1
|
Hille M, Kühn S, Kempermann G, Bonhoeffer T, Lindenberger U. From animal models to human individuality: Integrative approaches to the study of brain plasticity. Neuron 2024; 112:3522-3541. [PMID: 39461332 DOI: 10.1016/j.neuron.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/02/2024] [Accepted: 10/04/2024] [Indexed: 10/29/2024]
Abstract
Plasticity allows organisms to form lasting adaptive changes in neural structures in response to interactions with the environment. It serves both species-general functions and individualized skill acquisition. To better understand human plasticity, we need to strengthen the dialogue between human research and animal models. Therefore, we propose to (1) enhance the interpretability of macroscopic methods used in human research by complementing molecular and fine-structural measures used in animals with such macroscopic methods, preferably applied to the same animals, to create macroscopic metrics common to both examined species; (2) launch dedicated cross-species research programs, using either well-controlled experimental paradigms, such as motor skill acquisition, or more naturalistic environments, where individuals of either species are observed in their habitats; and (3) develop conceptual and computational models linking molecular and fine-structural events to phenomena accessible by macroscopic methods. In concert, these three component strategies can foster new insights into the nature of plastic change.
Collapse
Affiliation(s)
- Maike Hille
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Center for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany.
| | - Simone Kühn
- Center for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany; Clinic and Policlinic for Psychiatry and Psychotherapy, University Clinic Hamburg-Eppendorf, Hamburg, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany, and London, UK
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany; CRTD - Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Tobias Bonhoeffer
- Synapses-Circuits-Plasticity, Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany, and London, UK.
| |
Collapse
|
2
|
Kaller MS, Lazari A, Feng Y, van der Toorn A, Rühling S, Thomas CW, Shimizu T, Bannerman D, Vyazovskiy V, Richardson WD, Sampaio-Baptista C, Johansen-Berg H. Ablation of oligodendrogenesis in adult mice alters brain microstructure and activity independently of behavioral deficits. Glia 2024; 72:1728-1745. [PMID: 38982743 DOI: 10.1002/glia.24576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 07/11/2024]
Abstract
Oligodendrocytes continue to differentiate from their precursor cells even in adulthood, a process that can be modulated by neuronal activity and experience. Previous work has indicated that conditional ablation of oligodendrogenesis in adult mice leads to learning and memory deficits in a range of behavioral tasks. The current study replicated and re-evaluated evidence for a role of oligodendrogenesis in motor learning, using a complex running wheel task. Further, we found that ablating oligodendrogenesis alters brain microstructure (ex vivo MRI) and brain activity (in vivo EEG) independent of experience with the task. This suggests a role for adult oligodendrocyte formation in the maintenance of brain function and indicates that task-independent changes due to oligodendrogenesis ablation need to be considered when interpreting learning and memory deficits in this model.
Collapse
Affiliation(s)
- Malte S Kaller
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Alberto Lazari
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Yingshi Feng
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Annette van der Toorn
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht & Utrecht University, Utrecht, The Netherlands
| | - Sebastian Rühling
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christopher W Thomas
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Takahiro Shimizu
- The Wolfson Institute for Biomedical Research, University College London, London, UK
| | - David Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Vladyslav Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, UK
- The Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - William D Richardson
- The Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Cassandra Sampaio-Baptista
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
| | - Heidi Johansen-Berg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Sacco A, Gordon SG, Lomber SG. Gray matter volume of the feline cerebral cortex and structural plasticity following perinatal deafness. Neuroimage 2024; 299:120813. [PMID: 39182711 DOI: 10.1016/j.neuroimage.2024.120813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024] Open
Abstract
In response to sensory deprivation, the brain adapts according to contemporary demands to efficiently navigate a modified perceptual environment. This reorganization may result in improved processing of the remaining senses-a phenomenon referred to as compensatory crossmodal plasticity. One approach to explore this neuroplasticity is to consider the macrostructural changes in neural tissue that mirror this functional optimization. The current study is the first of its kind to measure MRI-derived gray matter (GM) volumes of control felines (n=30), while additionally identifying volumetric differences in response to perinatal deafness (30 ototoxically-deafened cats). To accomplish this purpose, regional and morphometric methods were performed in parallel. The regional analysis evaluated volumetric alterations of global GM, as well as the volumes of 146 regions of interest (ROIs) and 12 functional subgroupings of these ROIs. Results revealed whole-brain GM preservation; however, somatosensory and visual cortices exhibited an overall increase in volume. On a smaller scale, this analysis uncovered two auditory ROIs (second auditory cortex, A2, and ventral auditory field, VAF) that decreased in volume alongside two visual regions (anteromedial lateral suprasylvian area, AMLS and splenial visual area, SVA) that increased-all localized within the right hemisphere. Comparatively, the findings of tensor-based morphometry (TBM) generally aligned with those of the ROI-based method, as this voxel-wise approach demonstrated clusters of expansion coincident with visual- and somatosensory-related loci; although, it failed to detect any GM reductions following deafness. As distinct differences were identified in each analysis, the current study highlights the importance of employing multiple methods when exploring MRI volumetry. Overall, this study proposes that volumetric alterations within sensory loci allude to a redistribution of cortical space arising from modified perceptual demands following auditory deprivation.
Collapse
Affiliation(s)
- Alessandra Sacco
- Integrated Program in Nseuroscience, McGill University, Montreal, Quebec, Canada
| | - Stephen G Gordon
- Integrated Program in Nseuroscience, McGill University, Montreal, Quebec, Canada
| | - Stephen G Lomber
- Integrated Program in Nseuroscience, McGill University, Montreal, Quebec, Canada; Department of Physiology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
4
|
Liloia D, Zamfira DA, Tanaka M, Manuello J, Crocetta A, Keller R, Cozzolino M, Duca S, Cauda F, Costa T. Disentangling the role of gray matter volume and concentration in autism spectrum disorder: A meta-analytic investigation of 25 years of voxel-based morphometry research. Neurosci Biobehav Rev 2024; 164:105791. [PMID: 38960075 DOI: 10.1016/j.neubiorev.2024.105791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/22/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Despite over two decades of neuroimaging research, a unanimous definition of the pattern of structural variation associated with autism spectrum disorder (ASD) has yet to be found. One potential impeding issue could be the sometimes ambiguous use of measurements of variations in gray matter volume (GMV) or gray matter concentration (GMC). In fact, while both can be calculated using voxel-based morphometry analysis, these may reflect different underlying pathological mechanisms. We conducted a coordinate-based meta-analysis, keeping apart GMV and GMC studies of subjects with ASD. Results showed distinct and non-overlapping patterns for the two measures. GMV decreases were evident in the cerebellum, while GMC decreases were mainly found in the temporal and frontal regions. GMV increases were found in the parietal, temporal, and frontal brain regions, while GMC increases were observed in the anterior cingulate cortex and middle frontal gyrus. Age-stratified analyses suggested that such variations are dynamic across the ASD lifespan. The present findings emphasize the importance of considering GMV and GMC as distinct yet synergistic indices in autism research.
Collapse
Affiliation(s)
- Donato Liloia
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Denisa Adina Zamfira
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Szeged, Hungary
| | - Jordi Manuello
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Annachiara Crocetta
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Roberto Keller
- Adult Autism Center, DSM Local Health Unit, ASL TO, Turin, Italy
| | - Mauro Cozzolino
- Department of Humanities, Philosophical and Educational Sciences, University of Salerno, Fisciano, Italy
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Franco Cauda
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Tommaso Costa
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy
| |
Collapse
|
5
|
Abe Y, Erchinger VJ, Ousdal OT, Oltedal L, Tanaka KF, Takamiya A. Neurobiological mechanisms of electroconvulsive therapy for depression: Insights into hippocampal volumetric increases from clinical and preclinical studies. J Neurochem 2024; 168:1738-1750. [PMID: 38238933 DOI: 10.1111/jnc.16054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 10/04/2024]
Abstract
Depression is a highly prevalent and disabling psychiatric disorder. The hippocampus, which plays a central role in mood regulation and memory, has received considerable attention in depression research. Electroconvulsive therapy (ECT) is the most effective treatment for severe pharmacotherapy-resistant depression. Although the working mechanism of ECT remains unclear, recent magnetic resonance imaging (MRI) studies have consistently reported increased hippocampal volumes following ECT. The clinical implications of these volumetric increases and the specific cellular and molecular significance are not yet fully understood. This narrative review brings together evidence from animal models and human studies to provide a detailed examination of hippocampal volumetric increases following ECT. In particular, our preclinical MRI research using a mouse model is consistent with human findings, demonstrating a marked increase in hippocampal volume following ECT. Notable changes were observed in the ventral hippocampal CA1 region, including dendritic growth and increased synaptic density at excitatory synapses. Interestingly, inhibition of neurogenesis did not affect the ECT-related hippocampal volumetric increases detected on MRI. However, it remains unclear whether these histological and volumetric changes would be correlated with the clinical effect of ECT. Hence, future research on the relationships between cellular changes, ECT-related brain volumetric changes, and antidepressant effect could benefit from a bidirectional translational approach that integrates human and animal models. Such translational research may provide important insights into the mechanisms and potential biomarkers associated with ECT-induced hippocampal volumetric changes, thereby advancing our understanding of ECT for the treatment of depression.
Collapse
Affiliation(s)
- Yoshifumi Abe
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Vera J Erchinger
- Department of Biomedicine, The Faculty of Medicine, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Olga Therese Ousdal
- Department of Biomedicine, The Faculty of Medicine, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Leif Oltedal
- Department of Biomedicine, The Faculty of Medicine, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Akihiro Takamiya
- Neuropsychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
- Hills Joint Research Laboratory for Future Preventive Medicine and Wellness, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Richbourg HA, Vidal-García M, Brakora KA, Devine J, Takenaka R, Young NM, Gong SG, Neves A, Hallgrímsson B, Marcucio RS. Dosage-dependent effects of FGFR2 W290R mutation on craniofacial shape and cellular dynamics of the basicranial synchondroses. Anat Rec (Hoboken) 2024:10.1002/ar.25398. [PMID: 38409943 PMCID: PMC11345876 DOI: 10.1002/ar.25398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/31/2023] [Accepted: 01/17/2024] [Indexed: 02/28/2024]
Abstract
Craniosynostosis is a common yet complex birth defect, characterized by premature fusion of the cranial sutures that can be syndromic or nonsyndromic. With over 180 syndromic associations, reaching genetic diagnoses and understanding variations in underlying cellular mechanisms remains a challenge. Variants of FGFR2 are highly associated with craniosynostosis and warrant further investigation. Using the missense mutation FGFR2W290R , an effective mouse model of Crouzon syndrome, craniofacial features were analyzed using geometric morphometrics across developmental time (E10.5-adulthood, n = 665 total). Given the interrelationship between the cranial vault and basicranium in craniosynostosis patients, the basicranium and synchondroses were analyzed in perinates. Embryonic time points showed minimal significant shape differences. However, hetero- and homozygous mutant perinates and adults showed significant differences in shape and size of the cranial vault, face, and basicranium, which were associated with cranial doming and shortening of the basicranium and skull. Although there were also significant shape and size differences associated with the basicranial bones and clear reductions in basicranial ossification in cleared whole-mount samples, there were no significant alterations in chondrocyte cell shape, size, or orientation along the spheno-occipital synchondrosis. Finally, shape differences in the cranial vault and basicranium were interrelated at perinatal stages. These results point toward the possibility that facial shape phenotypes in craniosynostosis may result in part from pleiotropic effects of the causative mutations rather than only from the secondary consequences of the sutural defects, indicating a novel direction of research that may shed light on the etiology of the broad changes in craniofacial morphology observed in craniosynostosis syndromes.
