasing the constraint of zero radial diffusivity in the intra-axonal compartment. Second, we include intracompartmental kurtosis to account for non-Gaussian behaviour. Third, we introduce an additional (third) compartment. The ability of these models to account for our experimental data are compared based on parameter feasibility and Bayesian information criterion. Our analysis identifies the three-compartment description as the optimal model. The third compartment exhibits slow diffusion with a minor but non-negligible signal fraction (∼12%). We demonstrate how failure to take the presence of such a compartment into account severely misguides inferences about WM microstructure. Our findings bear significance for microstructural modelling at large and can impact the interpretation of biomarkers extracted from the standard model of diffusion.
Collapse
Affiliation(s)
- Jonas L Olesen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Sune N Jespersen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
9
|
Afzali M, Pieciak T, Newman S, Garyfallidis E, Özarslan E, Cheng H, Jones DK. The sensitivity of diffusion MRI to microstructural properties and experimental factors. J Neurosci Methods 2021; 347:108951. [PMID: 33017644 PMCID: PMC7762827 DOI: 10.1016/j.jneumeth.2020.108951] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/27/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022]
Abstract
Diffusion MRI is a non-invasive technique to study brain microstructure. Differences in the microstructural properties of tissue, including size and anisotropy, can be represented in the signal if the appropriate method of acquisition is used. However, to depict the underlying properties, special care must be taken when designing the acquisition protocol as any changes in the procedure might impact on quantitative measurements. This work reviews state-of-the-art methods for studying brain microstructure using diffusion MRI and their sensitivity to microstructural differences and various experimental factors. Microstructural properties of the tissue at a micrometer scale can be linked to the diffusion signal at a millimeter-scale using modeling. In this paper, we first give an introduction to diffusion MRI and different encoding schemes. Then, signal representation-based methods and multi-compartment models are explained briefly. The sensitivity of the diffusion MRI signal to the microstructural components and the effects of curvedness of axonal trajectories on the diffusion signal are reviewed. Factors that impact on the quality (accuracy and precision) of derived metrics are then reviewed, including the impact of random noise, and variations in the acquisition parameters (i.e., number of sampled signals, b-value and number of acquisition shells). Finally, yet importantly, typical approaches to deal with experimental factors are depicted, including unbiased measures and harmonization. We conclude the review with some future directions and recommendations on this topic.
Collapse
Affiliation(s)
- Maryam Afzali
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom.
| | - Tomasz Pieciak
- AGH University of Science and Technology, Kraków, Poland; LPI, ETSI Telecomunicación, Universidad de Valladolid, Valladolid, Spain.
| | - Sharlene Newman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA; Program of Neuroscience, Indiana University, Bloomington, IN 47405, USA.
| | - Eleftherios Garyfallidis
- Program of Neuroscience, Indiana University, Bloomington, IN 47405, USA; Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47408, USA.
| | - Evren Özarslan
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden.
| | - Hu Cheng
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA; Program of Neuroscience, Indiana University, Bloomington, IN 47405, USA.
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
10
|
Nakashima D, Hata J, Sone Y, Maruyama K, Feiweier T, Okano JH, Matsumoto M, Nakamura M, Nagura T. Detecting Mild Lower-limb Skeletal Muscle Fatigue with Stimulated-echo q-space Imaging. Magn Reson Med Sci 2020; 20:457-466. [PMID: 33342916 PMCID: PMC8922348 DOI: 10.2463/mrms.tn.2020-0096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The feasibility of detecting mild exercise-related muscle fatigue via stimulated echo (STE) and q-space imaging (qsi) was evaluated. The right calves of seven healthy volunteers were subjected to mild exercise loading, and qsi was generated using spin echo (Δ: 45.6 ms) and three different STE (Δ: 114, 214, and 414 ms) acquisitions. We concluded that qsi with an increased STE diffusion time can detect mild fatigue in the gastrocnemius muscle.
Collapse
Affiliation(s)
- Daisuke Nakashima
- Department of Orthopedic Surgery, Keio University School of Medicine
| | - Junichi Hata
- Division of Regenerative Medicine, The Jikei University Graduate School ofMedicine.,Department of Physiology, Keio University School of Medicine.,Laboratory for Marmoset Neural Architecture, RIKEN Brain Science Institute
| | | | - Katsuya Maruyama
- MRI Research and Collaboration Department, Siemens Healthcare K.K
| | | | - James Hirotaka Okano
- Division of Regenerative Medicine, The Jikei University Graduate School ofMedicine
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine
| | - Takeo Nagura
- Department of Orthopedic Surgery, Keio University School of Medicine.,Department of Clinical Biomechanics, Keio University School of Medicine
| |
Collapse
|
11
|
Nakashima D, Fujita N, Hata J, Komaki Y, Suzuki S, Nagura T, Fujiyoshi K, Watanabe K, Tsuji T, Okano H, Jinzaki M, Matsumoto M, Nakamura M. Quantitative analysis of intervertebral disc degeneration using Q-space imaging in a rat model. J Orthop Res 2020; 38:2220-2229. [PMID: 32458477 DOI: 10.1002/jor.24757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/17/2020] [Accepted: 05/25/2020] [Indexed: 02/04/2023]
Abstract
The degree of intervertebral disc (IVD) degeneration is qualitatively evaluated on T2-weighted imaging (T2WI). However, it is difficult to assess subtle changes in IVD degeneration using T2WI. Q-space imaging (QSI) is a quantitative diffusion-weighted imaging modality used to detect subtle changes in microenvironments. This study aimed to evaluate whether QSI can detect the inhibitory effects of the antioxidant N-acetylcysteine (NAC) in IVD degeneration. We classified female Wistar rats into control, puncture, and NAC groups (n = 5 per group). In the puncture and NAC groups, IVDs were punctured using a needle. The antioxidant NAC, which suppresses the progression of IVD degeneration, was orally administered in the NAC group 1 week prior to puncture. The progression and inhibitory effect of NAC in IVD degeneration were assessed using magnetic resonance imaging (MRI): IVD height, T2 mapping, apparent diffusion coefficient (ADC), and QSI. MRI was performed using a 7-Tesla system with a conventional probe (20 IVDs in each group). QSI parameters that were assessed included Kurtosis, the probability at zero displacement (ZDP), and full width at half maximum (FWHM). IVD degeneration by puncture was confirmed by histology, IVD height, T2 mapping, ADC, and all QSI parameters (P < .001); however, the inhibitory effect of NAC was confirmed only by QSI parameters (Kurtosis and ZDP: both P < .001; FWHM: P < .01). Kurtosis had the largest effect size (Kurtosis: 1.13, ZDP: 1.06, and FWHM: 1.02) when puncture and NAC groups were compared. QSI has a higher sensitivity than conventional quantitative methods for detecting the progressive change and inhibitory effect of NAC in IVD degeneration.
Collapse
Affiliation(s)
- Daisuke Nakashima
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Nobuyuki Fujita
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan.,Department of Orthopaedic Surgery, Fujita Health University, Toyoake, Aichi, Japan
| | - Junichi Hata
- Division of Regenerative Medicine, Jikei University Graduate School of Medicine, Minato, Tokyo, Japan.,Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan.,Laboratory for Marmoset Neural Architecture, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Yuji Komaki
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan.,Live Imaging Center, Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan
| | - Satoshi Suzuki
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan.,Department of Orthopaedic Surgery, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Chiba, Japan
| | - Takeo Nagura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan.,Department of Clinical Biomechanics, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Kanehiro Fujiyoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan.,Department of Orthopaedic Surgery, Murayama Medical Center, Murayama, Tokyo, Japan
| | - Kota Watanabe
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Takashi Tsuji
- Department of Orthopaedic Surgery, National Hospital Organization Tokyo Medical Center, Meguro, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan.,Laboratory for Marmoset Neural Architecture, RIKEN Brain Science Institute, Wako, Saitama, Japan.,Live Imaging Center, Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan
| | - Masahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| |
Collapse
|
12
|
Le H, Zeng W, Zhang H, Li J, Wu X, Xie M, Yan X, Zhou M, Zhang H, Wang M, Hong G, Shen J. Mean Apparent Propagator MRI Is Better Than Conventional Diffusion Tensor Imaging for the Evaluation of Parkinson's Disease: A Prospective Pilot Study. Front Aging Neurosci 2020; 12:563595. [PMID: 33192458 PMCID: PMC7541835 DOI: 10.3389/fnagi.2020.563595] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
Background and Purpose Mean apparent propagator (MAP) MRI is a novel diffusion imaging method to map tissue microstructure. The purpose of this study was to evaluate the diagnostic value of the MAP MRI in Parkinson’s disease (PD) in comparison with conventional diffusion tensor imaging (DTI). Methods 23 PD patients and 22 age- and gender-matched healthy controls were included. MAP MRI and DTI were performed on a 3T MR scanner with a 20-channel head coil. The MAP metrics including mean square displacement (MSD), return to the origin probability (RTOP), return to the axis probability (RTAP), and return to the plane probability (RTPP), and DTI metrics including fractional anisotropy (FA), and mean diffusivity (MD), were measured in subcortical gray matter and compared between the two groups. The receiver operating characteristic (ROC) curve was used to analyze the diagnostic performance of all the metrics. The association between the diffusion metrics and disease severity was assessed by Pearson correlation analysis. Results For MAP MRI, the mean values of MSD in the bilateral caudate, pallidum, putamen, thalamus and substantia nigra (SN) were higher in PD patients than in healthy controls (pFDR ≤ 0.001); the mean values of the zero displacement probabilities (RTOP, RTAP, and RTPP) in the bilateral caudate, pallidum, putamen and thalamus were lower in PD patients (pFDR < 0.001). For DTI, only FA in the bilateral SN was significantly higher in PD patients than those in the controls (pFDR < 0.001). ROC analysis showed that the areas under the curves of MAP MRI metrics (MSD, RTOP, RTAP, and RTPP) in the bilateral caudate, pallidum, putamen and thalamus (range, 0.85–0.94) were greater than those of FA and MD of DTI (range, 0.55–0.69) in discriminating between PD patients and healthy controls. RTAP in the ipsilateral pallidum (r = −0.56, pFDR = 0.027), RTOP in the bilateral and contralateral putamen (r = −0.58, pFDR = 0.019; r = −0.57, pFDR = 0.024) were negatively correlated with UPDRS III motor scores. Conclusion MAP MRI outperformed the conventional DTI in the diagnosis of PD and evaluation of the disease severity.
