1
|
Huang X, Bai L, Chen Y, Cui H, Wang L. Gender differences in oxyhemoglobin (oxy-Hb) changes during drawing interactions in romantic couples: an fNIRS study. Front Behav Neurosci 2025; 18:1476535. [PMID: 39872040 PMCID: PMC11769947 DOI: 10.3389/fnbeh.2024.1476535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/26/2024] [Indexed: 01/29/2025] Open
Abstract
Interpersonal interaction is essential to romantic couples. Understanding how gender impacts an individual's brain activities during intimate interaction is crucial. The present study examined gender differences in oxyhemoglobin (oxy-Hb) changes during real-time drawing interactions between members of romantic couples using non-invasive functional near-infrared spectroscopy (fNIRS). We analyzed the oxy-Hb concentrations of romantic couples engaged in interactive (i.e., chase and escape) and non-interactive (i.e., individual) drawing sessions. Our findings indicated that males (vs. females) exhibited more pronounced oxy-Hb concentrations in Broca's area, motor area, sensorimotor cortex, and temporal lobe areas than women in an interactive drawing task, suggesting a heightened goal-oriented engagement in social interaction. Significant positive correlations were found between oxy-Hb volumes of the temporal area and the Quality of Relationship Index (QRI), underscoring the impact of interpersonal dynamics on brain function during interactive tasks. This study deepens the understanding of gender differences in neural mechanisms in social interaction tasks and provides important insights for intimacy research.
Collapse
Affiliation(s)
- Xinxin Huang
- School of Education Science, Shaoguan University, Shaoguan, China
| | | | | | | | | |
Collapse
|
2
|
Holmes M, Aalto D, Cummine J. Opening the dialogue: A preliminary exploration of hair color, hair cleanliness, light, and motion effects on fNIRS signal quality. PLoS One 2024; 19:e0304356. [PMID: 38781258 PMCID: PMC11115287 DOI: 10.1371/journal.pone.0304356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
INTRODUCTION Functional near-infrared spectroscopy (fNIRS) is a promising tool for studying brain activity, offering advantages such as portability and affordability. However, challenges in data collection persist due to factors like participant physiology, environmental light, and gross-motor movements, with limited literature on their impact on fNIRS signal quality. This study addresses four potentially influential factors-hair color, hair cleanliness, environmental light, and gross-motor movements-on fNIRS signal quality. Our aim is to raise awareness and offer insights for future fNIRS research. METHODS Six participants (4 Females, 2 Males) took part in four different experiments investigating the effects of hair color, hair cleanliness, environmental light, and gross-motor movements on fNIRS signal quality. Participants in Experiment 1, categorized by hair color, completed a finger-tapping task in a between-subjects block design. Signal quality was compared between each hair color. Participants in Experiments 2 and 3 completed a finger-tapping task in a within-subjects block design, with signal quality being compared across hair cleanliness (i.e., five consecutive days without washing the hair) and environmental light (i.e., sunlight, artificial light, no light, etc.), respectively. Experiment 4 assessed three gross-motor movements (i.e., walking, turning and nodding the head) in a within-subjects block design. Motor movements were then compared to resting blocks. Signal quality was evaluated using Scalp Coupling Index (SCI) measurements. RESULTS Lighter hair produced better signals than dark hair, while the impact of environmental light remains uncertain. Hair cleanliness showed no significant effects, but gross motor movements notably reduced signal quality. CONCLUSION Our results suggest that hair color, environmental light, and gross-motor movements affect fNIRS signal quality while hair cleanliness does not. Nevertheless, future studies with larger sample sizes are warranted to fully understand these effects. To advance future research, comprehensive documentation of participant demographics and lab conditions, along with signal quality analyses, is essential.
Collapse
Affiliation(s)
- Mitchell Holmes
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel Aalto
- Faculty of Medicine and Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Faculty of Rehabilitation Medicine, Department of Communication Sciences and Disorders, University of Alberta, Edmonton, Alberta, Canada
- Institute for Reconstructive Science in Medicine (iRSM), Misericordia Community Hospital, Edmonton, Alberta, Canada
| | - Jacqueline Cummine
- Faculty of Medicine and Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Faculty of Rehabilitation Medicine, Department of Communication Sciences and Disorders, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Chen S, Mao M, Zhu G, Chen Y, Qiu Y, Ye B, Xu D. Cortical activity in patients with high-functioning ischemic stroke during the Purdue Pegboard Test: insights into bimanual coordinated fine motor skills with functional near-infrared spectroscopy. Neural Regen Res 2024; 19:1098-1104. [PMID: 37862214 PMCID: PMC10749618 DOI: 10.4103/1673-5374.385312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/05/2023] [Accepted: 08/08/2023] [Indexed: 10/22/2023] Open
Abstract
After stroke, even high-functioning individuals may experience compromised bimanual coordination and fine motor dexterity, leading to reduced functional independence. Bilateral arm training has been proposed as a promising intervention to address these deficits. However, the neural basis of the impairment of functional fine motor skills and their relationship to bimanual coordination performance in stroke patients remains unclear, limiting the development of more targeted interventions. To address this gap, our study employed functional near-infrared spectroscopy to investigate cortical responses in patients after stroke as they perform functional tasks that engage fine motor control and coordination. Twenty-four high-functioning patients with ischemic stroke (7 women, 17 men; mean age 64.75 ± 10.84 years) participated in this cross-sectional observational study and completed four subtasks from the Purdue Pegboard Test, which measures unimanual and bimanual finger and hand dexterity. We found significant bilateral activation of the sensorimotor cortices during all Purdue Pegboard Test subtasks, with bimanual tasks inducing higher cortical activation than the assembly subtask. Importantly, patients with better bimanual coordination exhibited lower cortical activation during the other three Purdue Pegboard Test subtasks. Notably, the observed neural response patterns varied depending on the specific subtask. In the unaffected hand task, the differences were primarily observed in the ipsilesional hemisphere. In contrast, the bilateral sensorimotor cortices and the contralesional hemisphere played a more prominent role in the bimanual task and assembly task, respectively. While significant correlations were found between cortical activation and unimanual tasks, no significant correlations were observed with bimanual tasks. This study provides insights into the neural basis of bimanual coordination and fine motor skills in high-functioning patients after stroke, highlighting task-dependent neural responses. The findings also suggest that patients who exhibit better bimanual performance demonstrate more efficient cortical activation. Therefore, incorporating bilateral arm training in post-stroke rehabilitation is important for better outcomes. The combination of functional near-infrared spectroscopy with functional motor paradigms is valuable for assessing skills and developing targeted interventions in stroke rehabilitation.
Collapse
Affiliation(s)
- Siyun Chen
- The Second Rehabilitation Hospital of Shanghai, Shanghai, China
- College of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Mengchai Mao
- The Second Rehabilitation Hospital of Shanghai, Shanghai, China
- College of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Guangyue Zhu
- College of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yufeng Chen
- College of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqi Qiu
- School of Statistics, East China Normal University, Shanghai, China
| | - Bin Ye
- The Third Rehabilitation Hospital of Shanghai, Shanghai, China
| | - Dongsheng Xu
- College of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- Tongji University, Shanghai, China
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Kothe C, Hanada G, Mullen S, Mullen T. On decoding of rapid motor imagery in a diverse population using a high-density NIRS device. FRONTIERS IN NEUROERGONOMICS 2024; 5:1355534. [PMID: 38529269 PMCID: PMC10961353 DOI: 10.3389/fnrgo.2024.1355534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/20/2024] [Indexed: 03/27/2024]
Abstract
Introduction Functional near-infrared spectroscopy (fNIRS) aims to infer cognitive states such as the type of movement imagined by a study participant in a given trial using an optical method that can differentiate between oxygenation states of blood in the brain and thereby indirectly between neuronal activity levels. We present findings from an fNIRS study that aimed to test the applicability of a high-density (>3000 channels) NIRS device for use in short-duration (2 s) left/right hand motor imagery decoding in a diverse, but not explicitly balanced, subject population. A side aim was to assess relationships between data quality, self-reported demographic characteristics, and brain-computer interface (BCI) performance, with no subjects rejected from recruitment or analysis. Methods BCI performance was quantified using several published methods, including subject-specific and subject-independent approaches, along with a high-density fNIRS decoder previously validated in a separate study. Results We found that decoding of motor imagery on this population proved extremely challenging across all tested methods. Overall accuracy of the best-performing method (the high-density decoder) was 59.1 +/- 6.7% after excluding subjects where almost no optode-scalp contact was made over motor cortex and 54.7 +/- 7.6% when all recorded sessions were included. Deeper investigation revealed that signal quality, hemodynamic responses, and BCI performance were all strongly impacted by the hair phenotypical and demographic factors under investigation, with over half of variance in signal quality explained by demographic factors alone. Discussion Our results contribute to the literature reporting on challenges in using current-generation NIRS devices on subjects with long, dense, dark, and less pliable hair types along with the resulting potential for bias. Our findings confirm the need for increased focus on these populations, accurate reporting of data rejection choices across subject intake, curation, and final analysis in general, and signal a need for NIRS optode designs better optimized for the general population to facilitate more robust and inclusive research outcomes.
Collapse
|
5
|
Beißel P, Künzell S. Task integration in complex, bimanual sequence learning tasks. PSYCHOLOGICAL RESEARCH 2024; 88:207-221. [PMID: 37329366 PMCID: PMC10805987 DOI: 10.1007/s00426-023-01848-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023]
Abstract
Sequence learning and multitasking studies have largely focused on simple motor skills, which cannot be directly transferred to the plethora of complex skills found outside of laboratory conditions. Established theories e.g. for bimanual tasks and task integration thus have to be reassessed in the context of complex motor skills. We hypothesize that under more complex conditions, task integration facilitates motor learning, impedes or suppresses effector-specific learning and can still be observed despite partial secondary task interference. We used the Ξ-apparatus to assess the learning success of six groups in a bimanual dual-task, in which we manipulated the degree of possible integration between the right-hand and the left-hand sequences. We could show that task integration positively influences the learning of these complex, bimanual skills. However, the integration impedes but not fully suppresses effector-specific learning, as we could measure reduced hand-specific learning. Task integration improves learning despite the disruptive effect of partial secondary task interference, but its mitigating effect is only effective to some extent. Overall, the results suggest that previous insights on sequential motor learning and task integration can largely also be applied to complex motor skills.
Collapse
Affiliation(s)
- Patrick Beißel
- Institute of Sports Sciences, University of Augsburg, Universitätsstraße 3, 86135, Augsburg, Germany.
| | - Stefan Künzell
- Institute of Sports Sciences, University of Augsburg, Universitätsstraße 3, 86135, Augsburg, Germany
| |
Collapse
|
6
|
Gurgone S, De Salvo S, Bonanno L, Muscarà N, Acri G, Caridi F, Paladini G, Borzelli D, Brigandì A, La Torre D, Sorbera C, Anfuso C, Di Lorenzo G, Venuti V, d'Avella A, Marino S. Changes in cerebral cortex activity during a simple motor task after MRgFUS treatment in patients affected by essential tremor and Parkinson's disease: a pilot study using functional NIRS. Phys Med Biol 2024; 69:025014. [PMID: 38100845 DOI: 10.1088/1361-6560/ad164e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/15/2023] [Indexed: 12/17/2023]
Abstract
Objective.Magnetic resonance imaging-guided focused ultrasound surgery (MRgFUS) is a non-invasive thermal ablation method that involves high-intensity focused ultrasound surgery (FUS) and Magnetic Resonance Imaging for anatomical imaging and real-time thermal mapping. This technique is widely employed for the treatment of patients affected by essential tremor (ET) and Parkinson's disease (PD). In the current study, functional near-infrared spectroscopy (fNIRS) was used to highlight hemodynamics changes in cerebral cortex activity, during a simple hand motor task, i.e. unimanual left and right finger-tapping, in ET and PD patients.Approach.All patients were evaluated before, one week and one month after MRgFUS treatment.Main results.fNIRS revealed cerebral hemodynamic changes one week and one month after MRgFUS treatment, especially in the ET group, that showed a significant clinical improvement in tremor clinical scores.Significance.To our knowledge, our study is the first that showed the use of fNIRS system to measure the cortical activity changes following unilateral ventral intermediate nucleus thalamotomy after MRgFUS treatment. Our findings showed that therapeutic MRgFUS promoted the remodeling of neuronal networks and changes in cortical activity in association with symptomatic improvements.
