1
|
Gaubert M, Combès B, Bannier E, Masson A, Caron V, Baudron G, Ferré JC, Michel L, Le Page E, Stankoff B, Edan G, Bodini B, Kerbrat A. Microstructural Damage and Repair in the Spinal Cord of Patients With Early Multiple Sclerosis and Association With Disability at 5 Years. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2025; 12:e200333. [PMID: 39571137 PMCID: PMC11587990 DOI: 10.1212/nxi.0000000000200333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 10/01/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND AND OBJECTIVES The dynamics of microstructural spinal cord (SC) damage and repair in people with multiple sclerosis (pwMS) and their clinical relevance have yet to be explored. We set out to describe patient-specific profiles of microstructural SC damage and change during the first year after MS diagnosis and to investigate their associations with disability and SC atrophy at 5 years. METHODS We performed a longitudinal monocentric cohort study among patients with relapsing-remitting MS: first relapse <1 year, no relapse <1 month, and high initial severity on MRI (>9 T2 lesions on brain MRI and/or initial myelitis). pwMS and age-matched healthy controls (HCs) underwent cervical SC magnetization transfer (MT) imaging at baseline and at 1 year for pwMS. Based on HC data, SC MT ratio z-score maps were computed for each person with MS. An index of microstructural damage was calculated as the proportion of voxels classified as normal at baseline and identified as damaged after 1 year. Similarly, an index of repair was also calculated (voxels classified as damaged at baseline and as normal after 1 year). Linear models including these indices and disability or SC cross-sectional area (CSA) change between baseline and 5 years were implemented. RESULTS Thirty-seven patients and 19 HCs were included. We observed considerable variability in the extent of microstructural SC damage at baseline (0%-58% of SC voxels). We also observed considerable variability in damage and repair indices over 1 year (0%-31% and 0%-20%), with 18 patients showing predominance of damage and 18 predominance of repair. The index of microstructural damage was associated positively with the Expanded Disability Status Scale score (r = 0.504, p = 0.002) and negatively with CSA change (r = -0.416, p = 0.02) at 5 years, independent of baseline SC lesion volume. DISCUSSION People with early relapsing-remitting MS exhibited heterogeneous profiles of microstructural SC damage and repair. Progression of microstructural damage was associated with disability progression and SC atrophy 5 years later. These results indicate a potential for microstructural repair in the SC to prevent disability progression in pwMS.
Collapse
Affiliation(s)
- Malo Gaubert
- From the Department of Neuroradiology (M.G., E.B., J.-C.F.), Rennes University Hospital; Empenn (M.G., B.C., E.B., A.M., V.C., G.B., J.-C.F., A.K.), INRIA, Rennes University-CNRS-INSERM; Department of Neurology (L.M., E.L.P., G.E., A.K.), Rennes University Hospital; Paris Brain Institute (ICM) (B.S., B.B.), Sorbonne University-CNRS-INSERM; and Neurology Department (B.S., B.B.), APHP St Antoine Hospital, Paris, France
| | - Benoit Combès
- From the Department of Neuroradiology (M.G., E.B., J.-C.F.), Rennes University Hospital; Empenn (M.G., B.C., E.B., A.M., V.C., G.B., J.-C.F., A.K.), INRIA, Rennes University-CNRS-INSERM; Department of Neurology (L.M., E.L.P., G.E., A.K.), Rennes University Hospital; Paris Brain Institute (ICM) (B.S., B.B.), Sorbonne University-CNRS-INSERM; and Neurology Department (B.S., B.B.), APHP St Antoine Hospital, Paris, France
| | - Elise Bannier
- From the Department of Neuroradiology (M.G., E.B., J.-C.F.), Rennes University Hospital; Empenn (M.G., B.C., E.B., A.M., V.C., G.B., J.-C.F., A.K.), INRIA, Rennes University-CNRS-INSERM; Department of Neurology (L.M., E.L.P., G.E., A.K.), Rennes University Hospital; Paris Brain Institute (ICM) (B.S., B.B.), Sorbonne University-CNRS-INSERM; and Neurology Department (B.S., B.B.), APHP St Antoine Hospital, Paris, France
| | - Arthur Masson
- From the Department of Neuroradiology (M.G., E.B., J.-C.F.), Rennes University Hospital; Empenn (M.G., B.C., E.B., A.M., V.C., G.B., J.-C.F., A.K.), INRIA, Rennes University-CNRS-INSERM; Department of Neurology (L.M., E.L.P., G.E., A.K.), Rennes University Hospital; Paris Brain Institute (ICM) (B.S., B.B.), Sorbonne University-CNRS-INSERM; and Neurology Department (B.S., B.B.), APHP St Antoine Hospital, Paris, France
| | - Vivien Caron
- From the Department of Neuroradiology (M.G., E.B., J.-C.F.), Rennes University Hospital; Empenn (M.G., B.C., E.B., A.M., V.C., G.B., J.-C.F., A.K.), INRIA, Rennes University-CNRS-INSERM; Department of Neurology (L.M., E.L.P., G.E., A.K.), Rennes University Hospital; Paris Brain Institute (ICM) (B.S., B.B.), Sorbonne University-CNRS-INSERM; and Neurology Department (B.S., B.B.), APHP St Antoine Hospital, Paris, France
| | - Gaëlle Baudron
- From the Department of Neuroradiology (M.G., E.B., J.-C.F.), Rennes University Hospital; Empenn (M.G., B.C., E.B., A.M., V.C., G.B., J.-C.F., A.K.), INRIA, Rennes University-CNRS-INSERM; Department of Neurology (L.M., E.L.P., G.E., A.K.), Rennes University Hospital; Paris Brain Institute (ICM) (B.S., B.B.), Sorbonne University-CNRS-INSERM; and Neurology Department (B.S., B.B.), APHP St Antoine Hospital, Paris, France
| | - Jean-Christophe Ferré
- From the Department of Neuroradiology (M.G., E.B., J.-C.F.), Rennes University Hospital; Empenn (M.G., B.C., E.B., A.M., V.C., G.B., J.-C.F., A.K.), INRIA, Rennes University-CNRS-INSERM; Department of Neurology (L.M., E.L.P., G.E., A.K.), Rennes University Hospital; Paris Brain Institute (ICM) (B.S., B.B.), Sorbonne University-CNRS-INSERM; and Neurology Department (B.S., B.B.), APHP St Antoine Hospital, Paris, France
| | - Laure Michel
- From the Department of Neuroradiology (M.G., E.B., J.-C.F.), Rennes University Hospital; Empenn (M.G., B.C., E.B., A.M., V.C., G.B., J.-C.F., A.K.), INRIA, Rennes University-CNRS-INSERM; Department of Neurology (L.M., E.L.P., G.E., A.K.), Rennes University Hospital; Paris Brain Institute (ICM) (B.S., B.B.), Sorbonne University-CNRS-INSERM; and Neurology Department (B.S., B.B.), APHP St Antoine Hospital, Paris, France
| | - Emmanuelle Le Page
- From the Department of Neuroradiology (M.G., E.B., J.-C.F.), Rennes University Hospital; Empenn (M.G., B.C., E.B., A.M., V.C., G.B., J.-C.F., A.K.), INRIA, Rennes University-CNRS-INSERM; Department of Neurology (L.M., E.L.P., G.E., A.K.), Rennes University Hospital; Paris Brain Institute (ICM) (B.S., B.B.), Sorbonne University-CNRS-INSERM; and Neurology Department (B.S., B.B.), APHP St Antoine Hospital, Paris, France
| | - Bruno Stankoff
- From the Department of Neuroradiology (M.G., E.B., J.-C.F.), Rennes University Hospital; Empenn (M.G., B.C., E.B., A.M., V.C., G.B., J.-C.F., A.K.), INRIA, Rennes University-CNRS-INSERM; Department of Neurology (L.M., E.L.P., G.E., A.K.), Rennes University Hospital; Paris Brain Institute (ICM) (B.S., B.B.), Sorbonne University-CNRS-INSERM; and Neurology Department (B.S., B.B.), APHP St Antoine Hospital, Paris, France
| | - Gilles Edan
- From the Department of Neuroradiology (M.G., E.B., J.-C.F.), Rennes University Hospital; Empenn (M.G., B.C., E.B., A.M., V.C., G.B., J.-C.F., A.K.), INRIA, Rennes University-CNRS-INSERM; Department of Neurology (L.M., E.L.P., G.E., A.K.), Rennes University Hospital; Paris Brain Institute (ICM) (B.S., B.B.), Sorbonne University-CNRS-INSERM; and Neurology Department (B.S., B.B.), APHP St Antoine Hospital, Paris, France
| | - Benedetta Bodini
- From the Department of Neuroradiology (M.G., E.B., J.-C.F.), Rennes University Hospital; Empenn (M.G., B.C., E.B., A.M., V.C., G.B., J.-C.F., A.K.), INRIA, Rennes University-CNRS-INSERM; Department of Neurology (L.M., E.L.P., G.E., A.K.), Rennes University Hospital; Paris Brain Institute (ICM) (B.S., B.B.), Sorbonne University-CNRS-INSERM; and Neurology Department (B.S., B.B.), APHP St Antoine Hospital, Paris, France
| | - Anne Kerbrat
- From the Department of Neuroradiology (M.G., E.B., J.-C.F.), Rennes University Hospital; Empenn (M.G., B.C., E.B., A.M., V.C., G.B., J.-C.F., A.K.), INRIA, Rennes University-CNRS-INSERM; Department of Neurology (L.M., E.L.P., G.E., A.K.), Rennes University Hospital; Paris Brain Institute (ICM) (B.S., B.B.), Sorbonne University-CNRS-INSERM; and Neurology Department (B.S., B.B.), APHP St Antoine Hospital, Paris, France
| |
Collapse
|
2
|
Sullivan O, Sie C, Ng KM, Cotton S, Rosete C, Hamden JE, Singh AP, Lee K, Choudhary J, Kim J, Yu H, Clayton CA, Carranza Garcia NA, Voznyuk K, Deng BD, Plett N, Arora S, Ghezzi H, Huan T, Soma KK, Yu JPJ, Tropini C, Ciernia AV. Early-life gut inflammation drives sex-dependent shifts in the microbiome-endocrine-brain axis. Brain Behav Immun 2024; 125:117-139. [PMID: 39674560 DOI: 10.1016/j.bbi.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/13/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024] Open
Abstract
Despite recent advances in understanding the connection between the gut microbiota and the adult brain, significant knowledge gaps remain regarding how gut inflammation affects brain development. We hypothesized that gut inflammation during early life would negatively affect neurodevelopment by disrupting microbiota communication to the brain. We therefore developed a novel pediatric chemical model of inflammatory bowel disease (IBD), an incurable condition affecting millions of people worldwide. IBD is characterized by chronic intestinal inflammation, and is associated with comorbid symptoms such as anxiety, depression and cognitive impairment. Notably, 25% of patients with IBD are diagnosed during childhood, and the effects of chronic inflammation during this critical developmental period remain poorly understood. This study investigated the effects of early-life gut inflammation induced by DSS (dextran sulfate sodium) on a range of microbiota, endocrine, and behavioral outcomes, focusing on sex-specific impacts. DSS-treated mice exhibited increased intestinal inflammation and altered microbiota membership, which correlated with changes in microbiota-derived circulating metabolites. The majority of behavioral measures were unaffected, with the exception of impaired mate-seeking behaviors in DSS-treated males. DSS-treated males also showed significantly smaller seminal vesicles, lower circulating androgens, and decreased intestinal hormone-activating enzyme activity compared to vehicle controls. In the brain, DSS treatment led to chronic, sex-specific alterations in microglial morphology. These results suggest that early-life gut inflammation causes changes in gut microbiota composition, affecting short-chain fatty acid (SCFA) producers and glucuronidase (GUS) activity, correlating with altered SCFA and androgen levels. The findings highlight the developmental sensitivity to inflammation-induced changes in endocrine signalling and emphasize the long-lasting physiological and microbiome changes associated with juvenile IBD.
Collapse
Affiliation(s)
- Olivia Sullivan
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Claire Sie
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| | - Katharine M Ng
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| | - Sophie Cotton
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| | - Cal Rosete
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Jordan E Hamden
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Ajay Paul Singh
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kristen Lee
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Jatin Choudhary
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Jennifer Kim
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Huaxu Yu
- Department of Chemistry, University of British Columbia, Vancouver, Canada
| | - Charlotte A Clayton
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| | | | - Kateryna Voznyuk
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Brian D Deng
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| | - Nadine Plett
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Sana Arora
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Hans Ghezzi
- Department of Bioinformatics, University of British Columbia, Vancouver, Canada
| | - Tao Huan
- Department of Chemistry, University of British Columbia, Vancouver, Canada
| | - Kiran K Soma
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada; Department of Psychology, University of British Columbia, Vancouver Canada
| | - John-Paul J Yu
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Carolina Tropini
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, Canada; Humans and the Microbiome Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Canada.
| | - Annie Vogel Ciernia
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
3
|
Milisav F, Bazinet V, Betzel RF, Misic B. A simulated annealing algorithm for randomizing weighted networks. NATURE COMPUTATIONAL SCIENCE 2024:10.1038/s43588-024-00735-z. [PMID: 39658626 DOI: 10.1038/s43588-024-00735-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/01/2024] [Indexed: 12/12/2024]
Abstract
Scientific discovery in connectomics relies on network null models. The prominence of network features is conventionally evaluated against null distributions estimated using randomized networks. Modern imaging technologies provide an increasingly rich array of biologically meaningful edge weights. Despite the prevalence of weighted graph analysis in connectomics, randomization models that only preserve binary node degree remain most widely used. Here we propose a simulated annealing procedure for generating randomized networks that preserve weighted degree (strength) sequences. We show that the procedure outperforms other rewiring algorithms and generalizes to multiple network formats, including directed and signed networks, as well as diverse real-world networks. Throughout, we use morphospace representation to assess the sampling behavior of the algorithm and the variability of the resulting ensemble. Finally, we show that accurate strength preservation yields different inferences about brain network organization. Collectively, this work provides a simple but powerful method to analyze richly detailed next-generation connectomics datasets.
Collapse
Affiliation(s)
- Filip Milisav
- Montréal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Vincent Bazinet
- Montréal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Richard F Betzel
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
4
|
Winther S, Lundell H, Rafael-Patiño J, Andersson M, Thiran JP, Dyrby TB. Susceptibility-induced internal gradients reveal axon morphology and cause anisotropic effects in the diffusion-weighted MRI signal. Sci Rep 2024; 14:29636. [PMID: 39609481 PMCID: PMC11605075 DOI: 10.1038/s41598-024-79043-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/05/2024] [Indexed: 11/30/2024] Open
Abstract
Diffusion-weighted MRI is our most promising method for estimating microscopic tissue morphology in vivo. The signal acquisition is based on scanner-generated external magnetic gradients. However, it will also be affected by susceptibility-induced internal magnetic gradients caused by interactions between the tissue and the static magnetic field of the scanner. With 3D in silico experiments, we show how internal gradients cause morphology-, compartment-, and orientation-dependence of spin-echo and pulsed-gradient spin-echo experiments in myelinated axons. These effects surpass those observed with previous 2D modelling corresponding to straight cylinders. For an ex vivo monkey brain, we observe the orientation-dependence generated only when including non-circular cross-sections in the in silico morphological configurations, and find orientation-dependent deviation of up to 17% for diffusion tensor metrics. Interestingly, we find that the orientation-dependence not only biases the signal across different brain regions, but also carries a sensitivity to the morphology of axonal cross-sections which is not attainable by the idealised theoretical diffusion-weighted MRI signal.
Collapse
Affiliation(s)
- S Winther
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark.
