1
|
Silberfeld A, Roe JM, Ellegood J, Lerch JP, Qiu L, Kim Y, Lee JG, Hopkins WD, Grandjean J, Ou Y, Pourquié O. Left-Right Brain-Wide Asymmetry of Neuroanatomy in the Mouse Brain. Neuroimage 2025:121017. [PMID: 39798830 DOI: 10.1016/j.neuroimage.2025.121017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/16/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025] Open
Abstract
Left-right asymmetry of the human brain is widespread through its anatomy and function. However, limited microscopic understanding of it exists, particularly for anatomical asymmetry where there are few well-established animal models. In humans, most brain regions show subtle, population-average regional asymmetries in thickness or surface area, alongside a macro-scale twisting called the cerebral petalia in which the right hemisphere protrudes anteriorly past the left. Here, we ask whether neuroanatomical asymmetries can be observed in mice, leveraging 6 mouse neuroimaging cohorts from 5 different research groups (∼3,500 animals). We found an anterior-posterior pattern of volume asymmetry with anterior regions larger on the right and posterior regions larger on the left. This pattern appears driven by similar trends in surface area and positional asymmetries, with the results together indicating a small brain-wide twisting pattern, similar to the human cerebral petalia. Furthermore, the results show no apparent relationship to known functional asymmetries in mice, emphasizing the complexity of the structure-function relationship in brain asymmetry. Our results recapitulate and extend previous patterns of asymmetry from two published studies as well as capture well-established, bilateral male-female differences in the mouse brain as a positive control. By establishing a signature of anatomical brain asymmetry in mice, we aim to provide a foundation for future studies to probe the mechanistic underpinnings of brain asymmetry seen in humans - a feature of the brain with extremely limited understanding.
Collapse
Affiliation(s)
- Andrew Silberfeld
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - James M Roe
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Norway
| | - Jacob Ellegood
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada.; Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, The University of Toronto, Toronto, ON, Canada; Department of Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Department of Preclinical Imaging, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Lily Qiu
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Jong Gwan Lee
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - William D Hopkins
- Department of Comparative Medicine & Michale E Keeling Center for Comparative Medicine and Research, The university of Texas MD Anderson Cancer Center
| | - Joanes Grandjean
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, Netherlands; Department for Medical Imaging, Radboud University Medical Center, PO Box 9101, Nijmegen, Netherlands
| | - Yangming Ou
- Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
2
|
Knopper RW, Skoven CS, Eskildsen SF, Østergaard L, Hansen B. The effects of locus coeruleus ablation on mouse brain volume and microstructure evaluated by high-field MRI. Front Cell Neurosci 2024; 18:1498133. [PMID: 39722677 PMCID: PMC11668759 DOI: 10.3389/fncel.2024.1498133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
The locus coeruleus (LC) produces most of the brain's noradrenaline (NA). Among its many roles, NA is often said to be neuroprotective and important for brain upkeep. For this reason, loss of LC integrity is thought to impact brain volume and microstructure as well as plasticity broadly. LC dysfunction is also a suspected driver in the development of neurodegenerative diseases. Nevertheless, the impact of LC dysfunction on the gross structure and microstructure of normal brains is not well-studied. We employed high-field ex vivo magnetic resonance imaging (MRI) to investigate brain volumetrics and microstructure in control (CON) mice and mice with LC ablation (LCA) at two ages, representing the developing brain and the fully matured brain. These whole-brain methods are known to be capable of detecting subtle morphological changes and brain microstructural remodeling. We found mice behavior consistent with histologically confirmed LC ablation. However, MRI showed no difference between CON and LCA groups with regard to brain size, relative regional volumes, or regional microstructural indices. Our findings suggest that LC-NA is not needed for postnatal brain maturation and growth in mice. Nor is it required for maintenance in the normal adult mouse brain, as no atrophy or microstructural aberration is detected after weeks of LC dysfunction. This adds clarity to the often-encountered notion that LC-NA is important for brain "trophic support" as it shows that such effects are likely most relevant to mechanisms related to brain plasticity and neuroprotection in the (pre)diseased brain.
Collapse
Affiliation(s)
- Rasmus West Knopper
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China
| | - Christian Stald Skoven
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Simon Fristed Eskildsen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Brian Hansen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
Kaller MS, Lazari A, Feng Y, van der Toorn A, Rühling S, Thomas CW, Shimizu T, Bannerman D, Vyazovskiy V, Richardson WD, Sampaio-Baptista C, Johansen-Berg H. Ablation of oligodendrogenesis in adult mice alters brain microstructure and activity independently of behavioral deficits. Glia 2024; 72:1728-1745. [PMID: 38982743 DOI: 10.1002/glia.24576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 07/11/2024]
Abstract
Oligodendrocytes continue to differentiate from their precursor cells even in adulthood, a process that can be modulated by neuronal activity and experience. Previous work has indicated that conditional ablation of oligodendrogenesis in adult mice leads to learning and memory deficits in a range of behavioral tasks. The current study replicated and re-evaluated evidence for a role of oligodendrogenesis in motor learning, using a complex running wheel task. Further, we found that ablating oligodendrogenesis alters brain microstructure (ex vivo MRI) and brain activity (in vivo EEG) independent of experience with the task. This suggests a role for adult oligodendrocyte formation in the maintenance of brain function and indicates that task-independent changes due to oligodendrogenesis ablation need to be considered when interpreting learning and memory deficits in this model.
Collapse
Affiliation(s)
- Malte S Kaller
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Alberto Lazari
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Yingshi Feng
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Annette van der Toorn
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht & Utrecht University, Utrecht, The Netherlands
| | - Sebastian Rühling
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christopher W Thomas
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Takahiro Shimizu
- The Wolfson Institute for Biomedical Research, University College London, London, UK
| | - David Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Vladyslav Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, UK
- The Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - William D Richardson
- The Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Cassandra Sampaio-Baptista
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
| | - Heidi Johansen-Berg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Garcia-Saldivar P, de León C, Mendez Salcido FA, Concha L, Merchant H. White matter structural bases for phase accuracy during tapping synchronization. eLife 2024; 13:e83838. [PMID: 39230417 PMCID: PMC11483129 DOI: 10.7554/elife.83838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 05/30/2024] [Indexed: 09/05/2024] Open
Abstract
We determined the intersubject association between the rhythmic entrainment abilities of human subjects during a synchronization-continuation tapping task (SCT) and the macro- and microstructural properties of their superficial (SWM) and deep (DWM) white matter. Diffusion-weighted images were obtained from 32 subjects who performed the SCT with auditory or visual metronomes and five tempos ranging from 550 to 950 ms. We developed a method to determine the density of short-range fibers that run underneath the cortical mantle, interconnecting nearby cortical regions (U-fibers). Notably, individual differences in the density of U-fibers in the right audiomotor system were correlated with the degree of phase accuracy between the stimuli and taps across subjects. These correlations were specific to the synchronization epoch with auditory metronomes and tempos around 1.5 Hz. In addition, a significant association was found between phase accuracy and the density and bundle diameter of the corpus callosum (CC), forming an interval-selective map where short and long intervals were behaviorally correlated with the anterior and posterior portions of the CC. These findings suggest that the structural properties of the SWM and DWM in the audiomotor system support the tapping synchronization abilities of subjects, as cortical U-fiber density is linked to the preferred tapping tempo and the bundle properties of the CC define an interval-selective topography.
Collapse
Affiliation(s)
- Pamela Garcia-Saldivar
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Campus JuriquillaQuerétaroMexico
| | - Cynthia de León
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Campus JuriquillaQuerétaroMexico
| | - Felipe A Mendez Salcido
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Campus JuriquillaQuerétaroMexico
| | - Luis Concha
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Campus JuriquillaQuerétaroMexico
- International Laboratory for Brain, Music and Sound (BRAMS)MontrealCanada
| | - Hugo Merchant
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Campus JuriquillaQuerétaroMexico
| |
Collapse
|
5
|
Ge GR, Song W, Giannetto MJ, Rolland JP, Nedergaard M, Parker KJ. Mouse brain elastography changes with sleep/wake cycles, aging, and Alzheimer's disease. Neuroimage 2024; 295:120662. [PMID: 38823503 PMCID: PMC11409907 DOI: 10.1016/j.neuroimage.2024.120662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/05/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024] Open
Abstract
Understanding the physiological processes in aging and how neurodegenerative disorders affect cognitive function is a high priority for advancing human health. One specific area of recently enabled research is the in vivo biomechanical state of the brain. This study utilized reverberant optical coherence elastography, a high-resolution elasticity imaging method, to investigate stiffness changes during the sleep/wake cycle, aging, and Alzheimer's disease in murine models. Four-dimensional scans of 44 wildtype mice, 13 mice with deletion of aquaporin-4 water channel, and 12 mice with Alzheimer-related pathology (APP/PS1) demonstrated that (1) cortical tissue became softer (on the order of a 10% decrease in shear wave speed) when young wildtype mice transitioned from wake to anesthetized, yet this effect was lost in aging and with mice overexpressing amyloid-β or lacking the water channel AQP4. (2) Cortical stiffness increased with age in all mice lines, but wildtype mice exhibited the most prominent changes as a function of aging. The study provides novel insight into the brain's biomechanics, the constraints of fluid flow, and how the state of brain activity affects basic properties of cortical tissues.
Collapse
Affiliation(s)
- Gary R Ge
- The Institute of Optics, University of Rochester, 480 Intercampus Drive, Rochester, NY 14627, USA
| | - Wei Song
- Center for Translational Neuromedicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Michael J Giannetto
- Center for Translational Neuromedicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Jannick P Rolland
- The Institute of Optics, University of Rochester, 480 Intercampus Drive, Rochester, NY 14627, USA; Department of Biomedical Engineering, University of Rochester, 204 Robert B. Goergen Hall, Rochester, NY 14627, USA; Center for Visual Science, University of Rochester, 361 Meliora Hall, Rochester, NY 14627, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA; Center for Translational Neuromedicine, University of Copenhagen, Blegdamsvej 3B, 2200-N, Denmark.
| | - Kevin J Parker
- Department of Biomedical Engineering, University of Rochester, 204 Robert B. Goergen Hall, Rochester, NY 14627, USA; Department of Electrical and Computer Engineering, University of Rochester, 500 Computer Studies Building, Rochester, NY 14627, USA; Department of Imaging Sciences (Radiology), University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
6
|
Takahashi T, Zhang H, Agetsuma M, Nabekura J, Otomo K, Okamura Y, Nemoto T. Large-scale cranial window for in vivo mouse brain imaging utilizing fluoropolymer nanosheet and light-curable resin. Commun Biol 2024; 7:232. [PMID: 38438546 PMCID: PMC10912766 DOI: 10.1038/s42003-024-05865-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 01/26/2024] [Indexed: 03/06/2024] Open
Abstract
Two-photon microscopy enables in vivo imaging of neuronal activity in mammalian brains at high resolution. However, two-photon imaging tools for stable, long-term, and simultaneous study of multiple brain regions in same mice are lacking. Here, we propose a method to create large cranial windows covering such as the whole parietal cortex and cerebellum in mice using fluoropolymer nanosheets covered with light-curable resin (termed the 'Nanosheet Incorporated into light-curable REsin' or NIRE method). NIRE method can produce cranial windows conforming the curved cortical and cerebellar surfaces, without motion artifacts in awake mice, and maintain transparency for >5 months. In addition, we demonstrate that NIRE method can be used for in vivo two-photon imaging of neuronal ensembles, individual neurons and subcellular structures such as dendritic spines. The NIRE method can facilitate in vivo large-scale analysis of heretofore inaccessible neural processes, such as the neuroplastic changes associated with maturation, learning and neural pathogenesis.
Collapse
Affiliation(s)
- Taiga Takahashi
- Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Department of Medical and Robotic Engineering Design, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo, 125-8585, Japan
| | - Hong Zhang
- Micro/Nano Technology Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| | - Masakazu Agetsuma
- Division of Homeostatic Development, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
- Quantum Regenerative and Biomedical Engineering Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Chiba Inage-ku, Chiba, 263-8555, Japan
| | - Junichi Nabekura
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Division of Homeostatic Development, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Kohei Otomo
- Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Department of Biochemistry and Systems Biomedicine, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yosuke Okamura
- Micro/Nano Technology Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
- Department of Applied Chemistry, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
- Course of Applied Science, Graduate School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Tomomi Nemoto
- Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
7
|
Pérot JB, Brouillet E, Flament J. The contribution of preclinical magnetic resonance imaging and spectroscopy to Huntington's disease. Front Aging Neurosci 2024; 16:1306312. [PMID: 38414634 PMCID: PMC10896846 DOI: 10.3389/fnagi.2024.1306312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/24/2024] [Indexed: 02/29/2024] Open
Abstract
Huntington's disease is an inherited disorder characterized by psychiatric, cognitive, and motor symptoms due to degeneration of medium spiny neurons in the striatum. A prodromal phase precedes the onset, lasting decades. Current biomarkers include clinical score and striatal atrophy using Magnetic Resonance Imaging (MRI). These markers lack sensitivity for subtle cellular changes during the prodromal phase. MRI and MR spectroscopy offer different contrasts for assessing metabolic, microstructural, functional, or vascular alterations in the disease. They have been used in patients and mouse models. Mouse models can be of great interest to study a specific mechanism of the degenerative process, allow better understanding of the pathogenesis from the prodromal to the symptomatic phase, and to evaluate therapeutic efficacy. Mouse models can be divided into three different constructions: transgenic mice expressing exon-1 of human huntingtin (HTT), mice with an artificial chromosome expressing full-length human HTT, and knock-in mouse models with CAG expansion inserted in the murine htt gene. Several studies have used MRI/S to characterized these models. However, the multiplicity of modalities and mouse models available complicates the understanding of this rich corpus. The present review aims at giving an overview of results obtained using MRI/S for each mouse model of HD, to provide a useful resource for the conception of neuroimaging studies using mouse models of HD. Finally, despite difficulties in translating preclinical protocols to clinical applications, many biomarkers identified in preclinical models have already been evaluated in patients. This review also aims to cover this aspect to demonstrate the importance of MRI/S for studying HD.