Collapse
Affiliation(s)
- Sergio Gurgone
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, 1-4, Yamadaoka, Suita City, 565-0871 Osaka, Japan
| | - Simona De Salvo
- IRCCS Centro Neurolesi 'Bonino-Pulejo', Via Palermo, Ctr. Casazza, S.S. 113, I-98121 Messina, Italy
| | - Lilla Bonanno
- IRCCS Centro Neurolesi 'Bonino-Pulejo', Via Palermo, Ctr. Casazza, S.S. 113, I-98121 Messina, Italy
| | - Nunzio Muscarà
- IRCCS Centro Neurolesi 'Bonino-Pulejo', Via Palermo, Ctr. Casazza, S.S. 113, I-98121 Messina, Italy
| | - Giuseppe Acri
- Dipartimento di Scienze Biomediche, Odontoiatriche, e delle Immagini Morfologiche e Funzionali, Università degli Studi di Messina, c/o A.O.U. Policlinico 'G. Martino' Via Consolare Valeria 1, I-98125 Messina, Italy
| | - Francesco Caridi
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, V.le F. Stagno D'Alcontres 31, I-98166 Messina, Italy
| | - Giuseppe Paladini
- Dipartimento di Fisica e Astronomia 'Ettore Majorana', Università degli Studi di Catania, Via S. Sofia 64, I-95123 Catania, Italy
| | - Daniele Borzelli
- Dipartimento di Scienze Biomediche, Odontoiatriche, e delle Immagini Morfologiche e Funzionali, Università degli Studi di Messina, c/o A.O.U. Policlinico 'G. Martino' Via Consolare Valeria 1, I-98125 Messina, Italy
- Laboratorio di Fisiologia Neuromotoria, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, I-00179 Roma, Italy
| | - Amelia Brigandì
- IRCCS Centro Neurolesi 'Bonino-Pulejo', Via Palermo, Ctr. Casazza, S.S. 113, I-98121 Messina, Italy
| | - Domenico La Torre
- Dipartimento di Scienze Mediche e Chirurgiche, Istituto di Neurochirurgia, Università degli Studi 'Magna Graecia' di Catanzaro, Viale Europa, I-88100 Catanzaro, Italy
| | - Chiara Sorbera
- IRCCS Centro Neurolesi 'Bonino-Pulejo', Via Palermo, Ctr. Casazza, S.S. 113, I-98121 Messina, Italy
| | - Carmelo Anfuso
- IRCCS Centro Neurolesi 'Bonino-Pulejo', Via Palermo, Ctr. Casazza, S.S. 113, I-98121 Messina, Italy
| | - Giuseppe Di Lorenzo
- IRCCS Centro Neurolesi 'Bonino-Pulejo', Via Palermo, Ctr. Casazza, S.S. 113, I-98121 Messina, Italy
| | - Valentina Venuti
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, V.le F. Stagno D'Alcontres 31, I-98166 Messina, Italy
| | - Andrea d'Avella
- Dipartimento di Scienze Biomediche, Odontoiatriche, e delle Immagini Morfologiche e Funzionali, Università degli Studi di Messina, c/o A.O.U. Policlinico 'G. Martino' Via Consolare Valeria 1, I-98125 Messina, Italy
- Laboratorio di Fisiologia Neuromotoria, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, I-00179 Roma, Italy
| | - Silvia Marino
- IRCCS Centro Neurolesi 'Bonino-Pulejo', Via Palermo, Ctr. Casazza, S.S. 113, I-98121 Messina, Italy
| |
Collapse
|
7
|
Goikoetxea-Sotelo G, van Hedel HJA. Defining, quantifying, and reporting intensity, dose, and dosage of neurorehabilitative interventions focusing on motor outcomes. FRONTIERS IN REHABILITATION SCIENCES 2023; 4:1139251. [PMID: 37637933 PMCID: PMC10457006 DOI: 10.3389/fresc.2023.1139251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023]
Abstract
Introduction Determining the minimal amount of therapy needed for positive neurorehabilitative outcomes is important for optimizing active treatment interventions to improve motor outcomes. However, there are various challenges when quantifying these relationships: first, several consensuses on the definition and usage of the terms intensity, dose, and dosage of motor interventions have been proposed, but there seems to be no agreement, and the terms are still used inconsistently. Second, randomized controlled trials frequently underreport items relevant to determining the intensity, dose, and dosage of the interventions. Third, there is no universal measure to quantify therapy intensity accurately. This "perspectives" paper aims to increase awareness of these topics among neurorehabilitation specialists. Defining quantifying and reporting We searched the literature for definitions of intensity, dose, and dosage and adapted the ones we considered the most appropriate to fit the needs of neurorehabilitative interventions. Furthermore, we suggest refining the template for intervention description and replication (TIDieR) to enhance the reporting of randomized controlled trials. Finally, we performed a systematic literature search to provide a list of intensity measures and complemented these with some novel candidate measures. Discussion The proposed definitions of intensity, dose, and dosage could improve the communication between neurorehabilitation specialists and the reporting of dose and dosage in interventional studies. Quantifying intensity is necessary to improve our understanding of the minimal intensity, dose, and dosage of therapy needed to improve motor outcomes in neurorehabilitation. We consider the lack of appropriate intensity measures a significant gap in knowledge requiring future research.
Collapse
Affiliation(s)
- Gaizka Goikoetxea-Sotelo
- Swiss Children’s Rehab, University Children’s Hospital Zurich, University of Zurich, Affoltern am Albis, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Hubertus J. A. van Hedel
- Swiss Children’s Rehab, University Children’s Hospital Zurich, University of Zurich, Affoltern am Albis, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Carius D, Herold F, Clauß M, Kaminski E, Wagemann F, Sterl C, Ragert P. Increased Cortical Activity in Novices Compared to Experts During Table Tennis: A Whole-Brain fNIRS Study Using Threshold-Free Cluster Enhancement Analysis. Brain Topogr 2023; 36:500-516. [PMID: 37119404 PMCID: PMC10293405 DOI: 10.1007/s10548-023-00963-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/15/2023] [Indexed: 05/01/2023]
Abstract
There is a growing interest to understand the neural underpinnings of high-level sports performance including expertise-related differences in sport-specific skills. Here, we aimed to investigate whether expertise level and task complexity modulate the cortical hemodynamics of table tennis players. 35 right-handed table tennis players (17 experts/18 novices) were recruited and performed two table tennis strokes (forehand and backhand) and a randomized combination of them. Cortical hemodynamics, as a proxy for cortical activity, were recorded using functional near-infrared spectroscopy, and the behavioral performance (i.e., target accuracy) was assessed via video recordings. Expertise- and task-related differences in cortical hemodynamics were analyzed using nonparametric threshold-free cluster enhancement. In all conditions, table tennis experts showed a higher target accuracy than novices. Furthermore, we observed expertise-related differences in widespread clusters compromising brain areas being associated with sensorimotor and multisensory integration. Novices exhibited, in general, higher activation in those areas as compared to experts. We also identified task-related differences in cortical activity including frontal, sensorimotor, and multisensory brain areas. The present findings provide empirical support for the neural efficiency hypothesis since table tennis experts as compared to novices utilized a lower amount of cortical resources to achieve superior behavioral performance. Furthermore, our findings suggest that the task complexity of different table tennis strokes is mirrored in distinct cortical activation patterns. Whether the latter findings can be useful to monitor or tailor sport-specific training interventions necessitates further investigations.
Collapse
Affiliation(s)
- Daniel Carius
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, 04109, Leipzig, Germany.
| | - Fabian Herold
- Faculty of Health Sciences, University of Potsdam, 14476, Potsdam, Germany
| | - Martina Clauß
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, 04109, Leipzig, Germany
| | - Elisabeth Kaminski
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, 04109, Leipzig, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
| | - Florian Wagemann
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, 04109, Leipzig, Germany
| | - Clemens Sterl
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, 04109, Leipzig, Germany
| | - Patrick Ragert
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, 04109, Leipzig, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
| |
Collapse
|
9
|
Bonnal J, Ozsancak C, Monnet F, Valery A, Prieur F, Auzou P. Neural Substrates for Hand and Shoulder Movement in Healthy Adults: A Functional near Infrared Spectroscopy Study. Brain Topogr 2023:10.1007/s10548-023-00972-x. [PMID: 37202647 DOI: 10.1007/s10548-023-00972-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Characterization of cortical activation patterns during movements in healthy adults may help our understanding of how the injured brain works. Upper limb motor tasks are commonly used to assess impaired motor function and to predict recovery in individuals with neurological disorders such as stroke. This study aimed to explore cortical activation patterns associated with movements of the hand and shoulder using functional near-infrared spectroscopy (fNIRS) and to demonstrate the potential of this technology to distinguish cerebral activation between distal and proximal movements. Twenty healthy, right-handed participants were recruited. Two 10-s motor tasks (right-hand opening-closing and right shoulder abduction-adduction) were performed in a sitting position at a rate of 0.5 Hz in a block paradigm. We measured the variations in oxyhemoglobin (HbO2) and deoxyhemoglobin (HbR) concentrations. fNIRS was performed with a 24-channel system (Brite 24®; Artinis) that covered most motor control brain regions bilaterally. Activation was mostly contralateral for both hand and shoulder movements. Activation was more lateral for hand movements and more medial for shoulder movements, as predicted by the classical homunculus representation. Both HbO2 and HbR concentrations varied with the activity. Our results showed that fNIRS can distinguish patterns of cortical activity in upper limb movements under ecological conditions. These results suggest that fNIRS can be used to measure spontaneous motor recovery and rehabilitation-induced recovery after brain injury. The trial was restropectively registered on January 20, 2023: NCT05691777 (clinicaltrial.gov).
Collapse
Affiliation(s)
- Julien Bonnal
- Service de Neurologie, Centre Hospitalier Universitaire d'Orléans, 14 Avenue de l'Hôpital, 45100, Orleans, France.
- CIAMS, Université Paris-Saclay, 91405, Orsay Cedex, France.
- CIAMS, Université d'Orléans, 45067, Orléans, France.
- SAPRéM, Université d'Orléans, Orléans, France.
| | - Canan Ozsancak
- Service de Neurologie, Centre Hospitalier Universitaire d'Orléans, 14 Avenue de l'Hôpital, 45100, Orleans, France
| | - Fanny Monnet
- Institut Denis Poisson, Bâtiment de mathématiques, Université d'Orléans, CNRS, Université de Tours, Institut Universitaire de France, Rue de Chartres, 45067, Orléans cedex 2, B.P. 6759, France
| | - Antoine Valery
- Département d'Informations Médicales, Centre Hospitalier Universitaire d'Orléans, 14 Avenue de l'Hôpital, 45100, Orleans, France
| | - Fabrice Prieur
- CIAMS, Université Paris-Saclay, 91405, Orsay Cedex, France
- CIAMS, Université d'Orléans, 45067, Orléans, France
- SAPRéM, Université d'Orléans, Orléans, France
| | - Pascal Auzou
- Service de Neurologie, Centre Hospitalier Universitaire d'Orléans, 14 Avenue de l'Hôpital, 45100, Orleans, France
| |
Collapse
|
10
|
Zheng J, He W, Ma Q, Cai W, Li S, Yu H. Cortical activation in robot-assisted dynamic and static resistance training combining VR interaction: An fNIRS based pilot study. NeuroRehabilitation 2023; 52:413-423. [PMID: 36806524 DOI: 10.3233/nre-220292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
BACKGROUND There are few isometric training systems based on upper limb rehabilitation robots. Its efficacy and neural mechanism are not well understood. OBJECTIVE This study aims to investigate the cortex activation of dynamic resistance and static (isometric) training based on upper limb rehabilitation robot combined with virtual reality (VR) interaction by using functional near-infrared spectroscopy (fNIRS). METHODS Twenty subjects were included in this study. The experiment adopts the block paradigm design. Experiment in dynamic and static conditions consisted of three trials, each consisting of task (60 s)-rest (40 s). The neural activities of the sensorimotor cortex (SMC), premotor cortex (PMC) and prefrontal cortex (PFC) were measured. The cortex activation and functional connectivity (FC) were analyzed. RESULTS Both the dynamic and static training can activate SMC, PMC, and PFC. In SMC and PMC, the activation of static training was stronger than dynamic training, there were significant differences between the two modes of each region of interest (ROI) (p < 0.05) (SMC: p = 0.022, ES = 0.72, PMC: p = 0.039, ES = 0.63). Besides, the FC between all ROIs of the static training was stronger than that of the dynamic training. CONCLUSION The static training based on upper limb rehabilitation robot may better facilitate the cortical activation associated with motor control.