Collapse
Affiliation(s)
- Hongbo Le
- Department of Radiology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.,Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weike Zeng
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huihong Zhang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jianing Li
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Wu
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingwei Xie
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xu Yan
- MR Scientific Marketing, Siemens Healthcare, Shanghai, China
| | - Minxiong Zhou
- College of Medical Imaging, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Science, Shanghai, China
| | - Huiting Zhang
- MR Scientific Marketing, Siemens Healthcare, Shanghai, China
| | - Mengzhu Wang
- MR Scientific Marketing, Siemens Healthcare, Shanghai, China
| | - Guobin Hong
- Department of Radiology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Jun Shen
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Göbel-Guéniot K, Gerlach J, Kamberger R, Leupold J, von Elverfeldt D, Hennig J, Korvink JG, Haas CA, LeVan P. Histological Correlates of Diffusion-Weighted Magnetic Resonance Microscopy in a Mouse Model of Mesial Temporal Lobe Epilepsy. Front Neurosci 2020; 14:543. [PMID: 32581687 PMCID: PMC7284165 DOI: 10.3389/fnins.2020.00543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022] Open
Abstract
Mesial temporal lobe epilepsy (MTLE) is the most common type of focal epilepsy. It is frequently associated with abnormal MRI findings, which are caused by underlying cellular, structural, and chemical changes at the micro-scale. In the current study, it is investigated to which extent these alterations correspond to imaging features detected by high resolution magnetic resonance imaging in the intrahippocampal kainate mouse model of MTLE. Fixed hippocampal and whole-brain sections of mouse brain tissue from nine animals under physiological and chronically epileptic conditions were examined using structural and diffusion-weighted MRI. Microstructural details were investigated based on a direct comparison with immunohistochemical analyses of the same specimen. Within the hippocampal formation, diffusion streamlines could be visualized corresponding to dendrites of CA1 pyramidal cells and granule cells, as well as mossy fibers and Schaffer collaterals. Statistically significant changes in diffusivities, fractional anisotropy, and diffusion orientations could be detected in tissue samples from chronically epileptic animals compared to healthy controls, corresponding to microstructural alterations (degeneration of pyramidal cells, dispersion of the granule cell layer, and sprouting of mossy fibers). The diffusion parameters were significantly correlated with histologically determined cell densities. These findings demonstrate that high-resolution diffusion-weighted MRI can resolve subtle microstructural changes in epileptic hippocampal tissue corresponding to histopathological features in MTLE.
Collapse
Affiliation(s)
- Katharina Göbel-Guéniot
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Johannes Gerlach
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Experimental Epilepsy Research, Department of Neurosurgery, Medical Center – University of Freiburg, Freiburg, Germany
| | - Robert Kamberger
- Department of Microsystems Engineering, Technical Faculty, University of Freiburg, Freiburg, Germany
| | - Jochen Leupold
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominik von Elverfeldt
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jürgen Hennig
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jan G Korvink
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Carola A Haas
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Experimental Epilepsy Research, Department of Neurosurgery, Medical Center – University of Freiburg, Freiburg, Germany,BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Pierre LeVan
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany.,Department of Radiology and Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
14
|
Liu J, Liu H, Tang Z, Gui W, Ma T, Gong S, Gao Q, Xie Y, Niyoyita JP. IOUC-3DSFCNN: Segmentation of Brain Tumors via IOU Constraint 3D Symmetric Full Convolution Network with Multimodal Auto-context. Sci Rep 2020; 10:6256. [PMID: 32277141 PMCID: PMC7148375 DOI: 10.1038/s41598-020-63242-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/27/2020] [Indexed: 11/26/2022] Open
Abstract
Accurate segmentation of brain tumors from magnetic resonance (MR) images play a pivot role in assisting diagnoses, treatments and postoperative evaluations. However, due to its structural complexities, e.g., fuzzy tumor boundaries with irregular shapes, accurate 3D brain tumor delineation is challenging. In this paper, an intersection over union (IOU) constraint 3D symmetric full convolutional neural network (IOUC-3DSFCNN) model fused with multimodal auto-context is proposed for the 3D brain tumor segmentation. IOUC-3DSFCNN incorporates 3D residual groups into the classic 3DU-Net to further deepen the network structure to obtain more abstract voxel features under a five-layer cohesion architecture to ensure the model stability. The IOU constraint is used to address the issue of extremely unbalanced tumor foreground and background regions in MR images. In addition, to obtain more comprehensive and stable 3D brain tumor profiles, the multimodal auto-context information is fused into the IOUC-3DSFCNN model to achieve end-to-end 3D brain tumor profiles. Extensive confirmatory and comparative experiments conducted on the benchmark BRATS 2017 dataset demonstrate that the proposed segmentation model is superior to classic 3DU-Net-relevant and other state-of-the-art segmentation models, which can achieve accurate 3D tumor profiles on multimodal MRI volumes even with blurred tumor boundaries and big noise.
Collapse
Affiliation(s)
- Jinping Liu
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, Hunan, 410081, China.
| | - Hui Liu
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Zhaohui Tang
- School of Automation, Central South University, Changsha, Hunan, 410083, China
| | - Weihua Gui
- School of Automation, Central South University, Changsha, Hunan, 410083, China
| | - Tianyu Ma
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Subo Gong
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
| | - Quanquan Gao
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Yongfang Xie
- School of Automation, Central South University, Changsha, Hunan, 410083, China
| | - Jean Paul Niyoyita
- College of Science and Technology, University of Rwanda, Kigali, 3286, Rwanda
| |
Collapse
|
15
|
Veraart J, Nunes D, Rudrapatna U, Fieremans E, Jones DK, Novikov DS, Shemesh N. Nonivasive quantification of axon radii using diffusion MRI. eLife 2020; 9:e49855. [PMID: 32048987 PMCID: PMC7015669 DOI: 10.7554/elife.49855] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/07/2020] [Indexed: 12/13/2022] Open
Abstract
Axon caliber plays a crucial role in determining conduction velocity and, consequently, in the timing and synchronization of neural activation. Noninvasive measurement of axon radii could have significant impact on the understanding of healthy and diseased neural processes. Until now, accurate axon radius mapping has eluded in vivo neuroimaging, mainly due to a lack of sensitivity of the MRI signal to micron-sized axons. Here, we show how - when confounding factors such as extra-axonal water and axonal orientation dispersion are eliminated - heavily diffusion-weighted MRI signals become sensitive to axon radii. However, diffusion MRI is only capable of estimating a single metric, the effective radius, representing the entire axon radius distribution within a voxel that emphasizes the larger axons. Our findings, both in rodents and humans, enable noninvasive mapping of critical information on axon radii, as well as resolve the long-standing debate on whether axon radii can be quantified.
Collapse
Affiliation(s)
- Jelle Veraart
- Champalimaud ResearchChampalimaud Centre for the UnknownLisbonPortugal
- Center for Biomedical Imaging, Department of RadiologyNew York University School of MedicineNew YorkUnited States
- imec-Vision Lab, Department of PhysicsUniversity of AntwerpAntwerpBelgium
| | - Daniel Nunes
- Champalimaud ResearchChampalimaud Centre for the UnknownLisbonPortugal
| | - Umesh Rudrapatna
- CUBRIC, School of PsychologyCardiff UniversityCardiffUnited Kingdom
| | - Els Fieremans
- Center for Biomedical Imaging, Department of RadiologyNew York University School of MedicineNew YorkUnited States
| | - Derek K Jones
- CUBRIC, School of PsychologyCardiff UniversityCardiffUnited Kingdom
- Mary MacKillop Institute for Health ResearchAustralian Catholic UniversityMelbourneAustralia
| | - Dmitry S Novikov
- Center for Biomedical Imaging, Department of RadiologyNew York University School of MedicineNew YorkUnited States
| | - Noam Shemesh
- Champalimaud ResearchChampalimaud Centre for the UnknownLisbonPortugal
| |
Collapse
|
16
|
Chuhutin A, Hansen B, Wlodarczyk A, Owens T, Shemesh N, Jespersen SN. Diffusion Kurtosis Imaging maps neural damage in the EAE model of multiple sclerosis. Neuroimage 2019; 208:116406. [PMID: 31830588 PMCID: PMC9358435 DOI: 10.1016/j.neuroimage.2019.116406] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 01/22/2023] Open
Abstract
Diffusion kurtosis imaging (DKI) is an imaging modality that yields novel
disease biomarkers and in combination with nervous tissue modeling, provides
access to microstructural parameters. Recently, DKI and subsequent estimation of
microstructural model parameters has been used for assessment of tissue changes
in neurodegenerative diseases and associated animal models. In this study, mouse
spinal cords from the experimental autoimmune encephalomyelitis (EAE) model of
multiple sclerosis (MS) were investigated for the first time using DKI in
combination with biophysical modeling to study the relationship between
microstructural metrics and degree of animal dysfunction. Thirteen spinal cords
were extracted from animals with varied grades of disability and scanned in a
high-field MRI scanner along with five control specimen. Diffusion weighted data
were acquired together with high resolution T2*
images. Diffusion data were fit to estimate diffusion and kurtosis tensors and
white matter modeling parameters, which were all used for subsequent statistical
analysis using a linear mixed effects model. T2*
images were used to delineate focal demyelination/inflammation. Our results
reveal a strong relationship between disability and measured microstructural
parameters in normal appearing white matter and gray matter. Relationships
between disability and mean of the kurtosis tensor, radial kurtosis, radial
diffusivity were similar to what has been found in other hypomyelinating MS
models, and in patients. However, the changes in biophysical modeling parameters
and in particular in extra-axonal axial diffusivity were clearly different from
previous studies employing other animal models of MS. In conclusion, our data
suggest that DKI and microstructural modeling can provide a unique contrast
capable of detecting EAE-specific changes correlating with clinical
disability.
Collapse
Affiliation(s)
| | | | - Agnieszka Wlodarczyk
- Department of Neurobiology Research, Institute for Molecular Medicine,University of South Denmark, Odense, Denmark
| | - Trevor Owens
- Department of Neurobiology Research, Institute for Molecular Medicine,University of South Denmark, Odense, Denmark
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Sune Nørhøj Jespersen
- CFIN, Aarhus University, Aarhus, Denmark; Department of Physics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
17
|
Anaby D, Morozov D, Seroussi I, Hametner S, Sochen N, Cohen Y. Single- and double-Diffusion encoding MRI for studying ex vivo apparent axon diameter distribution in spinal cord white matter. NMR IN BIOMEDICINE 2019; 32:e4170. [PMID: 31573745 DOI: 10.1002/nbm.4170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/28/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
Mapping average axon diameter (AAD) and axon diameter distribution (ADD) in neuronal tissues non-invasively is a challenging task that may have a tremendous effect on our understanding of the normal and diseased central nervous system (CNS). Water diffusion is used to probe microstructure in neuronal tissues, however, the different water populations and barriers that are present in these tissues turn this into a complex task. Therefore, it is not surprising that recently we have witnessed a burst in the development of new approaches and models that attempt to obtain, non-invasively, detailed microstructural information in the CNS. In this work, we aim at challenging and comparing the microstructural information obtained from single diffusion encoding (SDE) with double diffusion encoding (DDE) MRI. We first applied SDE and DDE MR spectroscopy (MRS) on microcapillary phantoms and then applied SDE and DDE MRI on an ex vivo porcine spinal cord (SC), using similar experimental conditions. The obtained diffusion MRI data were fitted by the same theoretical model, assuming that the signal in every voxel can be approximated as the superposition of a Gaussian-diffusing component and a series of restricted components having infinite cylindrical geometries. The diffusion MRI results were then compared with histological findings. We found a good agreement between the fittings and the experimental data in white matter (WM) voxels of the SC in both diffusion MRI methods. The microstructural information and apparent AADs extracted from SDE MRI were found to be similar or somewhat larger than those extracted from DDE MRI especially when the diffusion time was set to 40 ms. The apparent ADDs extracted from SDE and DDE MRI show reasonable agreement but somewhat weaker correspondence was observed between the diffusion MRI results and histology. The apparent subtle differences between the microstructural information obtained from SDE and DDE MRI are briefly discussed.
