1
|
González-Roldán AM, Delgado-Bitata M, Dorado A, Costa da Silva I, Montoya P. Chronic pain and its association with cognitive decline and brain function abnormalities in older adults: Insights from EEG and neuropsychological assessment. Neurobiol Aging 2025; 150:172-181. [PMID: 40147351 DOI: 10.1016/j.neurobiolaging.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025]
Abstract
Studies examining the interplay between chronic pain, cognitive function, and functional brain abnormalities in older adults are scarce. To address this gap, we administered a series of neuropsychological tests and recorded electroencephalography (EEG) data during resting-state conditions in 26 older adults with chronic pain (CPOA), 30 pain-free older adults (OA), and 31 younger adults (YA). CPOA demonstrated poorer performance compared to OA on the Stroop test, the Wisconsin Card Sorting Test (WCST) and Digit Span. Both groups of older adults exhibited higher beta activity compared to younger adults, with CPOA displaying particularly elevated beta-2 activity localized in the posterior cingulate cortex compared to OA. Correlational analyses indicated that in CPOA participants, heightened beta activity was linked to decreased performance on the WCST. Conversely, in OA, we observed a positive correlation between beta activity and performance on the WCST. Overall, our findings suggest that the cumulative impact of pain in aging would diminish the effectiveness of the functional compensatory mechanisms that occur during healthy aging, exacerbating cognitive decline.
Collapse
Affiliation(s)
- A M González-Roldán
- Cognitive and Affective Neuroscience and Clinical Psychology, Research Institute of Health Sciences (IUNICS) and Balearic Islands Health Research Institute (IdISBa), University of the Balearic Islands (UIB), Palma, Spain.
| | - M Delgado-Bitata
- Cognitive and Affective Neuroscience and Clinical Psychology, Research Institute of Health Sciences (IUNICS) and Balearic Islands Health Research Institute (IdISBa), University of the Balearic Islands (UIB), Palma, Spain
| | - A Dorado
- Cognitive and Affective Neuroscience and Clinical Psychology, Research Institute of Health Sciences (IUNICS) and Balearic Islands Health Research Institute (IdISBa), University of the Balearic Islands (UIB), Palma, Spain
| | - I Costa da Silva
- Cognitive and Affective Neuroscience and Clinical Psychology, Research Institute of Health Sciences (IUNICS) and Balearic Islands Health Research Institute (IdISBa), University of the Balearic Islands (UIB), Palma, Spain
| | - P Montoya
- Cognitive and Affective Neuroscience and Clinical Psychology, Research Institute of Health Sciences (IUNICS) and Balearic Islands Health Research Institute (IdISBa), University of the Balearic Islands (UIB), Palma, Spain
| |
Collapse
|
2
|
Leng J, Zhao J, Wu Y, Lv C, Lun Z, Li Y, Zhang C, Zhang B, Zhang Y, Xu F, Yi C, Jung TP. Coherence-Based Graph Convolution Network to Assess Brain Reorganization in Spinal Cord Injury Patients. Int J Neural Syst 2025; 35:2550021. [PMID: 40090883 DOI: 10.1142/s0129065725500212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Motor imagery (MI) engages a broad network of brain regions to imagine a specific action. Investigating the mechanism of brain network reorganization during MI after spinal cord injury (SCI) is crucial because it reflects overall brain activity. Using electroencephalogram (EEG) data from SCI patients, we conducted EEG-based coherence analysis to examine different brain network reorganizations across different frequency bands, from resting to MI. Furthermore, we introduced a consistency calculation-based residual graph convolution (C-ResGCN) classification algorithm. The results show that the [Formula: see text]- and [Formula: see text]-band connectivity weakens, and brain activity decreases during the MI task compared to the resting state. In contrast, the [Formula: see text]-band connectivity increases in motor regions while the default mode network activity declines during MI. Our C-ResGCN algorithm showed excellent performance, achieving a maximum classification accuracy of 96.25%, highlighting its reliability and stability. These findings suggest that brain reorganization in SCI patients reallocates relevant brain resources from the resting state to MI, and effective network reorganization correlates with improved MI performance. This study offers new insights into the mechanisms of MI and potential biomarkers for evaluating rehabilitation outcomes in patients with SCI.
Collapse
Affiliation(s)
- Jiancai Leng
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Jiaqi Zhao
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Yongjian Wu
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Chengyan Lv
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Zhixiao Lun
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Yanzi Li
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Chao Zhang
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Bin Zhang
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Yang Zhang
- Rehabilitation and Physical Therapy Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250011, P. R. China
| | - Fangzhou Xu
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Changsong Yi
- Rehabilitation and Physical Therapy Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250011, P. R. China
| | - Tzyy-Ping Jung
- Institute for Neural Computation and Institute of Engineering in Medicine, University of California San Diego, CA 92093-0559, USA
| |
Collapse
|
3
|
Ou Y, Chen Z, Wang Y, Li H, Liu F, Li P, Lv D, Liu Y, Lang B, Zhao J, Guo W. Abnormalities in cognitive-related functional connectivity can be used to identify patients with schizophrenia and individuals in clinical high-risk. BMC Psychiatry 2025; 25:308. [PMID: 40165149 PMCID: PMC11959997 DOI: 10.1186/s12888-025-06747-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Clinical high-risk (CHR) refers to prodromal phase before schizophrenia onset, characterized by attenuated psychotic symptoms and functional decline. They exhibit similar but milder cognitive impairments, brain abnormalities and eye movement change compared with first-episode schizophrenia (FSZ). These alterations may increase vulnerability to transitioning to the disease. This study explores cognitive-related functional connectivity (FC) and eye movement abnormalities to examine differences in the progression of schizophrenia. METHODS Thirty drug-naive FSZ, 28 CHR, and 30 healthy controls (HCs) were recruited to undergo resting-state functional magnetic resonance imaging (rs-fMRI). Connectome-based predictive modeling (CPM) was employed to extract cognitive-related brain regions, which were then selected as seeds to form FC networks. Support vector machine (SVM) was used to distinguish FSZ from CHR. Smooth pursuit eye-tracking tasks were conducted to assess eye movement features. RESULTS FSZ displayed decreased cognitive-related FC between right posterior cingulate cortex and right superior frontal gyrus compared with HCs and between right amygdala and left inferior parietal gyrus (IPG) compared with CHR. SVM analysis indicated a combination of BACS-SC and CFT-A scores, and FC between right amygdala and left IPG could serve as a potential biomarker for distinguishing FSZ from CHR with high sensitivity. FSZ also exhibited a wide range of eye movement abnormalities compared with HCs, which were associated with alterations in cognitive-related FC. CONCLUSIONS FSZ and CHR exhibited different patterns of cognitive-related FC and eye movement alteration. Our findings illustrate potential neuroimaging and cognitive markers for early identification of psychosis that could help in the intervention of schizophrenia in high-risk groups.
Collapse
Affiliation(s)
- Yangpan Ou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhaobin Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Ying Wang
- Department of Mental Health Center of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, 300000, China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, 161006, Heilongjiang, China
| | - Dongsheng Lv
- Center of Mental Health, Inner Mongolia Autonomous Region, Hohhot, 010010, China
| | - Yong Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Bing Lang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jingping Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
4
|
Nair AU, Klimes-Dougan B, Silamongkol T, Başgöze Z, Roediger DJ, Mueller BA, Albott CS, Croarkin PE, Lim KO, Widge AS, Nahas Z, Eberly LE, Cullen KR, Thai ME. Deep transcranial magnetic stimulation for adolescents with treatment-resistant depression: Behavioral and neural correlates of clinical improvement. J Affect Disord 2025; 372:665-675. [PMID: 39701468 PMCID: PMC11792619 DOI: 10.1016/j.jad.2024.12.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/15/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Affective bias toward negativity is associated with depression and may represent a promising treatment target. Stimulating the dorsolateral prefrontal cortex (dlPFC) with deep Transcranial Magnetic Stimulation (dTMS) could lead to shifts in affective bias. The current study examined behavioral and neural correlates of affective bias in the context of dTMS in adolescents with treatment-resistant depression (TRD). METHODS Adolescents completed a Word-Face Stroop (WFS) task during an fMRI scan before and after 30 sessions of dTMS targeting the left dlPFC. In the task, participants were shown words superimposed on faces in either a "congruent" (both word and face were positive or both negative) or an "incongruent" fashion; in both cases, participants identified whether the words were positive or negative. We examined pre-post intervention neural and behavioral WFS changes and their correlations with clinical improvement. RESULTS Usable pre- and post-intervention WFS data were available for 10 adolescents with TRD (Age, years: M = 16.3, SD = 1.09) for behavioral data; 9 for neuroimaging data. After treatment, although changes in behavioral performance did not suggest improved affective bias, amygdala activation decreased during the negative word/happy face condition, which correlated with clinical improvement. Overall, clinical improvement correlated with decreased neural activation during congruent conditions. LIMITATIONS Major limitations include the small sample size, lack of a sham control group, and unknown psychometric properties. CONCLUSIONS Preliminary findings suggesting improving neural efficiency and normalizing affective bias in those with the most clinical improvement highlight the potential importance of targeting affective bias in treating adolescents with TRD.
Collapse
Affiliation(s)
- Aparna U Nair
- Department of Psychiatry & Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA.
| | | | - Thanharat Silamongkol
- Graduate School of Applied and Professional Psychology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Zeynep Başgöze
- Department of Psychiatry & Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Donovan J Roediger
- Department of Psychiatry & Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Bryon A Mueller
- Department of Psychiatry & Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Cristina S Albott
- Department of Psychiatry & Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Paul E Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Kelvin O Lim
- Department of Psychiatry & Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Alik S Widge
- Department of Psychiatry & Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Ziad Nahas
- Department of Psychiatry & Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Lynn E Eberly
- Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Kathryn R Cullen
- Department of Psychiatry & Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Michelle E Thai
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA; Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Christison-Lagay KL, Khalaf A, Freedman NC, Micek C, Kronemer SI, Gusso MM, Kim L, Forman S, Ding J, Aksen M, Abdel-Aty A, Kwon H, Markowitz N, Yeagle E, Espinal E, Herrero J, Bickel S, Young J, Mehta A, Wu K, Gerrard J, Damisah E, Spencer D, Blumenfeld H. The neural activity of auditory conscious perception. Neuroimage 2025; 308:121041. [PMID: 39832539 DOI: 10.1016/j.neuroimage.2025.121041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/10/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025] Open
Abstract
Although recent work has made headway in understanding the neural temporospatial dynamics of conscious perception, much of that work has focused on visual paradigms. To determine whether there are shared mechanisms for perceptual consciousness across sensory modalities, here we test within the auditory domain. Participants completed an auditory threshold task while undergoing intracranial electroencephalography. Recordings from >2,800 grey matter electrodes were analyzed for broadband gamma power (a range which reflects local neural activity). For perceived trials, we find nearly simultaneous activity in early auditory regions, the right caudal middle frontal gyrus, and the non-auditory thalamus; followed by a wave of activity that sweeps through auditory association regions into parietal and frontal cortices. For not perceived trials, significant activity is restricted to early auditory regions. These findings show the cortical and subcortical networks involved in auditory perception are similar to those observed with vision, suggesting shared mechanisms for conscious perception.