Collapse
Affiliation(s)
- Jean-Baptiste Pérot
- Laboratoire des Maladies Neurodégénératives, Molecular Imaging Research Center, Commissariat à l’Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Université Paris-Saclay, Fontenay-aux-Roses, France
- Institut du Cerveau – Paris Brain Institute – ICM, Sorbonne Université, Paris, France
| | - Emmanuel Brouillet
- Laboratoire des Maladies Neurodégénératives, Molecular Imaging Research Center, Commissariat à l’Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Julien Flament
- Laboratoire des Maladies Neurodégénératives, Molecular Imaging Research Center, Commissariat à l’Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Université Paris-Saclay, Fontenay-aux-Roses, France
| |
Collapse
|
8
|
Hanrahan J, Locke DP, Cahill LS. Magnetic Resonance Imaging to Detect Structural Brain Changes in Huntington's Disease: A Review of Data from Mouse Models. J Huntingtons Dis 2024; 13:279-299. [PMID: 39213087 PMCID: PMC11494634 DOI: 10.3233/jhd-240045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2024] [Indexed: 09/04/2024]
Abstract
Structural magnetic resonance imaging (MRI) is a powerful tool to visualize 3D neuroanatomy and assess pathology and disease progression in neurodegenerative disorders such as Huntington's disease (HD). The development of mouse models of HD that reproduce many of the psychiatric, motor and cognitive impairments observed in human HD has improved our understanding of the disease and provided opportunities for testing novel therapies. Similar to the clinical scenario, MRI of mouse models of HD demonstrates onset and progression of brain pathology. Here, we provided an overview of the articles that used structural MRI in mouse models of HD to date, highlighting the differences between studies and models and describing gaps in the current state of knowledge and recommendations for future studies.
Collapse
Affiliation(s)
- Jenna Hanrahan
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Drew P. Locke
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Lindsay S. Cahill
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
- Discipline of Radiology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| |
Collapse
|
9
|
Yee Y, Ellegood J, French L, Lerch JP. Organization of thalamocortical structural covariance and a corresponding 3D atlas of the mouse thalamus. Neuroimage 2024; 285:120453. [PMID: 37979895 DOI: 10.1016/j.neuroimage.2023.120453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 10/29/2023] [Accepted: 11/08/2023] [Indexed: 11/20/2023] Open
Abstract
For information from sensory organs to be processed by the brain, it is usually passed to appropriate areas of the cerebral cortex. Almost all of this information passes through the thalamus, a relay structure that reciprocally connects to the vast majority of the cortex. The thalamus facilitates this information transfer through a set of thalamocortical connections that vary in cellular structure, molecular profiles, innervation patterns, and firing rates. Additionally, corticothalamic connections allow for intracortical information transfer through the thalamus. These efferent and afferent connections between the thalamus and cortex have been the focus of many studies, and the importance of cortical connectivity in defining thalamus anatomy is demonstrated by multiple studies that parcellate the thalamus based on cortical connectivity profiles. Here, we examine correlated morphological variation between the thalamus and cortex, or thalamocortical structural covariance. For each voxel in the thalamus as a seed, we construct a cortical structural covariance map that represents correlated cortical volume variation, and examine whether high structural covariance is observed in cortical areas that are functionally relevant to the seed. Then, using these cortical structural covariance maps as features, we subdivide the thalamus into six non-overlapping regions (clusters of voxels), and assess whether cortical structural covariance is associated with cortical connectivity that specifically originates from these regions. We show that cortical structural covariance is high in areas of the cortex that are functionally related to the seed voxel, cortical structural covariance varies along cortical depth, and sharp transitions in cortical structural covariance profiles are observed when varying seed locations in the thalamus. Subdividing the thalamus based on structural covariance, we additionally demonstrate that the six thalamic clusters of voxels stratify cortical structural covariance along the dorsal-ventral, medial-lateral, and anterior-posterior axes. These cluster-associated structural covariance patterns are prominently detected in cortical regions innervated by fibers projecting out of their related thalamic subdivisions. Together, these results advance our understanding of how the thalamus and the cortex couple in their volumes. Our results indicate that these volume correlations reflect functional organization and structural connectivity, and further provides a novel segmentation of the mouse thalamus that can be used to examine thalamic structural variation and thalamocortical structural covariation in disease models.
Collapse
Affiliation(s)
- Yohan Yee
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| | - Jacob Ellegood
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Canada
| | - Leon French
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Jason P Lerch
- Department of Medical Biophysics, University of Toronto, Toronto, Canada; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Szulc-Lerch K, Yeung J, de Guzman AE, Egan S, Yee Y, Fernandes D, Lerch JP, Mabbott DJ, Nieman BJ. Exercise promotes growth and rescues volume deficits in the hippocampus after cranial radiation in young mice. NMR IN BIOMEDICINE 2023; 36:e5015. [PMID: 37548099 DOI: 10.1002/nbm.5015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/08/2023]
Abstract
Human and animal studies suggest that exercise promotes healthy brain development and function, including promoting hippocampal growth. Childhood cancer survivors that have received cranial radiotherapy exhibit hippocampal volume deficits and are at risk of impaired cognitive function, thus they may benefit from regular exercise. While morphological changes induced by exercise have been characterized using magnetic resonance imaging (MRI) in humans and animal models, evaluation of changes across the brain through development and following cranial radiation is lacking. In this study, we used high-resolution longitudinal MRI through development to evaluate the effects of exercise in a pediatric mouse model of cranial radiation. Female mice received whole-brain radiation (7 Gy) or sham radiation (0 Gy) at an infant equivalent age (P16). One week after irradiation, mice were housed in either a regular cage or a cage equipped with a running wheel. In vivo MRI was performed prior to irradiation, and at three subsequent timepoints to evaluate the effects of radiation and exercise. We used a linear mixed-effects model to assess volumetric and cortical thickness changes. Exercise caused substantial increases in the volumes of certain brain regions, notably the hippocampus in both irradiated and nonirradiated mice. Volume increases exceeded the deficits induced by cranial irradiation. The effect of exercise and irradiation on subregional hippocampal volumes was also characterized. In addition, we characterized cortical thickness changes across development and found that it peaked between P23 and P43, depending on the region. Exercise also induced regional alterations in cortical thickness after 3 weeks of voluntary exercise, while irradiation did not substantially alter cortical thickness. Our results show that exercise has the potential to alter neuroanatomical outcomes in both irradiated and nonirradiated mice. This supports ongoing research exploring exercise as a strategy for improving neurocognitive development for children, particularly those treated with cranial radiotherapy.
Collapse
Affiliation(s)
- Kamila Szulc-Lerch
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada
| | - Jonas Yeung
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada
- Translational Medicine, Hospital for Sick Children, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - A Elizabeth de Guzman
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada
- Translational Medicine, Hospital for Sick Children, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Shannon Egan
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada
- Translational Medicine, Hospital for Sick Children, Toronto, Canada
| | - Yohan Yee
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Canada
| | - Darren Fernandes
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Canada
| | - Jason P Lerch
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Donald J Mabbott
- Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Canada
- Department of Psychology, Hospital for Sick Children, Toronto, Canada
| | - Brian J Nieman
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada
- Translational Medicine, Hospital for Sick Children, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Ontario Institute for Cancer Research, Toronto, Canada
| |
Collapse
|
11
|
Tillotson R, Yan K, Ruston J, DeYoung T, Córdova A, Turcotte-Cardin V, Yee Y, Taylor C, Visuvanathan S, Babbs C, Ivakine EA, Sled JG, Nieman BJ, Picketts DJ, Justice MJ. A new mouse model of ATR-X syndrome carrying a common patient mutation exhibits neurological and morphological defects. Hum Mol Genet 2023; 32:2485-2501. [PMID: 37171606 PMCID: PMC10360390 DOI: 10.1093/hmg/ddad075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/18/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023] Open
Abstract
ATRX is a chromatin remodelling ATPase that is involved in transcriptional regulation, DNA damage repair and heterochromatin maintenance. It has been widely studied for its role in ALT-positive cancers, but its role in neurological function remains elusive. Hypomorphic mutations in the X-linked ATRX gene cause a rare form of intellectual disability combined with alpha-thalassemia called ATR-X syndrome in hemizygous males. Clinical features also include facial dysmorphism, microcephaly, short stature, musculoskeletal defects and genital abnormalities. As complete deletion of ATRX in mice results in early embryonic lethality, the field has largely relied on conditional knockout models to assess the role of ATRX in multiple tissues. Given that null alleles are not found in patients, a more patient-relevant model was needed. Here, we have produced and characterized the first patient mutation knock-in model of ATR-X syndrome, carrying the most common causative mutation, R246C. This is one of a cluster of missense mutations located in the chromatin-binding domain and disrupts its function. The knock-in mice recapitulate several aspects of the patient disorder, including craniofacial defects, microcephaly, reduced body size and impaired neurological function. They provide a powerful model for understanding the molecular mechanisms underlying ATR-X syndrome and testing potential therapeutic strategies.
Collapse
Affiliation(s)
- Rebekah Tillotson
- Genetics and Genome Biology Program, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital/Headley Way, Oxford OX3 9DS, UK
| | - Keqin Yan
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Julie Ruston
- Genetics and Genome Biology Program, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada
| | - Taylor DeYoung
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON M5T 3H7, Canada
| | - Alex Córdova
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Valérie Turcotte-Cardin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Yohan Yee
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON M5T 3H7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Christine Taylor
- Genetics and Genome Biology Program, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada
| | - Shagana Visuvanathan
- Genetics and Genome Biology Program, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada
| | - Christian Babbs
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital/Headley Way, Oxford OX3 9DS, UK
| | - Evgueni A Ivakine
- Genetics and Genome Biology Program, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - John G Sled
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON M5T 3H7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
- Translational Medicine Program, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada
| | - Brian J Nieman
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON M5T 3H7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
- Translational Medicine Program, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada
- Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - David J Picketts
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Monica J Justice
- Genetics and Genome Biology Program, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
12
|
Donovan APA, Rosko L, Ellegood J, Redhead Y, Green JBA, Lerch JP, Huang JK, Basson MA. Pervasive cortical and white matter anomalies in a mouse model for CHARGE syndrome. J Anat 2023; 243:51-65. [PMID: 36914558 PMCID: PMC10273342 DOI: 10.1111/joa.13856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/31/2023] [Accepted: 02/17/2023] [Indexed: 03/16/2023] Open
Abstract
CHARGE (Coloboma of the eye, Heart defects, Atresia of the choanae, Retardation of growth, Genital anomalies and Ear abnormalities) syndrome is a disorder caused by mutations in the gene encoding CHD7, an ATP dependent chromatin remodelling factor, and is characterised by a diverse array of congenital anomalies. These include a range of neuroanatomical comorbidities which likely underlie the varied neurodevelopmental disorders associated with CHARGE syndrome, which include intellectual disability, motor coordination deficits, executive dysfunction, and autism spectrum disorder. Cranial imaging studies are challenging in CHARGE syndrome patients, but high-throughput magnetic resonance imaging (MRI) techniques in mouse models allow for the unbiased identification of neuroanatomical defects. Here, we present a comprehensive neuroanatomical survey of a Chd7 haploinsufficient mouse model of CHARGE syndrome. Our study uncovered widespread brain hypoplasia and reductions in white matter volume across the brain. The severity of hypoplasia appeared more pronounced in posterior areas of the neocortex compared to anterior regions. We also perform the first assessment of white matter tract integrity in this model through diffusion tensor imaging (DTI) to assess the potential functional consequences of widespread reductions in myelin, which suggested the presence of white matter integrity defects. To determine if white matter alterations correspond to cellular changes, we quantified oligodendrocyte lineage cells in the postnatal corpus callosum, uncovering reduced numbers of mature oligodendrocytes. Together, these results present a range of promising avenues of focus for future cranial imaging studies in CHARGE syndrome patients.
Collapse
Affiliation(s)
- Alex P. A. Donovan
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonUK
| | - Lauren Rosko
- Department of BiologyGeorgetown UniversityWashingtonDCUSA
- Interdisciplinary Program in NeuroscienceGeorgetown UniversityWashingtonDCUSA
| | - Jacob Ellegood
- Mouse Imaging CentreThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Yushi Redhead
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonUK
| | - Jeremy B. A. Green
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonUK
| | - Jason P. Lerch
- Mouse Imaging CentreThe Hospital for Sick ChildrenTorontoOntarioCanada
- Department of Medical BiophysicsThe University of TorontoTorontoOntarioCanada
- Department of Neurosciences and Mental HealthThe Hospital for Sick ChildrenTorontoOntarioCanada
- Department of Preclinical Imaging, Wellcome Centre for Integrative NeuroimagingUniversity of OxfordOxfordUK
| | - Jeffrey K. Huang
- Department of BiologyGeorgetown UniversityWashingtonDCUSA
- Interdisciplinary Program in NeuroscienceGeorgetown UniversityWashingtonDCUSA
- Centre for Cell ReprogrammingGeorgetown UniversityWashingtonDCUSA
| | - M. Albert Basson
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonUK
- MRC Centre for Neurodevelopmental DisordersKing's College LondonLondonUK
| |
Collapse
|
13
|
Villaseñor PJ, Cortés-Servín D, Pérez-Moriel A, Aquiles A, Luna-Munguía H, Ramirez-Manzanares A, Coronado-Leija R, Larriva-Sahd J, Concha L. Multi-tensor diffusion abnormalities of gray matter in an animal model of cortical dysplasia. Front Neurol 2023; 14:1124282. [PMID: 37342776 PMCID: PMC10278582 DOI: 10.3389/fneur.2023.1124282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/18/2023] [Indexed: 06/23/2023] Open
Abstract
Focal cortical dysplasias are a type of malformations of cortical development that are a common cause of drug-resistant focal epilepsy. Surgical treatment is a viable option for some of these patients, with their outcome being highly related to complete surgical resection of lesions visible in magnetic resonance imaging (MRI). However, subtle lesions often go undetected on conventional imaging. Several methods to analyze MRI have been proposed, with the common goal of rendering subtle cortical lesions visible. However, most image-processing methods are targeted to detect the macroscopic characteristics of cortical dysplasias, which do not always correspond to the microstructural disarrangement of these cortical malformations. Quantitative analysis of diffusion-weighted MRI (dMRI) enables the inference of tissue characteristics, and novel methods provide valuable microstructural features of complex tissue, including gray matter. We investigated the ability of advanced dMRI descriptors to detect diffusion abnormalities in an animal model of cortical dysplasia. For this purpose, we induced cortical dysplasia in 18 animals that were scanned at 30 postnatal days (along with 19 control animals). We obtained multi-shell dMRI, to which we fitted single and multi-tensor representations. Quantitative dMRI parameters derived from these methods were queried using a curvilinear coordinate system to sample the cortical mantle, providing inter-subject anatomical correspondence. We found region- and layer-specific diffusion abnormalities in experimental animals. Moreover, we were able to distinguish diffusion abnormalities related to altered intra-cortical tangential fibers from those associated with radial cortical fibers. Histological examinations revealed myelo-architectural abnormalities that explain the alterations observed through dMRI. The methods for dMRI acquisition and analysis used here are available in clinical settings and our work shows their clinical relevance to detect subtle cortical dysplasias through analysis of their microstructural properties.
