1
|
Padova D, Ratnanather JT, Faria AV, Agrawal Y. Reduced Vestibular Function is Associated with Cortical Surface Shape Changes in the Frontal Cortex. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.22.24317807. [PMID: 39606396 PMCID: PMC11601719 DOI: 10.1101/2024.11.22.24317807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Aging-associated decline in peripheral vestibular function is linked to deficits in executive ability, self-motion perception, and motor planning and execution. While these behaviors are known to rely on the sensorimotor and frontal cortices, the precise pathways involving the frontal and sensorimotor cortices in these vestibular-associated behaviors are unknown. To fill this knowledge gap, this cross-sectional study investigates the relationship between age-related variation in vestibular function and surface shape alterations of the frontal and sensorimotor cortices, considering age, intracranial volume, and sex. Data from 117 participants aged 60+ from the Baltimore Longitudinal Study of Aging, who underwent end-organ-specific vestibular tests (cVEMP for the saccule, oVEMP for the utricle, and vHIT for the horizontal canal) and T1-weighted MRI scans on the same visit, were analyzed. We examined ten brain structures in the putative "vestibular cortex": the middle-superior part of the prefrontal cortex (SFG_PFC), frontal pole (SFG_pole), and posterior pars of the superior frontal gyrus (SFG), the dorsal prefrontal cortex and posterior pars of middle frontal gyrus (MFG_DPFC, MFG), the pars opercularis, pars triangularis, and pars orbitalis of the inferior frontal gyrus, as well as the precentral gyrus and postcentral gyrus (PoCG) of the sensori-motor cortex. For each region of interest (ROI), shape descriptors were estimated as local compressions and expansions of the population average ROI surface using surface LDDMM. Shape descriptors were linearly regressed onto standardized vestibular variables, age, intracranial volume, and sex. Lower utricular function was linked with surface compression in the left MFG and expansion in the bilateral SFG_pole and left SFG. Reduced canal function was associated with surface compression in the right SFG_PFC and SFG_pole and left SFG. Both reduced saccular and utricular function correlated with surface compression in the posterior medial part of the left MFG. Our findings illuminate the complexity of the relationship between vestibular function and the morphology of the frontal and sensorimotor cortices in aging. Improved understanding of these relationships could help in developing interventions to enhance quality of life in aging and populations with cognitive impairment.
Collapse
Affiliation(s)
- Dominic Padova
- Center for Imaging Science, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - J. Tilak Ratnanather
- Center for Imaging Science and Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Andreia V. Faria
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yuri Agrawal
- Department of Otolaryngology – Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Otolaryngology – Head and Neck Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
2
|
Yu H, Ni P, Tian Y, Zhao L, Li M, Li X, Wei W, Wei J, Wang Q, Guo W, Deng W, Ma X, Coid J, Li T. Association of elevated levels of peripheral complement components with cortical thinning and impaired logical memory in drug-naïve patients with first-episode schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:79. [PMID: 37935744 PMCID: PMC10630449 DOI: 10.1038/s41537-023-00409-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
Schizophrenia has been linked to polymorphism in genes encoding components of the complement system, and hyperactive complement activity has been linked to immune dysfunction in schizophrenia patients. Whether and how specific complement components influence brain structure and cognition in the disease is unclear. Here we compared 52 drug-naïve patients with first-episode schizophrenia and 52 healthy controls in terms of levels of peripheral complement factors, cortical thickness (CT), logical memory and psychotic symptoms. We also explored the relationship between complement factors with CT, cognition and psychotic symptoms. Patients showed significantly higher levels of C1q, C4, factor B, factor H, and properdin in plasma. Among patients, higher levels of C3 in plasma were associated with worse memory recall, while higher levels of C4, factor B and factor H were associated with thinner sensory cortex. These findings link dysregulation of specific complement components to abnormal brain structure and cognition in schizophrenia.
Collapse
Affiliation(s)
- Hua Yu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Peiyan Ni
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Yang Tian
- Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liansheng Zhao
- Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mingli Li
- Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaojing Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Wei Wei
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Jinxue Wei
- Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Wang
- Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wanjun Guo
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Wei Deng
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaohong Ma
- Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jeremy Coid
- Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Siciliano L, Olivito G, Urbini N, Silveri MC, Leggio M. The rising role of cognitive reserve and associated compensatory brain networks in spinocerebellar ataxia type 2. J Neurol 2023; 270:5071-5084. [PMID: 37421466 PMCID: PMC10511586 DOI: 10.1007/s00415-023-11855-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
Pre-existing or enhanced cognitive abilities influence symptom onset and severity in neurodegenerative diseases, which improve an individual's ability to deal with neurodegeneration. This process is named cognitive reserve (CR), and it has acquired high visibility in the field of neurodegeneration. However, the investigation of CR has been neglected in the context of cerebellar neurodegenerative disorders. The present study assessed CR and its impact on cognitive abilities in spinocerebellar ataxia type 2 (SCA2), which is a rare cerebellar neurodegenerative disease. We investigated the existence of CR networks in terms of compensatory mechanisms and neural reserve driven by increased cerebello-cerebral functional connectivity. The CR of 12 SCA2 patients was assessed using the Cognitive Reserve Index Questionnaire (CRIq), which was developed for appraising life-span CR. Patients underwent several neuropsychological tests to evaluate cognitive functioning and a functional MRI examination. Network based statistics analysis was used to assess functional brain networks. The results revealed significant correlations of CRIq measures with cognitive domains and patterns of increased connectivity in specific cerebellar and cerebral regions, which likely indicated CR networks. This study showed that CR may influence disease-related cognitive deficits, and it was related to the effective use of specific cerebello-cerebral networks that reflect a CR biomarker.
Collapse
Affiliation(s)
- Libera Siciliano
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179 Rome, Italy
| | - Giusy Olivito
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179 Rome, Italy
| | - Nicole Urbini
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179 Rome, Italy
| | | | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179 Rome, Italy
| |
Collapse
|
4
|
Xue K, Chen J, Wei Y, Chen Y, Han S, Wang C, Zhang Y, Song X, Cheng J. Impaired large-scale cortico-hippocampal network connectivity, including the anterior temporal and posterior medial systems, and its associations with cognition in patients with first-episode schizophrenia. Front Neurosci 2023; 17:1167942. [PMID: 37342466 PMCID: PMC10277613 DOI: 10.3389/fnins.2023.1167942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
Background and objective The cortico-hippocampal network is an emerging neural framework with striking evidence that it supports cognition in humans, especially memory; this network includes the anterior temporal (AT) system, the posterior medial (PM) system, the anterior hippocampus (aHIPPO), and the posterior hippocampus (pHIPPO). This study aimed to detect aberrant patterns of functional connectivity within and between large-scale cortico-hippocampal networks in first-episode schizophrenia patients compared with a healthy control group via resting-state functional magnetic resonance imaging (rs-fMRI) and to explore the correlations of these aberrant patterns with cognition. Methods A total of 86 first-episode, drug-naïve schizophrenia patients and 102 healthy controls (HC) were recruited to undergo rs-fMRI examinations and clinical evaluations. We conducted large-scale edge-based network analysis to characterize the functional architecture of the cortico-hippocampus network and investigate between-group differences in within/between-network functional connectivity. Additionally, we explored the associations of functional connectivity (FC) abnormalities with clinical characteristics, including scores on the Positive and Negative Syndrome Scale (PANSS) and cognitive scores. Results Compared with the HC group, schizophrenia patients exhibited widespread alterations to within-network FC of the cortico-hippocampal network, with decreases in FC involving the precuneus (PREC), amygdala (AMYG), parahippocampal cortex (PHC), orbitofrontal cortex (OFC), perirhinal cortex (PRC), retrosplenial cortex (RSC), posterior cingulate cortex (PCC), angular gyrus (ANG), aHIPPO, and pHIPPO. Schizophrenia patients also showed abnormalities in large-scale between-network FC of the cortico-hippocampal network, in the form of significantly decreased FC between the AT and the PM, the AT and the aHIPPO, the PM and the aHIPPO, and the aHIPPO and the pHIPPO. A number of these signatures of aberrant FC were correlated with PANSS score (positive, negative, and total score) and with scores on cognitive test battery items, including attention/vigilance (AV), working memory (WM), verbal learning and memory (Verb_Lrng), visual learning and memory (Vis_Lrng), reasoning and problem-solving (RPS), and social cognition (SC). Conclusion Schizophrenia patients show distinct patterns of functional integration and separation both within and between large-scale cortico-hippocampal networks, reflecting a network imbalance of the hippocampal long axis with the AT and PM systems, which regulate cognitive domains (mainly Vis_Lrng, Verb_Lrng, WM, and RPS), and particularly involving alterations to FC of the AT system and the aHIPPO. These findings provide new insights into the neurofunctional markers of schizophrenia.
Collapse
Affiliation(s)
- Kangkang Xue
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Engineering Research Center of Brain Function Development and Application of Henan Province, Zhengzhou, China
| | - Jingli Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Engineering Research Center of Brain Function Development and Application of Henan Province, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Engineering Research Center of Brain Function Development and Application of Henan Province, Zhengzhou, China
| | - Yuan Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Engineering Research Center of Brain Function Development and Application of Henan Province, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Engineering Research Center of Brain Function Development and Application of Henan Province, Zhengzhou, China
| | - Caihong Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Engineering Research Center of Brain Function Development and Application of Henan Province, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Engineering Research Center of Brain Function Development and Application of Henan Province, Zhengzhou, China
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Engineering Research Center of Brain Function Development and Application of Henan Province, Zhengzhou, China
| |
Collapse
|
5
|
Ikeda N, Yamada S, Yasuda K, Uenishi S, Tamaki A, Ishida T, Tabata M, Tsuji T, Kimoto S, Takahashi S. Structural connectivity between the hippocampus and cortical/subcortical area relates to cognitive impairment in schizophrenia but not in mood disorders. J Neuropsychol 2022. [DOI: 10.1111/jnp.12298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/10/2022] [Accepted: 09/11/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Natsuko Ikeda
- Department of Neuropsychiatry Wakayama Medical University Wakayama Japan
- Department of Psychiatry Wakayama Prefectural Mental Health Care Center Wakayama Japan
| | - Shinichi Yamada
- Department of Neuropsychiatry Wakayama Medical University Wakayama Japan
| | - Kasumi Yasuda
- Department of Neuropsychiatry Wakayama Medical University Wakayama Japan
| | - Shinya Uenishi
- Department of Neuropsychiatry Wakayama Medical University Wakayama Japan
- Department of Psychiatry Hidaka Hospital Gobo Japan
| | - Atsushi Tamaki
- Department of Neuropsychiatry Wakayama Medical University Wakayama Japan
- Department of Psychiatry Hidaka Hospital Gobo Japan
| | - Takuya Ishida
- Department of Neuropsychiatry Wakayama Medical University Wakayama Japan
| | - Michiyo Tabata
- Department of Neuropsychiatry Wakayama Medical University Wakayama Japan
| | - Tomikimi Tsuji
- Department of Neuropsychiatry Wakayama Medical University Wakayama Japan
| | - Sohei Kimoto
- Department of Neuropsychiatry Wakayama Medical University Wakayama Japan
| | - Shun Takahashi
- Department of Neuropsychiatry Wakayama Medical University Wakayama Japan
- Clinical Research and Education Center Asakayama General Hospital Sakai Japan
- Graduate School of Rehabilitation Science Osaka Metropolitan University Habikino Japan
- Department of Psychiatry Osaka University Graduate School of Medicine Suita Japan
| |
Collapse
|
6
|
Roeske MJ, Lyu I, McHugo M, Blackford JU, Woodward ND, Heckers S. Incomplete Hippocampal Inversion: A Neurodevelopmental Mechanism for Hippocampal Shape Deformation in Schizophrenia. Biol Psychiatry 2022; 92:314-322. [PMID: 35487783 PMCID: PMC9339515 DOI: 10.1016/j.biopsych.2022.02.954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Shape analyses of patients with schizophrenia have revealed bilateral deformations of the anterolateral hippocampus, primarily localized to the CA1 subfield. Incomplete hippocampal inversion (IHI), an anatomical variant of the human hippocampus resulting from an arrest during neurodevelopment, is more prevalent and severe in patients with schizophrenia. We hypothesized that IHI would affect the shape of the hippocampus and contribute to hippocampal shape differences in schizophrenia. METHODS We studied 199 patients with schizophrenia and 161 healthy control participants with structural magnetic resonance imaging to measure the prevalence and severity of IHI. High-fidelity hippocampal surface reconstructions were generated with the SPHARM-PDM toolkit. We used general linear models in SurfStat to test for group shape differences, the impact of IHI on hippocampal shape variation, and whether IHI contributes to hippocampal shape abnormalities in schizophrenia. RESULTS Not including IHI as a main effect in our between-group comparison replicated well-established hippocampal shape differences in patients with schizophrenia localized to the CA1 subfield in the anterolateral hippocampus. Shape differences were also observed near the uncus and hippocampal tail. IHI was associated with outward displacements of the dorsal and ventral surfaces of the hippocampus and inward displacements of the medial and lateral surfaces. Including IHI as a main effect in our between-group comparison eliminated the bilateral shape differences in the CA1 subfield. Shape differences in the uncus persisted after including IHI. CONCLUSIONS IHI impacts hippocampal shape. Our results suggest IHI as a neurodevelopmental mechanism for the well-known shape differences, particularly in the CA1 subfield, in schizophrenia.
Collapse
Affiliation(s)
- Maxwell J Roeske
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee.