- Danish Research Centre for Magnetic Resonance, Department of Radiology and Nuclear Medicine, Copenhagen University Hospital - Amager and Hvidovre, 2650, Copenhagen, Denmark.
| | - H Lundell
- Danish Research Centre for Magnetic Resonance, Department of Radiology and Nuclear Medicine, Copenhagen University Hospital - Amager and Hvidovre, 2650, Copenhagen, Denmark
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - J Rafael-Patiño
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - M Andersson
- Danish Research Centre for Magnetic Resonance, Department of Radiology and Nuclear Medicine, Copenhagen University Hospital - Amager and Hvidovre, 2650, Copenhagen, Denmark
| | - J-P Thiran
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - T B Dyrby
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark.
- Danish Research Centre for Magnetic Resonance, Department of Radiology and Nuclear Medicine, Copenhagen University Hospital - Amager and Hvidovre, 2650, Copenhagen, Denmark.
| |
Collapse
|
5
|
Dong Z, Reese TG, Lee HH, Huang SY, Polimeni JR, Wald LL, Wang F. Romer-EPTI: Rotating-view motion-robust super-resolution EPTI for SNR-efficient distortion-free in-vivo mesoscale diffusion MRI and microstructure imaging. Magn Reson Med 2024. [PMID: 39552568 DOI: 10.1002/mrm.30365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/28/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024]
Abstract
PURPOSE To overcome the major challenges in diffusion MRI (dMRI) acquisition, including limited SNR, distortion/blurring, and susceptibility to motion artifacts. THEORY AND METHODS A novel Romer-EPTI technique is developed to achieve SNR-efficient acquisition while providing distortion-free imaging, minimal spatial blurring, high motion robustness, and simultaneous multi-TE imaging. It introduces a ROtating-view Motion-robust supEr-Resolution technique (Romer) combined with a distortion/blurring-free Echo Planar Time-resolved Imaging (EPTI) readout. Romer enhances SNR through simultaneous multi-thick-slice acquisition with rotating-view encoding, while providing high motion-robustness via a high-fidelity, motion-aware super-resolution reconstruction. Instead of EPI, the in-plane encoding is performed using EPTI readout to prevent geometric distortion, T2/T2*-blurring, and importantly, dynamic distortions that could introduce additional blurring/artifacts after super-resolution reconstruction due to combining volumes with inconsistent geometries. This further improves effective spatial resolution and motion robustness. Additional developments include strategies to address slab-boundary artifacts, achieve minimized TE and optimized readout for additional SNR gain, and increase robustness to strong phase variations at high b-values. RESULTS Using Romer-EPTI, we demonstrated distortion-free whole-brain mesoscale in-vivo dMRI at both 3T (500-μm isotropic [iso] resolution) and 7T (485-μm iso resolution) for the first time. Motion experiments demonstrated the technique's motion robustness and its ability to obtain high-resolution diffusion images in the presence of subject motion. Romer-EPTI also demonstrated high SNR gain and robustness in high b-value (b = 5000 s/mm2) and time-dependent dMRI. CONCLUSION The high SNR efficiency, improved image quality, and motion robustness of Romer-EPTI make it a highly efficient acquisition for high-resolution dMRI and microstructure imaging.
Collapse
Affiliation(s)
- Zijing Dong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Timothy G Reese
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hong-Hsi Lee
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Susie Y Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Blasco MB, Nisha Aji K, Ramos-Jiménez C, Leppert IR, Tardif CL, Cohen J, Rusjan PM, Mizrahi R. Synaptic Density in Early Stages of Psychosis and Clinical High Risk. JAMA Psychiatry 2024:2825648. [PMID: 39535765 PMCID: PMC11561726 DOI: 10.1001/jamapsychiatry.2024.3608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/09/2024] [Indexed: 11/16/2024]
Abstract
Importance Synaptic dysfunction is involved in schizophrenia pathophysiology. However, whether in vivo synaptic density is reduced in early stages of psychosis, including its high-risk states, remains unclear. Objective To investigate whether synaptic density (synaptic vesicle glycoprotein 2A [SV2A] binding potential) is reduced in first-episode psychosis (FEP) and in clinical high risk (CHR) and investigate the effect of cannabis use on synaptic density and examine its relationship with psychotic symptoms and gray matter microstructure across groups. Design, Setting, and Participants This cross-sectional study was performed in a tertiary care psychiatric hospital from July 2021 to October 2023. Participants were patients with antipsychotic-free or minimally exposed FEP or CHR and healthy controls with a clean urine drug screen (except cannabis). Main Outcomes and Measures Synaptic density was quantified with dynamic 90-minute [18F]SynVesT-1 positron emission tomography (PET) scans across prioritized brain regions of interest (ROIs) delineated in individual magnetic resonance images (MRIs). Cannabis use was confirmed with urine drug screens. Gray matter microstructure was assessed using diffusion-weighted MRI to estimate neurite density. Results A total of 49 participants were included, including 16 patients with FEP (mean [SD] age, 26.1 [4.6] years; 9 males and 7 females), 17 patients at CHR (mean [SD] age, 21.2 [3.5] years; 8 males and 9 females), and 16 healthy controls (mean [SD] age, 23.4 [3.6] years; 7 males and 9 females). Synaptic density was significantly different between groups (F2,273 = 4.02, P = .02, Cohen F = 0.17; ROI: F5,273 = 360.18, P < .01, Cohen F = 2.55) with a group × ROI interaction (F10,273 = 2.67, P < .01, Cohen F = 0.32). Synaptic density was lower in cannabis users (F1,272 = 5.31, P = .02, Cohen F = 0.14). Lower synaptic density across groups was associated with more negative symptoms (Positive and Negative Syndrome Scale negative scores: F1,81 = 4.31, P = .04, Cohen F = 0.23; Scale of Psychosis-Risk Symptoms negative scores: F1,90 = 4.12, P = .04, Cohen F = 0.21). SV2A binding potential was significantly associated with neurite density index (F1,138 = 6.76, P = .01, Cohen F = 0.22). Conclusions and Relevance This study found that synaptic density reductions were present during the early stages of psychosis and its risk states and associated with negative symptoms. The implications of SV2A for negative symptoms in psychosis and CHR warrant further investigation. Future studies should investigate the impact of cannabis use on synaptic density in CHR longitudinally.
Collapse
Affiliation(s)
- M. Belen Blasco
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Douglas Research Centre, Clinical and Translational Sciences Lab, Montreal, Quebec, Canada
| | - Kankana Nisha Aji
- Douglas Research Centre, Clinical and Translational Sciences Lab, Montreal, Quebec, Canada
| | - Christian Ramos-Jiménez
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Douglas Research Centre, Clinical and Translational Sciences Lab, Montreal, Quebec, Canada
| | - Ilana Ruth Leppert
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Christine Lucas Tardif
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Johan Cohen
- Douglas Mental Health University Institute, McGill University, Verdun, Quebec, Canada
| | - Pablo M. Rusjan
- Douglas Research Centre, Clinical and Translational Sciences Lab, Montreal, Quebec, Canada
- Douglas Mental Health University Institute, McGill University, Verdun, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Romina Mizrahi
- Douglas Research Centre, Clinical and Translational Sciences Lab, Montreal, Quebec, Canada
- Douglas Mental Health University Institute, McGill University, Verdun, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Veldmann M, Edwards LJ, Pine KJ, Ehses P, Ferreira M, Weiskopf N, Stoecker T. Improving MR axon radius estimation in human white matter using spiral acquisition and field monitoring. Magn Reson Med 2024; 92:1898-1912. [PMID: 38817204 DOI: 10.1002/mrm.30180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/08/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024]
Abstract
PURPOSE To compare MR axon radius estimation in human white matter using a multiband spiral sequence combined with field monitoring to the current state-of-the-art echo-planar imaging (EPI)-based approach. METHODS A custom multiband spiral sequence was used for diffusion-weighted imaging at ultra-highb $$ b $$ -values. Field monitoring and higher order image reconstruction were employed to greatly reduce artifacts in spiral images. Diffusion weighting parameters were chosen to match a state-of-the art EPI-based axon radius mapping protocol. The spiral approach was compared to the EPI approach by comparing the image signal-to-noise ratio (SNR) and performing a test-retest study to assess the respective variability and repeatability of axon radius mapping. Effective axon radius estimates were compared over white matter voxels and along the left corticospinal tract. RESULTS Increased SNR and reduced artifacts in spiral images led to reduced variability in resulting axon radius maps, especially in low-SNR regions. Test-retest variability was reduced by a factor of approximately 1.5 using the spiral approach. Reduced repeatability due to significant bias was found for some subjects in both spiral and EPI approaches, and attributed to scanner instability, pointing to a previously unknown limitation of the state-of-the-art approach. CONCLUSION Combining spiral readouts with field monitoring improved mapping of the effective axon radius compared to the conventional EPI approach.
Collapse
Affiliation(s)
- Marten Veldmann
- MR Physics, German Center for Neurodegenerative Diseases (DZNE) e.V, Bonn, Germany
| | - Luke J Edwards
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Kerrin J Pine
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Philipp Ehses
- MR Physics, German Center for Neurodegenerative Diseases (DZNE) e.V, Bonn, Germany
| | - Mónica Ferreira
- Clinical Research, German Center for Neurodegenerative Diseases (DZNE) e.V, Bonn, Germany
- University of Bonn, Bonn, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth System Sciences, Leipzig University, Leipzig, Germany
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, UK
| | - Tony Stoecker
- MR Physics, German Center for Neurodegenerative Diseases (DZNE) e.V, Bonn, Germany
- Department of Physics & Astronomy, University of Bonn, Bonn, Germany
| |
Collapse
|
8
|
Lee H, Lee H, Ma Y, Eskandarian L, Gaudet K, Tian Q, Krijnen EA, Russo AW, Salat DH, Klawiter EC, Huang SY. Age-related alterations in human cortical microstructure across the lifespan: Insights from high-gradient diffusion MRI. Aging Cell 2024; 23:e14267. [PMID: 39118344 PMCID: PMC11561659 DOI: 10.1111/acel.14267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 08/10/2024] Open
Abstract
The human brain undergoes age-related microstructural alterations across the lifespan. Soma and Neurite Density Imaging (SANDI), a novel biophysical model of diffusion MRI, provides estimates of cell body (soma) radius and density, and neurite density in gray matter. The goal of this cross-sectional study was to assess the sensitivity of high-gradient diffusion MRI toward age-related alterations in cortical microstructure across the adult lifespan using SANDI. Seventy-two cognitively unimpaired healthy subjects (ages 19-85 years; 40 females) were scanned on the 3T Connectome MRI scanner with a maximum gradient strength of 300mT/m using a multi-shell diffusion MRI protocol incorporating 8 b-values and diffusion time of 19 ms. Intra-soma signal fraction obtained from SANDI model-fitting to the data was strongly correlated with age in all major cortical lobes (r = -0.69 to -0.60, FDR-p < 0.001). Intra-soma signal fraction (r = 0.48-0.63, FDR-p < 0.001) and soma radius (r = 0.28-0.40, FDR-p < 0.04) were significantly correlated with cortical volume in the prefrontal cortex, frontal, parietal, and temporal lobes. The strength of the relationship between SANDI metrics and age was greater than or comparable to the relationship between cortical volume and age across the cortical regions, particularly in the occipital lobe and anterior cingulate gyrus. In contrast to the SANDI metrics, all associations between diffusion tensor imaging (DTI) and diffusion kurtosis imaging metrics and age were low to moderate. These results suggest that high-gradient diffusion MRI may be more sensitive to underlying substrates of neurodegeneration in the aging brain than DTI and traditional macroscopic measures of neurodegeneration such as cortical volume and thickness.
Collapse
Affiliation(s)
- Hansol Lee
- Department of Radiology, Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Hong‐Hsi Lee
- Department of Radiology, Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Yixin Ma
- Department of Radiology, Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Laleh Eskandarian
- Department of Radiology, Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Kyla Gaudet
- Department of Radiology, Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Qiyuan Tian
- Department of Radiology, Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Eva A. Krijnen
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- MS Center Amsterdam, Anatomy and Neurosciences, Amsterdam NeuroscienceAmsterdam UMC Location VUmcAmsterdamThe Netherlands
| | - Andrew W. Russo
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - David H. Salat
- Department of Radiology, Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Eric C. Klawiter
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Susie Y. Huang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
9
|
Friesen E, Gosal R, Herrera S, Mercredi M, Buist R, Matsuda K, Martin M. Comparisons of MR and EM inferred tissue microstructure properties using a human autopsy corpus callosum sample. Magn Reson Imaging 2024; 115:110255. [PMID: 39401603 DOI: 10.1016/j.mri.2024.110255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Degeneration of white matter (WM) microstructure in the central nervous system is characteristic of many neurodegenerative conditions. Previous research indicates that axonal degeneration visible in ex vivo electron microscopy (EM) photomicrographs precede the onset of clinical symptoms. Measuring WM microstructural features, such as axon diameter and packing fraction, currently require these highly invasive methods of analysis and it is therefore of great importance to develop methods for in vivo measurements. Diffusion weighted Magnetic Resonance Imaging (MRI) is a non-invasive method which can be used in conjunction with temporal diffusion spectroscopy (TDS) and an oscillating gradient spin echo (OGSE) pulse sequence to probe micron-scale structures within neural tissue. The current experiment aims to compare axon diameter measurements, mean effective axon diameter (AxD¯), and packing fractions calculated from EM histopathological analysis and inferred values from MR images. Mathematical models of axon diameters used for analysis include the ActiveAx Frequency-Dependent Extra-Axonal Diffusion (AAD) model and the AxCaliber Frequency-Dependent Extra-Axonal Diffusion (ACD) model using ROI (Region of Interest) based analysis (RBA) and voxel-based analysis (VBA), respectively. Overall, it was observed that MRI inferred WM microstructural parameters overestimate those calculated from EM. This may be attributable to tissue shrinkage during EM dehydration, the sensitivity of MR pulse sequences to larger diameter axons, and/or inaccurate model assumptions. The results of the current study provide a means to characterize the precision and accuracy of RBA-ACD and VBA-AAD OGSE-TDS and highlight the need for further research investigating the relationship between ex vivo MRI and EM, with the goal of reaching in vivo MRI.
Collapse
Affiliation(s)
- Emma Friesen
- Department of Chemistry, University of Winnipeg, Winnipeg, MB, Canada.
| | - Rubeena Gosal
- Department of Chemistry, University of Winnipeg, Winnipeg, MB, Canada.
| | - Sheryl Herrera
- Department of Physics, University of Winnipeg, Winnipeg, MB, Canada
| | - Morgan Mercredi
- Department of Physics, University of Winnipeg, Winnipeg, MB, Canada
| | - Richard Buist
- Department of Radiology, University of Manitoba, Winnipeg, MB, Canada.
| | - Kant Matsuda
- Department of Pathology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA.
| | - Melanie Martin
- Department of Physics, University of Winnipeg, Winnipeg, MB, Canada.
| |
Collapse
|
10
|
Shi D, Liu F, Li S, Chen L, Jiang X, Gore JC, Zheng Q, Guo H, Xu J. Restriction-induced time-dependent transcytolemmal water exchange: Revisiting the Kӓrger exchange model. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 367:107760. [PMID: 39241283 DOI: 10.1016/j.jmr.2024.107760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
The Kӓrger model and its derivatives have been widely used to incorporate transcytolemmal water exchange rate, an essential characteristic of living cells, into analyses of diffusion MRI (dMRI) signals from tissues. The Kӓrger model consists of two homogeneous exchanging components coupled by an exchange rate constant and assumes measurements are made with sufficiently long diffusion time and slow water exchange. Despite successful applications, it remains unclear whether these assumptions are generally valid for practical dMRI sequences and biological tissues. In particular, barrier-induced restrictions to diffusion produce inhomogeneous magnetization distributions in relatively large-sized compartments such as cancer cells, violating the above assumptions. The effects of this inhomogeneity are usually overlooked. We performed computer simulations to quantify how restriction effects, which in images produce edge enhancements at compartment boundaries, influence different variants of the Kӓrger-model. The results show that the edge enhancement effect will produce larger, time-dependent estimates of exchange rates in e.g., tumors with relatively large cell sizes (>10 μm), resulting in overestimations of water exchange as previously reported. Moreover, stronger diffusion gradients, longer diffusion gradient durations, and larger cell sizes, all cause more pronounced edge enhancement effects. This helps us to better understand the feasibility of the Kärger model in estimating water exchange in different tissue types and provides useful guidance on signal acquisition methods that may mitigate the edge enhancement effect. This work also indicates the need to correct the overestimated transcytolemmal water exchange rates obtained assuming the Kärger-model.
