1
|
Feng Y, Cheng Y, Li X, Ge Y, Liu C, Wang M, Wei X, Wang X, Sun Q, Zheng J, Yang J, Jin C. Preterm Neonates Exhibit a "Catch-Up" Pattern in Motor Development During the Neonatal Period: A Diffusion Tensor Imaging Study. Pediatr Neurol 2025; 164:81-88. [PMID: 39879674 DOI: 10.1016/j.pediatrneurol.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/24/2024] [Accepted: 01/01/2025] [Indexed: 01/31/2025]
Abstract
BACKGROUND Preterm infants are at high risk for subsequent neurodevelopmental disability. Early developmental characterization of brain and neurobehavioral function is critical for identifying high-risk infants. This study aimed to elucidate the early evolution of sensorimotor function in preterm neonates by exploring postnatal age-related changes in the brain white matter (WM) and neurobehavioral abilities. METHODS One hundred eighteen neonates without abnormalities on magnetic resonance imaging were included. Diffusion tensor imaging-derived fractional anisotropy (FA) and neonatal neurobehavioral assessment were separately used to characterize the brain WM microstructure and neurobehavioral development levels. Scatterplots with linear fitting and Pearson correlation were used to investigate the relationships of FA and neurobehavioral scores (active tone and behavior scores) with postnatal age separately for preterm and term neonates. Here, the optical radiation (OR), auditory radiation, corticospinal tract (CST), posterior thalamic radiation (PTR), and thalamus-primary somatosensory cortex were selected as the regions of interest (ROIs). RESULTS The preterm FAs in the ROIs were lower than term neonates (all Bonferroni-corrected P < 0.001). Preterm CST FA showed a significantly higher correlation with postnatal age (P = 0.042) than term (r = 0.29 vs 0.08), whereas significantly higher correlations were found in term OR (P = 0.018) and PTR (P = 0.002). Similarly, relatively high and low correlations between active tone (r = 0.48 vs 0.35; P = 0.049 for interactions with a postnatal age ≥14 days and preterm/term group status) and behavioral scores (r = 0.36 vs 0.52; P = 0.030 for interactions of postnatal age and preterm/term group status) were observed in preterm infants. CONCLUSIONS Although delayed, preterm neonates exhibit a "catch-up" pattern in motor development in the newborn stage.
Collapse
Affiliation(s)
- Yuying Feng
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, China
| | - Yannan Cheng
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, China
| | - Xianjun Li
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, China
| | - Yao Ge
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, China
| | - Congcong Liu
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, China
| | - Miaomiao Wang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, China
| | | | - Xiaoyu Wang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, China
| | - Qinli Sun
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, China
| | - Jie Zheng
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, China
| | - Jian Yang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, China
| | - Chao Jin
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, China.
| |
Collapse
|
2
|
Trò R, Roascio M, Tortora D, Severino M, Rossi A, Garyfallidis E, Arnulfo G, Fato MM, Fadnavis S. Multi-view fusion of diffusion MRI microstructural models: a preterm birth study. Front Neurosci 2024; 18:1480735. [PMID: 39758885 PMCID: PMC11695353 DOI: 10.3389/fnins.2024.1480735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025] Open
Abstract
Objective High Angular Resolution Diffusion Imaging (HARDI) models have emerged as a valuable tool for investigating microstructure with a higher degree of detail than standard diffusion Magnetic Resonance Imaging (dMRI). In this study, we explored the potential of multiple advanced microstructural diffusion models for investigating preterm birth in order to identify non-invasive markers of altered white matter development. Approach Rather than focusing on a single MRI modality, we studied on a compound of HARDI techniques in 46 preterm babies studied on a 3T scanner at term-equivalent age and in 23 control neonates born at term. Furthermore, we investigated discriminative patterns of preterm birth using multiple analysis methods, drawn from two only seemingly divergent modeling goals, namely inference and prediction. We thus resorted to (i) a traditional univariate voxel-wise inferential method, as the Tract-Based Spatial Statistics (TBSS) approach; (ii) a univariate predictive approach, as the Support Vector Machine (SVM) classification; and (iii) a multivariate predictive Canonical Correlation Analysis (CCA). Main results The TBSS analysis revealed significant differences between preterm and term cohorts in several white matter areas for multiple HARDI features. SVM classification on skeletonized HARDI measures yielded satisfactory accuracy, particularly for highly informative parameters about fiber directionality. Assessment of the degree of overlap between the two methods in voting for the most discriminating features exhibited a good, though parameter-dependent, rate of agreement. Finally, CCA identified joint changes precisely for those measures exhibiting less correspondence between TBSS and SVM. Significance Our results suggest that a data-driven intramodal imaging approach is crucial for gathering deep and complementary information. The main contribution of this methodological outline is to thoroughly investigate prematurity-related white matter changes through different inquiry focuses, with a view to addressing this issue, both aiming toward mechanistic insight and optimizing predictive accuracy.