Collapse
Affiliation(s)
- Jinyu Zheng
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China.,Shanghai Engineering Research Center of Assistive Devices, Shanghai, China
| | - Wanying He
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China.,Shanghai Engineering Research Center of Assistive Devices, Shanghai, China
| | - Qiqi Ma
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China.,Shanghai Engineering Research Center of Assistive Devices, Shanghai, China
| | - Wenqian Cai
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China.,Shanghai Engineering Research Center of Assistive Devices, Shanghai, China
| | - Sujiao Li
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China.,Shanghai Engineering Research Center of Assistive Devices, Shanghai, China.,Key Laboratory of Neural-Functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Shanghai, China
| | - Hongliu Yu
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China.,Shanghai Engineering Research Center of Assistive Devices, Shanghai, China.,Key Laboratory of Neural-Functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Shanghai, China
| |
Collapse
|
11
|
Zheng J, Ma Q, He W, Huang Y, Shi P, Li S, Yu H. Cognitive and motor cortex activation during robot-assisted multi-sensory interactive motor rehabilitation training: An fNIRS based pilot study. Front Hum Neurosci 2023; 17:1089276. [PMID: 36845877 PMCID: PMC9947243 DOI: 10.3389/fnhum.2023.1089276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Objective This study aimed to evaluate the effects of multiple virtual reality (VR) interaction modalities based on force-haptic feedback combined with visual or auditory feedback in different ways on cerebral cortical activation by functional near-infrared spectroscopy (fNIRS). Methods: A modular multi-sensory VR interaction system based on a planar upper-limb rehabilitation robot was developed. Twenty healthy participants completed active elbow flexion and extension training in four VR interaction patterns, including haptic (H), haptic + auditory (HA), haptic + visual (HV), and haptic + visual + auditory (HVA). Cortical activation changes in the sensorimotor cortex (SMC), premotor cortex (PMC), and prefrontal cortex (PFC) were measured. Results Four interaction patterns all had significant activation effects on the motor and cognitive regions of the cerebral cortex (p < 0.05). Among them, in the HVA interaction mode, the cortical activation of each ROI was the strongest, followed by HV, HA, and H. The connectivity between channels of SMC and bilateral PFC, as well as the connectivity between channels in PMC, was the strongest under HVA and HV conditions. Besides, the two-way ANOVA of visual and auditory feedback showed that it was difficult for auditory feedback to have a strong impact on activation without visual feedback. In addition, under the condition of visual feedback, the effect of fusion auditory feedback on the activation degree was significantly higher than that of no auditory feedback. Conclusions The interaction mode of visual, auditory, and haptic multi-sensory integration is conducive to stronger cortical activation and cognitive control. Besides, there is an interaction effect between visual and auditory feedback, thus improving the cortical activation level. This research enriches the research on activation and connectivity of cognitive and motor cortex in the process of modular multi-sensory interaction training of rehabilitation robots. These conclusions provide a theoretical basis for the optimal design of the interaction mode of the rehabilitation robot and the possible scheme of clinical VR rehabilitation.
Collapse
Affiliation(s)
- Jinyu Zheng
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Qiqi Ma
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Wanying He
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Yanping Huang
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Ping Shi
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Assistive Devices, Shanghai, China
- Key Laboratory of Neural-Functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Shanghai, China
| | - Sujiao Li
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Assistive Devices, Shanghai, China
- Key Laboratory of Neural-Functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Shanghai, China
| | - Hongliu Yu
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Assistive Devices, Shanghai, China
- Key Laboratory of Neural-Functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Shanghai, China
| |
Collapse
|
12
|
Guo Z, Chen F. Impacts of simplifying articulation movements imagery to speech imagery BCI performance. J Neural Eng 2023; 20. [PMID: 36630714 DOI: 10.1088/1741-2552/acb232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 01/11/2023] [Indexed: 01/13/2023]
Abstract
Objective.Speech imagery (SI) can be used as a reliable, natural, and user-friendly activation task for the development of brain-computer interface (BCI), which empowers individuals with severe disabilities to interact with their environment. The functional near-infrared spectroscopy (fNIRS) is advanced as one of the most suitable brain imaging methods for developing BCI systems owing to its advantages of being non-invasive, portable, insensitive to motion artifacts, and having relatively high spatial resolution.Approach.To improve the classification performance of SI BCI based on fNIRS, a novel paradigm was developed in this work by simplifying the articulation movements in SI to make the articulation movement differences clearer between different words imagery tasks. A SI BCI was proposed to directly answer questions by covertly rehearsing the word '' or '' ('yes' or 'no' in English), and an unconstrained rest task also was contained in this BCI. The articulation movements of SI were simplified by retaining only the movements of the jaw and lips of vowels in Chinese Pinyin for words '' and ''.Main results.Compared with conventional speech imagery, simplifying the articulation movements in SI could generate more different brain activities among different tasks, which led to more differentiable temporal features and significantly higher classification performance. The average 3-class classification accuracies of the proposed paradigm across all 20 participants reached 69.6% and 60.2% which were about 10.8% and 5.6% significantly higher than those of the conventional SI paradigm operated in the 0-10 s and 0-2.5 s time windows, respectively.Significance.These results suggested that simplifying the articulation movements in SI is promising for improving the classification performance of intuitive BCIs based on speech imagery.
Collapse
Affiliation(s)
- Zengzhi Guo
- School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, People's Republic of China.,Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Fei Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, People's Republic of China
| |
Collapse
|
13
|
Wang D, Huang Y, Liang S, Meng Q, Yu H. The identification of interacting brain networks during robot-assisted training with multimodal stimulation. J Neural Eng 2023; 20. [PMID: 36548992 DOI: 10.1088/1741-2552/acae05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Objective.Robot-assisted rehabilitation training is an effective way to assist rehabilitation therapy. So far, various robotic devices have been developed for automatic training of central nervous system following injury. Multimodal stimulation such as visual and auditory stimulus and even virtual reality technology were usually introduced in these robotic devices to improve the effect of rehabilitation training. This may need to be explained from a neurological perspective, but there are few relevant studies.Approach.In this study, ten participants performed right arm rehabilitation training tasks using an upper limb rehabilitation robotic device. The tasks were completed under four different feedback conditions including multiple combinations of visual and auditory components: auditory feedback; visual feedback; visual and auditory feedback (VAF); non-feedback. The functional near-infrared spectroscopy devices record blood oxygen signals in bilateral motor, visual and auditory areas. Using hemoglobin concentration as an indicator of cortical activation, the effective connectivity of these regions was then calculated through Granger causality.Main results.We found that overall stronger activation and effective connectivity between related brain regions were associated with VAF. When participants completed the training task without VAF, the trends in activation and connectivity were diminished.Significance.This study revealed cerebral cortex activation and interacting networks of brain regions in robot-assisted rehabilitation training with multimodal stimulation, which is expected to provide indicators for further evaluation of the effect of rehabilitation training, and promote further exploration of the interaction network in the brain during a variety of external stimuli, and to explore the best sensory combination.
Collapse
Affiliation(s)
- Duojin Wang
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, People's Republic of China.,Shanghai Engineering Research Center of Assistive Devices, 516 Jungong Road, Shanghai 200093, People's Republic of China
| | - Yanping Huang
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, People's Republic of China
| | - Sailan Liang
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, People's Republic of China
| | - Qingyun Meng
- College of Rehabilitation Sciences, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Road, Shanghai 201318, People's Republic of China
| | - Hongliu Yu
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, People's Republic of China.,Shanghai Engineering Research Center of Assistive Devices, 516 Jungong Road, Shanghai 200093, People's Republic of China
| |
Collapse
|
14
|
Chen Z, Song X, Qiao Y, Yan J, Zhu C, Xie Q, Niu CM. Increased Inertia Triggers Linear Responses in Motor Cortices during Large-Extent Movements-A fNIRS Study. Brain Sci 2022; 12:1539. [PMID: 36421862 PMCID: PMC9688254 DOI: 10.3390/brainsci12111539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 08/22/2023] Open
Abstract
Activities of daily living consist of accurate, coordinated movements, which require the upper limbs to constantly interact with environmental loads. The magnitude of the load was shown to affect kinematic outcomes in healthy subjects. Moreover, the increase in load facilitates the recovery of motor function in patients with neurological disorders. Although Brodmann Areas 4 and 6 were found to be active during loaded movements, it remains unclear whether stronger activation can be triggered simply by increasing the load magnitude. If such a linear relationship exists, it may provide a basis for the closed-loop adjustment of treatment plans in neurorehabilitation. Fourteen healthy participants were instructed to lift their hands to their armpits. The movements were grouped in blocks of 25 s. Each block was assigned a magnitude of inertial loads, either 0 pounds (bare hand), 3 pounds, or 15 pounds. Hemodynamic fNIRS signals were recorded throughout the experiment. Both channel-wise and ROI-wise analyses found significant activations against all three magnitudes of inertia. The generalized linear model revealed significant increases in the beta coefficient of 0.001673/pound in BA4 and 0.001338/pound in BA6. The linear trend was stronger in BA6 (conditional r2 = 0.9218) than in BA4 (conditional r2 = 0.8323).
Collapse
Affiliation(s)
- Zhi Chen
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Xiaohui Song
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yongjun Qiao
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jin Yan
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Chaozhe Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100091, China
| | - Qing Xie
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Chuanxin M. Niu
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| |
Collapse
|
15
|
Li C, Wong Y, Langhammer B, Huang F, Du X, Wang Y, Zhang H, Zhang T. A study of dynamic hand orthosis combined with unilateral task-oriented training in subacute stroke: A functional near-infrared spectroscopy case series. Front Neurol 2022; 13:907186. [PMID: 36034313 PMCID: PMC9410701 DOI: 10.3389/fneur.2022.907186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/14/2022] [Indexed: 12/03/2022] Open
Abstract
Background Motor dysfunction in the upper extremities after stroke prohibits people with stroke from being independent in daily living. The application of fNIRS to explore brain activity under rehabilitation intervention is a research focus on neurorehabilitation. Objective The purpose of this study was to explore, using a grip-release ring motor task, the activated changes of regions of interest and changes in motor function utilizing fNIRS technology and test scales on persons with stroke who received unilateral task-oriented therapy with a hand orthosis in the early subacute stroke period before and after intervention. The study aimed to find a sensitive motor task and region of interest first, then to evaluate the feasibility and mechanism of this rehabilitation method by utilizing fNIRS technology in the next randomized controlled trial. Methods In this case series, eight right-handed, right hemiplegia subacute stroke persons (6 males,2 females from age 47 to 72) were enrolled. They received 30 min of unilateral task-oriented therapy without orthosis and 30 min of unilateral task-oriented therapy with orthosis (5 days/week) for 4 weeks. Activated channel numbers and beta values based on oxygenated hemoglobin concentration change using a grip-release ring motor task were estimated with fNIRS. Clinical outcome measures, including grip strength evaluation, action research arm test, and Fugl-Meyer assessment of the arm, were evaluated at the same time. Results Individual activation analysis showed that, after intervention, Subjects 1, 2, 6, 7, and 8 had the maximum mean beta value located in the left premotor cortex, while Subjects 4 and 5 had the maximum mean beta value located in the left sensorimotor cortex. The activation analysis of Subject 3 showed the maximum mean beta value located in the right premotor cortex. Deactivations of left sensorimotor cortex, left premotor cortex, and bilateral prefrontal cortex were observed after intervention which were different from other cases. Group activation analysis showed that bilateral cerebral hemispheres were activated in all eight participants, with right hemisphere and right supplementary motor cortex activated dominantly. After the intervention, the activation of bilateral hemispheres decreased but in different brain regions; there was a trend that the activation intensity of left sensorimotor cortex, right premotor cortex, and right prefrontal cortex decreased while activation intensity of left premotor cortex and left prefrontal cortex increased. Each participant demonstrated improvements in all the clinical test scales after intervention. Conclusions Left premotor cortex, left sensorimotor cortex, and right supplementary motor cortex may be the primary regions of interest. Grasp-release ring task was not appropriate to achieve our fNIRS research objective and a more sensitive motor task or more sensitive evaluating indicator should be used in further studies.