Collapse
Affiliation(s)
- Paulina J. Villaseñor
- Instituto de Neurobiología, Universidad Nacional Autónoma de México Campus Juriquilla, Querétaro, Mexico
| | - David Cortés-Servín
- Instituto de Neurobiología, Universidad Nacional Autónoma de México Campus Juriquilla, Querétaro, Mexico
| | | | - Ana Aquiles
- Instituto de Neurobiología, Universidad Nacional Autónoma de México Campus Juriquilla, Querétaro, Mexico
| | - Hiram Luna-Munguía
- Instituto de Neurobiología, Universidad Nacional Autónoma de México Campus Juriquilla, Querétaro, Mexico
| | | | - Ricardo Coronado-Leija
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, United States
| | - Jorge Larriva-Sahd
- Instituto de Neurobiología, Universidad Nacional Autónoma de México Campus Juriquilla, Querétaro, Mexico
| | - Luis Concha
- Instituto de Neurobiología, Universidad Nacional Autónoma de México Campus Juriquilla, Querétaro, Mexico
| |
Collapse
|
14
|
Lin CW, Ellegood J, Tamada K, Miura I, Konda M, Takeshita K, Atarashi K, Lerch JP, Wakana S, McHugh TJ, Takumi T. An old model with new insights: endogenous retroviruses drive the evolvement toward ASD susceptibility and hijack transcription machinery during development. Mol Psychiatry 2023; 28:1932-1945. [PMID: 36882500 PMCID: PMC10575786 DOI: 10.1038/s41380-023-01999-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 03/09/2023]
Abstract
The BTBR T+Itpr3tf/J (BTBR/J) strain is one of the most valid models of idiopathic autism, serving as a potent forward genetics tool to dissect the complexity of autism. We found that a sister strain with an intact corpus callosum, BTBR TF/ArtRbrc (BTBR/R), showed more prominent autism core symptoms but moderate ultrasonic communication/normal hippocampus-dependent memory, which may mimic autism in the high functioning spectrum. Intriguingly, disturbed epigenetic silencing mechanism leads to hyperactive endogenous retrovirus (ERV), a mobile genetic element of ancient retroviral infection, which increases de novo copy number variation (CNV) formation in the two BTBR strains. This feature makes the BTBR strain a still evolving multiple-loci model toward higher ASD susceptibility. Furthermore, active ERV, analogous to virus infection, evades the integrated stress response (ISR) of host defense and hijacks the transcriptional machinery during embryonic development in the BTBR strains. These results suggest dual roles of ERV in the pathogenesis of ASD, driving host genome evolution at a long-term scale and managing cellular pathways in response to viral infection, which has immediate effects on embryonic development. The wild-type Draxin expression in BTBR/R also makes this substrain a more precise model to investigate the core etiology of autism without the interference of impaired forebrain bundles as in BTBR/J.
Collapse
Affiliation(s)
- Chia-Wen Lin
- Laboratory for Mental Biology, RIKEN Brain Science Institute, Wako, 351-0198, Saitama, Japan
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako, 351-0198, Saitama, Japan
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, 650-0017, Kobe, Japan
| | - Jacob Ellegood
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, M5T 3H7, Canada
| | - Kota Tamada
- Laboratory for Mental Biology, RIKEN Brain Science Institute, Wako, 351-0198, Saitama, Japan
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, 650-0017, Kobe, Japan
| | - Ikuo Miura
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Mikiko Konda
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku, 160-8582, Tokyo, Japan
| | - Kozue Takeshita
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku, 160-8582, Tokyo, Japan
| | - Koji Atarashi
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku, 160-8582, Tokyo, Japan
- RIKEN Center for Integrative Medical Sciences, Tsurumi, 230-0045, Yokohama, Japan
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, M5T 3H7, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, Oxfordshire, OX39DU, UK
| | - Shigeharu Wakana
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako, 351-0198, Saitama, Japan
| | - Toru Takumi
- Laboratory for Mental Biology, RIKEN Brain Science Institute, Wako, 351-0198, Saitama, Japan.
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, 650-0017, Kobe, Japan.
- RIKEN Center for Biosystems Dynamics Research, Chuo, 650-0047, Kobe, Japan.
| |
Collapse
|
15
|
Sarker S, Colton A, Wen Z, Xu X, Erdi M, Jones A, Kofinas P, Tubaldi E, Walczak P, Janowski M, Liang Y, Sochol RD. 3D-Printed Microinjection Needle Arrays via a Hybrid DLP-Direct Laser Writing Strategy. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2201641. [PMID: 37064271 PMCID: PMC10104452 DOI: 10.1002/admt.202201641] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Indexed: 06/19/2023]
Abstract
Microinjection protocols are ubiquitous throughout biomedical fields, with hollow microneedle arrays (MNAs) offering distinctive benefits in both research and clinical settings. Unfortunately, manufacturing-associated barriers remain a critical impediment to emerging applications that demand high-density arrays of hollow, high-aspect-ratio microneedles. To address such challenges, here, a hybrid additive manufacturing approach that combines digital light processing (DLP) 3D printing with "ex situ direct laser writing (esDLW)" is presented to enable new classes of MNAs for fluidic microinjections. Experimental results for esDLW-based 3D printing of arrays of high-aspect-ratio microneedles-with 30 μm inner diameters, 50 μm outer diameters, and 550 μm heights, and arrayed with 100 μm needle-to-needle spacing-directly onto DLP-printed capillaries reveal uncompromised fluidic integrity at the MNA-capillary interface during microfluidic cyclic burst-pressure testing for input pressures in excess of 250 kPa (n = 100 cycles). Ex vivo experiments perform using excised mouse brains reveal that the MNAs not only physically withstand penetration into and retraction from brain tissue but also yield effective and distributed microinjection of surrogate fluids and nanoparticle suspensions directly into the brains. In combination, the results suggest that the presented strategy for fabricating high-aspect-ratio, high-density, hollow MNAs could hold unique promise for biomedical microinjection applications.
Collapse
Affiliation(s)
- Sunandita Sarker
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - Adira Colton
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - Ziteng Wen
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Xin Xu
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Metecan Erdi
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Anthony Jones
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - Peter Kofinas
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Eleonora Tubaldi
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - Piotr Walczak
- Program in Image Guided Neurointerventions, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Miroslaw Janowski
- Program in Image Guided Neurointerventions, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yajie Liang
- Program in Image Guided Neurointerventions, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ryan D Sochol
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
16
|
Xu N, LaGrow TJ, Anumba N, Lee A, Zhang X, Yousefi B, Bassil Y, Clavijo GP, Khalilzad Sharghi V, Maltbie E, Meyer-Baese L, Nezafati M, Pan WJ, Keilholz S. Functional Connectivity of the Brain Across Rodents and Humans. Front Neurosci 2022; 16:816331. [PMID: 35350561 PMCID: PMC8957796 DOI: 10.3389/fnins.2022.816331] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/14/2022] [Indexed: 12/15/2022] Open
Abstract
Resting-state functional magnetic resonance imaging (rs-fMRI), which measures the spontaneous fluctuations in the blood oxygen level-dependent (BOLD) signal, is increasingly utilized for the investigation of the brain's physiological and pathological functional activity. Rodents, as a typical animal model in neuroscience, play an important role in the studies that examine the neuronal processes that underpin the spontaneous fluctuations in the BOLD signal and the functional connectivity that results. Translating this knowledge from rodents to humans requires a basic knowledge of the similarities and differences across species in terms of both the BOLD signal fluctuations and the resulting functional connectivity. This review begins by examining similarities and differences in anatomical features, acquisition parameters, and preprocessing techniques, as factors that contribute to functional connectivity. Homologous functional networks are compared across species, and aspects of the BOLD fluctuations such as the topography of the global signal and the relationship between structural and functional connectivity are examined. Time-varying features of functional connectivity, obtained by sliding windowed approaches, quasi-periodic patterns, and coactivation patterns, are compared across species. Applications demonstrating the use of rs-fMRI as a translational tool for cross-species analysis are discussed, with an emphasis on neurological and psychiatric disorders. Finally, open questions are presented to encapsulate the future direction of the field.
Collapse
Affiliation(s)
- Nan Xu
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
| | - Theodore J. LaGrow
- Electrical and Computer Engineering, Georgia Tech, Atlanta, GA, United States
| | - Nmachi Anumba
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
| | - Azalea Lee
- Neuroscience Graduate Program, Emory University, Atlanta, GA, United States
- Emory University School of Medicine, Atlanta, GA, United States
| | - Xiaodi Zhang
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
| | - Behnaz Yousefi
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
| | - Yasmine Bassil
- Neuroscience Graduate Program, Emory University, Atlanta, GA, United States
| | - Gloria P. Clavijo
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
| | | | - Eric Maltbie
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
| | - Lisa Meyer-Baese
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
| | - Maysam Nezafati
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
| | - Wen-Ju Pan
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
| | - Shella Keilholz
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
- Neuroscience Graduate Program, Emory University, Atlanta, GA, United States
| |
Collapse
|
17
|
Klonarakis M, De Vos M, Woo E, Ralph L, Thacker JS, Gil-Mohapel J. The three sisters of fate: Genetics, pathophysiology and outcomes of animal models of neurodegenerative diseases. Neurosci Biobehav Rev 2022; 135:104541. [DOI: 10.1016/j.neubiorev.2022.104541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/28/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023]
|
18
|
Domain L, Guillery M, Linz N, König A, Batail JM, David R, Corouge I, Bannier E, Ferré JC, Dondaine T, Drapier D, Robert GH. Multimodal MRI cerebral correlates of verbal fluency switching and its impairment in women with depression. Neuroimage Clin 2021; 33:102910. [PMID: 34942588 PMCID: PMC8713114 DOI: 10.1016/j.nicl.2021.102910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The search of biomarkers in the field of depression requires easy implementable tests that are biologically rooted. Qualitative analysis of verbal fluency tests (VFT) are good candidates, but its cerebral correlates are unknown. METHODS We collected qualitative semantic and phonemic VFT scores along with grey and white matter anatomical MRI of depressed (n = 26) and healthy controls (HC, n = 25) women. Qualitative VFT variables are the "clustering score" (i.e. the ability to produce words within subcategories) and the "switching score" (i.e. the ability to switch between clusters). The clustering and switching scores were automatically calculated using a data-driven approach. Brain measures were cortical thickness (CT) and fractional anisotropy (FA). We tested for associations between CT, FA and qualitative VFT variables within each group. RESULTS Patients had reduced switching VFT scores compared to HC. Thicker cortex was associated with better switching score in semantic VFT bilaterally in the frontal (superior, rostral middle and inferior gyri), parietal (inferior parietal lobule including the supramarginal gyri), temporal (transverse and fusiform gyri) and occipital (lingual gyri) lobes in the depressed group. Positive association between FA and the switching score in semantic VFT was retrieved in depressed patients within the corpus callosum, right inferior fronto-occipital fasciculus, right superior longitudinal fasciculus extending to the anterior thalamic radiation (all p < 0.05, corrected). CONCLUSION Together, these results suggest that automatic qualitative VFT scores are associated with brain anatomy and reinforce its potential use as a surrogate for depression cerebral bases.