Collapse
Affiliation(s)
- Debbie Anaby
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Diagnostic Imaging, Sheba Medical Center, Tel HaShomer, Israel
| | - Darya Morozov
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Inbar Seroussi
- School of Mathematical Sciences, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Simon Hametner
- Neuroimmunology Department, Center of Brain Research, Medical University of Vienna, Vienna, Austria
| | - Nir Sochen
- School of Mathematical Sciences, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yoram Cohen
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
18
|
Cercignani M, Gandini Wheeler-Kingshott C. From micro- to macro-structures in multiple sclerosis: what is the added value of diffusion imaging. NMR IN BIOMEDICINE 2019; 32:e3888. [PMID: 29350435 DOI: 10.1002/nbm.3888] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 10/29/2017] [Accepted: 11/25/2017] [Indexed: 06/07/2023]
Abstract
Diffusion imaging has been instrumental in understanding damage to the central nervous system as a result of its sensitivity to microstructural changes. Clinical applications of diffusion imaging have grown exponentially over the past couple of decades in many neurological and neurodegenerative diseases, such as multiple sclerosis (MS). For several reasons, MS has been extensively researched using advanced neuroimaging techniques, which makes it an 'example disease' to illustrate the potential of diffusion imaging for clinical applications. In addition, MS pathology is characterized by several key processes competing with each other, such as inflammation, demyelination, remyelination, gliosis and axonal loss, enabling the specificity of diffusion to be challenged. In this review, we describe how diffusion imaging can be exploited to investigate micro-, meso- and macro-scale properties of the brain structure and discuss how they are affected by different pathological substrates. Conclusions from the literature are that larger studies are needed to confirm the exciting results from initial investigations before current trends in diffusion imaging can be translated to the neurology clinic. Also, for a comprehensive understanding of pathological processes, it is essential to take a multiple-level approach, in which information at the micro-, meso- and macroscopic scales is fully integrated.
Collapse
Affiliation(s)
- Mara Cercignani
- Clinical Imaging Sciences Centre, Department of Neuroscience, Brighton and Sussex Medical School, Brighton, UK
- Neuroimaging Laboratory, Santa Lucia Foundation, Rome, Italy
| | - Claudia Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square MS Centre, UCL Institute of Neurology, University College London, London, UK
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Brain MRI 3T Mondino Research Center, C. Mondino National Neurological Institute, Pavia, Italy
| |
Collapse
|
19
|
Alexander DC, Dyrby TB, Nilsson M, Zhang H. Imaging brain microstructure with diffusion MRI: practicality and applications. NMR IN BIOMEDICINE 2019; 32:e3841. [PMID: 29193413 DOI: 10.1002/nbm.3841] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 07/09/2017] [Accepted: 09/11/2017] [Indexed: 05/22/2023]
Abstract
This article gives an overview of microstructure imaging of the brain with diffusion MRI and reviews the state of the art. The microstructure-imaging paradigm aims to estimate and map microscopic properties of tissue using a model that links these properties to the voxel scale MR signal. Imaging techniques of this type are just starting to make the transition from the technical research domain to wide application in biomedical studies. We focus here on the practicalities of both implementing such techniques and using them in applications. Specifically, the article summarizes the relevant aspects of brain microanatomy and the range of diffusion-weighted MR measurements that provide sensitivity to them. It then reviews the evolution of mathematical and computational models that relate the diffusion MR signal to brain tissue microstructure, as well as the expanding areas of application. Next we focus on practicalities of designing a working microstructure imaging technique: model selection, experiment design, parameter estimation, validation, and the pipeline of development of this class of technique. The article concludes with some future perspectives on opportunities in this topic and expectations on how the field will evolve in the short-to-medium term.
Collapse
Affiliation(s)
- Daniel C Alexander
- Centre for Medical Image Computing (CMIC), Department of Computer Science, UCL (University College London), Gower Street, London, UK
| | - Tim B Dyrby
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Markus Nilsson
- Clinical Sciences Lund, Department of Radiology, Lund University, Lund, Sweden
| | - Hui Zhang
- Centre for Medical Image Computing (CMIC), Department of Computer Science, UCL (University College London), Gower Street, London, UK
| |
Collapse
|
20
|
Tian Q, Yang G, Leuze C, Rokem A, Edlow BL, McNab JA. Generalized diffusion spectrum magnetic resonance imaging (GDSI) for model-free reconstruction of the ensemble average propagator. Neuroimage 2019; 189:497-515. [PMID: 30684636 DOI: 10.1016/j.neuroimage.2019.01.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 12/06/2018] [Accepted: 01/14/2019] [Indexed: 01/14/2023] Open
Abstract
Diffusion spectrum MRI (DSI) provides model-free estimation of the diffusion ensemble average propagator (EAP) and orientation distribution function (ODF) but requires the diffusion data to be acquired on a Cartesian q-space grid. Multi-shell diffusion acquisitions are more flexible and more commonly acquired but have, thus far, only been compatible with model-based analysis methods. Here, we propose a generalized DSI (GDSI) framework to recover the EAP from multi-shell diffusion MRI data. The proposed GDSI approach corrects for q-space sampling density non-uniformity using a fast geometrical approach. The EAP is directly calculated in a preferable coordinate system by multiplying the sampling density corrected q-space signals by a discrete Fourier transform matrix, without any need for gridding. The EAP is demonstrated as a way to map diffusion patterns in brain regions such as the thalamus, cortex and brainstem where the tissue microstructure is not as well characterized as in white matter. Scalar metrics such as the zero displacement probability and displacement distances at different fractions of the zero displacement probability were computed from the recovered EAP to characterize the diffusion pattern within each voxel. The probability averaged across directions at a specific displacement distance provides a diffusion property based image contrast that clearly differentiates tissue types. The displacement distance at the first zero crossing of the EAP averaged across directions orthogonal to the primary fiber orientation in the corpus callosum is found to be larger in the body (5.65 ± 0.09 μm) than in the genu (5.55 ± 0.15 μm) and splenium (5.4 ± 0.15 μm) of the corpus callosum, which corresponds well to prior histological studies. The EAP also provides model-free representations of angular structure such as the diffusion ODF, which allows estimation and comparison of fiber orientations from both the model-free and model-based methods on the same multi-shell data. For the model-free methods, detection of crossing fibers is found to be strongly dependent on the maximum b-value and less sensitive compared to the model-based methods. In conclusion, our study provides a generalized DSI approach that allows flexible reconstruction of the diffusion EAP and ODF from multi-shell diffusion data and data acquired with other sampling patterns.
Collapse
Affiliation(s)
- Qiyuan Tian
- Department of Electrical Engineering, Stanford University, Stanford, CA, United States; Radiological Sciences Laboratory, Department of Radiology, Stanford University, Richard M. Lucas Center for Imaging, Stanford, CA, United States.
| | - Grant Yang
- Department of Electrical Engineering, Stanford University, Stanford, CA, United States; Radiological Sciences Laboratory, Department of Radiology, Stanford University, Richard M. Lucas Center for Imaging, Stanford, CA, United States
| | - Christoph Leuze
- Radiological Sciences Laboratory, Department of Radiology, Stanford University, Richard M. Lucas Center for Imaging, Stanford, CA, United States
| | - Ariel Rokem
- eScience Institute, University of Washington, Seattle, WA, United States
| | - Brian L Edlow
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States; Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Jennifer A McNab
- Radiological Sciences Laboratory, Department of Radiology, Stanford University, Richard M. Lucas Center for Imaging, Stanford, CA, United States
| |
Collapse
|
21
|
Serradas Duarte T, Shemesh N. Two-dimensional magnetization-transfer - CPMG MRI reveals tract-specific signatures in fixed rat spinal cord. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 297:124-137. [PMID: 30388701 DOI: 10.1016/j.jmr.2018.10.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/21/2018] [Accepted: 10/23/2018] [Indexed: 06/08/2023]
Abstract
Multiexponential T2 (MET2) Relaxometry and Magnetization Transfer (MT) are among the most promising MRI-derived techniques for white matter (WM) characterization. Both techniques are shown to have histologically correlated sensitivity to myelin, but these correlations are not fully understood. Furthermore, MET2 and MT report on different WM features, thus they can be considered specific to different (patho)physiological states. Two-dimensional studies potentially resolving interactions, such as those commonly used in NMR, have been rarely performed in this context. Here, we investigated how off-resonance irradiation affects different MET2 components in fixed rat spinal cord white matter at 16.4 T. These 2D MT-MET2 experiments reveal that MT affects both short and long T2 components in a tract-specific fashion. The spatially distinct signal modulations enhanced contrast between microstructurally-distinct spinal cord tracts. Two hypotheses to explain these findings were proposed: either selective elimination of a short T2 component through pre-saturation combines with intercompartmental water exchange effects occurring on the irradiation timescale; or, other macromolecular species that exist within the tissue - other than myelin - such as neurofilaments, may be involved in the apparent microstructural segregation of the spinal cord (SC) from MET2. Though further investigation is required to elucidate the underlying mechanism, this phenomenon adds a new dimension for WM characterization.
Collapse
Affiliation(s)
- Teresa Serradas Duarte
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Noam Shemesh
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| |
Collapse
|
22
|
Jespersen SN, Olesen JL, Hansen B, Shemesh N. Diffusion time dependence of microstructural parameters in fixed spinal cord. Neuroimage 2018; 182:329-342. [PMID: 28818694 PMCID: PMC5812847 DOI: 10.1016/j.neuroimage.2017.08.039] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/11/2017] [Accepted: 08/12/2017] [Indexed: 11/21/2022] Open
Abstract
Biophysical modelling of diffusion MRI is necessary to provide specific microstructural tissue properties. However, estimating model parameters from data with limited diffusion gradient strength, such as clinical scanners, has proven unreliable due to a shallow optimization landscape. On the other hand, estimation of diffusion kurtosis (DKI) parameters is more robust, and its parameters may be connected to microstructural parameters, given an appropriate biophysical model. However, it was previously shown that this procedure still does not provide sufficient information to uniquely determine all model parameters. In particular, a parameter degeneracy related to the relative magnitude of intra-axonal and extra-axonal diffusivities remains. Here we develop a model of diffusion in white matter including axonal dispersion and demonstrate stable estimation of all model parameters from DKI in fixed pig spinal cord. By employing the recently developed fast axisymmetric DKI, we use stimulated echo acquisition mode to collect data over a two orders of magnitude diffusion time range with very narrow diffusion gradient pulses, enabling finely resolved measurements of diffusion time dependence of both net diffusion and kurtosis metrics, as well as model intra- and extra-axonal diffusivities, and axonal dispersion. Our results demonstrate substantial time dependence of all parameters except volume fractions, and the additional time dimension provides support for intra-axonal diffusivity to be larger than extra-axonal diffusivity in spinal cord white matter, although not unambiguously. We compare our findings for the time-dependent compartmental diffusivities to predictions from effective medium theory with reasonable agreement.