| | - Ilwoo Lyu
- Department of Computer Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Maureen McHugo
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jennifer Urbano Blackford
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska
| | - Neil D Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
7
|
Luttenbacher I, Phillips A, Kazemi R, Hadipour AL, Sanghvi I, Martinez J, Adamson MM. Transdiagnostic role of glutamate and white matter damage in neuropsychiatric disorders: A Systematic Review. J Psychiatr Res 2022; 147:324-348. [PMID: 35151030 DOI: 10.1016/j.jpsychires.2021.12.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/08/2021] [Accepted: 12/19/2021] [Indexed: 12/09/2022]
Abstract
Neuropsychiatric disorders including generalized anxiety disorder (GAD), obsessive-compulsive disorder (OCD), major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SZ) have been considered distinct categories of diseases despite their overlapping characteristics and symptomatology. We aimed to provide an in-depth review elucidating the role of glutamate/Glx and white matter (WM) abnormalities in these disorders from a transdiagnostic perspective. The PubMed online database was searched for studies published between 2010 and 2021. After careful screening, 401 studies were included. The findings point to decreased levels of glutamate in the Anterior Cingulate Cortex in both SZ and BD, whereas Glx is elevated in the Hippocampus in SZ and MDD. With regard to WM abnormalities, the Corpus Callosum and superior Longitudinal Fascicle were the most consistently identified brain regions showing decreased fractional anisotropy (FA) across all the reviewed disorders, except GAD. Additionally, the Uncinate Fasciculus displayed decreased FA in all disorders, except OCD. Decreased FA was also found in the inferior Longitudinal Fasciculus, inferior Fronto-Occipital Fasciculus, Thalamic Radiation, and Corona Radiata in SZ, BD, and MDD. Decreased FA in the Fornix and Corticospinal Tract were found in BD and SZ patients. The Cingulum and Anterior Limb of Internal Capsule exhibited decreased FA in MDD and SZ patients. The results suggest a gradual increase in severity from GAD to SZ defined by the number of brain regions with WM abnormality which may be partially caused by abnormal glutamate levels. WM damage could thus be considered a potential marker of some of the main neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ines Luttenbacher
- Department of Social & Behavioral Sciences, University of Amsterdam, Amsterdam, Netherlands; Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Angela Phillips
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Reza Kazemi
- Department of Cognitive Psychology, Institute for Cognitive Science Studies, Tehran, Iran
| | - Abed L Hadipour
- Department of Cognitive Sciences, University of Messina, Messina, Italy
| | - Isha Sanghvi
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Neuroscience, University of Southern California, Los Angeles, CA, USA
| | - Julian Martinez
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Palo Alto University, Palo Alto, CA, USA
| | - Maheen M Adamson
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
8
|
Gutman BA, van Erp TG, Alpert K, Ching CRK, Isaev D, Ragothaman A, Jahanshad N, Saremi A, Zavaliangos‐Petropulu A, Glahn DC, Shen L, Cong S, Alnæs D, Andreassen OA, Doan NT, Westlye LT, Kochunov P, Satterthwaite TD, Wolf DH, Huang AJ, Kessler C, Weideman A, Nguyen D, Mueller BA, Faziola L, Potkin SG, Preda A, Mathalon DH, Bustillo J, Calhoun V, Ford JM, Walton E, Ehrlich S, Ducci G, Banaj N, Piras F, Piras F, Spalletta G, Canales‐Rodríguez EJ, Fuentes‐Claramonte P, Pomarol‐Clotet E, Radua J, Salvador R, Sarró S, Dickie EW, Voineskos A, Tordesillas‐Gutiérrez D, Crespo‐Facorro B, Setién‐Suero E, van Son JM, Borgwardt S, Schönborn‐Harrisberger F, Morris D, Donohoe G, Holleran L, Cannon D, McDonald C, Corvin A, Gill M, Filho GB, Rosa PGP, Serpa MH, Zanetti MV, Lebedeva I, Kaleda V, Tomyshev A, Crow T, James A, Cervenka S, Sellgren CM, Fatouros‐Bergman H, Agartz I, Howells F, Stein DJ, Temmingh H, Uhlmann A, de Zubicaray GI, McMahon KL, Wright M, Cobia D, Csernansky JG, Thompson PM, Turner JA, Wang L. A meta-analysis of deep brain structural shape and asymmetry abnormalities in 2,833 individuals with schizophrenia compared with 3,929 healthy volunteers via the ENIGMA Consortium. Hum Brain Mapp 2022; 43:352-372. [PMID: 34498337 PMCID: PMC8675416 DOI: 10.1002/hbm.25625] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 01/06/2023] Open
Abstract
Schizophrenia is associated with widespread alterations in subcortical brain structure. While analytic methods have enabled more detailed morphometric characterization, findings are often equivocal. In this meta-analysis, we employed the harmonized ENIGMA shape analysis protocols to collaboratively investigate subcortical brain structure shape differences between individuals with schizophrenia and healthy control participants. The study analyzed data from 2,833 individuals with schizophrenia and 3,929 healthy control participants contributed by 21 worldwide research groups participating in the ENIGMA Schizophrenia Working Group. Harmonized shape analysis protocols were applied to each site's data independently for bilateral hippocampus, amygdala, caudate, accumbens, putamen, pallidum, and thalamus obtained from T1-weighted structural MRI scans. Mass univariate meta-analyses revealed more-concave-than-convex shape differences in the hippocampus, amygdala, accumbens, and thalamus in individuals with schizophrenia compared with control participants, more-convex-than-concave shape differences in the putamen and pallidum, and both concave and convex shape differences in the caudate. Patterns of exaggerated asymmetry were observed across the hippocampus, amygdala, and thalamus in individuals with schizophrenia compared to control participants, while diminished asymmetry encompassed ventral striatum and ventral and dorsal thalamus. Our analyses also revealed that higher chlorpromazine dose equivalents and increased positive symptom levels were associated with patterns of contiguous convex shape differences across multiple subcortical structures. Findings from our shape meta-analysis suggest that common neurobiological mechanisms may contribute to gray matter reduction across multiple subcortical regions, thus enhancing our understanding of the nature of network disorganization in schizophrenia.
Collapse
Affiliation(s)
- Boris A. Gutman
- Department of Biomedical EngineeringIllinois Institute of TechnologyChicagoIllinoisUSA
- Institute for Information Transmission Problems (Kharkevich Institute)MoscowRussia
| | - Theo G.M. van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
- Center for the Neurobiology of Learning and MemoryUniversity of California IrvineIrvineCaliforniaUSA
| | - Kathryn Alpert
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Christopher R. K. Ching
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Dmitry Isaev
- Department of Biomedical EngineeringDuke UniversityDurhamNorth CarolinaUSA
| | - Anjani Ragothaman
- Department of biomedical engineeringOregon Health and Science universityPortlandOregonUSA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Arvin Saremi
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Artemis Zavaliangos‐Petropulu
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - David C. Glahn
- Department of PsychiatryBoston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Li Shen
- Department of Biostatistics, Epidemiology and InformaticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Shan Cong
- Department of Biostatistics, Epidemiology and InformaticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Dag Alnæs
- NORMENT, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
| | - Ole Andreas Andreassen
- NORMENT, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
| | - Nhat Trung Doan
- NORMENT, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
| | - Lars T. Westlye
- NORMENT, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
| | - Peter Kochunov
- Department of PsychiatryUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Theodore D. Satterthwaite
- Department of PsychiatryUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Daniel H. Wolf
- Department of PsychiatryUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Alexander J. Huang
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Charles Kessler
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Andrea Weideman
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Dana Nguyen
- Department of PediatricsUniversity of California IrvineIrvineCaliforniaUSA
| | - Bryon A. Mueller
- Department of Psychiatry and Behavioral SciencesUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Lawrence Faziola
- Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Steven G. Potkin
- Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Adrian Preda
- Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Daniel H. Mathalon
- Department of Psychiatry and Weill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Judith Ford Mental HealthVA San Francisco Healthcare SystemSan FranciscoCaliforniaUSA
| | - Juan Bustillo
- Departments of Psychiatry & NeuroscienceUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Vince Calhoun
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) [Georgia State University, Georgia Institute of Technology]Emory UniversityAtlantaGeorgiaUSA
- Department of Electrical and Computer EngineeringThe University of New MexicoAlbuquerqueNew MexicoUSA
| | - Judith M. Ford
- Judith Ford Mental HealthVA San Francisco Healthcare SystemSan FranciscoCaliforniaUSA
- Department of Psychiatry and Behavioral SciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | | | - Stefan Ehrlich
- Division of Psychological & Social Medicine and Developmental NeurosciencesFaculty of Medicine, TU‐DresdenDresdenGermany
| | | | - Nerisa Banaj
- Laboratory of NeuropsychiatryIRCCS Santa Lucia FoundationRomeItaly
| | - Fabrizio Piras
- Laboratory of NeuropsychiatryIRCCS Santa Lucia FoundationRomeItaly
| | - Federica Piras
- Laboratory of NeuropsychiatryIRCCS Santa Lucia FoundationRomeItaly
| | - Gianfranco Spalletta
- Laboratory of NeuropsychiatryIRCCS Santa Lucia FoundationRomeItaly
- Menninger Department of Psychiatry and Behavioral SciencesBaylor College of MedicineHoustonTexasUSA
| | | | | | | | - Joaquim Radua
- FIDMAG Germanes Hospitalàries Research FoundationCIBERSAMBarcelonaSpain
- Institut d'Investigacions Biomdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research FoundationCIBERSAMBarcelonaSpain
| | - Salvador Sarró
- FIDMAG Germanes Hospitalàries Research FoundationCIBERSAMBarcelonaSpain
| | - Erin W. Dickie
- Centre for Addiction and Mental Health (CAMH)TorontoCanada
| | | | | | | | | | | | - Stefan Borgwardt
- Department of PsychiatryUniversity of BaselBaselSwitzerland
- Department of Psychiatry and PsychotherapyUniversity of LübeckLübeckGermany
| | | | - Derek Morris
- Centre for Neuroimaging and Cognitive Genomics, Discipline of BiochemistryNational University of Ireland GalwayGalwayIreland
| | - Gary Donohoe
- Centre for Neuroimaging and Cognitive Genomics, School of PsychologyNational University of Ireland GalwayGalwayIreland
| | - Laurena Holleran
- Centre for Neuroimaging and Cognitive Genomics, School of PsychologyNational University of Ireland GalwayGalwayIreland
| | - Dara Cannon
- Clinical Neuroimaging Laboratory, Centre for Neuroimaging and Cognitive GenomicsNational University of Ireland GalwayGalwayIreland
| | - Colm McDonald
- Clinical Neuroimaging Laboratory, Centre for Neuroimaging and Cognitive GenomicsNational University of Ireland GalwayGalwayIreland
| | - Aiden Corvin
- Neuropsychiatric Genetics Research Group, Department of PsychiatryTrinity College DublinDublinIreland
- Trinity College Institute of NeuroscienceTrinity College DublinDublinIreland
| | - Michael Gill
- Neuropsychiatric Genetics Research Group, Department of PsychiatryTrinity College DublinDublinIreland
- Trinity College Institute of NeuroscienceTrinity College DublinDublinIreland
| | - Geraldo Busatto Filho
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de PsiquiatriaHospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | - Pedro G. P. Rosa
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de PsiquiatriaHospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | - Mauricio H. Serpa
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de PsiquiatriaHospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | - Marcus V. Zanetti
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de PsiquiatriaHospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
- Hospital Sirio‐LibanesSao PauloSPBrazil
| | - Irina Lebedeva
- Laboratory of Neuroimaging and Multimodal AnalysisMental Health Research CenterMoscowRussia
| | - Vasily Kaleda
- Department of Endogenous Mental DisordersMental Health Research CenterMoscowRussia
| | - Alexander Tomyshev
- Laboratory of Neuroimaging and Multimodal AnalysisMental Health Research CenterMoscowRussia
| | - Tim Crow
- Department of PsychiatryUniversity of OxfordOxfordUK
| | - Anthony James
- Department of PsychiatryUniversity of OxfordOxfordUK
| | - Simon Cervenka
- Centre for Psychiatry Reserach, Department of Clinical NeuroscienceKarolinska Institutet, & Stockholm Health Care Services, Region StockholmStockholmSweden
| | - Carl M Sellgren
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Helena Fatouros‐Bergman
- Centre for Psychiatry Reserach, Department of Clinical NeuroscienceKarolinska Institutet, & Stockholm Health Care Services, Region StockholmStockholmSweden
| | - Ingrid Agartz
- NORMENT, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
| | - Fleur Howells
- Department of Psychiatry and Mental Health, Faculty of Health SciencesUniversity of Cape TownCape TownWCSouth Africa
- Neuroscience InstituteUniversity of Cape Town, Cape TownWCSouth Africa
| | - Dan J. Stein
- Department of Psychiatry and Mental Health, Faculty of Health SciencesUniversity of Cape TownCape TownWCSouth Africa
- Neuroscience InstituteUniversity of Cape Town, Cape TownWCSouth Africa
- SA MRC Unit on Risk & Resilience in Mental DisordersUniversity of Cape TownCape TownWCSouth Africa
| | - Henk Temmingh
- Department of Psychiatry and Mental Health, Faculty of Health SciencesUniversity of Cape TownCape TownWCSouth Africa
| | - Anne Uhlmann
- Department of Psychiatry and Mental Health, Faculty of Health SciencesUniversity of Cape TownCape TownWCSouth Africa
- Department of Child and Adolescent PsychiatryTU DresdenGermany
| | - Greig I. de Zubicaray
- School of Psychology, Faculty of HealthQueensland University of Technology (QUT)BrisbaneQLDAustralia
| | - Katie L. McMahon
- School of Clinical SciencesQueensland University of Technology (QUT)BrisbaneQLDAustralia
| | - Margie Wright
- Queensland Brain InstituteUniversity of QueenslandBrisbaneQLDAustralia
| | - Derin Cobia
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Department of Psychology and Neuroscience CenterBrigham Young UniversityProvoUtahUSA
| | - John G. Csernansky
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Paul M. Thompson
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | - Lei Wang
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Department of Psychiatry and Behavioral HealthOhio State University Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|
9
|
Park MTM, Jeon P, Khan AR, Dempster K, Chakravarty MM, Lerch JP, MacKinley M, Théberge J, Palaniyappan L. Hippocampal neuroanatomy in first episode psychosis: A putative role for glutamate and serotonin receptors. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110297. [PMID: 33691200 DOI: 10.1016/j.pnpbp.2021.110297] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/01/2021] [Accepted: 03/02/2021] [Indexed: 02/01/2023]
Abstract
Disrupted serotonergic and glutamatergic signaling interact and contribute to the pathophysiology of schizophrenia, which is particularly relevant for the hippocampus where diverse expression of serotonin receptors is noted. Hippocampal atrophy is a well-established feature of schizophrenia, with select subfields hypothesized as particularly vulnerable due to variation in glutamate receptor densities. We investigated hippocampal anomalies in first-episode psychosis (FEP) in relation to receptor distributions by leveraging 4 sources of data: (1) ultra high-field (7-Tesla) structural neuroimaging, and (2) proton magnetic resonance spectroscopy (1H-MRS) of glutamate from 27 healthy and 41 FEP subjects, (3) gene expression data from the Allen Human Brain Atlas and (4) atlases of the serotonin receptor system. Automated methods delineated the hippocampus to map receptor density across subfields. We used gene expression data to correlate serotonin and glutamate receptor genes across the hippocampus. Measures of individual hippocampal shape-receptor alignment were derived through normative modelling and correlations to receptor distributions, termed Receptor-Specific Morphometric Signatures (RSMS). We found reduced hippocampal volumes in FEP, while CA4-dentate gyrus showed greatest reductions. Gene expression indicated 5-HT1A and 5-HT4 to correlate with AMPA and NMDA expression, respectively. Magnitudes of subfield volumetric reduction in FEP correlated most with 5-HT1A (R = 0.64, p = 4.09E-03) and 5-HT4 (R = 0.54, p = 0.02) densities as expected, and replicated using previously published data from two FEP studies. Right-sided 5-HT4-RSMS was correlated with MRS glutamate (R = 0.357, p = 0.048). We demonstrate a putative glutamate-driven hippocampal variability in FEP through a serotonin receptor-density gated mechanism, thus outlining a mechanistic interplay between serotonin and glutamate in determining the hippocampal morphology in schizophrenia.
Collapse
Affiliation(s)
- Min Tae M Park
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Peter Jeon
- Department of Medical Biophysics, Western University, London, Canada
| | - Ali R Khan
- Department of Medical Biophysics, Western University, London, Canada; Robarts Research Institute, Western University, London, Canada
| | - Kara Dempster
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - M Mallar Chakravarty
- Departments of Psychiatry and Biological and Biomedical Engineering, McGill University, Montreal, Canada; Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Canada
| | - Jason P Lerch
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Jean Théberge
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Canada; Department of Medical Biophysics, Western University, London, Canada; Lawson Health Research Institute, London, Canada
| | - Lena Palaniyappan
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Canada; Robarts Research Institute, Western University, London, Canada; Lawson Health Research Institute, London, Canada.
| |
Collapse
|
10
|
Delavari F, Sandini C, Zöller D, Mancini V, Bortolin K, Schneider M, Van De Ville D, Eliez S. Dysmaturation Observed as Altered Hippocampal Functional Connectivity at Rest Is Associated With the Emergence of Positive Psychotic Symptoms in Patients With 22q11 Deletion Syndrome. Biol Psychiatry 2021; 90:58-68. [PMID: 33771350 DOI: 10.1016/j.biopsych.2020.12.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/03/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Hippocampal alterations are among the most replicated neuroimaging findings across the psychosis spectrum. Moreover, there is strong translational evidence that preserving the maturation of hippocampal networks in mice models prevents the progression of cognitive deficits. However, the developmental trajectory of hippocampal functional connectivity (HFC) and its contribution to psychosis is not well characterized in the human population. 22q11 deletion syndrome (22q11DS) offers a unique model for characterizing early neural correlates of schizophrenia. METHODS We acquired resting-state functional magnetic resonance imaging in 242 longitudinally repeated scans from 84 patients with 22q11DS (30 with moderate to severe positive psychotic symptoms) and 94 healthy control subjects in the age span of 6 to 32 years. We obtained bilateral hippocampus to whole-brain functional connectivity and employed a novel longitudinal multivariate approach by means of partial least squares correlation to evaluate the developmental trajectory of HFC across groups. RESULTS Relative to control subjects, patients with 22q11DS failed to increase HFC with frontal regions such as the dorsal part of the anterior cingulate cortex, prefrontal cortex, and supplementary motor area. Concurrently, carriers of the deletion had abnormally higher HFC with subcortical dopaminergic areas. Remarkably, this aberrant maturation of HFC was more prominent during midadolescence and was mainly driven by patients exhibiting subthreshold positive psychotic symptoms. CONCLUSIONS Our findings suggest a critical period of prefrontal cortex-hippocampal-striatal circuit dysmaturation, particularly during late adolescence, which in light of current translation evidence could be a target for short-term interventions to potentially achieve long-lasting rescue of circuit dysfunctions associated with psychosis.