Collapse
Affiliation(s)
- Diwei Shi
- Center for Nano and Micro Mechanics, Department of Engineering Mechanics, Tsinghua University, Beijing, China
| | - Fan Liu
- Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Sisi Li
- Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Li Chen
- Center for Nano and Micro Mechanics, Department of Engineering Mechanics, Tsinghua University, Beijing, China
| | - Xiaoyu Jiang
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - John C Gore
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States; Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, United States
| | - Quanshui Zheng
- Center for Nano and Micro Mechanics, Department of Engineering Mechanics, Tsinghua University, Beijing, China
| | - Hua Guo
- Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Junzhong Xu
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States; Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, United States.
| |
Collapse
|
11
|
Wu D, Lee HH, Ba R, Turnbill V, Wang X, Luo Y, Walczak P, Fieremans E, Novikov DS, Martin LJ, Northington FJ, Zhang J. In vivo mapping of cellular resolution neuropathology in brain ischemia with diffusion MRI. SCIENCE ADVANCES 2024; 10:eadk1817. [PMID: 39018390 PMCID: PMC466947 DOI: 10.1126/sciadv.adk1817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 06/11/2024] [Indexed: 07/19/2024]
Abstract
Noninvasive mapping of cellular pathology can provide critical diagnostic and prognostic information. Recent advances in diffusion magnetic resonance imaging enabled in vivo examination of tissue microstructures well beyond the imaging resolution. Here, we proposed to use diffusion time-dependent diffusion kurtosis imaging (tDKI) to simultaneously assess cellular morphology and transmembrane permeability in hypoxic-ischemic (HI) brain injury. Through numerical simulations and organoid imaging, we demonstrated the feasibility of capturing effective size and permeability changes using tDKI. In vivo MRI of HI-injured mouse brains detected a shift of the tDKI peak to longer diffusion times, suggesting swelling of the cellular processes. Furthermore, we observed a faster decrease of the tDKI tail, reflecting increased transmembrane permeability associated with up-regulated water exchange or necrosis. Such information, unavailable from a single diffusion time, can predict salvageable tissues. Preliminary applications of tDKI in patients with ischemic stroke suggested increased transmembrane permeability in stroke regions, illustrating tDKI's potential for detecting pathological changes in the clinics.
Collapse
Affiliation(s)
- Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Radiology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
- Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China
| | - Hong-Hsi Lee
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Ruicheng Ba
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Victoria Turnbill
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaoli Wang
- School of Medical Imaging, Weifang Medical School, Weifang, Shandong, China
| | - Yu Luo
- Department of Radiology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Piotr Walczak
- Department of Radiology, University of Maryland, Baltimore, MD, USA
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Dmitry S. Novikov
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Lee J. Martin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frances J. Northington
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiangyang Zhang
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
12
|
Li Z, Li Z, Bilgic B, Lee H, Ying K, Huang SY, Liao H, Tian Q. DIMOND: DIffusion Model OptimizatioN with Deep Learning. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307965. [PMID: 38634608 PMCID: PMC11200022 DOI: 10.1002/advs.202307965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/09/2024] [Indexed: 04/19/2024]
Abstract
Diffusion magnetic resonance imaging is an important tool for mapping tissue microstructure and structural connectivity non-invasively in the in vivo human brain. Numerous diffusion signal models are proposed to quantify microstructural properties. Nonetheless, accurate estimation of model parameters is computationally expensive and impeded by image noise. Supervised deep learning-based estimation approaches exhibit efficiency and superior performance but require additional training data and may be not generalizable. A new DIffusion Model OptimizatioN framework using physics-informed and self-supervised Deep learning entitled "DIMOND" is proposed to address this problem. DIMOND employs a neural network to map input image data to model parameters and optimizes the network by minimizing the difference between the input acquired data and synthetic data generated via the diffusion model parametrized by network outputs. DIMOND produces accurate diffusion tensor imaging results and is generalizable across subjects and datasets. Moreover, DIMOND outperforms conventional methods for fitting sophisticated microstructural models including the kurtosis and NODDI model. Importantly, DIMOND reduces NODDI model fitting time from hours to minutes, or seconds by leveraging transfer learning. In summary, the self-supervised manner, high efficacy, and efficiency of DIMOND increase the practical feasibility and adoption of microstructure and connectivity mapping in clinical and neuroscientific applications.
Collapse
Affiliation(s)
- Zihan Li
- School of Biomedical EngineeringTsinghua UniversityBeijing100084P. R. China
| | - Ziyu Li
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordOX3 9DUUK
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMA02129USA
- Harvard Medical SchoolBostonMA02129USA
| | - Hong‐Hsi Lee
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMA02129USA
- Harvard Medical SchoolBostonMA02129USA
| | - Kui Ying
- Department of Engineering PhysicsTsinghua UniversityBeijing100084P. R. China
| | - Susie Y. Huang
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMA02129USA
- Harvard Medical SchoolBostonMA02129USA
| | - Hongen Liao
- School of Biomedical EngineeringTsinghua UniversityBeijing100084P. R. China
| | - Qiyuan Tian
- School of Biomedical EngineeringTsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
13
|
Dong Z, Reese TG, Lee HH, Huang SY, Polimeni JR, Wald LL, Wang F. Romer-EPTI: rotating-view motion-robust super-resolution EPTI for SNR-efficient distortion-free in-vivo mesoscale dMRI and microstructure imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577343. [PMID: 38352481 PMCID: PMC10862730 DOI: 10.1101/2024.01.26.577343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Purpose To overcome the major challenges in dMRI acquisition, including low SNR, distortion/blurring, and motion vulnerability. Methods A novel Romer-EPTI technique is developed to provide distortion-free dMRI with significant SNR gain, high motion-robustness, sharp spatial resolution, and simultaneous multi-TE imaging. It introduces a ROtating-view Motion-robust supEr-Resolution technique (Romer) combined with a distortion/blurring-free EPTI encoding. Romer enhances SNR by a simultaneous multi-thick-slice acquisition with rotating-view encoding, while providing high motion-robustness through a motion-aware super-resolution reconstruction, which also incorporates slice-profile and real-value diffusion, to resolve high-isotropic-resolution volumes. The in-plane encoding is performed using distortion/blurring-free EPTI, which further improves effective spatial resolution and motion robustness by preventing not only T2/T2*-blurring but also additional blurring resulting from combining encoded volumes with inconsistent geometries caused by dynamic distortions. Self-navigation was incorporated to enable efficient phase correction. Additional developments include strategies to address slab-boundary artifacts, achieve minimal TE for SNR gain at 7T, and achieve high robustness to strong phase variations at high b-values. Results Using Romer-EPTI, we demonstrate distortion-free whole-brain mesoscale in-vivo dMRI at both 3T (500-μm-iso) and 7T (485-μm-iso) for the first time, with high SNR efficiency (e.g., 25 × ), and high image quality free from distortion and slab-boundary artifacts with minimal blurring. Motion experiments demonstrate Romer-EPTI's high motion-robustness and ability to recover sharp images in the presence of motion. Romer-EPTI also demonstrates significant SNR gain and robustness in high b-value (b=5000s/mm2) and time-dependent dMRI. Conclusion Romer-EPTI significantly improves SNR, motion-robustness, and image quality, providing a highly efficient acquisition for high-resolution dMRI and microstructure imaging.
Collapse
Affiliation(s)
- Zijing Dong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Timothy G. Reese
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hong-Hsi Lee
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Susie Y. Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Jonathan R. Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Lawrence L. Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Lee HH, Tian Q, Sheft M, Coronado-Leija R, Ramos-Llorden G, Abdollahzadeh A, Fieremans E, Novikov DS, Huang SY. The effects of axonal beading and undulation on axonal diameter estimation from diffusion MRI: Insights from simulations in human axons segmented from three-dimensional electron microscopy. NMR IN BIOMEDICINE 2024; 37:e5087. [PMID: 38168082 PMCID: PMC10942763 DOI: 10.1002/nbm.5087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024]
Abstract
The increasing availability of high-performance gradient systems in human MRI scanners has generated great interest in diffusion microstructural imaging applications such as axonal diameter mapping. Practically, sensitivity to axon diameter in diffusion MRI is attained at strong diffusion weightings b , where the deviation from the expected 1 / b scaling in white matter yields a finite transverse diffusivity, which is then translated into an axon diameter estimate. While axons are usually modeled as perfectly straight, impermeable cylinders, local variations in diameter (caliber variation or beading) and direction (undulation) are known to influence axonal diameter estimates and have been observed in microscopy data of human axons. In this study, we performed Monte Carlo simulations of diffusion in axons reconstructed from three-dimensional electron microscopy of a human temporal lobe specimen using simulated sequence parameters matched to the maximal gradient strength of the next-generation Connectome 2.0 human MRI scanner ( ≲ 500 mT/m). We show that axon diameter estimation is accurate for nonbeaded, nonundulating fibers; however, in fibers with caliber variations and undulations, the axon diameter is heavily underestimated due to caliber variations, and this effect overshadows the known overestimation of the axon diameter due to undulations. This unexpected underestimation may originate from variations in the coarse-grained axial diffusivity due to caliber variations. Given that increased axonal beading and undulations have been observed in pathological tissues, such as traumatic brain injury and ischemia, the interpretation of axon diameter alterations in pathology may be significantly confounded.
Collapse
Affiliation(s)
- Hong-Hsi Lee
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Maxina Sheft
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard–MIT Health Sciences and Technology, Cambridge, Massachusetts, USA
| | - Ricardo Coronado-Leija
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York, USA
| | - Gabriel Ramos-Llorden
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Ali Abdollahzadeh
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York, USA
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York, USA
| | - Dmitry S. Novikov
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York, USA
| | - Susie Y. Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Gharaylou Z, Shahbodaghy F, Kolivand P, Kolivand M, Azizzadeh F, Rostampour M. Reduced White Matter Fiber Density in Patients with Multiple Sclerosis. Brain Connect 2024; 14:172-181. [PMID: 38308478 DOI: 10.1089/brain.2023.0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024] Open
Abstract
Introduction: Improved understanding of multiple sclerosis (MS) symptomatology, disease mechanisms, and clinical effectiveness can be achieved by investigating microstructural damage. The aim was to gain deeper insights into changes in white matter (WM) tracts in MS patients. Methods: Diffusion magnetic resonance imaging-based tractography was utilized to segment WM tracts into regions of interest for further quantitative analysis. However, tractography is susceptible to false-positive findings, reducing its specificity and clinical feasibility. To address these limitations, the Convex Optimization Modeling for Microstructure Informed Tractography (COMMIT) technique was used. COMMIT was used to derive measures of intracellular compartment (IC) and isotropic compartments from multishell diffusion data of 40 healthy controls (HCs) and 40 MS patients. Results: The analysis revealed a widespread pattern of significantly decreased IC values in MS patients compared with HCs across 61,581 voxels (pFWE < 0.05, threshold-free cluster enhancement [TFCE] corrected). Similar WM structures studied using the fractional anisotropy (FA) value also showed a reduction in FA among MS patients compared with HCs across 57,304 voxels (pFWE < 0.05, TFCE corrected). Out of the 61,581 voxels exhibiting lower IC, a substantial overlap of 47,251 voxels (76.72%) also demonstrated lower FA in MS patients compared with HCs. Discussion: The data suggested that lower IC values contributed to the explanation of FA reductions. In addition, IC showed promising potential for evaluating microstructural abnormalities in WM in MS, potentially being more sensitive than the frequently used FA value.
Collapse
Affiliation(s)
| | - Fatemeh Shahbodaghy
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Pirhossein Kolivand
- Department of Health Economics, School of Medicine, Shahed University, Tehran, Iran
| | - Maryam Kolivand
- Medical School, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Azizzadeh
- Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Rostampour
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
16
|
Stowe NA, Singh AP, Barnett BR, Yi SY, Frautschi PC, Messing A, Hagemann TL, Yu JPJ. Quantitative diffusion imaging and genotype-by-sex interactions in a rat model of Alexander disease. Magn Reson Med 2024; 91:1087-1098. [PMID: 37946544 PMCID: PMC10842025 DOI: 10.1002/mrm.29917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/02/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
PURPOSE The clinical diagnosis and classification of Alexander disease (AxD) relies in part on qualitative neuroimaging biomarkers; however, these biomarkers fail to distinguish and discriminate different subtypes of AxD, especially in the presence of overlap in clinical symptoms. To address this gap in knowledge, we applied neurite orientation dispersion and density imaging (NODDI) to an innovative CRISPR-Cas9 rat genetic model of AxD to gain quantitative insights into the neural substrates and brain microstructural changes seen in AxD and to potentially identify novel quantitative NODDI biomarkers of AxD. METHODS Multi-shell DWI of age- and sex-matched AxD and wild-type Sprague Dawley rats (n = 6 per sex per genotype) was performed and DTI and NODDI measures calculated. A 3 × 2 × 2 analysis of variance model was used to determine the effect of genotype, biological sex, and laterality on quantitative measures of DTI and NODDI across regions of interest implicated in AxD. RESULTS There is a significant effect of genotype in the amygdala, hippocampus, neocortex, and thalamus in measures of both DTI and NODDI brain microstructure. A genotype by biological sex interaction was identified in DTI and NODDI measures in the corpus callosum, hippocampus, and neocortex. CONCLUSION We present the first application of NODDI to the study of AxD using a rat genetic model of AxD. Our analysis identifies alterations in NODDI and DTI measures to large white matter tracts and subcortical gray nuclei. We further identified genotype by sex interactions, suggesting a possible role for biological sex in the neuropathogenesis of AxD.
Collapse
Affiliation(s)
- Nicholas A Stowe
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Ajay P Singh
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Brian R Barnett
- Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sue Y Yi
- Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Paloma C Frautschi
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Albee Messing
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Tracy L Hagemann
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - John-Paul J Yu
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
17
|
Papazoglou S, Ashtarayeh M, Oeschger JM, Callaghan MF, Does MD, Mohammadi S. Insights and improvements in correspondence between axonal volume fraction measured with diffusion-weighted MRI and electron microscopy. NMR IN BIOMEDICINE 2024; 37:e5070. [PMID: 38098204 PMCID: PMC11475374 DOI: 10.1002/nbm.5070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 09/25/2023] [Accepted: 10/19/2023] [Indexed: 02/17/2024]
Abstract
Biophysical diffusion-weighted imaging (DWI) models are increasingly used in neuroscience to estimate the axonal water fraction (f AW ), which in turn is key for noninvasive estimation of the axonal volume fraction (f A ). These models require thorough validation by comparison with a reference method, for example, electron microscopy (EM). While EM studies often neglect the unmyelinated axons and solely report the fraction of myelinated axons, in DWI both myelinated and unmyelinated axons contribute to the DWI signal. However, DWI models often include simplifications, for example, the neglect of differences in the compartmental relaxation times or fixed diffusivities, which in turn might affect the estimation off AW . We investigate whether linear calibration parameters (scaling and offset) can improve the comparability between EM- and DWI-based metrics off A . To this end, we (a) used six DWI models based on the so-called standard model of white matter (WM), including two models with fixed compartmental diffusivities (e.g., neurite orientation dispersion and density imaging, NODDI) and four models that fitted the compartmental diffusivities (e.g., white matter tract integrity, WMTI), and (b) used a multimodal data set including ex vivo diffusion DWI and EM data in mice with a broad dynamic range of fibre volume metrics. We demonstrated that the offset is associated with the volume fraction of unmyelinated axons and the scaling factor is associated with different compartmentalT 2 and can substantially enhance the comparability between EM- and DWI-based metrics off A . We found that DWI models that fitted compartmental diffusivities provided the most accurate estimates of the EM-basedf A . Finally, we introduced a more efficient hybrid calibration approach, where only the offset is estimated but the scaling is fixed to a theoretically predicted value. Using this approach, a similar one-to-one correspondence to EM was achieved for WMTI. The method presented can pave the way for use of validated DWI-based models in clinical research and neuroscience.