Collapse
Affiliation(s)
- Rosella Trò
- Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), University of Genoa, Genoa, Italy
| | - Monica Roascio
- Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), University of Genoa, Genoa, Italy
| | - Domenico Tortora
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Andrea Rossi
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | | | - Gabriele Arnulfo
- Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), University of Genoa, Genoa, Italy
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Marco Massimo Fato
- Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), University of Genoa, Genoa, Italy
| | - Shreyas Fadnavis
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
3
|
Xiao J, Sun C, Chen R, Zhao Z, Wang G, Wu D. Reproducibility of Diffusion MRI-Based Tractography in the Fetal Brain. J Magn Reson Imaging 2024; 60:2055-2062. [PMID: 38284561 DOI: 10.1002/jmri.29253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Tractography based on diffusion MRI (dMRI) is a useful tool to study white matter of the developing brain. However, its application in fetal brains is limited due to motion artifacts and low resolution of in utero dMRI, leading to reduced reliability, which was scarcely investigated in previous studies. PURPOSE To identify reliably traceable fibers in fetal brains and assess whether reproducibility varies with gestational age (GA) and varies between brain regions. STUDY TYPE Prospective cohort study. SUBJECTS A total of 44 healthy fetuses with GAs between 25 and 37 (31 ± 6). FIELD STRENGTH/SEQUENCE 3-T, diffusion-weighted echo-planar imaging sequence (2-5 repeated dMRI scans within the same session per subject). ASSESSMENT We fitted dMRI with constrained spherical deconvolution model and conducted tractography on eight fibers. We extracted volume, fractional anisotropy, and fiber count for each fiber and assessed the reproducibility of these metrics between repeated scans within each subject. Data were divided into two age-based subgroups (≤30 weeks, N = 28, and >30 weeks, N = 16) for further tests. STATISTICAL TESTS The reproducibility were compared between fibers by analysis of variance and two-sample t tests. Multiple comparisons were corrected by the false discovery rate (5% was accepted). RESULTS The reproducibility of the anterior thalamic radiation, inferior longitudinal fasciculus (ILF), genu of the corpus callosum (GCC), and body of the corpus callosum (BCC) significantly decreased with advancing GA (correlation coefficient = 0.525-0.823), as confirmed by group comparisons between fetuses in early GA (≤30 weeks) and late GA (>30 weeks) groups. Corticospinal tract, inferior fronto-occipital fasciculus, and GCC showed high reproducibility for fiber count (weighted dice average = 0.846 vs. 0.814), while BCC and ILF exhibited the lowest reproducibility in both age groups. DATA CONCLUSION The study indicates that the reliability of fetal brain tractography depends on GA and varies among different fibers. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Jiaxin Xiao
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Cong Sun
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ruike Chen
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Zhiyong Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Guangbin Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Ji S, Ma D, Pan L, Wang W, Peng X, Amos JT, Ingabire HN, Li M, Wang Y, Yao D, Ren P. Automated Prediction of Infant Cognitive Development Risk by Video: A Pilot Study. IEEE J Biomed Health Inform 2024; 28:690-701. [PMID: 37053059 DOI: 10.1109/jbhi.2023.3266350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
OBJECTIVE Cognition is an essential human function, and its development in infancy is crucial. Traditionally, pediatricians used clinical observation or medical imaging to assess infants' current cognitive development (CD) status. The object of pediatricians' greater concern is however their future outcomes, because high-risk infants can be identified early in life for intervention. However, this opportunity has not yet been realized. Fortunately, some recent studies have shown that the general movement (GM) performance of infants around 3-4 months after birth might reflect their future CD status, which gives us an opportunity to achieve this goal by cameras and artificial intelligence. METHODS First, infants' GM videos were recorded by cameras, from which a series of features reflecting their bilateral movement symmetry (BMS) were extracted. Then, after at least eight months of natural growth, the infants' CD status was evaluated by the Bayley Infant Development Scale, and they were divided into high-risk and low-risk groups. Finally, the BMS features extracted from the early recorded GM videos were fed into the classifiers, using late infant CD risk assessment as the prediction target. RESULTS The area under the curve, recall and precision values reached 0.830, 0.832, and 0.823 for two-group classification, respectively. CONCLUSION This pilot study demonstrates that it is possible to automatically predict the CD of infants around the age of one year based on their GMs recorded early in life. SIGNIFICANCE This study not only helps clinicians better understand infant CD mechanisms, but also provides an economical, portable and non-invasive way to screen infants at high-risk early to facilitate their recovery.
Collapse
|
5
|
Stein A, Sody E, Bruns N, Felderhoff-Müser U. Development of an Ultrasound Scoring System to Describe Brain Maturation in Preterm Infants. AJNR Am J Neuroradiol 2023; 44:846-852. [PMID: 37321856 PMCID: PMC10337624 DOI: 10.3174/ajnr.a7909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND PURPOSE Cerebral maturation in preterm infants predominantly occurs postnatally, necessitating the development of objective bedside markers to monitor this process. This study aimed to develop a straightforward objective Ultrasound Score of Brain Development to assess cortical development in preterm infants. MATERIALS AND METHODS A total of 344 serial ultrasound examinations from 94 preterm infants born at ≤ 32 weeks of gestation were analyzed to identify brain structures suitable for a scoring system. RESULTS Among 11 candidate structures, 3 cerebral landmarks were selected due to their correlation with gestational age: the interopercular opening (P < .001), the height of the insular cortex (P < .001), and the depth of the cingulate sulcus (P < .001). These structures can be easily visualized in a single midcoronal view in the plane through the third ventricle and the foramina of Monro. A score point from 0 to 2 was assigned to each measurement, culminating in a total score ranging from 0 to 6. The Ultrasound Score of Brain Development correlated significantly with gestational age (P < .001). CONCLUSIONS The proposed Ultrasound Score of Brain Development has the potential for application as an objective indicator of brain maturation in correlation with gestational age, circumventing the need to rely on individual growth trajectories and percentiles for each specific structure.
Collapse
Affiliation(s)
- A Stein
- From the Department of Pediatrics I, Neonatology, University Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - E Sody
- From the Department of Pediatrics I, Neonatology, University Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - N Bruns
- From the Department of Pediatrics I, Neonatology, University Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - U Felderhoff-Müser
- From the Department of Pediatrics I, Neonatology, University Duisburg-Essen, University Hospital Essen, Essen, Germany
| |
Collapse
|
6
|
Gonzalez-Moreira E, Harmony T, Hinojosa-Rodríguez M, Carrillo-Prado C, Juárez-Colín ME, Gutiérrez-Hernández CC, Carlier MEM, Cubero-Rego L, Castro-Chavira SA, Fernández T. Prevention of Neurological Sequelae in Preterm Infants. Brain Sci 2023; 13:brainsci13050753. [PMID: 37239225 DOI: 10.3390/brainsci13050753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/14/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Preterm birth is one of the world's critical health problems, with an incidence of 5% to 18% of living newborns according to various countries. White matter injuries due to preoligodendrocytes deficits cause hypomyelination in children born preterm. Preterm infants also have multiple neurodevelopmental sequelae due to prenatal and perinatal risk factors for brain damage. The purpose of this work was to explore the effects of the brain risk factors and MRI volumes and abnormalities on the posterior motor and cognitive development at 3 years of age. METHODS A total of 166 preterm infants were examined before 4 months and clinical and MRI evaluations were performed. MRI showed abnormal findings in 89% of the infants. Parents of all infants were invited to receive the Katona neurohabilitation treatment. The parents of 128 infants accepted and received Katona's neurohabilitation treatment. The remaining 38 infants did not receive treatment for a variety of reasons. At the three-year follow-up, Bayley's II Mental Developmental Index (MDI) and the Psychomotor Developmental Index (PDI) were compared between treated and untreated subjects. RESULTS The treated children had higher values of both indices than the untreated. Linear regression showed that the antecedents of placenta disorders and sepsis as well as volumes of the corpus callosum and of the left lateral ventricle significantly predicted both MDI and PDI, while Apgar < 7 and volume of the right lateral ventricle predicted the PDI. CONCLUSIONS (1) The results indicate that preterm infants who received Katona's neurohabilitation procedure exhibited significantly better outcomes at 3 years of age compared to those who did not receive the treatment. (2) The presence of sepsis and the volumes of the corpus callosum and lateral ventricles at 3-4 months were significant predictors of the outcome at 3 years of age.