Collapse
Affiliation(s)
| | - Aya Khalaf
- Department of Neurology, Yale University, New Haven, CT 06520, USA
| | - Noah C Freedman
- Department of Neurology, Yale University, New Haven, CT 06520, USA
| | | | - Sharif I Kronemer
- Department of Neurology, Yale University, New Haven, CT 06520, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
| | - Mariana M Gusso
- Department of Neurology, Yale University, New Haven, CT 06520, USA
| | - Lauren Kim
- Department of Neurology, Yale University, New Haven, CT 06520, USA
| | - Sarit Forman
- Department of Neurology, Yale University, New Haven, CT 06520, USA
| | - Julia Ding
- Department of Neurology, Yale University, New Haven, CT 06520, USA
| | - Mark Aksen
- Department of Neurology, Yale University, New Haven, CT 06520, USA
| | - Ahmad Abdel-Aty
- Department of Neurology, Yale University, New Haven, CT 06520, USA
| | - Hunki Kwon
- Department of Neurology, Yale University, New Haven, CT 06520, USA
| | - Noah Markowitz
- Feinstein Institute for Medical Research, Hofstra Northwell Sch. of Med., Manhasset, NY 11030, USA
| | - Erin Yeagle
- Feinstein Institute for Medical Research, Hofstra Northwell Sch. of Med., Manhasset, NY 11030, USA
| | - Elizabeth Espinal
- Feinstein Institute for Medical Research, Hofstra Northwell Sch. of Med., Manhasset, NY 11030, USA
| | - Jose Herrero
- Feinstein Institute for Medical Research, Hofstra Northwell Sch. of Med., Manhasset, NY 11030, USA
| | - Stephan Bickel
- Department of Neurology, Hofstra Northwell School of Medicine, Manhasset, NY 11030, USA; Department of Neurosurgery, Hofstra Northwell School of Medicine, Manhasset, NY 11030, USA
| | - James Young
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ashesh Mehta
- Department of Neurosurgery, Hofstra Northwell School of Medicine, Manhasset, NY 11030, USA
| | - Kun Wu
- Department of Neurosurgery, Yale University, New Haven CT 06520, USA
| | - Jason Gerrard
- Department of Neurosurgery, Yale University, New Haven CT 06520, USA
| | - Eyiyemisi Damisah
- Department of Neurosurgery, Yale University, New Haven CT 06520, USA
| | - Dennis Spencer
- Department of Neurosurgery, Yale University, New Haven CT 06520, USA
| | - Hal Blumenfeld
- Department of Neurology, Yale University, New Haven, CT 06520, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA; Department of Neurology, Hofstra Northwell School of Medicine, Manhasset, NY 11030, USA; Department of Neuroscience, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
6
|
Zhang Y, Miao Q, Liu B. Spatial frequency preferences of representations of indoor and natural scene categories in scene-selective regions under different conditions of contrast. Front Neurosci 2025; 19:1534588. [PMID: 39991751 PMCID: PMC11842314 DOI: 10.3389/fnins.2025.1534588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/27/2025] [Indexed: 02/25/2025] Open
Abstract
Introduction Scene-selective regions were shown to be significantly affected by spatial frequencies (SF) and have different sensitivities to low spatial frequencies (LSF) and high spatial frequencies (HSF). However, previous studies mainly focused on the neural activations or the neural patterns in a single SF band. Methods To investigate the extent to which the information of a single SF is used in scene category representations, we not only decoded the scene categories in each SF, but also used the neural patterns to LSF or HSF to decode the patterns to non-filtered (NF) scenes based on fMRI data using multivoxel pattern analysis (MVPA). As luminance contrast was shown to follow statistical regularities along with SF, we performed the decoding analyses separately in two conditions of contrast where the contrast of LSF and HSF was unmodified or equalized. Results The results showed distinct SF preferences in the two contrast conditions, showing that luminance contrast has a significant role in SF processing. In addition, we also performed the above analyses only within natural and indoor scenes, respectively. The results showed the scene-selective regions were more efficient in distinguishing natural scene categories in LSF, and the LSF was preferentially used along with high luminance contrast in recognition of natural scenes. On the other hand, humans preferentially used HSF information in distinguishing indoor scenes. Discussion This distinct SF preferences maybe caused by the different aspects of information conveyed by LSF and HSF, as well as the different strategies of spatial perception in natural and indoor scenes recognition.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, China
| | - Qiaomu Miao
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Baolin Liu
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
7
|
Reekes TH, Upadhya VR, Merenstein JL, Cooter-Wright M, Madden DJ, Reese MA, Boykin PC, Timko NJ, Moul JW, Garrigues GE, Martucci KT, Cohen HJ, Whitson HE, Mathew JP, Devinney MJ, Zetterberg H, Blennow K, Shaw LM, Waligorska T, Browndyke JN, Berger M. Predilection for Perplexion: Preoperative microstructural damage is linked to postoperative delirium. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.08.24319243. [PMID: 39830255 PMCID: PMC11741491 DOI: 10.1101/2025.01.08.24319243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Postoperative delirium is the most common postsurgical complication in older adults and is associated with an increased risk of long-term cognitive decline and Alzheimer's disease (AD) and related dementias (ADRD). However, the neurological basis of this increased risk-whether postoperative delirium unmasks latent preoperative pathology or leads to AD-relevant pathology after perioperative brain injury-remains unclear. Recent advancements in neuroimaging techniques now enable the detection of subtle brain features or damage that may underlie clinical symptoms. Among these, Neurite Orientation Dispersion and Density Imaging (NODDI) can help identify microstructural brain damage, even in the absence of visible macro-anatomical abnormalities. To investigate potential brain microstructural abnormalities associated with postoperative delirium and cognitive function, we analyzed pre- and post-operative diffusion MRI data from 111 patients aged ≥60 years who underwent non-cardiac/non-intracranial surgery. Specifically, we investigated preoperative variation in diffusion metrics within the posterior cingulate cortex (PCC), a region in which prior work has identified glucose metabolism alterations in the delirious brain, and a key region in the early accumulation of amyloid beta (Aβ) in preclinical AD. We also examined the relationship of preoperative PCC NODDI abnormalities with preoperative cognitive function. Compared to patients who did not develop postoperative delirium (n=99), we found increased free water (FISO) and neurite density index (NDI) and decreased orientation dispersion index (ODI) in the dorsal PCC before surgery among those who later developed postoperative delirium (n=12). These FISO differences before surgery remained present at six weeks postoperatively, while these NDI and ODI differences did not. Preoperative dorsal PCC NDI and ODI values were also positively associated with preoperative attention/concentration performance, independent of age, education level, and global brain atrophy. Yet, these diffusion metrics were not correlated with cerebrospinal fluid Aβ positivity or levels. These results suggest that preoperative latent brain abnormalities within the dorsal PCC may underlie susceptibility to postoperative delirium, independent of AD-related (i.e., Aβ) neuropathology. Furthermore, these preoperative microstructural differences in the dorsal PCC were linked to preoperative deficits in attention/concentration, a core feature of postoperative delirium. Our findings highlight microstructural vulnerability within the PCC, a key region of the default mode network, as a neuroanatomic locus that can help explain the link between preoperative attention/concentration deficits and increased postoperative delirium risk among vulnerable older surgical patients.
Collapse
Affiliation(s)
- Tyler H. Reekes
- Department of Anesthesiology, Duke University Medical Center, Durham, NC
| | | | - Jenna L. Merenstein
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC
| | - Mary Cooter-Wright
- Department of Anesthesiology, Duke University Medical Center, Durham, NC
| | - David J. Madden
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC
| | - Melody A. Reese
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA
| | - Piper C. Boykin
- Department of Anesthesiology, Duke University Medical Center, Durham, NC
| | - Noah J. Timko
- Department of Anesthesiology, Duke University Medical Center, Durham, NC
| | - Judd W. Moul
- Department of Surgery, Duke University Medical Center, Durham, NC
| | | | | | - Harvey Jay Cohen
- Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC
| | - Heather E. Whitson
- Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC
| | - Joseph P. Mathew
- Department of Anesthesiology, Duke University Medical Center, Durham, NC
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Leslie M. Shaw
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Teresa Waligorska
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Jeffrey N. Browndyke
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC
- Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC
- Duke Institute for Brain Sciences, Duke University, Durham, NC
| | - Miles Berger
- Department of Anesthesiology, Duke University Medical Center, Durham, NC
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA
- Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC
- Duke Institute for Brain Sciences, Duke University, Durham, NC
| | | |
Collapse
|
8
|
Díaz DE, Becker HC, Fitzgerald KD. Neural Markers of Treatment Response in Pediatric Anxiety and PTSD. Curr Top Behav Neurosci 2024. [PMID: 39673034 DOI: 10.1007/7854_2024_547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2024]
Abstract
Pediatric anxiety disorders and post-traumatic stress disorder (PTSD) are associated with elevated threat sensitivity and impaired emotion regulation, accompanied by dysfunction in the neural circuits involved in these processes. Despite established treatments like cognitive behavioral therapy (CBT) and selective serotonin reuptake inhibitors, many children do not achieve remission, underscoring the importance of understanding the neurobiological underpinnings of these disorders. This review synthesizes current research on the neural predictors of treatment response and the neurofunctional changes associated with treatment in pediatric anxiety and PTSD during threat and reward processing. Several key findings emerged. First, enhanced threat/safety discrimination in the amygdala predicted better outcomes of pediatric anxiety and PTSD treatments. Second, differences in pretreatment activation within the lateral prefrontal and dorsal anterior cingulate cortices predicted treatment response, likely reflecting baseline executive control differences. Third, post-CBT decreases in activation in default mode, visuo-attentional, and sensorimotor areas may support treatment-related increases in task engagement. Finally, functional connectivity between the amygdala and other limbic, prefrontal, and default mode network nodes predicts treatment response in anxiety and PTSD, highlighting its potential as a biomarker for therapeutic efficacy. Understanding these neurofunctional markers could lead to more targeted interventions, optimizing treatment planning and potentially leading to the development of "pretreatment" strategies to enhance the efficacy of existing treatments. This review highlights the necessity for future research to establish more direct links between neuroimaging findings and clinical outcomes to facilitate the translation of these findings into clinical practice.
Collapse
Affiliation(s)
- Dana E Díaz
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Hannah C Becker
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Kate D Fitzgerald
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA.
- New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
9
|
Khalaf A, Lopez E, Li J, Horn A, Edlow BL, Blumenfeld H. Shared subcortical arousal systems across sensory modalities during transient modulation of attention. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613316. [PMID: 39345640 PMCID: PMC11429725 DOI: 10.1101/2024.09.16.613316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Subcortical arousal systems are known to play a key role in controlling sustained changes in attention and conscious awareness. Recent studies indicate that these systems have a major influence on short-term dynamic modulation of visual attention, but their role across sensory modalities is not fully understood. In this study, we investigated shared subcortical arousal systems across sensory modalities during transient changes in attention using block and event-related fMRI paradigms. We analyzed massive publicly available fMRI datasets collected while 1,561 participants performed visual, auditory, tactile, and taste perception tasks. Our analyses revealed a shared circuit of subcortical arousal systems exhibiting early transient increases in activity in midbrain reticular formation and central thalamus across perceptual modalities, as well as less consistent increases in pons, hypothalamus, basal forebrain, and basal ganglia. Identifying these networks is critical for understanding mechanisms of normal attention and consciousness and may help facilitate subcortical targeting for therapeutic neuromodulation.
Collapse
Affiliation(s)
- Aya Khalaf
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Erick Lopez
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Jian Li
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Andreas Horn
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Movement Disorders & Neuromodulation Section, Department of Neurology, Charité – Universitätsmedizin, Berlin, Germany
| | - Brian L. Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Hal Blumenfeld
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
10
|
Valencia N, Seeger FR, Seitz KI, Carius L, Nkrumah RO, Schmitz M, Bertsch K, Herpertz SC. Childhood maltreatment and transdiagnostic connectivity of the default-mode network: The importance of duration of exposure. J Psychiatr Res 2024; 177:239-248. [PMID: 39033670 DOI: 10.1016/j.jpsychires.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/08/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Childhood maltreatment (CM) has been demonstrated to be associated with changes in resting-state functional connectivity of the default-mode network (DMN) across various mental disorders. Growing evidence regarding severity of CM is available but transdiagnostic research considering the role of both severity and duration of CM for DMN connectivity at rest is still scarce. We recruited a sample of participants with varying levels of CM suffering from three disorders in which a history of CM is frequently found, namely, post-traumatic stress disorder, major depressive disorder, or somatic symptom disorder, as well as healthy volunteers to examine DMN connectivity in a transdiagnostic sample. We expected to find changes in inter-network connectivity of the DMN related to higher self-reported levels of CM severity and duration. Resting-state functional magnetic resonance imaging scans of 128 participants were analyzed focusing on regions of interest (ROI-to-ROI approach) and whole-brain Seed-to-Voxel analyses with retrospectively assessed CM as predictor in a regression model. Changes in connectivity between nodes of the DMN and the visual network were identified to be associated with CM duration but not severity. CM duration showed associations with increased connectivity of the precuneus and visual regions, as well as sensory-motor regions. The observed changes in connectivity could be interpreted as an impairment of information transfer between the transmodal DMN and unimodal visual and sensory-motor regions with impairment increasing with duration of exposure to CM.
Collapse
Affiliation(s)
- Noel Valencia
- Department of General Psychiatry, Center for Psychosocial Medicine, Medical Faculty, Heidelberg University, Voßstr. 2, 69115, Heidelberg, Germany.
| | - Fabian R Seeger
- Department of General Psychiatry, Center for Psychosocial Medicine, Medical Faculty, Heidelberg University, Voßstr. 2, 69115, Heidelberg, Germany
| | - Katja I Seitz
- Department of General Psychiatry, Center for Psychosocial Medicine, Medical Faculty, Heidelberg University, Voßstr. 2, 69115, Heidelberg, Germany
| | - Lisa Carius
- Department of General Psychiatry, Center for Psychosocial Medicine, Medical Faculty, Heidelberg University, Voßstr. 2, 69115, Heidelberg, Germany
| | - Richard O Nkrumah
- Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany
| | - Marius Schmitz
- Department of General Psychiatry, Center for Psychosocial Medicine, Medical Faculty, Heidelberg University, Voßstr. 2, 69115, Heidelberg, Germany
| | - Katja Bertsch
- Department of General Psychiatry, Center for Psychosocial Medicine, Medical Faculty, Heidelberg University, Voßstr. 2, 69115, Heidelberg, Germany; German Center for Mental Health (DZPG), Partner Site Mannheim/Heidelberg/Ulm, Germany; Department of Psychology, Julius-Maximilians-University Wuerzburg, Marcusstr. 9-11, 97070, Wuerzburg, Germany
| | - Sabine C Herpertz
- Department of General Psychiatry, Center for Psychosocial Medicine, Medical Faculty, Heidelberg University, Voßstr. 2, 69115, Heidelberg, Germany; German Center for Mental Health (DZPG), Partner Site Mannheim/Heidelberg/Ulm, Germany
| |
Collapse
|
11
|
Schouwenaars IT, de Dreu MJ, Rutten GJM, Ramsey NF, Jansma JM. Cognitive brain activity before and after surgery in meningioma patients. Eur J Neurosci 2024; 60:3759-3771. [PMID: 38736372 DOI: 10.1111/ejn.16378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/30/2023] [Accepted: 04/18/2024] [Indexed: 05/14/2024]
Abstract
Neuropsychological studies have demonstrated that meningioma patients frequently exhibit cognitive deficits before surgery and show only limited improvement after surgery. Combining neuropsychological with functional imaging measurements can shed more light on the impact of surgery on cognitive brain function. We aimed to evaluate whether surgery affects cognitive brain activity in such a manner that it may mask possible changes in cognitive functioning measured by neuropsychological tests. Twenty-three meningioma patients participated in a fMRI measurement using a verbal working memory task as well as three neuropsychological tests focused on working memory, just before and 3 months after surgery. A region of interest based fMRI analysis was used to examine cognitive brain activity at these timepoints within the central executive network and default mode network. Neuropsychological assessment showed impaired cognitive functioning before as well as 3 months after surgery. Neuropsychological test scores, in-scanner task performance as well as brain activity within the central executive and default mode network were not significantly different between both timepoints. Our results indicate that surgery does not significantly affect cognitive brain activity in meningioma patients the first few months after surgery. Therefore, the lack of cognitive improvement after surgery is not likely the result of compensatory processes in the brain. Cognitive deficits that are already present before surgery appear to be persistent after surgery and a considerable recovery period. Our study shows potential leads that comprehensive cognitive evaluation can be of added value so that cognitive functioning may become a more prominent factor in clinical decision making.