Collapse
Affiliation(s)
- Heather A. Richbourg
- Department of Orthopedic Surgery; University of California, San Francisco; San Francisco, CA, 94110, USA
| | - Marta Vidal-García
- Alberta Children’s Hospital Research Institute, University of Calgary, 28 Oki Dr NW, Calgary, AB, T3B 6A8, Canada
- The McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada
| | - Katherine A. Brakora
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX 77807, USA
| | - Jay Devine
- Alberta Children’s Hospital Research Institute, University of Calgary, 28 Oki Dr NW, Calgary, AB, T3B 6A8, Canada
- The McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada
| | - Risa Takenaka
- Department of Orthopedic Surgery; University of California, San Francisco; San Francisco, CA, 94110, USA
- Molecular and Cellular Biology, University of Washington, Seattle, WA, 98195, USA
| | - Nathan M. Young
- Department of Orthopedic Surgery; University of California, San Francisco; San Francisco, CA, 94110, USA
| | - Siew-Ging Gong
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, M5G 1G6, Canada
| | - Amanda Neves
- The McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada
- DeepSurfaceAI, 1039 17 Avenue Southwest Calgary AB T2T 0B1, Canada
| | - Benedikt Hallgrímsson
- Alberta Children’s Hospital Research Institute, University of Calgary, 28 Oki Dr NW, Calgary, AB, T3B 6A8, Canada
- The McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada
| | - Ralph S. Marcucio
- Department of Orthopedic Surgery; University of California, San Francisco; San Francisco, CA, 94110, USA
| |
Collapse
|
7
|
Yang J, Huggins AA, Sun D, Baird CL, Haswell CC, Frijling JL, Olff M, van Zuiden M, Koch SBJ, Nawijn L, Veltman DJ, Suarez-Jimenez B, Zhu X, Neria Y, Hudson AR, Mueller SC, Baker JT, Lebois LAM, Kaufman ML, Qi R, Lu GM, Říha P, Rektor I, Dennis EL, Ching CRK, Thomopoulos SI, Salminen LE, Jahanshad N, Thompson PM, Stein DJ, Koopowitz SM, Ipser JC, Seedat S, du Plessis S, van den Heuvel LL, Wang L, Zhu Y, Li G, Sierk A, Manthey A, Walter H, Daniels JK, Schmahl C, Herzog JI, Liberzon I, King A, Angstadt M, Davenport ND, Sponheim SR, Disner SG, Straube T, Hofmann D, Grupe DW, Nitschke JB, Davidson RJ, Larson CL, deRoon-Cassini TA, Blackford JU, Olatunji BO, Gordon EM, May G, Nelson SM, Abdallah CG, Levy I, Harpaz-Rotem I, Krystal JH, Morey RA, Sotiras A. Examining the association between posttraumatic stress disorder and disruptions in cortical networks identified using data-driven methods. Neuropsychopharmacology 2024; 49:609-619. [PMID: 38017161 PMCID: PMC10789873 DOI: 10.1038/s41386-023-01763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 10/02/2023] [Accepted: 10/23/2023] [Indexed: 11/30/2023]
Abstract
Posttraumatic stress disorder (PTSD) is associated with lower cortical thickness (CT) in prefrontal, cingulate, and insular cortices in diverse trauma-affected samples. However, some studies have failed to detect differences between PTSD patients and healthy controls or reported that PTSD is associated with greater CT. Using data-driven dimensionality reduction, we sought to conduct a well-powered study to identify vulnerable networks without regard to neuroanatomic boundaries. Moreover, this approach enabled us to avoid the excessive burden of multiple comparison correction that plagues vertex-wise methods. We derived structural covariance networks (SCNs) by applying non-negative matrix factorization (NMF) to CT data from 961 PTSD patients and 1124 trauma-exposed controls without PTSD. We used regression analyses to investigate associations between CT within SCNs and PTSD diagnosis (with and without accounting for the potential confounding effect of trauma type) and symptom severity in the full sample. We performed additional regression analyses in subsets of the data to examine associations between SCNs and comorbid depression, childhood trauma severity, and alcohol abuse. NMF identified 20 unbiased SCNs, which aligned closely with functionally defined brain networks. PTSD diagnosis was most strongly associated with diminished CT in SCNs that encompassed the bilateral superior frontal cortex, motor cortex, insular cortex, orbitofrontal cortex, medial occipital cortex, anterior cingulate cortex, and posterior cingulate cortex. CT in these networks was significantly negatively correlated with PTSD symptom severity. Collectively, these findings suggest that PTSD diagnosis is associated with widespread reductions in CT, particularly within prefrontal regulatory regions and broader emotion and sensory processing cortical regions.
Collapse
Affiliation(s)
- Jin Yang
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Ashley A Huggins
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VA Medical Center, Durham, NC, USA
| | - Delin Sun
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VA Medical Center, Durham, NC, USA
- Department of Psychology, The Education University of Hong Kong, Hong Kong, China
| | - C Lexi Baird
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VA Medical Center, Durham, NC, USA
| | - Courtney C Haswell
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VA Medical Center, Durham, NC, USA
| | - Jessie L Frijling
- Department of Psychiatry, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Miranda Olff
- Department of Psychiatry, Amsterdam University Medical Center, Amsterdam, The Netherlands
- ARQ National Psychotrauma Centre, Diemen, The Netherlands
| | - Mirjam van Zuiden
- Department of Psychiatry, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Saskia B J Koch
- Department of Psychiatry, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Laura Nawijn
- Department of Psychiatry, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Benjamin Suarez-Jimenez
- Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Xi Zhu
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Yuval Neria
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Anna R Hudson
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Sven C Mueller
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Justin T Baker
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Institute for Technology in Psychiatry, McLean Hospital, Harvard University, Belmont, MA, USA
| | - Lauren A M Lebois
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
| | - Milissa L Kaufman
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Division of Women's Mental Health, McLean Hospital, Belmont, MA, USA
| | - Rongfeng Qi
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Jiangsu, China
| | - Guang Ming Lu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Jiangsu, China
| | - Pavel Říha
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- CEITEC-Central European Institute of Technology, Multimodal and Functional Neuroimaging Research Group, Masaryk University, Brno, Czech Republic
| | - Ivan Rektor
- CEITEC-Central European Institute of Technology, Multimodal and Functional Neuroimaging Research Group, Masaryk University, Brno, Czech Republic
| | - Emily L Dennis
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Christopher R K Ching
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Lauren E Salminen
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Dan J Stein
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Sheri M Koopowitz
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Jonathan C Ipser
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Soraya Seedat
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
| | - Stefan du Plessis
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
| | | | - Li Wang
- Laboratory for Traumatic Stress Studies, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ye Zhu
- Laboratory for Traumatic Stress Studies, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Gen Li
- Laboratory for Traumatic Stress Studies, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Anika Sierk
- University Medical Centre Charité, Berlin, Germany
| | | | | | - Judith K Daniels
- Department of Clinical Psychology, University of Groningen, Groningen, The Netherlands
| | - Christian Schmahl
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Julia I Herzog
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Israel Liberzon
- Department of Psychiatry and Behavioral Science, Texas A&M University, College Station, TX, USA
| | - Anthony King
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Mike Angstadt
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas D Davenport
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Scott R Sponheim
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Seth G Disner
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - David Hofmann
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - Daniel W Grupe
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
| | - Jack B Nitschke
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard J Davidson
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
| | - Christine L Larson
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Terri A deRoon-Cassini
- Division of Trauma and Acute Care Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Comprehensive Injury Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jennifer U Blackford
- Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bunmi O Olatunji
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Evan M Gordon
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Geoffrey May
- Veterans Integrated Service Network-17 Center of Excellence for Research on Returning War Veterans, Waco, TX, USA
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
- Department of Psychiatry and Behavioral Science, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Steven M Nelson
- Veterans Integrated Service Network-17 Center of Excellence for Research on Returning War Veterans, Waco, TX, USA
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
- Department of Psychiatry and Behavioral Science, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Chadi G Abdallah
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry of Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Ifat Levy
- Department of Comparative Medicine, Yale University, New Haven, CT, USA
- Department of Neuroscience, Yale University, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
- Division of Clinical Neuroscience, National Center for PTSD, West Haven, CT, USA
| | - Ilan Harpaz-Rotem
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
- Division of Clinical Neuroscience, National Center for PTSD, West Haven, CT, USA
| | - John H Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Division of Clinical Neuroscience, National Center for PTSD, West Haven, CT, USA
| | - Rajendra A Morey
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, USA.
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VA Medical Center, Durham, NC, USA.
| | - Aristeidis Sotiras
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
- Institute for Informatics, Data Science & Biostatistics, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
8
|
Martínez-Canabal A, López-Oropeza G, Sotres-Bayón F. Hippocampal neurogenesis facilitates cognitive flexibility in a fear discrimination task. Front Behav Neurosci 2024; 17:1331928. [PMID: 38282713 PMCID: PMC10813213 DOI: 10.3389/fnbeh.2023.1331928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024] Open
Abstract
Hippocampal neurogenesis, the continuous creation of new neurons in the adult brain, influences memory, regulates the expression of defensive responses to threat (fear), and cognitive processes like pattern separation and behavioral flexibility. One hypothesis proposes that neurogenesis promotes cognitive flexibility by degrading established memories and promoting relearning. Yet, empirical evidence on its role in fear discrimination tasks is scarce. In this study, male rats were initially trained to differentiate between two similar environments, one associated with a threat. Subsequently, we enhanced neurogenesis through environmental enrichment and memantine treatments. We then reversed the emotional valence of these contexts. In both cases, neurogenesis improved the rats' ability to relearn the aversive context. Interestingly, we observed increased hippocampal activity, and decreased activity in the prelimbic cortex and lateral habenula, while the infralimbic cortex remained unchanged, suggesting neurogenesis-induced plasticity changes in this brain network. Moreover, when we pharmacologically inhibited the increased neurogenesis with Methotrexate, rats struggled to relearn context discrimination, confirming the crucial role of neurogenesis in this cognitive process. Overall, our findings highlight neurogenesis's capacity to facilitate changes in fear discrimination and emphasize the involvement of a prefrontal-hippocampal-habenula mechanism in this process. This study emphasizes the intricate relationship between hippocampal neurogenesis, cognitive flexibility, and the modulation of fear-related memories.
Collapse
Affiliation(s)
- Alonso Martínez-Canabal
- Department of Cell Biology, Faculty of Sciences, National Autonomous University of Mexico (UNAM), México City, Mexico
- Cell Physiology Institute - Neuroscience, National Autonomous University of Mexico (UNAM), México City, Mexico
| | - Grecia López-Oropeza
- Department of Cell Biology, Faculty of Sciences, National Autonomous University of Mexico (UNAM), México City, Mexico
- Cell Physiology Institute - Neuroscience, National Autonomous University of Mexico (UNAM), México City, Mexico
- Graduate Program in Biological Sciences, National Autonomous University of Mexico (UNAM), México City, Mexico
| | - Francisco Sotres-Bayón
- Cell Physiology Institute - Neuroscience, National Autonomous University of Mexico (UNAM), México City, Mexico
| |
Collapse
|
9
|
Lehmann N, Aye N, Kaufmann J, Heinze HJ, Düzel E, Ziegler G, Taubert M. Changes in Cortical Microstructure of the Human Brain Resulting from Long-Term Motor Learning. J Neurosci 2023; 43:8637-8648. [PMID: 37875377 PMCID: PMC10727185 DOI: 10.1523/jneurosci.0537-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/08/2023] [Accepted: 09/04/2023] [Indexed: 10/26/2023] Open
Abstract
The mechanisms subserving motor skill acquisition and learning in the intact human brain are not fully understood. Previous studies in animals have demonstrated a causal relationship between motor learning and structural rearrangements of synaptic connections, raising the question of whether neurite-specific changes are also observable in humans. Here, we use advanced diffusion magnetic resonance imaging (MRI), sensitive to dendritic and axonal processes, to investigate neuroplasticity in response to long-term motor learning. We recruited healthy male and female human participants (age range 19-29) who learned a challenging dynamic balancing task (DBT) over four consecutive weeks. Diffusion MRI signals were fitted using Neurite Orientation Dispersion and Density Imaging (NODDI), a theory-driven biophysical model of diffusion, yielding measures of tissue volume, neurite density and the organizational complexity of neurites. While NODDI indices were unchanged and reliable during the control period, neurite orientation dispersion increased significantly during the learning period mainly in primary sensorimotor, prefrontal, premotor, supplementary, and cingulate motor areas. Importantly, reorganization of cortical microstructure during the learning phase predicted concurrent behavioral changes, whereas there was no relationship between microstructural changes during the control phase and learning. Changes in neurite complexity were independent of alterations in tissue density, cortical thickness, and intracortical myelin. Our results are in line with the notion that structural modulation of neurites is a key mechanism supporting complex motor learning in humans.SIGNIFICANCE STATEMENT The structural correlates of motor learning in the human brain are not fully understood. Results from animal studies suggest that synaptic remodeling (e.g., reorganization of dendritic spines) in sensorimotor-related brain areas is a crucial mechanism for the formation of motor memory. Using state-of-the-art diffusion magnetic resonance imaging (MRI), we found a behaviorally relevant increase in the organizational complexity of neocortical microstructure, mainly in primary sensorimotor, prefrontal, premotor, supplementary, and cingulate motor regions, following training of a challenging dynamic balancing task (DBT). Follow-up analyses suggested structural modulation of synapses as a plausible mechanism driving this increase, while colocalized changes in cortical thickness, tissue density, and intracortical myelin could not be detected. These results advance our knowledge about the neurobiological basis of motor learning in humans.