Collapse
Affiliation(s)
- Eduardo Gonzalez-Moreira
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Thalía Harmony
- Unidad de Investigación en Neurodesarrollo, Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Juriquilla, Querétaro 76230, Mexico
| | - Manuel Hinojosa-Rodríguez
- Unidad de Investigación en Neurodesarrollo, Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Juriquilla, Querétaro 76230, Mexico
| | - Cristina Carrillo-Prado
- Unidad de Investigación en Neurodesarrollo, Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Juriquilla, Querétaro 76230, Mexico
| | - María Elena Juárez-Colín
- Unidad de Investigación en Neurodesarrollo, Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Juriquilla, Querétaro 76230, Mexico
| | - Claudia Calipso Gutiérrez-Hernández
- Unidad de Investigación en Neurodesarrollo, Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Juriquilla, Querétaro 76230, Mexico
| | - María Elizabeth Mónica Carlier
- Unidad de Investigación en Neurodesarrollo, Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Juriquilla, Querétaro 76230, Mexico
| | - Lourdes Cubero-Rego
- Unidad de Investigación en Neurodesarrollo, Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Juriquilla, Querétaro 76230, Mexico
| | - Susana A Castro-Chavira
- Unidad de Investigación en Neurodesarrollo, Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Juriquilla, Querétaro 76230, Mexico
| | - Thalía Fernández
- Laboratorio de Psicofisiología, Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| |
Collapse
|
7
|
Adrian J, Sawyer C, Bakeman R, Haist F, Akshoomoff N. Longitudinal Structural and Diffusion-Weighted Neuroimaging of Young Children Born Preterm. Pediatr Neurol 2023; 141:34-41. [PMID: 36773405 DOI: 10.1016/j.pediatrneurol.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 11/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Children born preterm are at risk for diffuse injury to subcortical gray and white matter. METHODS We used a longitudinal cohort study to examine the development of subcortical gray matter and white matter volumes, and diffusivity measures of white matter tracts following preterm birth. Our participants were 47 children born preterm (24 to 32 weeks gestational age) and 28 children born at term. None of the children born preterm had significant neonatal brain injury. Children received structural and diffusion weighted magnetic resonance imaging scans at ages five, six, and seven years. We examined volumes of amygdala, hippocampus, caudate nucleus, putamen, thalamus, brainstem, cerebellar white matter, intracranial space, and ventricles, and volumes, fractional anisotropy, and mean diffusivity of anterior thalamic radiation, cingulum, corticospinal tract, corpus callosum, inferior frontal occipital fasciculus, inferior longitudinal fasciculus, temporal and parietal superior longitudinal fasciculus, and uncinate fasciculus. RESULTS Children born preterm had smaller volumes of thalamus, brainstem, cerebellar white matter, cingulum, corticospinal tract, inferior frontal occipital fasciculus, uncinate fasciculus, and temporal superior longitudinal fasciculus, whereas their ventricles were larger compared with term-born controls. We found no significant effect of preterm birth on diffusivity measures. Despite developmental changes and growth, group differences were present and similarly strong at all three ages. CONCLUSION Even in the absence of significant neonatal brain injury, preterm birth has a persistent impact on early brain development. The lack of a significant term status by age interaction suggests a delayed developmental trajectory.
Collapse
Affiliation(s)
- Julia Adrian
- Department of Cognitive Science, University of California, San Diego, La Jolla, California; Center for Human Development, University of California, San Diego, La Jolla, California.
| | - Carolyn Sawyer
- Center for Human Development, University of California, San Diego, La Jolla, California; Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - Roger Bakeman
- Department of Psychology, Georgia State University, Atlanta, Georgia
| | - Frank Haist
- Center for Human Development, University of California, San Diego, La Jolla, California; Department of Psychiatry, University of California, San Diego, La Jolla, California
| | - Natacha Akshoomoff
- Center for Human Development, University of California, San Diego, La Jolla, California; Department of Psychiatry, University of California, San Diego, La Jolla, California
| |
Collapse
|
8
|
Siffredi V, Liverani MC, Van De Ville D, Freitas LGA, Borradori Tolsa C, Hüppi PS, Ha-Vinh Leuchter R. Corpus callosum structural characteristics in very preterm children and adolescents: Developmental trajectory and relationship to cognitive functioning. Dev Cogn Neurosci 2023; 60:101211. [PMID: 36780739 PMCID: PMC9925611 DOI: 10.1016/j.dcn.2023.101211] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/08/2023] Open
Abstract
Previous studies suggest that structural alteration of the corpus callosum, i.e., the largest white matter commissural pathway, occurs after a preterm birth in the neonatal period and lasts across development. The present study aims to unravel corpus callosum structural characteristics across childhood and adolescence in very preterm (VPT) individuals, and their associations with general intellectual, executive and socio-emotional functioning. Neuropsychological assessments, T1-weighted and multi-shell diffusion MRI were collected in 79 VPT and 46 full term controls aged 6-14 years. Volumetric, diffusion tensor and neurite orientation dispersion and density imaging (NODDI) measures were extracted on 7 callosal portions using TractSeg. A multivariate data-driven approach (partial least squares correlation) and a cohort-based age normative modelling approach were used to explore associations between callosal characteristics and neuropsychological outcomes. The VPT and a full-term control groups showed similar trends of white-matter maturation over time, i.e., increase FA and reduced ODI, in all callosal segments, that was associated with increase in general intellectual functioning. However, using a cohort-based age-related normative modelling, findings show atypical pattern of callosal development in the VPT group, with reduced callosal maturation over time that was associated with poorer general intellectual and working memory functioning, as well as with lower gestational age.