Collapse
Affiliation(s)
- Irena T Schouwenaars
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, the Netherlands
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Miek J de Dreu
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, the Netherlands
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Geert-Jan M Rutten
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, the Netherlands
| | - Nick F Ramsey
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - J Martijn Jansma
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, the Netherlands
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
12
|
Rué‐Queralt J, Fluhr H, Tourbier S, Aleman‐Gómez Y, Pascucci D, Yerly J, Glomb K, Plomp G, Hagmann P. Connectome spectrum electromagnetic tomography: A method to reconstruct electrical brain source networks at high-spatial resolution. Hum Brain Mapp 2024; 45:e26638. [PMID: 38520365 PMCID: PMC10960556 DOI: 10.1002/hbm.26638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 03/25/2024] Open
Abstract
Connectome spectrum electromagnetic tomography (CSET) combines diffusion MRI-derived structural connectivity data with well-established graph signal processing tools to solve the M/EEG inverse problem. Using simulated EEG signals from fMRI responses, and two EEG datasets on visual-evoked potentials, we provide evidence supporting that (i) CSET captures realistic neurophysiological patterns with better accuracy than state-of-the-art methods, (ii) CSET can reconstruct brain responses more accurately and with more robustness to intrinsic noise in the EEG signal. These results demonstrate that CSET offers high spatio-temporal accuracy, enabling neuroscientists to extend their research beyond the current limitations of low sampling frequency in functional MRI and the poor spatial resolution of M/EEG.
Collapse
Affiliation(s)
- Joan Rué‐Queralt
- Department of RadiologyLausanne University Hospital and University of Lausanne (CHUV‐UNIL)LausanneSwitzerland
- Department of PsychologyUniversity of FribourgFribourgSwitzerland
- Center for ImagingEPFLLausanneSwitzerland
| | - Hugo Fluhr
- Department of RadiologyLausanne University Hospital and University of Lausanne (CHUV‐UNIL)LausanneSwitzerland
| | - Sebastien Tourbier
- Department of RadiologyLausanne University Hospital and University of Lausanne (CHUV‐UNIL)LausanneSwitzerland
| | - Yasser Aleman‐Gómez
- Department of RadiologyLausanne University Hospital and University of Lausanne (CHUV‐UNIL)LausanneSwitzerland
- Department of PsychiatryLausanne University HospitalLausanneSwitzerland
| | | | - Jérôme Yerly
- Department of Diagnostic and Interventional RadiologyLausanne University HospitalLausanneSwitzerland
- Center for Biomedical ImagingEPFLLausanneSwitzerland
| | - Katharina Glomb
- Department of NeurologyCharité University Medicine Berlin and Berlin Institute of HealthBerlinGermany
| | - Gijs Plomp
- Department of PsychologyUniversity of FribourgFribourgSwitzerland
| | - Patric Hagmann
- Department of RadiologyLausanne University Hospital and University of Lausanne (CHUV‐UNIL)LausanneSwitzerland
| |
Collapse
|
13
|
Liu X, Wang Z, Liu S, Gong L, Sosa PAV, Becker B, Jung TP, Dai XJ, Wan F. Activation network improves spatiotemporal modelling of human brain communication processes. Neuroimage 2024; 285:120472. [PMID: 38007187 DOI: 10.1016/j.neuroimage.2023.120472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 11/27/2023] Open
Abstract
Dynamic functional networks (DFN) have considerably advanced modelling of the brain communication processes. The prevailing implementation capitalizes on the system and network-level correlations between time series. However, this approach does not account for the continuous impact of non-dynamic dependencies within the statistical correlation, resulting in relatively stable connectivity patterns of DFN over time with limited sensitivity for communication dynamic between brain regions. Here, we propose an activation network framework based on the activity of functional connectivity (AFC) to extract new types of connectivity patterns during brain communication process. The AFC captures potential time-specific fluctuations associated with the brain communication processes by eliminating the non-dynamic dependency of the statistical correlation. In a simulation study, the positive correlation (r=0.966,p<0.001) between the extracted dynamic dependencies and the simulated "ground truth" validates the method's dynamic detection capability. Applying to autism spectrum disorders (ASD) and COVID-19 datasets, the proposed activation network extracts richer topological reorganization information, which is largely invisible to the DFN. Detailed, the activation network exhibits significant inter-regional connections between function-specific subnetworks and reconfigures more efficiently in the temporal dimension. Furthermore, the DFN fails to distinguish between patients and healthy controls. However, the proposed method reveals a significant decrease (p<0.05) in brain information processing abilities in patients. Finally, combining two types of networks successfully classifies ASD (83.636 % ± 11.969 %,mean±std) and COVID-19 (67.333 % ± 5.398 %). These findings suggest the proposed method could be a potential analytic framework for elucidating the neural mechanism of brain dynamics.
Collapse
Affiliation(s)
- Xucheng Liu
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China; Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau, 999078, China
| | - Ze Wang
- Macao Centre for Mathematical Sciences, and the Respiratory Disease AI Laboratory on Epidemic Intelligence and Medical Big Data Instrument Applications, Faculty of Innovation Engineering, Macau University of Science and Technology, Macau, 999078, China
| | - Shun Liu
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China; Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau, 999078, China
| | - Lianggeng Gong
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Pedro A Valdes Sosa
- The Clinical Hospital of Chengdu Brain Sciences Institute. University of Electronic Sciences and Technology of China, Chengdu, 611731, China; Cuban Neuroscience Center, La Habana 10200, Cuba
| | - Benjamin Becker
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong 999077, China; Department of Psychology, The University of Hong Kong, Hong Kong 999077, China
| | - Tzyy-Ping Jung
- Department of Bioengineering, University of California at San Diego, La Jolla 92092, United States; Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California at San Diego, La Jolla 92093, United States
| | - Xi-Jian Dai
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China; Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau, 999078, China; Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Feng Wan
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China; Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau, 999078, China.
| |
Collapse
|
14
|
Anderson MC, Subbulakshmi S. Amnesia in healthy people via hippocampal inhibition: A new forgetting mechanism. Q J Exp Psychol (Hove) 2024; 77:1-13. [PMID: 37691157 DOI: 10.1177/17470218231202728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Structural damage to the hippocampus gives rise to a severe memory deficit for personal experiences known as organic amnesia. Remarkably, such structural damage may not be the only way of creating amnesia; windows of amnesia can also arise when people deliberately disengage from memory via a process known as retrieval suppression. In this review, we discuss how retrieval suppression induces systemic inhibition of the hippocampus, creating "amnesic shadow" intervals in people's memory for their personal experiences. When new memories are encoded or older memories are reactivated during this amnesic shadow, these memories are disrupted, and such disruption even arises when older memories are subliminally cued. Evidence suggests that the systemic inhibition of the hippocampus during retrieval suppression that gives rise to the amnesic shadow may be mediated by engagement of hippocampal GABAergic inhibitory interneurons. Similar amnesic shadow effects are observed during working memory tasks like the n-back, which also induce notable hippocampal downregulation. We discuss our recent proposal that cognitive operations that require the disengagement of memory retrieval, such as retrieval suppression, are capable of mnemonic process inhibition (the inhibition of mnemonic processes such as encoding, consolidation, and retrieval and not simply individual memories). We suggest that people engage mnemonic process inhibition whenever they shift attention from internal processes to demanding perceptual-motor tasks that may otherwise be disrupted by distraction from our inner world. This hitherto unstudied model of inhibition is a missing step in understanding what happens when attentional shifts occur between internally and externally oriented processes to facilitate goal-directed behaviour. This process constitutes an important novel mechanism underlying the forgetting of life events.
Collapse
Affiliation(s)
- Michael C Anderson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - S Subbulakshmi
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Department of Psychology, Stanford University, Stanford, CA, USA
| |
Collapse
|
15
|
Wang F, Liu Z, Ford SD, Deng M, Zhang W, Yang J, Palaniyappan L. Aberrant Brain Dynamics in Schizophrenia During Working Memory Task: Evidence From a Replication Functional MRI Study. Schizophr Bull 2024; 50:96-106. [PMID: 37018464 PMCID: PMC10754176 DOI: 10.1093/schbul/sbad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
BACKGROUND AND HYPOTHESIS The integration of information that typifies working memory (WM) operation requires a flexible, dynamic functional relationship among brain regions. In schizophrenia, though WM capacity is prominently impaired at higher loads, the mechanistic underpinnings are unclear. As a result, we lack convincing cognitive remediation of load-dependent deficits. We hypothesize that reduced WM capacity arises from a disruption in dynamic functional connectivity when patients face cognitive demands. STUDY DESIGN We calculate the dynamic voxel-wise degree centrality (dDC) across the functional connectome in 142 patients with schizophrenia and 88 healthy controls (HCs) facing different WM loads during an n-back task. We tested associations of the altered variability in dDC and clinical symptoms and identified intermediate connectivity configurations (clustered states) across time during WM operation. These analyses were repeated in another independent dataset of 169 subjects (102 with schizophrenia). STUDY RESULTS Compared with HCs, patients showed an increased dDC variability of supplementary motor area (SMA) for the "2back vs. 0back" contrast. This instability at the SMA seen in patients correlated with increased positive symptoms and followed a limited "U-shape" pattern at rest-condition and 2 loads. In the clustering analysis, patients showed reduced centrality in the SMA, superior temporal gyrus, and putamen. These results were replicated in a constrained search in the second independent dataset. CONCLUSIONS Schizophrenia is characterized by a load-dependent reduction of stable centrality in SMA; this relates to the severity of positive symptoms, especially disorganized behaviour. Restoring SMA stability in the presence of cognitive demands may have a therapeutic effect in schizophrenia.
Collapse
Affiliation(s)
- Feiwen Wang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhening Liu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Sabrina D Ford
- Robarts Research Institute, Western University, London, ON, Canada
| | - Mengjie Deng
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Wen Zhang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Jie Yang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Lena Palaniyappan
- Robarts Research Institute, Western University, London, ON, Canada
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
| |
Collapse
|
16
|
Chang SE, Lenartowicz A, Hellemann GS, Uddin LQ, Bearden CE. Variability in Cognitive Task Performance in Early Adolescence Is Associated With Stronger Between-Network Anticorrelation and Future Attention Problems. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:948-957. [PMID: 37881561 PMCID: PMC10593900 DOI: 10.1016/j.bpsgos.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/22/2022] [Accepted: 11/09/2022] [Indexed: 11/28/2022] Open
Abstract
Background Intraindividual variability (IIV) during cognitive task performance is a key behavioral index of attention and a consistent marker of attention-deficit/hyperactivity disorder. In adults, lower IIV has been associated with anticorrelation between the default mode network (DMN) and dorsal attention network (DAN)-thought to underlie effective allocation of attention. However, whether these behavioral and neural markers of attention are 1) associated with each other and 2) can predict future attention-related deficits has not been examined in a developmental, population-based cohort. Methods We examined relationships at the baseline visit between IIV on 3 cognitive tasks, DMN-DAN anticorrelation, and parent-reported attention problems using data from the Adolescent Brain Cognitive Development (ABCD) Study (N = 11,878 participants, ages 9 to 10 years, female = 47.8%). We also investigated whether behavioral and neural markers of attention at baseline predicted attention problems 1, 2, and 3 years later. Results At baseline, greater DMN-DAN anticorrelation was associated with lower IIV across all 3 cognitive tasks (B = 0.22 to 0.25). Older age at baseline was associated with stronger DMN-DAN anticorrelation and lower IIV (B = -0.005 to -0.0004). Weaker DMN-DAN anticorrelation and IIV were cross-sectionally associated with attention problems (B = 1.41 to 7.63). Longitudinally, lower IIV at baseline was associated with less severe attention problems 1 to 3 years later, after accounting for baseline attention problems (B = 0.288 to 0.77). Conclusions The results suggest that IIV in early adolescence is associated with worsening attention problems in a representative cohort of U.S. youth. Attention deficits in early adolescence may be important for understanding and predicting future cognitive and clinical outcomes.
Collapse
Affiliation(s)
- Sarah E. Chang
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Agatha Lenartowicz
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Gerhard S. Hellemann
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
- Department of Public Health, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lucina Q. Uddin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Carrie E. Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
- Department of Psychology, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
17
|
Boisvert M, Lungu O, Pilon F, Dumais A, Potvin S. Regional cerebral blood flow at rest in schizophrenia and major depressive disorder: A functional neuroimaging meta-analysis. Psychiatry Res Neuroimaging 2023; 335:111720. [PMID: 37804739 DOI: 10.1016/j.pscychresns.2023.111720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 09/01/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023]
Abstract
Severe mental disorders (SMDs) such as schizophrenia (SCZ), major depressive disorder (MDD) and bipolar disorder (BD) are associated with altered brain function. Neuroimaging studies have illustrated spontaneous activity alterations across SMDs, but no meta-analysis has directly compared resting-state regional cerebral blood flow (rCBF) with one another. We conducted a meta-analysis of PET, SPECT and ASL neuroimaging studies to identify specific alterations of rCBF at rest in SMDs. Included are 20 studies in MDD, and 18 studies in SCZ. Due to the insufficient number of studies in BD, this disorder was left out of the analyses. Compared to controls, the SCZ group displayed reduced rCBF in the triangular part of the left inferior frontal gyrus and in the medial orbital part of the bilateral superior frontal gyrus. After correction, only a small cluster in the right inferior frontal gyrus exhibited reduced rCBF in MDD, compared to controls. Differences were found in these brain regions between SCZ and MDD. SCZ displayed reduced rCBF at rest in regions associated with default-mode, reward processing and language processing. MDD was associated with reduced rCBF in a cluster involved in response inhibition. Our meta-analysis highlights differences in the resting-state rCBF alterations between SCZ and MDD.