Collapse
Affiliation(s)
- Farnaz Delavari
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland; Medical Image Processing Laboratory, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Corrado Sandini
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Daniela Zöller
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland; Medical Image Processing Laboratory, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Valentina Mancini
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Karin Bortolin
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland; Medical Image Processing Laboratory, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Maude Schneider
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland; Department of Neuroscience, Center for Contextual Psychiatry, Research Group Psychiatry, KU Leuven, Leuven, Belgium
| | - Dimitri Van De Ville
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland; Medical Image Processing Laboratory, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland; Department of Genetic Medicine and Development, University of Geneva School of Medicine, Geneva, Switzerland
| |
Collapse
|
11
|
Huang W, Tang X. Down-sampling template curve to accelerate LDDMM-curve with application to shape analysis of the corpus callosum. Healthc Technol Lett 2021; 8:78-83. [PMID: 34035928 PMCID: PMC8136766 DOI: 10.1049/htl2.12011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/05/2021] [Accepted: 03/16/2021] [Indexed: 11/19/2022] Open
Abstract
Large deformation diffeomorphic metric mapping for curve (LDDMM-curve) has been widely used in deformation based statistical shape analysis of the mid-sagittal corpus callosum. A main limitation of LDDMM-curve is that it is time-consuming and computationally complex. In this study, down-sampling strategies for accelerating LDDMM-curve are investigated and tested on two large datasets, one on Alzheimer's disease (155 Alzheimer's disease, 325 mild cognitive impairment and 185 healthy controls) and the other on first-episode schizophrenia (92 first-episode schizophrenia and 106 healthy controls). For both datasets a variety of down-sampling factors are tested in terms of registration accuracy, registration speed, and most importantly disease-related patterns. Experimental results revealed that down-sampling template curve by a factor of 2 can significantly reduce the running time of LDDMM-curve without sacrificing the registration accuracy. Also, the disease-induced patterns, or more specifically the group comparison results, were almost identical before and after down-sampling. It is also shown that there was no need to down-sample the target population curves but only the single template curve of the study of interest. Comprehensive analyses were conducted.
Collapse
Affiliation(s)
- Weikai Huang
- Department of Electrical and Electronic EngineeringSouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Xiaoying Tang
- Department of Electrical and Electronic EngineeringSouthern University of Science and TechnologyShenzhenGuangdongChina
| |
Collapse
|
12
|
Wang J, John Y, Barbas H. Pathways for Contextual Memory: The Primate Hippocampal Pathway to Anterior Cingulate Cortex. Cereb Cortex 2021; 31:1807-1826. [PMID: 33207365 PMCID: PMC7869091 DOI: 10.1093/cercor/bhaa333] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/27/2022] Open
Abstract
The anterior cingulate cortex (ACC) is one of the few prefrontal areas that receives robust direct hippocampal terminations. This pathway may enable current context and past experience to influence goal-directed actions and emotional regulation by prefrontal cortices. We investigated the still ill-understood organization of the pathway from anterior hippocampus to ACC (A24a, A25, A32) to identify laminar termination patterns and their postsynaptic excitatory and inhibitory targets from system to synapse in rhesus monkeys. The densest hippocampal terminations targeted posterior A25, a region that is involved in affective and autonomic regulation. Hippocampal terminations innervated mostly excitatory neurons (~90%), suggesting strong excitatory effects. Among the smaller fraction of inhibitory targets, hippocampal terminations in A25 preferentially innervated calretinin neurons, a pattern that differs markedly from rodents. Further, hippocampal terminations innervated spines with D1 receptors, particularly in the deep layers of A25, where D1 receptors are enriched in comparison with the upper layers. The proximity of hippocampal terminations to D1 receptors may enable dopamine to enhance information transfer from the hippocampus to A25 and contribute to dopaminergic influence downstream on goal-directed action and emotional control by prefrontal cortices, in processes that may be disrupted by excessive dopamine release during uncontrollable stress.
Collapse
Affiliation(s)
- Jingyi Wang
- Department of Health Sciences, Neural Systems Laboratory, Boston University, Boston, MA 02215, USA
| | - Yohan John
- Department of Health Sciences, Neural Systems Laboratory, Boston University, Boston, MA 02215, USA
| | - Helen Barbas
- Department of Health Sciences, Neural Systems Laboratory, Boston University, Boston, MA 02215, USA
- Graduate Program in Neuroscience, Boston University and School of Medicine, Boston, MA 02215, USA
| |
Collapse
|
13
|
Wang Y, Wei Y, Edmiston EK, Womer FY, Zhang X, Duan J, Zhu Y, Zhang R, Yin Z, Zhang Y, Jiang X, Wei S, Liu Z, Zhang Y, Tang Y, Wang F. Altered structural connectivity and cytokine levels in Schizophrenia and Genetic high-risk individuals: Associations with disease states and vulnerability. Schizophr Res 2020; 223:158-165. [PMID: 32684357 DOI: 10.1016/j.schres.2020.05.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/26/2020] [Accepted: 05/17/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Alterations of white matter (WM) integrity have been observed in both schizophrenia (SZ) and individuals at genetic high risk for SZ (GHR-SZ); however, the molecular mechanisms underlying WM disruption remain unclear. Cytokines are chemical messengers of the immune system that are closely related to inflammation and neurogenesis in the brain. This study aimed to identify abnormalities in WM integrity, cytokine levels, and their association in SZ and GHR-SZ. METHODS A total of 355 participants (126 with SZ, 99 GHR-SZ, and 130 healthy controls [HCs]) were recruited. All participants underwent diffusion tensor imaging and blood samples were obtained from 113 participants within 24 h of imaging. RESULTS In SZ, there was decreased fractional anisotropy(FA) in the genu and body of the corpus callosum (GCC/BCC), anterior corona radiata, anterior and posterior limbs of the internal capsule (ALIC/PLIC), superior fronto-occipital fasciculus, external capsule, and fornix, and elevated IL-6 levels. In both SZ and GHR-SZ, decreased FA in the splenium of the corpus callosum (SCC), posterior corona radiate (PCR), and posterior thalamic radiation (PTR) was observed, and elevated leptin levels were present. Additionally, the IL-6 levels were negatively correlated with FA in the GCC and ALIC in SZ, and leptin levels were negatively correlated with the SCC, PCR, and PTR in SZ and GHR-SZ. CONCLUSIONS Abnormal WM integrity in SZ may reflect the state of disease and is associated with increased IL-6 levels. In addition, these leptin-associated WM integrity abnormalities in both SZ and GHR-SZ may reflect a genetic vulnerability to SZ.
Collapse
Affiliation(s)
- Yang Wang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China; Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Yange Wei
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China; Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - E Kale Edmiston
- Department of Psychiatry, University of Pittsburgh Medical Center, USA
| | - Fay Y Womer
- Department of Psychiatry, Washington University School of Medicine, St. Louis, USA
| | - Xizhe Zhang
- School of Computer Science and Engineering, Northeastern University, Shenyang, Liaoning, PR China
| | - Jia Duan
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China; Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Yue Zhu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China; Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Ran Zhang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China; Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Zhiyang Yin
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China; Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Yifan Zhang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China; Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Xiaowei Jiang
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China; Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Shengnan Wei
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China; Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Zhuang Liu
- School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Yanbo Zhang
- Department of Psychiatry, College of Medicine, University of Saskatchewan, Canada
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China; Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China.
| | - Fei Wang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China; Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China; Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China; Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
14
|
Jacob A, Tward DJ, Resnick S, Smith PF, Lopez C, Rebello E, Wei EX, Ratnanather JT, Agrawal Y. Vestibular function and cortical and sub-cortical alterations in an aging population. Heliyon 2020; 6:e04728. [PMID: 32904672 PMCID: PMC7457317 DOI: 10.1016/j.heliyon.2020.e04728] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/10/2019] [Accepted: 08/12/2020] [Indexed: 01/26/2023] Open
Abstract
While it is well known that the vestibular system is responsible for maintaining balance, posture and coordination, there is increasing evidence that it also plays an important role in cognition. Moreover, a growing number of epidemiological studies are demonstrating a link between vestibular dysfunction and cognitive deficits in older adults; however, the exact pathways through which vestibular loss may affect cognition are unknown. In this cross-sectional study, we sought to identify relationships between vestibular function and variation in morphometry in brain structures from structural neuroimaging. We used a subset of 80 participants from the Baltimore Longitudinal Study of Aging, who had both brain MRI and vestibular physiological data acquired during the same visit. Vestibular function was evaluated through the cervical vestibular-evoked myogenic potential (cVEMP). The brain structures of interest that we analyzed were the hippocampus, amygdala, thalamus, caudate nucleus, putamen, insula, entorhinal cortex (ERC), trans-entorhinal cortex (TEC) and perirhinal cortex, as these structures comprise or are connected with the putative "vestibular cortex." We modeled the volume and shape of these structures as a function of the presence/absence of cVEMP and the cVEMP amplitude, adjusting for age and sex. We observed reduced overall volumes of the hippocampus and the ERC associated with poorer vestibular function. In addition, we also found significant relationships between the shape of the hippocampus (p = 0.0008), amygdala (p = 0.01), thalamus (p = 0.008), caudate nucleus (p = 0.002), putamen (p = 0.02), and ERC-TEC complex (p = 0.008) and vestibular function. These findings provide novel insight into the multiple pathways through which vestibular loss may impact brain structures that are critically involved in spatial memory, navigation and orientation.
Collapse
Affiliation(s)
- Athira Jacob
- Center for Imaging Science and Institute for Computational Medicine,
Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD,
USA
| | - Daniel J. Tward
- Center for Imaging Science and Institute for Computational Medicine,
Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD,
USA
| | - Susan Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging,
Baltimore, MD, USA
| | - Paul F. Smith
- Department Pharmacology and Toxicology, School of Medical Sciences, The
Brain Health Research Centre, University of Otago, New Zealand
| | - Christophe Lopez
- Aix Marseille Universite, Centre National de la Recherche Scientifique,
Marseille, France
| | - Elliott Rebello
- Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins
University School of Medicine, Baltimore, MD, USA
| | - Eric X. Wei
- Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins
University School of Medicine, Baltimore, MD, USA
| | - J. Tilak Ratnanather
- Center for Imaging Science and Institute for Computational Medicine,
Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD,
USA
| | - Yuri Agrawal
- Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins
University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
15
|
Soltani Zangbar H, Ghadiri T, Seyedi Vafaee M, Ebrahimi Kalan A, Fallahi S, Ghorbani M, Shahabi P. Theta Oscillations Through Hippocampal/Prefrontal Pathway: Importance in Cognitive Performances. Brain Connect 2020; 10:157-169. [PMID: 32264690 DOI: 10.1089/brain.2019.0733] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Among various hippocampal rhythms, including sharp-wave ripples, gamma, and theta, theta rhythm is crucial for cognitive processing, particularly learning and memory. Theta oscillations are observable in both humans and rodents during spatial navigations. However, the hippocampus (Hip) is well known as the generator of current rhythm, and other brain areas, such as prefrontal cortex (PFC), can be affected by theta rhythm, too. The PFC is a core structure for the execution of diverse higher cortical functions defined as cognition. This region is connected to the hippocampus through the hippocampal/prefrontal pathway; hereby, theta oscillations convey hippocampal inputs to the PFC and simultaneously synchronize the activity of these two regions during memory, learning and other cognitive tasks. Importantly, thalamic nucleus reunions (nRE) and basolateral amygdala are salient relay structures modulating the synchronization, firing rate, and phase-locking of the hippocampal/prefrontal oscillations. Herein, we summarized experimental studies, chiefly animal researches in which the theta rhythm of the Hip-PFC axis was investigated using either electrophysiological assessments in rodent or integrated diffusion-weighted imaging and electroencephalography in human cases under memory-based tasks. Moreover, we briefly reviewed alterations of theta rhythm in some CNS diseases with the main feature of cognitive disturbance. Interestingly, animal studies implied the interruption of theta synchronization in psychiatric disorders such as schizophrenia and depression. To disclose the precise role of theta rhythm fluctuations through the Hip-PFC axis in cognitive performances, further studies are needed.
Collapse
Affiliation(s)
- Hamid Soltani Zangbar
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tahereh Ghadiri
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Abbas Ebrahimi Kalan
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Fallahi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Meysam Ghorbani
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Simon M, Campbell E, Genest F, MacLean MW, Champoux F, Lepore F. The Impact of Early Deafness on Brain Plasticity: A Systematic Review of the White and Gray Matter Changes. Front Neurosci 2020; 14:206. [PMID: 32292323 PMCID: PMC7135892 DOI: 10.3389/fnins.2020.00206] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/25/2020] [Indexed: 11/29/2022] Open
Abstract
Background: Auditory deprivation alters cortical and subcortical brain regions, primarily linked to auditory and language processing, resulting in behavioral consequences. Neuroimaging studies have reported various degrees of structural changes, yet multiple variables in deafness profiles need to be considered for proper interpretation of results. To date, many inconsistencies are reported in the gray and white matter alterations following early profound deafness. The purpose of this study was to provide the first systematic review synthesizing gray and white matter changes in deaf individuals. Methods: We conducted a systematic review according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement in 27 studies comprising 626 deaf individuals. Results: Evidence shows that auditory deprivation significantly alters the white matter across the primary and secondary auditory cortices. The most consistent alteration across studies was in the bilateral superior temporal gyri. Furthermore, reductions in the fractional anisotropy of white matter fibers comprising in inferior fronto-occipital fasciculus, the superior longitudinal fasciculus, and the subcortical auditory pathway are reported. The reviewed studies also suggest that gray and white matter integrity is sensitive to early sign language acquisition, attenuating the effect of auditory deprivation on neurocognitive development. Conclusions: These findings suggest that understanding cortical reorganization through gray and white matter changes in auditory and non-auditory areas is an important factor in the development of auditory rehabilitation strategies in the deaf population.