Collapse
Affiliation(s)
- Sebastian Papazoglou
- Department of Systems NeuroscienceUniversity Medical Center Hamburg–EppendorfHamburgGermany
- Max Planck Research Group MR PhysicsMax Planck Institute for Human DevelopmentBerlinGermany
| | - Mohammad Ashtarayeh
- Department of Systems NeuroscienceUniversity Medical Center Hamburg–EppendorfHamburgGermany
| | - Jan Malte Oeschger
- Department of Systems NeuroscienceUniversity Medical Center Hamburg–EppendorfHamburgGermany
| | - Martina F. Callaghan
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Mark D. Does
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTennesseeUSA
- Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Electrical EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Siawoosh Mohammadi
- Department of Systems NeuroscienceUniversity Medical Center Hamburg–EppendorfHamburgGermany
- Max Planck Research Group MR PhysicsMax Planck Institute for Human DevelopmentBerlinGermany
- Department of NeurophysicsMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| |
Collapse
|
18
|
Cerdán Cerdá A, Toschi N, Treaba CA, Barletta V, Herranz E, Mehndiratta A, Gomez-Sanchez JA, Mainero C, De Santis S. A translational MRI approach to validate acute axonal damage detection as an early event in multiple sclerosis. eLife 2024; 13:e79169. [PMID: 38192199 PMCID: PMC10776086 DOI: 10.7554/elife.79169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/05/2023] [Indexed: 01/10/2024] Open
Abstract
Axonal degeneration is a central pathological feature of multiple sclerosis and is closely associated with irreversible clinical disability. Current noninvasive methods to detect axonal damage in vivo are limited in their specificity and clinical applicability, and by the lack of proper validation. We aimed to validate an MRI framework based on multicompartment modeling of the diffusion signal (AxCaliber) in rats in the presence of axonal pathology, achieved through injection of a neurotoxin damaging the neuronal terminal of axons. We then applied the same MRI protocol to map axonal integrity in the brain of multiple sclerosis relapsing-remitting patients and age-matched healthy controls. AxCaliber is sensitive to acute axonal damage in rats, as demonstrated by a significant increase in the mean axonal caliber along the targeted tract, which correlated with neurofilament staining. Electron microscopy confirmed that increased mean axonal diameter is associated with acute axonal pathology. In humans with multiple sclerosis, we uncovered a diffuse increase in mean axonal caliber in most areas of the normal-appearing white matter, preferentially affecting patients with short disease duration. Our results demonstrate that MRI-based axonal diameter mapping is a sensitive and specific imaging biomarker that links noninvasive imaging contrasts with the underlying biological substrate, uncovering generalized axonal damage in multiple sclerosis as an early event.
Collapse
Affiliation(s)
| | - Nicola Toschi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
- Department of Biomedicine and Prevention, University of Rome Tor VergataRomeItaly
| | - Constantina A Treaba
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Valeria Barletta
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Elena Herranz
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Ambica Mehndiratta
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Jose A Gomez-Sanchez
- Instituto de Neurociencias de Alicante, CSIC-UMHSan Juan de AlicanteSpain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL)AlicanteSpain
- Millennium Nucleus for the Study of Pain (MiNuSPain)SantiagoChile
| | - Caterina Mainero
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Silvia De Santis
- Instituto de Neurociencias de Alicante, CSIC-UMHSan Juan de AlicanteSpain
| |
Collapse
|
19
|
Harms RL, Fritz FJ, Schoenmakers S, Roebroeck A. Fast and robust quantification of uncertainty in non-linear diffusion MRI models. Neuroimage 2024; 285:120496. [PMID: 38101495 DOI: 10.1016/j.neuroimage.2023.120496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023] Open
Abstract
Diffusion MRI (dMRI) allows for non-invasive investigation of brain tissue microstructure. By fitting a model to the dMRI signal, various quantitative measures can be derived from the data, such as fractional anisotropy, neurite density and axonal radii maps. We investigate the Fisher Information Matrix (FIM) and uncertainty propagation as a generally applicable method for quantifying the parameter uncertainties in linear and non-linear diffusion MRI models. In direct comparison with Markov Chain Monte Carlo (MCMC) sampling, the FIM produces similar uncertainty estimates at much lower computational cost. Using acquired and simulated data, we then list several characteristics that influence the parameter variances, including data complexity and signal-to-noise ratio. For practical purposes we investigate a possible use of uncertainty estimates in decreasing intra-group variance in group statistics by uncertainty-weighted group estimates. This has potential use cases for detection and suppression of imaging artifacts.
Collapse
Affiliation(s)
- R L Harms
- Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, The Netherlands.
| | - F J Fritz
- Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, The Netherlands
| | - S Schoenmakers
- Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, The Netherlands
| | - A Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, The Netherlands.
| |
Collapse
|
20
|
Nelson MC, Royer J, Lu WD, Leppert IR, Campbell JSW, Schiavi S, Jin H, Tavakol S, Vos de Wael R, Rodriguez-Cruces R, Pike GB, Bernhardt BC, Daducci A, Misic B, Tardif CL. The human brain connectome weighted by the myelin content and total intra-axonal cross-sectional area of white matter tracts. Netw Neurosci 2023; 7:1363-1388. [PMID: 38144691 PMCID: PMC10697181 DOI: 10.1162/netn_a_00330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/19/2023] [Indexed: 12/26/2023] Open
Abstract
A central goal in neuroscience is the development of a comprehensive mapping between structural and functional brain features, which facilitates mechanistic interpretation of brain function. However, the interpretability of structure-function brain models remains limited by a lack of biological detail. Here, we characterize human structural brain networks weighted by multiple white matter microstructural features including total intra-axonal cross-sectional area and myelin content. We report edge-weight-dependent spatial distributions, variance, small-worldness, rich club, hubs, as well as relationships with function, edge length, and myelin. Contrasting networks weighted by the total intra-axonal cross-sectional area and myelin content of white matter tracts, we find opposite relationships with functional connectivity, an edge-length-independent inverse relationship with each other, and the lack of a canonical rich club in myelin-weighted networks. When controlling for edge length, networks weighted by either fractional anisotropy, radial diffusivity, or neurite density show no relationship with whole-brain functional connectivity. We conclude that the co-utilization of structural networks weighted by total intra-axonal cross-sectional area and myelin content could improve our understanding of the mechanisms mediating the structure-function brain relationship.
Collapse
Affiliation(s)
- Mark C. Nelson
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Jessica Royer
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Wen Da Lu
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Ilana R. Leppert
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Jennifer S. W. Campbell
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Simona Schiavi
- Department of Computer Science, University of Verona, Verona, Italy
| | - Hyerang Jin
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Shahin Tavakol
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Reinder Vos de Wael
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Raul Rodriguez-Cruces
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - G. Bruce Pike
- Hotchkiss Brain Institute and Departments of Radiology and Clinical Neuroscience, University of Calgary, Calgary, Canada
| | - Boris C. Bernhardt
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | | | - Bratislav Misic
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Christine L. Tardif
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
21
|
Vinh To X, Kurniawan ND, Cumming P, Nasrallah FA. A cross-comparative analysis of in vivo versus ex vivo MRI indices in a mouse model of concussion. Brain Res 2023; 1820:148562. [PMID: 37673379 DOI: 10.1016/j.brainres.2023.148562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/01/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND We present a cross-sectional, case-matched, and pair-wise comparison of structural magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), and neurite orientation dispersion and density imaging (NODDI) measures in vivo and ex vivo in a mouse model of concussion, thus aiming to establish the concordance of structural and diffusion imaging findings in living brain and after fixation. METHODS We allocated 28 male mice aged 3-4 months to sham injury and concussion (CON) groups. CON mice had received a single concussive impact on day 0 and underwent MRI at day 2 (n = 9) or 7 (n = 10) post-impact, and sham control mice likewise underwent imaging at day 2 (n = 5) or 7 (n = 4). Immediately after the final scanning, we collected the perfusion-fixed brains, which were stored for imaging ex vivo 6-12 months later. We then compared the structural imaging, DTI, and NODDI results between different methods. RESULTS In vivo to ex vivo structural and DTI/NODDI findings were in notably poor agreement regarding the effects of concussion on structural integrity of the brain. COMPARISON WITH EXISTING METHODS ex vivo imaging was frequently done to study the effects of diseases and treatments, but our results showed that ex vivo and in vivo imaging can detect completely opposite and contradictory results. This is also the first study that compares in vivo and ex vivo NODDI. CONCLUSION Our findings call for caution in extrapolating translational capabilities obtained ex vivo to physiological measurements in vivo. The divergent findings may reflect fixation artefacts and the contribution of the glymphatic system changes.
Collapse
Affiliation(s)
- Xuan Vinh To
- The Queensland Brain Institute, The University of Queensland, Australia
| | | | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland; School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia
| | - Fatima A Nasrallah
- The Queensland Brain Institute, The University of Queensland, Australia; Centre for Advanced Imaging, The University of Queensland, Australia.
| |
Collapse
|
22
|
Bazinet V, Hansen JY, Misic B. Towards a biologically annotated brain connectome. Nat Rev Neurosci 2023; 24:747-760. [PMID: 37848663 DOI: 10.1038/s41583-023-00752-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
The brain is a network of interleaved neural circuits. In modern connectomics, brain connectivity is typically encoded as a network of nodes and edges, abstracting away the rich biological detail of local neuronal populations. Yet biological annotations for network nodes - such as gene expression, cytoarchitecture, neurotransmitter receptors or intrinsic dynamics - can be readily measured and overlaid on network models. Here we review how connectomes can be represented and analysed as annotated networks. Annotated connectomes allow us to reconceptualize architectural features of networks and to relate the connection patterns of brain regions to their underlying biology. Emerging work demonstrates that annotated connectomes help to make more veridical models of brain network formation, neural dynamics and disease propagation. Finally, annotations can be used to infer entirely new inter-regional relationships and to construct new types of network that complement existing connectome representations. In summary, biologically annotated connectomes offer a compelling way to study neural wiring in concert with local biological features.
Collapse
Affiliation(s)
- Vincent Bazinet
- Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Justine Y Hansen
- Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
23
|
Chakwizira A, Zhu A, Foo T, Westin CF, Szczepankiewicz F, Nilsson M. Diffusion MRI with free gradient waveforms on a high-performance gradient system: Probing restriction and exchange in the human brain. Neuroimage 2023; 283:120409. [PMID: 37839729 DOI: 10.1016/j.neuroimage.2023.120409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/29/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023] Open
Abstract
The dependence of the diffusion MRI signal on the diffusion time carries signatures of restricted diffusion and exchange. Here we seek to highlight these signatures in the human brain by performing experiments using free gradient waveforms designed to be selectively sensitive to the two effects. We examine six healthy volunteers using both strong and ultra-strong gradients (80, 200 and 300 mT/m). In an experiment featuring a large set of 150 gradient waveforms with different sensitivities to restricted diffusion and exchange, our results reveal unique and different time-dependence signatures in grey and white matter. Grey matter was characterised by both restricted diffusion and exchange and white matter predominantly by restricted diffusion. Exchange in grey matter was at least twice as fast as in white matter, across all subjects and all gradient strengths. The cerebellar cortex featured relatively short exchange times (115 ms). Furthermore, we show that gradient waveforms with tailored designs can be used to map exchange in the human brain. We also assessed the feasibility of clinical applications of the method used in this work and found that the exchange-related contrast obtained with a 25-minute protocol at 300 mT/m was preserved in a 4-minute protocol at 300 mT/m and a 10-minute protocol at 80 mT/m. Our work underlines the utility of free waveforms for detecting time dependence signatures due to restricted diffusion and exchange in vivo, which may potentially serve as a tool for studying diseased tissue.
Collapse
Affiliation(s)
- Arthur Chakwizira
- Department of Medical Radiation Physics, Clinical Sciences Lund, Lund University, Lund, Sweden.
| | - Ante Zhu
- GE Research, Niskayuna, New York, United States
| | - Thomas Foo
- GE Research, Niskayuna, New York, United States
| | - Carl-Fredrik Westin
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Filip Szczepankiewicz
- Department of Medical Radiation Physics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Markus Nilsson
- Department of Clinical Sciences Lund, Radiology, Lund University, Lund, Sweden; Department of Radiology, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
24
|
Rostampour M, Gharaylou Z, Rostampour A, Shahbodaghy F, Zarei M, Fadaei R, Khazaie H. Study of structural network connectivity using DTI tractography in insomnia disorder. Psychiatry Res Neuroimaging 2023; 336:111730. [PMID: 37944426 DOI: 10.1016/j.pscychresns.2023.111730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023]
Abstract
Most of tractography studies on insomnia disorder (ID) have reported decreased structural connectivity between cortical and subcortical structures. Tractography based on standard diffusion tensor imaging (DTI) can generate high number of false-positive streamlines connections between gray matter regions. In the present study, we employed the convex optimization modeling for microstructure informed tractography-2 (COMMIT2) to improve the accuracy of the reconstructed whole-brain connectome and filter implausible brain connections in 28 patients with ID and compared with 27 healthy controls. Then, we used NBS-predict (a prediction-based extension to the network-based statistic method) in the COMMIT2-weighted connectome. Our results revealed decreased structural connectivity between subregions of the left somatomotor, ventral attention, frontoparietal, dorsal attention and default mode networks in the insomnia group. Moreover, there is a negative correlation between sleep efficiency and structural connectivity within the left frontoparietal, visual, default mode network, limbic, dorsal attention, right dorsal attention as well as right default mode networks. By comparing with standard connectivity analysis, we showed that by removing of false-positive streamlines connections after COMMIT2 filtering, abnormal structural connectivity was reduced in patients with ID compared to controls. Our results demonstrate the importance of improving the accuracy of tractography for understanding structural connectivity networks in ID.