Collapse
Affiliation(s)
- Nico Lehmann
- Faculty of Human Sciences, Institute III, Department of Sport Science, Otto von Guericke University, Magdeburg 39104, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Norman Aye
- Faculty of Human Sciences, Institute III, Department of Sport Science, Otto von Guericke University, Magdeburg 39104, Germany
| | - Jörn Kaufmann
- Department of Neurology, Otto von Guericke University, Magdeburg 39120, Germany
| | - Hans-Jochen Heinze
- Department of Neurology, Otto von Guericke University, Magdeburg 39120, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany
- Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Magdeburg 39106, Germany
- Leibniz-Institute for Neurobiology (LIN), Magdeburg 39118, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany
- Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Magdeburg 39106, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Magdeburg 39120, Germany
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, United Kingdom
| | - Gabriel Ziegler
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Magdeburg 39120, Germany
| | - Marco Taubert
- Faculty of Human Sciences, Institute III, Department of Sport Science, Otto von Guericke University, Magdeburg 39104, Germany
- Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Magdeburg 39106, Germany
| |
Collapse
|
10
|
Brown AA, Cofresí R, Froeliger B. Associations Between the Wisconsin Inventory of Smoking Dependence Motives and Regional Brain Volumes in Adult Smokers. Nicotine Tob Res 2023; 25:1882-1890. [PMID: 37338201 PMCID: PMC10664077 DOI: 10.1093/ntr/ntad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/22/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023]
Abstract
INTRODUCTION The Wisconsin Inventory of Smoking Dependence Motives (WISDM-68) is a 68-item questionnaire to assess nicotine dependence as a multifactorial construct based on 13 theoretically derived smoking motives. Chronic smoking is associated with structural changes in brain regions implicated in the maintenance of smoking behavior; however, associations between brain morphometry and the various reinforcing components of smoking behavior remain unexamined. The present study investigated the potential association between smoking dependence motives and regional brain volumes in a cohort of 254 adult smokers. AIMS AND METHODS The WISDM-68 was administered to participants at the baseline session. Structural magnetic resonance brain imaging (MRI) data from 254 adult smokers (Mage = 42.7 ± 11.4) with moderate to severe nicotine dependence (MFTND = 5.4 ± 2.0) smoking for at least 2 years (Myears = 24.3 ± 11.8) were collected and analyzed with Freesurfer. RESULTS Vertex-wise cluster analysis revealed that high scores on the WISDM-68 composite, secondary dependence motives (SDM) composite, and multiple SDM subscales were associated with lower cortical volume in the right lateral prefrontal cortex (cluster-wise p's < .035). Analysis of subcortical volumes (ie, nucleus accumbens, amygdala, caudate, and pallidum) revealed several significant associations with WISDM-68 subscales, dependence severity (Fagerström Test for Nicotine Dependence), and overall exposure (pack-years). No significant associations between cortical volume and other nicotine dependence measures or pack-years were observed. CONCLUSIONS Results suggest that smoking motives may play a larger role in cortical abnormalities than addiction severity and smoking exposure per se, whereas subcortical volumes are associated with smoking motives, addiction severity, and smoking exposure. IMPLICATIONS The present study reports novel associations between the various reinforcing components of smoking behavior assessed by the WISDM-68 and regional brain volumes. Results suggest that the underlying emotional, cognitive, and sensory processes that drive non-compulsive smoking behaviors may play a larger role in gray matter abnormalities of smokers than smoking exposure or addiction severity.
Collapse
Affiliation(s)
- Alexander A Brown
- Department of Psychiatry, University of Missouri, Columbia, MO, USA
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
- Cognitive Neuroscience Systems Core Facility, University of Missouri, Columbia, MO, USA
| | - Roberto Cofresí
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
- Cognitive Neuroscience Systems Core Facility, University of Missouri, Columbia, MO, USA
| | - Brett Froeliger
- Department of Psychiatry, University of Missouri, Columbia, MO, USA
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
- Cognitive Neuroscience Systems Core Facility, University of Missouri, Columbia, MO, USA
| |
Collapse
|
11
|
Uselman TW, Jacobs RE, Bearer EL. Reconfiguration of brain-wide neural activity after early life adversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.10.557058. [PMID: 38328213 PMCID: PMC10849645 DOI: 10.1101/2023.09.10.557058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Early life adversity (ELA) predisposes individuals to both physical and mental disorders lifelong. How ELA affects brain function leading to this vulnerability is under intense investigation. Research has begun to shed light on ELA effects on localized brain regions within defined circuits. However, investigations into brain-wide neural activity that includes multiple localized regions, determines relationships of activity between regions and identifies shifts of activity in response to experiential conditions is necessary. Here, we performed longitudinal manganese-enhanced magnetic resonance imaging (MEMRI) to image the brain in normally reared or ELA-exposed adults. Images were captured in the freely moving home cage condition, and short- and long-term after naturalistic threat. Images were analyzed with new computational methods, including automated segmentation and fractional activation or difference volumes. We found that neural activity was increased after ELA compared to normal rearing in multiple brain regions, some of which are involved in defensive and/or reward circuitry. Widely distributed patterns of neural activity, "brain states", and their dynamics after threat were altered with ELA. Upon acute threat, ELA-mice retained heightened neural activity within many of these regions, and new hyperactive responses emerged in monoaminergic centers of the mid- and hindbrain. Nine days after acute threat, heightened neural activity remained within locus coeruleus and increased within posterior amygdala, ventral hippocampus, and dorso- and ventromedial hypothalamus, while reduced activity emerged within medial prefrontal cortical regions (prelimbic, infralimbic, anterior cingulate). These results reveal that functional imbalances arise between multiple brain-systems which are dependent upon context and cumulative experiences after ELA.
Collapse
Affiliation(s)
- Taylor W Uselman
- University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Russell E Jacobs
- Zilkha Neurogenetic Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033
- California Institute of Technology, Pasadena, CA 91125
| | - Elaine L Bearer
- University of New Mexico Health Sciences Center, Albuquerque, NM 87131
- California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
12
|
Yamada T, Watanabe T, Sasaki Y. Are sleep disturbances a cause or consequence of autism spectrum disorder? Psychiatry Clin Neurosci 2023; 77:377-385. [PMID: 36949621 PMCID: PMC10871071 DOI: 10.1111/pcn.13550] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/24/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by core symptoms such as atypical social communication, stereotyped behaviors, and restricted interests. One of the comorbid symptoms of individuals with ASD is sleep disturbance. There are two major hypotheses regarding the neural mechanism underlying ASD, i.e., the excitation/inhibition (E/I) imbalance and the altered neuroplasticity hypotheses. However, the pathology of ASD remains unclear due to inconsistent research results. This paper argues that sleep is a confounding factor, thus, must be considered when examining the pathology of ASD because sleep plays an important role in modulating the E/I balance and neuroplasticity in the human brain. Investigation of the E/I balance and neuroplasticity during sleep might enhance our understanding of the neural mechanisms of ASD. It may also lead to the development of neurobiologically informed interventions to supplement existing psychosocial therapies.
Collapse
Affiliation(s)
- Takashi Yamada
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, 02912, USA
| | - Takeo Watanabe
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, 02912, USA
| | - Yuka Sasaki
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, 02912, USA
| |
Collapse
|
13
|
West GL, Patai ZE, Coutrot A, Hornberger M, Bohbot VD, Spiers HJ. Landmark-dependent Navigation Strategy Declines across the Human Life-Span: Evidence from Over 37,000 Participants. J Cogn Neurosci 2023; 35:452-467. [PMID: 36603038 DOI: 10.1162/jocn_a_01956] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Humans show a remarkable capacity to navigate various environments using different navigation strategies, and we know that strategy changes across the life span. However, this observation has been based on studies of small sample sizes. To this end, we used a mobile app-based video game (Sea Hero Quest) to test virtual navigation strategies and memory performance within a distinct radial arm maze level in over 37,000 participants. Players were presented with six pathways (three open and three closed) and were required to navigate to the three open pathways to collect a target. Next, all six pathways were made available and the player was required to visit the pathways that were previously unavailable. Both reference memory and working memory errors were calculated. Crucially, at the end of the level, the player was asked a multiple-choice question about how they found the targets (i.e., a counting-dependent strategy vs. a landmark-dependent strategy). As predicted from previous laboratory studies, we found the use of landmarks declined linearly with age. Those using landmark-based strategies also performed better on reference memory than those using a counting-based strategy. These results extend previous observations in the laboratory showing a decreased use of landmark-dependent strategies with age.
Collapse
Affiliation(s)
| | - Zita Eva Patai
- University College London, United Kingdom.,King's College London, United Kingdom
| | | | | | | | | |
Collapse
|
14
|
Barrett RLC, Cash D, Simmons C, Kim E, Wood TC, Stones R, Vernon AC, Catani M, Dell'Acqua F. Tissue optimization strategies for high-quality ex vivo diffusion imaging. NMR IN BIOMEDICINE 2023; 36:e4866. [PMID: 36321360 PMCID: PMC10078604 DOI: 10.1002/nbm.4866] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 09/09/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Ex vivo diffusion imaging can be used to study healthy and pathological tissue microstructure in the rodent brain with high resolution, providing a link between in vivo MRI and ex vivo microscopy techniques. Major challenges for the successful acquisition of ex vivo diffusion imaging data however are changes in the relaxivity and diffusivity of brain tissue following perfusion fixation. In this study we address this question by examining the combined effects of tissue preparation factors that influence signal-to-noise ratio (SNR) and consequently image quality, including fixative concentration, contrast agent concentration and tissue rehydration time. We present an optimization strategy combining these factors to manipulate theT 1 andT 2 of fixed tissue and maximize SNR efficiency. We apply this strategy in the rat brain, for a diffusion-weighted spin echo protocol with TE = 27 ms on a 9.4 T scanner with a 39 mm volume coil and 660 mT/m 114 mm gradient insert. We used a reduced fixative concentration of 2% paraformaldehyde (PFA), rehydration time more than 20 days, 15 mM Gd-DTPA in perfusate and TR 250 ms. This resulted in a doubling of SNR and an increase in SNR per unit time of 135% in cortical grey matter and 88% in white matter compared with 4% PFA and no contrast agent. This improved SNR efficiency enabled the acquisition of excellent-quality high-resolution (78 μ m isotropic voxel size) diffusion data with b = 4000 s/mm2 , 30 diffusion directions and a field of view of 40 × 13 × 18 mm3 in less than 4 days. It was also possible to achieve comparable data quality for a standard resolution (150 μ m) diffusion dataset in 2 1 4 h. In conclusion, the tissue optimization strategy presented here may be used to improve SNR, increase spatial resolution and/or allow faster acquisitions in preclinical ex vivo diffusion MRI experiments.
Collapse
Affiliation(s)
- Rachel L. C. Barrett
- NatBrainLab, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonUK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonUK
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonUK
| | - Diana Cash
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonUK
| | - Camilla Simmons
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonUK
| | - Eugene Kim
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonUK
| | - Tobias C. Wood
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonUK
| | - Richard Stones
- NatBrainLab, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonUK
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonUK
| | - Anthony C. Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College LondonUK
| | - Marco Catani
- NatBrainLab, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonUK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonUK
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonUK
| | - Flavio Dell'Acqua
- NatBrainLab, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonUK
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonUK
| |
Collapse
|
15
|
Guma E, Beauchamp A, Liu S, Levitis E, Clasen LS, Torres E, Blumenthal J, Lalonde F, Qiu LR, Hrncir H, MacKenzie-Graham A, Yang X, Arnold AP, Lerch JP, Raznahan A. A Cross-Species Neuroimaging Study of Sex Chromosome Dosage Effects on Human and Mouse Brain Anatomy. J Neurosci 2023; 43:1321-1333. [PMID: 36631267 PMCID: PMC9987571 DOI: 10.1523/jneurosci.1761-22.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
All eutherian mammals show chromosomal sex determination with contrasting sex chromosome dosages (SCDs) between males (XY) and females (XX). Studies in transgenic mice and humans with sex chromosome trisomy (SCT) have revealed direct SCD effects on regional mammalian brain anatomy, but we lack a formal test for cross-species conservation of these effects. Here, we develop a harmonized framework for comparative structural neuroimaging and apply this to systematically profile SCD effects on regional brain anatomy in both humans and mice by contrasting groups with SCT (XXY and XYY) versus XY controls. Total brain size was substantially altered by SCT in humans (significantly decreased by XXY and increased by XYY), but not in mice. Robust and spatially convergent effects of XXY and XYY on regional brain volume were observed in humans, but not mice, when controlling for global volume differences. However, mice do show subtle effects of XXY and XYY on regional volume, although there is not a general spatial convergence in these effects within mice or between species. Notwithstanding this general lack of conservation in SCT effects, we detect several brain regions that show overlapping effects of XXY and XYY both within and between species (cerebellar, parietal, and orbitofrontal cortex), thereby nominating high priority targets for future translational dissection of SCD effects on the mammalian brain. Our study introduces a generalizable framework for comparative neuroimaging in humans and mice and applies this to achieve a cross-species comparison of SCD effects on the mammalian brain through the lens of SCT.SIGNIFICANCE STATEMENT Sex chromosome dosage (SCD) affects neuroanatomy and risk for psychopathology in humans. Performing mechanistic studies in the human brain is challenging but possible in mouse models. Here, we develop a framework for cross-species neuroimaging analysis and use this to show that an added X- or Y-chromosome significantly alters human brain anatomy but has muted effects in the mouse brain. However, we do find evidence for conserved cross-species impact of an added chromosome in the fronto-parietal cortices and cerebellum, which point to regions for future mechanistic dissection of sex chromosome dosage effects on brain development.