Collapse
Affiliation(s)
- Marie Simon
- Département de Psychologie, Centre de Recherche en Neuropsychologie et Cognition, Université de Montréal, Montreal, QC, Canada
| | - Emma Campbell
- Département de Psychologie, Centre de Recherche en Neuropsychologie et Cognition, Université de Montréal, Montreal, QC, Canada
| | - François Genest
- Département de Psychologie, Centre de Recherche en Neuropsychologie et Cognition, Université de Montréal, Montreal, QC, Canada
| | - Michèle W MacLean
- Département de Psychologie, Centre de Recherche en Neuropsychologie et Cognition, Université de Montréal, Montreal, QC, Canada
| | - François Champoux
- École d'Orthophonie et d'Audiologie, Université de Montréal, Montreal, QC, Canada
| | - Franco Lepore
- Département de Psychologie, Centre de Recherche en Neuropsychologie et Cognition, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
17
|
Kuo SS, Pogue-Geile MF. Variation in fourteen brain structure volumes in schizophrenia: A comprehensive meta-analysis of 246 studies. Neurosci Biobehav Rev 2019; 98:85-94. [PMID: 30615934 PMCID: PMC6401304 DOI: 10.1016/j.neubiorev.2018.12.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 11/21/2018] [Accepted: 12/31/2018] [Indexed: 12/24/2022]
Abstract
Despite hundreds of structural MRI studies documenting smaller brain volumes on average in schizophrenia compared to controls, little attention has been paid to group differences in the variability of brain volumes. Examination of variability may help interpret mean group differences in brain volumes and aid in better understanding the heterogeneity of schizophrenia. Variability in 246 MRI studies was meta-analyzed for 13 structures that have shown medium to large mean effect sizes (Cohen's d≥0.4): intracranial volume, total brain volume, lateral ventricles, third ventricle, total gray matter, frontal gray matter, prefrontal gray matter, temporal gray matter, superior temporal gyrus gray matter, planum temporale, hippocampus, fusiform gyrus, insula; and a control structure, caudate nucleus. No significant differences in variability in cortical/subcortical volumes were detected in schizophrenia relative to controls. In contrast, increased variability was found in schizophrenia compared to controls for intracranial and especially lateral and third ventricle volumes. These findings highlight the need for more attention to ventricles and detailed analyses of brain volume distributions to better elucidate the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Susan S Kuo
- Department of Psychology, University of Pittsburgh, 4209 Sennott Square, 210 South Bouquet St., Pittsburgh PA 15260, USA.
| | - Michael F Pogue-Geile
- Department of Psychology, University of Pittsburgh, 4209 Sennott Square, 210 South Bouquet St., Pittsburgh PA 15260, USA; Department of Psychology and Department of Psychiatry, University of Pittsburgh, 4207 Sennott Square, 210 South Bouquet St., Pittsburgh PA 15260, USA.
| |
Collapse
|
18
|
A neuroanatomical account of mental time travelling in schizophrenia: A meta-analysis of functional and structural neuroimaging data. Neurosci Biobehav Rev 2017; 80:211-222. [DOI: 10.1016/j.neubiorev.2017.05.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 05/29/2017] [Indexed: 01/29/2023]
|
19
|
Kalmady SV, Shivakumar V, Arasappa R, Subramaniam A, Gautham S, Venkatasubramanian G, Gangadhar BN. Clinical correlates of hippocampus volume and shape in antipsychotic-naïve schizophrenia. Psychiatry Res Neuroimaging 2017; 263:93-102. [PMID: 28371658 DOI: 10.1016/j.pscychresns.2017.03.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 03/09/2017] [Accepted: 03/20/2017] [Indexed: 01/25/2023]
Abstract
While volume deficit of hippocampus is an established finding in schizophrenia, very few studies have examined large sample of patients without the confounding effect of antipsychotic treatment. Concurrent evaluation of hippocampus shape will offer additional information on the hippocampal aberrations in schizophrenia. In this study, we analyzed the volume and shape of hippocampus in antipsychotic-naïve schizophrenia patients (N=71) in comparison to healthy controls (N=82). Using 3-T MRI data, gray matter (GM) volume (anterior and posterior sub-divisions) and shape of the hippocampus were analyzed. Schizophrenia patients had significant hippocampal GM volume deficits (specifically the anterior sub-division) in comparison to healthy controls. There were significant positive correlations between anterior hippocampus volume and psychopathology scores of positive syndrome. Shape analyses revealed significant inward deformation of bilateral hippocampal surface in patients. In conclusion, our study findings add robust support for volume deficit in hippocampus in antipsychotic-naïve schizophrenia. Hippocampal shape deficits in schizophrenia observed in this study map to anterior CA1 sub-region. The differential relationship of anterior hippocampus (but not posterior hippocampus) with clinical symptoms is in tune with the findings in animal models. Further systematic studies are needed to evaluate the relationship between these hippocampal gray matter deficits with white matter and functional connectivity to facilitate understanding the hippocampal network abnormalities in schizophrenia.
Collapse
Affiliation(s)
- Sunil Vasu Kalmady
- The Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bangalore, India; Translational Psychiatry Laboratory, Cognitive Neurobiology Division, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Venkataram Shivakumar
- The Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bangalore, India; Translational Psychiatry Laboratory, Cognitive Neurobiology Division, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Rashmi Arasappa
- The Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Aditi Subramaniam
- The Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - S Gautham
- The Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Ganesan Venkatasubramanian
- The Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bangalore, India; Translational Psychiatry Laboratory, Cognitive Neurobiology Division, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bangalore, India.
| | - Bangalore N Gangadhar
- The Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| |
Collapse
|
20
|
Bähner F, Meyer-Lindenberg A. Hippocampal-prefrontal connectivity as a translational phenotype for schizophrenia. Eur Neuropsychopharmacol 2017; 27:93-106. [PMID: 28089652 DOI: 10.1016/j.euroneuro.2016.12.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 11/16/2016] [Accepted: 12/19/2016] [Indexed: 01/05/2023]
Abstract
Finding novel biological targets in psychiatry has been difficult, partly because current diagnostic categories are not defined by pathophysiology and difficult to model in animals. The study of species-conserved systems-level mechanisms implicated in psychiatric disease could be a promising strategy to address some of these difficulties. Altered hippocampal-prefrontal (HC-PFC) connectivity during working memory (WM) processing is a candidate for such a translational phenotype as it has been repeatedly associated with impaired cognition in schizophrenia patients and animal models for psychiatric risk factors. Specifically, persistent hippocampus-dorsolateral prefrontal cortex (HC-DLPFC) coupling during WM is an intermediate phenotype for schizophrenia that has been observed in patients, healthy relatives and carriers of two different risk polymorphisms identified in genome-wide association studies. Rodent studies report reduced coherence between HC and PFC during anesthesia, sleep and task performance in both genetic, environmental and neurodevelopmental models for schizophrenia. We discuss several challenges for translation including differences in anatomy, recording modalities and WM paradigms and suggest that a better understanding of HC-PFC coupling across species can be achieved if translational neuroimaging is used to control for task differences. The evidence for potential neurobiological substrates underlying HC-PFC dysconnectivity is evaluated and research strategies are proposed that aim to bridge the gap between findings from large-scale association studies and disease mechanisms.
Collapse
Affiliation(s)
- Florian Bähner
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany; Bernstein Center for Computational Neuroscience Heidelberg-Mannheim, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany.
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany; Bernstein Center for Computational Neuroscience Heidelberg-Mannheim, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany
| |
Collapse
|
21
|
Sun Y, Dai Z, Li J, Collinson SL, Sim K. Modular-level alterations of structure-function coupling in schizophrenia connectome. Hum Brain Mapp 2016; 38:2008-2025. [PMID: 28032370 DOI: 10.1002/hbm.23501] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 12/07/2016] [Accepted: 12/14/2016] [Indexed: 12/29/2022] Open
Abstract
Convergent evidences have revealed that schizophrenia is associated with brain dysconnectivity, which leads to abnormal network organization. However, discrepancies were apparent between the structural connectivity (SC) and functional connectivity (FC) studies, and the relationship between structural and functional deficits in schizophrenia remains largely unknown. In this study, resting-state functional magnetic resonance imaging and structural diffusion tensor imaging were performed in 20 patients with schizophrenia and 20 matched healthy volunteers (patients/controls = 19/17 after head motion rejection). Functional and structural brain networks were obtained for each participant. Graph theoretical approaches were employed to parcellate the FC networks into functional modules. The relationships between the entries of SC and FC were estimated within each module to identify group differences and their correlations with clinical symptoms. Although five common functional modules (including the default mode, occipital, subcortical, frontoparietal, and central modules) were identified in both groups, the patients showed a significantly reduced modularity in comparison with healthy participants. Furthermore, we found that schizophrenia-related aberrations of SC-FC coupling exhibited complex patterns among modules. Compared with controls, patients showed an increased SC-FC coupling in the default mode and the central modules. Moreover, significant SC-FC decoupling was demonstrated in the occipital and the subcortical modules, which was associated with longer duration of illness and more severe clinical manifestations of schizophrenia. Taken together, these findings demonstrated that altered module-dependent SC-FC coupling may underlie abnormal brain function and clinical symptoms observed in schizophrenia and highlighted the potential for using new multimodal neuroimaging biomarkers for diagnosis and severity evaluation of schizophrenia. Hum Brain Mapp 38:2008-2025, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yu Sun
- Singapore Institute for Neurotechnology (SINAPSE), Centre for Life Science, National University of Singapore, Singapore
| | - Zhongxiang Dai
- Singapore Institute for Neurotechnology (SINAPSE), Centre for Life Science, National University of Singapore, Singapore
| | - Junhua Li
- Singapore Institute for Neurotechnology (SINAPSE), Centre for Life Science, National University of Singapore, Singapore
| | - Simon L Collinson
- Department of Psychology, National University of Singapore, Singapore
| | - Kang Sim
- Department of General Psychiatry, Institute of Mental Health (IMH), Singapore.,Department of Research, Institute of Mental Health (IMH), Singapore
| |
Collapse
|
22
|
Sun Y, Zhang L, Ancharaz SS, Cheng S, Sun W, Wang H, Sun Y. Decreased fractional anisotropy values in two clusters of white matter in patients with schizotypal personality disorder: A DTI study. Behav Brain Res 2016; 310:68-75. [DOI: 10.1016/j.bbr.2016.05.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/16/2016] [Accepted: 05/09/2016] [Indexed: 11/24/2022]
|
23
|
Baumann PS, Griffa A, Fournier M, Golay P, Ferrari C, Alameda L, Cuenod M, Thiran JP, Hagmann P, Do KQ, Conus P. Impaired fornix-hippocampus integrity is linked to peripheral glutathione peroxidase in early psychosis. Transl Psychiatry 2016; 6:e859. [PMID: 27459724 PMCID: PMC5545707 DOI: 10.1038/tp.2016.117] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 03/17/2016] [Accepted: 04/15/2016] [Indexed: 12/19/2022] Open
Abstract
Several lines of evidence implicate the fornix-hippocampus circuit in schizophrenia. In early-phase psychosis, this circuit has not been extensively investigated and the underlying mechanisms affecting the circuit are unknown. The hippocampus and fornix are vulnerable to oxidative stress at peripuberty in a glutathione (GSH)-deficient animal model. The purposes of the current study were to assess the integrity of the fornix-hippocampus circuit in early-psychosis patients (EP), and to study its relationship with peripheral redox markers. Diffusion spectrum imaging and T1-weighted magnetic resonance imaging (MRI) were used to assess the fornix and hippocampus in 42 EP patients compared with 42 gender- and age-matched healthy controls. Generalized fractional anisotropy (gFA) and volumetric properties were used to measure fornix and hippocampal integrity, respectively. Correlation analysis was used to quantify the relationship of gFA in the fornix and hippocampal volume, with blood GSH levels and glutathione peroxidase (GPx) activity. Patients compared with controls exhibited lower gFA in the fornix as well as smaller volume in the hippocampus. In EP, but not in controls, smaller hippocampal volume was associated with high GPx activity. Disruption of the fornix-hippocampus circuit is already present in the early stages of psychosis. Higher blood GPx activity is associated with smaller hippocampal volume, which may support a role of oxidative stress in disease mechanisms.
Collapse
Affiliation(s)
- P S Baumann
- Department of Psychiatry, Unit for Research in Schizophrenia, Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
- Department of Psychiatry, Service of General Psychiatry, Centre Hospitalier Universitaire Vaudois, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - A Griffa
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Radiology, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
| | - M Fournier
- Department of Psychiatry, Unit for Research in Schizophrenia, Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
| | - P Golay
- Department of Psychiatry, Service of General Psychiatry, Centre Hospitalier Universitaire Vaudois, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Service of Community Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - C Ferrari
- Department of Psychiatry, Unit for Research in Schizophrenia, Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
| | - L Alameda
- Department of Psychiatry, Unit for Research in Schizophrenia, Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
- Department of Psychiatry, Service of General Psychiatry, Centre Hospitalier Universitaire Vaudois, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - M Cuenod
- Department of Psychiatry, Unit for Research in Schizophrenia, Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
| | - J-P Thiran
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Radiology, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
| | - P Hagmann
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Radiology, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
| | - K Q Do
- Department of Psychiatry, Unit for Research in Schizophrenia, Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
| | - P Conus
- Department of Psychiatry, Service of General Psychiatry, Centre Hospitalier Universitaire Vaudois, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| |
Collapse
|
24
|
Zhao G, Denisova K, Sehatpour P, Long J, Gui W, Qiao J, Javitt DC, Wang Z. Fractal Dimension Analysis of Subcortical Gray Matter Structures in Schizophrenia. PLoS One 2016; 11:e0155415. [PMID: 27176232 PMCID: PMC4866699 DOI: 10.1371/journal.pone.0155415] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 04/28/2016] [Indexed: 12/13/2022] Open
Abstract
A failure of adaptive inference—misinterpreting available sensory information for appropriate perception and action—is at the heart of clinical manifestations of schizophrenia, implicating key subcortical structures in the brain including the hippocampus. We used high-resolution, three-dimensional (3D) fractal geometry analysis to study subtle and potentially biologically relevant structural alterations (in the geometry of protrusions, gyri and indentations, sulci) in subcortical gray matter (GM) in patients with schizophrenia relative to healthy individuals. In particular, we focus on utilizing Fractal Dimension (FD), a compact shape descriptor that can be computed using inputs with irregular (i.e., not necessarily smooth) surfaces in order to quantify complexity (of geometrical properties and configurations of structures across spatial scales) of subcortical GM in this disorder. Probabilistic (entropy-based) information FD was computed based on the box-counting approach for each of the seven subcortical structures, bilaterally, as well as the brainstem from high-resolution magnetic resonance (MR) images in chronic patients with schizophrenia (n = 19) and age-matched healthy controls (n = 19) (age ranges: patients, 22.7–54.3 and healthy controls, 24.9–51.6 years old). We found a significant reduction of FD in the left hippocampus (median: 2.1460, range: 2.07–2.18 vs. median: 2.1730, range: 2.15–2.23, p<0.001; Cohen’s effect size, U3 = 0.8158 (95% Confidence Intervals, CIs: 0.6316, 1.0)), the right hippocampus (median: 2.1430, range: 2.05–2.19 vs. median: 2.1760, range: 2.12–2.21, p = 0.004; U3 = 0.8421 (CIs: 0.5263, 1)), as well as left thalamus (median: 2.4230, range: 2.40–2.44, p = 0.005; U3 = 0.7895 (CIs: 0.5789, 0.9473)) in schizophrenia patients, relative to healthy individuals. Our findings provide in-vivo quantitative evidence for reduced surface complexity of hippocampus, with reduced FD indicating a less complex, less regular GM surface detected in schizophrenia.