Collapse
Affiliation(s)
- Vanessa Siffredi
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland; Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland; Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Switzerland.
| | - Maria Chiara Liverani
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland; SensoriMotor, Affective and Social Development Laboratory, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Dimitri Van De Ville
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland; Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland; Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Switzerland
| | - Lorena G A Freitas
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland; Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland; Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Switzerland
| | - Cristina Borradori Tolsa
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland
| | - Petra Susan Hüppi
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland
| | - Russia Ha-Vinh Leuchter
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
9
|
Han-Menz C, Whiteley G, Evans R, Razak A, Malhotra A. Systemic postnatal corticosteroids and magnetic resonance imaging measurements of corpus callosum and cerebellum of extremely preterm infants. J Paediatr Child Health 2023; 59:282-287. [PMID: 36404722 PMCID: PMC10098787 DOI: 10.1111/jpc.16286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/25/2022] [Accepted: 11/08/2022] [Indexed: 11/22/2022]
Abstract
AIM To compare the size of the corpus callosum (CC) and cerebellum on magnetic resonance imaging (MRI) brain scans conducted at term equivalent age (TEA) in extremely preterm infants who received systemic postnatal corticosteroids (PCS) to extremely preterm infants who did not receive systemic PCS and determine the dose-dependent effects on these outcomes. METHODS Single-centre retrospective cohort study including extremely preterm infants (born < 26 weeks' gestation) who had MRI brain scans at TEA. CC and cerebellar measurements were evaluated by two radiologists who were blinded to steroid use and their independent measurements were averaged. Comparative analyses were conducted between exposed (to systemic PCS) and non-exposed groups. RESULTS Eighty-three extremely preterm infants with mean (SD) 24.9 (0.91) weeks' gestational age, 721.8 (156) g birthweight were included; 38 with systemic PCS exposure and 45 without exposure. After adjustment for birthweight and other significant neonatal morbidities, there was no significant difference noted in corpus callosum length (CCL) between unexposed and exposed groups (adjusted mean (SE) 39.5 (0.57) mm vs. 38.5 (0.62) mm; P = 0.29). Similarly, the ratios of CCL/fronto-occipital diameter (FOD) and CCL/biparietal diameter (BPD) were not significantly different between the groups (CCL/FOD (0.40 (0.01) vs. 0.41 (0.01); P = 0.70) and CCL/BPD (0.51 (0.01) vs. 0.52 (0.01); P = 0.62)). Finally, no significant differences in cerebellar measurements, such as vermian height (adjusted mean (SE) 24.0 (0.46) mm vs. 23.5 (0.51 mm); P = 0.47) and transcerebellar diameter (adjusted mean (SE) 49.3 (0.74) mm vs. 4.78 (0.82) mm; P = 0.22) were found. No dose-dependent effects of systemic PCS on CC and cerebellar measurements were identified. CONCLUSIONS Systemic PCS use in extremely preterm infants was not associated with a change in the CC and cerebellar measurements on MRI brain scan at TEA.
Collapse
Affiliation(s)
- Charmaine Han-Menz
- Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
| | - Gillian Whiteley
- Diagnostic Imaging, Monash Health, Melbourne, Victoria, Australia
| | - Rachel Evans
- Diagnostic Imaging, Monash Health, Melbourne, Victoria, Australia
| | - Abdul Razak
- Department of Paediatrics, Monash University, Melbourne, Victoria, Australia.,Monash Newborn, Monash Children's Hospital, Melbourne, Victoria, Australia.,Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
| | - Atul Malhotra
- Department of Paediatrics, Monash University, Melbourne, Victoria, Australia.,Monash Newborn, Monash Children's Hospital, Melbourne, Victoria, Australia.,Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Moser JJ, Archer DP, Walker AM, Rice TK, Dewey D, Lodha AK, McAllister DL. Association of sedation and anesthesia on cognitive outcomes in very premature infants: a retrospective observational study. Can J Anaesth 2023; 70:56-68. [PMID: 36536155 DOI: 10.1007/s12630-022-02353-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Cognitive outcomes in preterm infants may be adversely affected by use of sedation and anesthetic agents. We investigated the associations between anesthetics/sedatives and full-scale intelligence quotient (FSIQ) measured at 36 months corrected age (CA) in very preterm infants (born < 29 weeks gestational age). METHODS This retrospective cohort study included preterm infants born at < 29 weeks of gestation between 1 January 2006 and 31 December 2012, whose cognitive outcomes were assessed at 36 months CA. Imputed and complete case univariable and adjusted multivariable linear regressions were used to investigate the associations between FSIQ [standardized to mean (standard deviation) 100 (15)] and exposure to volatile anesthetics, propofol, benzodiazepines, barbiturates, and ketamine. These agents were the subject of a 2016 warning from regulatory authorities in the USA recommending caution for administration to children and pregnant women. RESULTS A total of 731 infants met the inclusion criteria. Unadjusted associations were -7 (95% confidence interval [CI], -10 to -4; P < 0.001) and -6 (95% CI, -10 to -3; P < 0.001) FSIQ points with exposure to warned medications using imputed and complete case analyses, respectively. Imputed and complete case adjusted associations between FSIQ and warned medications were -3 (95% CI, -7 to 0; P = 0.045) and -4 (95% CI, -8 to 0; P = 0.071) FSIQ points, respectively. Adjusted associations between volatile anesthetic exposure only and FSIQ were -3 (95% CI, -6 to 0; P = 0.072) and -5 (95% CI, -9 to -2; P = 0.004) FSIQ points using imputed and complete case data sets, respectively. FSIQ was not associated with opioid exposure. CONCLUSION Exposure of very preterm infants to anesthetics/sedatives on the United States Food and Drug Administration warning list was associated with a decrease in FSIQ points at 36 months CA. There was no association between opioid exposure and FSIQ.
Collapse
Affiliation(s)
- Joanna J Moser
- Department of Anesthesiology, Perioperative and Pain Medicine, Cumming School of Medicine, University of Calgary, South Health Campus, 4448 Front Street S.E, Calgary, AB, T3M 1M4, Canada.