Collapse
Affiliation(s)
- L Domain
- Universitary Department of Psychiatry, Centre Hospitalier Guillaume Régnier, Rennes, France
| | - M Guillery
- Universitary Department of Psychiatry, Centre Hospitalier Guillaume Régnier, Rennes, France
| | - N Linz
- ki:elements, Saarbrücken, Germany
| | - A König
- Stars Team, Institut National de Recherche en Informatique et en Automatique (INRIA), Sophia Antipolis, France; CoBTeK (Cognition-Behaviour-Technology) Lab, FRIS-University Côte d'Azur, Nice, France
| | - J M Batail
- Universitary Department of Psychiatry, Centre Hospitalier Guillaume Régnier, Rennes, France
| | - R David
- Old-age Psychiatry DEPARTMENT, Geriatry Division, University of Nice, France
| | - I Corouge
- U1228 Empenn, UMR 6074, IRISA, University of Rennes 1, France
| | - E Bannier
- U1228 Empenn, UMR 6074, IRISA, University of Rennes 1, France
| | - J C Ferré
- U1228 Empenn, UMR 6074, IRISA, University of Rennes 1, France
| | - T Dondaine
- Univ. Lille, Inserm, CHU Lille, LilNCog, Lille Neuroscience & Cognition, F-59000 Lille, France
| | - D Drapier
- Universitary Department of Psychiatry, Centre Hospitalier Guillaume Régnier, Rennes, France
| | - G H Robert
- Universitary Department of Psychiatry, Centre Hospitalier Guillaume Régnier, Rennes, France; U1228 Empenn, UMR 6074, IRISA, University of Rennes 1, France
| |
Collapse
|
19
|
Accurate Localization of Linear Probe Electrode Arrays across Multiple Brains. eNeuro 2021; 8:ENEURO.0241-21.2021. [PMID: 34697075 PMCID: PMC8597948 DOI: 10.1523/eneuro.0241-21.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/02/2021] [Accepted: 10/14/2021] [Indexed: 11/21/2022] Open
Abstract
Recently developed probes for extracellular electrophysiological recordings have large numbers of electrodes on long linear shanks. Linear electrode arrays, such as Neuropixels probes, have hundreds of recording electrodes distributed over linear shanks that span several millimeters. Because of the length of the probes, linear probe recordings in rodents usually cover multiple brain areas. Typical studies collate recordings across several recording sessions and animals. Neurons recorded in different sessions and animals thus have to be aligned to each other and to a standardized brain coordinate system. Here, we evaluate two typical workflows for localization of individual electrodes in standardized coordinates. These workflows rely on imaging brains with fluorescent probe tracks and warping 3D image stacks to standardized brain atlases. One workflow is based on tissue clearing and selective plane illumination microscopy (SPIM), whereas the other workflow is based on serial block-face two-photon (SBF2P) microscopy. In both cases electrophysiological features are then used to anchor particular electrodes along the reconstructed tracks to specific locations in the brain atlas and therefore to specific brain structures. We performed groundtruth experiments, in which motor cortex outputs are labeled with ChR2 and a fluorescence protein. Light-evoked electrical activity and fluorescence can be independently localized. Recordings from brain regions targeted by the motor cortex reveal better than 0.1-mm accuracy for electrode localization, independent of workflow used.
Collapse
|
20
|
Excessive Laughter-like Vocalizations, Microcephaly, and Translational Outcomes in the Ube3a Deletion Rat Model of Angelman Syndrome. J Neurosci 2021; 41:8801-8814. [PMID: 34475199 PMCID: PMC8528495 DOI: 10.1523/jneurosci.0925-21.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
Angelman syndrome (AS) is a rare genetic neurodevelopmental disorder characterized by intellectual disabilities, motor and balance deficits, impaired communication, and a happy, excitable demeanor with frequent laughter. We sought to elucidate a preclinical outcome measure in male and female rats that addressed communication abnormalities of AS and other neurodevelopmental disorders in which communication is atypical and/or lack of speech is a core feature. We discovered, and herein report for the first time, excessive laughter-like 50 kHz ultrasonic emissions in the Ube3a mat-/pat+ rat model of AS, which suggests an excitable, playful demeanor and elevated positive affect, similar to the demeanor of individuals with AS. Also in line with the AS phenotype, Ube3a mat-/pat+ rats demonstrated aberrant social interactions with a novel partner, distinctive gait abnormalities, impaired cognition, an underlying LTP deficit, and profound reductions in brain volume. These unique, robust phenotypes provide advantages compared with currently available mouse models and will be highly valuable as outcome measures in the evaluation of therapies for AS.SIGNIFICANCE STATEMENT Angelman syndrome (AS) is a severe neurogenetic disorder for which there is no cure, despite decades of research using mouse models. This study used a recently developed rat model of AS to delineate disease-relevant outcome measures to facilitate therapeutic development. We found the rat to be a strong model of AS, offering several advantages over mouse models by exhibiting numerous AS-relevant phenotypes, including overabundant laughter-like vocalizations, reduced hippocampal LTP, and volumetric anomalies across the brain. These findings are unconfounded by detrimental motor abilities and background strain, issues plaguing mouse models. This rat model represents an important advancement in the field of AS, and the outcome metrics reported herein will be central to the therapeutic pipeline.
Collapse
|
21
|
Tamming RJ, Dumeaux V, Jiang Y, Shafiq S, Langlois L, Ellegood J, Qiu LR, Lerch JP, Bérubé NG. Atrx Deletion in Neurons Leads to Sexually Dimorphic Dysregulation of miR-137 and Spatial Learning and Memory Deficits. Cell Rep 2021; 31:107838. [PMID: 32610139 PMCID: PMC7326465 DOI: 10.1016/j.celrep.2020.107838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 04/13/2020] [Accepted: 06/08/2020] [Indexed: 12/31/2022] Open
Abstract
ATRX gene mutations have been identified in syndromic and non-syndromic intellectual disabilities in humans. ATRX is known to maintain genomic stability in neuroprogenitor cells, but its function in differentiated neurons and memory processes remains largely unresolved. Here, we show that the deletion of neuronal Atrx in mice leads to distinct hippocampal structural defects, fewer presynaptic vesicles, and an enlarged postsynaptic area at CA1 apical dendrite-axon junctions. We identify male-specific impairments in long-term contextual memory and in synaptic gene expression, linked to altered miR-137 levels. We show that ATRX directly binds to the miR-137 locus and that the enrichment of the suppressive histone mark H3K27me3 is significantly reduced upon the loss of ATRX. We conclude that the ablation of ATRX in excitatory forebrain neurons leads to sexually dimorphic effects on miR-137 expression and on spatial memory, identifying a potential therapeutic target for neurological defects caused by ATRX dysfunction. Loss of ATRX in neurons has sexually dimorphic effects on long-term spatial memory Targeted deletion of neuronal ATRX in mice causes ultrastructural synaptic defects ATRX null neurons show sex-specific changes in miR-137 and target synaptic transcripts ATRX directly binds and suppresses miR-137 in males via enrichment of H3K27me3
Collapse
Affiliation(s)
- Renee J Tamming
- Children's Health Research Institute, London, ON, Canada; Lawson Health Research Institute, London, ON, Canada; Department of Biochemistry, Western University, London, ON, Canada
| | - Vanessa Dumeaux
- Department of Paediatrics, Western University, London, ON, Canada; PERFORM Centre, Concordia University, Montreal, QC, Canada
| | - Yan Jiang
- Children's Health Research Institute, London, ON, Canada; Lawson Health Research Institute, London, ON, Canada
| | - Sarfraz Shafiq
- Children's Health Research Institute, London, ON, Canada; Department of Paediatrics, Western University, London, ON, Canada; Department of Anatomy & Cell Biology, Western University, London, ON, Canada
| | - Luana Langlois
- Children's Health Research Institute, London, ON, Canada; Lawson Health Research Institute, London, ON, Canada; Department of Anatomy & Cell Biology, Western University, London, ON, Canada
| | - Jacob Ellegood
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lily R Qiu
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada; Wellcome Centre for Integrative Neuroimaging, The University of Oxford, Oxford, UK
| | - Jason P Lerch
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, The University of Toronto, Toronto, ON, Canada; Wellcome Centre for Integrative Neuroimaging, The University of Oxford, Oxford, UK
| | - Nathalie G Bérubé
- Children's Health Research Institute, London, ON, Canada; Lawson Health Research Institute, London, ON, Canada; Department of Paediatrics, Western University, London, ON, Canada; Department of Anatomy & Cell Biology, Western University, London, ON, Canada; Department of Oncology, Western University, London, ON, Canada.
| |
Collapse
|
22
|
Ma D, Cardoso MJ, Zuluaga MA, Modat M, Powell NM, Wiseman FK, Cleary JO, Sinclair B, Harrison IF, Siow B, Popuri K, Lee S, Matsubara JA, Sarunic MV, Beg MF, Tybulewicz VLJ, Fisher EMC, Lythgoe MF, Ourselin S. Substantially thinner internal granular layer and reduced molecular layer surface in the cerebellar cortex of the Tc1 mouse model of down syndrome - a comprehensive morphometric analysis with active staining contrast-enhanced MRI. Neuroimage 2020; 223:117271. [PMID: 32835824 PMCID: PMC8417772 DOI: 10.1016/j.neuroimage.2020.117271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
Down Syndrome is a chromosomal disorder that affects the development of cerebellar cortical lobules. Impaired neurogenesis in the cerebellum varies among different types of neuronal cells and neuronal layers. In this study, we developed an imaging analysis framework that utilizes gadolinium-enhanced ex vivo mouse brain MRI. We extracted the middle Purkinje layer of the mouse cerebellar cortex, enabling the estimation of the volume, thickness, and surface area of the entire cerebellar cortex, the internal granular layer, and the molecular layer in the Tc1 mouse model of Down Syndrome. The morphometric analysis of our method revealed that a larger proportion of the cerebellar thinning in this model of Down Syndrome resided in the inner granule cell layer, while a larger proportion of the surface area shrinkage was in the molecular layer.
Collapse
Affiliation(s)
- Da Ma
- Department of Medical Physics and Biomedical Engineering, University College London, United Kingdom; Centre for Advanced Biomedical Imaging, University College London, United Kingdom; School of Engineering Science, Simon Fraser University, Burnaby, Canada.
| | - Manuel J Cardoso
- Department of Medical Physics and Biomedical Engineering, University College London, United Kingdom; School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom
| | - Maria A Zuluaga
- Department of Medical Physics and Biomedical Engineering, University College London, United Kingdom; Data Science Department, EURECOM, France
| | - Marc Modat
- Department of Medical Physics and Biomedical Engineering, University College London, United Kingdom; School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom
| | - Nick M Powell
- Department of Medical Physics and Biomedical Engineering, University College London, United Kingdom; Centre for Advanced Biomedical Imaging, University College London, United Kingdom
| | - Frances K Wiseman
- UK Dementia Research Institute at University College London, UK London; Down Syndrome Consortium (LonDownS), London, United Kingdom
| | - Jon O Cleary
- Centre for Advanced Biomedical Imaging, University College London, United Kingdom; Department of Radiology, Guy´s and St Thomas' NHS Foundation Trust, United Kingdom; Melbourne Brain Centre Imaging Unit, Department of Medicine and Radiology, University of Melbourne, Melbourne, Australia
| | - Benjamin Sinclair
- Centre for Advanced Biomedical Imaging, University College London, United Kingdom
| | - Ian F Harrison
- Centre for Advanced Biomedical Imaging, University College London, United Kingdom
| | - Bernard Siow
- Centre for Advanced Biomedical Imaging, University College London, United Kingdom; The Francis Crick Institute, London, United Kingdom
| | - Karteek Popuri
- School of Engineering Science, Simon Fraser University, Burnaby, Canada
| | - Sieun Lee
- School of Engineering Science, Simon Fraser University, Burnaby, Canada
| | - Joanne A Matsubara
- Department of Ophthalmology & Visual Science, University of British Columbia, Vancouver, Canada
| | - Marinko V Sarunic
- School of Engineering Science, Simon Fraser University, Burnaby, Canada
| | - Mirza Faisal Beg
- School of Engineering Science, Simon Fraser University, Burnaby, Canada
| | - Victor L J Tybulewicz
- The Francis Crick Institute, London, United Kingdom; Department of Immunology and Inflammation, Imperial College, London, United Kingdom
| | | | - Mark F Lythgoe
- Centre for Advanced Biomedical Imaging, University College London, United Kingdom
| | - Sebastien Ourselin
- Department of Medical Physics and Biomedical Engineering, University College London, United Kingdom; School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom
| |
Collapse
|
23
|
Tang Q, Tsytsarev V, Yan F, Wang C, Erzurumlu RS, Chen Y. In vivo voltage-sensitive dye imaging of mouse cortical activity with mesoscopic optical tomography. NEUROPHOTONICS 2020; 7:041402. [PMID: 33274250 PMCID: PMC7708784 DOI: 10.1117/1.nph.7.4.041402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 11/11/2020] [Indexed: 05/11/2023]
Abstract
Significance: Cellular layering is a hallmark of the mammalian neocortex with layer and cell type-specific connections within the cortical mantle and subcortical connections. A key challenge in studying circuit function within the neocortex is to understand the spatial and temporal patterns of information flow between different columns and layers. Aim: We aimed to investigate the three-dimensional (3D) layer- and area-specific interactions in mouse cortex in vivo. Approach: We applied a new promising neuroimaging method-fluorescence laminar optical tomography in combination with voltage-sensitive dye imaging (VSDi). VSDi is a powerful technique for interrogating membrane potential dynamics in assemblies of cortical neurons, but it is traditionally used for two-dimensional (2D) imaging. Our mesoscopic technique allows visualization of neuronal activity in a 3D manner with high temporal resolution. Results: We first demonstrated the depth-resolved capability of 3D mesoscopic imaging technology in Thy1-ChR2-YFP transgenic mice. Next, we recorded the long-range functional projections between sensory cortex (S1) and motor cortex (M1) in mice, in vivo, following single whisker deflection. Conclusions: The results show that mesoscopic imaging technique has the potential to investigate the layer-specific neural connectivity in the mouse cortex in vivo. Combination of mesoscopic imaging technique with optogenetic control strategy is a promising platform for determining depth-resolved interactions between cortical circuit elements.