Collapse
Affiliation(s)
- Mélanie Boisvert
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal; Montreal, Quebec, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal; Montreal, Quebec, Canada
| | - Ovidiu Lungu
- Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal; Montreal, Quebec, Canada
| | - Florence Pilon
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal; Montreal, Quebec, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal; Montreal, Quebec, Canada
| | - Alexandre Dumais
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal; Montreal, Quebec, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal; Montreal, Quebec, Canada; Institut National de Psychiatrie Légale Philippe-Pinel, Montreal, Quebec, Canada
| | - Stéphane Potvin
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal; Montreal, Quebec, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal; Montreal, Quebec, Canada.
| |
Collapse
|
18
|
Abed M, Mansureh HH, Masoud GAL, Elaheh H, Mohammad-Hossein NHK, Yamin BD, Abdol-Hossein V. Construction of Meta-Thinking Educational Program Based on Mental-Brain Simulation ( MTMBS) and Evaluating its Effectiveness on Executive Functions, Emotion Regulation, and Impulsivity in Children With ADHD: A Resting-State Functional MRI Study. J Atten Disord 2023; 27:1223-1251. [PMID: 36843348 DOI: 10.1177/10870547231155436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
OBJECTIVE The aim of present research was to make a Meta-Thinking educational program based on mental-brain simulation and to evaluate its effectiveness on executive functions, emotion regulation and impulsivity in children with ADHD. METHODS The research method was Embedded Design: Embedded Experimental Model. The research sample included 32 children with ADHD who were randomly assigned to two experimental and control groups. The intervention was implemented for eight sessions of 1.5 hr for the experimental group, and fMRI images were taken from them, while the control group didn't receive any treatment. Finally, using semi-structured interviews, coherent information was collected from the parents of the experimental group about the changes made. Data were analyzed with SPSS-24, MAXQDA, fMRIprep, and FSL software. RESULTS The Meta-Thinking Educational Program had effect on performance of ADHD children and suppressed brain regions related to DMN. CONCLUSION The Implementation of this educational program plays a vital role in improving psychological problems of children with ADHD.
Collapse
|
19
|
Leonards CA, Harrison BJ, Jamieson AJ, Steward T, Lux S, Philipsen A, Davey CG. A distinct intra-individual suppression subnetwork in the brain's default mode network across cognitive tasks. Cereb Cortex 2023; 33:4553-4561. [PMID: 36130087 PMCID: PMC10110429 DOI: 10.1093/cercor/bhac361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Suppression of the brain's default mode network (DMN) during external goal-directed cognitive tasks has been consistently observed in neuroimaging studies. However, emerging insights suggest the DMN is not a monolithic "task-negative" network but is comprised of subsystems that show functional heterogeneity. Despite considerable research interest, no study has investigated the consistency of DMN activity suppression across multiple cognitive tasks within the same individuals. In this study, 85 healthy 15- to 25-year-olds completed three functional magnetic resonance imaging tasks that were designed to reliably map DMN suppression from a resting baseline. Our findings revealed a distinct suppression subnetwork across the three tasks that comprised traditional DMN and adjacent regions. Specifically, common suppression was observed in the medial prefrontal cortex, the dorsal-to-mid posterior cingulate cortex extending to the precuneus, and the posterior insular cortex and parietal operculum. Further, we found the magnitude of suppression of these regions were significantly correlated within participants across tasks. Overall, our findings indicate that externally oriented cognitive tasks elicit common suppression of a distinct subnetwork of the broader DMN. The consistency to which the DMN is suppressed within individuals suggests a domain-general mechanism that may reflect a stable feature of cognitive function that optimizes external goal-directed behavior.
Collapse
Affiliation(s)
- Christine A Leonards
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Alec J Jamieson
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Trevor Steward
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Victoria, 3010, Australia
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Silke Lux
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, 53127, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, 53127, Germany
| | - Christopher G Davey
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
20
|
Saygi T, Avyasov R, Barut O, Daglar Z, Baran O, Hasimoglu O, Altinkaya A, Tanriover N. Microsurgical anatomy of the isthmic cingulum: a new white matter crossroad and neurosurgical implications in the posteromedial interhemispheric approaches and the glioma invasion patterns. Neurosurg Rev 2023; 46:82. [PMID: 37002437 DOI: 10.1007/s10143-023-01982-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 04/03/2023]
Abstract
The dichotomy of the cingulum bundle into the dorsal supracallosal and ventral parahippocampal parts is widely accepted; however, the retrosplenial component with its multiple alternative connections has not been revealed. The aim of this study was to delineate the microsurgical anatomy of a connectionally transition zone, the isthmic cingulum, in relation to the posteromedial interhemispheric access to the atrium and discuss the relevant patterns of glioma invasion on the basis of its fiber connections. White matter (WM) fibers were dissected layer by layer in a medial-to-lateral, lateral-to-medial, and posterior-to-anterior fashion. All related tracts and their connections were generated using deterministic tractography. The magnetic resonance imaging (MRI) tractography findings were correlated with those of fiber dissection. A medial parieto-occipital approach to reach the atrium was performed with special emphasis on the cingulate isthmus and underlying WM connections. The isthmic cingulum, introduced as a retrosplenial connectional crossroad for the first time, displayed multiple connections to the splenium and the superior thalamic radiations. Another new finding was the demonstration of lateral hemispheric extension of the isthmic cingulum fibers through the base of the posterior part of the precuneus at the base of the parieto-occipital sulcus. The laterally crossing cingulum fibers were interconnected with three distinct association tracts: the middle longitudinal (MdLF), the inferior frontooccipital fasciculi (IFOF), and the claustro-cortical fibers (CCF). In the process of entry to the atrium during posterior interhemispheric approaches, the splenial and thalamic connections, as well as the laterally crossing fibers of the isthmic cingulum, were all in jeopardy. The connectional anatomy of the retrosplenial area is much more complicated than previously known. The isthmic cingulum connections may explain the concept of interhemispheric and medial to lateral cerebral hemisphere invasion patterns in medial parieto-occipital and posteromesial temporal gliomas. The isthmic cingulum is of key importance in posteromedial interhemispheric approaches to both: the atrium and the posterior mesial temporal lobe.
Collapse
Affiliation(s)
- Tahsin Saygi
- Microsurgical Neuroanatomy Laboratory, Department of Neurosurgery, Cerrahpasa Medical Faculty, Istanbul University - Cerrahpasa, Istanbul, Turkey
- Department of Neurosurgery, Haseki Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Rashid Avyasov
- Microsurgical Neuroanatomy Laboratory, Department of Neurosurgery, Cerrahpasa Medical Faculty, Istanbul University - Cerrahpasa, Istanbul, Turkey
| | - Ozan Barut
- Microsurgical Neuroanatomy Laboratory, Department of Neurosurgery, Cerrahpasa Medical Faculty, Istanbul University - Cerrahpasa, Istanbul, Turkey
- Department of Neurosurgery, Basaksehir Cam Sakura Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Zeynep Daglar
- Microsurgical Neuroanatomy Laboratory, Department of Neurosurgery, Cerrahpasa Medical Faculty, Istanbul University - Cerrahpasa, Istanbul, Turkey
| | - Oguz Baran
- Microsurgical Neuroanatomy Laboratory, Department of Neurosurgery, Cerrahpasa Medical Faculty, Istanbul University - Cerrahpasa, Istanbul, Turkey
- Department of Neurosurgery, Koç University Hospital, Istanbul, Turkey
| | - Ozan Hasimoglu
- Department of Neurosurgery, Basaksehir Cam Sakura Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Ayca Altinkaya
- Department of Neurology, Basaksehir Cam Sakura Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Necmettin Tanriover
- Microsurgical Neuroanatomy Laboratory, Department of Neurosurgery, Cerrahpasa Medical Faculty, Istanbul University - Cerrahpasa, Istanbul, Turkey.
- Department of Neurosurgery, Cerrahpasa Medical Faculty, Istanbul University - Cerrahpasa, Cerrahpasa Street, No: 53, Fatih, Istanbul, Turkey.
| |
Collapse
|
21
|
Berchio C, Annen LC, Bouamoud Y, Micali N. Temporal dynamics of cognitive flexibility in adolescents with anorexia nervosa: A high-density EEG study. Eur J Neurosci 2023; 57:962-980. [PMID: 36683346 DOI: 10.1111/ejn.15921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/08/2022] [Accepted: 01/15/2023] [Indexed: 01/24/2023]
Abstract
Impairment in cognitive flexibility is a core symptom of anorexia nervosa (AN) and is associated with treatment resistance. Nevertheless, studies on the neural basis of cognitive flexibility in adolescent AN are rare. This study aimed to investigate brain networks underlying cognitive flexibility in adolescents with AN. To address this aim, participants performed a Dimensional Change Card Sorting task during high-density electroencephalography (EEG) recording. Anxiety was measured with the State-Trait Anxiety Inventory. Data were collected on 22 girls with AN and 23 controls. Evoked responses were investigated using global-spatial analysis. Adolescents with AN showed greater overall accuracy, fewer switch trial errors and reduced inverse efficiency switch cost relative to controls, although these effects disappeared after adjusting for trait and state anxiety. EEG results indicated augmented early visual orienting processing (P100) and subsequent impaired attentional mechanisms to task switching (P300b) in subjects with AN. During task switching, diminished activations in subjects with AN were identified in the posterior cingulate, calcarine sulcus and cerebellum, and task repetitions induced diminished activations in a network involving the medial prefrontal cortex, and several posterior regions, compared with controls. No significant associations were found between measures of cognitive flexibility and anxiety in the AN group. Findings of this study suggest atypical neural mechanisms underlying cognitive flexibility in adolescents with AN. More importantly, our findings suggest that different behavioural profiles in AN could relate to differences in anxiety levels. Future research should investigate the efficacy of cognitive training to rebalance brain networks of cognitive flexibility in AN.
Collapse
Affiliation(s)
- Cristina Berchio
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lucie Clémentine Annen
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ynès Bouamoud
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nadia Micali
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Great Ormond Street Institute of Child Health, University College London, London, UK.,Mental Health Services in the Capital Region of Denmark, Eating Disorders Research Unit, Psychiatric Centre Ballerup, Ballerup, Denmark
| |
Collapse
|
22
|
Fafrowicz M, Ceglarek A, Olszewska J, Sobczak A, Bohaterewicz B, Ostrogorska M, Reuter-Lorenz P, Lewandowska K, Sikora-Wachowicz B, Oginska H, Hubalewska-Mazgaj M, Marek T. Dynamics of working memory process revealed by independent component analysis in an fMRI study. Sci Rep 2023; 13:2900. [PMID: 36808174 PMCID: PMC9938907 DOI: 10.1038/s41598-023-29869-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 02/11/2023] [Indexed: 02/20/2023] Open
Abstract
Human memory is prone to errors in many everyday activities but also when cultivating hobbies such as traveling and/or learning a new language. For instance, while visiting foreign countries, people erroneously recall foreign language words that are meaningless to them. Our research simulated such errors in a modified Deese-Roediger-McDermott paradigm for short-term memory with phonologically related stimuli aimed at uncovering behavioral and neuronal indices of false memory formation with regard to time-of-day, a variable known to influence memory. Fifty-eight participants were tested in a magnetic resonance (MR) scanner twice. The results of an Independent Component Analysis revealed encoding-related activity of the medial visual network preceding correct recognition of positive probes and correct rejection of lure probes. The engagement of this network preceding false alarms was not observed. We also explored if diurnal rhythmicity influences working memory processes. Diurnal differences were seen in the default mode network and the medial visual network with lower deactivation in the evening hours. The GLM results showed greater activation of the right lingual gyrus, part of the visual cortex and the left cerebellum in the evening. The study offers new insight into the mechanisms associated with false memories, suggesting that deficient engagement of the medial visual network during the memorization phase of a task results in short-term memory distortions. The results shed new light on the dynamics of working memory processes by taking into account the effect of time-of-day on memory performance.
Collapse
Affiliation(s)
- Magdalena Fafrowicz
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Lojasiewicza Street 4, 30-348, Krakow, Poland.
| | - Anna Ceglarek
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Lojasiewicza Street 4, 30-348, Krakow, Poland.
| | - Justyna Olszewska
- grid.267474.40000 0001 0674 4543Department of Psychology, University of Wisconsin-Oshkosh, Oshkosh, WI USA
| | - Anna Sobczak
- grid.5522.00000 0001 2162 9631Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Lojasiewicza Street 4, 30-348 Krakow, Poland
| | - Bartosz Bohaterewicz
- grid.433893.60000 0001 2184 0541Department of Psychology of Individual Differences, Psychological Diagnosis and Psychometrics, Faculty of Psychology, SWPS University of Social Sciences and Humanities, Warsaw, Poland
| | - Monika Ostrogorska
- grid.5522.00000 0001 2162 9631Chair of Radiology, Medical College, Jagiellonian University, Krakow, Poland
| | - Patricia Reuter-Lorenz
- grid.214458.e0000000086837370Department of Psychology, University of Michigan, Ann Arbor, MI USA
| | - Koryna Lewandowska
- grid.5522.00000 0001 2162 9631Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Lojasiewicza Street 4, 30-348 Krakow, Poland
| | - Barbara Sikora-Wachowicz
- grid.5522.00000 0001 2162 9631Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Lojasiewicza Street 4, 30-348 Krakow, Poland
| | - Halszka Oginska
- grid.5522.00000 0001 2162 9631Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Lojasiewicza Street 4, 30-348 Krakow, Poland
| | - Magdalena Hubalewska-Mazgaj
- grid.413454.30000 0001 1958 0162Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Tadeusz Marek
- grid.5522.00000 0001 2162 9631Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Lojasiewicza Street 4, 30-348 Krakow, Poland
| |
Collapse
|
23
|
Abstract
Consciousness is a fascinating field of neuroscience research where questions often outnumber the answers. We advocate an open and optimistic approach where converging mechanisms in neuroscience may eventually provide a satisfactory understanding of consciousness. We first review several characteristics of conscious neural activity, including the involvement of dedicated systems for content and levels of consciousness, the distinction and overlap of mechanisms contributing to conscious states and conscious awareness of transient events, nonlinear transitions and involvement of large-scale networks, and finally the temporal nexus where conscious awareness of discrete events occurs when mechanisms of attention and memory meet. These considerations and recent new experimental findings lead us to propose an inclusive hypothesis involving four phases initiated shortly after an external sensory stimulus: (1) Detect-primary and higher cortical and subcortical circuits detect the stimulus and select it for conscious perception. (2) Pulse-a transient and massive neuromodulatory surge in subcortical-cortical arousal and salience networks amplifies signals enabling conscious perception to proceed. (3) Switch-networks that may interfere with conscious processing are switched off. (4) Wave-sequential processing through hierarchical lower to higher cortical regions produces a fully formed percept, encoded in frontoparietal working memory and medial temporal episodic memory systems for subsequent report of experience. The framework hypothesized here is intended to be nonexclusive and encourages the addition of other mechanisms with further progress. Ultimately, just as many mechanisms in biology together distinguish living from nonliving things, many mechanisms in neuroscience synergistically may separate conscious from nonconscious neural activity.