| | - David P Archer
- Department of Anesthesiology, Perioperative and Pain Medicine, Cumming School of Medicine, University of Calgary, South Health Campus, 4448 Front Street S.E, Calgary, AB, T3M 1M4, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Andrew M Walker
- Department of Anesthesiology, Perioperative and Pain Medicine, Cumming School of Medicine, University of Calgary, South Health Campus, 4448 Front Street S.E, Calgary, AB, T3M 1M4, Canada
| | - Tiffany K Rice
- Department of Anesthesiology, Perioperative and Pain Medicine, Cumming School of Medicine, University of Calgary, South Health Campus, 4448 Front Street S.E, Calgary, AB, T3M 1M4, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Deborah Dewey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Owerko Center at the Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Abhay K Lodha
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Debbie L McAllister
- Department of Anesthesiology, Perioperative and Pain Medicine, Cumming School of Medicine, University of Calgary, South Health Campus, 4448 Front Street S.E, Calgary, AB, T3M 1M4, Canada.,Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
11
|
Neumane S, Gondova A, Leprince Y, Hertz-Pannier L, Arichi T, Dubois J. Early structural connectivity within the sensorimotor network: Deviations related to prematurity and association to neurodevelopmental outcome. Front Neurosci 2022; 16:932386. [PMID: 36507362 PMCID: PMC9732267 DOI: 10.3389/fnins.2022.932386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Consisting of distributed and interconnected structures that interact through cortico-cortical connections and cortico-subcortical loops, the sensorimotor (SM) network undergoes rapid maturation during the perinatal period and is thus particularly vulnerable to preterm birth. However, the impact of prematurity on the development and integrity of the emerging SM connections and their relationship to later motor and global impairments are still poorly understood. In this study we aimed to explore to which extent the early microstructural maturation of SM white matter (WM) connections at term-equivalent age (TEA) is modulated by prematurity and related with neurodevelopmental outcome at 18 months corrected age. We analyzed 118 diffusion MRI datasets from the developing Human Connectome Project (dHCP) database: 59 preterm (PT) low-risk infants scanned near TEA and a control group of full-term (FT) neonates paired for age at MRI and sex. We delineated WM connections between the primary SM cortices (S1, M1 and paracentral region) and subcortical structures using probabilistic tractography, and evaluated their microstructure with diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) models. To go beyond tract-specific univariate analyses, we computed a maturational distance related to prematurity based on the multi-parametric Mahalanobis distance of each PT infant relative to the FT group. Our results confirmed the presence of microstructural differences in SM tracts between PT and FT infants, with effects increasing with lower gestational age at birth. Maturational distance analyses highlighted that prematurity has a differential effect on SM tracts with higher distances and thus impact on (i) cortico-cortical than cortico-subcortical connections; (ii) projections involving S1 than M1 and paracentral region; and (iii) the most rostral cortico-subcortical tracts, involving the lenticular nucleus. These different alterations at TEA suggested that vulnerability follows a specific pattern coherent with the established WM caudo-rostral progression of maturation. Finally, we highlighted some relationships between NODDI-derived maturational distances of specific tracts and fine motor and cognitive outcomes at 18 months. As a whole, our results expand understanding of the significant impact of premature birth and early alterations on the emerging SM network even in low-risk infants, with possible relationship with neurodevelopmental outcomes. This encourages further exploration of these potential neuroimaging markers for prediction of neurodevelopmental disorders, with special interest for subtle neuromotor impairments frequently observed in preterm-born children.
Collapse
Affiliation(s)
- Sara Neumane
- Inserm, NeuroDiderot, Université Paris Cité, Paris, France
- CEA, NeuroSpin UNIACT, Université Paris-Saclay, Paris, France
- School of Biomedical Engineering and Imaging Sciences, Centre for the Developing Brain, King’s College London, London, United Kingdom
| | - Andrea Gondova
- Inserm, NeuroDiderot, Université Paris Cité, Paris, France
- CEA, NeuroSpin UNIACT, Université Paris-Saclay, Paris, France
| | - Yann Leprince
- CEA, NeuroSpin UNIACT, Université Paris-Saclay, Paris, France
| | - Lucie Hertz-Pannier
- Inserm, NeuroDiderot, Université Paris Cité, Paris, France
- CEA, NeuroSpin UNIACT, Université Paris-Saclay, Paris, France
| | - Tomoki Arichi
- School of Biomedical Engineering and Imaging Sciences, Centre for the Developing Brain, King’s College London, London, United Kingdom
- Paediatric Neurosciences, Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Jessica Dubois
- Inserm, NeuroDiderot, Université Paris Cité, Paris, France
- CEA, NeuroSpin UNIACT, Université Paris-Saclay, Paris, France
| |
Collapse
|
12
|
McNaughton R, Pieper C, Sakai O, Rollins JV, Zhang X, Kennedy DN, Frazier JA, Douglass L, Heeren T, Fry RC, O'Shea TM, Kuban KK, Jara H. Quantitative MRI Characterization of the Extremely Preterm Brain at Adolescence: Atypical versus Neurotypical Developmental Pathways. Radiology 2022; 304:419-428. [PMID: 35471112 PMCID: PMC9340244 DOI: 10.1148/radiol.210385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 01/27/2022] [Accepted: 02/17/2022] [Indexed: 12/16/2022]
Abstract
Background Extremely preterm (EP) birth is associated with higher risks of perinatal white matter (WM) injury, potentially causing abnormal neurologic and neurocognitive outcomes. MRI biomarkers distinguishing individuals with and without neurologic disorder guide research on EP birth antecedents, clinical correlates, and prognoses. Purpose To compare multiparametric quantitative MRI (qMRI) parameters of EP-born adolescents with autism spectrum disorder, cerebral palsy, epilepsy, or cognitive impairment (ie, atypically developing) with those without (ie, neurotypically developing), characterizing sex-stratified brain development. Materials and Methods This prospective multicenter study included individuals aged 14-16 years born EP (Extremely Low Gestational Age Newborns-Environmental Influences on Child Health Outcomes Study, or ELGAN-ECHO). Participants underwent 3.0-T MRI evaluation from 2017 to 2019. qMRI outcomes were compared for atypically versus neurotypically developing adolescents and for girls versus boys. Sex-stratified multiple regression models were used to examine associations between spatial entropy density (SEd) and T1, T2, and cerebrospinal fluid (CSF)-normalized proton density (nPD), and between CSF volume and T2. Interaction terms modeled differences in slopes between atypically versus neurotypically developing adolescents. Results A total of 368 adolescents were classified as 116 atypically (66 boys) and 252 neurotypically developing (125 boys) participants. Atypically versus neurotypically developing girls had lower nPD (mean, 557 10 × percent unit [pu] ± 46 [SD] vs 573 10 × pu ± 43; P = .04), while atypically versus neurotypically developing boys had longer T1 (814 msec ± 57 vs 789 msec ± 82; P = .01). Atypically developing girls versus boys had lower nPD and shorter T2 (eg, in WM, 557 10 × pu ± 46 vs 580 10 × pu ± 39 for nPD [P = .006] and 86 msec ± 3 vs 88 msec ± 4 for T2 [P = .003]). Atypically versus neurotypically developing boys had a more moderate negative association between T1 and SEd (slope, -32.0 msec per kB/cm3 [95% CI: -49.8, -14.2] vs -62.3 msec per kB/cm3 [95% CI: -79.7, -45.0]; P = .03). Conclusion Atypically developing participants showed sexual dimorphisms in the cerebrospinal fluid-normalized proton density (nPD) and T2 of both white matter (WM) and gray matter. Atypically versus neurotypically developing girls had lower WM nPD, while atypically versus neurotypically developing boys had longer WM T1 and more moderate T1 associations with microstructural organization in WM. © RSNA, 2022 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Ryan McNaughton
- From the Departments of Mechanical Engineering (R.M., X.Z.) and Biomedical Engineering (H.J.), Boston University College of Engineering, Boston, Mass; Department of Radiology, Boston University School of Medicine, 670 Albany St, Boston, MA 02118 (C.P., O.S., H.J.); Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC (J.V.R., T.M.O.); Department of Psychiatry, University of Massachusetts Medical School, Worcester, Mass (D.N.K., J.A.F.); Department of Pediatrics, Boston University School of Medicine, Boston, Mass (L.D.); Department of Biostatistics, Boston University School of Public Health, Boston, Mass (T.H.); and Department of Environmental Sciences & Engineering, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC (R.C.F.)