Collapse
Affiliation(s)
- Elisa Guma
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, 20892, Maryland
| | - Antoine Beauchamp
- Mouse Imaging Centre, Toronto, Ontario M5T 3H7, Canada
- The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Siyuan Liu
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, 20892, Maryland
| | - Elizabeth Levitis
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, 20892, Maryland
| | - Liv S. Clasen
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, 20892, Maryland
| | - Erin Torres
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, 20892, Maryland
| | - Jonathan Blumenthal
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, 20892, Maryland
| | - Francois Lalonde
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, 20892, Maryland
| | - Lily R. Qiu
- Mouse Imaging Centre, Toronto, Ontario M5T 3H7, Canada
- The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Haley Hrncir
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California 90095
| | - Allan MacKenzie-Graham
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California 90095
| | - Arthur P. Arnold
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California 90095
| | - Jason P. Lerch
- Mouse Imaging Centre, Toronto, Ontario M5T 3H7, Canada
- The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, 20892, Maryland
| |
Collapse
|
16
|
Fang L, Andrzejewski JA, Carlson JM. The gray matter morphology associated with the electrophysiological response to errors in individuals with high trait anxiety. Int J Psychophysiol 2023; 184:76-83. [PMID: 36581044 PMCID: PMC10125723 DOI: 10.1016/j.ijpsycho.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Enhanced error monitoring has been associated with higher levels of anxiety. This has been consistently demonstrated in its most reliable electrophysiological index, the error-related negativity (ERN), such that increased ERN is related with elevated anxiety symptomology. However, it is still unclear whether the structural properties of the brain are associated with individual differences in ERN amplitude. Moreover, the relationship between ERN and anxiety has recently been suggested to be moderated by sex, but the degree to which sex moderates the association between brain structure and ERN amplitude is unknown. The present study investigated the association between gray matter volume (GMV) and ERN amplitude in individuals with high trait anxiety (N = 98) as well as the role of sex in moderating this association. The ERN was elicited from a flanker task, whereas structural MRI images were obtained from whole brain structural T1-weighted MRI scans. The results of voxel-based morphometry analyses showed that the relationship between ERN difference scores and GMV was moderated by sex in the dorsal anterior cingulate cortex (dACC). This sex difference was derived from a negative correlation between ERN difference scores and dACC GMV in females and a positive correlation in males. Our findings are in accordance with the critical role of the dACC serving as a neural substrate of error monitoring. It also provides further evidence for sex-specific associations with brain structures related to error monitoring.
Collapse
Affiliation(s)
- Lin Fang
- Department of Psychological Science, Northern Michigan University, Marquette, MI, USA.
| | - Jeremy A Andrzejewski
- Department of Psychological Science, Northern Michigan University, Marquette, MI, USA
| | - Joshua M Carlson
- Department of Psychological Science, Northern Michigan University, Marquette, MI, USA
| |
Collapse
|
17
|
Bogado Lopes J, Senko AN, Bahnsen K, Geisler D, Kim E, Bernanos M, Cash D, Ehrlich S, Vernon AC, Kempermann G. Individual behavioral trajectories shape whole-brain connectivity in mice. eLife 2023; 12:e80379. [PMID: 36645260 PMCID: PMC9977274 DOI: 10.7554/elife.80379] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
It is widely assumed that our actions shape our brains and that the resulting connections determine who we are. To test this idea in a reductionist setting, in which genes and environment are controlled, we investigated differences in neuroanatomy and structural covariance by ex vivo structural magnetic resonance imaging in mice whose behavioral activity was continuously tracked for 3 months in a large, enriched environment. We confirmed that environmental enrichment increases mouse hippocampal volumes. Stratifying the enriched group according to individual longitudinal behavioral trajectories, however, revealed striking differences in mouse brain structural covariance in continuously highly active mice compared to those whose trajectories showed signs of habituating activity. Network-based statistics identified distinct subnetworks of murine structural covariance underlying these differences in behavioral activity. Together, these results reveal that differentiated behavioral trajectories of mice in an enriched environment are associated with differences in brain connectivity.
Collapse
Affiliation(s)
- Jadna Bogado Lopes
- German Center for Neurodegenerative Diseases (DZNE) DresdenDresdenGermany
- Center for Regenerative Therapies Dresden (CRTD), TU DresdenDresdenGermany
| | - Anna N Senko
- German Center for Neurodegenerative Diseases (DZNE) DresdenDresdenGermany
- Center for Regenerative Therapies Dresden (CRTD), TU DresdenDresdenGermany
| | - Klaas Bahnsen
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of MedicineDresdenGermany
| | - Daniel Geisler
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of MedicineDresdenGermany
| | - Eugene Kim
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience King's CollegeLondonUnited Kingdom
| | - Michel Bernanos
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience King's CollegeLondonUnited Kingdom
| | - Diana Cash
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience King's CollegeLondonUnited Kingdom
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of MedicineDresdenGermany
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Eating Disorder Treatment and Research CenterDresdenGermany
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's CollegeLondonUnited Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's CollegeLondonUnited Kingdom
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE) DresdenDresdenGermany
- Center for Regenerative Therapies Dresden (CRTD), TU DresdenDresdenGermany
| |
Collapse
|
18
|
Chen X, Wang Z, Jiang H, Meng Y, Wang H, Li Y, Xu K, Yang J, Luo C. Flight training changes the brain functional pattern in cadets. Front Neurosci 2023; 17:1120628. [PMID: 37025375 PMCID: PMC10070807 DOI: 10.3389/fnins.2023.1120628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Introduction To our knowledge, this is the first study to use MRI (Magnetic Resonance Imaging) before and after an intensive flight training. This study aimed to investigate the effectiveness of flight training in civil flying cadets. Methods The civil flying cadets and controls completed two study visits. Visit 1 was performed in 2019, and high spatial resolution structural image and resting-state functional MRI data were collected. The second visit was completed in 2022. In addition to the MRI data mentioned above, participants completed the cognitive function assessment at the second visit. Results Mixed-effect regression model analysis found that flight training enhanced the degree centrality (DC) values of the left middle frontal gyrus and left lingual gyrus. The subsequent correlation calculation analysis suggested a possible relationship between these alterations and cognitive function. Discussion These results suggest that flight training might promote the DC value of the prefrontal and occipital cortices and, in turn, enhance their executive function.
Collapse
Affiliation(s)
- Xi Chen
- Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, China
| | - Zian Wang
- Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, China
| | - Hao Jiang
- Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, China
| | - Yu Meng
- Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, China
| | - Hongmei Wang
- Institute of Marxism, Civil Aviation Flight University of China, Guanghan, China
| | - You Li
- Department of Student Affairs, Civil Aviation Flight University of China, Guanghan, China
| | - Kaijun Xu
- Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, China
| | - Jiazhong Yang
- Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, China
- *Correspondence: Jiazhong Yang,
| | - Cheng Luo
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Cheng Luo,
| |
Collapse
|
19
|
Gordon SG, Butler BE, Lomber SG. The gradient in gray matter thickness across auditory cortex and differential cortical thickness changes following perinatal deafness. Cereb Cortex 2022; 33:5829-5838. [PMID: 36482814 PMCID: PMC10183739 DOI: 10.1093/cercor/bhac463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 09/06/2022] [Accepted: 10/20/2022] [Indexed: 12/14/2022] Open
Abstract
Abstract
In the absence of hearing during development, the brain adapts and repurposes what was destined to become auditory cortex. As cortical thickness is commonly used as a proxy to identify cortical regions that have undergone plastic changes, the purpose of this investigation was to compare cortical thickness patterns between hearing and deaf cats. In this study, normal hearing (n = 29) and deaf (n = 26) cats were scanned to examine cortical thickness in hearing controls, as well as differential changes in thickness as a consequence of deafness. In hearing cats, a gradient in cortical thickness was identified across auditory cortex in which it is thinner in more dorsal regions and thicker in more ventral regions. Compared with hearing controls, differential thickening and thinning was observed in specific regions of deaf auditory cortex. More dorsal regions were found to be bilaterally thicker in the deaf group, while more ventral regions in the left hemisphere were thinner. The location and nature of these changes creates a gradient along the dorsoventral axis, wherein dorsal auditory cortical fields are thicker, whereas more ventral fields are thinner in deaf animals compared with hearing controls.
Collapse
Affiliation(s)
- Stephen G Gordon
- Integrated Program in Neuroscience, McGill University , Montreal, Canada
| | - Blake E Butler
- Department of Psychology, Western University , London, Canada
| | - Stephen G Lomber
- Department of Physiology , Faculty of Medicine and Health Sciences, , Montreal, Canada
- McGill University , Faculty of Medicine and Health Sciences, , Montreal, Canada
| |
Collapse
|
20
|
Brown AA, Clocksin HE, Abbene EE, Ursery M, Christ SE. The relationship between metabolic control and basal ganglia morphometry and function in individuals with early-treated phenylketonuria. Mol Genet Metab 2022; 137:249-256. [PMID: 36209659 DOI: 10.1016/j.ymgme.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022]
Abstract
Abnormalities of the cortical white matter are the most prominent and widely-reported neurological findings in individuals with early-treated phenylketonuria (ETPKU). Much less is known regarding the effects of ETPKU on gray matter structures in the brain such as the basal ganglia. Previous findings on basal ganglia in ETPKU have been mixed. The current study was designed to further elucidate the effects of ETPKU and elevated phe levels on the morphometry of basal ganglia structures (i.e., putamen, caudate nucleus, nucleus accumbens, and globus pallidus). High resolution magnetic resonance imaging (MRI) data was collected from a sample of 37 adults with ETPKU and a demographically-matched comparison group of 33 individuals without PKU. No overall group differences (ETPKU vs. non-PKU) in basal ganglia volumes were observed. However, within the ETPKU group, poorer metabolic control (as reflected by higher blood phenylalanine levels) was associated with larger putamen volume. Vertex-wise shape analysis revealed that the volume increase was accompanied by shape changes in the middle left putamen. Consistent with this area's role in motor control, a significant correlation between left putamen volume and motor performance was also observed. Additional research is needed to fully understand the cellular level processes underlying this effect as well as to better understand the clinical impact of these morphometric changes and their potential relation to treatment response.
Collapse
Affiliation(s)
- Alexander A Brown
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| | - Hayley E Clocksin
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| | - Emily E Abbene
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| | - Mikayla Ursery
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| | - Shawn E Christ
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
21
|
Terstege DJ, Durante IM, Epp JR. Brain-wide neuronal activation and functional connectivity are modulated by prior exposure to repetitive learning episodes. Front Behav Neurosci 2022; 16:907707. [PMID: 36160680 PMCID: PMC9501867 DOI: 10.3389/fnbeh.2022.907707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022] Open
Abstract
Memory storage and retrieval are shaped by past experiences. Prior learning and memory episodes have numerous impacts on brain structure from micro to macroscale. Previous experience with specific forms of learning increases the efficiency of future learning. It is less clear whether such practice effects on one type of memory might also have transferable effects to other forms of memory. Different forms of learning and memory rely on different brain-wide networks but there are many points of overlap in these networks. Enhanced structural or functional connectivity caused by one type of learning may be transferable to another type of learning due to overlap in underlying memory networks. Here, we investigated the impact of prior chronic spatial training on the task-specific functional connectivity related to subsequent contextual fear memory recall in mice. Our results show that mice exposed to prior spatial training exhibited decreased brain-wide activation compared to control mice during the retrieval of a context fear memory. With respect to functional connectivity, we observed changes in several network measures, notably an increase in global efficiency. Interestingly, we also observed an increase in network resilience based on simulated targeted node deletion. Overall, this study suggests that chronic learning has transferable effects on the functional connectivity networks of other types of learning and memory. The generalized enhancements in network efficiency and resilience suggest that learning itself may protect brain networks against deterioration.
Collapse
|
22
|
Testard C, Brent LJN, Andersson J, Chiou KL, Negron-Del Valle JE, DeCasien AR, Acevedo-Ithier A, Stock MK, Antón SC, Gonzalez O, Walker CS, Foxley S, Compo NR, Bauman S, Ruiz-Lambides AV, Martinez MI, Skene JHP, Horvath JE, Unit CBR, Higham JP, Miller KL, Snyder-Mackler N, Montague MJ, Platt ML, Sallet J. Social connections predict brain structure in a multidimensional free-ranging primate society. SCIENCE ADVANCES 2022; 8:eabl5794. [PMID: 35417242 PMCID: PMC9007502 DOI: 10.1126/sciadv.abl5794] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Reproduction and survival in most primate species reflects management of both competitive and cooperative relationships. Here, we investigated the links between neuroanatomy and sociality in free-ranging rhesus macaques. In adults, the number of social partners predicted the volume of the mid-superior temporal sulcus and ventral-dysgranular insula, implicated in social decision-making and empathy, respectively. We found no link between brain structure and other key social variables such as social status or indirect connectedness in adults, nor between maternal social networks or status and dependent infant brain structure. Our findings demonstrate that the size of specific brain structures varies with the number of direct affiliative social connections and suggest that this relationship may arise during development. These results reinforce proposed links between social network size, biological success, and the expansion of specific brain circuits.