Collapse
Affiliation(s)
- Masoumeh Rostampour
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Ali Rostampour
- Department of Computer Engineering and Information Technology, Payame Noor University, Tehran, Iran
| | - Fatemeh Shahbodaghy
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Mojtaba Zarei
- Department of Neurology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
| | - Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Habibolah Khazaie
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
25
|
Fang C, Yang Z, Wassermann D, Li JR. A simulation-driven supervised learning framework to estimate brain microstructure using diffusion MRI. Med Image Anal 2023; 90:102979. [PMID: 37827109 DOI: 10.1016/j.media.2023.102979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023]
Abstract
We propose a framework to train supervised learning models on synthetic data to estimate brain microstructure parameters using diffusion magnetic resonance imaging (dMRI). Although further validation is necessary, the proposed framework aims to seamlessly incorporate realistic simulations into dMRI microstructure estimation. Synthetic data were generated from over 1,000 neuron meshes converted from digital neuronal reconstructions and linked to their neuroanatomical parameters (such as soma volume and neurite length) using an optimized diffusion MRI simulator that produces intracellular dMRI signals from the solution of the Bloch-Torrey partial differential equation. By combining random subsets of simulated neuron signals with a free diffusion compartment signal, we constructed a synthetic dataset containing dMRI signals and 40 tissue microstructure parameters of 1.45 million artificial brain voxels. To implement supervised learning models we chose multilayer perceptrons (MLPs) and trained them on a subset of the synthetic dataset to estimate some microstructure parameters, namely, the volume fractions of soma, neurites, and the free diffusion compartment, as well as the area fractions of soma and neurites. The trained MLPs perform satisfactorily on the synthetic test sets and give promising in-vivo parameter maps on the MGH Connectome Diffusion Microstructure Dataset (CDMD). Most importantly, the estimated volume fractions showed low dependence on the diffusion time, the diffusion time independence of the estimated parameters being a desired property of quantitative microstructure imaging. The synthetic dataset we generated will be valuable for the validation of models that map between the dMRI signals and microstructure parameters. The surface meshes and microstructures parameters of the aforementioned neurons have been made publicly available.
Collapse
Affiliation(s)
- Chengran Fang
- INRIA Saclay, Equipe IDEFIX, UMA, ENSTA Paris, 828, Boulevard des Maréchaux, 91762 Palaiseau, France; INRIA Saclay, Equipe MIND, 1 Rue Honoré d'Estienne d'Orves, 91120 Palaiseau, France
| | - Zheyi Yang
- INRIA Saclay, Equipe IDEFIX, UMA, ENSTA Paris, 828, Boulevard des Maréchaux, 91762 Palaiseau, France
| | - Demian Wassermann
- INRIA Saclay, Equipe MIND, 1 Rue Honoré d'Estienne d'Orves, 91120 Palaiseau, France
| | - Jing-Rebecca Li
- INRIA Saclay, Equipe IDEFIX, UMA, ENSTA Paris, 828, Boulevard des Maréchaux, 91762 Palaiseau, France.
| |
Collapse
|
26
|
Lampinen B, Szczepankiewicz F, Lätt J, Knutsson L, Mårtensson J, Björkman-Burtscher IM, van Westen D, Sundgren PC, Ståhlberg F, Nilsson M. Probing brain tissue microstructure with MRI: principles, challenges, and the role of multidimensional diffusion-relaxation encoding. Neuroimage 2023; 282:120338. [PMID: 37598814 DOI: 10.1016/j.neuroimage.2023.120338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/30/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023] Open
Abstract
Diffusion MRI uses the random displacement of water molecules to sensitize the signal to brain microstructure and to properties such as the density and shape of cells. Microstructure modeling techniques aim to estimate these properties from acquired data by separating the signal between virtual tissue 'compartments' such as the intra-neurite and the extra-cellular space. A key challenge is that the diffusion MRI signal is relatively featureless compared with the complexity of brain tissue. Another challenge is that the tissue microstructure is wildly different within the gray and white matter of the brain. In this review, we use results from multidimensional diffusion encoding techniques to discuss these challenges and their tentative solutions. Multidimensional encoding increases the information content of the data by varying not only the b-value and the encoding direction but also additional experimental parameters such as the shape of the b-tensor and the echo time. Three main insights have emerged from such encoding. First, multidimensional data contradict common model assumptions on diffusion and T2 relaxation, and illustrates how the use of these assumptions cause erroneous interpretations in both healthy brain and pathology. Second, many model assumptions can be dispensed with if data are acquired with multidimensional encoding. The necessary data can be easily acquired in vivo using protocols optimized to minimize Cramér-Rao lower bounds. Third, microscopic diffusion anisotropy reflects the presence of axons but not dendrites. This insight stands in contrast to current 'neurite models' of brain tissue, which assume that axons in white matter and dendrites in gray matter feature highly similar diffusion. Nevertheless, as an axon-based contrast, microscopic anisotropy can differentiate gray and white matter when myelin alterations confound conventional MRI contrasts.
Collapse
Affiliation(s)
- Björn Lampinen
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden.
| | | | - Jimmy Lätt
- Department of Medical Imaging and Physiology, Skåne University Hospital Lund, Lund, Sweden
| | - Linda Knutsson
- Clinical Sciences Lund, Medical Radiation Physics, Lund University, Lund, Sweden; Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Johan Mårtensson
- Clinical Sciences Lund, Logopedics, Phoniatrics and Audiology, Lund University, Lund, Sweden
| | - Isabella M Björkman-Burtscher
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Danielle van Westen
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden; Department of Medical Imaging and Physiology, Skåne University Hospital Lund, Lund, Sweden
| | - Pia C Sundgren
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden; Department of Medical Imaging and Physiology, Skåne University Hospital Lund, Lund, Sweden; Lund University BioImaging Centre (LBIC), Lund University, Lund, Sweden
| | - Freddy Ståhlberg
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden; Clinical Sciences Lund, Medical Radiation Physics, Lund University, Lund, Sweden
| | - Markus Nilsson
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden
| |
Collapse
|
27
|
Huynh KM, Wu Y, Ahmad S, Yap PT. Microstructure Fingerprinting for Heterogeneously Oriented Tissue Microenvironments. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2023; 14227:131-141. [PMID: 39129859 PMCID: PMC11315459 DOI: 10.1007/978-3-031-43993-3_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Most diffusion biophysical models capture basic properties of tissue microstructure, such as diffusivity and anisotropy. More realistic models that relate the diffusion-weighted signal to cell size and membrane permeability often require simplifying assumptions such as short gradient pulse and Gaussian phase distribution, leading to tissue features that are not necessarily quantitative. Here, we propose a method to quantify tissue microstructure without jeopardizing accuracy owing to unrealistic assumptions. Our method utilizes realistic signals simulated from the geometries of cellular microenvironments as fingerprints, which are then employed in a spherical mean estimation framework to disentangle the effects of orientation dispersion from microscopic tissue properties. We demonstrate the efficacy of microstructure fingerprinting in estimating intra-cellular, extra-cellular, and intra-soma volume fractions as well as axon radius, soma radius, and membrane permeability.
Collapse
Affiliation(s)
- Khoi Minh Huynh
- Department of Radiology, University of North Carolina, Chapel Hill, USA
- Biomedical Research Imaging Center (BRIC), University of North Carolina, Chapel Hill, USA
| | - Ye Wu
- Department of Radiology, University of North Carolina, Chapel Hill, USA
- Biomedical Research Imaging Center (BRIC), University of North Carolina, Chapel Hill, USA
| | - Sahar Ahmad
- Department of Radiology, University of North Carolina, Chapel Hill, USA
- Biomedical Research Imaging Center (BRIC), University of North Carolina, Chapel Hill, USA
| | - Pew-Thian Yap
- Department of Radiology, University of North Carolina, Chapel Hill, USA
- Biomedical Research Imaging Center (BRIC), University of North Carolina, Chapel Hill, USA
| |
Collapse
|
28
|
Oliveira R, De Lucia M, Lutti A. Single-subject electroencephalography measurement of interhemispheric transfer time for the in-vivo estimation of axonal morphology. Hum Brain Mapp 2023; 44:4859-4874. [PMID: 37470446 PMCID: PMC10472916 DOI: 10.1002/hbm.26420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/21/2023] Open
Abstract
Assessing axonal morphology in vivo opens new avenues for the combined study of brain structure and function. A novel approach has recently been introduced to estimate the morphology of axonal fibers from the combination of magnetic resonance imaging (MRI) data and electroencephalography (EEG) measures of the interhemispheric transfer time (IHTT). In the original study, the IHTT measures were computed from EEG data averaged across a group, leading to bias of the axonal morphology estimates. Here, we seek to estimate axonal morphology from individual measures of IHTT, obtained from EEG data acquired in a visual evoked potential experiment. Subject-specific IHTTs are computed in a data-driven framework with minimal a priori constraints, based on the maximal peak of neural responses to visual stimuli within periods of statistically significant evoked activity in the inverse solution space. The subject-specific IHTT estimates ranged from 8 to 29 ms except for one participant and the between-session variability was comparable to between-subject variability. The mean radius of the axonal radius distribution, computed from the IHTT estimates and the MRI data, ranged from 0 to 1.09 μm across subjects. The change in axonal g-ratio with axonal radius ranged from 0.62 to 0.81 μm-α . The single-subject measurement of the IHTT yields estimates of axonal morphology that are consistent with histological values. However, improvement of the repeatability of the IHTT estimates is required to improve the specificity of the single-subject axonal morphology estimates.
Collapse
Affiliation(s)
- Rita Oliveira
- Laboratory for Research in Neuroimaging, Department of Clinical NeuroscienceLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Marzia De Lucia
- Laboratory for Research in Neuroimaging, Department of Clinical NeuroscienceLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Antoine Lutti
- Laboratory for Research in Neuroimaging, Department of Clinical NeuroscienceLausanne University Hospital and University of LausanneLausanneSwitzerland
| |
Collapse
|
29
|
Girard G, Rafael-Patiño J, Truffet R, Aydogan DB, Adluru N, Nair VA, Prabhakaran V, Bendlin BB, Alexander AL, Bosticardo S, Gabusi I, Ocampo-Pineda M, Battocchio M, Piskorova Z, Bontempi P, Schiavi S, Daducci A, Stafiej A, Ciupek D, Bogusz F, Pieciak T, Frigo M, Sedlar S, Deslauriers-Gauthier S, Kojčić I, Zucchelli M, Laghrissi H, Ji Y, Deriche R, Schilling KG, Landman BA, Cacciola A, Basile GA, Bertino S, Newlin N, Kanakaraj P, Rheault F, Filipiak P, Shepherd TM, Lin YC, Placantonakis DG, Boada FE, Baete SH, Hernández-Gutiérrez E, Ramírez-Manzanares A, Coronado-Leija R, Stack-Sánchez P, Concha L, Descoteaux M, Mansour L S, Seguin C, Zalesky A, Marshall K, Canales-Rodríguez EJ, Wu Y, Ahmad S, Yap PT, Théberge A, Gagnon F, Massi F, Fischi-Gomez E, Gardier R, Haro JLV, Pizzolato M, Caruyer E, Thiran JP. Tractography passes the test: Results from the diffusion-simulated connectivity (disco) challenge. Neuroimage 2023; 277:120231. [PMID: 37330025 PMCID: PMC10771037 DOI: 10.1016/j.neuroimage.2023.120231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/12/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023] Open
Abstract
Estimating structural connectivity from diffusion-weighted magnetic resonance imaging is a challenging task, partly due to the presence of false-positive connections and the misestimation of connection weights. Building on previous efforts, the MICCAI-CDMRI Diffusion-Simulated Connectivity (DiSCo) challenge was carried out to evaluate state-of-the-art connectivity methods using novel large-scale numerical phantoms. The diffusion signal for the phantoms was obtained from Monte Carlo simulations. The results of the challenge suggest that methods selected by the 14 teams participating in the challenge can provide high correlations between estimated and ground-truth connectivity weights, in complex numerical environments. Additionally, the methods used by the participating teams were able to accurately identify the binary connectivity of the numerical dataset. However, specific false positive and false negative connections were consistently estimated across all methods. Although the challenge dataset doesn't capture the complexity of a real brain, it provided unique data with known macrostructure and microstructure ground-truth properties to facilitate the development of connectivity estimation methods.
Collapse
Affiliation(s)
- Gabriel Girard
- CIBM Center for Biomedical Imaging, Switzerland; Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Jonathan Rafael-Patiño
- Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Raphaël Truffet
- Univ Rennes, Inria, CNRS, Inserm, IRISA UMR 6074, Empenn ERL U-1228, Rennes, France
| | - Dogu Baran Aydogan
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; Department of Psychiatry, Helsinki University Hospital, Helsinki, Finland
| | - Nagesh Adluru
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States; Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Veena A Nair
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Vivek Prabhakaran
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Barbara B Bendlin
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Andrew L Alexander
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States; Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| | - Sara Bosticardo
- Diffusion Imaging and Connectivity Estimation (DICE) Lab, Department of Computer Science, University of Verona, Verona, Italy; Translational Imaging in Neurology (ThINk), Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Ilaria Gabusi
- Diffusion Imaging and Connectivity Estimation (DICE) Lab, Department of Computer Science, University of Verona, Verona, Italy; Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Mario Ocampo-Pineda
- Diffusion Imaging and Connectivity Estimation (DICE) Lab, Department of Computer Science, University of Verona, Verona, Italy
| | - Matteo Battocchio
- Diffusion Imaging and Connectivity Estimation (DICE) Lab, Department of Computer Science, University of Verona, Verona, Italy; Sherbrooke Connectivity Imaging Laboratory (SCIL), Department of Computer Science, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Zuzana Piskorova
- Diffusion Imaging and Connectivity Estimation (DICE) Lab, Department of Computer Science, University of Verona, Verona, Italy; Brno Faculty of Electrical Engineering and Communication, Department of mathematics, University of Technology, Brno, Czech Republic
| | - Pietro Bontempi
- Diffusion Imaging and Connectivity Estimation (DICE) Lab, Department of Computer Science, University of Verona, Verona, Italy
| | - Simona Schiavi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Alessandro Daducci
- Diffusion Imaging and Connectivity Estimation (DICE) Lab, Department of Computer Science, University of Verona, Verona, Italy
| | | | - Dominika Ciupek
- Sano Centre for Computational Personalised Medicine, Kraków, Poland
| | - Fabian Bogusz
- AGH University of Science and Technology, Kraków, Poland
| | - Tomasz Pieciak
- AGH University of Science and Technology, Kraków, Poland; Laboratorio de Procesado de Imagen (LPI), ETSI Telecomunicación, Universidad de Valladolid, Valladolid, Spain
| | - Matteo Frigo
- Athena Project Team, Centre Inria d'Université Côte d'Azur, France
| | - Sara Sedlar
- Athena Project Team, Centre Inria d'Université Côte d'Azur, France
| | | | - Ivana Kojčić
- Athena Project Team, Centre Inria d'Université Côte d'Azur, France
| | - Mauro Zucchelli
- Athena Project Team, Centre Inria d'Université Côte d'Azur, France
| | - Hiba Laghrissi
- Athena Project Team, Centre Inria d'Université Côte d'Azur, France; Institut de Biologie de Valrose, Université Côte d'Azur, Nice, France
| | - Yang Ji
- Athena Project Team, Centre Inria d'Université Côte d'Azur, France
| | - Rachid Deriche
- Athena Project Team, Centre Inria d'Université Côte d'Azur, France
| | - Kurt G Schilling
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Bennett A Landman
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, United States
| | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy; Center for Complex Network Intelligence (CCNI), Tsinghua Laboratory of Brain and Intelligence (THBI), Tsinghua University, Beijing, China; Department of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Gianpaolo Antonio Basile
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Salvatore Bertino
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Nancy Newlin
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, United States
| | - Praitayini Kanakaraj
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, United States
| | - Francois Rheault
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, United States
| | - Patryk Filipiak
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, NYU Langone Health, New York, NY, United States
| | - Timothy M Shepherd
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, NYU Langone Health, New York, NY, United States
| | - Ying-Chia Lin
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, NYU Langone Health, New York, NY, United States
| | - Dimitris G Placantonakis
- Department of Neurosurgery, Perlmutter Cancer Center, Neuroscience Institute, Kimmel Center for Stem Cell Biology, NYU Langone Health, New York, NY, United States
| | - Fernando E Boada
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Steven H Baete
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, NYU Langone Health, New York, NY, United States
| | - Erick Hernández-Gutiérrez
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Department of Computer Science, University of Sherbrooke, Sherbrooke, QC, Canada
| | | | - Ricardo Coronado-Leija
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, NYU Langone Health, New York, NY, United States
| | - Pablo Stack-Sánchez
- Computer Science Department, Centro de Investigación en Matemáticas A.C, Guanajuato, México
| | - Luis Concha
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Department of Computer Science, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Sina Mansour L
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia; Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, Victoria, Australia
| | - Caio Seguin
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, Victoria, Australia; School of Biomedical Engineering, The University of Sydney, Sydney, Australia; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Andrew Zalesky
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia; Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, Victoria, Australia
| | - Kenji Marshall
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; McGill University, Montréal, QC, Canada
| | - Erick J Canales-Rodríguez
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ye Wu
- Department of Radiology and Biomedical Research Imaging Center (BRIC), The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Sahar Ahmad
- Department of Radiology and Biomedical Research Imaging Center (BRIC), The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Pew-Thian Yap
- Department of Radiology and Biomedical Research Imaging Center (BRIC), The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Antoine Théberge
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Department of Computer Science, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Florence Gagnon
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Department of Computer Science, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Frédéric Massi
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Department of Computer Science, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Elda Fischi-Gomez
- CIBM Center for Biomedical Imaging, Switzerland; Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Rémy Gardier
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Juan Luis Villarreal Haro
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Marco Pizzolato
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Emmanuel Caruyer
- Univ Rennes, Inria, CNRS, Inserm, IRISA UMR 6074, Empenn ERL U-1228, Rennes, France
| | - Jean-Philippe Thiran
- CIBM Center for Biomedical Imaging, Switzerland; Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
30
|
Arai T, Kamagata K, Uchida W, Andica C, Takabayashi K, Saito Y, Tuerxun R, Mahemuti Z, Morita Y, Irie R, Kirino E, Aoki S. Reduced neurite density index in the prefrontal cortex of adults with autism assessed using neurite orientation dispersion and density imaging. Front Neurol 2023; 14:1110883. [PMID: 37638188 PMCID: PMC10450631 DOI: 10.3389/fneur.2023.1110883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Background Core symptoms of autism-spectrum disorder (ASD) have been associated with prefrontal cortex abnormalities. However, the mechanisms behind the observation remain incomplete, partially due to the challenges of modeling complex gray matter (GM) structures. This study aimed to identify GM microstructural alterations in adults with ASD using neurite orientation dispersion and density imaging (NODDI) and voxel-wise GM-based spatial statistics (GBSS) to reduce the partial volume effects from the white matter and cerebrospinal fluid. Materials and methods A total of 48 right-handed participants were included, of which 22 had ASD (17 men; mean age, 34.42 ± 8.27 years) and 26 were typically developing (TD) individuals (14 men; mean age, 32.57 ± 9.62 years). The metrics of NODDI (neurite density index [NDI], orientation dispersion index [ODI], and isotropic volume fraction [ISOVF]) were compared between groups using GBSS. Diffusion tensor imaging (DTI) metrics and surface-based cortical thickness were also compared. The associations between magnetic resonance imaging-based measures and ASD-related scores, including ASD-spectrum quotient, empathizing quotient, and systemizing quotient were also assessed in the region of interest (ROI) analysis. Results After controlling for age, sex, and intracranial volume, GBSS demonstrated significantly lower NDI in the ASD group than in the TD group in the left prefrontal cortex (caudal middle frontal, lateral orbitofrontal, pars orbitalis, pars triangularis, rostral middle frontal, and superior frontal region). In the ROI analysis of individuals with ASD, a significantly positive correlation was observed between the NDI in the left rostral middle frontal, superior frontal, and left frontal pole and empathizing quotient score. No significant between-group differences were observed in all DTI metrics, other NODDI (i.e., ODI and ISOVF) metrics, and cortical thickness. Conclusion GBSS analysis was used to demonstrate the ability of NODDI metrics to detect GM microstructural alterations in adults with ASD, while no changes were detected using DTI and cortical thickness evaluation. Specifically, we observed a reduced neurite density index in the left prefrontal cortices associated with reduced empathic abilities.