| | - Chris Pieper
- From the Departments of Mechanical Engineering (R.M., X.Z.) and Biomedical Engineering (H.J.), Boston University College of Engineering, Boston, Mass; Department of Radiology, Boston University School of Medicine, 670 Albany St, Boston, MA 02118 (C.P., O.S., H.J.); Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC (J.V.R., T.M.O.); Department of Psychiatry, University of Massachusetts Medical School, Worcester, Mass (D.N.K., J.A.F.); Department of Pediatrics, Boston University School of Medicine, Boston, Mass (L.D.); Department of Biostatistics, Boston University School of Public Health, Boston, Mass (T.H.); and Department of Environmental Sciences & Engineering, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC (R.C.F.)
| | - Osamu Sakai
- From the Departments of Mechanical Engineering (R.M., X.Z.) and Biomedical Engineering (H.J.), Boston University College of Engineering, Boston, Mass; Department of Radiology, Boston University School of Medicine, 670 Albany St, Boston, MA 02118 (C.P., O.S., H.J.); Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC (J.V.R., T.M.O.); Department of Psychiatry, University of Massachusetts Medical School, Worcester, Mass (D.N.K., J.A.F.); Department of Pediatrics, Boston University School of Medicine, Boston, Mass (L.D.); Department of Biostatistics, Boston University School of Public Health, Boston, Mass (T.H.); and Department of Environmental Sciences & Engineering, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC (R.C.F.)
| | - Julie V Rollins
- From the Departments of Mechanical Engineering (R.M., X.Z.) and Biomedical Engineering (H.J.), Boston University College of Engineering, Boston, Mass; Department of Radiology, Boston University School of Medicine, 670 Albany St, Boston, MA 02118 (C.P., O.S., H.J.); Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC (J.V.R., T.M.O.); Department of Psychiatry, University of Massachusetts Medical School, Worcester, Mass (D.N.K., J.A.F.); Department of Pediatrics, Boston University School of Medicine, Boston, Mass (L.D.); Department of Biostatistics, Boston University School of Public Health, Boston, Mass (T.H.); and Department of Environmental Sciences & Engineering, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC (R.C.F.)
| | - Xin Zhang
- From the Departments of Mechanical Engineering (R.M., X.Z.) and Biomedical Engineering (H.J.), Boston University College of Engineering, Boston, Mass; Department of Radiology, Boston University School of Medicine, 670 Albany St, Boston, MA 02118 (C.P., O.S., H.J.); Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC (J.V.R., T.M.O.); Department of Psychiatry, University of Massachusetts Medical School, Worcester, Mass (D.N.K., J.A.F.); Department of Pediatrics, Boston University School of Medicine, Boston, Mass (L.D.); Department of Biostatistics, Boston University School of Public Health, Boston, Mass (T.H.); and Department of Environmental Sciences & Engineering, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC (R.C.F.)
| | - David N Kennedy
- From the Departments of Mechanical Engineering (R.M., X.Z.) and Biomedical Engineering (H.J.), Boston University College of Engineering, Boston, Mass; Department of Radiology, Boston University School of Medicine, 670 Albany St, Boston, MA 02118 (C.P., O.S., H.J.); Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC (J.V.R., T.M.O.); Department of Psychiatry, University of Massachusetts Medical School, Worcester, Mass (D.N.K., J.A.F.); Department of Pediatrics, Boston University School of Medicine, Boston, Mass (L.D.); Department of Biostatistics, Boston University School of Public Health, Boston, Mass (T.H.); and Department of Environmental Sciences & Engineering, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC (R.C.F.)
| | - Jean A Frazier
- From the Departments of Mechanical Engineering (R.M., X.Z.) and Biomedical Engineering (H.J.), Boston University College of Engineering, Boston, Mass; Department of Radiology, Boston University School of Medicine, 670 Albany St, Boston, MA 02118 (C.P., O.S., H.J.); Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC (J.V.R., T.M.O.); Department of Psychiatry, University of Massachusetts Medical School, Worcester, Mass (D.N.K., J.A.F.); Department of Pediatrics, Boston University School of Medicine, Boston, Mass (L.D.); Department of Biostatistics, Boston University School of Public Health, Boston, Mass (T.H.); and Department of Environmental Sciences & Engineering, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC (R.C.F.)
| | - Laurie Douglass
- From the Departments of Mechanical Engineering (R.M., X.Z.) and Biomedical Engineering (H.J.), Boston University College of Engineering, Boston, Mass; Department of Radiology, Boston University School of Medicine, 670 Albany St, Boston, MA 02118 (C.P., O.S., H.J.); Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC (J.V.R., T.M.O.); Department of Psychiatry, University of Massachusetts Medical School, Worcester, Mass (D.N.K., J.A.F.); Department of Pediatrics, Boston University School of Medicine, Boston, Mass (L.D.); Department of Biostatistics, Boston University School of Public Health, Boston, Mass (T.H.); and Department of Environmental Sciences & Engineering, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC (R.C.F.)
| | - Timothy Heeren
- From the Departments of Mechanical Engineering (R.M., X.Z.) and Biomedical Engineering (H.J.), Boston University College of Engineering, Boston, Mass; Department of Radiology, Boston University School of Medicine, 670 Albany St, Boston, MA 02118 (C.P., O.S., H.J.); Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC (J.V.R., T.M.O.); Department of Psychiatry, University of Massachusetts Medical School, Worcester, Mass (D.N.K., J.A.F.); Department of Pediatrics, Boston University School of Medicine, Boston, Mass (L.D.); Department of Biostatistics, Boston University School of Public Health, Boston, Mass (T.H.); and Department of Environmental Sciences & Engineering, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC (R.C.F.)
| | - Rebecca C Fry
- From the Departments of Mechanical Engineering (R.M., X.Z.) and Biomedical Engineering (H.J.), Boston University College of Engineering, Boston, Mass; Department of Radiology, Boston University School of Medicine, 670 Albany St, Boston, MA 02118 (C.P., O.S., H.J.); Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC (J.V.R., T.M.O.); Department of Psychiatry, University of Massachusetts Medical School, Worcester, Mass (D.N.K., J.A.F.); Department of Pediatrics, Boston University School of Medicine, Boston, Mass (L.D.); Department of Biostatistics, Boston University School of Public Health, Boston, Mass (T.H.); and Department of Environmental Sciences & Engineering, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC (R.C.F.)