Collapse
Affiliation(s)
- Qinggong Tang
- University of Oklahoma, Stephenson School of Biomedical Engineering, Norman, Oklahoma, United States
- University of Maryland, Fischell Department of Bioengineering, College Park, Maryland, United States
- Address all correspondence to Qinggong Tang, ; Reha S. Erzurumlu, ; Yu Chen,
| | - Vassiliy Tsytsarev
- University of Maryland School of Medicine, Department of Anatomy and Neurobiology, Baltimore, Maryland, United States
| | - Feng Yan
- University of Oklahoma, Stephenson School of Biomedical Engineering, Norman, Oklahoma, United States
| | - Chen Wang
- University of Oklahoma, Stephenson School of Biomedical Engineering, Norman, Oklahoma, United States
| | - Reha S. Erzurumlu
- University of Maryland School of Medicine, Department of Anatomy and Neurobiology, Baltimore, Maryland, United States
- Address all correspondence to Qinggong Tang, ; Reha S. Erzurumlu, ; Yu Chen,
| | - Yu Chen
- University of Maryland, Fischell Department of Bioengineering, College Park, Maryland, United States
- University of Massachusetts, Department of Biomedical Engineering, Amherst, Massachusetts, United States
- Address all correspondence to Qinggong Tang, ; Reha S. Erzurumlu, ; Yu Chen,
| |
Collapse
|
24
|
Sinha A, Ahmed S, George C, Tsagaris M, Naufer A, von Both I, Tkachyova I, van Eede M, Henkelman M, Schulze A. Magnetic resonance imaging reveals specific anatomical changes in the brain of Agat- and Gamt-mice attributed to creatine depletion and guanidinoacetate alteration. J Inherit Metab Dis 2020; 43:827-842. [PMID: 31951021 DOI: 10.1002/jimd.12215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/30/2019] [Accepted: 01/09/2020] [Indexed: 11/07/2022]
Abstract
Arginine:glycine amidinotransferase- and guanidinoacetate methyltransferase deficiency are severe neurodevelopmental disorders. It is not known whether mouse models of disease express a neuroanatomical phenotype. High-resolution magnetic resonance imaging (MRI) with advanced image analysis was performed in perfused, fixed mouse brains encapsulated with the skull from male, 10-12 week old Agat -exc and B6J.Cg-Gamt tm1Isb mice (n = 48; n = 8 per genotype, strain). T2-weighted MRI scans were nonlinearly aligned to a 3D atlas of the mouse brain with 62 structures identified. Local differences in brain shape related to genotype were assessed by analysis of deformation fields. Creatine (Cr) and guanidinoacetate (GAA) were measured with high-performance liquid chromatography (HPLC) in brain homogenates (n = 24; n = 4 per genotype, strain) after whole-body perfusion. Cr was decreased in the brain of Agat- and Gamt mutant mice. GAA was decreased in Agat-/- and increased in Gamt-/- . Body weight and brain volume were lower in Agat-/- than in Gamt-/- . The analysis of entire brain structures revealed corpus callosum, internal capsule, fimbria and hypothalamus being different between the genotypes in both strains. Eighteen and fourteen significant peaks (local areas of difference in relative size) were found in Agat- and Gamt mutants, respectively. Comparing Agat-/- with Gamt-/- , we found changes in three brain regions, lateral septum, amygdala, and medulla. Intra-strain differences in four brain structures can be associated with Cr deficiency, while the inter-strain differences in three brain structures of the mutant mice may relate to GAA. Correlating these neuroanatomical findings with gene expression data implies the role of Cr metabolism in the developing brain and the importance of early intervention in patients with Cr deficiency syndromes.
Collapse
Affiliation(s)
- Ankit Sinha
- Genetics and Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sohail Ahmed
- Genetics and Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Chris George
- Genetics and Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Melina Tsagaris
- Genetics and Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amriya Naufer
- Genetics and Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ingo von Both
- Genetics and Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ilona Tkachyova
- Genetics and Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Matthijs van Eede
- Mouse Imaging Centre, Toronto Center of Phenogenomics, Toronto, Ontario, Canada
| | - Mark Henkelman
- Mouse Imaging Centre, Toronto Center of Phenogenomics, Toronto, Ontario, Canada
- Neurosciences and Mental Health Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andreas Schulze
- Genetics and Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Wang Q, Ding SL, Li Y, Royall J, Feng D, Lesnar P, Graddis N, Naeemi M, Facer B, Ho A, Dolbeare T, Blanchard B, Dee N, Wakeman W, Hirokawa KE, Szafer A, Sunkin SM, Oh SW, Bernard A, Phillips JW, Hawrylycz M, Koch C, Zeng H, Harris JA, Ng L. The Allen Mouse Brain Common Coordinate Framework: A 3D Reference Atlas. Cell 2020; 181:936-953.e20. [PMID: 32386544 PMCID: PMC8152789 DOI: 10.1016/j.cell.2020.04.007] [Citation(s) in RCA: 623] [Impact Index Per Article: 124.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 12/12/2019] [Accepted: 04/03/2020] [Indexed: 01/25/2023]
Abstract
Recent large-scale collaborations are generating major surveys of cell types and connections in the mouse brain, collecting large amounts of data across modalities, spatial scales, and brain areas. Successful integration of these data requires a standard 3D reference atlas. Here, we present the Allen Mouse Brain Common Coordinate Framework (CCFv3) as such a resource. We constructed an average template brain at 10 μm voxel resolution by interpolating high resolution in-plane serial two-photon tomography images with 100 μm z-sampling from 1,675 young adult C57BL/6J mice. Then, using multimodal reference data, we parcellated the entire brain directly in 3D, labeling every voxel with a brain structure spanning 43 isocortical areas and their layers, 329 subcortical gray matter structures, 81 fiber tracts, and 8 ventricular structures. CCFv3 can be used to analyze, visualize, and integrate multimodal and multiscale datasets in 3D and is openly accessible (https://atlas.brain-map.org/).
Collapse
Affiliation(s)
- Quanxin Wang
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Song-Lin Ding
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Yang Li
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Josh Royall
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - David Feng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Phil Lesnar
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Nile Graddis
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Maitham Naeemi
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Benjamin Facer
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Anh Ho
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Tim Dolbeare
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Wayne Wakeman
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Aaron Szafer
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Susan M Sunkin
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Seung Wook Oh
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Amy Bernard
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - Christof Koch
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Julie A Harris
- Allen Institute for Brain Science, Seattle, WA 98109, USA.
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA 98109, USA.
| |
Collapse
|
26
|
Anderson RJ, Cook JJ, Delpratt N, Nouls JC, Gu B, McNamara JO, Avants BB, Johnson GA, Badea A. Small Animal Multivariate Brain Analysis (SAMBA) - a High Throughput Pipeline with a Validation Framework. Neuroinformatics 2020; 17:451-472. [PMID: 30565026 PMCID: PMC6584586 DOI: 10.1007/s12021-018-9410-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While many neuroscience questions aim to understand the human brain, much current knowledge has been gained using animal models, which replicate genetic, structural, and connectivity aspects of the human brain. While voxel-based analysis (VBA) of preclinical magnetic resonance images is widely-used, a thorough examination of the statistical robustness, stability, and error rates is hindered by high computational demands of processing large arrays, and the many parameters involved therein. Thus, workflows are often based on intuition or experience, while preclinical validation studies remain scarce. To increase throughput and reproducibility of quantitative small animal brain studies, we have developed a publicly shared, high throughput VBA pipeline in a high-performance computing environment, called SAMBA. The increased computational efficiency allowed large multidimensional arrays to be processed in 1–3 days—a task that previously took ~1 month. To quantify the variability and reliability of preclinical VBA in rodent models, we propose a validation framework consisting of morphological phantoms, and four metrics. This addresses several sources that impact VBA results, including registration and template construction strategies. We have used this framework to inform the VBA workflow parameters in a VBA study for a mouse model of epilepsy. We also present initial efforts towards standardizing small animal neuroimaging data in a similar fashion with human neuroimaging. We conclude that verifying the accuracy of VBA merits attention, and should be the focus of a broader effort within the community. The proposed framework promotes consistent quality assurance of VBA in preclinical neuroimaging, thus facilitating the creation and communication of robust results.
Collapse
Affiliation(s)
- Robert J Anderson
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - James J Cook
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Natalie Delpratt
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Biomedical Engineering, Duke University Medical Center, 3302, Durham, NC, 27710, USA
| | - John C Nouls
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Bin Gu
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - James O McNamara
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
| | | | - G Allan Johnson
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Biomedical Engineering, Duke University Medical Center, 3302, Durham, NC, 27710, USA
| | - Alexandra Badea
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC, 27710, USA. .,Department of Biomedical Engineering, Duke University Medical Center, 3302, Durham, NC, 27710, USA.
| |
Collapse
|
27
|
Doostdar N, Kim E, Grayson B, Harte MK, Neill JC, Vernon AC. Global brain volume reductions in a sub-chronic phencyclidine animal model for schizophrenia and their relationship to recognition memory. J Psychopharmacol 2019; 33:1274-1287. [PMID: 31060435 DOI: 10.1177/0269881119844196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Cognitive deficits and structural brain changes co-occur in patients with schizophrenia. Improving our understanding of the relationship between these is important to develop improved therapeutic strategies. Back-translation of these findings into rodent models for schizophrenia offers a potential means to achieve this goal. AIMS The purpose of this study was to determine the extent of structural brain changes and how these relate to cognitive behaviour in a sub-chronic phencyclidine rat model. METHODS Performance in the novel object recognition task was examined in female Lister Hooded rats at one and six weeks after sub-chronic phencyclidine (2 mg/kg intra-peritoneal, n=15) and saline controls (1 ml/kg intra-peritoneal, n=15). Locomotor activity following acute phencyclidine challenge was also measured. Brain volume changes were assessed in the same animals using ex vivo structural magnetic resonance imaging and computational neuroanatomical analysis at six weeks. RESULTS Female sub-chronic phencyclidine-treated Lister Hooded rats spent significantly less time exploring novel objects (p<0.05) at both time-points and had significantly greater locomotor activity response to an acute phencyclidine challenge (p<0.01) at 3-4 weeks of washout. At six weeks, sub-chronic phencyclidine-treated Lister Hooded rats displayed significant global brain volume reductions (p<0.05; q<0.05), without apparent regional specificity. Relative volumes of the perirhinal cortex however were positively correlated with novel object exploration time only in sub-chronic phencyclidine rats at this time-point. CONCLUSION A sustained sub-chronic phencyclidine-induced cognitive deficit in novel object recognition is accompanied by global brain volume reductions in female Lister Hooded rats. The relative volumes of the perirhinal cortex however are positively correlated with novel object exploration, indicating some functional relevance.
Collapse
Affiliation(s)
- Nazanin Doostdar
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Eugene Kim
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ben Grayson
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Michael K Harte
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Joanna C Neill
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| |
Collapse
|
28
|
Discrimination of the hierarchical structure of cortical layers in 2-photon microscopy data by combined unsupervised and supervised machine learning. Sci Rep 2019; 9:7424. [PMID: 31092841 PMCID: PMC6520410 DOI: 10.1038/s41598-019-43432-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 04/18/2019] [Indexed: 12/22/2022] Open
Abstract
The laminar organization of the cerebral cortex is a fundamental characteristic of the brain, with essential implications for cortical function. Due to the rapidly growing amount of high-resolution brain imaging data, a great demand arises for automated and flexible methods for discriminating the laminar texture of the cortex. Here, we propose a combined approach of unsupervised and supervised machine learning to discriminate the hierarchical cortical laminar organization in high-resolution 2-photon microscopic neural image data of mouse brain without observer bias, that is, without the prerequisite of manually labeled training data. For local cortical foci, we modify an unsupervised clustering approach to identify and represent the laminar cortical structure. Subsequently, supervised machine learning is applied to transfer the resulting layer labels across different locations and image data, to ensure the existence of a consistent layer label system. By using neurobiologically meaningful features, the discrimination results are shown to be consistent with the layer classification of the classical Brodmann scheme, and provide additional insight into the structure of the cerebral cortex and its hierarchical organization. Thus, our work paves a new way for studying the anatomical organization of the cerebral cortex, and potentially its functional organization.
Collapse
|
29
|
Rangel-Barajas C, Rebec GV. Overview of Huntington's Disease Models: Neuropathological, Molecular, and Behavioral Differences. ACTA ACUST UNITED AC 2019; 83:e47. [PMID: 30040221 DOI: 10.1002/cpns.47] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transgenic mouse models of Huntington's disease (HD), a neurodegenerative condition caused by a single gene mutation, have been transformative in their ability to reveal the molecular processes and pathophysiological mechanisms underlying the HD behavioral phenotype. Three model categories have been generated depending on the genetic context in which the mutation is expressed: truncated, full-length, and knock-in. No single model, however, broadly replicates the behavioral symptoms and massive neuronal loss that occur in human patients. The disparity between model and patient requires careful consideration of what each model has to offer when testing potential treatments. Although the translation of animal data to the clinic has been limited, each model can make unique contributions toward an improved understanding of the neurobehavioral underpinnings of HD. Thus, conclusions based on data obtained from more than one model are likely to have the most success in the search for new treatment targets. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Claudia Rangel-Barajas
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - George V Rebec
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| |
Collapse
|
30
|
Petrella LI, Castelhano JM, Ribeiro M, Sereno JV, Gonçalves SI, Laço MN, Hayden MR, Rego AC, Castelo-Branco M. A whole brain longitudinal study in the YAC128 mouse model of Huntington's disease shows distinct trajectories of neurochemical, structural connectivity and volumetric changes. Hum Mol Genet 2019; 27:2125-2137. [PMID: 29668904 DOI: 10.1093/hmg/ddy119] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/26/2018] [Indexed: 12/20/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder causing cognitive and motor impairments, evolving to death within 15-20 years after symptom onset. We previously established a mouse model with the entire human HD gene containing 128 CAG repeats (YAC128) which accurately recapitulates the natural history of the human disease. Defined time points in this natural history enable the understanding of longitudinal trajectories from the neurochemical and structural points of view using non-invasive high-resolution multi-modal imaging. Accordingly, we designed a longitudinal structural imaging (MRI and DTI) and spectroscopy (1H-MRS) study in YAC128, at 3, 6, 9 and 12 months of age, at 9.4 T. Structural analysis (MRI/DTI), confirmed that the striatum is the earliest affected brain region, but other regions were also identified through connectivity analysis (pre-frontal cortex, hippocampus, globus pallidus and thalamus), suggesting a striking homology with the human disease. Importantly, we found for the first time, a negative correlation between striatal and hippocampal changes only in YAC128. In fact, the striatum showed accelerated volumetric decay in HD, as opposed to the hippocampus. Neurochemical analysis of the HD striatum suggested early neurometabolic alterations in neurotransmission and metabolism, with a significant increase in striatal GABA levels, and specifically anticorrelated levels of N-acetyl aspartate and taurine, suggesting that the later is homeostatically adjusted for neuroprotection, as neural loss, indicated by the former, is progressing. These results provide novel insights into the natural history of HD and prove a valuable role for longitudinal multi-modal panels of structural and metabolite/neurotransmission in the YAC128 model.