Collapse
Affiliation(s)
- ChaoJinZi Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Neurological Rehabilitation, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Yih Wong
- Department of Research, Sunnaas Rehabilitation Hospital, Bjornemyr, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Birgitta Langhammer
- Department of Research, Sunnaas Rehabilitation Hospital, Bjornemyr, Norway
- Department of Physiotherapy, Faculty of Health Science, OsloMet-Oslo Metropolitan University, Oslo, Norway
| | - FuBiao Huang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Occupational Therapy, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - XiaoXia Du
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Neurological Rehabilitation, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - YunLei Wang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Neurological Rehabilitation, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - HaoJie Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Tong Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Neurological Rehabilitation, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
- *Correspondence: Tong Zhang
| |
Collapse
|
16
|
Wang Y, Zhao J, Inada H, Négyesi J, Nagatomi R. Impact of handedness on interlimb transfer depending on the task complexity combined with motor and cognitive skills. Neurosci Lett 2022; 785:136775. [PMID: 35817313 DOI: 10.1016/j.neulet.2022.136775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 12/01/2022]
Abstract
PURPOSE Task complexity could affect acquisition efficiency of motor skills and interlimb transfer; however, how task complexity affects interlimb transfer remains unclear. We hypothesized that left- and right-handed participants may have different interlimb transfer efficiency depending on the task complexity. METHODS Left-hand (n = 28) and right-hand (n = 28) dominant participants (age = 24.70 ± 4.02 years, male:female = 28:28) performed a finger sequence test with two levels of complexity (simple: one-digit with four fingers vs. complex: two-digit with five fingers) before and after ten trials of 2-min practice each on the same apparatus. The speed and task errors were measured and analyzed. RESULTS Right-handed participants failed to improve performance on their right hand (non-trained hand) after contralateral left-hand practice in the simple finger sequence task. In contrast, the left-handed participants improved performance on non-trained hands both right and left after contralateral practices. In the complex task, however, both the left- and right-handed participants improved performance on non-trained hands by contralateral practices. CONCLUSION Our results showed that task complexity of skilled practice gave different effects on interlimb transfer between right- and left-handed subjects. It appears that a certain level of appropriate complexity is necessary to detect inter-limb transfers in motor learning in right-handed subjects.
Collapse
Affiliation(s)
- YiFan Wang
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Jun Zhao
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Hitoshi Inada
- Division of Biomedical Engineering for Health & Welfare, Tohoku University Graduate School of Biomedical Engineering, 6-6-12, Aramaki Aza Aoba Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - János Négyesi
- Division of Biomedical Engineering for Health & Welfare, Tohoku University Graduate School of Biomedical Engineering, 6-6-12, Aramaki Aza Aoba Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Ryoichi Nagatomi
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan; Division of Biomedical Engineering for Health & Welfare, Tohoku University Graduate School of Biomedical Engineering, 6-6-12, Aramaki Aza Aoba Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
17
|
Lim SB, Peters S, Yang CL, Boyd LA, Liu-Ambrose T, Eng JJ. Frontal, Sensorimotor, and Posterior Parietal Regions Are Involved in Dual-Task Walking After Stroke. Front Neurol 2022; 13:904145. [PMID: 35812105 PMCID: PMC9256933 DOI: 10.3389/fneur.2022.904145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/24/2022] [Indexed: 11/26/2022] Open
Abstract
Background Walking within the community requires the ability to walk while simultaneously completing other tasks. After a stroke, completing an additional task while walking is significantly impaired, and it is unclear how the functional activity of the brain may impact this. Methods Twenty individual in the chronic stage post-stroke participated in this study. Functional near-infrared spectroscopy (fNIRS) was used to measure prefrontal, pre-motor, sensorimotor, and posterior parietal cortices during walking and walking while completing secondary verbal tasks of varying difficulty. Changes in brain activity during these tasks were measured and relationships were accessed between brain activation changes and cognitive or motor abilities. Results Significantly larger activations were found for prefrontal, pre-motor, and posterior parietal cortices during dual-task walking. Increasing dual-task walking challenge did not result in an increase in brain activation in these regions. Higher general cognition related to lower increases in activation during the easier dual-task. With the harder dual-task, a trend was also found for higher activation and less motor impairment. Conclusions This is the first study to show that executive function, motor preparation/planning, and sensorimotor integration areas are all important for dual-task walking post-stroke. A lack of further brain activation increase with increasing challenge suggests a point at which a trade-off between brain activation and performance occurs. Further research is needed to determine if training would result in further increases in brain activity or improved performance.
Collapse
Affiliation(s)
- Shannon B. Lim
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
- Rehabilitation Research Program, GF Strong Rehabilitation Centre, Vancouver, BC, Canada
| | - Sue Peters
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
- Rehabilitation Research Program, GF Strong Rehabilitation Centre, Vancouver, BC, Canada
- School of Physical Therapy, Western University, London, ON, Canada
| | - Chieh-ling Yang
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
- Rehabilitation Research Program, GF Strong Rehabilitation Centre, Vancouver, BC, Canada
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Lara A. Boyd
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
- The David Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Teresa Liu-Ambrose
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
- The David Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Janice J. Eng
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
- Rehabilitation Research Program, GF Strong Rehabilitation Centre, Vancouver, BC, Canada
- Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
- *Correspondence: Janice J. Eng
| |
Collapse
|
18
|
Carius D, Kenville R, Maudrich D, Riechel J, Lenz H, Ragert P. Cortical processing during table tennis - an fNIRS study in experts and novices. Eur J Sport Sci 2021; 22:1315-1325. [PMID: 34228601 DOI: 10.1080/17461391.2021.1953155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Among the many factors that determine top athletic performance, little is known about the contribution of the brain. With the present study, we aimed to uncover aspects of this role by examining modulatory differences in brain processing as a function of expertise and task complexity in table tennis. For this purpose, 28 right-handed volunteers (14 experts and 14 novices) performed two table tennis strokes in a standardized manner. Hemodynamic response alterations reflecting neuronal activation were recorded during task execution using functional near-infrared spectroscopy (fNIRS) and analyzed within and between groups. Our results showed localized activation patterns in motor areas (primary motor cortex (M1), premotor cortex (PMC), and inferior parietal cortex (IPC)) for experts and novices. Compared to novices, experts completed more table tennis strokes and showed a significant increase in hemodynamic response alterations in channels corresponding to motor areas. Furthermore, we found significant correlations between the number of strokes and hemodynamic response magnitudes in individual channels of M1, PMC, and IPC. Taken together, our findings show that table tennis performance is accompanied by extensive activation of M1, PMC, and IPC. Furthermore, the observed difference in behavioral performance between experts and novices was associated with increased activation in M1, PMC, and IPC. We postulate that these differences in brain processing between experts and novices potentially imply modulatory distinctions related to increased movement speed or frequency but may also reflect an increased task familiarity of the experts.
Collapse
Affiliation(s)
- Daniel Carius
- Institute for General Kinesiology and Exercise Science, University of Leipzig, Leipzig, Germany
| | - Rouven Kenville
- Institute for General Kinesiology and Exercise Science, University of Leipzig, Leipzig, Germany.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Dennis Maudrich
- Institute for General Kinesiology and Exercise Science, University of Leipzig, Leipzig, Germany
| | - Jan Riechel
- Institute for General Kinesiology and Exercise Science, University of Leipzig, Leipzig, Germany
| | - Hannes Lenz
- Institute for General Kinesiology and Exercise Science, University of Leipzig, Leipzig, Germany
| | - Patrick Ragert
- Institute for General Kinesiology and Exercise Science, University of Leipzig, Leipzig, Germany.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
19
|
Zheng Y, Tian B, Zhang Y, Wang D. Effect of force accuracy on hemodynamic response: an fNIRS study using fine visuomotor task. J Neural Eng 2021; 18. [PMID: 33784650 DOI: 10.1088/1741-2552/abf399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/30/2021] [Indexed: 11/12/2022]
Abstract
Objective. Despite converging neuroimaging studies investigating how neural activity is modulated by various motor related factors, such as movement velocity and force magnitude, little has been devoted to identifying the effect of force accuracy. This study thus aimed to investigate the effect of task difficulty on cortical neural responses when participants performed a visuomotor task with varying demands on force accuracy.Approach. Fourteen healthy adults performed a set of force generation operations with six levels of force accuracy. The participants held a pen-shaped tool and moved the tool along a planar ring path, meanwhile producing a constant force against the plane under visual guidance. The required force accuracy was modulated by allowable tolerance of the force during the task execution. We employed functional near-infrared spectroscopy to record signals from bilateral prefrontal, sensorimotor and occipital areas, used the hemoglobin concentration as indicators of cortical activation, then calculated the effective connectivity across these regions by Granger causality.Main results.We observed overall stronger activation (oxy-hemoglobin concentration,p= 0.015) and connectivity (p< 0.05) associated with the initial increase in force accuracy, and the diminished trend in activation and connectivity when participants were exposed to excessive demands on accurate force generation. These findings suggested that the increasing task difficulty would be only beneficial for the mental investment up to a certain point, and above that point neural responses would show patterns of lower activation and connections, revealing mental overload at excessive task demands.Significance.Our results provide the first evidence for the inverted U-shaped effect of force accuracy on hemodynamic responses during fine visuomotor tasks. The insights obtained through this study also highlight the essential role of inter-region connectivity alterations for coping with task difficulty, enhance our understanding of the underlying motor neural processes, and provide the groundwork for developing adaptive neurorehabilitation strategies.
Collapse
Affiliation(s)
- Yilei Zheng
- State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, People's Republic of China.,Peng Cheng Laboratory, Shenzhen, People's Republic of China
| | - Bohao Tian
- State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, People's Republic of China
| | - Yuru Zhang
- State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, People's Republic of China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, People's Republic of China
| | - Dangxiao Wang
- State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, People's Republic of China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, People's Republic of China.,Peng Cheng Laboratory, Shenzhen, People's Republic of China
| |
Collapse
|
20
|
Effects of passive and active training modes of upper-limb rehabilitation robot on cortical activation: a functional near-infrared spectroscopy study. Neuroreport 2021; 32:479-488. [PMID: 33788815 DOI: 10.1097/wnr.0000000000001615] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The purpose of this study is to investigate the cortical activation during passive and active training modes under different speeds of upper extremity rehabilitation robots. METHODS Twelve healthy subjects completed the active and passive training modes at various speeds (0.12, 0.18, and 0.24 m/s) for the right upper limb. The functional near-infrared spectroscopy (fNIRS) was used to measure the neural activities of the sensorimotor cortex (SMC), premotor cortex (PMC), supplementary motor area (SMA), and prefrontal cortex (PFC). RESULTS Both the active and passive training modes can activate SMC, PMC, SMA, and PFC. The activation level of active training is higher than that of passive training. At the speed of 0.12 m/s, there is no significant difference in the intensity of the two modes. However, at the speed of 0.24 m/s, there are significant differences between the two modes in activation levels of each region of interest (ROI) (P < 0.05) (SMC: F = 8.90, P = 0.003; PMC: F = 8.26, P = 0.005; SMA: F = 5.53, P = 0.023; PFC: F = 9.160, P = 0.003). CONCLUSION This study mainly studied on the neural mechanisms of active and passive training modes at different speeds based on the end-effector upper-limb rehabilitation robot. Slow, active training better facilitated the cortical activation associated with cognition and motor control.See Video Abstract, http://links.lww.com/WNR/A621.
Collapse
|
21
|
Seidel-Marzi O, Hähner S, Ragert P, Carius D. Task-Related Hemodynamic Response Alterations During Slacklining: An fNIRS Study in Advanced Slackliners. FRONTIERS IN NEUROERGONOMICS 2021; 2:644490. [PMID: 38235235 PMCID: PMC10790949 DOI: 10.3389/fnrgo.2021.644490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/09/2021] [Indexed: 01/19/2024]
Abstract
The ability to maintain balance is based on various processes of motor control in complex neural networks of subcortical and cortical brain structures. However, knowledge on brain processing during the execution of whole-body balance tasks is still limited. In the present study, we investigated brain activity during slacklining, a task with a high demand on balance capabilities, which is frequently used as supplementary training in various sports disciplines as well as for lower extremity prevention and rehabilitation purposes in clinical settings. We assessed hemodynamic response alterations in sensorimotor brain areas using functional near-infrared spectroscopy (fNIRS) during standing (ST) and walking (WA) on a slackline in 16 advanced slackliners. We expected to observe task-related differences between both conditions as well as associations between cortical activity and slacklining experience. While our results revealed hemodynamic response alterations in sensorimotor brain regions such as primary motor cortex (M1), premotor cortex (PMC), and supplementary motor cortex (SMA) during both conditions, we did not observe differential effects between ST and WA nor associations between cortical activity and slacklining experience. In summary, these findings provide novel insights into brain processing during a whole-body balance task and its relation to balance expertise. As maintaining balance is considered an important prerequisite in daily life and crucial in the context of prevention and rehabilitation, future studies should extend these findings by quantifying brain processing during task execution on a whole-brain level.