Collapse
Affiliation(s)
- Takashi Arai
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Koji Kamagata
- Faculty of Health Data Science, Juntendo University, Chiba, Japan
| | - Wataru Uchida
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Christina Andica
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Faculty of Health Data Science, Juntendo University, Chiba, Japan
| | - Kaito Takabayashi
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuya Saito
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Rukeye Tuerxun
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Zaimire Mahemuti
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuichi Morita
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryusuke Irie
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Eiji Kirino
- Department of Psychiatry, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Psychiatry, Juntendo University Shizuoka Hospital, Shizuoka, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
31
|
Barakovic M, Pizzolato M, Tax CMW, Rudrapatna U, Magon S, Dyrby TB, Granziera C, Thiran JP, Jones DK, Canales-Rodríguez EJ. Estimating axon radius using diffusion-relaxation MRI: calibrating a surface-based relaxation model with histology. Front Neurosci 2023; 17:1209521. [PMID: 37638307 PMCID: PMC10457121 DOI: 10.3389/fnins.2023.1209521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Axon radius is a potential biomarker for brain diseases and a crucial tissue microstructure parameter that determines the speed of action potentials. Diffusion MRI (dMRI) allows non-invasive estimation of axon radius, but accurately estimating the radius of axons in the human brain is challenging. Most axons in the brain have a radius below one micrometer, which falls below the sensitivity limit of dMRI signals even when using the most advanced human MRI scanners. Therefore, new MRI methods that are sensitive to small axon radii are needed. In this proof-of-concept investigation, we examine whether a surface-based axonal relaxation process could mediate a relationship between intra-axonal T2 and T1 times and inner axon radius, as measured using postmortem histology. A unique in vivo human diffusion-T1-T2 relaxation dataset was acquired on a 3T MRI scanner with ultra-strong diffusion gradients, using a strong diffusion-weighting (i.e., b = 6,000 s/mm2) and multiple inversion and echo times. A second reduced diffusion-T2 dataset was collected at various echo times to evaluate the model further. The intra-axonal relaxation times were estimated by fitting a diffusion-relaxation model to the orientation-averaged spherical mean signals. Our analysis revealed that the proposed surface-based relaxation model effectively explains the relationship between the estimated relaxation times and the histological axon radius measured in various corpus callosum regions. Using these histological values, we developed a novel calibration approach to predict axon radius in other areas of the corpus callosum. Notably, the predicted radii and those determined from histological measurements were in close agreement.
Collapse
Affiliation(s)
- Muhamed Barakovic
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, United Kingdom
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center, Basel, Switzerland
| | - Marco Pizzolato
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Chantal M. W. Tax
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, United Kingdom
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
| | - Umesh Rudrapatna
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, United Kingdom
| | - Stefano Magon
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center, Basel, Switzerland
| | - Tim B. Dyrby
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jean-Philippe Thiran
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
- Centre d’Imagerie Biomédicale (CIBM), EPFL, Lausanne, Switzerland
| | - Derek K. Jones
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, United Kingdom
| | - Erick J. Canales-Rodríguez
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
32
|
Wu D, Turnbill V, Lee HH, Wang X, Ba R, Walczak P, Martin LJ, Fieremans E, Novikov DS, Northington FJ, Zhang J. In vivo Mapping of Cellular Resolution Neuropathology in Brain Ischemia by Diffusion MRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552374. [PMID: 37609182 PMCID: PMC10441332 DOI: 10.1101/2023.08.08.552374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Non-invasive mapping of cellular pathology can provide critical diagnostic and prognostic information. Recent developments in diffusion MRI have produced new tools for examining tissue microstructure at a level well below the imaging resolution. Here, we report the use of diffusion time ( t )-dependent diffusion kurtosis imaging ( t DKI) to simultaneously assess the morphology and transmembrane permeability of cells and their processes in the context of pathological changes in hypoxic-ischemic brain (HI) injury. Through Monte Carlo simulations and cell culture organoid imaging, we demonstrate feasibility in measuring effective size and permeability changes based on the peak and tail of t DKI curves. In a mouse model of HI, in vivo imaging at 11.7T detects a marked shift of the t DKI peak to longer t in brain edema, suggesting swelling and beading associated with the astrocytic processes and neuronal neurites. Furthermore, we observed a faster decrease of the t DKI tail in injured brain regions, reflecting increased membrane permeability that was associated with upregulated water exchange upon astrocyte activation at acute stage as well as necrosis with disrupted membrane integrity at subacute stage. Such information, unavailable with conventional diffusion MRI at a single t, can predict salvageable tissues. For a proof-of-concept, t DKI at 3T on an ischemic stroke patient suggested increased membrane permeability in the stroke region. This work therefore demonstrates the potential of t DKI for in vivo detection of the pathological changes in microstructural morphology and transmembrane permeability after ischemic injury using a clinically translatable protocol.
Collapse
|
33
|
Kauppinen RA, Thothard J, Leskinen HPP, Pisharady PK, Manninen E, Kettunen M, Lenglet C, Gröhn OHJ, Garwood M, Nissi MJ. Axon fiber orientation as the source of T 1 relaxation anisotropy in white matter: A study on corpus callosum in vivo and ex vivo. Magn Reson Med 2023; 90:708-721. [PMID: 37145027 DOI: 10.1002/mrm.29667] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/22/2023] [Accepted: 03/24/2023] [Indexed: 05/06/2023]
Abstract
PURPOSE Recent studies indicate that T1 in white matter (WM) is influenced by fiber orientation in B0 . The purpose of the study was to investigate the interrelationships between axon fiber orientation in corpus callosum (CC) and T1 relaxation time in humans in vivo as well as in rat brain ex vivo. METHODS Volunteers were scanned for relaxometric and diffusion MRI at 3 T and 7 T. Angular T1 plots from WM were computed using fractional anisotropy and fiber-to-field-angle maps. T1 and fiber-to-field angle were measured in five sections of CC to estimate the effects of inherently varying fiber orientations on T1 within the same tracts in vivo. Ex vivo rat-brain preparation encompassing posterior CC was rotated in B0 and T1 , and diffusion MRI images acquired at 9.4 T. T1 angular plots were determined at several rotation angles in B0 . RESULTS Angular T1 plots from global WM provided reference for estimated fiber orientation-linked T1 changes within CC. In anterior midbody of CC in vivo, where small axons are dominantly present, a shift in axon orientation is accompanied by a change in T1 , matching that estimated from WM T1 data. In CC, where large and giant axons are numerous, the measured T1 change is about 2-fold greater than the estimated one. Ex vivo rotation of the same midsagittal CC region of interest produced angular T1 plots at 9.4 T, matching those observed at 7 T in vivo. CONCLUSION These data causally link axon fiber orientation in B0 to the T1 relaxation anisotropy in WM.
Collapse
Affiliation(s)
- Risto A Kauppinen
- Department of Electric and Electronic Engineering, University of Bristol, Bristol, UK
| | - Jeromy Thothard
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Henri P P Leskinen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Pramod K Pisharady
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Eppu Manninen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Mikko Kettunen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Christophe Lenglet
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Olli H J Gröhn
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Michael Garwood
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mikko J Nissi
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
34
|
Villarreal-Haro JL, Gardier R, Canales-Rodríguez EJ, Fischi-Gomez E, Girard G, Thiran JP, Rafael-Patiño J. CACTUS: a computational framework for generating realistic white matter microstructure substrates. Front Neuroinform 2023; 17:1208073. [PMID: 37603781 PMCID: PMC10434236 DOI: 10.3389/fninf.2023.1208073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/13/2023] [Indexed: 08/23/2023] Open
Abstract
Monte-Carlo diffusion simulations are a powerful tool for validating tissue microstructure models by generating synthetic diffusion-weighted magnetic resonance images (DW-MRI) in controlled environments. This is fundamental for understanding the link between micrometre-scale tissue properties and DW-MRI signals measured at the millimetre-scale, optimizing acquisition protocols to target microstructure properties of interest, and exploring the robustness and accuracy of estimation methods. However, accurate simulations require substrates that reflect the main microstructural features of the studied tissue. To address this challenge, we introduce a novel computational workflow, CACTUS (Computational Axonal Configurator for Tailored and Ultradense Substrates), for generating synthetic white matter substrates. Our approach allows constructing substrates with higher packing density than existing methods, up to 95% intra-axonal volume fraction, and larger voxel sizes of up to 500μm3 with rich fibre complexity. CACTUS generates bundles with angular dispersion, bundle crossings, and variations along the fibres of their inner and outer radii and g-ratio. We achieve this by introducing a novel global cost function and a fibre radial growth approach that allows substrates to match predefined targeted characteristics and mirror those reported in histological studies. CACTUS improves the development of complex synthetic substrates, paving the way for future applications in microstructure imaging.
Collapse
Affiliation(s)
- Juan Luis Villarreal-Haro
- Signal Processing Laboratory (LTS5), École Polytechnique Frale de Lausanne (EPFL), Lausanne, Switzerland
| | - Remy Gardier
- Signal Processing Laboratory (LTS5), École Polytechnique Frale de Lausanne (EPFL), Lausanne, Switzerland
| | - Erick J. Canales-Rodríguez
- Signal Processing Laboratory (LTS5), École Polytechnique Frale de Lausanne (EPFL), Lausanne, Switzerland
| | - Elda Fischi-Gomez
- Signal Processing Laboratory (LTS5), École Polytechnique Frale de Lausanne (EPFL), Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Radiology Department, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Gabriel Girard
- Signal Processing Laboratory (LTS5), École Polytechnique Frale de Lausanne (EPFL), Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Radiology Department, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
- Department of Computer Science, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Philippe Thiran
- Signal Processing Laboratory (LTS5), École Polytechnique Frale de Lausanne (EPFL), Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Radiology Department, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Jonathan Rafael-Patiño
- Signal Processing Laboratory (LTS5), École Polytechnique Frale de Lausanne (EPFL), Lausanne, Switzerland
- Radiology Department, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
35
|
Genc S, Raven EP, Drakesmith M, Blakemore SJ, Jones DK. Novel insights into axon diameter and myelin content in late childhood and adolescence. Cereb Cortex 2023; 33:6435-6448. [PMID: 36610731 PMCID: PMC10183755 DOI: 10.1093/cercor/bhac515] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 01/09/2023] Open
Abstract
White matter microstructural development in late childhood and adolescence is driven predominantly by increasing axon density and myelin thickness. Ex vivo studies suggest that the increase in axon diameter drives developmental increases in axon density observed with pubertal onset. In this cross-sectional study, 50 typically developing participants aged 8-18 years were scanned using an ultra-strong gradient magnetic resonance imaging scanner. Microstructural properties, including apparent axon diameter $({d}_a)$, myelin content, and g-ratio, were estimated in regions of the corpus callosum. We observed age-related differences in ${d}_a$, myelin content, and g-ratio. In early puberty, males had larger ${d}_a$ in the splenium and lower myelin content in the genu and body of the corpus callosum, compared with females. Overall, this work provides novel insights into developmental, pubertal, and cognitive correlates of individual differences in apparent axon diameter and myelin content in the developing human brain.