Collapse
Affiliation(s)
- Camille Testard
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren J. N. Brent
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | | | - Kenneth L. Chiou
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Josue E. Negron-Del Valle
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Alex R. DeCasien
- Department of Anthropology, New York University, New York, NY, USA
- New York Consortium in Evolutionary Primatology, NYCEP, New York, NY, USA
- Section on Developmental Neurogenomics, National Institute of Mental Health, Washington, DC, USA
| | | | - Michala K. Stock
- Department of Sociology and Anthropology, Metropolitan State University of Denver, Denver, CO, USA
| | - Susan C. Antón
- Department of Anthropology, New York University, New York, NY, USA
- New York Consortium in Evolutionary Primatology, NYCEP, New York, NY, USA
| | - Olga Gonzalez
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Christopher S. Walker
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Sean Foxley
- Wellcome Integrative Neuroimaging Centre, fMRIB, Oxford, UK
- Department of Radiology, University of Chicago, Chicago, IL, USA
| | - Nicole R. Compo
- Caribbean Primate Research Center, University of Puerto Rico, Sabana Seca, Puerto Rico
- Comparative Medicine, University of South Florida, Tampa, FL, USA
| | - Samuel Bauman
- Caribbean Primate Research Center, University of Puerto Rico, Sabana Seca, Puerto Rico
| | | | - Melween I. Martinez
- Caribbean Primate Research Center, University of Puerto Rico, Sabana Seca, Puerto Rico
| | - J. H. Pate Skene
- Department of Neurobiology, Duke University, Durham, NC, USA
- Institute of Cognitive Science, University of Colorado, Boulder, CO, USA
| | - Julie E. Horvath
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | | | - James P. Higham
- Department of Anthropology, New York University, New York, NY, USA
- New York Consortium in Evolutionary Primatology, NYCEP, New York, NY, USA
| | | | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, USA
| | - Michael J. Montague
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael L. Platt
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
- Marketing Department, University of Pennsylvania, Philadelphia, PA, USA
| | - Jérôme Sallet
- Department of Experimental Psychology, Wellcome Integrative Neuroimaging Centre, Oxford, UK
- Stem Cell and Brain Research Institute, Inserm, Université Lyon 1, Bron U1208, France
| |
Collapse
|
23
|
Ousdal OT, Brancati GE, Kessler U, Erchinger V, Dale AM, Abbott C, Oltedal L. The Neurobiological Effects of Electroconvulsive Therapy Studied Through Magnetic Resonance: What Have We Learned, and Where Do We Go? Biol Psychiatry 2022; 91:540-549. [PMID: 34274106 PMCID: PMC8630079 DOI: 10.1016/j.biopsych.2021.05.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 12/14/2022]
Abstract
Electroconvulsive therapy (ECT) is an established treatment choice for severe, treatment-resistant depression, yet its mechanisms of action remain elusive. Magnetic resonance imaging (MRI) of the human brain before and after treatment has been crucial to aid our comprehension of the ECT neurobiological effects. However, to date, a majority of MRI studies have been underpowered and have used heterogeneous patient samples as well as different methodological approaches, altogether causing mixed results and poor clinical translation. Hence, an association between MRI markers and therapeutic response remains to be established. Recently, the availability of large datasets through a global collaboration has provided the statistical power needed to characterize whole-brain structural and functional brain changes after ECT. In addition, MRI technological developments allow new aspects of brain function and structure to be investigated. Finally, more recent studies have also investigated immediate and long-term effects of ECT, which may aid in the separation of the therapeutically relevant effects from epiphenomena. The goal of this review is to outline MRI studies (T1, diffusion-weighted imaging, proton magnetic resonance spectroscopy) of ECT in depression to advance our understanding of the ECT neurobiological effects. Based on the reviewed literature, we suggest a model whereby the neurobiological effects can be understood within a framework of disruption, neuroplasticity, and rewiring of neural circuits. An improved characterization of the neurobiological effects of ECT may increase our understanding of ECT's therapeutic effects, ultimately leading to improved patient care.
Collapse
Affiliation(s)
- Olga Therese Ousdal
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway; Centre for Crisis Psychology, Faculty of Psychology, University of Bergen, Bergen, Norway.
| | - Giulio E Brancati
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ute Kessler
- NORMENT, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Vera Erchinger
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California; Department of Radiology, University of California San Diego, La Jolla, California; Department of Neurosciences, University of California San Diego, La Jolla, California
| | - Christopher Abbott
- Department of Psychiatry, University of New Mexico, Albuquerque, New Mexico
| | - Leif Oltedal
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
24
|
A diffusion MRI-based spatiotemporal continuum of the embryonic mouse brain for probing gene-neuroanatomy connections. Proc Natl Acad Sci U S A 2022; 119:2111869119. [PMID: 35165149 PMCID: PMC8851557 DOI: 10.1073/pnas.2111869119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2021] [Indexed: 11/18/2022] Open
Abstract
We established an ultra high-resolution diffusion MRI atlas of the embryonic mouse brains from E10.5 to E15.5, which characterizes the continuous changes of brain morphology and microstructures at mesoscopic scale. By integrating gene-expression data into the spatiotemporal continuum, we can navigate the evolving landscape of gene expression and neuroanatomy across both spatial and temporal dimensions to visualize their interactions in normal and abnormal embryonic brain development. We also identified regional clusters with distinct developmental trajectories and identified gene-expression profiles that matched to these regional domains. The diffusion MRI–based continuum of the embryonic brain and the computational techniques presented in this study offer a valuable tool for systematic study of the genetic control of brain development. The embryonic mouse brain undergoes drastic changes in establishing basic anatomical compartments and laying out major axonal connections of the developing brain. Correlating anatomical changes with gene-expression patterns is an essential step toward understanding the mechanisms regulating brain development. Traditionally, this is done in a cross-sectional manner, but the dynamic nature of development calls for probing gene–neuroanatomy interactions in a combined spatiotemporal domain. Here, we present a four-dimensional (4D) spatiotemporal continuum of the embryonic mouse brain from E10.5 to E15.5 reconstructed from diffusion magnetic resonance microscopy (dMRM) data. This study achieved unprecedented high-definition dMRM at 30- to 35-µm isotropic resolution, and together with computational neuroanatomy techniques, we revealed both morphological and microscopic changes in the developing brain. We transformed selected gene-expression data to this continuum and correlated them with the dMRM-based neuroanatomical changes in embryonic brains. Within the continuum, we identified distinct developmental modes comprising regional clusters that shared developmental trajectories and similar gene-expression profiles. Our results demonstrate how this 4D continuum can be used to examine spatiotemporal gene–neuroanatomical interactions by connecting upstream genetic events with anatomical changes that emerge later in development. This approach would be useful for large-scale analysis of the cooperative roles of key genes in shaping the developing brain.
Collapse
|
25
|
Mouse models of immune dysfunction: their neuroanatomical differences reflect their anxiety-behavioural phenotype. Mol Psychiatry 2022; 27:3047-3055. [PMID: 35422470 PMCID: PMC9205773 DOI: 10.1038/s41380-022-01535-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 02/18/2022] [Accepted: 03/17/2022] [Indexed: 11/08/2022]
Abstract
Extensive evidence supports the role of the immune system in modulating brain function and behaviour. However, past studies have revealed striking heterogeneity in behavioural phenotypes produced from immune system dysfunction. Using magnetic resonance imaging, we studied the neuroanatomical differences among 11 distinct genetically modified mouse lines (n = 371), each deficient in a different element of the immune system. We found a significant and heterogeneous effect of immune dysfunction on the brains of both male and female mice. However, by imaging the whole brain and using Bayesian hierarchical modelling, we were able to identify patterns within the heterogeneous phenotype. Certain structures-such as the corpus callosum, midbrain, and thalamus-were more likely to be affected by immune dysfunction. A notable brain-behaviour relationship was identified with neuroanatomy endophenotypes across mouse models clustering according to anxiety-like behaviour phenotypes reported in literature, such as altered volume in brains regions associated with promoting fear response (e.g., the lateral septum and cerebellum). Interestingly, genes with preferential spatial expression in the most commonly affected regions are also associated with multiple sclerosis and other immune-mediated diseases. In total, our data suggest that the immune system modulates anxiety behaviour through well-established brain networks.
Collapse
|
26
|
Fowler C, Goerzen D, Madularu D, Devenyi GA, Chakravarty MM, Near J. Longitudinal characterization of neuroanatomical changes in the Fischer 344 rat brain during normal aging and between sexes. Neurobiol Aging 2022; 109:216-228. [PMID: 34775212 DOI: 10.1016/j.neurobiolaging.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/23/2021] [Accepted: 10/07/2021] [Indexed: 10/20/2022]
Abstract
Animal models are widely used to study the pathophysiology of disease and to evaluate the efficacy of novel interventions, crucial steps towards improving disease outcomes in humans. The Fischer 344 (F344) wildtype rat is a common experimental background strain for transgenic models of disease and is one of the most frequently used models in aging research. Despite frequency of use, characterization of agerelated neuroanatomical change has not been performed in the F344 rat. To this end, we present a comprehensive longitudinal examination of morphometric change in 73 brain regions and at a voxel-wise level during normative aging in vivo in a mixed-sexcohort of F344 rats. We identified the greatest vulnerability to aging within the cortex, caudoputamen, hindbrain, and internal capsule, while the influence of sex was strongest in the caudoputamen, hippocampus, nucleus accumbens, and thalamus, many of which are implicated in memory and motor control circuits frequently affected by aging and neurodegenerative disease. These findings provide a baseline for neuroanatomical changes associated with aging in male and female F344 rats, to which data from transgenic models or other background strains can be compared.
Collapse
Affiliation(s)
- Caitlin Fowler
- Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada; Centre d'Imagerie Cérébrale, Douglas Mental Health University Institute, Montreal, Quebec, Canada.
| | - Dana Goerzen
- Centre d'Imagerie Cérébrale, Douglas Mental Health University Institute, Montreal, Quebec, Canada.
| | - Dan Madularu
- Centre d'Imagerie Cérébrale, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA; Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Gabriel A Devenyi
- Centre d'Imagerie Cérébrale, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - M Mallar Chakravarty
- Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada; Centre d'Imagerie Cérébrale, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Jamie Near
- Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada; Centre d'Imagerie Cérébrale, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
27
|
Fuss T. Mate Choice, Sex Roles and Sexual Cognition: Neuronal Prerequisites Supporting Cognitive Mate Choice. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.749499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Across taxa, mate choice is a highly selective process involving both intra- and intersexual selection processes aiming to pass on one’s genes, making mate choice a pivotal tool of sexual selection. Individuals adapt mate choice behavior dynamically in response to environmental and social changes. These changes are perceived sensorily and integrated on a neuronal level, which ultimately leads to an adequate behavioral response. Along with perception and prior to an appropriate behavioral response, the choosing sex has (1) to recognize and discriminate between the prospective mates and (2) to be able to assess and compare their performance in order to make an informed decision. To do so, cognitive processes allow for the simultaneous processing of multiple information from the (in-) animate environment as well as from a variety of both sexual and social (but non-sexual) conspecific cues. Although many behavioral aspects of cognition on one side and of mate choice displays on the other are well understood, the interplay of neuronal mechanisms governing both determinants, i.e., governing cognitive mate choice have been described only vaguely. This review aimed to throw a spotlight on neuronal prerequisites, networks and processes supporting the interaction between mate choice, sex roles and sexual cognition, hence, supporting cognitive mate choice. How does neuronal activity differ between males and females regarding social cognition? Does sex or the respective sex role within the prevailing mating system mirror at a neuronal level? How does cognitive competence affect mate choice? Conversely, how does mate choice affect the cognitive abilities of both sexes? Benefitting from studies using different neuroanatomical techniques such as neuronal activity markers, differential coexpression or candidate gene analyses, modulatory effects of neurotransmitters and hormones, or imaging techniques such as fMRI, there is ample evidence pointing to a reflection of sex and the respective sex role at the neuronal level, at least in individual brain regions. Moreover, this review aims to summarize evidence for cognitive abilities influencing mate choice and vice versa. At the same time, new questions arise centering the complex relationship between neurobiology, cognition and mate choice, which we will perhaps be able to answer with new experimental techniques.