Collapse
Affiliation(s)
- Oliver Seidel-Marzi
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Susanne Hähner
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Leipzig, Germany
| | - Patrick Ragert
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Daniel Carius
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Leipzig, Germany
| |
Collapse
|
22
|
Effects of Motor Tempo on Frontal Brain Activity: An fNIRS Study. Neuroimage 2021; 230:117597. [PMID: 33418074 DOI: 10.1016/j.neuroimage.2020.117597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 11/22/2022] Open
Abstract
People are able to modify the spontaneous pace of their actions to interact with their environment and others. This ability is underpinned by high-level cognitive functions but little is known in regard to the brain areas that underlie such temporal control. A salient practical issue is that current neuroimaging techniques (e.g., EEG, fMRI) are extremely sensitive to movement, which renders challenging any investigation of brain activity in the realm of whole-body motor paradigms. Within the last decade, the noninvasive imaging method of functional near-infrared spectroscopy (fNIRS) has become the reference tool for experimental motor paradigms due to its tolerance to motion artefacts. In the present study, we used a continuous-wave fNIRS system to record the prefrontal and motor hemodynamic responses of 16 participants, while they performed a spatial-tapping task varying in motor complexity and externally-paced tempi (i.e., 300 ms, 500 ms, 1200 ms). To discriminate between physiological noise and cerebral meaningful signals, the physiological data (i.e., heart and respiratory rates) were recorded so that frequency bands of such signals could be regressed from the fNIRS data. Particular attention was taken to control the precise position of the optodes in reference to the cranio-cerebral correlates of the NIR channels throughout the experimental session. Results indicated that fast pacing relied on greater activity of the motor areas whereas moving at close-to-spontaneous pace placed a heavier load on posterior prefrontal processes. These results provide new insight concerning the role of frontal cognitive control in modulating the pacing of voluntary motor behaviors.
Collapse
|
23
|
Berger A, Steinberg F, Thomas F, Doppelmayr M. Neural Correlates of Age-Related Changes in Precise Grip Force Regulation: A Combined EEG-fNIRS Study. Front Aging Neurosci 2020; 12:594810. [PMID: 33362531 PMCID: PMC7759198 DOI: 10.3389/fnagi.2020.594810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/11/2020] [Indexed: 01/16/2023] Open
Abstract
Motor control is associated with suppression of oscillatory activity in alpha (8–12 Hz) and beta (12–30 Hz) ranges and elevation of oxygenated hemoglobin levels in motor-cortical areas. Aging leads to changes in oscillatory and hemodynamic brain activity and impairments in motor control. However, the relationship between age-related changes in motor control and brain activity is not yet fully understood. Therefore, this study aimed to investigate age-related and task-complexity-related changes in grip force control and the underlying oscillatory and hemodynamic activity. Sixteen younger [age (mean ± SD) = 25.4 ± 1.9, 20–30 years] and 16 older (age = 56.7 ± 4.7, 50–70 years) healthy men were asked to use a power grip to perform six trials each of easy and complex force tracking tasks (FTTs) with their right dominant hand in a randomized within-subject design. Grip force control was assessed using a sensor-based device. Brain activity in premotor and primary motor areas of both hemispheres was assessed by electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). Older adults showed significantly higher inaccuracies and higher hemodynamic activity in both FTTs than did young adults. Correlations between grip force control owing to task complexity and beta activity were different in the contralateral premotor cortex (PMC) between younger and older adults. Collectively, these findings suggest that aging leads to impairment of grip force control and an increase in hemodynamic activity independent of task complexity. EEG beta oscillations may represent a task-specific neurophysiological marker for age-related decline in complex grip force control and its underlying compensation strategies. Further EEG-fNIRS studies are necessary to determine neurophysiological markers of dysfunctions underlying age-related motor disabilities for the improvement of individual diagnosis and therapeutic approaches.
Collapse
Affiliation(s)
- Alisa Berger
- Department of Sport Psychology, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Fabian Steinberg
- Department of Sport Psychology, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany.,School of Kinesiology, Louisiana State University, Baton Rouge, LA, United States
| | - Fabian Thomas
- Department of Sport Psychology, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Michael Doppelmayr
- Department of Sport Psychology, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany.,Centre for Cognitive Neuroscience, Paris Lodron University of Salzburg, Salzburg, Austria
| |
Collapse
|
24
|
Sagari A, Kanao H, Mutai H, Iwanami J, Sato M, Kobayashi M. Cerebral Hemodynamics During a Cognitive-Motor Task Using the Limbs. Front Hum Neurosci 2020; 14:568030. [PMID: 33240062 PMCID: PMC7683383 DOI: 10.3389/fnhum.2020.568030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/24/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Antagonistic tasks are cognitive-motor task trainings. Intervention programs involving antagonistic exercise tasks are being employed to help prevent falls and reduce the need for nursing care in older populations. Meanwhile, the effects of such tasks on blood flow in the brain remain obscure. This study aimed to clarify the effects of antagonistic tasks on prefrontal cortical cerebral hemodynamics. Materials and Methods: We assessed 13 healthy adults (two men, 11 women; mean age, 21.4 ± 1.0 years). Participants imitated each of the antagonistic tasks presented on a PC monitor placed at a 120-mm viewing distance. All participants performed six tasks, consisting of upper-limb tasks (non-antagonism, simple antagonism, and complex antagonism) and upper- and lower-limb tasks (tasks combining lower-limb opening and closing movements with each upper-limb task). We used near-infrared spectroscopy (NIRS) to measure cerebral blood flow dynamics, with oxygenated hemoglobin (Oxy-Hb) concentration changes as the main outcome. A 10-channel probe was placed on the participants’ forehead, focusing on the prefrontal cortex. We first obtained a baseline NIRS measurement for 10 s; the participants then imitated the task presented on the PC monitor for 90 s. We measured the number of errors and the subjective difficulty of each task. Results: The increase in prefrontal cortex Oxy-Hb concentration was significantly higher in the complex antagonist conditions than in the non-antagonistic and simple antagonistic conditions. There were no significant prefrontal cortex Oxy-Hb differences between the upper limb and upper- and lower-limb conditions (increasing number of motor limbs). Conclusions: The study findings support that an increase in finger-shaped complexity has a greater effect on cerebral blood flow dynamics in the prefrontal cortex than does an increase in the number of motor limbs involved in the task.
Collapse
Affiliation(s)
- Akira Sagari
- Division of Occupational Therapy School of Health Science, Faculty of Medicine, Shinshu University, Matsumoto, Japan
| | - Hiroyo Kanao
- Rehabilitation Division, Kami-iida Rehabilitation Hospital, Nagoya, Japan
| | - Hitoshi Mutai
- Division of Occupational Therapy School of Health Science, Faculty of Medicine, Shinshu University, Matsumoto, Japan
| | - Jun Iwanami
- Division of Occupational Therapy School of Health Science, Faculty of Medicine, Shinshu University, Matsumoto, Japan
| | - Masaaki Sato
- Division of Occupational Therapy School of Health Science, Faculty of Medicine, Shinshu University, Matsumoto, Japan
| | - Masayoshi Kobayashi
- Division of Occupational Therapy School of Health Science, Faculty of Medicine, Shinshu University, Matsumoto, Japan
| |
Collapse
|
25
|
Lo Y, Wee S, Zhao Y, Narasimhalu K. Interictal hemodynamic abnormality during motor activation in sporadic hemiplegic migraine: An explorative study. J Neurol Sci 2020; 418:117148. [DOI: 10.1016/j.jns.2020.117148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 10/23/2022]
|
26
|
Wilke J, Royé C. Exercise Intensity May Not Moderate the Acute Effects of Functional Circuit Training on Cognitive Function: A Randomized Crossover Trial. Brain Sci 2020; 10:E738. [PMID: 33066593 PMCID: PMC7602507 DOI: 10.3390/brainsci10100738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 01/02/2023] Open
Abstract
Functional circuit training (FCT) has been demonstrated to acutely enhance cognitive performance (CP). However, the moderators of this observation are unknown. This study aimed to elucidate the role of exercise intensity. According to an a priori sample size calculation, n = 24 healthy participants (26 ± 3 years, 13 females), in randomized order, performed a single 15-min bout of FCT with low (20-39% of the heart rate reserve/HRR), moderate (40-59% HRR) or high intensity (maximal effort). Immediately pre- and post-workout, CP was measured by use of the Digit Span test, Stroop test and Trail Making test. Non-parametric data analyses did not reveal significant differences between conditions (p > 0.05) although parameter-free 95% confidence intervals showed pre-post improvements in some outcomes at moderate and high intensity only. The effort level does not seem to be a major effect modifier regarding short-term increases in CP following HCT in young active adults.
Collapse
Affiliation(s)
- Jan Wilke
- Department of Sports Medicine, Goethe University Frankfurt, 60488 Frankfurt am Main, Germany;
| | | |
Collapse
|
27
|
Wilke J, Stricker V, Usedly S. Free-Weight Resistance Exercise Is More Effective in Enhancing Inhibitory Control than Machine-Based Training: A Randomized, Controlled Trial. Brain Sci 2020; 10:E702. [PMID: 33022911 PMCID: PMC7599796 DOI: 10.3390/brainsci10100702] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022] Open
Abstract
Resistance exercise has been demonstrated to improve brain function. However, the optimal workout characteristics are a matter of debate. This randomized, controlled trial aimed to elucidate differences between free-weight (REfree) and machine-based (REmach) training with regard to their ability to acutely enhance cognitive performance (CP). A total of n = 46 healthy individuals (27 ± 4 years, 26 men) performed a 45-min bout of REfree (military press, barbell squat, bench press) or REmach (shoulder press, leg press, chest press). Pre- and post-intervention, CP was examined using the Stroop test, Trail Making Test and Digit Span test. Mann-Whitney U tests did not reveal between-group differences for performance in the Digit Span test, Trail Making test and the color and word conditions of the Stroop test (p > 0.05). However, REfree was superior to REmach in the Stroop color-word condition (+6.3%, p = 0.02, R = 0.35). Additionally, REfree elicited pre-post changes in all parameters except for the Digit Span test and the word condition of the Stroop test while REmach only improved cognitive performance in part A of the Trail Making test. Using free weights seems to be the more effective RE method to acutely improve cognitive function (i.e., inhibitory control). The mechanisms of this finding merit further investigation.
Collapse
Affiliation(s)
- Jan Wilke
- Department of Sports Medicine, Goethe University, Ginnheimer Landstraße 39, 60487 Frankfurt am Main, Germany; (V.S.); (S.U.)
| | | | | |
Collapse
|
28
|
The Influence of Thermal Alterations on Prefrontal Cortex Activation and Neuromuscular Function during a Fatiguing Task. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17197194. [PMID: 33019602 PMCID: PMC7579217 DOI: 10.3390/ijerph17197194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/28/2022]
Abstract
The purpose of this study was to examine prefrontal cortex (PFC) activation, neuromuscular function, and perceptual measures in response to a fatiguing task, following thermal alterations of an exercising arm. Nineteen healthy adults completed three experimental sessions. At baseline, participants performed maximum voluntary isometric contractions (MVIC) of the elbow flexors. Next, participants submerged their right arm in a water bath for 15 min. Cold (C), neutral (N), and hot (H) water temperatures were maintained at 8, 33, and 44 °C, respectively. Following water immersion, participants performed an isometric elbow flexion contraction, at 20% of their MVIC, for 5 min. Ratings of perceived exertion (RPE), muscular discomfort, and task demands were assessed. Functional near-infrared spectroscopy was used to measure activation (oxygenation) of the PFC during the fatiguing task. Reductions in MVIC torque at the end of the fatiguing task were greater for the H (25.7 ± 8.4%) and N (22.2 ± 9.6%) conditions, compared to the C condition (17.5 ± 8.9%, p < 0.05). The increase in oxygenation of the PFC was greater for the H (13.3 ± 4.9 μmol/L) and N (12.4 ± 4.4 μmol/L) conditions, compared to the C condition (10.3 ± 3.8 μmol/L, p < 0.001) at the end of the fatiguing task. The increase in RPE, muscular discomfort, and task demands were greater in the H condition compared to the N and C conditions (p < 0.01). These results indicate that precooling an exercising arm attenuates the rise in PFC activation, muscle fatigue, and psychological rating during a fatiguing task.