Collapse
Affiliation(s)
- Sune Nørhøj Jespersen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark.
| | - Jonas Lynge Olesen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Brian Hansen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Noam Shemesh
- Champalimaud Neuroscience Programme, Lisbon, Portugal
| |
Collapse
|
23
|
Jones DK, Alexander DC, Bowtell R, Cercignani M, Dell'Acqua F, McHugh DJ, Miller KL, Palombo M, Parker GJM, Rudrapatna US, Tax CMW. Microstructural imaging of the human brain with a 'super-scanner': 10 key advantages of ultra-strong gradients for diffusion MRI. Neuroimage 2018; 182:8-38. [PMID: 29793061 DOI: 10.1016/j.neuroimage.2018.05.047] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 12/13/2022] Open
Abstract
The key component of a microstructural diffusion MRI 'super-scanner' is a dedicated high-strength gradient system that enables stronger diffusion weightings per unit time compared to conventional gradient designs. This can, in turn, drastically shorten the time needed for diffusion encoding, increase the signal-to-noise ratio, and facilitate measurements at shorter diffusion times. This review, written from the perspective of the UK National Facility for In Vivo MR Imaging of Human Tissue Microstructure, an initiative to establish a shared 300 mT/m-gradient facility amongst the microstructural imaging community, describes ten advantages of ultra-strong gradients for microstructural imaging. Specifically, we will discuss how the increase of the accessible measurement space compared to a lower-gradient systems (in terms of Δ, b-value, and TE) can accelerate developments in the areas of 1) axon diameter distribution mapping; 2) microstructural parameter estimation; 3) mapping micro-vs macroscopic anisotropy features with gradient waveforms beyond a single pair of pulsed-gradients; 4) multi-contrast experiments, e.g. diffusion-relaxometry; 5) tractography and high-resolution imaging in vivo and 6) post mortem; 7) diffusion-weighted spectroscopy of metabolites other than water; 8) tumour characterisation; 9) functional diffusion MRI; and 10) quality enhancement of images acquired on lower-gradient systems. We finally discuss practical barriers in the use of ultra-strong gradients, and provide an outlook on the next generation of 'super-scanners'.
Collapse
Affiliation(s)
- D K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK; School of Psychology, Faculty of Health Sciences, Australian Catholic University, Melbourne, Victoria, 3065, Australia.
| | - D C Alexander
- Centre for Medical Image Computing (CMIC), Department of Computer Science, UCL (University College London), Gower Street, London, UK; Clinical Imaging Research Centre, National University of Singapore, Singapore
| | - R Bowtell
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, UK
| | - M Cercignani
- Department of Psychiatry, Brighton and Sussex Medical School, Brighton, UK
| | - F Dell'Acqua
- Natbrainlab, Department of Neuroimaging, King's College London, London, UK
| | - D J McHugh
- Division of Informatics, Imaging and Data Sciences, The University of Manchester, Manchester, UK; CRUK and EPSRC Cancer Imaging Centre in Cambridge and Manchester, Cambridge and Manchester, UK
| | - K L Miller
- Oxford Centre for Functional MRI of the Brain, University of Oxford, Oxford, UK
| | - M Palombo
- Centre for Medical Image Computing (CMIC), Department of Computer Science, UCL (University College London), Gower Street, London, UK
| | - G J M Parker
- Division of Informatics, Imaging and Data Sciences, The University of Manchester, Manchester, UK; CRUK and EPSRC Cancer Imaging Centre in Cambridge and Manchester, Cambridge and Manchester, UK; Bioxydyn Ltd., Manchester, UK
| | - U S Rudrapatna
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - C M W Tax
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| |
Collapse
|
24
|
Thapa B, Sapkota N, Lee Y, Jeong K, Rose J, Shah LM, Bisson E, Jeong EK. Ultra-high-b radial diffusion-weighted imaging (UHb-rDWI) of human cervical spinal cord. J Magn Reson Imaging 2018; 49:204-211. [PMID: 29707845 DOI: 10.1002/jmri.26169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 04/05/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Injury in the cervical spinal cord (CSC) can lead to varying degrees of neurologic deficit and persistent disability. Diffusion tensor imaging (DTI) is a promising method to evaluate white matter integrity and pathology. However, the conventional DTI results are limited with respect to the specific details of neuropathology and microstructural architecture. In this study we used ultrahigh-b radial-DWI (UHb-rDWI) with b-values ranging from 0 to ∼7500 s/mm2 and calculated decay constant (DH ) at the high b-values, which gives much deeper insight about the microscopic environment of CSC white matter. PURPOSE To evaluate a novel diffusion MRI, UHb-rDWI technique for imaging of the CSC. STUDY TYPE Longitudinal. SUBJECTS Four healthy controls, each scanned twice. FIELD STRENGTH/SEQUENCE 3T/2D single shot diffusion-weighted stimulated echo planar imaging with reduced field of view. ASSESSMENT The signal from each pixel of b0 (b = 0) and b-value (b ≠ 0) images were fitted to a biexponential function and normalized. The signal-b curve is obtained by dividing the latter curve by the former. DH was obtained from the curve at b >4000 s/mm2 . A Monte-Carlo Simulation (MCS) was performed to investigate how DH changes upon the increased water-exchange at the CSC. RESULTS The signal-b curves plotted at multiple levels of healthy CSC are almost identical on two successive scans and show a biexponential decay behavior: fast exponential decay at lower b-values and much slower decay at UHb-values. The mean values of DH were measured as (0.0607 ± 0.02531) ×10-3 and (0.0357 ± 0.02072) ×10-3 s/mm2 at the lateral funiculus and posterior column, respectively. MCS of diffusion MRI shows that the DH is elevated by increased water exchange between the intra- and extraaxonal spaces. DATA CONCLUSION UHb-rDWI signal-b plots of the normal CSC were highly reproducible on successive scans and their biexponential decay behavior can be used to characterize normal spinal white matter. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:204-211.
Collapse
Affiliation(s)
- Bijaya Thapa
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA.,Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, USA
| | - Nabraj Sapkota
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA.,Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, USA
| | - YouJung Lee
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA
| | - Kyle Jeong
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA.,Department of Bioengineering, University of Utah, Salt Lake City, Utah, USA
| | | | - Lubdha M Shah
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Erica Bisson
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA
| | - Eun-Kee Jeong
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA.,Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
25
|
Yamada I, Hikishima K, Yoshino N, Sakamoto J, Miyasaka N, Yamauchi S, Uetake H, Yasuno M, Saida Y, Tateishi U, Kobayashi D, Eishi Y. Colorectal carcinoma: Ex vivo evaluation using q-space imaging; Correlation with histopathologic findings. J Magn Reson Imaging 2018; 48:1059-1068. [DOI: 10.1002/jmri.26018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/06/2018] [Indexed: 01/13/2023] Open
Affiliation(s)
- Ichiro Yamada
- Department of Diagnostic Radiology and Nuclear Medicine, Graduate School; Tokyo Medical and Dental University; Tokyo Japan
| | - Keigo Hikishima
- Okinawa Institute of Science and Technology Graduate University; Okinawa Japan
| | - Norio Yoshino
- Department of Oral and Maxillofacial Radiology; Tokyo Medical and Dental University; Tokyo Japan
| | - Junichiro Sakamoto
- Department of Oral and Maxillofacial Radiology; Tokyo Medical and Dental University; Tokyo Japan
| | - Naoyuki Miyasaka
- Department of Comprehensive Reproductive Medicine; Tokyo Medical and Dental University; Tokyo Japan
| | - Shinichi Yamauchi
- Department of Colorectal Surgery; Tokyo Medical and Dental University; Tokyo Japan
| | - Hiroyuki Uetake
- Department of Colorectal Surgery; Tokyo Medical and Dental University; Tokyo Japan
| | - Masamichi Yasuno
- Department of Colorectal Surgery; Tokyo Medical and Dental University; Tokyo Japan
| | - Yukihisa Saida
- Department of Diagnostic Radiology and Nuclear Medicine, Graduate School; Tokyo Medical and Dental University; Tokyo Japan
| | - Ukihide Tateishi
- Department of Diagnostic Radiology and Nuclear Medicine, Graduate School; Tokyo Medical and Dental University; Tokyo Japan
| | - Daisuke Kobayashi
- Department of Pathology; Tokyo Medical and Dental University; Tokyo Japan
| | - Yoshinobu Eishi
- Department of Pathology; Tokyo Medical and Dental University; Tokyo Japan
| |
Collapse
|
26
|
Jelescu IO, Budde MD. Design and validation of diffusion MRI models of white matter. FRONTIERS IN PHYSICS 2017; 28:61. [PMID: 29755979 PMCID: PMC5947881 DOI: 10.3389/fphy.2017.00061] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Diffusion MRI is arguably the method of choice for characterizing white matter microstructure in vivo. Over the typical duration of diffusion encoding, the displacement of water molecules is conveniently on a length scale similar to that of the underlying cellular structures. Moreover, water molecules in white matter are largely compartmentalized which enables biologically-inspired compartmental diffusion models to characterize and quantify the true biological microstructure. A plethora of white matter models have been proposed. However, overparameterization and mathematical fitting complications encourage the introduction of simplifying assumptions that vary between different approaches. These choices impact the quantitative estimation of model parameters with potential detriments to their biological accuracy and promised specificity. First, we review biophysical white matter models in use and recapitulate their underlying assumptions and realms of applicability. Second, we present up-to-date efforts to validate parameters estimated from biophysical models. Simulations and dedicated phantoms are useful in assessing the performance of models when the ground truth is known. However, the biggest challenge remains the validation of the "biological accuracy" of estimated parameters. Complementary techniques such as microscopy of fixed tissue specimens have facilitated direct comparisons of estimates of white matter fiber orientation and densities. However, validation of compartmental diffusivities remains challenging, and complementary MRI-based techniques such as alternative diffusion encodings, compartment-specific contrast agents and metabolites have been used to validate diffusion models. Finally, white matter injury and disease pose additional challenges to modeling, which are also discussed. This review aims to provide an overview of the current state of models and their validation and to stimulate further research in the field to solve the remaining open questions and converge towards consensus.