Collapse
|
28
|
Chakravarty MM, Guma E. Small animal imaging presents an opportunity for improving translational research in biological psychiatry. J Psychiatry Neurosci 2021; 46:E579-E582. [PMID: 34670841 PMCID: PMC8532952 DOI: 10.1503/jpn.210172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
| | - Elisa Guma
- From the Computational Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Centre, Douglas Research Institute, Montreal, Que., Canada (Chakravarty, Guma); the Department of Psychiatry, McGill University, Montreal, Que., Canada (Chakravarty); the Department of Biological and Biomedical Engineering, McGill University, Montreal, Que., Canada (Chakravarty); and the Developmental Neurogenomics Unit, Human Genetics Branch, National Institute of Mental Health, Intramural Program, USA (Guma)
| |
Collapse
|
29
|
Lin J, Kang X, Xiong Y, Zhang D, Zong R, Yu X, Pan L, Lou X. Convergent structural network and gene signatures for MRgFUS thalamotomy in patients with Parkinson's disease. Neuroimage 2021; 243:118550. [PMID: 34481084 DOI: 10.1016/j.neuroimage.2021.118550] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/07/2021] [Accepted: 09/01/2021] [Indexed: 12/30/2022] Open
Abstract
MRgFUS has just been made available for the 1.7 million Parkinson's disease patients in China. Despite its non-invasive and rapid therapeutic advantages for involuntary tremor, some concerns have emerged about outcomes variability, non-specificity, and side-effects, as little is known about its impact on the long-term plasticity of brain structure. We sought to dissect the characteristics of long-term changes in brain structure caused by MRgFUS lesion and explored potential biological mechanisms. One-year multimodal imaging follow-ups were conducted for nine tremor-dominant Parkinson's disease patients undergoing unilateral MRgFUS thalamotomy. A structural connectivity map was generated for each patient to analyze dynamic changes in brain structure. The human brain transcriptome was extracted and spatially registered for connectivity vulnerability. Genetic functional enrichment analysis was performed and further clarified using in vivo emission computed tomography data. MRgFUS not only abolished tremors but also significantly disrupted the brain network topology. Network-based statistics identified a U-shape MRgFUS-sensitive subnetwork reflective of hand tremor recovery and surgical process, accompanied by relevant cerebral blood flow and gray matter alteration. Using human brain gene expression data, we observed that dopaminergic signatures were responsible for the preferential vulnerability associated with these architectural alterations. Additional PET/SPECT data not only validated these gene signatures, but also suggested that structural alteration was significantly correlated with D1 and D2 receptors, DAT, and F-DOPA measures. There was a long-term dynamic loop between structural alteration and dopaminergic signature for MRgFUS thalamotomy, which may be closely related to the long-term improvements in clinical tremor.
Collapse
Affiliation(s)
- Jiaji Lin
- Department of Radiology, Chinese PLA General Hospital, No.28 Fuxing Road, Beijing, 100853, China.
| | - Xiaopeng Kang
- School of Artificial Intelligence, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100876, China; Brainnetome Center & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Yongqin Xiong
- Department of Radiology, Chinese PLA General Hospital, No.28 Fuxing Road, Beijing, 100853, China
| | - Dekang Zhang
- Department of Radiology, Chinese PLA General Hospital, No.28 Fuxing Road, Beijing, 100853, China
| | - Rui Zong
- Department of Neurosurgery, Chinese PLA General Hospital, No.28 Fuxing Road, Beijing, 100853, China
| | - Xinguang Yu
- Department of Neurosurgery, Chinese PLA General Hospital, No.28 Fuxing Road, Beijing, 100853, China
| | - Longsheng Pan
- Department of Neurosurgery, Chinese PLA General Hospital, No.28 Fuxing Road, Beijing, 100853, China.
| | - Xin Lou
- Department of Radiology, Chinese PLA General Hospital, No.28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
30
|
MRI of Capn15 Knockout Mice and Analysis of Capn 15 Distribution Reveal Possible Roles in Brain Development and Plasticity. Neuroscience 2021; 465:128-141. [PMID: 33951504 DOI: 10.1016/j.neuroscience.2021.04.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/03/2021] [Accepted: 04/20/2021] [Indexed: 11/23/2022]
Abstract
The Small Optic Lobe (SOL) family of calpains are intracellular cysteine proteases that are expressed in the nervous system and play an important role in neuronal development in both Drosophila, where loss of this calpain leads to the eponymous small optic lobes, and in mouse and human, where loss of this calpain leads to eye anomalies. Some human individuals with biallelic variants in CAPN15 also have developmental delay and autism. However, neither the specific effect of the loss of the Capn15 protein on brain development nor the brain regions where this calpain is expressed in the adult is known. Here we show using small animal MRI that mice with the complete loss of Capn15 have smaller brains overall with larger decreases in the thalamus and subregions of the hippocampus. These losses are not seen in Capn15 conditional knockout (KO) mice where Capn15 is knocked out only in excitatory neurons in the adult. Based on β-galactosidase expression in an insert strain where lacZ is expressed under the control of the Capn15 promoter, we show that Capn15 is expressed in adult mice, particularly in neurons involved in plasticity such as the hippocampus, lateral amygdala and Purkinje neurons, and partially in other non-characterized cell types. The regions of the brain in the adult where Capn15 is expressed do not correspond well to the regions of the brain most affected by the complete knockout suggesting distinct roles of Capn15 in brain development and adult brain function.
Collapse
|
31
|
West GL, Kurdi V, Fouquet C, Schachar R, Boivin M, Hastings P, Robaey P, Bohbot VD. Differential stress response to psychological and physical stressors in children using spatial versus response-dependent navigation strategies. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2021; 6:100043. [PMID: 35757366 PMCID: PMC9216353 DOI: 10.1016/j.cpnec.2021.100043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/10/2021] [Accepted: 02/27/2021] [Indexed: 11/13/2022] Open
Abstract
Previous work from our lab has shown that basal cortisol levels are different between healthy young adults who spontaneously use caudate nucleus-dependent response strategies compared to young adults who use hippocampus-dependent spatial navigation strategies. Young adults who use caudate nucleus dependent strategies display lower basal cortisol levels compared to those who use hippocampus-dependent strategies. In the current study, we assessed navigation strategies in children using a virtual navigation task and measured cortisol at baseline as well as cortisol reactivity to both a psychological and to a physical stressor. Replicating what is observed in adults, we found that children who used caudate nucleus-dependent navigation strategies displayed lower cortisol levels at baseline compared to those who used hippocampus-dependent strategies. The psychological stressor, knowledge that a blood draw would be performed by a nurse, caused a significant increase in cortisol uniquely in response learners. The physical stressor, the actual blood draw, produced a significant increase in cortisol amongst spatial learners that was then comparable to levels observed in response learners. Lower baseline cortisol and higher cortisol psychological stress response observed amongst children who used response strategies may therefore reflect early biological changes during development which may have an impact later in life when considering risk for neuropsychiatric disorders. Both adults and children rely of different navigation strategies to learn new environments. Cortisol levels differ between people dependent on spontaneous navigation strategy. We show a differential cortisol stress response in children dependent on navigational strategy.
Collapse
|
32
|
Fernandes DJ, Spring S, Roy AR, Qiu LR, Yee Y, Nieman BJ, Lerch JP, Palmert MR. Exposure to maternal high-fat diet induces extensive changes in the brain of adult offspring. Transl Psychiatry 2021; 11:149. [PMID: 33654064 PMCID: PMC7925669 DOI: 10.1038/s41398-021-01274-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/24/2021] [Accepted: 02/05/2021] [Indexed: 12/24/2022] Open
Abstract
Maternal environmental exposures, such as high-fat diets, diabetes and obesity, can induce long-term effects in offspring. These effects include increased risk of neurodevelopmental disorders (NDDs) including autism spectrum disorder (ASD), depression and anxiety. The mechanisms underlying these late-life neurologic effects are unknown. In this article, we measured changes in the offspring brain and determined which brain regions are sensitive to maternal metabolic milieu and therefore may mediate NDD risk. We showed that mice exposed to a maternal high-fat diet display extensive brain changes in adulthood despite being switched to a low-fat diet at weaning. Brain regions impacted by early-life diet include the extended amygdalar system, which plays an important role in reward-seeking behaviour. Genes preferentially expressed in these regions have functions related to feeding behaviour, while also being implicated in human NDDs, such as autism. Our data demonstrated that exposure to maternal high-fat diet in early-life leads to brain alterations that persist into adulthood, even after dietary modifications.
Collapse
Affiliation(s)
- Darren J Fernandes
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Shoshana Spring
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Anna R Roy
- Division of Endocrinology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lily R Qiu
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Yohan Yee
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Brian J Nieman
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Mark R Palmert
- Division of Endocrinology, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Paediatrics and Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
33
|
Li Hi Shing S, Lope J, McKenna MC, Chipika RH, Hardiman O, Bede P. Increased cerebral integrity metrics in poliomyelitis survivors: putative adaptation to longstanding lower motor neuron degeneration. J Neurol Sci 2021; 424:117361. [PMID: 33773768 DOI: 10.1016/j.jns.2021.117361] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/14/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Post-polio syndrome (PPS) has been traditionally considered a slowly progressive condition that affects poliomyelitis survivors decades after their initial infection. Cerebral changes in poliomyelitis survivors are poorly characterised and the few existing studies are strikingly conflicting. OBJECTIVE The overarching aim of this study is the comprehensive characterisation of cerebral grey and white matter alterations in poliomyelitis survivors with reference to healthy- and disease-controls using quantitative imaging metrics. METHODS Thirty-six poliomyelitis survivors, 88 patients with ALS and 117 healthy individuals were recruited in a prospective, single-centre neuroimaging study using uniform MRI acquisition parameters. All participants underwent standardised clinical assessments, T1-weighted structural and diffusion tensor imaging. Whole-brain and region-of-interest morphometric analyses were undertaken to evaluate patterns of grey matter changes. Tract-based spatial statistics were performed to evaluate diffusivity alterations in a study-specific whiter matter skeleton. RESULTS In contrast to healthy controls, poliomyelitis survivors exhibited increased grey matter partial volumes in the brainstem, cerebellum and occipital lobe, accompanied by increased FA in the corticospinal tracts, cerebellum, bilateral mesial temporal lobes and inferior frontal tracts. Polio survivors exhibited increased integrity metrics in the same anatomical regions where ALS patients showed degenerative changes. CONCLUSIONS Our findings indicate considerable cortical and white matter reorganisation in poliomyelitis survivors which may be interpreted as compensatory, adaptive change in response to severe lower motor neuron injury in infancy.
Collapse
Affiliation(s)
- Stacey Li Hi Shing
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Jasmin Lope
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Mary Clare McKenna
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Ireland.
| |
Collapse
|
34
|
Cellular correlates of gray matter volume changes in magnetic resonance morphometry identified by two-photon microscopy. Sci Rep 2021; 11:4234. [PMID: 33608622 PMCID: PMC7895945 DOI: 10.1038/s41598-021-83491-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Magnetic resonance imaging (MRI) of the brain combined with voxel-based morphometry (VBM) revealed changes in gray matter volume (GMV) in various disorders. However, the cellular basis of GMV changes has remained largely unclear. We correlated changes in GMV with cellular metrics by imaging mice with MRI and two-photon in vivo microscopy at three time points within 12 weeks, taking advantage of age-dependent changes in brain structure. Imaging fluorescent cell nuclei allowed inferences on (i) physical tissue volume as determined from reference spaces outlined by nuclei, (ii) cell density, (iii) the extent of cell clustering, and (iv) the volume of cell nuclei. Our data indicate that physical tissue volume alterations only account for 13.0% of the variance in GMV change. However, when including comprehensive measurements of nucleus volume and cell density, 35.6% of the GMV variance could be explained, highlighting the influence of distinct cellular mechanisms on VBM results.
Collapse
|
35
|
Tymofiyeva O, Gaschler R. Training-Induced Neural Plasticity in Youth: A Systematic Review of Structural and Functional MRI Studies. Front Hum Neurosci 2021; 14:497245. [PMID: 33536885 PMCID: PMC7848153 DOI: 10.3389/fnhum.2020.497245] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 12/01/2020] [Indexed: 01/17/2023] Open
Abstract
Experience-dependent neural plasticity is high in the developing brain, presenting a unique window of opportunity for training. To optimize existing training programs and develop new interventions, it is important to understand what processes take place in the developing brain during training. Here, we systematically review MRI-based evidence of training-induced neural plasticity in children and adolescents. A total of 71 articles were included in the review. Significant changes in brain activation, structure, microstructure, and structural and functional connectivity were reported with different types of trainings in the majority (87%) of the studies. Significant correlation of performance improvement with neural changes was reported in 51% of the studies. Yet, only 48% of the studies had a control condition. Overall, the review supports the hypothesized neural changes with training while at the same time charting empirical and methodological desiderata for future research.
Collapse
Affiliation(s)
- Olga Tymofiyeva
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, United States
- Department of Psychology, University of Hagen, Hagen, Germany
| | - Robert Gaschler
- Department of Psychology, University of Hagen, Hagen, Germany
| |
Collapse
|
36
|
To XV, Nasrallah FA. A roadmap of brain recovery in a mouse model of concussion: insights from neuroimaging. Acta Neuropathol Commun 2021; 9:2. [PMID: 33407949 PMCID: PMC7789702 DOI: 10.1186/s40478-020-01098-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Abstract
Concussion or mild traumatic brain injury is the most common form of traumatic brain injury with potentially long-term consequences. Current objective diagnosis and treatment options are limited to clinical assessment, cognitive rest, and symptom management, which raises the real danger of concussed patients being released back into activities where subsequent and cumulative injuries may cause disproportionate damages. This study conducted a cross-sectional multi-modal examination investigation of the temporal changes in behavioural and brain changes in a mouse model of concussion using magnetic resonance imaging. Sham and concussed mice were assessed at day 2, day 7, and day 14 post-sham or injury procedures following a single concussion event for motor deficits, psychological symptoms with open field assessment, T2-weighted structural imaging, diffusion tensor imaging (DTI), neurite orientation density dispersion imaging (NODDI), stimulus-evoked and resting-state functional magnetic resonance imaging (fMRI). Overall, a mismatch in the temporal onsets and durations of the behavioural symptoms and structural/functional changes in the brain was seen. Deficits in behaviour persisted until day 7 post-concussion but recovered at day 14 post-concussion. DTI and NODDI changes were most extensive at day 7 and persisted in some regions at day 14 post-concussion. A persistent increase in connectivity was seen at day 2 and day 14 on rsfMRI. Stimulus-invoked fMRI detected increased cortical activation at day 7 and 14 post-concussion. Our results demonstrate the capabilities of advanced MRI in detecting the effects of a single concussive impact in the brain, and highlight a mismatch in the onset and temporal evolution of behaviour, structure, and function after a concussion. These results have significant translational impact in developing methods for the detection of human concussion and the time course of brain recovery.