Collapse
|
29
|
Carius D, Seidel-Marzi O, Kaminski E, Lisson N, Ragert P. Characterizing hemodynamic response alterations during basketball dribbling. PLoS One 2020; 15:e0238318. [PMID: 32881901 PMCID: PMC7470377 DOI: 10.1371/journal.pone.0238318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/13/2020] [Indexed: 11/26/2022] Open
Abstract
Knowledge on neural processing during complex non-stationary motion sequences of sport-specific movements still remains elusive. Hence, we aimed at investigating hemodynamic response alterations during a basketball slalom dribbling task (BSDT) using multi-distance functional near-infrared spectroscopy (fNIRS) in 23 participants (12 females). Additionally, we quantified how the brain adapts its processing as a function of altered hand use (dominant right hand (DH) vs. non-dominant left hand (NDH) vs. alternating hands (AH)) and pace of execution (slow vs. fast) in BSDT. We found that BSDT activated bilateral premotor cortex (PMC), supplementary motor cortex (SMA), primary motor cortex (M1) as well as inferior parietal cortex and somatosensory association cortex. Slow dominant hand dribbling (DHslow) evoked lower contralateral hemodynamic responses in sensorimotor regions compared to fast dribbling (DHfast). Furthermore, during DHslow dribbling, we found lower hemodynamic responses in ipsilateral M1 as compared to dribbling with alternating hands (AHslow). Hence, altered task complexity during BSDT induced differential hemodynamic response patterns. Furthermore, a correlation analysis revealed that lower levels of perceived task complexity are associated with lower hemodynamic responses in ipsilateral PMC-SMA, which is an indicator for neuronal efficiency in participants with better basketball dribbling skills. The present study extends previous findings by showing that varying levels of task complexity are reflected by specific hemodynamic response alterations even during sports-relevant motor behavior. Taken together, we suggest that quantifying brain activation during complex movements is a prerequisite for assessing brain-behavior relations and optimizing motor performance.
Collapse
Affiliation(s)
- Daniel Carius
- Institute for General Kinesiology and Exercise Science, University of Leipzig, Leipzig, Germany
| | - Oliver Seidel-Marzi
- Institute for General Kinesiology and Exercise Science, University of Leipzig, Leipzig, Germany.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Elisabeth Kaminski
- Institute for General Kinesiology and Exercise Science, University of Leipzig, Leipzig, Germany.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Niklas Lisson
- Institute for General Kinesiology and Exercise Science, University of Leipzig, Leipzig, Germany
| | - Patrick Ragert
- Institute for General Kinesiology and Exercise Science, University of Leipzig, Leipzig, Germany.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
30
|
Passive, yet not inactive: robotic exoskeleton walking increases cortical activation dependent on task. J Neuroeng Rehabil 2020; 17:107. [PMID: 32778109 PMCID: PMC7418323 DOI: 10.1186/s12984-020-00739-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Background Experimental designs using surrogate gait-like movements, such as in functional magnetic resonance imaging (MRI), cannot fully capture the cortical activation associated with overground gait. Overground gait in a robotic exoskeleton may be an ideal tool to generate controlled sensorimotor stimulation of gait conditions like ‘active’ (i.e. user moves with the device) and ‘passive’ (i.e. user is moved by the device) gait. To truly understand these neural mechanisms, functional near-infrared spectroscopy (fNIRS) would yield greater ecological validity. Thus, the aim of this experiment was to use fNIRS to delineate brain activation differences between ‘Active’ and ‘Passive’ overground gait in a robotic exoskeleton. Methods Fourteen healthy adults performed 10 walking trials in a robotic exoskeleton for Passive and Active conditions, with fNIRS over bilateral frontal and parietal lobes, and electromyography (EMG) over bilateral thigh muscles. Digitization of optode locations and individual T1 MRI scans were used to demarcate the brain regions fNIRS recorded from. Results Increased oxyhemoglobin in the right frontal cortex was found for Passive compared with Active conditions. For deoxyhemoglobin, increased activation during Passive was found in the left frontal cortex and bilateral parietal cortices compared with Active; one channel in the left parietal cortex decreased during Active when compared with Passive. Normalized EMG mean amplitude was higher in the Active compared with Passive conditions for all four muscles (p ≤ 0.044), confirming participants produced the conditions asked of them. Conclusions The parietal cortex is active during passive robotic exoskeleton gait, a novel finding as research to date has not recorded posterior to the primary somatosensory cortex. Increased activation of the parietal cortex may be related to the planning of limb coordination while maintaining postural control. Future neurorehabilitation research could use fNIRS to examine whether exoskeletal gait training can increase gait-related brain activation with individuals unable to walk independently.
Collapse
|
31
|
Bello UM, Winser SJ, Chan CCH. Does task complexity influence motor facilitation and visuo-motor memory during mirror therapy in post-stroke patients? Med Hypotheses 2020; 138:109590. [PMID: 32036194 DOI: 10.1016/j.mehy.2020.109590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 01/21/2020] [Indexed: 11/25/2022]
Abstract
Stroke is one of the most common causes of mortality and reduced disability-adjusted life years worldwide. Hemiparesis due to reduced skeletal-muscle power is an effect of brain lesions. Mirror therapy can significantly improve motor performance among post-stroke patients. To determine if altering the complexity of the mirror task in the mirror therapy paradigm would enhance top-down motor facilitation and visuo-motor memory demand, we conducted a pilot study on four post-stroke patients. Our preliminary results showed that performing complex finger tapping task resulted in enhanced activities in the primary motor cortex and precuneus, ipsilateral to the moving hand in the mirror therapy paradigm. We hypothesise the following: (a) complex finger tapping would result in stronger top-down motor facilitation and higher demand on visuo-motor memory than simple finger tapping in the mirror therapy paradigm, and (b) observing a blurred mirror image would result in increased top-down motor facilitation and higher demand on visuo-motor memory than a clear mirror image. To confirm these hypotheses, we propose a cross-sectional observational study on a large sample of post-stroke patients. This paper reports the findings of the pilot study, the rationale for testing the hypotheses, the experimental set-up, the task design and the assessment protocol for functional near-infrared spectroscopy.
Collapse
Affiliation(s)
- Umar Muhammad Bello
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong.
| | - Stanley John Winser
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong.
| | - Chetwyn C H Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong.
| |
Collapse
|
32
|
Carius D, Hörnig L, Ragert P, Kaminski E. Characterizing cortical hemodynamic changes during climbing and its relation to climbing expertise. Neurosci Lett 2019; 715:134604. [PMID: 31693932 DOI: 10.1016/j.neulet.2019.134604] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/07/2019] [Accepted: 10/29/2019] [Indexed: 01/04/2023]
Abstract
Bouldering is a special form of climbing without rope that requires coordinated whole-body movements. While physical performance parameters such as condition have been well studied, the knowledge on neural activity during climbing still remains sparse. Functional near-infrared spectroscopy (fNIRS) allows to measure brain activation while performing sportive actions due to its relative robustness against motion artefacts. In the current study, hemodynamic response alterations of 13 advanced climbers were investigated during boulder performance using fNIRS measurements. Simple and moderate climbing routes were compared regarding their level of cortical activation mainly in the sensorimotor area. Our results show that repetitively climbing a set of boulders activates almost all areas of the sensorimotor system including the bilateral premotor and supplementary motor cortex, bilateral primary motor cortex as well as the bilateral gyrus supramarginalis and somatosensory cortex. This result was found in both simple and moderate climbing routes with no effect of task complexity on the level of cortical activity. Correlation analysis (uncorrected for multiple comparisons) revealed a negative association between the level of expertise and the hemodynamic response in the supplementary-motor region, suggesting that gaining expertise in climbing is associated with a decrease in secondary motor areas, which is an indicator of motor automaticity. In summary, the present study provides first proof of concept that fNIRS is capable of assessing hemodynamic response alterations within the human motor system during the execution of complex whole-body climbing movements.
Collapse
Affiliation(s)
- Daniel Carius
- Institute for General Kinesiology and Exercise Science, University of Leipzig, Leipzig, Germany.
| | - Lisa Hörnig
- Institute for General Kinesiology and Exercise Science, University of Leipzig, Leipzig, Germany
| | - Patrick Ragert
- Institute for General Kinesiology and Exercise Science, University of Leipzig, Leipzig, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Elisabeth Kaminski
- Institute for General Kinesiology and Exercise Science, University of Leipzig, Leipzig, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
33
|
Qiu T, Hameed NUF, Peng Y, Wang S, Wu J, Zhou L. Functional near-infrared spectroscopy for intraoperative brain mapping. NEUROPHOTONICS 2019; 6:045010. [PMID: 31799334 PMCID: PMC6876615 DOI: 10.1117/1.nph.6.4.045010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 11/05/2019] [Indexed: 05/04/2023]
Abstract
Functional near-infrared spectroscopy (fNIRS) is a relatively new seizure-free technique and its value for intraoperative brain mapping is unknown. We examine the feasibility of fNIRS for intraoperative functional brain mapping. A 1 × 1 cm 2 density fNIRS probe specially designed for intraoperative use was used to map brain function in adult patients undergoing awake brain surgery and performing motor and/or language tasks. The ability of fNIRS for functional mapping was compared with direct cortical stimulation (DCS) and regression was used to determine if mean blood pressure (MBP) and blood hemoglobin influenced fNIRS measurements. Eighteen patients underwent awake craniotomy and performed 19 language- and 17 motor-related tasks. fNIRS mapping was highly correlated with DCS for 10 language- and 7 motor-related tasks. fNIRS was able to detect functional language ( p < 0.001 ) and motor areas ( p = 0.002 ). Compared to DCS, fNIRS was less accurate in determining both functional language (at least 22.64%, p < 0.001 ) and motor areas (at least 32.74%, p < 0.001 ). Higher MBP and blood hemoglobin were associated with better fNIRS results ( p = 0.045 and 0.007, respectively). No seizures or other complications occurred during fNIRS measurement. fNIRS is a promising seizure-free technique for intraoperative brain mapping. The accuracy of current technology needs further development for clinical use.
Collapse
Affiliation(s)
- Tianming Qiu
- Fudan University, Huashan Hospital, Glioma Surgery Division, Department of Neurosurgery, Shanghai, China
| | - N. U. Farrukh Hameed
- Fudan University, Huashan Hospital, Glioma Surgery Division, Department of Neurosurgery, Shanghai, China
| | - Yuerong Peng
- Fudan University, Huashan Hospital, Department of Anesthesia, Shanghai, China
| | - Shuheng Wang
- Yale University, Statistics and Data Science Department, Connecticut, United States
| | - Jinsong Wu
- Fudan University, Huashan Hospital, Glioma Surgery Division, Department of Neurosurgery, Shanghai, China
| | - Liangfu Zhou
- Fudan University, Huashan Hospital, Department of Neurosurgery, Shanghai, China
| |
Collapse
|
34
|
Oh S, Song M, Kim J. Validating attentive locomotion training using interactive treadmill: an fNIRS study. J Neuroeng Rehabil 2018; 15:122. [PMID: 30572919 PMCID: PMC6302412 DOI: 10.1186/s12984-018-0472-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/07/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Existing treadmill-based locomotion training, which has been used for gait function recovery, still has limitations, such as less attentive training. Interactive treadmills (ITMs) were developed to overcome these limitations, but it has not yet been verified that ITMs can make the user pay closer attention to walk training. METHODS An experimental comparison between ITMs and conventional treadmills was conducted by measuring the level of the user's attention using functional near-infrared spectroscopy (fNIRS). To consider the effect of task complexity on the subject's attention, we provided two (slow and fast) speed conditions for walking on both treadmills. RESULTS Both the cortical activity images and oxygenated hemoglobin (oxyHb) changes showed that the level of attention to walking induced by the ITM was significantly higher than that induced by the conventional treadmill. We found that the walking speed on the ITM also affected the level of attention. CONCLUSION ITM-based locomotion training would be a promising solution to the limitations of existing treadmill-based locomotion training currently used to improve gait function recovery. TRIAL REGISTRATION DGIST-HR-150309-03-02 . Registered 01 March 2015.