Collapse
Affiliation(s)
- Hal Blumenfeld
- Departments of Neurology, Neuroscience, and Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
24
|
Seghier ML. Multiple functions of the angular gyrus at high temporal resolution. Brain Struct Funct 2023; 228:7-46. [PMID: 35674917 DOI: 10.1007/s00429-022-02512-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/22/2022] [Indexed: 02/07/2023]
Abstract
Here, the functions of the angular gyrus (AG) are evaluated in the light of current evidence from transcranial magnetic/electric stimulation (TMS/TES) and EEG/MEG studies. 65 TMS/TES and 52 EEG/MEG studies were examined in this review. TMS/TES literature points to a causal role in semantic processing, word and number processing, attention and visual search, self-guided movement, memory, and self-processing. EEG/MEG studies reported AG effects at latencies varying between 32 and 800 ms in a wide range of domains, with a high probability to detect an effect at 300-350 ms post-stimulus onset. A three-phase unifying model revolving around the process of sensemaking is then suggested: (1) early AG involvement in defining the current context, within the first 200 ms, with a bias toward the right hemisphere; (2) attention re-orientation and retrieval of relevant information within 200-500 ms; and (3) cross-modal integration at late latencies with a bias toward the left hemisphere. This sensemaking process can favour accuracy (e.g. for word and number processing) or plausibility (e.g. for comprehension and social cognition). Such functions of the AG depend on the status of other connected regions. The much-debated semantic role is also discussed as follows: (1) there is a strong TMS/TES evidence for a causal semantic role, (2) current EEG/MEG evidence is however weak, but (3) the existing arguments against a semantic role for the AG are not strong. Some outstanding questions for future research are proposed. This review recognizes that cracking the role(s) of the AG in cognition is possible only when its exact contributions within the default mode network are teased apart.
Collapse
Affiliation(s)
- Mohamed L Seghier
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE. .,Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, UAE.
| |
Collapse
|
25
|
Schantell M, Taylor BK, Spooner RK, May PE, O’Neill J, Morsey BM, Wang T, Ideker T, Bares SH, Fox HS, Wilson TW. Epigenetic aging is associated with aberrant neural oscillatory dynamics serving visuospatial processing in people with HIV. Aging (Albany NY) 2022; 14:9818-9831. [PMID: 36534452 PMCID: PMC9831734 DOI: 10.18632/aging.204437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Despite effective antiretroviral therapy, cognitive impairment and other aging-related comorbidities are more prevalent in people with HIV (PWH) than in the general population. Previous research examining DNA methylation has shown PWH exhibit accelerated biological aging. However, it is unclear how accelerated biological aging may affect neural oscillatory activity in virally suppressed PWH, and more broadly how such aberrant neural activity may impact neuropsychological performance. METHODS In the present study, participants (n = 134) between the ages of 23 - 72 years underwent a neuropsychological assessment, a blood draw to determine biological age via DNA methylation, and a visuospatial processing task during magnetoencephalography (MEG). Our analyses focused on the relationship between biological age and oscillatory theta (4-8 Hz) and alpha (10 - 16 Hz) activity among PWH (n=65) and seronegative controls (n = 69). RESULTS PWH had significantly elevated biological age when controlling for chronological age relative to controls. Biological age was differentially associated with theta oscillations in the left posterior cingulate cortex (PCC) and with alpha oscillations in the right medial prefrontal cortex (mPFC) among PWH and seronegative controls. Stronger alpha oscillations in the mPFC were associated with lower CD4 nadir and lower current CD4 counts, suggesting such responses were compensatory. Participants who were on combination antiretroviral therapy for longer had weaker theta oscillations in the PCC. CONCLUSIONS These findings support the concept of interactions between biological aging and HIV status on the neural oscillatory dynamics serving visuospatial processing. Future work should elucidate the long-term trajectory and impact of accelerated aging on neural oscillatory dynamics in PWH.
Collapse
Affiliation(s)
- Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
| | - Brittany K. Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE 68178, USA
| | - Rachel K. Spooner
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine University, Düsseldorf, Germany
| | - Pamela E. May
- Department of Neurological Sciences, UNMC, Omaha, NE 68198, USA
| | - Jennifer O’Neill
- Department of Internal Medicine, Division of Infectious Diseases, UNMC, Omaha, NE 68198, USA
| | | | - Tina Wang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Trey Ideker
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Sara H. Bares
- Department of Internal Medicine, Division of Infectious Diseases, UNMC, Omaha, NE 68198, USA
| | - Howard S. Fox
- Department of Neurological Sciences, UNMC, Omaha, NE 68198, USA
| | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
26
|
Sjuls GS, Specht K. Variability in Resting-State Functional Magnetic Resonance Imaging: The Effect of Body Mass, Blood Pressure, Hematocrit, and Glycated Hemoglobin on Hemodynamic and Neuronal Parameters. Brain Connect 2022; 12:870-882. [PMID: 35473334 PMCID: PMC9807254 DOI: 10.1089/brain.2021.0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Introduction: Replicability has become an increasing focus within the scientific communities with the ongoing "replication crisis." One area that appears to struggle with unreliable results is resting-state functional magnetic resonance imaging (rs-fMRI). Therefore, the current study aimed at improving the knowledge of endogenous factors that contribute to inter-individual variability. Methods: Arterial blood pressure (BP), body mass, hematocrit, and glycated hemoglobin were investigated as potential sources of between-subject variability in rs-fMRI, in healthy individuals. Whether changes in resting-state networks (rs-networks) could be attributed to variability in the blood-oxygen-level-dependent (BOLD)-signal, changes in neuronal activity, or both was of special interest. Within-subject parameters were estimated by utilizing dynamic-causal modeling, as it allows to make inferences on the estimated hemodynamic (BOLD-signal dynamics) and neuronal parameters (effective connectivity) separately. Results: The results of the analyses imply that BP and body mass can cause between-subject and between-group variability in the BOLD-signal and that all the included factors can affect the underlying connectivity. Discussion: Given the results of the current and previous studies, rs-fMRI results appear to be susceptible to a range of factors, which is likely to contribute to the low degree of replicability of these studies. Interestingly, the highest degree of variability seems to appear within the much-studied default mode network and its connections to other networks. Impact statement We believe that thanks to the evidence that we have collected by analyzing the well-controlled data of the Human Connectome Project with dynamic-causal modeling (DCM) and by focusing not only on the effective connectivity, which is the typical way of using DCM, but also by analyzing the underlying hemodynamic parameters, we were able to explore the underlying vascular dependencies in a much broader perspective. Our results challenge the premise for studying changes in the default mode network as a clinical marker of disease, and we add to the growing list of factors that contribute to resting-state network variability.
Collapse
Affiliation(s)
- Guro Stensby Sjuls
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,Mohn Medical and Imaging Visualization Centre, Haukeland University Hospital, Bergen, Norway.,Language Acquisition and Language Processing Lab, Department of Language and Literature, Norwegian University of Science and Technology, Trondheim, Norway.,Address correspondence to: Guro Stensby Sjuls, Language Acquisition and Language Processing Lab, Department of Language and Literature, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Karsten Specht
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,Mohn Medical and Imaging Visualization Centre, Haukeland University Hospital, Bergen, Norway.,Department of Education, UiT/The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
27
|
Kronemer SI, Aksen M, Ding JZ, Ryu JH, Xin Q, Ding Z, Prince JS, Kwon H, Khalaf A, Forman S, Jin DS, Wang K, Chen K, Hu C, Agarwal A, Saberski E, Wafa SMA, Morgan OP, Wu J, Christison-Lagay KL, Hasulak N, Morrell M, Urban A, Todd Constable R, Pitts M, Mark Richardson R, Crowley MJ, Blumenfeld H. Human visual consciousness involves large scale cortical and subcortical networks independent of task report and eye movement activity. Nat Commun 2022; 13:7342. [PMID: 36446792 PMCID: PMC9707162 DOI: 10.1038/s41467-022-35117-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022] Open
Abstract
The full neural circuits of conscious perception remain unknown. Using a visual perception task, we directly recorded a subcortical thalamic awareness potential (TAP). We also developed a unique paradigm to classify perceived versus not perceived stimuli using eye measurements to remove confounding signals related to reporting on conscious experiences. Using fMRI, we discovered three major brain networks driving conscious visual perception independent of report: first, increases in signal detection regions in visual, fusiform cortex, and frontal eye fields; and in arousal/salience networks involving midbrain, thalamus, nucleus accumbens, anterior cingulate, and anterior insula; second, increases in frontoparietal attention and executive control networks and in the cerebellum; finally, decreases in the default mode network. These results were largely maintained after excluding eye movement-based fMRI changes. Our findings provide evidence that the neurophysiology of consciousness is complex even without overt report, involving multiple cortical and subcortical networks overlapping in space and time.
Collapse
Affiliation(s)
- Sharif I Kronemer
- Department of Neurology, Yale University, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Mark Aksen
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Julia Z Ding
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Jun Hwan Ryu
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Qilong Xin
- Department of Neurology, Yale University, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Zhaoxiong Ding
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Jacob S Prince
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Hunki Kwon
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Aya Khalaf
- Department of Neurology, Yale University, New Haven, CT, USA
- Biomedical Engineering and Systems, Faculty of Engineering, Cairo University, Giza, Egypt
| | - Sarit Forman
- Department of Neurology, Yale University, New Haven, CT, USA
| | - David S Jin
- Department of Neurology, Yale University, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Kevin Wang
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Kaylie Chen
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Claire Hu
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Akshar Agarwal
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Erik Saberski
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Syed Mohammad Adil Wafa
- Department of Neurology, Yale University, New Haven, CT, USA
- Child Study Center, Yale University, New Haven, CT, USA
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Owen P Morgan
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Jia Wu
- Child Study Center, Yale University, New Haven, CT, USA
| | | | | | | | | | - R Todd Constable
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- Department of Neurosurgery, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | | | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Hal Blumenfeld
- Department of Neurology, Yale University, New Haven, CT, USA.
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA.
- Department of Neurosurgery, Yale University, New Haven, CT, USA.
- Department of Neuroscience, Yale University, New Haven, CT, USA.
| |
Collapse
|
28
|
Gibson BC, Claus ED, Sanguinetti J, Witkiewitz K, Clark VP. A review of functional brain differences predicting relapse in substance use disorder: Actionable targets for new methods of noninvasive brain stimulation. Neurosci Biobehav Rev 2022; 141:104821. [PMID: 35970417 DOI: 10.1016/j.neubiorev.2022.104821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022]
Abstract
Neuroimaging studies have identified a variety of brain regions whose activity predicts substance use (i.e., relapse) in patients with substance use disorder (SUD), suggesting that malfunctioning brain networks may exacerbate relapse. However, this knowledge has not yet led to a marked improvement in treatment outcomes. Noninvasive brain stimulation (NIBS) has shown some potential for treating SUDs, and a new generation of NIBS technologies offers the possibility of selectively altering activity in both superficial and deep brain structures implicated in SUDs. The goal of the current review was to identify deeper brain structures involved in relapse to SUD and give an account of innovative methods of NIBS that might be used to target them. Included studies measured fMRI in currently abstinent SUD patients and tracked treatment outcomes, and fMRI results were organized with the framework of the Addictions Neuroclinical Assessment (ANA). Four brain structures were consistently implicated: the anterior and posterior cingulate cortices, ventral striatum and insula. These four deeper brain structures may be appropriate future targets for the treatment of SUD using these innovative NIBS technologies.