Collapse
|
37
|
Barron HC, Mars RB, Dupret D, Lerch JP, Sampaio-Baptista C. Cross-species neuroscience: closing the explanatory gap. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190633. [PMID: 33190601 PMCID: PMC7116399 DOI: 10.1098/rstb.2019.0633] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2020] [Indexed: 12/17/2022] Open
Abstract
Neuroscience has seen substantial development in non-invasive methods available for investigating the living human brain. However, these tools are limited to coarse macroscopic measures of neural activity that aggregate the diverse responses of thousands of cells. To access neural activity at the cellular and circuit level, researchers instead rely on invasive recordings in animals. Recent advances in invasive methods now permit large-scale recording and circuit-level manipulations with exquisite spatio-temporal precision. Yet, there has been limited progress in relating these microcircuit measures to complex cognition and behaviour observed in humans. Contemporary neuroscience thus faces an explanatory gap between macroscopic descriptions of the human brain and microscopic descriptions in animal models. To close the explanatory gap, we propose adopting a cross-species approach. Despite dramatic differences in the size of mammalian brains, this approach is broadly justified by preserved homology. Here, we outline a three-armed approach for effective cross-species investigation that highlights the need to translate different measures of neural activity into a common space. We discuss how a cross-species approach has the potential to transform basic neuroscience while also benefiting neuropsychiatric drug development where clinical translation has, to date, seen minimal success. This article is part of the theme issue 'Key relationships between non-invasive functional neuroimaging and the underlying neuronal activity'.
Collapse
Affiliation(s)
- Helen C. Barron
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Rogier B. Mars
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Donders Institute for Brain, Cognition and Behavior, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK
| | - Jason P. Lerch
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, CanadaM5G 1L7
| | - Cassandra Sampaio-Baptista
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QB, UK
| |
Collapse
|
38
|
Matuszewski J, Kossowski B, Bola Ł, Banaszkiewicz A, Paplińska M, Gyger L, Kherif F, Szwed M, Frackowiak RS, Jednoróg K, Draganski B, Marchewka A. Brain plasticity dynamics during tactile Braille learning in sighted subjects: Multi-contrast MRI approach. Neuroimage 2020; 227:117613. [PMID: 33307223 DOI: 10.1016/j.neuroimage.2020.117613] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/20/2020] [Accepted: 11/29/2020] [Indexed: 01/11/2023] Open
Abstract
A growing body of empirical evidence supports the notion of diverse neurobiological processes underlying learning-induced plasticity changes in the human brain. There are still open questions about how brain plasticity depends on cognitive task complexity, how it supports interactions between brain systems and with what temporal and spatial trajectory. We investigated brain and behavioural changes in sighted adults during 8-months training of tactile Braille reading whilst monitoring brain structure and function at 5 different time points. We adopted a novel multivariate approach that includes behavioural data and specific MRI protocols sensitive to tissue properties to assess local functional and structural and myelin changes over time. Our results show that while the reading network, located in the ventral occipitotemporal cortex, rapidly adapts to tactile input, sensory areas show changes in grey matter volume and intra-cortical myelin at different times. This approach has allowed us to examine and describe neuroplastic mechanisms underlying complex cognitive systems and their (sensory) inputs and (motor) outputs differentially, at a mesoscopic level.
Collapse
Affiliation(s)
- Jacek Matuszewski
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| | - Bartosz Kossowski
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Łukasz Bola
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland; Institute of Psychology, Jagiellonian University, Krakow, Poland
| | - Anna Banaszkiewicz
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | | | - Lucien Gyger
- LREN, Department for Clinical Neurosciences, CHUV, University of Lausanne, Lausanne, Switzerland
| | - Ferath Kherif
- LREN, Department for Clinical Neurosciences, CHUV, University of Lausanne, Lausanne, Switzerland
| | - Marcin Szwed
- Institute of Psychology, Jagiellonian University, Krakow, Poland
| | | | - Katarzyna Jednoróg
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Bogdan Draganski
- LREN, Department for Clinical Neurosciences, CHUV, University of Lausanne, Lausanne, Switzerland; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Artur Marchewka
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
39
|
Schmidt S, Gull S, Herrmann KH, Boehme M, Irintchev A, Urbach A, Reichenbach JR, Klingner CM, Gaser C, Witte OW. Experience-dependent structural plasticity in the adult brain: How the learning brain grows. Neuroimage 2020; 225:117502. [PMID: 33164876 DOI: 10.1016/j.neuroimage.2020.117502] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/31/2020] [Accepted: 10/17/2020] [Indexed: 12/12/2022] Open
Abstract
Volumetric magnetic resonance imaging studies have shown that intense learning can be associated with grey matter volume increases in the adult brain. The underlying mechanisms are poorly understood. Here we used monocular deprivation in rats to analyze the mechanisms underlying use-dependent grey matter increases. Optometry for quantification of visual acuity was combined with volumetric magnetic resonance imaging and microscopic techniques in longitudinal and cross-sectional studies. We found an increased spatial vision of the open eye which was associated with a transient increase in the volumes of the contralateral visual and lateral entorhinal cortex. In these brain areas dendrites of neurons elongated, and there was a strong increase in the number of spines, the targets of synapses, which was followed by spine maturation and partial pruning. Astrocytes displayed a transient pronounced swelling and underwent a reorganization of their processes. The use-dependent increase in grey matter corresponded predominantly to the swelling of the astrocytes. Experience-dependent increase in brain grey matter volume indicates a gain of structure plasticity with both synaptic and astrocyte remodeling.
Collapse
Affiliation(s)
- Silvio Schmidt
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, D07747 Jena, Germany; Brain Imaging Center Jena, Jena University Hospital, Am Klinikum 1, D07747 Jena, Germany
| | - Sidra Gull
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, D07747 Jena, Germany
| | - Karl-Heinz Herrmann
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany
| | - Marcus Boehme
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, D07747 Jena, Germany
| | - Andrey Irintchev
- Department of Otorhinolaryngology, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany
| | - Anja Urbach
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, D07747 Jena, Germany
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany
| | - Carsten M Klingner
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, D07747 Jena, Germany; Brain Imaging Center Jena, Jena University Hospital, Am Klinikum 1, D07747 Jena, Germany; Biomagnetic Center, Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany
| | - Christian Gaser
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, D07747 Jena, Germany; Brain Imaging Center Jena, Jena University Hospital, Am Klinikum 1, D07747 Jena, Germany; Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, D07747 Jena, Germany; Brain Imaging Center Jena, Jena University Hospital, Am Klinikum 1, D07747 Jena, Germany; Biomagnetic Center, Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany.
| |
Collapse
|
40
|
Islam MR, Luo R, Valaris S, Haley EB, Takase H, Chen YI, Dickerson BC, Schon K, Arai K, Nguyen CT, Wrann CD. Diffusion tensor-MRI detects exercise-induced neuroplasticity in the hippocampal microstructure in mice. Brain Plast 2020; 5:147-159. [PMID: 33282678 PMCID: PMC7685674 DOI: 10.3233/bpl-190090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Despite considerable research on exercise-induced neuroplasticity in the brain, a major ongoing challenge in translating findings from animal studies to humans is that clinical and preclinical settings employ very different techniques. Objective: Here we aim to bridge this divide by using diffusion tensor imaging MRI (DTI), an advanced imaging technique commonly applied in human studies, in a longitudinal exercise study with mice. Methods: Wild-type mice were exercised using voluntary free-wheel running, and MRI scans were at baseline and after four weeks and nine weeks of running. Results: Both hippocampal volume and fractional anisotropy, a surrogate for microstructural directionality, significantly increased with exercise. In addition, exercise levels correlated with effect size. Histological analysis showed more PDGFRα+ oligodendrocyte precursor cells in the corpus callosum of running mice. Conclusions: These results provide compelling in vivo support for the concept that similar adaptive changes occur in the brains of mice and humans in response to exercise.
Collapse
Affiliation(s)
- Mohammad R Islam
- Cardiovascular Research Center, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Renhao Luo
- Cardiovascular Research Center, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Sophia Valaris
- Cardiovascular Research Center, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Erin B Haley
- Cardiovascular Research Center, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Hajime Takase
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Yinching Iris Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Bradford C Dickerson
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Karin Schon
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Christopher T Nguyen
- Cardiovascular Research Center, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Christiane D Wrann
- Cardiovascular Research Center, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.,Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
41
|
Grijalva LE, Miranda MI, Paredes RG. Differential changes in GAP-43 or synaptophysin during appetitive and aversive taste memory formation. Behav Brain Res 2020; 397:112937. [PMID: 32991926 DOI: 10.1016/j.bbr.2020.112937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
Abstract
Association between events in time and space is a major mechanism for all animals, including humans, which allows them to learn about the world and potentially change their behavior in the future to adapt to different environments. Conditioning taste aversion (CTA) is a single-trial learning paradigm where animals are trained to avoid a novel flavor which is associated with malaise. Many variables can be analyzed with this model and the circuits involved are well described. Thus, the amygdala and the gustatory cortex (GC) are some of the most relevant structures involved in CTA. In the present study we focused in plastic changes that occur during appetitive and/or aversive taste memory formation. Previous studies have demonstrated that memory consolidation, in hippocampal dependent paradigms, induces plastic changes like increase in the concentration of proteins considered as markers of neuronal plasticity, such as the growth associated protein 43 (GAP-43) and synaptophysin (SYN). In the present experiment in male rats we evaluated changes in GAP-43 and SYN expression, using immunofluorescence, induce by the formation of aversive and appetitive taste memory. We found that taste aversive memory formation can induce an increase in GAP-43 in the granular layer of the GC. Furthermore, we also found an increase in SYN expression in both layers of the GC, the basolateral amygdala (BLA) and the central amygdala (CeA). These results suggest that aversive memory representation induces a new circuitry (inferred from an increase in GAP 43). On the other hand, an appetitive taste learning increased SYN expression in the GC (both layers), the BLA and the CeA without any changes in GAP 43. Together these results indicate that aversive memory formation induces structural and synaptic changes, while appetitive memory formation induces synaptic changes; suggesting that aversive and appetitive memories require a different set of cortical and amygdala plastic changes.
Collapse
Affiliation(s)
- Lucia E Grijalva
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Querétaro, 76230, Mexico
| | - María I Miranda
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Querétaro, 76230, Mexico
| | - Raúl G Paredes
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Querétaro, 76230, Mexico; Escuela Nacional de Estudios Superiores, Unidad Juriquilla, UNAM, Querétaro, 76230 Mexico.
| |
Collapse
|
42
|
Batouli SAH, Saba V. Larger Volume and Different Activation of the Brain in Response to Threat in Military Officers. Basic Clin Neurosci 2020; 11:669-685. [PMID: 33643560 PMCID: PMC7878053 DOI: 10.32598/bcn.9.10.160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/05/2019] [Accepted: 01/15/2020] [Indexed: 12/22/2022] Open
Abstract
Introduction: Military missions involve stressful and life-threatening situations; however, soldiers should have a healthy cognition on the battlefield despite their high-stress levels. This is an ability that should be gained during prior military training. Successful and influential training is suggested to be associated with structural and functional improvements of the brain. Methods: This study investigated the pattern of brain activation while observing videos relevant to life-threatening situations, in addition to brain structure. Accordingly, the obtained data were compared between 20 military members and 26 healthy controls. The study participants were all male, aged between 19 to 24 years, right-handed, studying BSc, and from the same socioeconomic status. Results: The obtained data presented a larger volume in a total number of 1103 voxels of the brain (in 5 brain areas) in the military group. Furthermore, the military group suggested higher brain activation in the visual processing areas of the brain when observing real combat videos; however, this increment was mostly in the areas associated with motor processing and executive functions in the controls. Conclusion: This study indicated that military training is associated with positive structural changes in the brain. Besides, it provided a different brain activation in response to stressful situations. These findings highlighted the importance of qualified military training.