Collapse
Affiliation(s)
- Sila Genc
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff CF24 4HQ, United Kingdom
| | - Erika P Raven
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff CF24 4HQ, United Kingdom
- Department of Radiology, New York University School of Medicine, 550 1st Ave., New York, NY 10016, United States
| | - Mark Drakesmith
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff CF24 4HQ, United Kingdom
| | - Sarah-Jayne Blakemore
- Department of Psychology, University of Cambridge, Downing Pl, Cambridge CB2 3EB, United Kingdom
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff CF24 4HQ, United Kingdom
| |
Collapse
|
36
|
Wang N, Maharjan S, Tsai AP, Lin PB, Qi Y, Wallace A, Jewett M, Liu F, Landreth GE, Oblak AL. Integrating multimodality magnetic resonance imaging to the Allen Mouse Brain Common Coordinate Framework. NMR IN BIOMEDICINE 2023; 36:e4887. [PMID: 36454009 PMCID: PMC10106385 DOI: 10.1002/nbm.4887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 05/07/2023]
Abstract
High-resolution magnetic resonance imaging (MRI) affords unique image contrasts to nondestructively probe the tissue microstructure; validation of MRI findings with conventional histology is essential to better understand the MRI contrasts. However, the dramatic difference in the spatial resolution and image contrast of these two techniques impedes accurate comparison between MRI metrics and traditional histology. To better validate various MRI metrics, we acquired whole mouse brain multigradient recalled-echo and multishell diffusion MRI datasets at 25-μm isotropic resolution. The recently developed Allen Mouse Brain Common Coordinate Framework (CCFv3) provides opportunities to integrate multimodal and multiscale datasets of the whole mouse brain in a common three-dimensional (3D) space. The T2*, quantitative susceptibility mapping, diffusion tensor imaging, and neurite orientation dispersion and density imaging parameters were compared with both serial two-photon tomography images and 3D Nissl staining images in the CCFv3 at the same spatial resolution. The correlation between MRI and Nissl staining strongly depends on different metrics and different regions of the brain. Integrating different imaging modalities to the same space may substantially improve our understanding of the complexity of the brain at different scales.
Collapse
Affiliation(s)
- Nian Wang
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, Indiana, USA
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, Indiana, USA
| | - Surendra Maharjan
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, Indiana, USA
| | - Andy P. Tsai
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, Indiana, USA
| | - Peter B. Lin
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, Indiana, USA
| | - Yi Qi
- Center for In Vivo Microscopy, Department of Radiology, Duke University, Durham, North Carolina, USA
| | - Abigail Wallace
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, Indiana, USA
| | - Megan Jewett
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, Indiana, USA
| | - Fang Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Gary E. Landreth
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, Indiana, USA
| | - Adrian L. Oblak
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, Indiana, USA
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
37
|
Orset T, Royo J, Santin MD, Pouget P, Thiebaut de Schotten M. A new open, high-resolution, multishell, diffusion-weighted imaging dataset of the living squirrel monkey. Sci Data 2023; 10:224. [PMID: 37081025 PMCID: PMC10119165 DOI: 10.1038/s41597-023-02126-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/31/2023] [Indexed: 04/22/2023] Open
Abstract
Although very well adapted to brain study, Magnetic Resonance Imaging (MRI) remains limited by the facilities and capabilities required to acquire data, especially for non-human primates. Addressing the data gaps resulting from these limitations requires making data more accessible and open. In contempt of the regular use of Saimiri sciureus in neuroscience research, in vivo diffusion has yet to be openly available for this species. Here we built and made openly available a unique new resource consisting of a high-resolution, multishell diffusion-weighted dataset in the anesthetized Saimiri sciureus. The data were acquired on 11 individuals with an 11.7 T MRI scanner (isotropic resolution of 400 µm3). This paper presents an overview of our dataset and illustrates some of its possible use through example analyses. To assess the quality of our data, we analyzed long-range connections (whole-brain tractography), microstructure (Neurite Orientation Dispersion and Density Imaging), and axon diameter in the corpus callosum (ActiveAx). Constituting an essential new resource for primate evolution studies, all data are openly available.
Collapse
Affiliation(s)
- Thomas Orset
- Brain Connectivity and Behaviour Laboratory, Sorbonne University, Paris, France.
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, ICM, Movement Investigation and Therapeutics Team, Paris, France.
| | - Julie Royo
- Brain Connectivity and Behaviour Laboratory, Sorbonne University, Paris, France
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, ICM, Movement Investigation and Therapeutics Team, Paris, France
| | | | - Pierre Pouget
- Brain Connectivity and Behaviour Laboratory, Sorbonne University, Paris, France
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, ICM, Movement Investigation and Therapeutics Team, Paris, France
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Laboratory, Sorbonne University, Paris, France
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| |
Collapse
|
38
|
Lee HH, Tian Q, Sheft M, Coronado-Leija R, Ramos-Llorden G, Abdollahzadeh A, Fieremans E, Novikov DS, Huang SY. The influence of axonal beading and undulation on axonal diameter mapping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537494. [PMID: 37131702 PMCID: PMC10153226 DOI: 10.1101/2023.04.19.537494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We consider the effect of non-cylindrical axonal shape on axonal diameter mapping with diffusion MRI. Practical sensitivity to axon diameter is attained at strong diffusion weightings b , where the deviation from the 1 / b scaling yields the finite transverse diffusivity, which is then translated into axon diameter. While axons are usually modeled as perfectly straight, impermeable cylinders, the local variations in diameter (caliber variation or beading) and direction (undulation) have been observed in microscopy data of human axons. Here we quantify the influence of cellular-level features such as caliber variation and undulation on axon diameter estimation. For that, we simulate the diffusion MRI signal in realistic axons segmented from 3-dimensional electron microscopy of a human brain sample. We then create artificial fibers with the same features and tune the amplitude of their caliber variations and undulations. Numerical simulations of diffusion in fibers with such tunable features show that caliber variations and undulations result in under- and over-estimation of axon diameters, correspondingly; this bias can be as large as 100%. Given that increased axonal beading and undulations have been observed in pathological tissues, such as traumatic brain injury and ischemia, the interpretation of axon diameter alterations in pathology may be significantly confounded.
Collapse
Affiliation(s)
- Hong-Hsi Lee
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129,USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129,USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Maxina Sheft
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129,USA
- Harvard-MIT Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Ricardo Coronado-Leija
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY 10016, USA
| | - Gabriel Ramos-Llorden
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129,USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Ali Abdollahzadeh
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY 10016, USA
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY 10016, USA
| | - Dmitry S. Novikov
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY 10016, USA
| | - Susie Y. Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129,USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
39
|
Warner W, Palombo M, Cruz R, Callaghan R, Shemesh N, Jones DK, Dell'Acqua F, Ianus A, Drobnjak I. Temporal Diffusion Ratio (TDR) for imaging restricted diffusion: Optimisation and pre-clinical demonstration. Neuroimage 2023; 269:119930. [PMID: 36750150 PMCID: PMC7615244 DOI: 10.1016/j.neuroimage.2023.119930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/12/2023] [Accepted: 02/02/2023] [Indexed: 02/07/2023] Open
Abstract
Temporal Diffusion Ratio (TDR) is a recently proposed dMRI technique (Dell'Acqua et al., proc. ISMRM 2019) which provides contrast between areas with restricted diffusion and areas either without restricted diffusion or with length scales too small for characterisation. Hence, it has a potential for informing on pore sizes, in particular the presence of large axon diameters or other cellular structures. TDR employs the signal from two dMRI acquisitions obtained with the same, large, b-value but with different diffusion gradient waveforms. TDR is advantageous as it employs standard acquisition sequences, does not make any assumptions on the underlying tissue structure and does not require any model fitting, avoiding issues related to model degeneracy. This work for the first time introduces and optimises the TDR method in simulation for a range of different tissues and scanner constraints and validates it in a pre-clinical demonstration. We consider both substrates containing cylinders and spherical structures, representing cell soma in tissue. Our results show that contrasting an acquisition with short gradient duration, short diffusion time and high gradient strength with an acquisition with long gradient duration, long diffusion time and low gradient strength, maximises the TDR contrast for a wide range of pore configurations. Additionally, in the presence of Rician noise, computing TDR from a subset (50% or fewer) of the acquired diffusion gradients rather than the entire shell as proposed originally further improves the contrast. In the last part of the work the results are demonstrated experimentally on rat spinal cord. In line with simulations, the experimental data shows that optimised TDR improves the contrast compared to non-optimised TDR. Furthermore, we find a strong correlation between TDR and histology measurements of axon diameter. In conclusion, we find that TDR has great potential and is a very promising alternative (or potentially complement) to model-based approaches for informing on pore sizes and restricted diffusion in general.
Collapse
Affiliation(s)
- William Warner
- Centre for Medical Image Computing (CMIC), Computer Science Department, University College London, United Kingdom
| | - Marco Palombo
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom; School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom
| | - Renata Cruz
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | | | - Noam Shemesh
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Flavio Dell'Acqua
- NatBrainLab, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Andrada Ianus
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal.
| | - Ivana Drobnjak
- Centre for Medical Image Computing (CMIC), Computer Science Department, University College London, United Kingdom.
| |
Collapse
|
40
|
Charvet CJ. Mapping Human Brain Pathways: Challenges and Opportunities in the Integration of Scales. BRAIN, BEHAVIOR AND EVOLUTION 2023; 98:194-209. [PMID: 36972574 PMCID: PMC11310840 DOI: 10.1159/000530317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
The human brain is composed of a complex web of pathways. Diffusion magnetic resonance (MR) tractography is a neuroimaging technique that relies on the principle of diffusion to reconstruct brain pathways. Its tractography is broadly applicable to a range of problems as it is amenable for study in individuals of any age and from any species. However, it is well known that this technique can generate biologically implausible pathways, especially in regions of the brain where multiple fibers cross. This review highlights potential misconnections in two cortico-cortical association pathways with a focus on the aslant tract and inferior frontal occipital fasciculus. The lack of alternative methods to validate observations from diffusion MR tractography means there is a need to develop new integrative approaches to trace human brain pathways. This review discusses integrative approaches in neuroimaging, anatomical, and transcriptional variation as having much potential to trace the evolution of human brain pathways.
Collapse
Affiliation(s)
- Christine J Charvet
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
41
|
Wichtmann BD, Fan Q, Eskandarian L, Witzel T, Attenberger UI, Pieper CC, Schad L, Rosen BR, Wald LL, Huang SY, Nummenmaa A. Linear multi-scale modeling of diffusion MRI data: A framework for characterization of oriented structures across length scales. Hum Brain Mapp 2023; 44:1496-1514. [PMID: 36477997 PMCID: PMC9921225 DOI: 10.1002/hbm.26143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 10/07/2022] [Accepted: 10/23/2022] [Indexed: 12/12/2022] Open
Abstract
Diffusion-weighted magnetic resonance imaging (DW-MRI) has evolved to provide increasingly sophisticated investigations of the human brain's structural connectome in vivo. Restriction spectrum imaging (RSI) is a method that reconstructs the orientation distribution of diffusion within tissues over a range of length scales. In its original formulation, RSI represented the signal as consisting of a spectrum of Gaussian diffusion response functions. Recent technological advances have enabled the use of ultra-high b-values on human MRI scanners, providing higher sensitivity to intracellular water diffusion in the living human brain. To capture the complex diffusion time dependence of the signal within restricted water compartments, we expand upon the RSI approach to represent restricted water compartments with non-Gaussian response functions, in an extended analysis framework called linear multi-scale modeling (LMM). The LMM approach is designed to resolve length scale and orientation-specific information with greater specificity to tissue microstructure in the restricted and hindered compartments, while retaining the advantages of the RSI approach in its implementation as a linear inverse problem. Using multi-shell, multi-diffusion time DW-MRI data acquired with a state-of-the-art 3 T MRI scanner equipped with 300 mT/m gradients, we demonstrate the ability of the LMM approach to distinguish different anatomical structures in the human brain and the potential to advance mapping of the human connectome through joint estimation of the fiber orientation distributions and compartment size characteristics.
Collapse
Affiliation(s)
- Barbara D. Wichtmann
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General HospitalCharlestownMassachusettsUSA
- Department of Diagnostic and Interventional RadiologyUniversity Hospital BonnBonnGermany
| | - Qiuyun Fan
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General HospitalCharlestownMassachusettsUSA
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics EngineeringTianjin UniversityTianjinChina
| | - Laleh Eskandarian
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General HospitalCharlestownMassachusettsUSA
| | | | - Ulrike I. Attenberger
- Department of Diagnostic and Interventional RadiologyUniversity Hospital BonnBonnGermany
| | - Claus C. Pieper
- Department of Diagnostic and Interventional RadiologyUniversity Hospital BonnBonnGermany
| | - Lothar Schad
- Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Bruce R. Rosen
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General HospitalCharlestownMassachusettsUSA
| | - Lawrence L. Wald
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General HospitalCharlestownMassachusettsUSA
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Susie Y. Huang
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General HospitalCharlestownMassachusettsUSA
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Aapo Nummenmaa
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General HospitalCharlestownMassachusettsUSA
| |
Collapse
|
42
|
Yao J, Tendler BC, Zhou Z, Lei H, Zhang L, Bao A, Zhong J, Miller KL, He H. Both noise-floor and tissue compartment difference in diffusivity contribute to FA dependence on b-value in diffusion MRI. Hum Brain Mapp 2023; 44:1371-1388. [PMID: 36264194 PMCID: PMC9921221 DOI: 10.1002/hbm.26121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/27/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022] Open
Abstract
Noninvasive diffusion magnetic resonance imaging (dMRI) has been widely employed in both clinical and research settings to investigate brain tissue microstructure. Despite the evidence that dMRI-derived fractional anisotropy (FA) correlates with white matter properties, the metric is not specific. Recent studies have reported that FA is dependent on the b-value, and its origin has primarily been attributed to either the influence of microstructure or the noise-floor effect. A systematic investigation into the inter-relationship of these two effects is however still lacking. This study aims to quantify contributions of the reported differences in intra- and extra-neurite diffusivity to the observed changes in FA, in addition to the noise in measurements. We used in-vivo and post-mortem human brain imaging, as well as numerical simulations and histological validation, for this purpose. Our investigations reveal that the percentage difference of FA between b-values (pdFA) has significant positive associations with neurite density index (NDI), which is derived from in-vivo neurite orientation dispersion and density imaging (NODDI), or Bielschowsky's silver impregnation (BIEL) staining sections of fixed post-mortem human brain samples. Furthermore, such an association is found to be varied with Signal-to-Noise Ratio (SNR) level, indicating a nonlinear interaction effect between tissue microstructure and noise. Finally, a multicompartment model simulation revealed that these findings can be driven by differing diffusivities of intra- and extra-neurite compartments in tissue, with the noise-floor further amplifying the effect. In conclusion, both the differences in intra- and extra-neurite diffusivity and noise-floor effects significantly contribute to the FA difference associated with the b-value.
Collapse
Affiliation(s)
- Junye Yao
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
| | - Benjamin C Tendler
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Zihan Zhou
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Lei Zhang
- Department of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, and Department of Neurobiology, Zhejiang University, Hangzhou, China.,National Human Brain Bank for Health and Disease, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Aimin Bao
- Department of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, and Department of Neurobiology, Zhejiang University, Hangzhou, China.,National Human Brain Bank for Health and Disease, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Jianhui Zhong
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Imaging Sciences, University of Rochester, Rochester, New York, USA
| | - Karla L Miller
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Hongjian He
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
43
|
Pizzolato M, Canales-Rodríguez EJ, Andersson M, Dyrby TB. Axial and radial axonal diffusivities and radii from single encoding strongly diffusion-weighted MRI. Med Image Anal 2023; 86:102767. [PMID: 36867913 DOI: 10.1016/j.media.2023.102767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/13/2022] [Accepted: 02/08/2023] [Indexed: 02/18/2023]
Abstract
We enable the estimation of the per-axon axial diffusivity from single encoding, strongly diffusion-weighted, pulsed gradient spin echo data. Additionally, we improve the estimation of the per-axon radial diffusivity compared to estimates based on spherical averaging. The use of strong diffusion weightings in magnetic resonance imaging (MRI) allows to approximate the signal in white matter as the sum of the contributions from only axons. At the same time, spherical averaging leads to a major simplification of the modeling by removing the need to explicitly account for the unknown distribution of axonal orientations. However, the spherically averaged signal acquired at strong diffusion weightings is not sensitive to the axial diffusivity, which cannot therefore be estimated although needed for modeling axons - especially in the context of multi-compartmental modeling. We introduce a new general method for the estimation of both the axial and radial axonal diffusivities at strong diffusion weightings based on kernel zonal modeling. The method could lead to estimates that are free from partial volume bias with gray matter or other isotropic compartments. The method is tested on publicly available data from the MGH Adult Diffusion Human Connectome project. We report reference values of axonal diffusivities based on 34 subjects, and derive estimates of axonal radii from only two shells. The estimation problem is also addressed from the angle of the required data preprocessing, the presence of biases related to modeling assumptions, current limitations, and future possibilities.