Collapse
Affiliation(s)
- Guihu Zhao
- School of Information Science and Engineering, Central South University, Changsha 410083, China
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY 10032, United States of America
| | - Kristina Denisova
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY 10032, United States of America
- Sackler Institute for Psychobiology, Columbia University College of Physicians and Surgeons, New York, NY 10032, United States of America
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY 10032, United States of America
| | - Pejman Sehatpour
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY 10032, United States of America
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States of America
| | - Jun Long
- School of Information Science and Engineering, Central South University, Changsha 410083, China
- * E-mail: ; ; (ZW); (JL)
| | - Weihua Gui
- School of Information Science and Engineering, Central South University, Changsha 410083, China
| | - Jianping Qiao
- College of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Daniel C. Javitt
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY 10032, United States of America
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States of America
| | - Zhishun Wang
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY 10032, United States of America
- * E-mail: ; ; (ZW); (JL)
| |
Collapse
|
25
|
Scott JA, Goodrich-Hunsaker N, Kalish K, Lee A, Hunsaker MR, Schumann CM, Carmichael OT, Simon TJ. The hippocampi of children with chromosome 22q11.2 deletion syndrome have localized anterior alterations that predict severity of anxiety. J Psychiatry Neurosci 2016; 41:203-13. [PMID: 26599134 PMCID: PMC4853211 DOI: 10.1503/jpn.140299] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Individuals with 22q11.2 deletion syndrome (22q11.2DS) have an elevated risk for schizophrenia, which increases with history of childhood anxiety. Altered hippocampal morphology is a common neuroanatomical feature of 22q11.2DS and idiopathic schizophrenia. Relating hippocampal structure in children with 22q11.2DS to anxiety and impaired cognitive ability could lead to hippocampus-based characterization of psychosis-proneness in this at-risk population. METHODS We measured hippocampal volume using a semiautomated approach on MRIs collected from typically developing children and children with 22q11.2DS. We then analyzed hippocampal morphology with Localized Components Analysis. We tested the modulating roles of diagnostic group, hippocampal volume, sex and age on local hippocampal shape components. Lastly, volume and shape components were tested as covariates of IQ and anxiety. RESULTS We included 48 typically developing children and 69 children with 22q11.2DS in our study. Hippocampal volume was reduced bilaterally in children with 22q11.2DS, and these children showed greater variation in the shape of the anterior hippocampus than typically developing children. Children with 22q11.2DS had greater inward deformation of the anterior hippocampus than typically developing children. Greater inward deformation of the anterior hippocampus was associated with greater severity of anxiety, specifically fear of physical injury, within the 22q11.2DS group. LIMITATIONS Shape alterations are not specific to hippocampal subfields. CONCLUSION Alterations in the structure of the anterior hippocampus likely affect function and may impact limbic circuitry. We suggest these alterations potentially contribute to anxiety symptoms in individuals with 22q11.2DS through modulatory pathways. Altered hippocampal morphology may be uniquely linked to anxiety risk factors for schizophrenia, which could be a powerful neuroanatomical marker of schizophrenia risk and hence protection.
Collapse
Affiliation(s)
- Julia A. Scott
- Correspondence to: J.A. Scott, Center for Neuroscience, 1544 Newton Court, University of California, Davis CA, United States;
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Mamah D, Alpert KI, Barch DM, Csernansky JG, Wang L. Subcortical neuromorphometry in schizophrenia spectrum and bipolar disorders. Neuroimage Clin 2016; 11:276-286. [PMID: 26977397 PMCID: PMC4781974 DOI: 10.1016/j.nicl.2016.02.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 11/17/2022]
Abstract
BACKGROUND Disorders within the schizophrenia spectrum genetically overlap with bipolar disorder, yet questions remain about shared biological phenotypes. Investigation of brain structure in disease has been enhanced by developments in shape analysis methods that can identify subtle regional surface deformations. Our study aimed to identify brain structure surface deformations that were common across related psychiatric disorders, and characterize differences. METHODS Using the automated FreeSurfer-initiated Large Deformation Diffeomorphic Metric Mapping, we examined volumes and shapes of seven brain structures: hippocampus, amygdala, caudate, nucleus accumbens, putamen, globus pallidus and thalamus. We compared findings in controls (CON; n = 40), and those with schizophrenia (SCZ; n = 52), schizotypal personality disorder (STP; n = 12), psychotic bipolar disorder (P-BP; n = 49) and nonpsychotic bipolar disorder (N-BP; n = 24), aged 15-35. Relationships between morphometric measures and positive, disorganized and negative symptoms were also investigated. RESULTS Inward deformation was present in the posterior thalamus in SCZ, P-BP and N-BP; and in the subiculum of the hippocampus in SCZ and STP. Most brain structures however showed unique shape deformations across groups. Correcting for intracranial size resulted in volumetric group differences for caudate (p < 0.001), putamen (p < 0.01) and globus pallidus (p < 0.001). Shape analysis showed dispersed patterns of expansion on the basal ganglia in SCZ. Significant clinical relationships with hippocampal, amygdalar and thalamic volumes were observed. CONCLUSIONS Few similarities in surface deformation patterns were seen across groups, which may reflect differing neuropathologies. Posterior thalamic contraction in SCZ and BP suggest common genetic or environmental antecedents. Surface deformities in SCZ basal ganglia may have been due to antipsychotic drug effects.
Collapse
Affiliation(s)
- Daniel Mamah
- Department of Psychiatry, Washington University Medical School, St. Louis, United States.
| | - Kathryn I Alpert
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, United States
| | - Deanna M Barch
- Department of Psychiatry, Washington University Medical School, St. Louis, United States; Department of Psychology, Washington University Medical School, St. Louis, United States; Department of Radiology, Washington University Medical School, St. Louis, United States
| | - John G Csernansky
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, United States
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, United States
| |
Collapse
|
27
|
Heckenast JR, Wilkinson LS, Jones MW. Decoding Advances in Psychiatric Genetics: A Focus on Neural Circuits in Rodent Models. ADVANCES IN GENETICS 2015; 92:75-106. [PMID: 26639916 DOI: 10.1016/bs.adgen.2015.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Appropriately powered genome-wide association studies combined with deep-sequencing technologies offer the prospect of real progress in revealing the complex biological underpinnings of schizophrenia and other psychiatric disorders. Meanwhile, recent developments in genome engineering, including CRISPR, constitute better tools to move forward with investigating these genetic leads. This review aims to assess how these advances can inform the development of animal models for psychiatric disease, with a focus on schizophrenia and in vivo electrophysiological circuit-level measures with high potential as disease biomarkers.
Collapse
Affiliation(s)
- Julia R Heckenast
- School of Psychology, Cardiff University, Cardiff, UK; School of Medicine, Cardiff University, Cardiff, UK; Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Lawrence S Wilkinson
- School of Psychology, Cardiff University, Cardiff, UK; School of Medicine, Cardiff University, Cardiff, UK; Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Matthew W Jones
- School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol, UK
| |
Collapse
|
28
|
Strzelecki D, Podgórski M, Kałużyńska O, Gawlik-Kotelnicka O, Stefańczyk L, Kotlicka-Antczak M, Gmitrowicz A, Grzelak P. Supplementation of Antipsychotic Treatment with the Amino Acid Sarcosine Influences Proton Magnetic Resonance Spectroscopy Parameters in Left Frontal White Matter in Patients with Schizophrenia. Nutrients 2015; 7:8767-82. [PMID: 26506383 PMCID: PMC4632447 DOI: 10.3390/nu7105427] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 09/03/2015] [Accepted: 09/29/2015] [Indexed: 01/04/2023] Open
Abstract
Dysfunction of the glutamatergic system, the main stimulating system in the brain, has a major role in pathogenesis of schizophrenia. The frontal white matter (WM) is partially composed of axons from glutamatergic pyramidal neurons and glia with glutamatergic receptors. The natural amino acid sarcosine, a component of a normal diet, inhibits the glycine type 1 transporter, increasing the glycine level. Thus, it modulates glutamatergic transmission through the glutamatergic ionotropic NMDA (N-methyl-d-aspartate) receptor, which requires glycine as a co-agonist. To evaluate the concentrations of brain metabolites (NAA, N-acetylaspartate; Glx, complex of glutamate, glutamine, and γ-aminobutyric acid (GABA); mI, myo-inositol; Cr, creatine; Cho, choline) in the left frontal WM, Proton Nuclear Magnetic Resonance (1H-NMR) spectroscopy was used. Twenty-five patients randomly chosen from a group of fifty with stable schizophrenia (DSM-IV-TR) and dominant negative symptoms, who were receiving antipsychotic therapy, were administered 2 g of sarcosine daily for six months. The remaining 25 patients received placebo. Assignment was double blinded. 1H-NMR spectroscopy (1.5 T) was performed twice: before and after the intervention. NAA, Glx and mI were evaluated as Cr and Cho ratios. All patients were also assessed twice with the Positive and Negative Syndrome Scale (PANSS). Results were compared between groups and in two time points in each group. The sarcosine group demonstrated a significant decrease in WM Glx/Cr and Glx/Cho ratios compared to controls after six months of therapy. In the experimental group, the final NAA/Cr ratio significantly increased and Glx/Cr ratio significantly decreased compared to baseline values. Improvement in the PANSS scores was significant only in the sarcosine group. In patients with schizophrenia, sarcosine augmentation can reverse the negative effect of glutamatergic system overstimulation, with a simultaneous beneficial increase of NAA/Cr ratio in the WM of the left frontal lobe. Our results further support the glutamatergic hypothesis of schizophrenia.
Collapse
Affiliation(s)
- Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Łódź, Central Clinical Hospital, ul. Pomorska 251, Łódź 92-213, Poland.
| | - Michał Podgórski
- Department of Radiology-Diagnostic Imaging, Medical University of Łódź, Łódź 92-213, Poland.
| | - Olga Kałużyńska
- Department of Affective and Psychotic Disorders, Medical University of Łódź, Central Clinical Hospital, ul. Pomorska 251, Łódź 92-213, Poland.
| | - Oliwia Gawlik-Kotelnicka
- Department of Affective and Psychotic Disorders, Medical University of Łódź, Central Clinical Hospital, ul. Pomorska 251, Łódź 92-213, Poland.
| | - Ludomir Stefańczyk
- Department of Radiology-Diagnostic Imaging, Medical University of Łódź, Łódź 92-213, Poland.
| | - Magdalena Kotlicka-Antczak
- Department of Affective and Psychotic Disorders, Medical University of Łódź, Central Clinical Hospital, ul. Pomorska 251, Łódź 92-213, Poland.
| | - Agnieszka Gmitrowicz
- Department of Adolescent Psychiatry, Medical University of Łódź, Łódź 92-213, Poland.
| | - Piotr Grzelak
- Department of Radiology-Diagnostic Imaging, Medical University of Łódź, Łódź 92-213, Poland.
| |
Collapse
|
29
|
Corcoba A, Steullet P, Duarte JMN, Van de Looij Y, Monin A, Cuenod M, Gruetter R, Do KQ. Glutathione Deficit Affects the Integrity and Function of the Fimbria/Fornix and Anterior Commissure in Mice: Relevance for Schizophrenia. Int J Neuropsychopharmacol 2015; 19:pyv110. [PMID: 26433393 PMCID: PMC4815475 DOI: 10.1093/ijnp/pyv110] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/24/2015] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Structural anomalies of white matter are found in various brain regions of patients with schizophrenia and bipolar and other psychiatric disorders, but the causes at the cellular and molecular levels remain unclear. Oxidative stress and redox dysregulation have been proposed to play a role in the pathophysiology of several psychiatric conditions, but their anatomical and functional consequences are poorly understood. The aim of this study was to investigate white matter throughout the brain in a preclinical model of redox dysregulation. METHODS In a mouse model with impaired glutathione synthesis (Gclm KO), a state-of-the-art multimodal magnetic resonance protocol at high field (14.1 T) was used to assess longitudinally the white matter structure, prefrontal neurochemical profile, and ventricular volume. Electrophysiological recordings in the abnormal white matter tracts identified by diffusion tensor imaging were performed to characterize the functional consequences of fractional anisotropy alterations. RESULTS Structural alterations observed at peri-pubertal age and adulthood in Gclm KO mice were restricted to the anterior commissure and fornix-fimbria. Reduced fractional anisotropy in the anterior commissure (-7.5% ± 1.9, P<.01) and fornix-fimbria (-4.5% ± 1.3, P<.05) were accompanied by reduced conduction velocity in fast-conducting fibers of the posterior limb of the anterior commissure (-14.3% ± 5.1, P<.05) and slow-conducting fibers of the fornix-fimbria (-8.6% ± 2.6, P<.05). Ventricular enlargement was found at peri-puberty (+25% ± 8 P<.05) but not in adult Gclm KO mice. CONCLUSIONS Glutathione deficit in Gclm KO mice affects ventricular size and the integrity of the fornix-fimbria and anterior commissure. This suggests that redox dysregulation could contribute during neurodevelopment to the impaired white matter and ventricle enlargement observed in schizophrenia and other psychiatric disorders.
Collapse
Affiliation(s)
- Alberto Corcoba
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland (Mr Corcoba, and Drs Duarte, Van de Looij, and Gruetter); Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, CHUV, Lausanne, Switzerland (Mr Corcoba, Drs Steullet, Monin, Cuenod, and Do); Division of Child Growth & Development, University of Geneva, Geneva, Switzerland (Dr Van de Looij); Department of Radiology, University Hospital, Lausanne, Switzerland (Dr Gruetter); Department of Radiology, University Hospital, Geneva, Switzerland (Dr Gruetter)
| | - Pascal Steullet
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland (Mr Corcoba, and Drs Duarte, Van de Looij, and Gruetter); Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, CHUV, Lausanne, Switzerland (Mr Corcoba, Drs Steullet, Monin, Cuenod, and Do); Division of Child Growth & Development, University of Geneva, Geneva, Switzerland (Dr Van de Looij); Department of Radiology, University Hospital, Lausanne, Switzerland (Dr Gruetter); Department of Radiology, University Hospital, Geneva, Switzerland (Dr Gruetter)
| | - João M N Duarte
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland (Mr Corcoba, and Drs Duarte, Van de Looij, and Gruetter); Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, CHUV, Lausanne, Switzerland (Mr Corcoba, Drs Steullet, Monin, Cuenod, and Do); Division of Child Growth & Development, University of Geneva, Geneva, Switzerland (Dr Van de Looij); Department of Radiology, University Hospital, Lausanne, Switzerland (Dr Gruetter); Department of Radiology, University Hospital, Geneva, Switzerland (Dr Gruetter)
| | - Yohan Van de Looij
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland (Mr Corcoba, and Drs Duarte, Van de Looij, and Gruetter); Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, CHUV, Lausanne, Switzerland (Mr Corcoba, Drs Steullet, Monin, Cuenod, and Do); Division of Child Growth & Development, University of Geneva, Geneva, Switzerland (Dr Van de Looij); Department of Radiology, University Hospital, Lausanne, Switzerland (Dr Gruetter); Department of Radiology, University Hospital, Geneva, Switzerland (Dr Gruetter)
| | - Aline Monin
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland (Mr Corcoba, and Drs Duarte, Van de Looij, and Gruetter); Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, CHUV, Lausanne, Switzerland (Mr Corcoba, Drs Steullet, Monin, Cuenod, and Do); Division of Child Growth & Development, University of Geneva, Geneva, Switzerland (Dr Van de Looij); Department of Radiology, University Hospital, Lausanne, Switzerland (Dr Gruetter); Department of Radiology, University Hospital, Geneva, Switzerland (Dr Gruetter)
| | - Michel Cuenod
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland (Mr Corcoba, and Drs Duarte, Van de Looij, and Gruetter); Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, CHUV, Lausanne, Switzerland (Mr Corcoba, Drs Steullet, Monin, Cuenod, and Do); Division of Child Growth & Development, University of Geneva, Geneva, Switzerland (Dr Van de Looij); Department of Radiology, University Hospital, Lausanne, Switzerland (Dr Gruetter); Department of Radiology, University Hospital, Geneva, Switzerland (Dr Gruetter)
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland (Mr Corcoba, and Drs Duarte, Van de Looij, and Gruetter); Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, CHUV, Lausanne, Switzerland (Mr Corcoba, Drs Steullet, Monin, Cuenod, and Do); Division of Child Growth & Development, University of Geneva, Geneva, Switzerland (Dr Van de Looij); Department of Radiology, University Hospital, Lausanne, Switzerland (Dr Gruetter); Department of Radiology, University Hospital, Geneva, Switzerland (Dr Gruetter)
| | - Kim Q Do
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland (Mr Corcoba, and Drs Duarte, Van de Looij, and Gruetter); Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, CHUV, Lausanne, Switzerland (Mr Corcoba, Drs Steullet, Monin, Cuenod, and Do); Division of Child Growth & Development, University of Geneva, Geneva, Switzerland (Dr Van de Looij); Department of Radiology, University Hospital, Lausanne, Switzerland (Dr Gruetter); Department of Radiology, University Hospital, Geneva, Switzerland (Dr Gruetter).
| |
Collapse
|
30
|
Strzelecki D, Podgórski M, Kałużyńska O, Gawlik-Kotelnicka O, Stefańczyk L, Kotlicka-Antczak M, Gmitrowicz A, Grzelak P. Supplementation of antipsychotic treatment with sarcosine – GlyT1 inhibitor – causes changes of glutamatergic (1)NMR spectroscopy parameters in the left hippocampus in patients with stable schizophrenia. Neurosci Lett 2015; 606:7-12. [PMID: 26306650 DOI: 10.1016/j.neulet.2015.08.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/30/2015] [Accepted: 08/20/2015] [Indexed: 02/01/2023]
Abstract
Glutamatergic system, the main stimulating system of the brain, plays an important role in the pathogenesis of schizophrenia. Hippocampus, a structure crucial for memory and cognitive functions and rich in glutamatergic neurons, is a natural object of interest in studies on psychoses. Sarcosine, a glycine transporter (GlyT-1) inhibitor influences the function of NMDA receptor and glutamate-dependent transmission. The aim of the study was to assess the effects of sarcosine on metabolism parameters in the left hippocampus in patients with schizophrenia. Assessments were performed using proton nuclear magnetic resonance ((1)H NMR) spectroscopy (1.5T). Fifty patients diagnosed with schizophrenia (DSM-IV-TR), with dominant negative symptoms, in stable clinical condition and stable antipsychotics doses were treated either with sarcosine (n=25) or placebo (n=25). Spectroscopic parameters were evaluated within groups and between two groups before and after 6-month intervention. All patients were also assessed with the Positive and Negative Syndrome Scale (PANSS). In the sarcosine group, after 6-month treatment, we found significant decrease in hippocampal Glx/Cr (Glx-complex of glutamate, glutamine and GABA, Cr-creatine) and Glx/Cho (Cho-choline), while N-acetylaspartate (NAA), myo-inositol (mI), Cr and Cho parameters remained stable along the study and also did not differ significantly between both groups. This is the first study showing that a pharmacological intervention in schizophrenia, particularly augmentation of the antypsychotic treatment with sarcosine, may reverse the pathological increase in glutamatergic transmission in the hippocampus. The results confirm involvement of glutamatergic system in the pathogenesis of schizophrenia and demonstrate beneficial effects of GlyT-1 inhibitor on the metabolism in the hippocampus and symptoms of schizophrenia.