| | - T Michael O'Shea
- From the Departments of Mechanical Engineering (R.M., X.Z.) and Biomedical Engineering (H.J.), Boston University College of Engineering, Boston, Mass; Department of Radiology, Boston University School of Medicine, 670 Albany St, Boston, MA 02118 (C.P., O.S., H.J.); Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC (J.V.R., T.M.O.); Department of Psychiatry, University of Massachusetts Medical School, Worcester, Mass (D.N.K., J.A.F.); Department of Pediatrics, Boston University School of Medicine, Boston, Mass (L.D.); Department of Biostatistics, Boston University School of Public Health, Boston, Mass (T.H.); and Department of Environmental Sciences & Engineering, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC (R.C.F.)
| | - Karl K Kuban
- From the Departments of Mechanical Engineering (R.M., X.Z.) and Biomedical Engineering (H.J.), Boston University College of Engineering, Boston, Mass; Department of Radiology, Boston University School of Medicine, 670 Albany St, Boston, MA 02118 (C.P., O.S., H.J.); Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC (J.V.R., T.M.O.); Department of Psychiatry, University of Massachusetts Medical School, Worcester, Mass (D.N.K., J.A.F.); Department of Pediatrics, Boston University School of Medicine, Boston, Mass (L.D.); Department of Biostatistics, Boston University School of Public Health, Boston, Mass (T.H.); and Department of Environmental Sciences & Engineering, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC (R.C.F.)
| | - Hernán Jara
- From the Departments of Mechanical Engineering (R.M., X.Z.) and Biomedical Engineering (H.J.), Boston University College of Engineering, Boston, Mass; Department of Radiology, Boston University School of Medicine, 670 Albany St, Boston, MA 02118 (C.P., O.S., H.J.); Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC (J.V.R., T.M.O.); Department of Psychiatry, University of Massachusetts Medical School, Worcester, Mass (D.N.K., J.A.F.); Department of Pediatrics, Boston University School of Medicine, Boston, Mass (L.D.); Department of Biostatistics, Boston University School of Public Health, Boston, Mass (T.H.); and Department of Environmental Sciences & Engineering, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC (R.C.F.)
| |
Collapse
|
13
|
Pierre WC, Zhang E, Londono I, De Leener B, Lesage F, Lodygensky GA. Non-invasive in vivo MRI detects long-term microstructural brain alterations related to learning and memory impairments in a model of inflammation-induced white matter injury. Behav Brain Res 2022; 428:113884. [DOI: 10.1016/j.bbr.2022.113884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/18/2022] [Accepted: 04/03/2022] [Indexed: 11/28/2022]
|
14
|
Chandwani R, Harpster K, Kline JE, Mehta V, Wang H, Merhar SL, Schwartz TL, Parikh NA. Brain microstructural antecedents of visual difficulties in infants born very preterm. Neuroimage Clin 2022; 34:102987. [PMID: 35290855 PMCID: PMC8918861 DOI: 10.1016/j.nicl.2022.102987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/12/2022] [Accepted: 03/07/2022] [Indexed: 11/29/2022]
Abstract
Infants born very preterm (VPT) are at risk of later visual problems. Although neonatal screening can identify ophthalmologic abnormalities, subtle perinatal brain injury and/or delayed brain maturation may be significant contributors to complex visual-behavioral problems. Our aim was to assess the micro and macrostructural antecedents of early visual-behavioral difficulties in VPT infants by using diffusion MRI (dMRI) at term-equivalent age. We prospectively recruited a cohort of 262 VPT infants (≤32 weeks gestational age [GA]) from five neonatal intensive care units. We obtained structural and diffusion MRI at term-equivalent age and administered the Preverbal Visual Assessment (PreViAs) questionnaire to parents at 3-4 months corrected age. We used constrained spherical deconvolution to reconstruct nine white matter tracts of the visual pathways with high reliability and performed fixel-based analysis to derive fiber density (FD), fiber-bundle cross-section (FC), and combined fiber density and cross-section (FDC). In multiple logistic regression analyses, we related these tract metrics to visual-behavioral function. Of 262 infants, 191 had both high-quality dMRI and completed PreViAs, constituting the final cohort: mean (SD) GA was 29.3 (2.4) weeks, 90 (47.1%) were males, and postmenstrual age (PMA) at MRI was 42.8 (1.3) weeks. FD and FC of several tracts were altered in infants with (N = 59) versus those without retinopathy of prematurity (N = 132). FDC of the left posterior thalamic radiations (PTR), left inferior longitudinal fasciculus (ILF), right superior longitudinal fasciculus (SLF), and left inferior fronto-occipital fasciculus (IFOF) were significantly associated with visual attention scores, prior to adjusting for confounders. After adjustment for PMA at MRI, GA, severe retinopathy of prematurity, and total brain volume, FDC of the left PTR, left ILF, and left IFOF remained significantly associated with visual attention. Early visual-behavioral difficulties in VPT infants are preceded by micro and macrostructural abnormalities in several major visual pathways at term-equivalent age.
Collapse
Affiliation(s)
- Rahul Chandwani
- Center for Prevention of Neurodevelopmental Disorders, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Karen Harpster
- Center for Prevention of Neurodevelopmental Disorders, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Division of Occupational Therapy and Physical Therapy, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Rehabilitation, Exercise, and Nutrition Sciences, College of Allied Health Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Julia E Kline
- Center for Prevention of Neurodevelopmental Disorders, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Ved Mehta
- Center for Prevention of Neurodevelopmental Disorders, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Hui Wang
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; MR Clinical Science, Philips, Cincinnati, OH, United States
| | - Stephanie L Merhar
- Center for Prevention of Neurodevelopmental Disorders, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Terry L Schwartz
- Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Ophthalmology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Nehal A Parikh
- Center for Prevention of Neurodevelopmental Disorders, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
15
|
Kagan MS, Mongerson CRL, Zurakowski D, Bajic D. Impact of Infant Thoracic Non-cardiac Perioperative Critical Care on Homotopic-Like Corpus Callosum and Forebrain Sub-regional Volumes. FRONTIERS IN PAIN RESEARCH 2022; 3:788903. [PMID: 35465294 PMCID: PMC9021551 DOI: 10.3389/fpain.2022.788903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 02/09/2022] [Indexed: 12/02/2022] Open
Abstract
Previously, we reported quantitatively smaller total corpus callosum (CC) and total forebrain size in critically ill term-born and premature patients following complex perioperative critical care for long-gap esophageal atresia (LGEA) that included Foker process repair. We extended our cross-sectional pilot study to determine sub-regional volumes of CC and forebrain using structural brain MRI. Our objective was to evaluate region-specific CC as an in-vivo marker for decreased myelination and/or cortical neural loss of homotopic-like sub-regions of the forebrain. Term-born (n = 13) and premature (n = 13) patients, and healthy naïve controls (n = 21) <1-year corrected age underwent non-sedated MRI using a 3T Siemens scanner, as per IRB approval at Boston Children's Hospital following completion of clinical treatment for Foker process. We used ITK-SNAP (v.3.6) to manually segment six sub-regions of CC and eight sub-regions of forebrain as per previously reported methodology. Group differences were assessed using a general linear model univariate analysis with corrected age at scan as a covariate. Our analysis implicates globally smaller CC and forebrain with sub-region II (viz. rostral body of CC known to connect to pre-motor cortex) to be least affected in comparison to other CC sub-regions in LGEA patients. Our report of smaller subgenual forebrain implicates (mal)adaptation in limbic circuits development in selected group of infant patients following LGEA repair. Future studies should include diffusion tractography studies of CC in further evaluation of what appears to represent global decrease in homotopic-like CC/forebrain size following complex perioperative critical care of infants born with LGEA.