Collapse
Affiliation(s)
- Lorena I Petrella
- Institute of Nuclear Science Applied to Health, University of Coimbra, 3000-548 Coimbra, Portugal.,Center for Neuroscience and Cell Biology-Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, 3000-548 Coimbra, Portugal
| | - João M Castelhano
- Institute of Nuclear Science Applied to Health, University of Coimbra, 3000-548 Coimbra, Portugal.,Center for Neuroscience and Cell Biology-Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Mario Ribeiro
- Institute of Nuclear Science Applied to Health, University of Coimbra, 3000-548 Coimbra, Portugal.,Center for Neuroscience and Cell Biology-Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, 3000-548 Coimbra, Portugal
| | - José V Sereno
- Institute of Nuclear Science Applied to Health, University of Coimbra, 3000-548 Coimbra, Portugal.,Center for Neuroscience and Cell Biology-Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Sónia I Gonçalves
- Institute of Nuclear Science Applied to Health, University of Coimbra, 3000-548 Coimbra, Portugal.,Center for Neuroscience and Cell Biology-Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, 3000-548 Coimbra, Portugal.,Neuroplasticity and Neural Activity Laboratory, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Mário N Laço
- Center for Neuroscience and Cell Biology-Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Michael R Hayden
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - A Cristina Rego
- Center for Neuroscience and Cell Biology-Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, 3000-548 Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Miguel Castelo-Branco
- Institute of Nuclear Science Applied to Health, University of Coimbra, 3000-548 Coimbra, Portugal.,Center for Neuroscience and Cell Biology-Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, 3000-548 Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
31
|
Qvist P, Eskildsen SF, Hansen B, Baragji M, Ringgaard S, Roovers J, Paternoster V, Molgaard S, Corydon TJ, Stødkilde-Jørgensen H, Glerup S, Mors O, Wegener G, Nyengaard JR, Børglum AD, Christensen JH. Brain volumetric alterations accompanied with loss of striatal medium-sized spiny neurons and cortical parvalbumin expressing interneurons in Brd1 +/- mice. Sci Rep 2018; 8:16486. [PMID: 30405140 PMCID: PMC6220279 DOI: 10.1038/s41598-018-34729-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/22/2018] [Indexed: 12/17/2022] Open
Abstract
Schizophrenia is a common and severe mental disorder arising from complex gene-environment interactions affecting brain development and functioning. While a consensus on the neuroanatomical correlates of schizophrenia is emerging, much of its fundamental pathobiology remains unknown. In this study, we explore brain morphometry in mice with genetic susceptibility and phenotypic relevance to schizophrenia (Brd1+/− mice) using postmortem 3D MR imaging coupled with histology, immunostaining and regional mRNA marker analysis. In agreement with recent large-scale schizophrenia neuroimaging studies, Brd1+/− mice displayed subcortical abnormalities, including volumetric reductions of amygdala and striatum. Interestingly, we demonstrate that structural alteration in striatum correlates with a general loss of striatal neurons, differentially impacting subpopulations of medium-sized spiny neurons and thus potentially striatal output. Akin to parvalbumin interneuron dysfunction in patients, a decline in parvalbumin expression was noted in the developing cortex of Brd1+/− mice, mainly driven by neuronal loss within or near cortical layer V, which is rich in corticostriatal projection neurons. Collectively, our study highlights the translational value of the Brd1+/− mouse as a pre-clinical tool for schizophrenia research and provides novel insight into its developmental, structural, and cellular pathology.
Collapse
Affiliation(s)
- Per Qvist
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark. .,Department of Biomedicine, Aarhus University, Aarhus, Denmark. .,iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark.
| | - Simon F Eskildsen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Brian Hansen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Steffen Ringgaard
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jolien Roovers
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Veerle Paternoster
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark.,iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
| | - Simon Molgaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Thomas Juhl Corydon
- Department of Biomedicine, Aarhus University, Aarhus, Denmark. .,Department of Ophthalmology, Aarhus University Hospital, Aarhus, Denmark.
| | | | - Simon Glerup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ole Mors
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark.,iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark.,Psychosis Research Unit, Aarhus University Hospital, Risskov, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Aarhus University Hospital, Aarhus, Denmark
| | - Jens R Nyengaard
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Centre for Stochastic Geometry and Advanced Bioimaging, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anders D Børglum
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark.,iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark.,Psychosis Research Unit, Aarhus University Hospital, Risskov, Denmark
| | - Jane H Christensen
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark.,iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
| |
Collapse
|
32
|
Van Essen DC, Glasser MF. Parcellating Cerebral Cortex: How Invasive Animal Studies Inform Noninvasive Mapmaking in Humans. Neuron 2018; 99:640-663. [PMID: 30138588 PMCID: PMC6149530 DOI: 10.1016/j.neuron.2018.07.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/25/2018] [Accepted: 07/02/2018] [Indexed: 10/28/2022]
Abstract
The cerebral cortex in mammals contains a mosaic of cortical areas that differ in function, architecture, connectivity, and/or topographic organization. A combination of local connectivity (within-area microcircuitry) and long-distance (between-area) connectivity enables each area to perform a unique set of computations. Some areas also have characteristic within-area mesoscale organization, reflecting specialized representations of distinct types of information. Cortical areas interact with one another to form functional networks that mediate behavior, and each area may be a part of multiple, partially overlapping networks. Given their importance to the understanding of brain organization, mapping cortical areas across species is a major objective of systems neuroscience and has been a century-long challenge. Here, we review recent progress in multi-modal mapping of mouse and nonhuman primate cortex, mainly using invasive experimental methods. These studies also provide a neuroanatomical foundation for mapping human cerebral cortex using noninvasive neuroimaging, including a new map of human cortical areas that we generated using a semiautomated analysis of high-quality, multimodal neuroimaging data. We contrast our semiautomated approach to human multimodal cortical mapping with various extant fully automated human brain parcellations that are based on only a single imaging modality and offer suggestions on how to best advance the noninvasive brain parcellation field. We discuss the limitations as well as the strengths of current noninvasive methods of mapping brain function, architecture, connectivity, and topography and of current approaches to mapping the brain's functional networks.
Collapse
Affiliation(s)
- David C Van Essen
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Matthew F Glasser
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; St. Luke's Hospital, St. Louis, MO 63107, USA.
| |
Collapse
|
33
|
Nieman BJ, van Eede MC, Spring S, Dazai J, Henkelman RM, Lerch JP. MRI to Assess Neurological Function. ACTA ACUST UNITED AC 2018; 8:e44. [PMID: 29927554 DOI: 10.1002/cpmo.44] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This article describes a detailed set of protocols for mouse brain imaging using MRI. We focus primarily on measuring changes in neuroanatomy, and provide both instructions for mouse preparation and details on image acquisition, image processing, and statistics. Practical details as well as theoretical considerations are provided. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Brian J Nieman
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, The University of Toronto, Toronto, Ontario, Canada
| | - Matthijs C van Eede
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Shoshana Spring
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jun Dazai
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - R Mark Henkelman
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, The University of Toronto, Toronto, Ontario, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, The University of Toronto, Toronto, Ontario, Canada.,Corresponding author:
| |
Collapse
|
34
|
Guma E, Rocchetti J, Devenyi GA, Tanti A, Mathieu A, Lerch JP, Elgbeili G, Courcot B, Mechawar N, Chakravarty MM, Giros B. Regional brain volume changes following chronic antipsychotic administration are mediated by the dopamine D2 receptor. Neuroimage 2018; 176:226-238. [PMID: 29704613 DOI: 10.1016/j.neuroimage.2018.04.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/17/2018] [Accepted: 04/23/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Neuroanatomical alterations are well established in patients suffering from schizophrenia, however the extent to which these changes are attributable to illness, antipsychotic drugs (APDs), or their interaction is unclear. APDs have been extremely effective for treatment of positive symptoms in major psychotic disorders. Their therapeutic effects are mediated, in part, through blockade of D2-like dopamine (DA) receptors, i.e. the D2, D3 and D4 dopamine receptors. Furthermore, the dependency of neuroanatomical change on DA system function and D2-like receptors has yet to be explored. METHODS We undertook a preclinical longitudinal study to examine the effects of typical (haloperidol (HAL)) and atypical (clozapine (CLZ)) APDs in wild type (WT) and dopamine D2 knockout (D2KO) mice over 9-weeks using structural magnetic resonance imaging (MRI). RESULTS Chronic typical APD administration in WT mice was associated with reductions in total brain (p = 0.009) and prelimbic area (PL) (p = 0.02) volumes following 9-weeks, and an increase in striatal volume (p = 0.04) after six weeks. These APD-induced changes were not present in D2KOs, where, at baseline, we observed significantly smaller overall brain volume (p < 0.01), thinner cortices (q < 0.05), and enlarged striata (q < 0.05). Stereological assessment revealed increased glial density in PL area of HAL treated wild types. Interestingly, in WT and D2KO mice, chronic CLZ administration caused more limited changes in brain structure. CONCLUSIONS Our results present evidence for the role of D2 DA receptors in structural alterations induced by the administration of the typical APD HAL and that chronic administration of CLZ has a limited influence on brain structure.
Collapse
Affiliation(s)
- Elisa Guma
- Department of Psychiatry & Integrated Program in Neuroscience, McGill University, 845 Sherbrooke St W, Montreal, QC, H3A 0G4 Canada; Cerebral Imaging Center, Douglas Mental Health University Institute, Verdun, Quebec, H4H 1R3, Canada
| | - Jill Rocchetti
- Department of Psychiatry & Integrated Program in Neuroscience, McGill University, 845 Sherbrooke St W, Montreal, QC, H3A 0G4 Canada
| | - Gabriel A Devenyi
- Cerebral Imaging Center, Douglas Mental Health University Institute, Verdun, Quebec, H4H 1R3, Canada
| | - Arnaud Tanti
- McGill Group for Suicide Studies, Department of Psychiatry, McGill University, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Axel Mathieu
- Cerebral Imaging Center, Douglas Mental Health University Institute, Verdun, Quebec, H4H 1R3, Canada
| | - Jason P Lerch
- Mouse Imaging Center - Hospital for Sick Children, Department of Medical Biophysics -University of Toronto, Toronto, Ontario, M5T 3H7, Canada
| | - Guillaume Elgbeili
- Department of Psychiatry & Integrated Program in Neuroscience, McGill University, 845 Sherbrooke St W, Montreal, QC, H3A 0G4 Canada
| | - Blandine Courcot
- Cerebral Imaging Center, Douglas Mental Health University Institute, Verdun, Quebec, H4H 1R3, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Department of Psychiatry, McGill University, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - M Mallar Chakravarty
- Department of Psychiatry & Integrated Program in Neuroscience, McGill University, 845 Sherbrooke St W, Montreal, QC, H3A 0G4 Canada; Cerebral Imaging Center, Douglas Mental Health University Institute, Verdun, Quebec, H4H 1R3, Canada; Department of Biological and Biomedical Engineering, McGill University, 845 Sherbrooke St W, Montreal, QC, H3A 0G4, Canada
| | - Bruno Giros
- Department of Psychiatry & Integrated Program in Neuroscience, McGill University, 845 Sherbrooke St W, Montreal, QC, H3A 0G4 Canada; Sorbonne University, Neuroscience Paris Seine, CNRS UMR 8246, INSERM U 1130, UPMC Univ Paris 06, UM119, 75005, Paris, France.
| |
Collapse
|
35
|
|
36
|
Cannella N, Cosa-Linan A, Büchler E, Falfan-Melgoza C, Weber-Fahr W, Spanagel R. In vivo structural imaging in rats reveals neuroanatomical correlates of behavioral sub-dimensions of cocaine addiction. Addict Biol 2018; 23:182-195. [PMID: 28231635 DOI: 10.1111/adb.12500] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 12/31/2022]
Abstract
Cocaine addiction is a multi-dimensional behavioral disorder characterized by a loss of control over cocaine taking despite of detrimental consequences. Structural MRI studies have revealed association between cocaine consumption and gray matter volume (GMV) in cocaine-addicted patients. However, the behavioral correlates of GMV in cocaine addiction are poorly understood. Here, we used a DSM-IV-based rat model of cocaine addiction with high face validity for structural imaging. According to three behavioral sub-dimensions of addiction, rats were separated into two groups showing either addict-like or non-addict-like behavior. These behavioral sub-dimensions were (1) the inability to refrain from drug-seeking and taking, (2) high motivation for the drug, and (3) maintained drug use despite negative consequences. In these rats, we performed structural MRI with voxel-based morphometry and analyzed the interaction of GMV with behavioral sub-dimensions in cocaine-addicted rats. Our major findings are that GMV differentially correlate with the inability to refrain from drug-seeking and taking in addict-like and non-addict-like rats within the somatosensory cortices and the amygdala. High motivation for the drug differentially correlates with GMV in addict-like and non-addict-like rats within the medial prefrontal cortex, and maintained drug use despite negative consequences differentially correlates with GMV in these two groups of rats within the periaqueductal gray. Our results demonstrate that the behavioral differences characterizing addict-like and non-addict-like rats in each behavioral sub-dimension of addiction are reflected by divergent covariance with GMV. We conclude that structural imaging provides specific neuroanatomical correlates of behavioral sub-dimensions of addiction.