Collapse
Affiliation(s)
- Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Łódź, Central Clinical Hospital, ul. Pomorska 251, 92-213 Łódź, Poland.
| | - Michał Podgórski
- Department of Radiology and Diagnostic Imaging, Medical University of Łódź, Poland
| | - Olga Kałużyńska
- Department of Affective and Psychotic Disorders, Medical University of Łódź, Central Clinical Hospital, ul. Pomorska 251, 92-213 Łódź, Poland
| | - Oliwia Gawlik-Kotelnicka
- Department of Affective and Psychotic Disorders, Medical University of Łódź, Central Clinical Hospital, ul. Pomorska 251, 92-213 Łódź, Poland
| | - Ludomir Stefańczyk
- Department of Radiology and Diagnostic Imaging, Medical University of Łódź, Poland
| | - Magdalena Kotlicka-Antczak
- Department of Affective and Psychotic Disorders, Medical University of Łódź, Central Clinical Hospital, ul. Pomorska 251, 92-213 Łódź, Poland
| | | | - Piotr Grzelak
- Department of Radiology and Diagnostic Imaging, Medical University of Łódź, Poland
| |
Collapse
|
31
|
Hernandez-Castillo CR, Galvez V, Mercadillo RE, Díaz R, Yescas P, Martinez L, Ochoa A, Velazquez-Perez L, Fernandez-Ruiz J. Functional connectivity changes related to cognitive and motor performance in spinocerebellar ataxia type 2. Mov Disord 2015; 30:1391-9. [PMID: 26256273 DOI: 10.1002/mds.26320] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/30/2015] [Accepted: 05/25/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Several neuropathological studies in spinocerebellar ataxia type 2 (SCA2) have revealed significant atrophy of the cerebellum, brainstem, sensorimotor cortex, and several regions in the frontal lobe. However, the impact of the neurodegeneration on the functional integration of the remaining tissue is unknown. To analyze the clinical impact of these functional changes, we correlated the abnormal functional connectivity found in SCA2 patients with their scores in clinical scales. To obtain the functional connectivity changes, we followed two approaches. In one we used areas with significant cerebellar gray matter atrophy as anchor seeds, and in the other we performed a whole-brain data-driven analysis. METHODS Fourteen genetically confirmed SCA2 patients and aged-matched healthy controls participated in the study. Voxel-based morphometry and resting-state functional magnetic resonance imaging (fMRI) were done to analyze structural and functional brain changes. Independent component analysis and dual regression were used for intrinsic network comparison. Significant functional connectivity differences were correlated with the behavioral scores. RESULTS Seed-based analysis found reduced functional connectivity within the cerebellum and between the cerebellum and frontal/parietal cortices. Cerebellar functional connectivity increases were found with parietal, frontal, and temporal areas. Intrinsic network analysis found a functional decrease in the cerebellar network, and increase in the default-mode and fronto-parietal networks. Further analysis showed significant correlations between clinical scores and the abnormal functional connectivity strength. CONCLUSION Our findings show significant correlations between functional connectivity changes in key areas affected in SCA2 and these patients' motor and neuropsychological impairments, adding an important insight to our understanding of the pathophysiology of SCA2.
Collapse
Affiliation(s)
- Carlos R Hernandez-Castillo
- Consejo Nacional de Ciencia y Tecnología-Cátedras-Instituto de Neuroetologia, Universidad Veracruzana, México
| | - Víctor Galvez
- Programa de Doctorado en Neuroetología, Universidad Veracruzana, México
| | - Roberto E Mercadillo
- Cátedras CONACYT, Área de Neurociencias, Depto. de Biología de la Reproducción, Universidad Autónoma Metropolitana-Unidad Iztapalapa, México
| | - Rosalinda Díaz
- Laboratorio de Neuropsicología, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México
| | - Petra Yescas
- Departamento de Neurogenética y Biología Molecular, Instituto Nacional de Neurología y Neurocirugía. Manuel Velasco Suarez, México
| | - Leticia Martinez
- Departamento de Neurogenética y Biología Molecular, Instituto Nacional de Neurología y Neurocirugía. Manuel Velasco Suarez, México
| | - Adriana Ochoa
- Departamento de Neurogenética y Biología Molecular, Instituto Nacional de Neurología y Neurocirugía. Manuel Velasco Suarez, México
| | | | - Juan Fernandez-Ruiz
- Programa de Doctorado en Neuroetología, Universidad Veracruzana, México.,Laboratorio de Neuropsicología, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México.,Facultad de Psicología, Universidad Veracruzana, México
| |
Collapse
|
32
|
Deng Y, Goodrich-Hunsaker NJ, Cabaral M, Amaral DG, Buonocore MH, Harvey D, Kalish K, Carmichael O, Schumann CM, Lee A, Dougherty RF, Perry LM, Wandell BA, Simon TJ. Disrupted fornix integrity in children with chromosome 22q11.2 deletion syndrome. Psychiatry Res 2015; 232:106-14. [PMID: 25748884 PMCID: PMC4404209 DOI: 10.1016/j.pscychresns.2015.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 09/30/2014] [Accepted: 02/04/2015] [Indexed: 01/25/2023]
Abstract
The fornix is the primary subcortical output fiber system of the hippocampal formation. In children with 22q11.2 deletion syndrome (22q11.2DS), hippocampal volume reduction has been commonly reported, but few studies as yet have evaluated the integrity of the fornix. Therefore, we investigated the fornix of 45 school-aged children with 22q11.2DS and 38 matched typically developing (TD) children. Probabilistic diffusion tensor imaging (DTI) tractography was used to reconstruct the body of the fornix in each child׳s brain native space. Compared with children, significantly lower fractional anisotropy (FA) and higher radial diffusivity (RD) was observed bilaterally in the body of the fornix in children with 22q11.2DS. Irregularities were especially prominent in the posterior aspect of the fornix where it emerges from the hippocampus. Smaller volumes of the hippocampal formations were also found in the 22q11.2DS group. The reduced hippocampal volumes were correlated with lower fornix FA and higher fornix RD in the right hemisphere. Our findings provide neuroanatomical evidence of disrupted hippocampal connectivity in children with 22q11.2DS, which may help to further understand the biological basis of spatial impairments, affective regulation, and other factors related to the ultra-high risk for schizophrenia in this population.
Collapse
Affiliation(s)
- Yi Deng
- Department of Psychiatry and Behavioral Sciences and the MIND Institute, University of California, Davis, Sacramento, CA 95817, USA
| | - Naomi J. Goodrich-Hunsaker
- Department of Psychiatry and Behavioral Sciences and the MIND Institute, University of California, Davis, Sacramento, CA 95817, USA
| | - Margarita Cabaral
- Department of Psychiatry and Behavioral Sciences and the MIND Institute, University of California, Davis, Sacramento, CA 95817, USA
| | - David G. Amaral
- Department of Psychiatry and Behavioral Sciences and the MIND Institute, University of California, Davis, Sacramento, CA 95817, USA
| | - Michael H. Buonocore
- Department of Radiology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Danielle Harvey
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, CA 95616, USA
| | - Kristopher Kalish
- Graduate Group in Computer Science, University of California, Davis, CA 95616, USA
| | - Owen Carmichael
- Graduate Group in Computer Science, University of California, Davis, CA 95616, USA, Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Cynthia M. Schumann
- Department of Psychiatry and Behavioral Sciences and the MIND Institute, University of California, Davis, Sacramento, CA 95817, USA
| | - Aaron Lee
- Department of Psychiatry and Behavioral Sciences and the MIND Institute, University of California, Davis, Sacramento, CA 95817, USA
| | | | - Lee M. Perry
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
| | - Brian A. Wandell
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
| | - Tony J. Simon
- Department of Psychiatry and Behavioral Sciences and the MIND Institute, University of California, Davis, Sacramento, CA 95817, USA,Address correspondence to Dr Tony J. Simon, MIND Institute, University of California, Davis, 2825 50th Street, Sacramento, CA 95817, USA. Telephone: (916)-703-0407. Facsimile: (916)-703-0244.
| |
Collapse
|
33
|
Zhou Y, Fan L, Qiu C, Jiang T. Prefrontal cortex and the dysconnectivity hypothesis of schizophrenia. Neurosci Bull 2015; 31:207-19. [PMID: 25761914 DOI: 10.1007/s12264-014-1502-8] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 11/20/2014] [Indexed: 12/15/2022] Open
Abstract
Schizophrenia is hypothesized to arise from disrupted brain connectivity. This "dysconnectivity hypothesis" has generated interest in discovering whether there is anatomical and functional dysconnectivity between the prefrontal cortex (PFC) and other brain regions, and how this dysconnectivity is linked to the impaired cognitive functions and aberrant behaviors of schizophrenia. Critical advances in neuroimaging technologies, including diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI), make it possible to explore these issues. DTI affords the possibility to explore anatomical connectivity in the human brain in vivo and fMRI can be used to make inferences about functional connections between brain regions. In this review, we present major advances in the understanding of PFC anatomical and functional dysconnectivity and their implications in schizophrenia. We then briefly discuss future prospects that need to be explored in order to move beyond simple mapping of connectivity changes to elucidate the neuronal mechanisms underlying schizophrenia.
Collapse
Affiliation(s)
- Yuan Zhou
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | |
Collapse
|
34
|
Kawano M, Sawada K, Shimodera S, Ogawa Y, Kariya S, Lang DJ, Inoue S, Honer WG. Hippocampal subfield volumes in first episode and chronic schizophrenia. PLoS One 2015; 10:e0117785. [PMID: 25658118 PMCID: PMC4319836 DOI: 10.1371/journal.pone.0117785] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 12/30/2014] [Indexed: 02/07/2023] Open
Abstract
Background Reduced hippocampal volume in schizophrenia is a well-replicated finding. New imaging techniques allow delineation of hippocampal subfield volumes. Studies including predominantly chronic patients demonstrate differences between subfields in sensitivity to illness, and in associations with clinical features. We carried out a cross-sectional and longitudinal study of first episode, sub-chronic, and chronic patients, using an imaging strategy that allows for the assessment of multiple hippocampal subfields. Methods Hippocampal subfield volumes were measured in 34 patients with schizophrenia (19 first episode, 6 sub-chronic, 9 chronic) and 15 healthy comparison participants. A subset of 10 first episode and 12 healthy participants were rescanned after six months. Results Total left hippocampal volume was smaller in sub-chronic (p = 0.04, effect size 1.12) and chronic (p = 0.009, effect size 1.42) patients compared with healthy volunteers. The CA2-3 subfield volume of chronic patients was significantly decreased (p = 0.009, effect size 1.42) compared to healthy volunteers. The CA4-DG volume was significantly reduced in all three patient groups compared to healthy group (all p < 0.005). The two affected subfield volumes were inversely correlated with severity of negative symptoms (p < 0.05). There was a small, but statistically significant decline in left CA4-DG volume over the first six months of illness (p = 0.01). Conclusions Imaging strategies defining the subfields of the hippocampus may be informative in linking symptoms and structural abnormalities, and in understanding more about progression during the early phases of illness in schizophrenia.
Collapse
Affiliation(s)
- Mitsuhiko Kawano
- Department of Neuropsychiatry, Kochi Medical School, Kochi, Japan
| | - Ken Sawada
- Department of Neuropsychiatry, Kochi Medical School, Kochi, Japan
- Department of Psychiatry, Aki General Hospital, Kochi, Japan
- * E-mail:
| | - Shinji Shimodera
- Department of Neuropsychiatry, Kochi Medical School, Kochi, Japan
| | - Yasuhiro Ogawa
- Department of Radiology, Hyogo Prefectural Kakogawa Hospital, Hyogo, Japan
| | - Shinji Kariya
- Departments of Diagnostic Radiology and Radiation Oncology, Kochi Medical School, Kochi, Japan
| | - Donna J. Lang
- Department of Radiology, University of British Columbia, Vancouver, Canada
| | - Shimpei Inoue
- Department of Neuropsychiatry, Aizu Medical Center, Fukushima Medical University, Fukushima, Japan
| | - William G. Honer
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
| |
Collapse
|
35
|
Genzel L, Dresler M, Cornu M, Jäger E, Konrad B, Adamczyk M, Friess E, Steiger A, Czisch M, Goya-Maldonado R. Medial prefrontal-hippocampal connectivity and motor memory consolidation in depression and schizophrenia. Biol Psychiatry 2015; 77:177-86. [PMID: 25037555 DOI: 10.1016/j.biopsych.2014.06.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 06/01/2014] [Accepted: 06/02/2014] [Indexed: 12/24/2022]
Abstract
BACKGROUND Overnight memory consolidation is disturbed in both depression and schizophrenia, creating an ideal situation to investigate the mechanisms underlying sleep-related consolidation and to distinguish disease-specific processes from common elements in their pathophysiology. METHODS We investigated patients with depression and schizophrenia, as well as healthy control subjects (each n = 16), under a motor memory consolidation protocol with functional magnetic resonance imaging and polysomnography. RESULTS In a sequential finger-tapping task associated with the degree of hippocampal-prefrontal cortex functional connectivity during the task, significantly less overnight improvement was identified as a common deficit in both patient groups. A task-related overnight decrease in activation of the basal ganglia was observed in control subjects and schizophrenia patients; in contrast, patients with depression showed an increase. During the task, schizophrenia patients, in comparison with control subjects, additionally recruited adjacent cortical areas, which showed a decrease in functional magnetic resonance imaging activation overnight and were related to disease severity. Effective connectivity analyses revealed that the hippocampus was functionally connected to the motor task network, and the cerebellum decoupled from this network overnight. CONCLUSIONS While both patient groups showed similar deficits in consolidation associated with hippocampal-prefrontal cortex connectivity, other activity patterns more specific for disease pathology differed.