Collapse
Affiliation(s)
- Ileana O Jelescu
- Centre d'Imagerie Biomédicale, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Matthew D Budde
- Zablocki VA Medical Center, Dept. of Neurosurgery, Medical College Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
27
|
Hunt M, Lu P, Tuszynski MH. Myelination of axons emerging from neural progenitor grafts after spinal cord injury. Exp Neurol 2017; 296:69-73. [PMID: 28698030 DOI: 10.1016/j.expneurol.2017.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 06/15/2017] [Accepted: 07/07/2017] [Indexed: 01/04/2023]
Abstract
Neural progenitor cells (NPCs) grafted to sites of spinal cord injury (SCI) extend numerous axons over long distances and form new synaptic connections with host neurons. In the present study we examined the myelination of axons emerging from NPC grafts. Rat embryonic day 14 (E14) multipotent NPCs constitutively expressing GFP were grafted into adult C5 spinal cord hemisection lesions; 3months later we examined graft-derived axonal diameter and myelination using transmission electron microscopy. 104 graft-derived axons were characterized. Axon diameter ranged from 0.15 to 1.70μm, and 24% of graft-derived axons were myelinated by host oligodendrocytes caudal to the lesion. The average diameter of myelinated axons (0.72±0.3μm) was significantly larger than that of non-myelinated axons (0.61±0.2μm, p<0.05). Notably, the G-ratio of myelinated graft-derived axons (0.77±0.01) was virtually identical to that of the normal, intact spinal cord described in published reports. These findings indicate that axons emerging from early stage neural grafts into the injured spinal cord recapitulate both the small/medium size range and myelin thickness of intact spinal cord axons.
Collapse
Affiliation(s)
- Matthew Hunt
- Dept. of Neurosciences, University of California - San Diego, La Jolla, CA, USA
| | - Paul Lu
- Dept. of Neurosciences, University of California - San Diego, La Jolla, CA, USA; Veterans Administration Medical Center, San Diego, CA, USA
| | - Mark H Tuszynski
- Dept. of Neurosciences, University of California - San Diego, La Jolla, CA, USA; Veterans Administration Medical Center, San Diego, CA, USA.
| |
Collapse
|
28
|
Jiang X, Li H, Xie J, McKinley ET, Zhao P, Gore JC, Xu J. In vivo imaging of cancer cell size and cellularity using temporal diffusion spectroscopy. Magn Reson Med 2017; 78:156-164. [PMID: 27495144 PMCID: PMC5293685 DOI: 10.1002/mrm.26356] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/29/2016] [Accepted: 07/02/2016] [Indexed: 01/17/2023]
Abstract
PURPOSE A temporal diffusion MRI spectroscopy based approach has been developed to quantify cancer cell size and density in vivo. METHODS A novel imaging microstructural parameters using limited spectrally edited diffusion (IMPULSED) method selects a specific limited diffusion spectral window for an accurate quantification of cell sizes ranging from 10 to 20 μm in common solid tumors. In practice, it is achieved by a combination of a single long diffusion time pulsed gradient spin echo (PGSE) and three low-frequency oscillating gradient spin echo (OGSE) acquisitions. To validate our approach, hematoxylin and eosin staining and immunostaining of cell membranes, in concert with whole slide imaging, were used to visualize nuclei and cell boundaries, and hence, enabled accurate estimates of cell size and cellularity. RESULTS Based on a two compartment model (incorporating intra- and extracellular spaces), accurate estimates of cell sizes were obtained in vivo for three types of human colon cancers. The IMPULSED-derived apparent cellularities showed a stronger correlation (r = 0.81; P < 0.0001) with histology-derived cellularities than conventional ADCs (r = -0.69; P < 0.03). CONCLUSION The IMPULSED approach samples a specific region of temporal diffusion spectra with enhanced sensitivity to length scales of 10-20 μm, and enables measurements of cell sizes and cellularities in solid tumors in vivo. Magn Reson Med 78:156-164, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Xiaoyu Jiang
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Hua Li
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA
| | - Jingping Xie
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Eliot T. McKinley
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ping Zhao
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - John C. Gore
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Junzhong Xu
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
29
|
Nilsson M, Lasič S, Drobnjak I, Topgaard D, Westin C. Resolution limit of cylinder diameter estimation by diffusion MRI: The impact of gradient waveform and orientation dispersion. NMR IN BIOMEDICINE 2017; 30:e3711. [PMID: 28318071 PMCID: PMC5485041 DOI: 10.1002/nbm.3711] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 01/16/2017] [Accepted: 01/20/2017] [Indexed: 05/20/2023]
Abstract
Diffusion MRI has been proposed as a non-invasive technique for axonal diameter mapping. However, accurate estimation of small diameters requires strong gradients, which is a challenge for the transition of the technique from preclinical to clinical MRI scanners, since these have weaker gradients. In this work, we develop a framework to estimate the lower bound for accurate diameter estimation, which we refer to as the resolution limit. We analyse only the contribution from the intra-axonal space and assume that axons can be represented by impermeable cylinders. To address the growing interest in using techniques for diffusion encoding that go beyond the conventional single diffusion encoding (SDE) sequence, we present a generalised analysis capable of predicting the resolution limit regardless of the gradient waveform. Using this framework, waveforms were optimised to minimise the resolution limit. The results show that, for parallel cylinders, the SDE experiment is optimal in terms of yielding the lowest possible resolution limit. In the presence of orientation dispersion, diffusion encoding sequences with square-wave oscillating gradients were optimal. The resolution limit for standard clinical MRI scanners (maximum gradient strength 60-80 mT/m) was found to be between 4 and 8 μm, depending on the noise levels and the level of orientation dispersion. For scanners with a maximum gradient strength of 300 mT/m, the limit was reduced to between 2 and 5 μm.
Collapse
Affiliation(s)
- Markus Nilsson
- Clinical Sciences Lund, Department of RadiologyLund UniversityLundSweden
| | | | | | - Daniel Topgaard
- Division of Physical Chemistry, Department of ChemistryLund UniversityLundSweden
| | - Carl‐Fredrik Westin
- Department of Biomedical EngineeringLinköping UniversityLinköpingSweden
- Brigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
30
|
Álvarez GA, Shemesh N, Frydman L. Internal gradient distributions: A susceptibility-derived tensor delivering morphologies by magnetic resonance. Sci Rep 2017; 7:3311. [PMID: 28607445 PMCID: PMC5468317 DOI: 10.1038/s41598-017-03277-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 04/26/2017] [Indexed: 11/23/2022] Open
Abstract
Nuclear magnetic resonance is a powerful tool for probing the structures of chemical and biological systems. Combined with field gradients it leads to NMR imaging (MRI), a widespread tool in non-invasive examinations. Sensitivity usually limits MRI’s spatial resolution to tens of micrometers, but other sources of information like those delivered by constrained diffusion processes, enable one extract morphological information down to micron and sub-micron scales. We report here on a new method that also exploits diffusion – isotropic or anisotropic– to sense morphological parameters in the nm-mm range, based on distributions of susceptibility-induced magnetic field gradients. A theoretical framework is developed to define this source of information, leading to the proposition of internal gradient-distribution tensors. Gradient-based spin-echo sequences are designed to measure these new observables. These methods can be used to map orientations even when dealing with unconstrained diffusion, as is here demonstrated with studies of structured systems, including tissues.
Collapse
Affiliation(s)
- Gonzalo A Álvarez
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100, Israel.,Centro Atómico Bariloche, CONICET, CNEA, 8400, S. C. de Bariloche, Argentina
| | - Noam Shemesh
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100, Israel.,Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, 1400-138, Portugal
| | - Lucio Frydman
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
31
|
Li H, Jiang X, Xie J, Gore JC, Xu J. Impact of transcytolemmal water exchange on estimates of tissue microstructural properties derived from diffusion MRI. Magn Reson Med 2017; 77:2239-2249. [PMID: 27342260 PMCID: PMC5183568 DOI: 10.1002/mrm.26309] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 12/19/2022]
Abstract
PURPOSE To investigate the influence of transcytolemmal water exchange on estimates of tissue microstructural parameters derived from diffusion MRI using conventional PGSE and IMPULSED methods. METHODS Computer simulations were performed to incorporate a broad range of intracellular water life times τin (50-∞ ms), cell diameters d (5-15 μm), and intrinsic diffusion coefficient Din (0.6-2 μm2 /ms) for different values of signal-to-noise ratio (SNR) (10 to 50). For experiments, murine erythroleukemia (MEL) cancer cells were cultured and treated with saponin to selectively change cell membrane permeability. All fitted microstructural parameters from simulations and experiments in vitro were compared with ground-truth values. RESULTS Simulations showed that, for both PGSE and IMPULSED methods, cell diameter d can be reliably fit with sufficient SNR (≥ 50), whereas intracellular volume fraction fin is intrinsically underestimated due to transcytolemmal water exchange. Din can be reliably fit only with sufficient SNR and using the IMPULSED method with short diffusion times. These results were confirmed with those obtained in the cell culture experiments in vitro. CONCLUSION For the sequences and models considered in this study, transcytolemmal water exchange has minor effects on the fittings of d and Din with physiologically relevant membrane permeabilities if the SNR is sufficient (> 50), but fin is intrinsically underestimated. Magn Reson Med 77:2239-2249, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Hua Li
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Xiaoyu Jiang
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Jingping Xie
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - John C. Gore
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Junzhong Xu
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
32
|
Nunes D, Cruz TL, Jespersen SN, Shemesh N. Mapping axonal density and average diameter using non-monotonic time-dependent gradient-echo MRI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 277:117-130. [PMID: 28282586 DOI: 10.1016/j.jmr.2017.02.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/23/2017] [Accepted: 02/25/2017] [Indexed: 06/06/2023]
Abstract
White Matter (WM) microstructures, such as axonal density and average diameter, are crucial to the normal function of the Central Nervous System (CNS) as they are closely related with axonal conduction velocities. Conversely, disruptions of these microstructural features may result in severe neurological deficits, suggesting that their noninvasive mapping could be an important step towards diagnosing and following pathophysiology. Whereas diffusion based MRI methods have been proposed to map these features, they typically entail the application of powerful gradients, which are rarely available in the clinic, or extremely long acquisition schemes to extract information from parameter-intensive models. In this study, we suggest that simple and time-efficient multi-gradient-echo (MGE) MRI can be used to extract the axon density from susceptibility-driven non-monotonic decay in the time-dependent signal. We show, both theoretically and with simulations, that a non-monotonic signal decay will occur for multi-compartmental microstructures - such as axons and extra-axonal spaces, which were here used as a simple model for the microstructure - and that, for axons parallel to the main magnetic field, the axonal density can be extracted. We then experimentally demonstrate in ex-vivo rat spinal cords that its different tracts - characterized by different microstructures - can be clearly contrasted using the MGE-derived maps. When the quantitative results are compared against ground-truth histology, they reflect the axonal fraction (though with a bias, as evident from Bland-Altman analysis). As well, the extra-axonal fraction can be estimated. The results suggest that our model is oversimplified, yet at the same time evidencing a potential and usefulness of the approach to map underlying microstructures using a simple and time-efficient MRI sequence. We further show that a simple general-linear-model can predict the average axonal diameters from the four model parameters, and map these average axonal diameters in the spinal cords. While clearly further modelling and theoretical developments are necessary, we conclude that salient WM microstructural features can be extracted from simple, SNR-efficient multi-gradient echo MRI, and that this paves the way towards easier estimation of WM microstructure in vivo.