Collapse
Affiliation(s)
- Nazzareno Cannella
- Institute of Psychopharmacology, Medical Faculty Mannheim; Heidelberg University; Mannheim Germany
| | - Alejandro Cosa-Linan
- Institute of Psychopharmacology, Medical Faculty Mannheim; Heidelberg University; Mannheim Germany
| | - Elena Büchler
- Institute of Psychopharmacology, Medical Faculty Mannheim; Heidelberg University; Mannheim Germany
| | - Claudia Falfan-Melgoza
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim; Heidelberg University; Mannheim Germany
| | - Wolfgang Weber-Fahr
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim; Heidelberg University; Mannheim Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Medical Faculty Mannheim; Heidelberg University; Mannheim Germany
| |
Collapse
|
37
|
Summers PM, Hartmann DA, Hui ES, Nie X, Deardorff RL, McKinnon ET, Helpern JA, Jensen JH, Shih AY. Functional deficits induced by cortical microinfarcts. J Cereb Blood Flow Metab 2017; 37:3599-3614. [PMID: 28090802 PMCID: PMC5669342 DOI: 10.1177/0271678x16685573] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Clinical studies have revealed a strong link between increased burden of cerebral microinfarcts and risk for cognitive impairment. Since the sum of tissue damage incurred by microinfarcts is a miniscule percentage of total brain volume, we hypothesized that microinfarcts disrupt brain function beyond the injury site visible to histological or radiological examination. We tested this idea using a mouse model of microinfarcts, where single penetrating vessels that supply mouse cortex were occluded by targeted photothrombosis. We found that in vivo structural and diffusion MRI reliably reported the acute microinfarct core, based on spatial co-registrations with post-mortem stains of neuronal viability. Consistent with our hypothesis, c-Fos assays for neuronal activity and in vivo imaging of single vessel hemodynamics both reported functional deficits in viable peri-lesional tissues beyond the microinfarct core. We estimated that the volume of tissue with functional deficit in cortex was at least 12-fold greater than the volume of the microinfarct core. Impaired hemodynamic responses in peri-lesional tissues persisted at least 14 days, and were attributed to lasting deficits in neuronal circuitry or neurovascular coupling. These data show how individually miniscule microinfarcts could contribute to broader brain dysfunction during vascular cognitive impairment and dementia.
Collapse
Affiliation(s)
- Philipp M Summers
- 1 Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - David A Hartmann
- 1 Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Edward S Hui
- 2 Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong
| | - Xingju Nie
- 3 Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA.,4 Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA
| | - Rachael L Deardorff
- 3 Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA.,4 Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA
| | - Emilie T McKinnon
- 3 Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA.,4 Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA
| | - Joseph A Helpern
- 1 Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA.,3 Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA.,4 Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA
| | - Jens H Jensen
- 3 Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA.,4 Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA
| | - Andy Y Shih
- 1 Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA.,4 Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
38
|
3D morphological analysis of the mouse cerebral vasculature: Comparison of in vivo and ex vivo methods. PLoS One 2017; 12:e0186676. [PMID: 29053753 PMCID: PMC5650181 DOI: 10.1371/journal.pone.0186676] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 10/05/2017] [Indexed: 02/06/2023] Open
Abstract
Ex vivo 2-photon fluorescence microscopy (2PFM) with optical clearing enables vascular imaging deep into tissue. However, optical clearing may also produce spherical aberrations if the objective lens is not index-matched to the clearing material, while the perfusion, clearing, and fixation procedure may alter vascular morphology. We compared in vivo and ex vivo 2PFM in mice, focusing on apparent differences in microvascular signal and morphology. Following in vivo imaging, the mice (four total) were perfused with a fluorescent gel and their brains fructose-cleared. The brain regions imaged in vivo were imaged ex vivo. Vessels were segmented in both images using an automated tracing algorithm that accounts for the spatially varying PSF in the ex vivo images. This spatial variance is induced by spherical aberrations caused by imaging fructose-cleared tissue with a water-immersion objective. Alignment of the ex vivo image to the in vivo image through a non-linear warping algorithm enabled comparison of apparent vessel diameter, as well as differences in signal. Shrinkage varied as a function of diameter, with capillaries rendered smaller ex vivo by 13%, while penetrating vessels shrunk by 34%. The pial vasculature attenuated in vivo microvascular signal by 40% 300 μm below the tissue surface, but this effect was absent ex vivo. On the whole, ex vivo imaging was found to be valuable for studying deep cortical vasculature.
Collapse
|
39
|
Germline Chd8 haploinsufficiency alters brain development in mouse. Nat Neurosci 2017; 20:1062-1073. [PMID: 28671691 DOI: 10.1038/nn.4592] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 05/23/2017] [Indexed: 02/06/2023]
Abstract
The chromatin remodeling gene CHD8 represents a central node in neurodevelopmental gene networks implicated in autism. We examined the impact of germline heterozygous frameshift Chd8 mutation on neurodevelopment in mice. Chd8+/del5 mice displayed normal social interactions with no repetitive behaviors but exhibited cognitive impairment correlated with increased regional brain volume, validating that phenotypes of Chd8+/del5 mice overlap pathology reported in humans with CHD8 mutations. We applied network analysis to characterize neurodevelopmental gene expression, revealing widespread transcriptional changes in Chd8+/del5 mice across pathways disrupted in neurodevelopmental disorders, including neurogenesis, synaptic processes and neuroimmune signaling. We identified a co-expression module with peak expression in early brain development featuring dysregulation of RNA processing, chromatin remodeling and cell-cycle genes enriched for promoter binding by Chd8, and we validated increased neuronal proliferation and developmental splicing perturbation in Chd8+/del5 mice. This integrative analysis offers an initial picture of the consequences of Chd8 haploinsufficiency for brain development.
Collapse
|
40
|
Allemang-Grand R, Ellegood J, Spencer Noakes L, Ruston J, Justice M, Nieman BJ, Lerch JP. Neuroanatomy in mouse models of Rett syndrome is related to the severity of Mecp2 mutation and behavioral phenotypes. Mol Autism 2017; 8:32. [PMID: 28670438 PMCID: PMC5485541 DOI: 10.1186/s13229-017-0138-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/26/2017] [Indexed: 01/25/2023] Open
Abstract
Background Rett syndrome (RTT) is a neurodevelopmental disorder that predominantly affects girls. The majority of RTT cases are caused by de novo mutations in methyl-CpG-binding protein 2 (MECP2), and several mouse models have been created to further understand the disorder. In the current literature, many studies have focused their analyses on the behavioral abnormalities and cellular and molecular impairments that arise from Mecp2 mutations. However, limited efforts have been placed on understanding how Mecp2 mutations disrupt the neuroanatomy and networks of the brain. Methods In this study, we examined the neuroanatomy of male and female mice from the Mecp2tm1Hzo, Mecp2tm1.1Bird/J, and Mecp2tm2Bird/J mouse lines using high-resolution magnetic resonance imaging (MRI) paired with deformation-based morphometry to determine the brain regions susceptible to Mecp2 disruptions. Results We found that many cortical and subcortical regions were reduced in volume within the brains of mutant mice regardless of mutation type, highlighting regions that are susceptible to Mecp2 disruptions. We also found that the volume within these regions correlated with behavioral metrics. Conversely, regions of the cerebellum were differentially affected by the type of mutation, showing an increase in volume in the mutant Mecp2tm1Hzo brain relative to controls and a decrease in the Mecp2tm1.1Bird/J and Mecp2tm2Bird/J lines. Conclusions Our findings demonstrate that the direction and magnitude of the neuroanatomical differences between control and mutant mice carrying Mecp2 mutations are driven by the severity of the mutation and the stage of behavioral impairments.
Collapse
Affiliation(s)
- Rylan Allemang-Grand
- Mouse Imaging Centre, 25 Orde Street, Toronto, M5T 3H7 Ontario Canada.,Neurosciences and Mental Health, Hospital for Sick Children, 555 University Ave, Toronto, M5G 1X8 Ontario Canada.,Department of Medical Biophysics, Faculty of Medicine, University of Toronto, 101 College Street, Suite 15-701, Toronto, M5G 1L7 Ontario Canada
| | - Jacob Ellegood
- Mouse Imaging Centre, 25 Orde Street, Toronto, M5T 3H7 Ontario Canada.,Neurosciences and Mental Health, Hospital for Sick Children, 555 University Ave, Toronto, M5G 1X8 Ontario Canada
| | - Leigh Spencer Noakes
- Mouse Imaging Centre, 25 Orde Street, Toronto, M5T 3H7 Ontario Canada.,Physiology and Experimental Medicine, Hospital for Sick Children, 555 University Ave, Toronto, M5G 1X8 Ontario Canada
| | - Julie Ruston
- Genetics and Genome Biology, Hospital for Sick Children, 555 University Ave, Toronto, M5G 1X8 Ontario Canada
| | - Monica Justice
- Genetics and Genome Biology, Hospital for Sick Children, 555 University Ave, Toronto, M5G 1X8 Ontario Canada
| | - Brian J Nieman
- Mouse Imaging Centre, 25 Orde Street, Toronto, M5T 3H7 Ontario Canada.,Department of Medical Biophysics, Faculty of Medicine, University of Toronto, 101 College Street, Suite 15-701, Toronto, M5G 1L7 Ontario Canada.,Ontario Institute of Cancer Research, 661 University Ave, Toronto, Suite 510, M5G 0A3 Ontario Canada
| | - Jason P Lerch
- Mouse Imaging Centre, 25 Orde Street, Toronto, M5T 3H7 Ontario Canada.,Neurosciences and Mental Health, Hospital for Sick Children, 555 University Ave, Toronto, M5G 1X8 Ontario Canada.,Department of Medical Biophysics, Faculty of Medicine, University of Toronto, 101 College Street, Suite 15-701, Toronto, M5G 1L7 Ontario Canada
| |
Collapse
|
41
|
Holmes HE, Powell NM, Ma D, Ismail O, Harrison IF, Wells JA, Colgan N, O'Callaghan JM, Johnson RA, Murray TK, Ahmed Z, Heggenes M, Fisher A, Cardoso MJ, Modat M, O'Neill MJ, Collins EC, Fisher EMC, Ourselin S, Lythgoe MF. Comparison of In Vivo and Ex Vivo MRI for the Detection of Structural Abnormalities in a Mouse Model of Tauopathy. Front Neuroinform 2017; 11:20. [PMID: 28408879 PMCID: PMC5374887 DOI: 10.3389/fninf.2017.00020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/27/2017] [Indexed: 11/15/2022] Open
Abstract
With increasingly large numbers of mouse models of human disease dedicated to MRI studies, compromises between in vivo and ex vivo MRI must be fully understood in order to inform the choice of imaging methodology. We investigate the application of high resolution in vivo and ex vivo MRI, in combination with tensor-based morphometry (TBM), to uncover morphological differences in the rTg4510 mouse model of tauopathy. The rTg4510 mouse also offers a novel paradigm by which the overexpression of mutant tau can be regulated by the administration of doxycycline, providing us with a platform on which to investigate more subtle alterations in morphology with morphometry. Both in vivo and ex vivo MRI allowed the detection of widespread bilateral patterns of atrophy in the rTg4510 mouse brain relative to wild-type controls. Regions of volume loss aligned with neuronal loss and pathological tau accumulation demonstrated by immunohistochemistry. When we sought to investigate more subtle structural alterations in the rTg4510 mice relative to a subset of doxycycline-treated rTg4510 mice, ex vivo imaging enabled the detection of more regions of morphological brain changes. The disadvantages of ex vivo MRI may however mitigate this increase in sensitivity: we observed a 10% global shrinkage in brain volume of the post-mortem tissues due to formalin fixation, which was most notable in the cerebellum and olfactory bulbs. However, many central brain regions were not adversely affected by the fixation protocol, perhaps due to our “in-skull” preparation. The disparity between our TBM findings from in vivo and ex vivo MRI underlines the importance of appropriate study design, given the trade-off between these two imaging approaches. We support the utility of in vivo MRI for morphological phenotyping of mouse models of disease; however, for subtler phenotypes, ex vivo offers enhanced sensitivity to discrete morphological changes.
Collapse
Affiliation(s)
- Holly E Holmes
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College LondonLondon, UK
| | - Nick M Powell
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College LondonLondon, UK.,Centre for Medical Image Computing, University College LondonLondon, UK
| | - Da Ma
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College LondonLondon, UK.,Centre for Medical Image Computing, University College LondonLondon, UK
| | - Ozama Ismail
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College LondonLondon, UK
| | - Ian F Harrison
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College LondonLondon, UK
| | - Jack A Wells
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College LondonLondon, UK
| | - Niall Colgan
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College LondonLondon, UK
| | - James M O'Callaghan
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College LondonLondon, UK
| | - Ross A Johnson
- Tailored Therapeutics, Eli Lilly and Company, Lilly Corporate CenterIndianapolis, IN, USA
| | | | - Zeshan Ahmed
- Molecular Pathology, Eli Lilly & Co. LtdWindlesham, UK
| | | | - Alice Fisher
- Molecular Pathology, Eli Lilly & Co. LtdWindlesham, UK
| | - M Jorge Cardoso
- Centre for Medical Image Computing, University College LondonLondon, UK
| | - Marc Modat
- Centre for Medical Image Computing, University College LondonLondon, UK
| | | | - Emily C Collins
- Tailored Therapeutics, Eli Lilly and Company, Lilly Corporate CenterIndianapolis, IN, USA
| | - Elizabeth M C Fisher
- Department of Neurodegenerative Disease, Institute of Neurology, University College LondonLondon, UK
| | | | - Mark F Lythgoe
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College LondonLondon, UK
| |
Collapse
|
42
|
Di Pardo A, Amico E, Maglione V. Impaired Levels of Gangliosides in the Corpus Callosum of Huntington Disease Animal Models. Front Neurosci 2016; 10:457. [PMID: 27766070 PMCID: PMC5052274 DOI: 10.3389/fnins.2016.00457] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/21/2016] [Indexed: 12/18/2022] Open
Abstract
Huntington Disease (HD) is a genetic neurodegenerative disorder characterized by broad types of cellular and molecular dysfunctions that may affect both neuronal and non-neuronal cell populations. Among all the molecular mechanisms underlying the complex pathogenesis of the disease, alteration of sphingolipids has been identified as one of the most important determinants in the last years. In the present study, besides the purpose of further confirming the evidence of perturbed metabolism of gangliosides GM1, GD1a, and GT1b the most abundant cerebral glycosphingolipids, in the striatal and cortical tissues of HD transgenic mice, we aimed to test the hypothesis that abnormal levels of these lipids may be found also in the corpus callosum white matter, a ganglioside-enriched brain region described being dysfunctional early in the disease. Semi-quantitative analysis of GM1, GD1a, and GT1b content indicated that ganglioside metabolism is a common feature in two different HD animal models (YAC128 and R6/2 mice) and importantly, demonstrated that levels of these gangliosides were significantly reduced in the corpus callosum white matter of both models starting from the early stages of the disease. Besides corroborating the evidence of aberrant ganglioside metabolism in HD, here, we found out for the first time, that ganglioside dysfunction is an early event in HD models and it may potentially represent a critical molecular change influencing the pathogenesis of the disease.