Collapse
Affiliation(s)
- Benjamin C Gibson
- Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA
| | - Eric D Claus
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jay Sanguinetti
- The Center for Consciousness Studies, University of Arizona, Tucson, AZ 85719, USA
| | - Katie Witkiewitz
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Vincent P Clark
- Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA.
| |
Collapse
|
29
|
Jacob P, Nwokolo M, Cordon SM, Macdonald IA, Zelaya FO, Amiel SA, O'Daly O, Choudhary P. Altered functional connectivity during hypoglycaemia in type 1 diabetes. J Cereb Blood Flow Metab 2022; 42:1451-1462. [PMID: 35209745 PMCID: PMC9274862 DOI: 10.1177/0271678x221082911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Behavioural responses to hypoglycaemia require coordinated recruitment of broadly distributed networks of interacting brain regions. We investigated hypoglycaemia-related changes in brain connectivity in people without diabetes (ND) and with type 1 diabetes with normal (NAH) or impaired (IAH) hypoglycaemia awareness. Two-step hyperinsulinaemic hypoglycaemic clamps were performed in 14 ND, 15 NAH and 22 IAH participants. BOLD timeseries were acquired at euglycaemia (5.0 mmol/L) and hypoglycaemia (2.6 mmol/L), with symptom and counter-regulatory hormone measurements. We investigated hypoglycaemia-related connectivity changes using established seed regions for the default mode (DMN), salience (SN) and central executive (CEN) networks and regions whose activity is modulated by hypoglycaemia: the thalamus and right inferior frontal gyrus (RIFG). Hypoglycaemia-induced changes in the DMN, SN and CEN were evident in NAH (all p < 0.05), with no changes in ND or IAH. However, in IAH there was a reduction in connectivity between regions within the RIFG (p = 0.001), not evident in the ND or NAH groups. We conclude that hypoglycaemia induces coordinated recruitment of the DMN and SN in diabetes with preserved hypoglycaemia awareness which is absent in IAH and ND. Changes in connectivity in the RIFG, a region associated with attentional modulation, may be key in impaired hypoglycaemia awareness.
Collapse
Affiliation(s)
- Peter Jacob
- Diabetes Research Group (Denmark Hill), Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Munachiso Nwokolo
- Diabetes Research Group (Denmark Hill), Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Sally M Cordon
- School of Life Sciences, MRC-ARUK Centre of Excellence in Musculoskeletal Ageing, Nottingham University Medical School, Queen's Medical Centre, Nottingham, UK
| | - Ian A Macdonald
- School of Life Sciences, MRC-ARUK Centre of Excellence in Musculoskeletal Ageing, Nottingham University Medical School, Queen's Medical Centre, Nottingham, UK
| | - Fernando O Zelaya
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Stephanie A Amiel
- Diabetes Research Group (Denmark Hill), Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Owen O'Daly
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Pratik Choudhary
- Diabetes Research Group (Denmark Hill), Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
30
|
Flannery JS, Riedel MC, Hill-Bowen LD, Poudel R, Bottenhorn KL, Salo T, Laird AR, Gonzalez R, Sutherland MT. Altered large-scale brain network interactions associated with HIV infection and error processing. Netw Neurosci 2022; 6:791-815. [PMID: 36605414 PMCID: PMC9810366 DOI: 10.1162/netn_a_00241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/14/2022] [Indexed: 01/07/2023] Open
Abstract
Altered activity within and between large-scale brain networks has been implicated across various neuropsychiatric conditions. However, patterns of network dysregulation associated with human immunodeficiency virus (HIV), and further impacted by cannabis (CB) use, remain to be delineated. We examined the impact of HIV and CB on resting-state functional connectivity (rsFC) between brain networks and associations with error awareness and error-related network responsivity. Participants (N = 106), stratified into four groups (HIV+/CB+, HIV+/CB-, HIV-/CB+, HIV-/CB-), underwent fMRI scanning while completing a resting-state scan and a modified Go/NoGo paradigm assessing brain responsivity to errors and explicit error awareness. We examined separate and interactive effects of HIV and CB on resource allocation indexes (RAIs), a measure quantifying rsFC strength between the default mode network (DMN), central executive network (CEN), and salience network (SN). We observed reduced RAIs among HIV+ (vs. HIV-) participants, which was driven by increased SN-DMN rsFC. No group differences were detected for SN-CEN rsFC. Increased SN-DMN rsFC correlated with diminished error awareness, but not with error-related network responsivity. These outcomes highlight altered network interactions among participants with HIV and suggest such rsFC dysregulation may persist during task performance, reflecting an inability to disengage irrelevant mental operations, ultimately hindering error processing.
Collapse
Affiliation(s)
- Jessica S. Flannery
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael C. Riedel
- Department of Physics, Florida International University, Miami, FL, USA
| | | | - Ranjita Poudel
- Department of Psychology, Florida International University, Miami, FL, USA
| | - Katherine L. Bottenhorn
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Taylor Salo
- Department of Psychology, Florida International University, Miami, FL, USA
| | - Angela R. Laird
- Department of Physics, Florida International University, Miami, FL, USA
| | - Raul Gonzalez
- Department of Psychology, Florida International University, Miami, FL, USA
| | - Matthew T. Sutherland
- Department of Psychology, Florida International University, Miami, FL, USA,* Corresponding Author:
| |
Collapse
|
31
|
Ellis RJ, Sacktor N, Clifford DB, Marra CM, Collier AC, Gelman B, Robinson-Papp J, Letendre SL, Heaton RK. Neuropathic pain correlates with worsening cognition in people with human immunodeficiency virus. Brain 2022; 145:2206-2213. [PMID: 35773234 DOI: 10.1093/brain/awab462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/21/2021] [Accepted: 11/26/2021] [Indexed: 11/14/2022] Open
Abstract
Neuropathic pain and cognitive impairment are among the HIV-related conditions that have most stubbornly resisted amelioration by virally suppressive antiretroviral therapy. Overlaps between the regional brain substrates and mechanisms of neuropathic pain and cognitive disorders are increasingly recognized, yet no studies have examined the longitudinal relationship between these two disorders. Participants in the prospective, observational CNS HIV AntiRetroviral Therapy Effects Research (CHARTER) cohort underwent standardized clinical evaluations for clinical examination findings of distal sensory polyneuropathy, reporting distal neuropathic pain and neurocognitive performance at study entry (baseline) and an average of 12 years later. Change in neuropathic pain and neuropathy status from baseline to follow-up was by self-report and repeat examination, and change in neurocognitive performance was assessed using a previously published summary regression-based change score. Relationships between incident or worsened neuropathic pain and neurocognitive change were evaluated using uni- and multivariable regressions, including age at baseline and other relevant covariates. Participants were 385 people with HIV, 91 (23.6%) females, mean ± standard deviation (SD) age at baseline 43.5 (7.81) years, ethnicity 44.9% African American, 10.6% Hispanic, 42.6% non-Hispanic white and 1.82% other. Baseline median (interquartile range) nadir CD4 was 175 (34 309) cells/µl and current CD4 was 454 (279 639). Incident or worsened distal neuropathic pain occurred in 98 (25.5%) over the follow-up period. People with HIV with incident or worsened distal neuropathic pain had significantly worsened neurocognitive performance at follow-up compared to those without incident or worsened distal neuropathic pain (summary regression-based change score mean ± SD -0.408 ± 0.700 versus -0.228 ± 0.613; P = 0.0158). This effect remained significant when considering viral suppression on antiretroviral therapy, incident diabetes and other covariates as predictors. Overall neurocognitive change related to neuropathic pain was driven primarily by changes in the domains of executive function and speed of information processing. Those with incident distal neuropathy signs did not have neurocognitive worsening, nor did individuals who used opioid analgesics or other pain-modulating drugs such as amitriptyline. Worsened neurocognitive performance in people with HIV was associated with worsened neuropathic pain but not with changes in physical signs of neuropathy, and this was not attributable to therapies for pain or depression or to differences in viral suppression. This finding implies that incident or worsened pain may signal increased risk for neurocognitive impairment, and deserves more investigation, particularly if better pain management might stabilize or improve neurocognitive performance.
Collapse
Affiliation(s)
- Ronald J Ellis
- Department of Neurosciences, University of California, San Diego, CA 92103-8231, USA.,Department of Psychiatry, University of California, San Diego, CA 92103-8231, USA
| | - Ned Sacktor
- Department of Neurology, Johns-Hopkins University, Baltimore, MD 21224, USA
| | - David B Clifford
- Department of Neurology, Washington University, St. Louis, MO 63110, USA
| | - Christina M Marra
- Department of Neurology, University of Washington, Seattle, WA 98104, USA
| | - Ann C Collier
- Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - Benjamin Gelman
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | - Scott L Letendre
- Department of Psychiatry, University of California, San Diego, CA 92103, USA
| | - Robert K Heaton
- Department of Psychiatry, University of California, San Diego, CA 92103-8231, USA.,Department of Medicine, University of California, San Diego, CA 92103, USA
| | | |
Collapse
|
32
|
Chen Z, Feng T. Neural connectome features of procrastination: Current progress and future direction. Brain Cogn 2022; 161:105882. [PMID: 35679698 DOI: 10.1016/j.bandc.2022.105882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 11/02/2022]
Abstract
Procrastination refers to an irrationally delay for intended courses of action despite of anticipating a negative consequence due to this delay. Previous studies tried to reveal the neural substrates of procrastination in terms of connectome-based biomarkers. Based on this, we proposed a unified triple brain network model for procrastination and pinpointed out what challenges we are facing in understanding neural mechanism of procrastination. Specifically, based on neuroanatomical features, the unified triple brain network model proposed that connectome-based underpinning of procrastination could be ascribed to the abnormalities of self-control network (i.e., dorsolateral prefrontal cortex, DLPFC), emotion-regulation network (i.e., orbital frontal cortex, OFC), and episodic prospection network (i.e., para-hippocampus cortex, PHC). Moreover, based on the brain functional features, procrastination had been attributed to disruptive neural circuits on FPN (frontoparietal network)-SCN (subcortical network) and FPN-SAN (salience network), which led us to hypothesize the crucial roles of interplay between these networks on procrastination in unified triple brain network model. Despite of these findings, poor interpretability and computational model limited further understanding for procrastination from theoretical and neural perspectives. On balance, the current study provided an overview to show current progress on the connectome-based biomarkers for procrastination, and proposed the integrative neurocognitive model of procrastination.
Collapse
Affiliation(s)
- Zhiyi Chen
- Faculty of Psychology, Southwest University, Chongqing, China; Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing, China
| | - Tingyong Feng
- Faculty of Psychology, Southwest University, Chongqing, China; Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing, China.
| |
Collapse
|
33
|
Li Y, Wu K, Hu X, Xu T, Li Z, Zhang Y, Li K. Altered Effective Connectivity of Resting-State Networks by Tai Chi Chuan in Chronic Fatigue Syndrome Patients: A Multivariate Granger Causality Study. Front Neurol 2022; 13:858833. [PMID: 35720086 PMCID: PMC9203735 DOI: 10.3389/fneur.2022.858833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/05/2022] [Indexed: 12/05/2022] Open
Abstract
Numerous evidence has shown that patients with chronic fatigue syndrome (CFS) have changes in resting brain functional connectivity, but there is no study on the brain network effect of Tai Chi Chuan intervention in CFS. To explore the influence of Tai Chi Chuan exercise on the causal relationship between brain functional networks in patients with CFS, 21 patients with CFS and 19 healthy controls were recruited for resting-state functional magnetic resonance imaging (rs-fMRI) scanning and 36-item Short-Form Health Survey (SF-36) scale assessment before and after 1month-long training in Tai Chi Chuan. We extracted the resting brain networks using the independent component analysis (ICA) method, analyzed the changes of FC in these networks, conducted Granger causality analysis (GCA) on it, and analyzed the correlation between the difference causality value and the SF-36 scale. Compared to the healthy control group, the SF-36 scale scores of patients with CFS were lower at baseline. Meanwhile, the causal relationship between sensorimotor network (SMN) and default mode network (DMN) was weakened. The above abnormalities could be improved by Tai Chi Chuan training for 1 month. In addition, the correlation analyses showed that the causal relationship between SMN and DMN was positively correlated with the scores of Role Physical (RP) and Bodily Pain (BP) in CFS patients, and the change of causal relationship between SMN and DMN before and after training was positively correlated with the change of BP score. The findings suggest that Tai Chi Chuan is helpful to improve the quality of life for patients with CFS. The change of Granger causality between SMN and DMN may be a readout parameter of CFS. Tai Chi Chuan may promote the functional plasticity of brain networks in patients with CFS by regulating the information transmission between them.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Neurology and Stroke Center, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Kang Wu
- Department of Neurology and Stroke Center, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaojie Hu
- Department of Rehabilitation, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tianjiao Xu
- Department of Neurology and Stroke Center, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zongheng Li
- Department of Rehabilitation, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yong Zhang
- Department of Rehabilitation, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Yong Zhang
| | - Kuangshi Li
- Department of Rehabilitation, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Kuangshi Li
| |
Collapse
|
34
|
Fenerci C, Gurguryan L, Spreng RN, Sheldon S. Comparing neural activity during autobiographical memory retrieval between younger and older adults: An ALE meta-analysis. Neurobiol Aging 2022; 119:8-21. [DOI: 10.1016/j.neurobiolaging.2022.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/15/2022]
|
35
|
Hollander J, Huette S. Extracting blinks from continuous eye-tracking data in a mind wandering paradigm. Conscious Cogn 2022; 100:103303. [DOI: 10.1016/j.concog.2022.103303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 01/09/2022] [Accepted: 02/18/2022] [Indexed: 11/29/2022]
|
36
|
Mayhew SD, Coleman SC, Mullinger KJ, Can C. Across the adult lifespan the ipsilateral sensorimotor cortex negative BOLD response exhibits decreases in magnitude and spatial extent suggesting declining inhibitory control. Neuroimage 2022; 253:119081. [PMID: 35278710 PMCID: PMC9130740 DOI: 10.1016/j.neuroimage.2022.119081] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 11/27/2022] Open
Abstract
Ipsilateral sensorimotor (iSM1) cortex negative BOLD responses (NBR) are observed to unilateral tasks and are thought to reflect a functionally relevant component of sensorimotor inhibition. Evidence suggests that sensorimotor inhibitory mechanisms degrade with age, along with aspects of motor ability and dexterity. However, understanding of age-related changes to NBR is restricted by limited comparisons between young vs old adults groups with relatively small samples sizes. Here we analysed a BOLD fMRI dataset (obtained from the CamCAN repository) of 581 healthy subjects, gender-balanced, sampled from the whole adult lifespan performing a motor response task to an audio-visual stimulus. We aimed to investigate how sensorimotor and default-mode NBR characteristics of magnitude, spatial extent and response shape alter at every decade of the aging process. A linear decrease in iSM1 NBR magnitude was observed across the whole lifespan whereas the contralateral sensorimotor (cSM1) PBR magnitude was unchanged. An age-related decrease in the spatial extent of NBR and an increase in the ipsilateral positive BOLD response (PBR) was observed. This occurred alongside an increasing negative correlation between subject's iSM1 NBR and cSM1 PBR magnitude, reflecting a change in the balance between cortical excitation and inhibition. Conventional GLM analysis, using a canonical haemodynamic response (HR) function, showed disappearance of iSM1 NBR in subjects over 50 years of age. However, a deconvolution analysis showed that the shape of the iSM1 HR altered throughout the lifespan, with delayed time-to-peak and decreased magnitude. The most significant decreases in iSM1 HR magnitude occurred in older age (>60 years) but the first changes in shape and timing occurred as early as 30 years, suggesting possibility of separate mechanisms underlying these alterations. Reanalysis using data-driven HRs for each decade detected significant sensorimotor NBR into late older age, showing the importance of taking changes in HR morphology into account in fMRI aging studies. These results may reflect fMRI measures of the age-related decreases in transcollosal inhibition exerted upon ipsilateral sensorimotor cortex and alterations to the excitatory-inhibitory balance in the sensorimotor network.