Collapse
Affiliation(s)
- Marco Pizzolato
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark.
| | | | - Mariam Andersson
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Tim B Dyrby
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| |
Collapse
|
44
|
Singh AP, Jain VS, Yu JPJ. Diffusion radiomics for subtyping and clustering in autism spectrum disorder: A preclinical study. Magn Reson Imaging 2023; 96:116-125. [PMID: 36496097 PMCID: PMC9815912 DOI: 10.1016/j.mri.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Autism spectrum disorder (ASD) is a highly prevalent, heterogenous neurodevelopmental disorder. Neuroimaging methods such as functional, structural, and diffusion MRI have been used to identify candidate imaging biomarkers for ASD, but current findings remain non-specific and likely arise from the heterogeneity present in ASD. To account for this, efforts to subtype ASD have emerged as a potential strategy for both the study of ASD and advancement of tailored behavioral therapies and therapeutics. Towards these ends, to improve upon current neuroimaging methods, we propose combining biologically sensitive neurite orientation dispersion and density index (NODDI) diffusion MR imaging with radiomics image processing to create a new methodological approach that, we hypothesize, can sensitively and specifically capture neurobiology. We demonstrate this method can sensitively distinguish differences between four genetically distinct rat models of ASD (Fmr1, Pten, Nrxn1, Disc1). Further, we demonstrate diffusion radiomic analyses hold promise for subtyping in ASD as we show unsupervised clustering of NODDI radiomic data generates clusters specific to the underlying genetic differences between the animal models. Taken together, our findings suggest the unique application of radiomic analysis on NODDI diffusion MRI may have the capacity to sensitively and specifically disambiguate the neurobiological heterogeneity present in the ASD population.
Collapse
Affiliation(s)
- Ajay P Singh
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.; Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Vansh S Jain
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - John-Paul J Yu
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA; Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
| |
Collapse
|
45
|
Kraguljac NV, Guerreri M, Strickland MJ, Zhang H. Neurite Orientation Dispersion and Density Imaging in Psychiatric Disorders: A Systematic Literature Review and a Technical Note. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:10-21. [PMID: 36712566 PMCID: PMC9874146 DOI: 10.1016/j.bpsgos.2021.12.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/23/2021] [Accepted: 12/13/2021] [Indexed: 02/01/2023] Open
Abstract
While major psychiatric disorders lack signature diagnostic neuropathologies akin to dementias, classic postmortem studies have established microstructural involvement, i.e., cellular changes in neurons and glia, as a key pathophysiological finding. Advanced magnetic resonance imaging techniques allow mapping of cellular tissue architecture and microstructural abnormalities in vivo, which holds promise for advancing our understanding of the pathophysiology underlying psychiatric disorders. Here, we performed a systematic review of case-control studies using neurite orientation dispersion and density imaging (NODDI) to assess brain microstructure in psychiatric disorders and a selective review of technical considerations in NODDI. Of the 584 potentially relevant articles, 18 studies met the criteria to be included in this systematic review. We found a general theme of abnormal gray and white matter microstructure across the diagnostic spectrum. We also noted significant variability in patterns of neurite density and fiber orientation within and across diagnostic groups, as well as associations between brain microstructure and phenotypical variables. NODDI has been successfully used to detect subtle microstructure abnormalities in patients with psychiatric disorders. Given that NODDI indices may provide a more direct link to pathophysiological processes, this method may not only contribute to advancing our mechanistic understanding of disease processes, it may also be well positioned for next-generation biomarker development studies.
Collapse
Affiliation(s)
- Nina Vanessa Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Michele Guerreri
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom
| | - Molly Jordan Strickland
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Hui Zhang
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom
| |
Collapse
|
46
|
Jiang X, Devan SP, Xie J, Gore JC, Xu J. Improving MR cell size imaging by inclusion of transcytolemmal water exchange. NMR IN BIOMEDICINE 2022; 35:e4799. [PMID: 35794795 PMCID: PMC10124991 DOI: 10.1002/nbm.4799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 05/12/2023]
Abstract
The goal of the current study is to include transcytolemmal water exchange in MR cell size imaging using the IMPULSED model for more accurate characterization of tissue cellular properties (e.g., apparent volume fraction of intracellular space v in ) and quantification of indicators of transcytolemmal water exchange. We propose a heuristic model that incorporates transcytolemmal water exchange into a multicompartment diffusion-based method (IMPULSED) that was developed previously to extract microstructural parameters (e.g., mean cell size d and apparent volume fraction of intracellular space v in ) assuming no water exchange. For t diff ≤ 5 ms, the water exchange can be ignored, and the signal model is the same as the IMPULSED model. For t diff ≥ 30 ms, we incorporated the modified Kärger model that includes both restricted diffusion and exchange between compartments. Using simulations and previously published in vitro cell data, we evaluated the accuracy and precision of model-derived parameters and determined how they are dependent on SNR and imaging parameters. The joint model provides more accurate d values for cell sizes ranging from 10 to 12 microns when water exchange is fast (e.g., intracellular water pre-exchange lifetime τ in ≤ 100 ms) than IMPULSED, and reduces the bias of IMPULSED-derived estimates of v in , especially when water exchange is relatively slow (e.g., τ in > 200 ms). Indicators of transcytolemmal water exchange derived from the proposed joint model are linearly correlated with ground truth τ in values and can detect changes in cell membrane permeability induced by saponin treatment in murine erythroleukemia cancer cells. Our results suggest this joint model not only improves the accuracy of IMPULSED-derived microstructural parameters, but also provides indicators of water exchange that are usually ignored in diffusion models of tissues.
Collapse
Affiliation(s)
- Xiaoyu Jiang
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sean P Devan
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN 37232, USA
| | - Jingping Xie
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John C. Gore
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA
| | - Junzhong Xu
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA
- Corresponding author: Address: Vanderbilt University, Institute of Imaging Science, 1161 21 Avenue South, AA 1105 MCN, Nashville, TN 37232-2310, United States. Fax: +1 615 322 0734. (Junzhong Xu). Twitter: @JunzhongXu
| |
Collapse
|
47
|
Combes AJE, Clarke MA, O'Grady KP, Schilling KG, Smith SA. Advanced spinal cord MRI in multiple sclerosis: Current techniques and future directions. Neuroimage Clin 2022; 36:103244. [PMID: 36306717 PMCID: PMC9668663 DOI: 10.1016/j.nicl.2022.103244] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/02/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
Spinal cord magnetic resonance imaging (MRI) has a central role in multiple sclerosis (MS) clinical practice for diagnosis and disease monitoring. Advanced MRI sequences capable of visualizing and quantifying tissue macro- and microstructure and reflecting different pathological disease processes have been used in MS research; however, the spinal cord remains under-explored, partly due to technical obstacles inherent to imaging this structure. We propose that the study of the spinal cord merits equal ambition in overcoming technical challenges, and that there is much information to be exploited to make valuable contributions to our understanding of MS. We present a narrative review on the latest progress in advanced spinal cord MRI in MS, covering in the first part structural, functional, metabolic and vascular imaging methods. We focus on recent studies of MS and those making significant technical steps, noting the challenges that remain to be addressed and what stands to be gained from such advances. Throughout we also refer to other works that presend more in-depth review on specific themes. In the second part, we present several topics that, in our view, hold particular potential. The need for better imaging of gray matter is discussed. We stress the importance of developing imaging beyond the cervical spinal cord, and explore the use of ultra-high field MRI. Finally, some recommendations are given for future research, from study design to newer developments in analysis, and the need for harmonization of sequences and methods within the field. This review is aimed at researchers and clinicians with an interest in gaining an overview of the current state of advanced MRI research in this field and what is primed to be the future of spinal cord imaging in MS research.
Collapse
Affiliation(s)
- Anna J E Combes
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, United States.
| | - Margareta A Clarke
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States
| | - Kristin P O'Grady
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, United States; Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, PMB 351826, Nashville, TN 37235-1826, United States
| | - Kurt G Schilling
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, United States
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, United States; Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, PMB 351826, Nashville, TN 37235-1826, United States
| |
Collapse
|
48
|
Oladosu O, Liu WQ, Brown L, Pike BG, Metz LM, Zhang Y. Advanced diffusion MRI and image texture analysis detect widespread brain structural differences between relapsing-remitting and secondary progressive multiple sclerosis. Front Hum Neurosci 2022; 16:944908. [PMID: 36034111 PMCID: PMC9413838 DOI: 10.3389/fnhum.2022.944908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Disease development in multiple sclerosis (MS) causes dramatic structural changes, but the exact changing patterns are unclear. Our objective is to investigate the differences in brain structure locally and spatially between relapsing-remitting MS (RRMS) and its advanced form, secondary progressive MS (SPMS), through advanced analysis of diffusion magnetic resonance imaging (MRI) and image texture. Methods A total of 20 patients with RRMS and nine patients with SPMS from two datasets underwent 3T anatomical and diffusion tensor imaging (DTI). The DTI was harmonized, augmented, and then modeled, which generated six voxel- and sub-voxel-scale measures. Texture analysis focused on T2 and FLAIR MRI, which produced two phase-based measures, namely, phase congruency and weighted mean phase. Data analysis was 3-fold, i.e., histogram analysis of whole-brain normal appearing white matter (NAWM); region of interest (ROI) analysis of NAWM and lesions within three critical white matter tracts, namely, corpus callosum, corticospinal tract, and optic radiation; and along-tract statistics. Furthermore, by calculating the z-score of core-rim pathology within lesions based on diffusion measures, we developed a novel method to define chronic active lesions and compared them between cohorts. Results Histogram features from diffusion and all but one texture measure differentiated between RRMS and SPMS. Within-tract ROI analysis detected cohort differences in both NAWM and lesions of the corpus callosum body in three measures of neurite orientation and anisotropy. Along-tract statistics detected cohort differences from multiple measures, particularly lesion extent, which increased significantly in SPMS in posterior corpus callosum and optic radiations. The number of chronic active lesions were also significantly higher (by 5-20% over z-scores 0.5 and 1.0) in SPMS than RRMS based on diffusion anisotropy, neurite content, and diameter. Conclusion Advanced diffusion MRI and texture analysis may be promising approaches for thorough understanding of brain structural changes from RRMS to SPMS, thereby providing new insight into disease development mechanisms in MS.
Collapse
Affiliation(s)
- Olayinka Oladosu
- Department of Neuroscience, Faculty of Graduate Studies, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Wei-Qiao Liu
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Lenora Brown
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Bruce G. Pike
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Luanne M. Metz
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yunyan Zhang
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
49
|
Jelescu IO, de Skowronski A, Geffroy F, Palombo M, Novikov DS. Neurite Exchange Imaging (NEXI): A minimal model of diffusion in gray matter with inter-compartment water exchange. Neuroimage 2022; 256:119277. [PMID: 35523369 PMCID: PMC10363376 DOI: 10.1016/j.neuroimage.2022.119277] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/26/2022] [Accepted: 05/01/2022] [Indexed: 01/18/2023] Open
Abstract
Biophysical models of diffusion in white matter have been center-stage over the past two decades and are essentially based on what is now commonly referred to as the "Standard Model" (SM) of non-exchanging anisotropic compartments with Gaussian diffusion. In this work, we focus on diffusion MRI in gray matter, which requires rethinking basic microstructure modeling blocks. In particular, at least three contributions beyond the SM need to be considered for gray matter: water exchange across the cell membrane - between neurites and the extracellular space; non-Gaussian diffusion along neuronal and glial processes - resulting from structural disorder; and signal contribution from soma. For the first contribution, we propose Neurite Exchange Imaging (NEXI) as an extension of the SM of diffusion, which builds on the anisotropic Kärger model of two exchanging compartments. Using datasets acquired at multiple diffusion weightings (b) and diffusion times (t) in the rat brain in vivo, we investigate the suitability of NEXI to describe the diffusion signal in the gray matter, compared to the other two possible contributions. Our results for the diffusion time window 20-45 ms show minimal diffusivity time-dependence and more pronounced kurtosis decay with time, which is well fit by the exchange model. Moreover, we observe lower signal for longer diffusion times at high b. In light of these observations, we identify exchange as the mechanism that best explains these signal signatures in both low-b and high-b regime, and thereby propose NEXI as the minimal model for gray matter microstructure mapping. We finally highlight multi-b multi-t acquisition protocols as being best suited to estimate NEXI model parameters reliably. Using this approach, we estimate the inter-compartment water exchange time to be 15 - 60 ms in the rat cortex and hippocampus in vivo, which is of the same order or shorter than the diffusion time in typical diffusion MRI acquisitions. This suggests water exchange as an essential component for interpreting diffusion MRI measurements in gray matter.
Collapse
Affiliation(s)
- Ileana O Jelescu
- CIBM Center for Biomedical Imaging, Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Department of Radiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland; School of Biology and Medicine, University of Lausanne (UNIL), Lausanne, Switzerland.
| | - Alexandre de Skowronski
- CIBM Center for Biomedical Imaging, Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Marco Palombo
- School of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK; School of Computer Science and Informatics, Cardiff University, Cardiff, UK; Department of Computer Science, Centre for Medical Image Computing, University College London, London, UK
| | - Dmitry S Novikov
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
50
|
Yendiki A, Aggarwal M, Axer M, Howard AF, van Cappellen van Walsum AM, Haber SN. Post mortem mapping of connectional anatomy for the validation of diffusion MRI. Neuroimage 2022; 256:119146. [PMID: 35346838 PMCID: PMC9832921 DOI: 10.1016/j.neuroimage.2022.119146] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 03/02/2022] [Accepted: 03/23/2022] [Indexed: 01/13/2023] Open
Abstract
Diffusion MRI (dMRI) is a unique tool for the study of brain circuitry, as it allows us to image both the macroscopic trajectories and the microstructural properties of axon bundles in vivo. The Human Connectome Project ushered in an era of impressive advances in dMRI acquisition and analysis. As a result of these efforts, the quality of dMRI data that could be acquired in vivo improved substantially, and large collections of such data became widely available. Despite this progress, the main limitation of dMRI remains: it does not image axons directly, but only provides indirect measurements based on the diffusion of water molecules. Thus, it must be validated by methods that allow direct visualization of axons but that can only be performed in post mortem brain tissue. In this review, we discuss methods for validating the various features of connectional anatomy that are extracted from dMRI, both at the macro-scale (trajectories of axon bundles), and at micro-scale (axonal orientations and other microstructural properties). We present a range of validation tools, including anatomic tracer studies, Klingler's dissection, myelin stains, label-free optical imaging techniques, and others. We provide an overview of the basic principles of each technique, its limitations, and what it has taught us so far about the accuracy of different dMRI acquisition and analysis approaches.
Collapse
Affiliation(s)
- Anastasia Yendiki
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States,Corresponding author (A. Yendiki)
| | - Manisha Aggarwal
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Markus Axer
- Forschungszentrum Jülich, Institute of Neuroscience and Medicine, Jülich, Germany,Department of Physics, University of Wuppertal Germany
| | - Amy F.D. Howard
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Anne-Marie van Cappellen van Walsum
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Nijmegen, the Netherland,Cognition and Behaviour, Donders Institute for Brain, Nijmegen, the Netherland
| | - Suzanne N. Haber
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States,McLean Hospital, Belmont, MA, United States
| |
Collapse
|