Collapse
Affiliation(s)
- Alba Di Pardo
- Istituto Neurologico Mediterraneo (IRCCS) Neuromed Pozzilli, Italy
| | - Enrico Amico
- Istituto Neurologico Mediterraneo (IRCCS) Neuromed Pozzilli, Italy
| | | |
Collapse
|
43
|
Semi-automated registration-based anatomical labelling, voxel based morphometry and cortical thickness mapping of the mouse brain. J Neurosci Methods 2016; 267:62-73. [PMID: 27079699 DOI: 10.1016/j.jneumeth.2016.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 11/24/2022]
Abstract
BACKGROUND Morphoanatomical MRI methods have recently begun to be applied in the mouse. However, substantial differences in the anatomical organisation of human and rodent brain prevent a straightforward extension of clinical neuroimaging tools to mouse brain imaging. As a result, the vast majority of the published approaches rely on tailored routines that address single morphoanatomical readouts and typically lack a sufficiently-detailed description of the complex workflow required to process images and quantify structural alterations. NEW METHOD Here we provide a detailed description of semi-automated registration-based procedures for voxel based morphometry, cortical thickness estimation and automated anatomical labelling of the mouse brain. The approach relies on the sequential use of advanced image processing tools offered by ANTs, a flexible open source toolkit freely available to the scientific community. RESULTS To illustrate our procedures, we described their application to quantify morphological alterations in socially-impaired BTBR mice with respect to normosocial C57BL/6J controls, a comparison recently described by us and other research groups. We show that the approach can reliably detect both focal and large-scale grey matter alterations using complementary readouts. COMPARISON WITH EXISTING METHODS No detailed operational workflows for mouse imaging are available for direct comparison with our methods. However, empirical assessment of the mapped inter-strain differences is in good agreement with the findings of other groups using analogous approaches. CONCLUSION The detailed operational workflows described here are expected to help the implementation of rodent morphoanatomical methods by non-expert users, and ultimately promote the use of these tools across the preclinical neuroimaging community.
Collapse
|
44
|
Lee J, Kim SH, Oguz I, Styner M. Enhanced Cortical Thickness Measurements for Rodent Brains via Lagrangian-based RK4 Streamline Computation. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2016; 9784. [PMID: 27065047 DOI: 10.1117/12.2216420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The cortical thickness of the mammalian brain is an important morphological characteristic that can be used to investigate and observe the brain's developmental changes that might be caused by biologically toxic substances such as ethanol or cocaine. Although various cortical thickness analysis methods have been proposed that are applicable for human brain and have developed into well-validated open-source software packages, cortical thickness analysis methods for rodent brains have not yet become as robust and accurate as those designed for human brains. Based on a previously proposed cortical thickness measurement pipeline for rodent brain analysis,1 we present an enhanced cortical thickness pipeline in terms of accuracy and anatomical consistency. First, we propose a Lagrangian-based computational approach in the thickness measurement step in order to minimize local truncation error using the fourth-order Runge-Kutta method. Second, by constructing a line object for each streamline of the thickness measurement, we can visualize the way the thickness is measured and achieve sub-voxel accuracy by performing geometric post-processing. Last, with emphasis on the importance of an anatomically consistent partial differential equation (PDE) boundary map, we propose an automatic PDE boundary map generation algorithm that is specific to rodent brain anatomy, which does not require manual labeling. The results show that the proposed cortical thickness pipeline can produce statistically significant regions that are not observed in the the previous cortical thickness analysis pipeline.
Collapse
Affiliation(s)
- Joohwi Lee
- University of North Carolina at Chapel Hill, Department of Computer Science, United States
| | - Sun Hyung Kim
- University of North Carolina at Chapel Hill, Department of Psychiatry, United States
| | - Ipek Oguz
- The University of Iowa, Department of Electrical and Computer Engineering, United States
| | - Martin Styner
- University of North Carolina at Chapel Hill, Department of Computer Science, United States; University of North Carolina at Chapel Hill, Department of Psychiatry, United States
| |
Collapse
|
45
|
Regional brain volumes changes in adult male FMR1-KO mouse on the FVB strain. Neuroscience 2016; 318:12-21. [DOI: 10.1016/j.neuroscience.2016.01.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 01/06/2016] [Accepted: 01/09/2016] [Indexed: 11/17/2022]
|
46
|
Characterization of Behavioral, Neuropathological, Brain Metabolic and Key Molecular Changes in zQ175 Knock-In Mouse Model of Huntington's Disease. PLoS One 2016; 11:e0148839. [PMID: 26859386 PMCID: PMC4747517 DOI: 10.1371/journal.pone.0148839] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/25/2016] [Indexed: 11/19/2022] Open
Abstract
Huntington’s disease (HD) is caused by an expansion of the trinucleotide poly (CAG) tract located in exon 1 of the huntingtin (Htt) gene leading to progressive neurodegeneration in selected brain regions, and associated functional impairments in motor, cognitive, and psychiatric domains. Since the discovery of the gene mutation that causes the disease, mouse models have been developed by different strategies. Recently, a new model, the zQ175 knock-in (KI) line, was developed in an attempt to have the Htt gene in a context and causing a phenotype that more closely mimics HD in humans. The behavioral phenotype was characterized across the independent laboratories and important features reminiscent of human HD are observed in zQ175 mice. In the current study, we characterized the zQ175 model housed in an academic laboratory under reversed dark-light cycle, including motor function, in vivo longitudinal structural MRI imaging for brain volume, MRS for striatal metabolites, neuropathology, as well as a panel of key disease marker proteins in the striatum at different ages. Our results suggest that homozygous zQ175 mice exhibited significant brain atrophy before the motor deficits and brain metabolite changes. Altered striatal medium spiny neuronal marker, postsynaptic marker protein and complement component C1qC also characterized zQ175 mice. Our results confirmed that the zQ175 KI model is valuable in understanding of HD-like pathophysiology and evaluation of potential therapeutics. Our data also provide suggestions to select appropriate outcome measurements in preclinical studies using the zQ175 mice.
Collapse
|
47
|
Alonso-Caneiro D, Read SA, Vincent SJ, Collins MJ, Wojtkowski M. Tissue thickness calculation in ocular optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2016; 7:629-45. [PMID: 26977367 PMCID: PMC4771476 DOI: 10.1364/boe.7.000629] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 05/07/2023]
Abstract
Thickness measurements derived from optical coherence tomography (OCT) images of the eye are a fundamental clinical and research metric, since they provide valuable information regarding the eye's anatomical and physiological characteristics, and can assist in the diagnosis and monitoring of numerous ocular conditions. Despite the importance of these measurements, limited attention has been given to the methods used to estimate thickness in OCT images of the eye. Most current studies employing OCT use an axial thickness metric, but there is evidence that axial thickness measures may be biased by tilt and curvature of the image. In this paper, standard axial thickness calculations are compared with a variety of alternative metrics for estimating tissue thickness. These methods were tested on a data set of wide-field chorio-retinal OCT scans (field of view (FOV) 60° x 25°) to examine their performance across a wide region of interest and to demonstrate the potential effect of curvature of the posterior segment of the eye on the thickness estimates. Similarly, the effect of image tilt was systematically examined with the same range of proposed metrics. The results demonstrate that image tilt and curvature of the posterior segment can affect axial tissue thickness calculations, while alternative metrics, which are not biased by these effects, should be considered. This study demonstrates the need to consider alternative methods to calculate tissue thickness in order to avoid measurement error due to image tilt and curvature.
Collapse
Affiliation(s)
- David Alonso-Caneiro
- Contact Lens and Visual Optics Laboratory, School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Scott A. Read
- Contact Lens and Visual Optics Laboratory, School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Stephen J. Vincent
- Contact Lens and Visual Optics Laboratory, School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Michael J. Collins
- Contact Lens and Visual Optics Laboratory, School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Maciej Wojtkowski
- Institute of Physics, Nicolaus Copernicus University, ul. Grudziadzka 5/7, PL-87-100 Torun, Poland
| |
Collapse
|
48
|
Kim SG, Jung WH, Kim SN, Jang JH, Kwon JS. Alterations of Gray and White Matter Networks in Patients with Obsessive-Compulsive Disorder: A Multimodal Fusion Analysis of Structural MRI and DTI Using mCCA+jICA. PLoS One 2015; 10:e0127118. [PMID: 26038825 PMCID: PMC4454537 DOI: 10.1371/journal.pone.0127118] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/10/2015] [Indexed: 02/06/2023] Open
Abstract
Many of previous neuroimaging studies on neuronal structures in patients with obsessive-compulsive disorder (OCD) used univariate statistical tests on unimodal imaging measurements. Although the univariate methods revealed important aberrance of local morphometry in OCD patients, the covariance structure of the anatomical alterations remains unclear. Motivated by recent developments of multivariate techniques in the neuroimaging field, we applied a fusion method called "mCCA+jICA" on multimodal structural data of T1-weighted magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) of 30 unmedicated patients with OCD and 34 healthy controls. Amongst six highly correlated multimodal networks (p < 0.0001), we found significant alterations of the interrelated gray and white matter networks over occipital and parietal cortices, frontal interhemispheric connections and cerebella (False Discovery Rate q ≤ 0.05). In addition, we found white matter networks around basal ganglia that correlated with a subdimension of OC symptoms, namely 'harm/checking' (q ≤ 0.05). The present study not only agrees with the previous unimodal findings of OCD, but also quantifies the association of the altered networks across imaging modalities.
Collapse
Affiliation(s)
- Seung-Goo Kim
- Institute of Human Behavioral Medicine, SNU-MRC, Seoul National University Hospital, Seoul, South Korea
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Wi Hoon Jung
- Institute of Human Behavioral Medicine, SNU-MRC, Seoul National University Hospital, Seoul, South Korea
| | - Sung Nyun Kim
- Department of Psychiatry, College of Medicine, Seoul National University, Seoul, South Korea
| | - Joon Hwan Jang
- Department of Psychiatry, College of Medicine, Seoul National University, Seoul, South Korea
| | - Jun Soo Kwon
- Institute of Human Behavioral Medicine, SNU-MRC, Seoul National University Hospital, Seoul, South Korea
- Department of Psychiatry, College of Medicine, Seoul National University, Seoul, South Korea
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
49
|
MRI-detectable changes in mouse brain structure induced by voluntary exercise. Neuroimage 2015; 113:175-83. [DOI: 10.1016/j.neuroimage.2015.03.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 03/11/2015] [Accepted: 03/13/2015] [Indexed: 11/20/2022] Open
|
50
|
Foxley S, Domowicz M, Karczmar GS, Schwartz N. 3D high spectral and spatial resolution imaging of ex vivo mouse brain. Med Phys 2015; 42:1463-72. [PMID: 25735299 PMCID: PMC5148176 DOI: 10.1118/1.4908203] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Widely used MRI methods show brain morphology both in vivo and ex vivo at very high resolution. Many of these methods (e.g., T2*-weighted imaging, phase-sensitive imaging, or susceptibility-weighted imaging) are sensitive to local magnetic susceptibility gradients produced by subtle variations in tissue composition. However, the spectral resolution of commonly used methods is limited to maintain reasonable run-time combined with very high spatial resolution. Here, the authors report on data acquisition at increased spectral resolution, with 3-dimensional high spectral and spatial resolution MRI, in order to analyze subtle variations in water proton resonance frequency and lineshape that reflect local anatomy. The resulting information compliments previous studies based on T2* and resonance frequency. METHODS The proton free induction decay was sampled at high resolution and Fourier transformed to produce a high-resolution water spectrum for each image voxel in a 3D volume. Data were acquired using a multigradient echo pulse sequence (i.e., echo-planar spectroscopic imaging) with a spatial resolution of 50 × 50 × 70 μm(3) and spectral resolution of 3.5 Hz. Data were analyzed in the spectral domain, and images were produced from the various Fourier components of the water resonance. This allowed precise measurement of local variations in water resonance frequency and lineshape, at the expense of significantly increased run time (16-24 h). RESULTS High contrast T2*-weighted images were produced from the peak of the water resonance (peak height image), revealing a high degree of anatomical detail, specifically in the hippocampus and cerebellum. In images produced from Fourier components of the water resonance at -7.0 Hz from the peak, the contrast between deep white matter tracts and the surrounding tissue is the reverse of the contrast in water peak height images. This indicates the presence of a shoulder in the water resonance that is not present at +7.0 Hz and may be specific to white matter anatomy. Moreover, a frequency shift of 6.76 ± 0.55 Hz was measured between the molecular and granular layers of the cerebellum. This shift is demonstrated in corresponding spectra; water peaks from voxels in the molecular and granular layers are consistently 2 bins apart (7.0 Hz, as dictated by the spectral resolution) from one another. CONCLUSIONS High spectral and spatial resolution MR imaging has the potential to accurately measure the changes in the water resonance in small voxels. This information can guide optimization and interpretation of more commonly used, more rapid imaging methods that depend on image contrast produced by local susceptibility gradients. In addition, with improved sampling methods, high spectral and spatial resolution data could be acquired in reasonable run times, and used for in vivo scans to increase sensitivity to variations in local susceptibility.
Collapse
Affiliation(s)
| | - Miriam Domowicz
- Department of Pediatrics, University of Chicago, Chicago, Illinois 60637
| | | | - Nancy Schwartz
- Department of Pediatrics, Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|