Collapse
Affiliation(s)
- Stephen D Mayhew
- Centre for Human Brain Health (CHBH), School of Psychology, University of Birmingham, Birmingham, UK.
| | - Sebastian C Coleman
- Sir Peter Mansfield Imaging Centre (SPMIC), School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Karen J Mullinger
- Centre for Human Brain Health (CHBH), School of Psychology, University of Birmingham, Birmingham, UK; Sir Peter Mansfield Imaging Centre (SPMIC), School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Cam Can
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
37
|
Tripathi V, Garg R. Weak Task Synchronization of Default Mode Network in Task Based Paradigms. Neuroimage 2022; 251:118940. [PMID: 35121184 DOI: 10.1016/j.neuroimage.2022.118940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 11/15/2022] Open
Abstract
The brains Default mode network (DMN) is generally characterized by brain areas that gets deactivated upon the presentation of a wide variety of externally focused, attention demanding tasks. These areas also exhibit significant intra-DMN functional connectivity and significant negative functional connectivity with other brain areas, especially with attention networks, in both resting state and task conditions. Therefore, the DMN has been hypothesized to be involved in internally directed cognitive activities such as autobiographical recall of the past, future planning and mind wandering. Recent research has discovered the role of bottom-up attention in modulating the behaviour of DMN. We hypothesize that the de-engagement of the DMN regions upon the presentation of an externally-focused attention-demanding stimulus may not be strictly stimulus locked and may exhibit significant trial-to-trial as well as subject-to-subject variability. Due to the involvement of frontoparietal control network in modulating the anticorrelations between DMN and dorsal attention network (DAN), we expect the DMN regions to have lower inter-trial and inter-subject synchronization in their fMRI BOLD responses as compared to the bottom-up early-sensory task-positive regions. To test this hypothesis, we designed new statistical methods called Inter Trial Temporal Synchronization Analysis (IT-TSA) and Inter Subject TSA (IS-TSA) to analyse variability across trials and subjects respectively. We analysed four publicly available datasets (total 223 subjects) across seven tasks related to different cognitive modalities and found out that there is significantly low stimulus-locked synchronization across trials and subjects in the DMN regions as compared to early sensory task positive regions. Our study challenges the understanding of DMN as a strictly task-negative region and supports the recent findings that DMN acts as an active component associated with intrinsic processing which deactivates differentially and non-linearly across trials and subjects in the presence of extrinsic processes.
Collapse
Affiliation(s)
- Vaibhav Tripathi
- Department of Psychological and Brain Sciences, Boston University, MA, 02215, USA.
| | - Rahul Garg
- Department of Computer Science and Engineering, Indian Institute of Technology, Delhi, 110052, India; Amar Nath and Shashi Khosla School of Information Technology, Indian Institute of Technology, Delhi, 110052, India; National Resource Centre for Value Education in Engineering, Indian Institute of Technology, Delhi, 110052, India
| |
Collapse
|
38
|
The influence of uncertainty and validity of expectation on the perceptual decision of motion direction. ACTA PSYCHOLOGICA SINICA 2022. [DOI: 10.3724/sp.j.1041.2022.00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Flannery JS, Riedel MC, Salo T, Poudel R, Laird AR, Gonzalez R, Sutherland MT. HIV infection is linked with reduced error-related default mode network suppression and poorer medication management abilities. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110398. [PMID: 34224796 PMCID: PMC8380727 DOI: 10.1016/j.pnpbp.2021.110398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/07/2021] [Accepted: 06/29/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Brain activity linked with error processing has rarely been examined among persons living with HIV (PLWH) despite importance for monitoring and modifying behaviors that could lead to adverse health outcomes (e.g., medication non-adherence, drug use, risky sexual practices). Given that cannabis (CB) use is prevalent among PLWH and impacts error processing, we assessed the influence of HIV serostatus and chronic CB use on error-related brain activity while also considering associated implications for everyday functioning and clinically-relevant disease management behaviors. METHODS A sample of 109 participants, stratified into four groups by HIV and CB (HIV+/CB+, n = 32; HIV+/CB-, n = 27; HIV-/CB+, n = 28; HIV-/CB-, n = 22), underwent fMRI scanning while completing a modified Go/NoGo paradigm called the Error Awareness Task (EAT). Participants also completed a battery of well-validated instruments including a subjective report of everyday cognitive failures and an objective measure of medication management abilities. RESULTS Across all participants, we observed expected error-related anterior insula (aI) activation which correlated with better task performance (i.e., less errors) and, among HIV- participants, fewer self-reported cognitive failures. Regarding awareness, greater insula activation as well as greater posterior cingulate cortex (PCC) deactivation were notably linked with aware (vs. unaware) errors. Regarding group effects, unlike HIV- participants, PLWH displayed a lack of error-related deactivation in two default mode network (DMN) regions (i.e., PCC, medial prefrontal cortex [mPFC]). No CB main or interaction effects were detected. Across all participants, reduced error-related PCC deactivation correlated with reduced medication management abilities and PCC deactivation mediated the effect of HIV on such abilities. More lifetime CB use was linked with reduced error-related mPFC deactivation among HIV- participants and poorer medication management across CB users. CONCLUSIONS These results demonstrate that insufficient error-related DMN suppression linked with HIV infection, as well as chronic CB use among HIV- participants, has real-world consequences for medication management behaviors. We speculate that insufficient DMN suppression may reflect an inability to disengage task irrelevant mental operations, ultimately hindering error monitoring and behavior modification.
Collapse
Affiliation(s)
| | | | - Taylor Salo
- Department of Psychology, Florida International University, Miami, FL
| | - Ranjita Poudel
- Department of Psychology, Florida International University, Miami, FL
| | - Angela R. Laird
- Department of Physics, Florida International University, Miami, FL
| | - Raul Gonzalez
- Department of Psychology, Florida International University, Miami, FL
| | - Matthew T. Sutherland
- Department of Psychology, Florida International University, Miami, FL,Correspondence: Matthew T. Sutherland, Ph.D., Florida International University, Department of Psychology, AHC-4, RM 312, 11299 S.W. 8th St, Miami, FL 33199, , 305-348-7962
| |
Collapse
|
40
|
Sisakhti M, Sachdev PS, Batouli SAH. The Effect of Cognitive Load on the Retrieval of Long-Term Memory: An fMRI Study. Front Hum Neurosci 2021; 15:700146. [PMID: 34720904 PMCID: PMC8548369 DOI: 10.3389/fnhum.2021.700146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 09/22/2021] [Indexed: 12/02/2022] Open
Abstract
One of the less well-understood aspects of memory function is the mechanism by which the brain responds to an increasing load of memory, either during encoding or retrieval. Identifying the brain structures which manage this increasing cognitive demand would enhance our knowledge of human memory. Despite numerous studies about the effect of cognitive loads on working memory processes, whether these can be applied to long-term memory processes is unclear. We asked 32 healthy young volunteers to memorize all possible details of 24 images over a 12-day period ending 2 days before the fMRI scan. The images were of 12 categories relevant to daily events, with each category including a high and a low load image. Behavioral assessments on a separate group of participants (#22) provided the average loads of the images. The participants had to retrieve these previously memorized images during the fMRI scan in 15 s, with their eyes closed. We observed seven brain structures showing the highest activation with increasing load of the retrieved images, viz. parahippocampus, cerebellum, superior lateral occipital, fusiform and lingual gyri, precuneus, and posterior cingulate gyrus. Some structures showed reduced activation when retrieving higher load images, such as the anterior cingulate, insula, and supramarginal and postcentral gyri. The findings of this study revealed that the mechanism by which a difficult-to-retrieve memory is handled is mainly by elevating the activation of the responsible brain areas and not by getting other brain regions involved, which is a help to better understand the LTM retrieval process in the human brain.
Collapse
Affiliation(s)
- Minoo Sisakhti
- Institute for Cognitive Sciences Studies, Tehran, Iran.,Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Perminder S Sachdev
- Centre for Healthy Brain Aging (CHeBA), School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Seyed Amir Hossein Batouli
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran.,Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Neural correlates of visuospatial processing in migraine: does the pain network help? Mol Psychiatry 2021; 26:6599-6608. [PMID: 33837270 DOI: 10.1038/s41380-021-01085-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/01/2021] [Accepted: 03/26/2021] [Indexed: 01/03/2023]
Abstract
Migraine patients frequently report cognitive symptoms during the different phases of migraine. The most affected cognitive domains are visuospatial abilities, processing speed, attention and executive functions. We explored migraine patients' performance during a visuospatial task and investigated the activity of brain areas involved in visuospatial processing. A functional magnetic resonance imaging (MRI) visuospatial task, including an angle and a colour discrimination paradigm, was administrated to 17 headache-free migraine patients and 16 controls. Correlations between functional MRI abnormalities and subjects' performance, clinical and neuropsychological variables were also investigated. Deficits at visuospatial cognitive tests were present in around 20% of patients. Migraine patients maintained a preserved behavioural performance (reaction time and number of correct responses) during the angle discrimination task, while they performed less correctly in the colour task compared to controls (p = 0.05).The comparison of angle vs. colour task revealed an increased activity of the right insula, bilateral orbitofrontal cortex and medial frontal gyrus, and decreased activity of the bilateral posterior cingulate cortex in migraine patients compared to controls. In migraine patients, a better performance in the angle task was associated with higher activation of the right insula and orbitofrontal cortex, as well as with decreased activation of the right posterior cingulate cortex. Our results suggest an adaptive functional plasticity that might help migraine patients to overcome impaired visuospatial skills and preserve an adequate performance during a visuospatial task. These compensatory mechanisms seem to take advantage of recruiting brain areas that are commonly involved also in nociception.
Collapse
|
42
|
Wang X, Zhang R, Chen Z, Zhou F, Feng T. Neural basis underlying the relation between boredom proneness and procrastination: The role of functional coupling between precuneus/cuneus and posterior cingulate cortex. Neuropsychologia 2021; 161:107994. [PMID: 34416237 DOI: 10.1016/j.neuropsychologia.2021.107994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/05/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
Procrastination refers to voluntarily delaying an important task despite the fact that this decision will take a heavy toll on daily life. Previous researches have shown that boredom proneness is a robust predictor of procrastination and the default mode network (DMN) could be the neural substrate for the connection between the two variables mentioned above. However, how boredom proneness links to procrastination at the neural level remains unclear. To address this question, we adopted the voxel-based morphometry (VBM) and resting-state functional connectivity (RSFC) methods to identify the neural basis of the relation between boredom proneness and procrastination. Behavioral results indicated that boredom proneness was significantly positively correlated with procrastination. VBM results revealed that boredom proneness was negatively correlated with grey matter volumes in the precuneus/cuneus. Furthermore, the RSFC analyses showed that the functional connectivity between precuneus/cuneus and posterior cingulate cortex (PCC) was positively correlated with boredom proneness. More importantly, a mediation analysis found that boredom proneness played a fully mediating role in improving the relationship between precuneus/cuneus-PCC functional connectivity and procrastination. These findings suggest that the brain functional connectivity engages in attention control may account for the association between boredom proneness and procrastination, and highlight the important role of sustaining concentration on mitigating procrastination.
Collapse
Affiliation(s)
- Xu Wang
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Rong Zhang
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Zhiyi Chen
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Feng Zhou
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Tingyong Feng
- Faculty of Psychology, Southwest University, Chongqing, China; Key Laboratory of Cognition and Personality, Ministry of Education, China.
| |
Collapse
|
43
|
Si Y, Li F, Li F, Tu J, Yi C, Tao Q, Zhang X, Pei C, Gao S, Yao D, Xu P. The Growing From Adolescence to Adulthood Influences the Decision Strategy to Unfair Situations. IEEE Trans Cogn Dev Syst 2021. [DOI: 10.1109/tcds.2020.2981512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
44
|
McCormick K, Lacey S, Stilla R, Nygaard LC, Sathian K. Neural Basis of the Sound-Symbolic Crossmodal Correspondence Between Auditory Pseudowords and Visual Shapes. Multisens Res 2021; 35:29-78. [PMID: 34384048 PMCID: PMC9196751 DOI: 10.1163/22134808-bja10060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 07/17/2021] [Indexed: 11/19/2022]
Abstract
Sound symbolism refers to the association between the sounds of words and their meanings, often studied using the crossmodal correspondence between auditory pseudowords, e.g., 'takete' or 'maluma', and pointed or rounded visual shapes, respectively. In a functional magnetic resonance imaging study, participants were presented with pseudoword-shape pairs that were sound-symbolically congruent or incongruent. We found no significant congruency effects in the blood oxygenation level-dependent (BOLD) signal when participants were attending to visual shapes. During attention to auditory pseudowords, however, we observed greater BOLD activity for incongruent compared to congruent audiovisual pairs bilaterally in the intraparietal sulcus and supramarginal gyrus, and in the left middle frontal gyrus. We compared this activity to independent functional contrasts designed to test competing explanations of sound symbolism, but found no evidence for mediation via language, and only limited evidence for accounts based on multisensory integration and a general magnitude system. Instead, we suggest that the observed incongruency effects are likely to reflect phonological processing and/or multisensory attention. These findings advance our understanding of sound-to-meaning mapping in the brain.