Collapse
Affiliation(s)
- Daniel Nunes
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Av. Brasilia 1400-038, Lisbon, Portugal
| | - Tomás L Cruz
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Av. Brasilia 1400-038, Lisbon, Portugal
| | - Sune N Jespersen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Clinical Institute, Aarhus University, Aarhus, Denmark; Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Noam Shemesh
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Av. Brasilia 1400-038, Lisbon, Portugal.
| |
Collapse
|
33
|
Cohen Y, Anaby D, Morozov D. Diffusion MRI of the spinal cord: from structural studies to pathology. NMR IN BIOMEDICINE 2017; 30:e3592. [PMID: 27598689 DOI: 10.1002/nbm.3592] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 06/01/2016] [Accepted: 07/05/2016] [Indexed: 05/27/2023]
Abstract
Diffusion MRI is extensively used to study brain microarchitecture and pathologies, and water diffusion appears highly anisotropic in the white matter (WM) of the spinal cord (SC). Despite these facts, the use of diffusion MRI to study the SC, which has increased in recent years, is much less common than that in the brain. In the present review, after a brief outline of early studies of diffusion MRI (DWI) and diffusion tensor MRI (DTI) of the SC, we provide a short survey on DTI and on diffusion MRI methods beyond the tensor that have been used to study SC microstructure and pathologies. After introducing the porous view of WM and describing the q-space approach and q-space diffusion MRI (QSI), we describe other methodologies that can be applied to study the SC. Selected applications of the use of DTI, QSI, and other more advanced diffusion MRI methods to study SC microstructure and pathologies are presented, with some emphasis on the use of less conventional diffusion methodologies. Because of length constraints, we concentrate on structural studies and on a few selected pathologies. Examples of the use of diffusion MRI to study dysmyelination, demyelination as in experimental autoimmune encephalomyelitis and multiple sclerosis, amyotrophic lateral sclerosis, and traumatic SC injury are presented. We conclude with a brief summary and a discussion of challenges and future directions for diffusion MRI of the SC. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yoram Cohen
- The Sackler School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Debbie Anaby
- The Sackler School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Darya Morozov
- The Sackler School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
34
|
Duval T, Le Vy S, Stikov N, Campbell J, Mezer A, Witzel T, Keil B, Smith V, Wald LL, Klawiter E, Cohen-Adad J. g-Ratio weighted imaging of the human spinal cord in vivo. Neuroimage 2017; 145:11-23. [PMID: 27664830 PMCID: PMC5179300 DOI: 10.1016/j.neuroimage.2016.09.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 08/22/2016] [Accepted: 09/08/2016] [Indexed: 12/13/2022] Open
Abstract
The fiber g-ratio is defined as the ratio of the inner to the outer diameter of the myelin sheath. This ratio provides a measure of the myelin thickness that complements axon morphology (diameter and density) for assessment of demyelination in diseases such as multiple sclerosis. Previous work has shown that an aggregate g-ratio map can be computed using a formula that combines axon and myelin density measured with quantitative MRI. In this work, we computed g-ratio weighted maps in the cervical spinal cord of nine healthy subjects. We utilized the 300mT/m gradients from the CONNECTOM scanner to estimate the fraction of restricted water (fr) with high accuracy, using the CHARMED model. Myelin density was estimated using the lipid and macromolecular tissue volume (MTV) method, derived from normalized proton density (PD) mapping. The variability across spinal level, laterality and subject were assessed using a three-way ANOVA. The average g-ratio value obtained in the white matter was 0.76+/-0.03, consistent with previous histology work. Coefficients of variation of fr and MTV were respectively 4.3% and 13.7%. fr and myelin density were significantly different across spinal tracts (p=3×10-7 and 0.004 respectively) and were positively correlated in the white matter (r=0.42), suggesting shared microstructural information. The aggregate g-ratio did not show significant differences across tracts (p=0.6). This study suggests that fr and myelin density can be measured in vivo with high precision and that they can be combined to produce a g-ratio-weighted map robust to free water pool contamination from cerebrospinal fluid or veins. Potential applications include the study of early demyelination in multiple sclerosis, and the quantitative assessment of remyelination drugs.
Collapse
Affiliation(s)
- T Duval
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - S Le Vy
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada; Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montréal, QC, Canada
| | - N Stikov
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada; Montreal Heart Institute, Montreal, QC, Canada
| | - J Campbell
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - A Mezer
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - T Witzel
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - B Keil
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - V Smith
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - L L Wald
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - E Klawiter
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - J Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada; Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
35
|
Zhang BT, Li M, Yu LL, Dai YM, Yu SN, Jiang JL. Diffusion tensor imaging of spinal microstructure in healthy adults: improved resolution with the readout segmentation of long variable echo-trains. Neural Regen Res 2017; 12:2067-2070. [PMID: 29323047 PMCID: PMC5784356 DOI: 10.4103/1673-5374.221166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Diffusion tensor imaging plays an important role in the accurate diagnosis and prognosis of spinal cord diseases. However, because of technical limitations, the imaging sequences used in this technique cannot reveal the fine structure of the spinal cord with precision. We used the readout segmentation of long variable echo-trains (RESOLVE) sequence in this cross-sectional study of 45 healthy volunteers aged 20 to 63 years. We found that the RESOLVE sequence significantly increased the resolution of the diffusion images and improved the median signal-to-noise ratio of the middle (C4-6) and lower (C7-T1) cervical segments to the level of the upper cervical segment. In addition, the values of fractional anisotropy and radial diffusivity were significantly higher in white matter than in gray matter. Our study verified that the RESOLVE sequence could improve resolution of diffusion tensor imaging in clinical applications and provide accurate baseline data for the diagnosis and treatment of cervical spinal cord diseases.
Collapse
Affiliation(s)
- Bu-Tian Zhang
- China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Meng Li
- China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Li-Li Yu
- China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yi-Meng Dai
- China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Shao-Nan Yu
- China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jin-Lan Jiang
- China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
36
|
Yu Q, Reutens D, O'Brien K, Vegh V. Tissue microstructure features derived from anomalous diffusion measurements in magnetic resonance imaging. Hum Brain Mapp 2016; 38:1068-1081. [PMID: 27753462 DOI: 10.1002/hbm.23441] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/19/2016] [Accepted: 10/08/2016] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVES Tissue microstructure features, namely axon radius and volume fraction, provide important information on the function of white matter pathways. These parameters vary on the scale much smaller than imaging voxels (microscale) yet influence the magnetic resonance imaging diffusion signal at the image voxel scale (macroscale) in an anomalous manner. Researchers have already mapped anomalous diffusion parameters from magnetic resonance imaging data, but macroscopic variations have not been related to microscale influences. With the aid of a tissue model, we aimed to connect anomalous diffusion parameters to axon radius and volume fraction using diffusion-weighted magnetic resonance imaging measurements. EXPERIMENTAL DESIGN An ex vivo human brain experiment was performed to directly validate axon radius and volume fraction measurements in the human brain. These findings were validated using electron microscopy. Additionally, we performed an in vivo study on nine healthy participants to map axon radius and volume fraction along different regions of the corpus callosum projecting into various cortical areas identified using tractography. PRINCIPAL OBSERVATIONS We found a clear relationship between anomalous diffusion parameters and axon radius and volume fraction. We were also able to map accurately the trend in axon radius along the corpus callosum, and in vivo findings resembled the low-high-low-high behaviour in axon radius demonstrated previously. CONCLUSIONS Axon radius and volume fraction measurements can potentially be used in brain connectivity studies and to understand the implications of white matter structure in brain diseases and disorders. Hum Brain Mapp 38:1068-1081, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Qiang Yu
- Centre for Advanced Imaging, the University of Queensland, Brisbane, Queensland, Australia
| | - David Reutens
- Centre for Advanced Imaging, the University of Queensland, Brisbane, Queensland, Australia
| | - Kieran O'Brien
- Centre for Advanced Imaging, the University of Queensland, Brisbane, Queensland, Australia.,Healthcare Sector, Siemens Ltd, Brisbane, Queensland, Australia
| | - Viktor Vegh
- Centre for Advanced Imaging, the University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
37
|
Xu J, Li H, Li K, Harkins KD, Jiang X, Xie J, Kang H, Dortch RD, Anderson AW, Does MD, Gore JC. Fast and simplified mapping of mean axon diameter using temporal diffusion spectroscopy. NMR IN BIOMEDICINE 2016; 29:400-410. [PMID: 27077155 PMCID: PMC4832578 DOI: 10.1002/nbm.3484] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Mapping axon diameter is of interest for the potential diagnosis and monitoring of various neuronal pathologies. Advanced diffusion-weighted MRI methods have been developed to measure mean axon diameters non-invasively, but suffer major drawbacks that prevent their direct translation into clinical practice, such as complex non-linear data fitting and, more importantly, long scanning times that are usually not tolerable for most human subjects. In the current study, temporal diffusion spectroscopy using oscillating diffusion gradients was used to measure mean axon diameters with high sensitivity to small axons in the central nervous system. Axon diameters have been found to be correlated with a novel metric, DDR⊥ (the rate of dispersion of the perpendicular diffusion coefficient with gradient frequency), which is a model-free quantity that does not require complex data analyses and can be obtained from two diffusion coefficient measurements in clinically relevant times with conventional MRI machines. A comprehensive investigation including computer simulations and animal experiments ex vivo showed that measurements of DDR⊥ agree closely with histological data. In humans in vivo, DDR⊥ was also found to correlate well with reported mean axon diameters in human corpus callosum, and the total scan time was only about 8 min. In conclusion, DDR⊥ may have potential to serve as a fast, simple and model-free approach to map the mean axon diameter of white matter in clinics for assessing axon diameter changes.