Collapse
Affiliation(s)
- Lisa Genzel
- Max Planck Institute of Psychiatry, Munich, Germany; Centre for Cognitive and Neural Systems, University of Edinburgh, Edinburgh, United Kingdom.
| | | | - Marion Cornu
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Eugen Jäger
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Boris Konrad
- Max Planck Institute of Psychiatry, Munich, Germany
| | | | | | - Axel Steiger
- Max Planck Institute of Psychiatry, Munich, Germany
| | | | - Roberto Goya-Maldonado
- Max Planck Institute of Psychiatry, Munich, Germany; Centre for Translational Research in Systems Neuroscience and Psychiatry, Department of Psychiatry and Psychotherapy, Georg August University, Göttingen, Germany
| |
Collapse
|
36
|
Najjar S, Pearlman DM. Neuroinflammation and white matter pathology in schizophrenia: systematic review. Schizophr Res 2015; 161:102-12. [PMID: 24948485 DOI: 10.1016/j.schres.2014.04.041] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/30/2014] [Accepted: 04/03/2014] [Indexed: 01/24/2023]
Abstract
BACKGROUND Neuroinflammation and white matter pathology have each been independently associated with schizophrenia, and experimental studies have revealed mechanisms by which the two can interact in vitro, but whether these abnormalities simultaneously co-occur in people with schizophrenia remains unclear. METHOD We searched MEDLINE, EMBASE, PsycINFO and Web of Science from inception through 12 January 2014 for studies reporting human data on the relationship between microglial or astroglial activation, or cytokines and white matter pathology in schizophrenia. RESULTS Fifteen studies totaling 792 subjects (350 with schizophrenia, 346 controls, 49 with bipolar disorder, 37 with major depressive disorder and 10 with Alzheimer's disease) met all eligibility criteria. Five neuropathological and two neuroimaging studies collectively yielded consistent evidence of an association between schizophrenia and microglial activation, particularly in white rather than gray matter regions. Ultrastructural analysis revealed activated microglia near dystrophic and apoptotic oligodendroglia, demyelinating and dysmyelinating axons and swollen and vacuolated astroglia in subjects with schizophrenia but not controls. Two neuroimaging studies found an association between carrier status for a functional single nucleotide polymorphism in the interleukin-1β gene and abnormal white as well as gray matter volumes in schizophrenia but not controls. A neuropathological study found that orbitofrontal white matter neuronal density was increased in schizophrenia cases exhibiting high transcription levels of pro-inflammatory cytokines relative to those exhibiting low transcription levels and to controls. Schizophrenia was associated with decreased astroglial density specifically in subgenual cingulate white matter and anterior corpus callosum, but not other gray or white matter areas. Astrogliosis was consistently absent. Data on astroglial gene expression, mRNA expression and protein concentration were inconsistent. CONCLUSION Neuroinflammation is associated with white matter pathology in people with schizophrenia, and may contribute to structural and functional disconnectivity, even at the first episode of psychosis.
Collapse
Affiliation(s)
- Souhel Najjar
- Neuroinflammation Research Group, Epilepsy Center Division, Department of Neurology, NYU School of Medicine, New York, New York, United States.
| | - Daniel M Pearlman
- Neuroinflammation Research Group, Epilepsy Center Division, Department of Neurology, NYU School of Medicine, New York, New York, United States; The Dartmouth Institute of Health Policy and Clinical Practice, Audrey and Theodor Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
| |
Collapse
|
37
|
Grey-matter texture abnormalities and reduced hippocampal volume are distinguishing features of schizophrenia. Psychiatry Res 2014; 223:179-86. [PMID: 25028155 DOI: 10.1016/j.pscychresns.2014.05.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 05/06/2014] [Accepted: 05/25/2014] [Indexed: 11/22/2022]
Abstract
Neurodevelopmental processes are widely believed to underlie schizophrenia. Analysis of brain texture from conventional magnetic resonance imaging (MRI) can detect disturbance in brain cytoarchitecture. We tested the hypothesis that patients with schizophrenia manifest quantitative differences in brain texture that, alongside discrete volumetric changes, may serve as an endophenotypic biomarker. Texture analysis (TA) of grey matter distribution and voxel-based morphometry (VBM) of regional brain volumes were applied to MRI scans of 27 patients with schizophrenia and 24 controls. Texture parameters (uniformity and entropy) were also used as covariates in VBM analyses to test for correspondence with regional brain volume. Linear discriminant analysis tested if texture and volumetric data predicted diagnostic group membership (schizophrenia or control). We found that uniformity and entropy of grey matter differed significantly between individuals with schizophrenia and controls at the fine spatial scale (filter width below 2mm). Within the schizophrenia group, these texture parameters correlated with volumes of the left hippocampus, right amygdala and cerebellum. The best predictor of diagnostic group membership was the combination of fine texture heterogeneity and left hippocampal size. This study highlights the presence of distributed grey-matter abnormalities in schizophrenia, and their relation to focal structural abnormality of the hippocampus. The conjunction of these features has potential as a neuroimaging endophenotype of schizophrenia.
Collapse
|
38
|
Goldman MB. Brain circuit dysfunction in a distinct subset of chronic psychotic patients. Schizophr Res 2014; 157:204-13. [PMID: 24994556 PMCID: PMC6195810 DOI: 10.1016/j.schres.2014.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/30/2014] [Accepted: 06/02/2014] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To identify the mechanism of unexplained hyponatremia and primary polydipsia in schizophrenia and its relationship to the underlying psychiatric illness. METHODS Briefly review previous studies that led to the conclusion the hyponatremia reflects altered hippocampal inhibition of peripheral neuroendocrine secretion. In greater detail, present the evidence supporting the hypothesis that circuit dysfunction associated with the hyponatremia and the polydipsia contributes to the underlying mental disorder. RESULTS Polydipsic patients with and without hyponatremia exhibit enhanced neuroendocrine responses to psychological stress in proportion to structural deformations on their anterior hippocampus, amygdala and anterior hypothalamus. Nonpolydipsic patients exhibit blunted responses and deformations on other hippocampal and amygdala surfaces. The deformations in polydipsic patients are also proportional to diminished peripheral oxytocin levels and impaired facial affect recognition that is reversed by intranasal oxytocin. The anterior hippocampus is at the hub of a circuit that modulates neuroendocrine and other responses to psychological stress and is implicated in schizophrenia. Preliminary data indicate that other measures of stress reactivity are also enhanced in polydipsics and that the functional connectivity of the hippocampus with the other structures in this circuitry differs in schizophrenia patients with and without polydipsia. CONCLUSION Polydipsia may identify a subset of schizophrenia patients whose enhanced stress reactivity contributes to their mental illness. Stress reactivity may be a symptom dimension of chronic psychosis that arises from circuit dysfunction that can be modeled in animals. Hence polydipsia could be a biomarker that helps to clarify the pathophysiology and heterogeneity of psychosis as well as identify novel therapies. Clinical investigators should consider obtaining indices of water balance, as these may help them unravel and more concisely interpret their findings. Basic researchers should assess if the polydipsic subset is a patient group particularly suitable to test hypotheses arising from their translational studies.
Collapse
Affiliation(s)
- Morris B. Goldman
- Northwestern University, Department of Psychiatry, 446 East Ontario, Suite 7-100, Chicago, Illinois 60611, USA, phone:1 312 695 2089, fax: 1 708 383 6344
| |
Collapse
|
39
|
Thompson DK, Omizzolo C, Adamson C, Lee KJ, Stargatt R, Egan GF, Doyle LW, Inder TE, Anderson PJ. Longitudinal growth and morphology of the hippocampus through childhood: Impact of prematurity and implications for memory and learning. Hum Brain Mapp 2014; 35:4129-39. [PMID: 24523026 PMCID: PMC5516043 DOI: 10.1002/hbm.22464] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 12/06/2013] [Accepted: 01/07/2013] [Indexed: 11/08/2022] Open
Abstract
The effects of prematurity on hippocampal development through early childhood are largely unknown. The aims of this study were to (1) compare the shape of the very preterm (VPT) hippocampus to that of full-term (FT) children at 7 years of age, and determine if hippocampal shape is associated with memory and learning impairment in VPT children, (2) compare change in shape and volume of the hippocampi from term-equivalent to 7 years of age between VPT and FT children, and determine if development of the hippocampi over time predicts memory and learning impairment in VPT children. T1 and T2 magnetic resonance images were acquired at both term equivalent and 7 years of age in 125 VPT and 25 FT children. Hippocampi were manually segmented and shape was characterized by boundary point distribution models at both time-points. Memory and learning outcomes were measured at 7 years of age. The VPT group demonstrated less hippocampal infolding than the FT group at 7 years. Hippocampal growth between infancy and 7 years was less in the VPT compared with the FT group, but the change in shape was similar between groups. There was little evidence that the measures of hippocampal development were related to memory and learning impairments in the VPT group. This study suggests that the developmental trajectory of the human hippocampus is altered in VPT children, but this does not predict memory and learning impairment. Further research is required to elucidate the mechanisms for memory and learning difficulties in VPT children.
Collapse
Affiliation(s)
- Deanne K Thompson
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hernandez-Castillo CR, Galvez V, Morgado-Valle C, Fernandez-Ruiz J. Whole-brain connectivity analysis and classification of spinocerebellar ataxia type 7 by functional MRI. CEREBELLUM & ATAXIAS 2014; 1:2. [PMID: 26331026 PMCID: PMC4549137 DOI: 10.1186/2053-8871-1-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/03/2014] [Indexed: 01/21/2023]
Abstract
Background Spinocerebellar ataxia type 7 (SCA7) is a genetic disorder characterized by degeneration of the motor and visual systems. Besides neural deterioration, these patients also show functional connectivity changes linked to the degenerated brain areas. However, it is not known if there are functional connectivity changes in regions not necessarily linked to the areas undergoing structural deterioration. Therefore, in this study we have explored the whole-brain functional connectivity of SCA7 patients in order to find the overall abnormal functional pattern of this disease. Twenty-six patients and age-and-gender-matched healthy controls were recruited. Whole-brain functional connectivity analysis was performed in both groups. A classification algorithm was used to find the discriminative power of the abnormal connections by classifying patients and healthy subjects. Results Nineteen abnormal functional connections involving cerebellar and cerebral regions were selected for the classification stage. Support vector machine classification reached 92.3% accuracy with 95% sensitivity and 89.6% specificity using a 10-fold cross-validation. Most of the selected regions were well known degenerated brain regions including cerebellar and visual cortices, but at the same time, our whole-brain connectivity analysis revealed new regions not previously reported involving temporal and prefrontal cortices. Conclusion Our whole-brain connectivity approach provided information that seed-based analysis missed due to its region-specific searching method. The high classification accuracy suggests that using resting state functional connectivity may be a useful biomarker in SCA 7. Electronic supplementary material The online version of this article (doi:10.1186/2053-8871-1-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carlos R Hernandez-Castillo
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Distrito Federal C P., 04510 Mexico
| | - Víctor Galvez
- Posgrado en Neuroetologia, Universidad Veracruzana, Xalapa, Mexico
| | | | - Juan Fernandez-Ruiz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Distrito Federal C P., 04510 Mexico ; Facultad de Psicologia, Universidad Veracruzana, Xalapa, Mexico
| |
Collapse
|
41
|
Baron CA, Beaulieu C. Acquisition strategy to reduce cerebrospinal fluid partial volume effects for improved DTI tractography. Magn Reson Med 2014; 73:1075-84. [PMID: 24723303 DOI: 10.1002/mrm.25226] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/25/2014] [Accepted: 02/26/2014] [Indexed: 11/11/2022]
Abstract
PURPOSE An acquisition method that does not increase scan time or specific absorption rate is investigated for reducing the deleterious effects of cerebrospinal fluid (CSF) partial volume effects on diffusion tensor imaging (DTI) tractography. It is based on using a shorter repetition time (TR) by means of slice acquisition re-ordering to reduce the signal of long T1 CSF and a non-zero minimum diffusion weighting (b-value) to attenuate rapidly diffusing CSF signal with respect to brain tissue. METHODS A target reduction of the CSF/brain signal ratio from 3.5 to 0.8 required a TR of 2.5 s and minimum b-value of 425 s/mm(2) . This was evaluated at 4.7 Tesla in eight healthy young adults for tractography of the fornix, which has considerable CSF contamination and is difficult to track from standard DTI. RESULTS This method effectively reduced CSF signal relative to brain and yielded more robust tractography, increased tract volume, increased fractional anisotropy, and decreased mean diffusivity in the fornix relative to standard DTI. CONCLUSION CSF partial volume effects in DTI can be mitigated in acquisition through reduced TR and non-zero minimum diffusion weighting. The lack of RF absorption rate or scan time increases is attractive over other CSF suppression methods such as inversion recovery.
Collapse
Affiliation(s)
- Corey A Baron
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
42
|
Zhang Y, Su TP, Liu B, Zhou Y, Chou KH, Lo CY, Hung CC, Chen WL, Jiang T, Lin CP. Disrupted thalamo-cortical connectivity in schizophrenia: a morphometric correlation analysis. Schizophr Res 2014; 153:129-35. [PMID: 24529363 DOI: 10.1016/j.schres.2014.01.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 01/03/2014] [Accepted: 01/22/2014] [Indexed: 10/25/2022]
Abstract
Increasing studies have implicated the thalamus in schizophrenia, supporting the view that this structure has an important role in this disorder. Given that extensive reciprocal connections exist between the thalamus and the cerebral cortex, it is believed that disruptions of the thalamo-cortical connections may underlie the multiplicity of schizophrenic symptoms. Therefore, assessing the relationship between the thalamus and the neocortex may provide new insights into the pathophysiology of schizophrenia. We analyzed magnetic resonance images from a sample of 101 schizophrenic patients and 101 healthy controls. By assessing the correlation between the thalamic volume and cortical thickness at each vertex on the cortical surface, a thalamo-cortical network was obtained for each group. We compared the patterns of thalamo-cortical connectivity between the two groups. Compared with healthy controls, less distributed cortical regions were identified in the thalamo-cortical network in patients with schizophrenia. Vertex-wise comparison revealed decreased thalamo-cortical connectivity in bilateral inferior frontal gyrus, the left superior temporal gyrus and the right parieto-occipital region in schizophrenia. The observed disruptions in thalamo-cortical connectivity might be the substrate underlying the wide range of schizophrenic symptoms and provide further evidence to support the notion of schizophrenia as a disorder of brain dysconnectivity.
Collapse
Affiliation(s)
- Yuanchao Zhang
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China; National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Tung-Ping Su
- Department of Psychiatry, College of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Bing Liu
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yuan Zhou
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, PR China; Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Kun-Hsien Chou
- Brain Connectivity Lab, Institute of Neuroscience, National Yang-Ming University, Taipei 11221, Taiwan
| | - Chun-Yi Lo
- Brain Connectivity Lab, Institute of Neuroscience, National Yang-Ming University, Taipei 11221, Taiwan
| | - Chia-Chun Hung
- Brain Connectivity Lab, Institute of Neuroscience, National Yang-Ming University, Taipei 11221, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei 11221, Taiwan; Department of Psychiatry, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Wei-Ling Chen
- Department of Psychiatry, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Tianzi Jiang
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China; National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Ching-Po Lin
- Brain Connectivity Lab, Institute of Neuroscience, National Yang-Ming University, Taipei 11221, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei 11221, Taiwan.
| |
Collapse
|
43
|
Sasamoto A, Miyata J, Kubota M, Hirao K, Kawada R, Fujimoto S, Tanaka Y, Hazama M, Sugihara G, Sawamoto N, Fukuyama H, Takahashi H, Murai T. Global association between cortical thinning and white matter integrity reduction in schizophrenia. Schizophr Bull 2014; 40:420-7. [PMID: 23461997 PMCID: PMC3932083 DOI: 10.1093/schbul/sbt030] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Previous neuroimaging studies have revealed that both gray matter (GM) and white matter (WM) are altered in several morphological aspects in schizophrenia patients. Although several studies reported associations between GM and WM alterations in restricted regions, the existence of a global association between GM and WM pathologies is unknown. Considering the wide distribution of GM morphological changes and the profound genetic background of WM abnormalities, it would be natural to postulate a global association between pathologies of GM and WM in schizophrenia. In this investigation, we studied 35 schizophrenia patients and 35 healthy control subjects using T1-weighted magnetic resonance imaging and diffusion tensor imaging (DTI) and investigated the association between GM thickness and WM fractional anisotropy (FA) as a proxy of pathology in each tissue. To investigate cortical thickness, surface-based analysis was used. The mean cortical thickness for the whole brain was computed for each hemisphere, and group comparisons were performed. For DTI data, mean FA for the whole brain was calculated, and group comparisons were performed. Subsequently, the correlation between mean cortical thickness and mean FA was investigated. Results showed that the mean cortical thickness was significantly thinner, and the mean FA was significantly lower in schizophrenia patients. Only in the patient group the mean cortical thickness and mean FA showed significant positive correlations in both hemispheres. This correlation remained significant even after controlling for demographic and clinical variables. Thus, our results indicate that the GM and WM pathologies of schizophrenia are intertwined at the global level.