Collapse
Affiliation(s)
- Kelly McCormick
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| | - Simon Lacey
- Department of Neurology, Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033-0859, USA
- Department of Neural and Behavioral Sciences, Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033-0859, USA
| | - Randall Stilla
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Lynne C. Nygaard
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| | - K. Sathian
- Department of Neurology, Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033-0859, USA
- Department of Neural and Behavioral Sciences, Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033-0859, USA
- Department of Psychology, Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033-0859, USA
| |
Collapse
|
45
|
Vu AT, Feinberg DA. The Role of Cerebral Metabolism in Improving Time Pressured Decisions. Front Psychol 2021; 12:690198. [PMID: 34354635 PMCID: PMC8329240 DOI: 10.3389/fpsyg.2021.690198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Speed-accuracy tradeoff (SAT) theory dictates that decisions can be made more quickly by sacrificing accuracy. Here we investigate whether the human brain can operate in a brief metabolic overdrive to overcome SAT and successfully make decisions requiring both high levels of speed and accuracy. In the context of BOLD fMRI we expect “a brief metabolic overdrive” to involve an increase in cerebral oxygen metabolism prior to increased cerebral blood flow–a phenomenon known as the “initial dip” which results from a sudden drop in oxyhemoglobin in perfusing blood. Human subjects performed a motion discrimination task consisting of different difficulties while emphasizing either accuracy (i.e., without time pressure) or both speed and accuracy (i.e., with time pressure). Using simultaneous multi-slice fMRI, for very fast (333 ms) measurement of whole brain BOLD activity, revealed two modes of physiological overdrive responses when subjects emphasized both speed and accuracy. The majority of subjects exhibited the hypothesized enhancement of initial dip amplitude in posterior visual cortex (PVC) with the size of the enhancement significantly correlated with improvement in behavioral performance. For these subjects, the traditionally analyzed post-stimulus overshoot was not affected by task emphasis. These results demonstrate the complexity and variability of the BOLD hemodynamic response. The discovered relationships between BOLD response and behavior were only observed when subjects emphasized both speed and accuracy in more difficult trials suggesting that the brain can perform in a state of metabolic overdrive with enhanced neural processing of sensory information specifically in challenging situations.
Collapse
Affiliation(s)
- An Thanh Vu
- San Francisco VA Health Care System, San Francisco, CA, United States.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - David A Feinberg
- Advanced Magnetic Resonance Imaging (MRI) Technologies, Sebastopol, CA, United States.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
46
|
Li F, Yi C, Liao Y, Jiang Y, Si Y, Song L, Zhang T, Yao D, Zhang Y, Cao Z, Xu P. Reconfiguration of Brain Network Between Resting State and P300 Task. IEEE Trans Cogn Dev Syst 2021. [DOI: 10.1109/tcds.2020.2965135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
47
|
Ramírez-Toraño F, García-Alba J, Bruña R, Esteba-Castillo S, Vaquero L, Pereda E, Maestú F, Fernández A. Hypersynchronized Magnetoencephalography Brain Networks in Patients with Mild Cognitive Impairment and Alzheimer's Disease in Down Syndrome. Brain Connect 2021; 11:725-733. [PMID: 33858203 DOI: 10.1089/brain.2020.0897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Introduction: The majority of individuals with Down syndrome (DS) show signs of Alzheimer's disease (AD) neuropathology in their fourth decade. However, there is a lack of specific markers for characterizing the disease stages while considering this population's differential features. Methods: Forty-one DS individuals participated in the study, and were classified into three groups according to their clinical status: Alzheimer's disease (AD-DS), mild cognitive impairment (MCI-DS), and controls (CN-DS). We performed an exhaustive neuropsychological evaluation and assessed brain functional connectivity (FC) from magnetoencephalographic recordings. Results: Compared with CN-DS, both MCI-DS and AD-DS showed a pattern of increased FC within the high alpha band. The neuropsychological assessment showed a generalized cognitive impairment, especially affecting mnestic functions, in MCI-DS and, more pronouncedly, in AD-DS. Discussion: These findings might help to characterize the AD-continuum in DS. In addition, they support the role of the excitatory/inhibitory imbalance as a key pathophysiological factor in AD. Impact statement The pattern of functional connectivity (FC) hypersynchronization found in this study resembles the largely reported Alzheimer's disease (AD) FC evolution pattern in population with typical development. This study supports the hypothesis of the excitatory/inhibitory imbalance as a key pathophysiological factor in AD, and its conclusions could help in the characterization and prediction of Down syndrome individuals with a greater likelihood of converting to dementia.
Collapse
Affiliation(s)
- Federico Ramírez-Toraño
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Center for Biomedical Technology, Technical University of Madrid, Madrid, Spain.,Department of Experimental Psychology, Universidad Complutense de Madrid, Madrid, Spain
| | - Javier García-Alba
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Center for Biomedical Technology, Technical University of Madrid, Madrid, Spain.,Research and Psychology in Education Department, Complutense University of Madrid, Madrid, Spain
| | - Ricardo Bruña
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Center for Biomedical Technology, Technical University of Madrid, Madrid, Spain.,Department of Experimental Psychology, Universidad Complutense de Madrid, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Susanna Esteba-Castillo
- Specialized Department in Mental Health and Intellectual Disability, Parc Hospitalari Martí i Julià-Institut 'd'Assistència Sanitària, Institut 'd'Assistència Sanitària (IAS), Girona, Spain
| | - Lucía Vaquero
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Center for Biomedical Technology, Technical University of Madrid, Madrid, Spain.,Department of Legal Medicine, Psychiatry and Pathology, Complutense University of Madrid, Spain
| | - Ernesto Pereda
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Center for Biomedical Technology, Technical University of Madrid, Madrid, Spain.,Electrical Engineering and Bioengineering Group, Department of Industrial Engineering and IUNE and ITB Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Fernando Maestú
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Center for Biomedical Technology, Technical University of Madrid, Madrid, Spain.,Department of Experimental Psychology, Universidad Complutense de Madrid, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Alberto Fernández
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Center for Biomedical Technology, Technical University of Madrid, Madrid, Spain.,Department of Legal Medicine, Psychiatry and Pathology, Complutense University of Madrid, Spain.,Institute of Sanitary Investigation (IdISSC), San Carlos University Hospital, Madrid, Spain
| |
Collapse
|
48
|
Koush Y, de Graaf RA, Kupers R, Dricot L, Ptito M, Behar KL, Rothman DL, Hyder F. Metabolic underpinnings of activated and deactivated cortical areas in human brain. J Cereb Blood Flow Metab 2021; 41:986-1000. [PMID: 33472521 PMCID: PMC8054719 DOI: 10.1177/0271678x21989186] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/04/2020] [Accepted: 12/11/2020] [Indexed: 11/16/2022]
Abstract
Neuroimaging with functional MRI (fMRI) identifies activated and deactivated brain regions in task-based paradigms. These patterns of (de)activation are altered in diseases, motivating research to understand their underlying biochemical/biophysical mechanisms. Essentially, it remains unknown how aerobic metabolism of glucose to lactate (aerobic glycolysis) and excitatory-inhibitory balance of glutamatergic and GABAergic neuronal activities vary in these areas. In healthy volunteers, we investigated metabolic distinctions of activating visual cortex (VC, a task-positive area) using a visual task and deactivating posterior cingulate cortex (PCC, a task-negative area) using a cognitive task. We used fMRI-guided J-edited functional MRS (fMRS) to measure lactate, glutamate plus glutamine (Glx) and γ-aminobutyric acid (GABA), as indicators of aerobic glycolysis and excitatory-inhibitory balance, respectively. Both lactate and Glx increased upon activating VC, but did not change upon deactivating PCC. Basal GABA was negatively correlated with BOLD responses in both brain areas, but during functional tasks GABA decreased in VC upon activation and GABA increased in PCC upon deactivation, suggesting BOLD responses in relation to baseline are impacted oppositely by task-induced inhibition. In summary, opposite relations between BOLD response and GABAergic inhibition, and increases in aerobic glycolysis and glutamatergic activity distinguish the BOLD response in (de)activated areas.
Collapse
Affiliation(s)
- Yury Koush
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Robin A de Graaf
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Ron Kupers
- BRAINlab, Department of Neuroscience, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Laurence Dricot
- Institute of NeuroScience (IoNS), Université catholique de Louvain (UCLouvain), Belgium
| | - Maurice Ptito
- School of Optometry, Université de Montreal, Montreal, Canada
| | - Kevin L Behar
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Douglas L Rothman
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Fahmeed Hyder
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
49
|
Chen YC, Yong W, Xing C, Feng Y, Haidari NA, Xu JJ, Gu JP, Yin X, Wu Y. Directed functional connectivity of the hippocampus in patients with presbycusis. Brain Imaging Behav 2021; 14:917-926. [PMID: 31270776 DOI: 10.1007/s11682-019-00162-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Presbycusis, associated with a diminished quality of life characterized by bilateral sensorineural hearing loss at high frequencies, has become an increasingly critical public health problem. This study aimed to identify directed functional connectivity (FC) of the hippocampus in patients with presbycusis and to explore the causes if the directed functional connections of the hippocampus were disrupted. Presbycusis patients (n = 32) and age-, sex-, and education-matched healthy controls (n = 40) were included in this study. The seed regions of bilateral hippocampus were selected to identify directed FC in patients with presbycusis using Granger causality analysis (GCA) approach. Correlation analyses were conducted to detect the associations of disrupted directed FC of hippocampus with clinical measures of presbycusis. Compared to healthy controls, decreased directed FC between inferior parietal lobule, insula, right supplementary motor area, middle temporal gyrus and hippocampus were detected in presbycusis patients. Furthermore, a negative correlation between TMB score and the decline of directed FC from left inferior parietal lobule to left hippocampus (r = -0.423, p = 0.025) and from right inferior parietal lobule to right hippocampus (r = -0.516, p = 0.005) were also observed. The decreased directed functional connections of the hippocampus were detected in patients with presbycusis, which was associated with specific cognitive performance. This study mainly emphasizes the crucial role of hippocampus in presbycusis and will enhance our understanding of the neuropathological mechanisms of presbycusis.
Collapse
Affiliation(s)
- Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Wei Yong
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Chunhua Xing
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Yuan Feng
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Nasir Ahmad Haidari
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Jin-Jing Xu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Jian-Ping Gu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China.
| | - Yuanqing Wu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China.
| |
Collapse
|
50
|
Stein A, Iyer KK, Khetani AM, Barlow KM. Changes in working memory-related cortical responses following pediatric mild traumatic brain injury: A longitudinal fMRI study. JOURNAL OF CONCUSSION 2021. [DOI: 10.1177/20597002211006541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Persistent post-concussion symptoms (PPCS) lasting longer than 4 weeks affect 25% of children with mild traumatic brain injury (mTBI) or concussion. Working memory (WM) problems are a common complaint in children with PPCS. Despite normal function on traditional neuropsychological tests, these children exhibit aberrant cortical responses within the dorsolateral prefrontal cortex (dlPFC) and default mode network (DMN) regions – both of which are implicated in WM. Using a prospective, longitudinal cohort study design, we investigated changes in cortical fMRI responses within the dlPFC and DMN during an nback WM task at two timepoints: one and two months post-injury. Across these timepoints, the primary outcome was change in cortical activations (increase in BOLD) and deactivations (decrease in BOLD) of both dlPFC and DMN. Twenty-nine children (mean age 15.49 ± 2.15; 48.3% male) with fMRI scans at both timepoints were included, following data quality control. Student’s t-tests were used to examine cortical activations across time and task difficulty. ANCOVA F-tests examined cortical responses after removal of baseline across time, task difficulty and recovery. Volumes of interest (5 mm sphere) were placed in peak voxel regions of the DMN and dlPFC to compare cortical responses between recovered and unrecovered participants over time (one-way ANOVA). Between one and two months post-injury, we found significant increases in dlPFC activations and significant activations and deactivations in the DMN with increasing task difficulty, alongside improved task performance. Cortical responses of the DMN and bilateral dlPFC displayed increased intensity in recovered participants, together with improved attention and behavioural symptoms. Overall, our findings suggest evidence of neural compensation and ongoing cognitive recovery from pediatric TBI over time between one and two months post injury in children with PPCS. These results highlight the wider and persisting implications of mTBI in children, whose maturing brains are particularly vulnerable to TBI.
Collapse
Affiliation(s)
- Athena Stein
- Acquired Brain Injury in Children Research Program, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Kartik K Iyer
- Acquired Brain Injury in Children Research Program, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Aneesh M Khetani
- Department of Pediatrics, University of Calgary, Calgary, Canada
| | - Karen M Barlow
- Acquired Brain Injury in Children Research Program, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Department of Pediatrics, University of Calgary, Calgary, Canada
- Queensland Pediatric Rehabilitation Service, Queensland Children's Hospital, Brisbane, Australia
| |
Collapse
|