Collapse
Affiliation(s)
- Junzhong Xu
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA; Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Dhital B, Labadie C, Stallmach F, Möller HE, Turner R. Temperature dependence of water diffusion pools in brain white matter. Neuroimage 2016; 127:135-143. [DOI: 10.1016/j.neuroimage.2015.11.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 11/15/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022] Open
|
39
|
Fieremans E, Burcaw LM, Lee HH, Lemberskiy G, Veraart J, Novikov DS. In vivo observation and biophysical interpretation of time-dependent diffusion in human white matter. Neuroimage 2016; 129:414-427. [PMID: 26804782 DOI: 10.1016/j.neuroimage.2016.01.018] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 12/11/2015] [Accepted: 01/08/2016] [Indexed: 12/20/2022] Open
Abstract
The presence of micrometer-level restrictions leads to a decrease of diffusion coefficient with diffusion time. Here we investigate this effect in human white matter in vivo. We focus on a broad range of diffusion times, up to 600 ms, covering diffusion length scales up to about 30 μm. We perform stimulated echo diffusion tensor imaging on 5 healthy volunteers and observe a relatively weak time-dependence in diffusion transverse to major fiber tracts. Remarkably, we also find notable time-dependence in the longitudinal direction. Comparing models of diffusion in ordered, confined and disordered media, we argue that the time-dependence in both directions can arise due to structural disorder, such as axonal beads in the longitudinal direction, and the random packing geometry of fibers within a bundle in the transverse direction. These time-dependent effects extend beyond a simple picture of Gaussian compartments, and may lead to novel markers that are specific to neuronal fiber geometry at the micrometer scale.
Collapse
Affiliation(s)
- Els Fieremans
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA.
| | - Lauren M Burcaw
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
| | - Hong-Hsi Lee
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
| | - Gregory Lemberskiy
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
| | - Jelle Veraart
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA; iMinds Vision Lab, Department of Physics, University of Antwerp, Antwerp, Belgium
| | - Dmitry S Novikov
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
40
|
Hori M, Kamiya K, Nakanishi A, Fukunaga I, Miyajima M, Nakajima M, Suzuki M, Suzuki Y, Irie R, Kamagata K, Arai H, Aoki S. Prospective estimation of mean axon diameter and extra-axonal space of the posterior limb of the internal capsule in patients with idiopathic normal pressure hydrocephalus before and after a lumboperitoneal shunt by using q-space diffusion MRI. Eur Radiol 2015; 26:2992-8. [PMID: 26694062 PMCID: PMC4972860 DOI: 10.1007/s00330-015-4162-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/20/2015] [Accepted: 12/07/2015] [Indexed: 11/30/2022]
Abstract
Objectives To prospectively estimate the mean axon diameter (MAD) and extracellular space of the posterior limb of the internal capsule (PLIC) in patients with idiopathic normal pressure hydrocephalus (iNPH) before and after a lumboperitoneal (LP) shunting operation using q-space diffusion MRI analysis. Methods We studied 12 consecutive patients with iNPH and 12 controls at our institution. After conventional magnetic resonance imaging (MRI), q-space image (QSI) data were acquired with a 3-T MRI scanner. The MAD and extra-axonal space of the PLIC before and after LP shunting were calculated using two-component q-space imaging analyses; the before and after values were compared. Results After LP shunt surgery, the extracellular space of the PLIC was significantly higher than that of the same patients before the operation (one-way analysis of variance (ANOVA) with Scheffé’s post-hoc test, P = 0.024). No significant differences were observed in the PLIC axon diameters among normal controls or in patients before and after surgery. Conclusion Increases in the root mean square displacement in the extra-axonal space of the PLIC in patients with iNPH after an LP shunt procedure are associated with the microstructural changes of white matter and subsequent abatement of patient symptoms. Key Points • Q-space diffusion MRI provides information on microstructural changes in the corticospinal tract • Lumboperitoneal (LP) shunting operation is useful for idiopathic normal pressure hydrocephalus • Q-space measurement may be a biomarker for the effect of the LP shunt procedure
Collapse
Affiliation(s)
- Masaaki Hori
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Kouhei Kamiya
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Department of Radiology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Atsushi Nakanishi
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Issei Fukunaga
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Department of Health Science, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10, Higashiogu, Arakawa-ku, Tokyo, 116-8551, Japan
| | - Masakazu Miyajima
- Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Madoka Nakajima
- Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Michimasa Suzuki
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yuriko Suzuki
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, 2333 ZA, Netherlands
| | - Ryusuke Irie
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Department of Radiology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Hajime Arai
- Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| |
Collapse
|
41
|
Yamada I, Hikishima K, Miyasaka N, Kato K, Ito E, Kojima K, Kawano T, Kobayashi D, Eishi Y, Okano H. q-space MR imaging of gastric carcinoma ex vivo: Correlation with histopathologic findings. Magn Reson Med 2015; 76:602-12. [DOI: 10.1002/mrm.25905] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 07/26/2015] [Accepted: 08/03/2015] [Indexed: 01/15/2023]
Affiliation(s)
- Ichiro Yamada
- Department of Diagnostic Radiology and Nuclear Medicine; Graduate School, Tokyo Medical and Dental University; Tokyo Japan
| | - Keigo Hikishima
- Department of Physiology; Keio University School of Medicine; Tokyo Japan
- Central Institute for Experimental Animals; Kanagawa Japan
| | - Naoyuki Miyasaka
- Department of Pediatrics, Perinatal and Maternal Medicine; Tokyo Medical and Dental University; Tokyo Japan
| | - Keiji Kato
- Department of Gastric Surgery; Tokyo Medical and Dental University; Tokyo Japan
| | - Eisaku Ito
- Department of Pathology; Tokyo Medical and Dental University; Tokyo Japan
| | - Kazuyuki Kojima
- Department of Gastric Surgery; Tokyo Medical and Dental University; Tokyo Japan
| | - Tatsuyuki Kawano
- Department of Esophageal Surgery; Tokyo Medical and Dental University; Tokyo Japan
| | - Daisuke Kobayashi
- Department of Pathology; Tokyo Medical and Dental University; Tokyo Japan
| | - Yoshinobu Eishi
- Department of Pathology; Tokyo Medical and Dental University; Tokyo Japan
| | - Hideyuki Okano
- Department of Physiology; Keio University School of Medicine; Tokyo Japan
| |
Collapse
|
42
|
Eichner C, Cauley SF, Cohen-Adad J, Möller HE, Turner R, Setsompop K, Wald LL. Real diffusion-weighted MRI enabling true signal averaging and increased diffusion contrast. Neuroimage 2015; 122:373-84. [PMID: 26241680 DOI: 10.1016/j.neuroimage.2015.07.074] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 07/01/2015] [Accepted: 07/24/2015] [Indexed: 11/16/2022] Open
Abstract
This project aims to characterize the impact of underlying noise distributions on diffusion-weighted imaging. The noise floor is a well-known problem for traditional magnitude-based diffusion-weighted MRI (dMRI) data, leading to biased diffusion model fits and inaccurate signal averaging. Here, we introduce a total-variation-based algorithm to eliminate shot-to-shot phase variations of complex-valued diffusion data with the intention to extract real-valued dMRI datasets. The obtained real-valued diffusion data are no longer superimposed by a noise floor but instead by a zero-mean Gaussian noise distribution, yielding dMRI data without signal bias. We acquired high-resolution dMRI data with strong diffusion weighting and, thus, low signal-to-noise ratio. Both the extracted real-valued and traditional magnitude data were compared regarding signal averaging, diffusion model fitting and accuracy in resolving crossing fibers. Our results clearly indicate that real-valued diffusion data enables idealized conditions for signal averaging. Furthermore, the proposed method enables unbiased use of widely employed linear least squares estimators for model fitting and demonstrates an increased sensitivity to detect secondary fiber directions with reduced angular error. The use of phase-corrected, real-valued data for dMRI will therefore help to clear the way for more detailed and accurate studies of white matter microstructure and structural connectivity on a fine scale.
Collapse
Affiliation(s)
- Cornelius Eichner
- Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, USA; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Stephen F Cauley
- Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, USA
| | | | - Harald E Möller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Robert Turner
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Kawin Setsompop
- Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, USA.
| | - Lawrence L Wald
- Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
43
|
Abstract
Objects making up complex porous systems in Nature usually span a range of sizes. These size distributions play fundamental roles in defining the physicochemical, biophysical and physiological properties of a wide variety of systems - ranging from advanced catalytic materials to Central Nervous System diseases. Accurate and noninvasive measurements of size distributions in opaque, three-dimensional objects, have thus remained long-standing and important challenges. Herein we describe how a recently introduced diffusion-based magnetic resonance methodology, Non-Uniform-Oscillating-Gradient-Spin-Echo (NOGSE), can determine such distributions noninvasively. The method relies on its ability to probe confining lengths with a (length)6 parametric sensitivity, in a constant-time, constant-number-of-gradients fashion; combined, these attributes provide sufficient sensitivity for characterizing the underlying distributions in μm-scaled cellular systems. Theoretical derivations and simulations are presented to verify NOGSE's ability to faithfully reconstruct size distributions through suitable modeling of their distribution parameters. Experiments in yeast cell suspensions - where the ground truth can be determined from ancillary microscopy - corroborate these trends experimentally. Finally, by appending to the NOGSE protocol an imaging acquisition, novel MRI maps of cellular size distributions were collected from a mouse brain. The ensuing micro-architectural contrasts successfully delineated distinctive hallmark anatomical sub-structures, in both white matter and gray matter tissues, in a non-invasive manner. Such findings highlight NOGSE's potential for characterizing aberrations in cellular size distributions upon disease, or during normal processes such as development.
Collapse
Affiliation(s)
- Noam Shemesh
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Gonzalo A. Álvarez
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Lucio Frydman
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
- * E-mail:
| |
Collapse
|
44
|
Duval T, McNab JA, Setsompop K, Witzel T, Schneider T, Huang SY, Keil B, Klawiter EC, Wald LL, Cohen-Adad J. In vivo mapping of human spinal cord microstructure at 300mT/m. Neuroimage 2015; 118:494-507. [PMID: 26095093 DOI: 10.1016/j.neuroimage.2015.06.038] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 05/27/2015] [Accepted: 06/11/2015] [Indexed: 11/19/2022] Open
Abstract
The ability to characterize white matter microstructure non-invasively has important applications for the diagnosis and follow-up of several neurological diseases. There exists a family of diffusion MRI techniques, such as AxCaliber, that provide indices of axon microstructure, such as axon diameter and density. However, to obtain accurate measurements of axons with small diameters (<5μm), these techniques require strong gradients, i.e. an order of magnitude higher than the 40-80mT/m currently available in clinical systems. In this study we acquired AxCaliber diffusion data at a variety of different q-values and diffusion times in the spinal cord of five healthy subjects using a 300mT/m whole body gradient system. Acquisition and processing were optimized using state-of-the-art methods (e.g., 64-channel coil, template-based analysis). Results consistently show an average axon diameter of 4.5+/-1.1μm in the spinal cord white matter. Diameters ranged from 3.0μm (gracilis) to 5.9μm (spinocerebellar tracts). Values were similar across laterality (left-right), but statistically different across spinal cord pathways (p<10(-5)). The observed trends are similar to those observed in animal histology. This study shows, for the first time, in vivo mapping of axon diameter in the spinal cord at 300mT/m, thus creating opportunities for applications in spinal cord diseases.