Collapse
Affiliation(s)
- Akihiko Sasamoto
- *To whom correspondence should be addressed; 54 Shogoin-Kawahara-cho, Kyoto 606-8507, Japan; tel: +81 75 751 3386, fax: +81 75 751 3246, e-mail:
| | - Jun Miyata
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan;,*To whom correspondence should be addressed; 54 Shogoin-Kawahara-cho, Kyoto 606–8507, Japan; tel: +81 75 751 3386, fax: +81 75 751 3246, e-mail:
| | - Manabu Kubota
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuyuki Hirao
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan;,Department of Clinical Psychology, Kyoto Bunkyo University, Uji, Japan
| | - Ryosaku Kawada
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinsuke Fujimoto
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Tanaka
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaaki Hazama
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Genichi Sugihara
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobukatsu Sawamoto
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hidenao Fukuyama
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
44
|
The multimodal connectivity of the hippocampal complex in auditory and visual hallucinations. Mol Psychiatry 2014; 19:184-91. [PMID: 23318999 DOI: 10.1038/mp.2012.181] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/30/2012] [Accepted: 11/12/2012] [Indexed: 11/09/2022]
Abstract
Hallucinations constitute one of the most representative and disabling symptoms of schizophrenia. Several Magnetic Resonance Imaging (MRI) findings support the hypothesis that distinct patterns of connectivity, particularly within networks involving the hippocampal complex (HC), could be associated with different hallucinatory modalities. The aim of this study was to investigate HC connectivity as a function of the hallucinatory modality, that is, auditory or visual. Two carefully selected subgroups of schizophrenia patients with only auditory hallucinations (AH) or with audio-visual hallucinations (A+VH) were compared using the following three complementary multimodal MRI methods: resting state functional MRI, diffusion MRI and structural MRI were used to analyze seed-based Functional Connectivity (sb-FC), Tract-Based Spatial Statistics (TBSS) and shape analysis, respectively. Sb-FC was significantly higher between the HC, the medial prefrontal cortex (mPFC) and the caudate nuclei in A+VH patients compared with the AH group. Conversely, AH patients exhibited a higher sb-FC between the HC and the thalamus in comparison with the A+VH group. In the A+VH group, TBSS showed specific higher white matter connectivity in the pathways connecting the HC with visual areas, such as the forceps major and the inferior-fronto-occipital fasciculus than in the AH group. Finally, shape analysis showed localized hippocampal hypertrophy in the A+VH group. Functional results support the fronto-limbic dysconnectivity hypothesis of schizophrenia, while specific structural findings indicate that plastic changes are associated with hallucinations. Together, these results suggest that there are distinct connectivity patterns in patients with schizophrenia that depend on the sensory-modality, with specific involvement of the HC in visual hallucinations.
Collapse
|
45
|
Thong JYJ, Qiu A, Sum MY, Kuswanto CN, Tuan TA, Donohoe G, Sitoh YY, Sim K. Effects of the neurogranin variant rs12807809 on thalamocortical morphology in schizophrenia. PLoS One 2013; 8:e85603. [PMID: 24386483 PMCID: PMC3875583 DOI: 10.1371/journal.pone.0085603] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/28/2013] [Indexed: 12/31/2022] Open
Abstract
Although the genome wide supported psychosis susceptibility neurogranin (NRGN) gene is expressed in human brains, it is unclear how it impacts brain morphology in schizophrenia. We investigated the influence of NRGN rs12807809 on cortical thickness, subcortical volumes and shapes in patients with schizophrenia. One hundred and fifty six subjects (91 patients with schizophrenia and 65 healthy controls) underwent structural MRI scans and their blood samples were genotyped. A brain mapping algorithm, large deformation diffeomorphic metric mapping, was used to perform group analysis of subcortical shapes and cortical thickness. Patients with risk TT genotype were associated with widespread cortical thinning involving frontal, parietal and temporal cortices compared with controls with TT genotype. No volumetric difference in subcortical structures (hippocampus, thalamus, amygdala, basal ganglia) was observed between risk TT genotype in patients and controls. However, patients with risk TT genotype were associated with thalamic shape abnormalities involving regions related to pulvinar and medial dorsal nuclei. Our results revealed the influence of the NRGN gene on thalamocortical morphology in schizophrenia involving widespread cortical thinning and thalamic shape abnormalities. These findings help to clarify underlying NRGN mediated pathophysiological mechanisms involving cortical-subcortical brain networks in schizophrenia.
Collapse
Affiliation(s)
- Jamie Yu Jin Thong
- Department of Bioengineering, National University of Singapore, Singapore
| | - Anqi Qiu
- Department of Bioengineering, National University of Singapore, Singapore
- Clinical Imaging Research Center, National University of Singapore, Singapore
- Singapore Institute for Clinical Sciences, the Agency for Science, Technology and Research, Singapore
- * E-mail:
| | - Min Yi Sum
- Research Division, Institute of Mental Health, Singapore
| | | | - Ta Ahn Tuan
- Department of Bioengineering, National University of Singapore, Singapore
| | - Gary Donohoe
- Department of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Republic of Ireland
| | - Yih Yian Sitoh
- Department of Neuroradiology, National Neuroscience Institute, Singapore
| | - Kang Sim
- Research Division, Institute of Mental Health, Singapore
- Department of General Psychiatry, Institute of Mental Health, Singapore
| |
Collapse
|
46
|
Dickerson DD, Bilkey DK. Aberrant neural synchrony in the maternal immune activation model: using translatable measures to explore targeted interventions. Front Behav Neurosci 2013; 7:217. [PMID: 24409130 PMCID: PMC3873515 DOI: 10.3389/fnbeh.2013.00217] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 12/16/2013] [Indexed: 01/01/2023] Open
Abstract
Maternal exposure to infection occurring mid-gestation produces a three-fold increase in the risk of schizophrenia in the offspring. The critical initiating factor appears to be the maternal immune activation (MIA) that follows infection. This process can be induced in rodents by exposure of pregnant dams to the viral mimic Poly I:C, which triggers an immune response that results in structural, functional, behavioral, and electrophysiological phenotypes in the adult offspring that model those seen in schizophrenia. We used this model to explore the role of synchronization in brain neural networks, a process thought to be dysfunctional in schizophrenia and previously associated with positive, negative, and cognitive symptoms of schizophrenia. Exposure of pregnant dams to Poly I:C on GD15 produced an impairment in long-range neural synchrony in adult offspring between two regions implicated in schizophrenia pathology; the hippocampus and the medial prefrontal cortex (mPFC). This reduction in synchrony was ameliorated by acute doses of the antipsychotic clozapine. MIA animals have previously been shown to have impaired pre-pulse inhibition (PPI), a gold-standard measure of schizophrenia-like deficits in animal models. Our data showed that deficits in synchrony were positively correlated with the impairments in PPI. Subsequent analysis of LFP activity during the PPI response also showed that reduced coupling between the mPFC and the hippocampus following processing of the pre-pulse was associated with reduced PPI. The ability of the MIA intervention to model neurodevelopmental aspects of schizophrenia pathology provides a useful platform from which to investigate the ontogeny of aberrant synchronous processes. Further, the way in which the model expresses translatable deficits such as aberrant synchrony and reduced PPI will allow researchers to explore novel intervention strategies targeted to these changes.
Collapse
Affiliation(s)
| | - David K Bilkey
- Department of Psychology, University of Otago Dunedin, New Zealand
| |
Collapse
|
47
|
Godsil BP, Kiss JP, Spedding M, Jay TM. The hippocampal-prefrontal pathway: the weak link in psychiatric disorders? Eur Neuropsychopharmacol 2013; 23:1165-81. [PMID: 23332457 DOI: 10.1016/j.euroneuro.2012.10.018] [Citation(s) in RCA: 311] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 09/13/2012] [Accepted: 10/18/2012] [Indexed: 12/27/2022]
Abstract
While the hippocampal formation and the prefrontal cortex each have a well-established role in cognitive and mnemonic processes, the extent and manner in which these structures interact to achieve these functions has not been fully delineated. Recent research in rodents compellingly supports the idea that the projection of neurons extending from the CA1 region of the hippocampus and from the subiculum to the prefrontal cortex, referred to here as the H-PFC pathway, is critically involved in aspects of cognition related to executive function and to emotional regulation. Concurrently, it is becoming evident that persons suffering from schizophrenia, depression, and post-traumatic stress disorder display structural anomalies and aberrant functional coupling within the hippocampal-prefrontal circuit. Considering that these disorders involve varying degrees of cognitive impairment and emotional dysregulation, dysfunction in the H-PFC pathway might therefore be the common element of their pathophysiology. This overlap might also be intertwined with the pathway's evident susceptibility to stress and with its relationship to the amygdala. In consequence, the H-PFC pathway is a potentially crucial element of the pathophysiology of several psychiatric diseases, and it offers a specific target for therapeutic intervention, which is consistent with the recent emphasis on reframing psychiatric diseases in terms of brain circuits.
Collapse
Affiliation(s)
- Bill P Godsil
- INSERM, Laboratoire de Physiopathologie des Maladies Psychiatriques, Centre de Psychiatrie et Neurosciences, CPN U894, Paris, France; Université Paris, Descartes, Sorbonne Paris Cité , Faculté de Médecine Paris Descartes, Paris, France.
| | | | | | | |
Collapse
|
48
|
Hernandez-Castillo CR, Alcauter S, Galvez V, Barrios FA, Yescas P, Ochoa A, Garcia L, Diaz R, Gao W, Fernandez-Ruiz J. Disruption of visual and motor connectivity in spinocerebellar ataxia type 7. Mov Disord 2013; 28:1708-16. [DOI: 10.1002/mds.25618] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/28/2013] [Accepted: 07/01/2013] [Indexed: 11/06/2022] Open
Affiliation(s)
- Carlos R. Hernandez-Castillo
- Instituto de Neuroetologia; Universidad Veracruzana; Xalapa Mexico
- Department of Radiology and BRIC; University of North Carolina; Chapel Hill North Carolina USA
| | - Sarael Alcauter
- Department of Radiology and BRIC; University of North Carolina; Chapel Hill North Carolina USA
| | - Victor Galvez
- Instituto de Neuroetologia; Universidad Veracruzana; Xalapa Mexico
| | - Fernando A. Barrios
- Instituto de Neurobiología; Universidad Nacional Autónoma de México; Mexico City Mexico
| | - Petra Yescas
- Departamento de Neurogenetica y Biologia Molecular; Instituto Nacional de Neurologia y Neurocirugia. Manuel Velasco Suarez; Mexico City Mexico
| | - Adriana Ochoa
- Departamento de Neurogenetica y Biologia Molecular; Instituto Nacional de Neurologia y Neurocirugia. Manuel Velasco Suarez; Mexico City Mexico
| | - Lizbeth Garcia
- Departamento de Neurogenetica y Biologia Molecular; Instituto Nacional de Neurologia y Neurocirugia. Manuel Velasco Suarez; Mexico City Mexico
| | - Rosalinda Diaz
- Departamento de Fisiologia, Facultad de Medicina; Universidad Nacional Autonoma de Mexico; Mexico City Mexico
| | - Wei Gao
- Department of Radiology and BRIC; University of North Carolina; Chapel Hill North Carolina USA
| | - Juan Fernandez-Ruiz
- Instituto de Neuroetologia; Universidad Veracruzana; Xalapa Mexico
- Departamento de Fisiologia, Facultad de Medicina; Universidad Nacional Autonoma de Mexico; Mexico City Mexico
- Facultad de Psicologia; Universidad Veracruzana; Xalapa Mexico
| |
Collapse
|
49
|
Qiu A, Gan SC, Wang Y, Sim K. Amygdala-hippocampal shape and cortical thickness abnormalities in first-episode schizophrenia and mania. Psychol Med 2013; 43:1353-1363. [PMID: 23186886 DOI: 10.1017/s0033291712002218] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Abnormalities in cortical thickness and subcortical structures have been studied in schizophrenia but little is known about corresponding changes in mania and brain structural differences between these two psychiatric conditions, especially early in the stage of the illness. In this study we aimed to compare cortical thickness and shape of the amygdala-hippocampal complex in first-episode schizophrenia (FES) and mania (FEM). Method Structural magnetic resonance imaging (MRI) was performed on 28 FES patients, 28 FEM patients and 28 healthy control subjects who were matched for age, gender and handedness. RESULTS Overall, the shape of the amygdala was deformed in both patient groups, relative to controls. Compared to FEM patients, FES patients had significant inward shape deformation in the left hippocampal tail, right hippocampal body and a small region in the right amygdala. Cortical thinning was more widespread in FES patients, with significant differences found in the temporal brain regions when compared with FEM and controls. CONCLUSIONS Significant differences were observed between the two groups of patients with FES and FEM in terms of the hippocampal shape and cortical thickness in the temporal region, highlighting that distinguishable brain structural changes are present early in the course of schizophrenia and mania.
Collapse
Affiliation(s)
- A Qiu
- Department of Bioengineering, National University of Singapore, Singapore.
| | | | | | | |
Collapse
|
50
|
Hovington CL, Bodnar M, Joober R, Malla AK, Lepage M. Impairment in verbal memory observed in first episode psychosis patients with persistent negative symptoms. Schizophr Res 2013; 147:223-9. [PMID: 23628602 DOI: 10.1016/j.schres.2013.04.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 04/08/2013] [Accepted: 04/08/2013] [Indexed: 11/16/2022]
Abstract
Negative symptoms are present early on during the first episode of psychosis (FEP). The severity of these symptoms has been linked to cognitive deficits, including memory; however, its relationship with persistent negative symptoms (PNS) remains unclear. Thus, the goals of the current paper were to explore memory profiles in FEP patients identified as having PNS and to delineate this relationship in PNS over a 1-year period. Patients diagnosed as having a first episode of psychosis were segregated into groups of patients who met the criteria for PNS (N = 39) and patients who did not, or non-PNS (N = 97). At an initial assessment, all subjects were administered neurocognitive tests for three memory domains including verbal, visual and working memory. In addition, in FEP patients, clinical symptoms including negative, positive and depressive symptoms were also measured at the initial assessment as well as months 1, 2, 3, 6, 9, and 12. A significant interaction of memory × group was observed (F = 4.997, d.f. = 1,181, P = 0.002), with post hoc comparisons indicating that the PNS group performed more poorly than non-PNS only in the verbal memory domain. All three-memory domains remained stable over time. Hence, in comparison to non-PNS patients, FEP patients with PNS appear to have greater (selective) verbal memory impairments throughout the first year of treatment.
Collapse
Affiliation(s)
- Cindy L Hovington
- Prevention and Early Intervention Program for Psychoses, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|