Collapse
Affiliation(s)
- Seunghue Oh
- Department of Robotics Engineering, DGIST (Daegu Gyeongbuk Institute of Science and Technology), 333 Techno Jungang-daero, Daegu, 42988 Republic of Korea
| | - Minsu Song
- Department of Robotics Engineering, DGIST (Daegu Gyeongbuk Institute of Science and Technology), 333 Techno Jungang-daero, Daegu, 42988 Republic of Korea
| | - Jonghyun Kim
- Department of Robotics Engineering, DGIST (Daegu Gyeongbuk Institute of Science and Technology), 333 Techno Jungang-daero, Daegu, 42988 Republic of Korea
| |
Collapse
|
35
|
Harrison SJ, Hough M, Schmid K, Groff BR, Stergiou N. When Coordinating Finger Tapping to a Variable Beat the Variability Scaling Structure of the Movement and the Cortical BOLD Signal are Both Entrained to the Auditory Stimuli. Neuroscience 2018; 392:203-218. [PMID: 29958941 PMCID: PMC8091912 DOI: 10.1016/j.neuroscience.2018.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 06/12/2018] [Accepted: 06/18/2018] [Indexed: 01/13/2023]
Abstract
Rhythmic actions are characterizable as a repeating invariant pattern of movement together with variability taking the form of cycle-to-cycle fluctuations. Variability in behavioral measures is atypically random, and often exhibits serial temporal dependencies and statistical self-similarity in the scaling of variability magnitudes across timescales. Self-similar (i.e. fractal) variability scaling is evident in measures of both brain and behavior. Variability scaling structure can be quantified via the scaling exponent (α) from detrended fluctuation analysis (DFA). Here we study the task of coordinating thumb-finger tapping to the beats of constructed auditory stimuli. We test the hypothesis that variability scaling evident in tap-to-tap intervals as well as in the fluctuations of cortical hemodynamics will become entrained to (i.e. drawn toward) manipulated changes in the variability scaling of a stimulus's beat-to-beat intervals. Consistent with this hypothesis, manipulated changes of the exponent α of the experimental stimuli produced corresponding changes in the exponent α of both tap-to-tap intervals and cortical hemodynamics. The changes in hemodynamics were observed in both motor and sensorimotor cortical areas in the contralateral hemisphere. These results were observed only for the longer timescales of the detrended fluctuation analysis used to measure the exponent α. These findings suggest that complex auditory stimuli engage both brain and behavior at the level of variability scaling structures.
Collapse
Affiliation(s)
- Steven J Harrison
- Department of Kinesiology, University of Connecticut, United States.
| | - Michael Hough
- Department of Biomechanics, University of Nebraska at Omaha, United States
| | - Kendra Schmid
- Department of Biostatistics, University of Nebraska Medical Center, United States
| | - Boman R Groff
- Department of Biomechanics, University of Nebraska at Omaha, United States
| | - Nicholas Stergiou
- Department of Biomechanics, University of Nebraska at Omaha, United States
| |
Collapse
|
36
|
Karageorghis CI, Bigliassi M, Guérin SMR, Delevoye-Turrell Y. Brain mechanisms that underlie music interventions in the exercise domain. PROGRESS IN BRAIN RESEARCH 2018; 240:109-125. [PMID: 30390826 DOI: 10.1016/bs.pbr.2018.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In this chapter we review recent work from the realms of neuroscience and neuropsychology to explore the brain mechanisms that underlie the effects of music on exercise. We begin with an examination of the technique of electroencephalography (EEG), which has proven popular with researchers in this domain. We go on to appraise work conducted with the use of functional magnetic resonance imaging (fMRI) and then, looking more toward the future, we consider the application of functional near-infrared spectroscopy (fNIRS) to study brain hemodynamics. The experimental findings expounded herein indicate that music has the potential to guide attention toward environmental sensory cues and prevent internal, fatigue-related signals from entering focal awareness. The brain mechanisms underlying such effects are primarily associated with the downregulation of theta waves across the cortex surface, reduction of communication among somatosensory regions, and increased activation of the left inferior frontal gyrus. Taken holistically, research in this subfield of exercise psychology demonstrates a vibrant and reflexive matrix of attentional, emotional, behavioral, physiological, and psychophysiological responses to music across a variety of exercise modalities and intensities. The emergent hypotheses that we propose can be used to frame future research efforts.
Collapse
|
37
|
Wu S, Li J, Gao L, Chen C, He S. Suppressing Systemic Interference in fNIRS Monitoring of the Hemodynamic Cortical Response to Motor Execution and Imagery. Front Hum Neurosci 2018; 12:85. [PMID: 29556184 PMCID: PMC5845019 DOI: 10.3389/fnhum.2018.00085] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 02/19/2018] [Indexed: 11/13/2022] Open
Abstract
Hemodynamic response to motor execution (ME) and motor imagery (MI) was investigated using functional near-infrared spectroscopy (fNIRS). We used a 31 channel fNIRS system which allows non-invasive monitoring of cerebral oxygenation changes induced by cortical activation. Sixteen healthy subjects (mean-age 24.5 yeas) were recruited and the changes in concentration of hemoglobin were examined during right and left hand finger tapping tasks and kinesthetic MI. To suppress the systemic physiological interference, we developed a preprocessing procedure which prevents over-activated reporting in NIRS-SPM. In the condition of ME, more activation was observed in the anterior part of the motor cortex including the pre-motor and supplementary motor area (pre-motor and SMA), primary motor cortex (M1) and somatosensory motor cortex (SMC; t(15) > 2.27), however, in the condition of MI, more activation was found in the posterior part of motor cortex including SMC (t(15) > 1.81), which is in line with previous observations with functional magnetic resonance imaging (fMRI).
Collapse
Affiliation(s)
- Shijing Wu
- School of Information and Optoelectronic Science and Engineering, South China Normal University (SCNU), Guangzhou, China.,Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Center for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University (SCNU), Guangzhou, China
| | - Jun Li
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Center for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University (SCNU), Guangzhou, China
| | - Lantian Gao
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Center for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University (SCNU), Guangzhou, China
| | - Changshui Chen
- School of Information and Optoelectronic Science and Engineering, South China Normal University (SCNU), Guangzhou, China
| | - Sailing He
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Center for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University (SCNU), Guangzhou, China
| |
Collapse
|
38
|
Wu S, Li J, Gao L, Chen C, He S. Suppressing Systemic Interference in fNIRS Monitoring of the Hemodynamic Cortical Response to Motor Execution and Imagery. Front Hum Neurosci 2018. [PMID: 29556184 DOI: 10.3389/fnhum.2018.0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Hemodynamic response to motor execution (ME) and motor imagery (MI) was investigated using functional near-infrared spectroscopy (fNIRS). We used a 31 channel fNIRS system which allows non-invasive monitoring of cerebral oxygenation changes induced by cortical activation. Sixteen healthy subjects (mean-age 24.5 yeas) were recruited and the changes in concentration of hemoglobin were examined during right and left hand finger tapping tasks and kinesthetic MI. To suppress the systemic physiological interference, we developed a preprocessing procedure which prevents over-activated reporting in NIRS-SPM. In the condition of ME, more activation was observed in the anterior part of the motor cortex including the pre-motor and supplementary motor area (pre-motor and SMA), primary motor cortex (M1) and somatosensory motor cortex (SMC; t(15) > 2.27), however, in the condition of MI, more activation was found in the posterior part of motor cortex including SMC (t(15) > 1.81), which is in line with previous observations with functional magnetic resonance imaging (fMRI).
Collapse
Affiliation(s)
- Shijing Wu
- School of Information and Optoelectronic Science and Engineering, South China Normal University (SCNU), Guangzhou, China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Center for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University (SCNU), Guangzhou, China
| | - Jun Li
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Center for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University (SCNU), Guangzhou, China
| | - Lantian Gao
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Center for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University (SCNU), Guangzhou, China
| | - Changshui Chen
- School of Information and Optoelectronic Science and Engineering, South China Normal University (SCNU), Guangzhou, China
| | - Sailing He
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Center for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University (SCNU), Guangzhou, China
| |
Collapse
|
39
|
Perry S, Bridges SM, Zhu F, Leung WK, Burrow MF, Poolton J, Masters RS. Getting to the Root of Fine Motor Skill Performance in Dentistry: Brain Activity During Dental Tasks in a Virtual Reality Haptic Simulation. J Med Internet Res 2017; 19:e371. [PMID: 29233801 PMCID: PMC5743913 DOI: 10.2196/jmir.8046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/30/2017] [Indexed: 11/13/2022] Open
Abstract
Background There is little evidence considering the relationship between movement-specific reinvestment (a dimension of personality which refers to the propensity for individuals to consciously monitor and control their movements) and working memory during motor skill performance. Functional near-infrared spectroscopy (fNIRS) measuring oxyhemoglobin demands in the frontal cortex during performance of virtual reality (VR) psychomotor tasks can be used to examine this research gap. Objective The aim of this study was to determine the potential relationship between the propensity to reinvest and blood flow to the dorsolateral prefrontal cortices of the brain. A secondary aim was to determine the propensity to reinvest and performance during 2 dental tasks carried out using haptic VR simulators. Methods We used fNIRS to assess oxygen demands in 24 undergraduate dental students during 2 dental tasks (clinical, nonclinical) on a VR haptic simulator. We used the Movement-Specific Reinvestment Scale questionnaire to assess the students’ propensity to reinvest. Results Students with a high propensity for movement-specific reinvestment displayed significantly greater oxyhemoglobin demands in an area associated with working memory during the nonclinical task (Spearman correlation, rs=.49, P=.03). Conclusions This small-scale study suggests that neurophysiological differences are evident between high and low reinvesters during a dental VR task in terms of oxyhemoglobin demands in an area associated with working memory.
Collapse
Affiliation(s)
- Suzanne Perry
- Faculty of Education, The University of Hong Kong, Hong Kong SAR, China
| | - Susan M Bridges
- Faculty of Education, The University of Hong Kong, Hong Kong SAR, China.,Centre for the Enhancement of Teaching and Learning, The University of Hong Kong, Hong Kong SAR, China
| | - Frank Zhu
- Faculty of Education, The University of Hong Kong, Hong Kong SAR, China.,Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - W Keung Leung
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Michael F Burrow
- Melbourne Dental School, The University of Melbourne, Melbourne, Australia
| | - Jamie Poolton
- Carnegie School of Sport, Leeds Beckett University, Leeds, United Kingdom.,School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Rich Sw Masters
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.,Te Huataki Waiora Faculty of Health, Sport and Human Performance, The University of Waikato, Hamilton, New Zealand
| |
Collapse
|
40
|
Li R, Potter T, Huang W, Zhang Y. Enhancing Performance of a Hybrid EEG-fNIRS System Using Channel Selection and Early Temporal Features. Front Hum Neurosci 2017; 11:462. [PMID: 28966581 PMCID: PMC5605645 DOI: 10.3389/fnhum.2017.00462] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/04/2017] [Indexed: 11/29/2022] Open
Abstract
Brain-Computer Interface (BCI) techniques hold a great promise for neuroprosthetic applications. A desirable BCI system should be portable, minimally invasive, and feature high classification accuracy and efficiency. As two commonly used non-invasive brain imaging modalities, Electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) BCI system have often been incorporated in the development of hybrid BCI systems, largely due to their complimentary properties. In this study, we aimed to investigate whether the early temporal information extracted from singular EEG and fNIRS channels on each hemisphere can be used to enhance the accuracy and efficiency of a hybrid EEG-fNIRS BCI system. Eleven healthy volunteers were recruited and underwent simultaneous EEG-fNIRS recording during a motor execution task that included left and right hand movements. Singular EEG and fNIRS channels corresponding to the motor cortices of each hemisphere were selected using a general linear model. Early temporal information was extracted from the EEG channel (0–1 s) along with initial hemodynamic dip information from fNIRS (0–2 s) for classification using a support vector machine (SVM). Results demonstrated a lofty classification accuracy using a minimal number of channels and features derived from early temporal information. In conclusion, a hybrid EEG-fNIRS BCI system can achieve higher classification accuracy (91.02 ± 4.08%) and efficiency by integrating their complimentary properties, compared to using EEG (85.64 ± 7.4%) or fNIRS alone (85.55 ± 10.72%). Such a hybrid system can also achieve minimal response lag in application by focusing on rapidly-evolving brain dynamics.