Collapse
Affiliation(s)
- Tanguy Duval
- Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Jennifer A McNab
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Kawin Setsompop
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Thomas Witzel
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Torben Schneider
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, London, London, United Kingdom
| | - Susie Yi Huang
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Boris Keil
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Eric C Klawiter
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Lawrence L Wald
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Julien Cohen-Adad
- Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada; Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
45
|
Jiang X, Li H, Xie J, Zhao P, Gore JC, Xu J. Quantification of cell size using temporal diffusion spectroscopy. Magn Reson Med 2015; 75:1076-85. [PMID: 25845851 DOI: 10.1002/mrm.25684] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/15/2015] [Accepted: 02/11/2015] [Indexed: 01/01/2023]
Abstract
PURPOSE A new approach has been developed to quantify cell sizes and intracellular volume fractions using temporal diffusion spectroscopy with diffusion-weighted acquisitions. METHODS Temporal diffusion spectra may be used to characterize tissue microstructure by measuring the effects of restrictions over a range of diffusion times. Oscillating gradients have been used previously to probe variations on cellular and subcellular scales, but their ability to accurately measure cell sizes larger than 10 μm is limited. By combining measurements made using oscillating gradient spin echo (OGSE) and a conventional pulsed gradient spin echo (PGSE) acquisition with a single, relatively long diffusion time, we can accurately quantify cell sizes and intracellular volume fractions. RESULTS Based on a two compartment model (incorporating intra- and extracellular spaces), accurate estimates of cell sizes and intracellular volume fractions were obtained in vitro for (i) different cell types with sizes ranging from 10 to 20 μm, (ii) different cell densities, and (iii) before and after anticancer treatment. CONCLUSION Hybrid OGSE-PGSE acquisitions sample a larger region of temporal diffusion spectra and can accurately quantify cell sizes over a wide range. Moreover, the maximum gradient strength used was lower than 15 G/cm, suggesting that this approach is translatable to practical MR imaging.
Collapse
Affiliation(s)
- Xiaoyu Jiang
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Hua Li
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA
| | - Jingping Xie
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Ping Zhao
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - John C Gore
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA.,Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Junzhong Xu
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA.,Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
46
|
Huang SY, Nummenmaa A, Witzel T, Duval T, Cohen-Adad J, Wald LL, McNab JA. The impact of gradient strength on in vivo diffusion MRI estimates of axon diameter. Neuroimage 2014; 106:464-72. [PMID: 25498429 DOI: 10.1016/j.neuroimage.2014.12.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/01/2014] [Accepted: 12/03/2014] [Indexed: 10/24/2022] Open
Abstract
Diffusion magnetic resonance imaging (MRI) methods for axon diameter mapping benefit from higher maximum gradient strengths than are currently available on commercial human scanners. Using a dedicated high-gradient 3T human MRI scanner with a maximum gradient strength of 300 mT/m, we systematically studied the effect of gradient strength on in vivo axon diameter and density estimates in the human corpus callosum. Pulsed gradient spin echo experiments were performed in a single scan session lasting approximately 2h on each of three human subjects. The data were then divided into subsets with maximum gradient strengths of 77, 145, 212, and 293 mT/m and diffusion times encompassing short (16 and 25 ms) and long (60 and 94 ms) diffusion time regimes. A three-compartment model of intra-axonal diffusion, extra-axonal diffusion, and free diffusion in cerebrospinal fluid was fitted to the data using a Markov chain Monte Carlo approach. For the acquisition parameters, model, and fitting routine used in our study, it was found that higher maximum gradient strengths decreased the mean axon diameter estimates by two to three fold and decreased the uncertainty in axon diameter estimates by more than half across the corpus callosum. The exclusive use of longer diffusion times resulted in axon diameter estimates that were up to two times larger than those obtained with shorter diffusion times. Axon diameter and density maps appeared less noisy and showed improved contrast between different regions of the corpus callosum with higher maximum gradient strength. Known differences in axon diameter and density between the genu, body, and splenium of the corpus callosum were preserved and became more reproducible at higher maximum gradient strengths. Our results suggest that an optimal q-space sampling scheme for estimating in vivo axon diameters should incorporate the highest possible gradient strength. The improvement in axon diameter and density estimates that we demonstrate from increasing maximum gradient strength will inform protocol development and encourage the adoption of higher maximum gradient strengths for use in commercial human scanners.
Collapse
Affiliation(s)
- Susie Y Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| | - Aapo Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Thomas Witzel
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Tanguy Duval
- Institute of Biomedical Engineering, Ecole Polytechnique de Montreal, Montreal, QC, Canada
| | - Julien Cohen-Adad
- Institute of Biomedical Engineering, Ecole Polytechnique de Montreal, Montreal, QC, Canada
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jennifer A McNab
- Radiological Sciences Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States
| |
Collapse
|
47
|
Dibb R, Li W, Cofer G, Liu C. Microstructural origins of gadolinium-enhanced susceptibility contrast and anisotropy. Magn Reson Med 2014; 72:1702-11. [PMID: 24443202 PMCID: PMC4102673 DOI: 10.1002/mrm.25082] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 11/21/2013] [Accepted: 11/25/2013] [Indexed: 01/20/2023]
Abstract
PURPOSE MR histology based on magnetic susceptibility can be used to visualize diamagnetic myelin (and its deterioration) in the central nervous system and is facilitated by the application of high magnetic field strengths and paramagnetic contrast agents. Characterizing the effect of these tools will aid in assessing white matter myelin content and microstructure. METHODS Image data from six gadolinium-perfused mouse brain specimens were acquired at 2.0, 7.0, and 9.4 Tesla. Magnetic susceptibility contrast was analyzed for its dependence on field strength, gadolinium concentration, and white matter fiber orientation. A model for this contrast is presented based on the three-pool model for white matter. RESULTS The specimen data illustrate that white-gray matter susceptibility contrast is field strength independent. White-gray matter contrast improves significantly as a function of gadolinium contrast agent in the tissue, i.e., white matter appears increasingly more diamagnetic relative to gray matter. The simulated data from the model suggest that susceptibility anisotropy of white matter fiber bundles increases nonlinearly as a function of gadolinium concentration due to contrast agent compartmentalization into the extracellular white matter water pool. CONCLUSION Using contrast agents in MR histology facilitates white-gray matter susceptibility contrast modulation and the probing of white matter microstructure and orientation.
Collapse
Affiliation(s)
- Russell Dibb
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, USA
- Biomedical Engineering, Duke University, Durham, NC, USA
| | - Wei Li
- Brain Imaging & Analysis Center, Duke University Medical Center, Durham, NC, USA
| | - Gary Cofer
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, USA
| | - Chunlei Liu
- Brain Imaging & Analysis Center, Duke University Medical Center, Durham, NC, USA
- Radiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
48
|
Age-related changes of the diffusion tensor imaging parameters of the normal cervical spinal cord. Eur J Radiol 2014; 83:2196-2202. [DOI: 10.1016/j.ejrad.2014.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/02/2014] [Accepted: 09/11/2014] [Indexed: 02/07/2023]
|
49
|
Xu J, Li H, Harkins KD, Jiang X, Xie J, Kang H, Does MD, Gore JC. Mapping mean axon diameter and axonal volume fraction by MRI using temporal diffusion spectroscopy. Neuroimage 2014; 103:10-19. [PMID: 25225002 PMCID: PMC4312203 DOI: 10.1016/j.neuroimage.2014.09.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 09/02/2014] [Accepted: 09/04/2014] [Indexed: 02/01/2023] Open
Abstract
Mapping mean axon diameter and intra-axonal volume fraction may have significant clinical potential because nerve conduction velocity is directly dependent on axon diameter, and several neurodegenerative diseases affect axons of specific sizes and alter axon counts. Diffusion-weighted MRI methods based on the pulsed gradient spin echo (PGSE) sequence have been reported to be able to assess axon diameter and volume fraction non-invasively. However, due to the relatively long diffusion times used, e.g. >20ms, the sensitivity to small axons (diameter<2μm) is low, and the derived mean axon diameter has been reported to be overestimated. In the current study, oscillating gradient spin echo (OGSE) diffusion sequences with variable frequency gradients were used to assess rat spinal white matter tracts with relatively short effective diffusion times (1-5ms). In contrast to previous PGSE-based methods, the extra-axonal diffusion cannot be modeled as hindered (Gaussian) diffusion when short diffusion times are used. Appropriate frequency-dependent rates are therefore incorporated into our analysis and validated by histology-based computer simulation of water diffusion. OGSE data were analyzed to derive mean axon diameters and intra-axonal volume fractions of rat spinal white matter tracts (mean axon diameter of ~1.27-5.54μm). The estimated values were in good agreement with histology, including the small axon diameters (<2.5μm). This study establishes a framework for the quantification of nerve morphology using the OGSE method with high sensitivity to small axons.
Collapse
Affiliation(s)
- Junzhong Xu
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA.
| | - Hua Li
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA; Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA
| | - Kevin D Harkins
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
| | - Xiaoyu Jiang
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Jingping Xie
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University, Nashville, TN 37203, USA
| | - Mark D Does
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - John C Gore
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
50
|
Yamada I, Hikishima K, Miyasaka N, Tokairin Y, Ito E, Kawano T, Kobayashi D, Eishi Y, Okano H. Esophageal carcinoma: Evaluation with q-space diffusion-weighted MR imaging ex vivo. Magn Reson Med 2014; 73:2262-73. [DOI: 10.1002/mrm.25334] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/27/2014] [Accepted: 06/03/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Ichiro Yamada
- Department of Diagnostic Radiology and Oncology; Graduate School, Tokyo Medical and Dental University; Tokyo Japan
| | - Keigo Hikishima
- Department of Physiology; Keio University School of Medicine; Tokyo Japan
- Central Institute for Experimental Animals; Kanagawa Japan
| | - Naoyuki Miyasaka
- Department of Pediatrics, Perinatal and Maternal Medicine; Tokyo Medical and Dental University; Tokyo Japan
| | - Yutaka Tokairin
- Department of Esophagogastric Surgery; Tokyo Medical and Dental University; Tokyo Japan
| | - Eisaku Ito
- Department of Pathology; Tokyo Medical and Dental University; Tokyo Japan
| | - Tatsuyuki Kawano
- Department of Esophagogastric Surgery; Tokyo Medical and Dental University; Tokyo Japan
| | - Daisuke Kobayashi
- Department of Pathology; Tokyo Medical and Dental University; Tokyo Japan
| | - Yoshinobu Eishi
- Department of Pathology; Tokyo Medical and Dental University; Tokyo Japan
| | - Hideyuki Okano
- Department of Physiology; Keio University School of Medicine; Tokyo Japan
| |
Collapse
|