Collapse
Affiliation(s)
| | - Valiallah Saba
- Department of Radiology, Faculty of Paramedicine, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
To XV, Benetatos J, Soni N, Liu D, Mehari Abraha H, Yan W, Panagiotopoulou O, Nasrallah FA. Ultra-High-Field Diffusion Tensor Imaging Identifies Discrete Patterns of Concussive Injury in the Rodent Brain. J Neurotrauma 2020; 38:967-982. [PMID: 32394788 DOI: 10.1089/neu.2019.6944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Although concussions can result in persistent neurological post-concussion symptoms, they are typically invisible on routine magnetic resonance imaging (MRI) scans. Our study aimed to investigate the use of ultra-high-field diffusion tensor imaging (UHF-DTI) in discerning severity-dependent microstructural changes in the mouse brain following a concussion. Twenty-three C57BL/6 mice were randomly allocated into three groups: the low concussive (LC, n = 9) injury group, the high concussive (HC, n = 6) injury group, and the sham control (SC, n = 7) group. Mice were perfused on day 2 post-injury, and the brains were scanned on a 16.4T MRI scanner with UHF-DTI and neurite orientation dispersion imaging (NODDI). Finite element analysis (FEA) was performed to determine the pattern and extent of the physical impact on the brain tissue. MRI findings were correlated with histopathological analysis in a subset of mice. In the LC group, increased fractional anisotropy (FA) and decreased orientation dispersion index (ODI) but limited neurite density index (NDI) changes were found in the gray matter, and minimal changes to white matter (WM) were observed. The HC group presented increased mean diffusivity (MD), decreased NDI, and decreased ODI in the WM and gray matter (GM); decreased FA was also found in a small area of the WM. WM changes were associated with WM degeneration and neuroinflammation. FEA showed varying region-dependent degrees of stress, in line with the different imaging findings. This study provides evidence that UHF-DTI combined with NODDI can detect concussions of variable intensities. This has significant implications for the diagnosis of concussion in humans.
Collapse
Affiliation(s)
- Xuan Vinh To
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Joseph Benetatos
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Neha Soni
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Dedao Liu
- Department of Mechanical and Aerospace Engineering, Faculty of Engineering, Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Hyab Mehari Abraha
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Wenyi Yan
- Department of Mechanical and Aerospace Engineering, Faculty of Engineering, Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Olga Panagiotopoulou
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Fatima A Nasrallah
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia.,The Center for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
44
|
Neural correlates of motor expertise: Extensive motor training and cortical changes. Brain Res 2020; 1739:146323. [DOI: 10.1016/j.brainres.2019.146323] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 01/05/2023]
|
45
|
Sodums DJ, Bohbot VD. Negative correlation between grey matter in the hippocampus and caudate nucleus in healthy aging. Hippocampus 2020; 30:892-908. [PMID: 32384195 DOI: 10.1002/hipo.23210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 01/18/2023]
Abstract
Neurobiological changes that occur with aging include a reduction in function and volume of the hippocampus. These changes were associated with corresponding memory deficits in navigation tasks. However, navigation can involve different strategies that are dependent on the hippocampus and caudate nucleus. The proportion of people using hippocampus-dependent spatial strategies decreases across the lifespan. As such, the decrease in spatial strategies, and corresponding increase in caudate nucleus-dependent response strategies with age, may play a role in the observed neurobiological changes in the hippocampus. Furthermore, we previously showed a negative correlation between grey matter in the hippocampus and caudate nucleus/striatum in mice, young adults, and in individuals diagnosed with Alzheimer's disease. As such, we hypothesized that this negative relationship between the two structures would be present during normal aging. The aim of the current study was to investigate this gap in the literature by studying the relationship between grey matter in the hippocampus and caudate nucleus of the striatum, in relation to each other and to navigation strategies, during healthy aging. Healthy older adults (N = 39) were tested on the Concurrent Spatial Discrimination Learning Task (CSDLT), a virtual radial task that dissociates between spatial and response strategies. A regression of strategies against structural MRIs showed for the first time in older adults that the response strategy was associated with higher amounts of grey matter in the caudate nucleus. As expected, the spatial strategy correlated with grey matter in the hippocampus, which was negatively correlated with grey matter in the caudate nucleus. Interestingly, a sex difference emerged showing that among older adult response learners, women have the least amount of grey matter in the hippocampus, which is a known risk for Alzheimer's disease. This difference was absent among spatial learners. These results are discussed in the context of the putative protective role of spatial memory against grey matter loss in the hippocampus, especially in women.
Collapse
Affiliation(s)
- Devin J Sodums
- Department of Psychiatry, McGill University, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Véronique D Bohbot
- Department of Psychiatry, McGill University, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| |
Collapse
|
46
|
Reduced tactile acuity in chronic low back pain is linked with structural neuroplasticity in primary somatosensory cortex and is modulated by acupuncture therapy. Neuroimage 2020; 217:116899. [PMID: 32380138 DOI: 10.1016/j.neuroimage.2020.116899] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
Prior studies have shown that patients suffering from chronic Low Back Pain (cLBP) have impaired somatosensory processing including reduced tactile acuity, i.e. reduced ability to resolve fine spatial details with the perception of touch. The central mechanism(s) underlying reduced tactile acuity are unknown but may include changes in specific brain circuitries (e.g. neuroplasticity in the primary somatosensory cortex, S1). Furthermore, little is known about the linkage between changes in tactile acuity and the amelioration of cLBP by somatically-directed therapeutic interventions, such as acupuncture. In this longitudinal neuroimaging study, we evaluated healthy control adults (HC, N = 50) and a large sample of cLBP patients (N = 102) with structural brain imaging (T1-weighted MRI for Voxel-Based Morphometry, VBM; Diffusion Tensor Imaging, DTI) and tactile acuity testing using two-point discrimination threshold (2PDT) over the lower back (site of pain) and finger (control) locations. Patients were evaluated at baseline and following a 4-week course of acupuncture, with patients randomized to either verum acupuncture, two different forms of sham acupuncture (designed with or without somatosensory afference), or no-intervention usual care control. At baseline, cLBP patients demonstrated reduced acuity (greater 2PDT, P = 0.01) over the low back, but not finger (P = 0.29) locations compared to HC, suggesting that chronic pain affects tactile acuity specifically at body regions encoding the experience of clinical pain. At baseline, Gray Matter Volume (GMV) was elevated and Fractional Anisotropy (FA) was reduced, respectively, in the S1-back region of cLBP patients compared to controls (P < 0.05). GMV in cLBP correlated with greater 2PDT-back scores (ρ = 0.27, P = 0.02). Following verum acupuncture, tactile acuity over the back was improved (reduced 2PDT) and greater improvements were associated with reduced S1-back GMV (ρ = 0.52, P = 0.03) and increased S1-back adjacent white matter FA (ρ = -0.56, P = 0.01). These associations were not seen for non-verum control interventions. Thus, S1 neuroplasticity in cLBP is linked with deficits in tactile acuity and, following acupuncture therapy, may represent early mechanistic changes in somatosensory processing that track with improved tactile acuity.
Collapse
|
47
|
Action video game experience is associated with increased resting state functional connectivity in the caudate nucleus and decreased functional connectivity in the hippocampus. COMPUTERS IN HUMAN BEHAVIOR 2020. [DOI: 10.1016/j.chb.2019.106200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
48
|
Sallet J, Noonan MP, Thomas A, O’Reilly JX, Anderson J, Papageorgiou GK, Neubert FX, Ahmed B, Smith J, Bell AH, Buckley MJ, Roumazeilles L, Cuell S, Walton ME, Krug K, Mars RB, Rushworth MFS. Behavioral flexibility is associated with changes in structure and function distributed across a frontal cortical network in macaques. PLoS Biol 2020; 18:e3000605. [PMID: 32453728 PMCID: PMC7274449 DOI: 10.1371/journal.pbio.3000605] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/05/2020] [Accepted: 04/30/2020] [Indexed: 01/08/2023] Open
Abstract
One of the most influential accounts of central orbitofrontal cortex-that it mediates behavioral flexibility-has been challenged by the finding that discrimination reversal in macaques, the classic test of behavioral flexibility, is unaffected when lesions are made by excitotoxin injection rather than aspiration. This suggests that the critical brain circuit mediating behavioral flexibility in reversal tasks lies beyond the central orbitofrontal cortex. To determine its identity, a group of nine macaques were taught discrimination reversal learning tasks, and its impact on gray matter was measured. Magnetic resonance imaging scans were taken before and after learning and compared with scans from two control groups, each comprising 10 animals. One control group learned discrimination tasks that were similar but lacked any reversal component, and the other control group engaged in no learning. Gray matter changes were prominent in posterior orbitofrontal cortex/anterior insula but were also found in three other frontal cortical regions: lateral orbitofrontal cortex (orbital part of area 12 [12o]), cingulate cortex, and lateral prefrontal cortex. In a second analysis, neural activity in posterior orbitofrontal cortex/anterior insula was measured at rest, and its pattern of coupling with the other frontal cortical regions was assessed. Activity coupling increased significantly in the reversal learning group in comparison with controls. In a final set of experiments, we used similar structural imaging procedures and analyses to demonstrate that aspiration lesion of central orbitofrontal cortex, of the type known to affect discrimination learning, affected structure and activity in the same frontal cortical circuit. The results identify a distributed frontal cortical circuit associated with behavioral flexibility.
Collapse
Affiliation(s)
- Jérôme Sallet
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - MaryAnn P. Noonan
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Adam Thomas
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- National Institute of Mental Health, Magnuson Clinical Center, Bethesda, Maryland, United States of America
| | - Jill X. O’Reilly
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Jesper Anderson
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Georgios K. Papageorgiou
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Franz X. Neubert
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Bashir Ahmed
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Jackson Smith
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Andrew H. Bell
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Mark J. Buckley
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Léa Roumazeilles
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Steven Cuell
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Mark E. Walton
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Kristine Krug
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- Otto-von-Guericke-Universität, Magdeburg, Germany
- Leibniz-Institut für Neurobiologie, Magdeburg, Germany
| | - Rogier B. Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Matthew F. S. Rushworth
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
49
|
Structural Variant in Mitochondrial-Associated Gene (MRPL3) Induces Adult-Onset Neurodegeneration with Memory Impairment in the Mouse. J Neurosci 2020; 40:4576-4585. [PMID: 32341096 DOI: 10.1523/jneurosci.0013-20.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/31/2022] Open
Abstract
An impediment to the development of effective therapies for neurodegenerative disease is that available animal models do not reproduce important clinical features such as adult-onset and stereotypical patterns of progression. Using in vivo magnetic resonance imaging and behavioral testing to study male and female decrepit mice, we found a stereotypical neuroanatomical pattern of progression of the lesion along the limbic system network and an associated memory impairment. Using structural variant analysis, we identified an intronic mutation in a mitochondrial-associated gene (Mrpl3) that is responsible for the decrepit phenotype. While the function of this gene is unknown, embryonic lethality in Mrpl3 knock-out mice suggests it is critical for early development. The observation that a mutation linked to energy metabolism precipitates a pattern of neurodegeneration via cell death across disparate but linked brain regions may explain how stereotyped patterns of neurodegeneration arise in humans or define a not yet identified human disease.SIGNIFICANCE STATEMENT The development of novel therapies for adult-onset neurodegenerative disease has been impeded by the limitations of available animal models in reproducing many of the clinical features. Here, we present a novel spontaneous mutation in a mitochondrial-associated gene in a mouse (termed decrepit) that results in adult-onset neurodegeneration with a stereotypical neuroanatomical pattern of progression and an associated memory impairment. The decrepit mouse model may represent a heretofore undiagnosed human disease and could serve as a new animal model to study neurodegenerative disease.
Collapse
|
50
|
Iso-Markku P, Waller K, Hautasaari P, Kaprio J, Kujala UM, Tarkka IM. Twin studies on the association of physical activity with cognitive and cerebral outcomes. Neurosci Biobehav Rev 2020; 114:1-11. [PMID: 32325068 DOI: 10.1016/j.neubiorev.2020.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 02/25/2020] [Accepted: 04/09/2020] [Indexed: 11/24/2022]
Abstract
Regular physical activity (PA) offers positive effects on the human body. However, the effects of PA on cognition and in the brain are less clear. In this paper, we narratively review the relationship of PA with cognition and dementia, first from general perspective and then through genetically informed studies on the topic. Then we move on to imaging studies on exercise and brain anatomy first by presenting an overall picture of the topic and then discussing brain imaging studies addressing PA and brain structure in twins in more detailed way. Regarding PA and cognition or dementia, genetically informed studies are uncommon, even though the relationship between PA and cognitive ageing has been extensively studied. It is challenging to find twin pairs discordant for PA and dementia. Concerning brain imaging studies, among PA discordant young adult twin pairs, the more active co-twins showed larger gray matter volumes in striatal, prefrontal, and hippocampal regions and in electrophysiological studies automatic deviance-detection processes differed in brain regions involved with sensorimotor, visual and memory functions.
Collapse
Affiliation(s)
- Paula Iso-Markku
- Department of Clinical Physiology and Nuclear Medicine, HUS Medical Imaging Center, Helsinki 42, University Central Hospital and University of Helsinki, Helsinki, Finland; Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland
| | - Katja Waller
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Pekka Hautasaari
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Jaakko Kaprio
- Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland; Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Urho M Kujala
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Ina M Tarkka
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.
| |
Collapse
|