Collapse
Affiliation(s)
- Rihui Li
- Department of Biomedical Engineering, University of HoustonHouston, TX, United States
| | - Thomas Potter
- Department of Biomedical Engineering, University of HoustonHouston, TX, United States
| | - Weitian Huang
- Guangdong Provincial Work-Injury Rehabilitation HospitalGuangzhou, China
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of HoustonHouston, TX, United States.,Guangdong Provincial Work-Injury Rehabilitation HospitalGuangzhou, China
| |
Collapse
|
41
|
Classification of somatosensory cortex activities using fNIRS. Behav Brain Res 2017; 333:225-234. [PMID: 28668280 DOI: 10.1016/j.bbr.2017.06.034] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/10/2017] [Accepted: 06/20/2017] [Indexed: 01/08/2023]
Abstract
The ability of the somatosensory cortex in differentiating various tactile sensations is very important for a person to perceive the surrounding environment. In this study, we utilize a lab-made multi-channel functional near-infrared spectroscopy (fNIRS) to discriminate the hemodynamic responses (HRs) of four different tactile stimulations (handshake, ball grasp, poking, and cold temperature) applied to the right hand of eight healthy male subjects. The activated brain areas per stimulation are identified with the t-values between the measured data and the desired hemodynamic response function. Linear discriminant analysis is utilized to classify the acquired data into four classes based on three features (mean, peak value, and skewness) of the associated oxy-hemoglobin (HbO) signals. The HRs evoked by the handshake and poking stimulations showed higher peak values in HbO than the ball grasp and cold temperature stimulations. For comparison purposes, additional two-class classifications of poking vs. temperature and handshake vs. ball grasp were performed. The attained classification accuracies were higher than the corresponding chance levels. Our results indicate that fNIRS can be used as an objective measure discriminating different tactile stimulations from the somatosensory cortex of human brain.
Collapse
|
42
|
Morin-Moncet O, Therrien-Blanchet JM, Ferland MC, Théoret H, West GL. Action Video Game Playing Is Reflected In Enhanced Visuomotor Performance and Increased Corticospinal Excitability. PLoS One 2016; 11:e0169013. [PMID: 28005989 PMCID: PMC5179116 DOI: 10.1371/journal.pone.0169013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 12/09/2016] [Indexed: 12/17/2022] Open
Abstract
Action video game playing is associated with improved visuomotor performance; however, the underlying neural mechanisms associated with this increased performance are not well understood. Using the Serial Reaction Time Task in conjunction with Transcranial Magnetic Stimulation, we investigated if improved visuomotor performance displayed in action video game players (actionVGPs) was associated with increased corticospinal plasticity in primary motor cortex (M1) compared to non-video game players (nonVGPs). Further, we assessed if actionVGPs and nonVGPs displayed differences in procedural motor learning as measured by the SRTT. We found that at the behavioral level, both the actionVGPs and nonVGPs showed evidence of procedural learning with no significant difference between groups. However, the actionVGPs displayed higher visuomotor performance as evidenced by faster reaction times in the SRTT. This observed enhancement in visuomotor performance amongst actionVGPs was associated with increased corticospinal plasticity in M1, as measured by corticospinal excitability changes pre- and post- SRTT and corticospinal excitability at rest before motor practice. Our results show that aVGPs, who are known to have better performance on visual and motor tasks, also display increased corticospinal excitability after completing a novel visuomotor task.
Collapse
Affiliation(s)
| | | | - Marie C. Ferland
- Department of Psychology, Université de Montréal, Montréal, Canada
| | - Hugo Théoret
- Department of Psychology, Université de Montréal, Montréal, Canada
- Hôpital Sainte-Justine Research Center, Montréal, Canada
| | - Greg L. West
- Department of Psychology, Université de Montréal, Montréal, Canada
- * E-mail:
| |
Collapse
|
43
|
Cross-education of wrist extensor strength is not influenced by non-dominant training in right-handers. Eur J Appl Physiol 2016; 116:1757-69. [DOI: 10.1007/s00421-016-3436-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/11/2016] [Indexed: 11/26/2022]
|
44
|
Abstract
In this article we review recent and potential applications of optical neuroimaging to human factors and usability research. We focus specifically on functional near-infrared spectroscopy (fNIRS) because of its cost-effectiveness and ease of implementation. Researchers have used fNIRS to assess a range of psychological phenomena relevant to human factors, such as cognitive workload, attention, motor activity, and more. It offers the opportunity to measure hemodynamic correlates of mental activity during task completion in human factors and usability studies. We also consider some limitations and future research directions.
Collapse
|
45
|
Carius D, Andrä C, Clauß M, Ragert P, Bunk M, Mehnert J. Hemodynamic Response Alteration As a Function of Task Complexity and Expertise-An fNIRS Study in Jugglers. Front Hum Neurosci 2016; 10:126. [PMID: 27064925 PMCID: PMC4811870 DOI: 10.3389/fnhum.2016.00126] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/08/2016] [Indexed: 12/04/2022] Open
Abstract
Detailed knowledge about online brain processing during the execution of complex motor tasks with a high motion range still remains elusive. The aim of the present study was to investigate the hemodynamic responses within sensorimotor networks as well as in visual motion area during the execution of a complex visuomotor task such as juggling. More specifically, we were interested in how far the hemodynamic response as measured with functional near infrared spectroscopy (fNIRS) adapts as a function of task complexity and the level of the juggling expertise. We asked expert jugglers to perform different juggling tasks with different levels of complexity such as a 2-ball juggling, 3- and 5-ball juggling cascades. We here demonstrate that expert jugglers show an altered neurovascular response with increasing task complexity, since a 5-ball juggling cascade showed enhanced hemodynamic responses for oxygenated hemoglobin as compared to less complex tasks such as a 3- or 2-ball juggling pattern. Moreover, correlations between the hemodynamic response and the level of the juggling expertise during the 5-ball juggling cascade, acquired by cinematographic video analysis, revealed only a non-significant trend in primary motor cortex, indicating that a higher level of expertise might be associated with lower hemodynamic responses.
Collapse
Affiliation(s)
- Daniel Carius
- Institute for General Kinesiology and Exercise Science, University of LeipzigLeipzig, Germany; Department of Sport Science, Martin Luther University of Halle-WittenbergHalle, Germany
| | - Christian Andrä
- Department of School Sport, Institute of Sport Psychology and Sport Pedagogy, University of Leipzig Leipzig, Germany
| | - Martina Clauß
- Institute of General Kinesiology and Athletics Training, University of Leipzig Leipzig, Germany
| | - Patrick Ragert
- Institute for General Kinesiology and Exercise Science, University of LeipzigLeipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany
| | - Michael Bunk
- Institute for Applied Training Science Leipzig, Germany
| | - Jan Mehnert
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany; Day Clinic for Cognitive Neurology, University Hospital LeipzigLeipzig, Germany
| |
Collapse
|
46
|
Hong KS, Santosa H. Decoding four different sound-categories in the auditory cortex using functional near-infrared spectroscopy. Hear Res 2016; 333:157-166. [PMID: 26828741 DOI: 10.1016/j.heares.2016.01.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 01/13/2023]
Abstract
The ability of the auditory cortex in the brain to distinguish different sounds is important in daily life. This study investigated whether activations in the auditory cortex caused by different sounds can be distinguished using functional near-infrared spectroscopy (fNIRS). The hemodynamic responses (HRs) in both hemispheres using fNIRS were measured in 18 subjects while exposing them to four sound categories (English-speech, non-English-speech, annoying sounds, and nature sounds). As features for classifying the different signals, the mean, slope, and skewness of the oxy-hemoglobin (HbO) signal were used. With regard to the language-related stimuli, the HRs evoked by understandable speech (English) were observed in a broader brain region than were those evoked by non-English speech. Also, the magnitudes of the HbO signals evoked by English-speech were higher than those of non-English speech. The ratio of the peak values of non-English and English speech was 72.5%. Also, the brain region evoked by annoying sounds was wider than that by nature sounds. However, the signal strength for nature sounds was stronger than that for annoying sounds. Finally, for brain-computer interface (BCI) purposes, the linear discriminant analysis (LDA) and support vector machine (SVM) classifiers were applied to the four sound categories. The overall classification performance for the left hemisphere was higher than that for the right hemisphere. Therefore, for decoding of auditory commands, the left hemisphere is recommended. Also, in two-class classification, the annoying vs. nature sounds comparison provides a higher classification accuracy than the English vs. non-English speech comparison. Finally, LDA performs better than SVM.
Collapse
Affiliation(s)
- Keum-Shik Hong
- Department of Cogno-Mechatronics Engineering, Pusan National University, 2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Republic of Korea; School of Mechanical Engineering, Pusan National University, 2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Republic of Korea.
| | - Hendrik Santosa
- Department of Cogno-Mechatronics Engineering, Pusan National University, 2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Republic of Korea
| |
Collapse
|
47
|
Sagari A, Iso N, Moriuchi T, Ogahara K, Kitajima E, Tanaka K, Tabira T, Higashi T. Changes in Cerebral Hemodynamics during Complex Motor Learning by Character Entry into Touch-Screen Terminals. PLoS One 2015; 10:e0140552. [PMID: 26485534 PMCID: PMC4618511 DOI: 10.1371/journal.pone.0140552] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 09/28/2015] [Indexed: 11/18/2022] Open
Abstract
Introduction Studies of cerebral hemodynamics during motor learning have mostly focused on neurorehabilitation interventions and their effectiveness. However, only a few imaging studies of motor learning and the underlying complex cognitive processes have been performed. Methods We measured cerebral hemodynamics using near-infrared spectroscopy (NIRS) in relation to acquisition patterns of motor skills in healthy subjects using character entry into a touch-screen terminal. Twenty healthy, right-handed subjects who had no previous experience with character entry using a touch-screen terminal participated in this study. They were asked to enter the characters of a randomly formed Japanese syllabary into the touch-screen terminal. All subjects performed the task with their right thumb for 15 s alternating with 25 s of rest for 30 repetitions. Performance was calculated by subtracting the number of incorrect answers from the number of correct answers, and gains in motor skills were evaluated according to the changes in performance across cycles. Behavioral and oxygenated hemoglobin concentration changes across task cycles were analyzed using Spearman’s rank correlations. Results Performance correlated positively with task cycle, thus confirming motor learning. Hemodynamic activation over the left sensorimotor cortex (SMC) showed a positive correlation with task cycle, whereas activations over the right prefrontal cortex (PFC) and supplementary motor area (SMA) showed negative correlations. Conclusions We suggest that increases in finger momentum with motor learning are reflected in the activity of the left SMC. We further speculate that the right PFC and SMA were activated during the early phases of motor learning, and that this activity was attenuated with learning progress.
Collapse
Affiliation(s)
- Akira Sagari
- Unit of Rehabilitation Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Japanese Red Cross Society Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Naoki Iso
- Unit of Rehabilitation Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Medical Corporation Tojinkai Miharadai Hospital, Nagasaki, Japan
| | - Takefumi Moriuchi
- Unit of Rehabilitation Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Medical Corporation Tojinkai Miharadai Hospital, Nagasaki, Japan
| | - Kakuya Ogahara
- Faculty of Health and Social Work, School of Rehabilitation, Kanagawa University of Human Services, Kanagawa, Japan
| | - Eiji Kitajima
- Center for Industry, University and Government Cooperation, Nagasaki University, Nagasaki, Japan
| | - Koji Tanaka
- Unit of Physical and Occupational Therapy, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takayuki Tabira
- Faculty of Rehabilitation Sciences, Nishikyushu University, Saga, Japan
| | - Toshio Higashi
- Unit of Rehabilitation Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- * E-mail:
| |
Collapse
|
48
|
Helmich I, Holle H, Rein R, Lausberg H. Brain oxygenation patterns during the execution of tool use demonstration, tool use pantomime, and body-part-as-object tool use. Int J Psychophysiol 2015; 96:1-7. [DOI: 10.1016/j.ijpsycho.2015.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/10/2015] [Accepted: 03/02/2015] [Indexed: 11/27/2022]
|
49
|
Understanding bimanual coordination across small time scales from an electrophysiological perspective. Neurosci Biobehav Rev 2014; 47:614-35. [DOI: 10.1016/j.neubiorev.2014.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 09/16/2014] [Accepted: 10/01/2014] [Indexed: 01/20/2023]
|
50
|
Complexity in animal behaviour: towards common ground. Acta Ethol 2014. [DOI: 10.1007/s10211-014-0205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|