Collapse
Affiliation(s)
- Mackenzie Shea Kagan
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Chandler R. L. Mongerson
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, United States
| | - David Zurakowski
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Dusica Bajic
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- *Correspondence: Dusica Bajic
| |
Collapse
|
16
|
Zhang S, He Z, Du L, Zhang Y, Yu S, Wang R, Hu X, Jiang X, Zhang T. Joint Analysis of Functional and Structural Connectomes Between Preterm and Term Infant Brains via Canonical Correlation Analysis With Locality Preserving Projection. Front Neurosci 2021; 15:724391. [PMID: 34690672 PMCID: PMC8526737 DOI: 10.3389/fnins.2021.724391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/24/2021] [Indexed: 12/16/2022] Open
Abstract
Preterm is a worldwide problem that affects infants' lives significantly. Moreover, the early impairment is more than limited to isolated brain regions but also to global and profound negative outcomes later, such as cognitive disorder. Therefore, seeking the differences of brain connectome between preterm and term infant brains is a vital step for understanding the developmental impairment caused by preterm. Existing studies revealed that studying the relationship between brain function and structure, and further investigating their differentiable connectomes between preterm and term infant brains is a way to comprehend and unveil the differences that occur in the preterm infant brains. Therefore, in this article, we proposed a novel canonical correlation analysis (CCA) with locality preserving projection (LPP) approach to investigate the relationship between brain functional and structural connectomes and how such a relationship differs between preterm and term infant brains. CCA is proposed to study the relationship between functional and structural connections, while LPP is adopted to identify the distinguishing features from the connections which can differentiate the preterm and term brains. After investigating the whole brain connections on a fine-scale connectome approach, we successfully identified 89 functional and 97 structural connections, which mostly contributed to differentiate preterm and term infant brains from the functional MRI (fMRI) and diffusion MRI (dMRI) of the public developing Human Connectome Project (dHCP) dataset. By further exploring those identified connections, the results innovatively revealed that the identified functional connections are short-range and within the functional network. On the contrary, the identified structural connections are usually remote connections across different functional networks. In addition, these connectome-level results show the new insights that longitudinal functional changes could deviate from longitudinal structural changes in the preterm infant brains, which help us better understand the brain-behavior changes in preterm infant brains.
Collapse
Affiliation(s)
- Shu Zhang
- Center for Brain and Brain-Inspired Computing Research, School of Computer Science, Northwestern Polytechnical University, Xi’an, China
| | - Zhibin He
- School of Automation, Northwestern Polytechnical University, Xi’an, China
| | - Lei Du
- School of Automation, Northwestern Polytechnical University, Xi’an, China
| | - Yin Zhang
- School of Automation, Northwestern Polytechnical University, Xi’an, China
| | - Sigang Yu
- Center for Brain and Brain-Inspired Computing Research, School of Computer Science, Northwestern Polytechnical University, Xi’an, China
| | - Ruoyang Wang
- Center for Brain and Brain-Inspired Computing Research, School of Computer Science, Northwestern Polytechnical University, Xi’an, China
| | - Xintao Hu
- School of Automation, Northwestern Polytechnical University, Xi’an, China
| | - Xi Jiang
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Tuo Zhang
- School of Automation, Northwestern Polytechnical University, Xi’an, China
| |
Collapse
|
17
|
Korček P, Korčeková Z, Berka I, Kučera J, Straňák Z. Corpus Callosum Growth and Neurodevelopmental Outcome Are Negatively Influenced by Systemic Infection in Very Low-Birth-Weight Infants. J Child Neurol 2021; 36:883-887. [PMID: 34048279 DOI: 10.1177/08830738211016239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Systemic infection may negatively modulate the development of cerebral white matter and long-term outcome of neonates. We analyzed the growth of corpus callosum (using cranial ultrasonography) and neurodevelopment (Bayley Scales of Infant Development, Third Edition) in 101 very low-birth-weight newborns. We observed significantly reduced corpus callosum length at 3 months of corrected age (44.5 mm vs 47.7 mm, P = .004) and diminished corpus callosum growth (0.07 mm/d vs 0.08 mm/d, P = .028) in infants who experienced systemic infection. The subgroup exhibited inferior neurodevelopmental outcomes with predominant motor impairment. The results suggest that length and growth of corpus callosum might be affected by systemic inflammatory response in preterm newborns. The changes in corpus callosum can contribute to adverse neurodevelopment at 2 years of corrected age. Serial ultrasonographic measurements of the corpus callosum may be suitable to identify preterm infants with increased risk of neurodevelopmental impairment.
Collapse
Affiliation(s)
- Peter Korček
- 119444Institute for the Care of Mother and Child, Neonatology, Prague, Czech Republic.,Charles University, 3rd Faculty of Medicine, Prague, Czech Republic
| | - Zuzana Korčeková
- 119444Institute for the Care of Mother and Child, Neonatology, Prague, Czech Republic
| | - Ivan Berka
- 119444Institute for the Care of Mother and Child, Neonatology, Prague, Czech Republic.,Charles University, 3rd Faculty of Medicine, Prague, Czech Republic
| | - Jáchym Kučera
- 119444Institute for the Care of Mother and Child, Neonatology, Prague, Czech Republic
| | - Zbyněk Straňák
- 119444Institute for the Care of Mother and Child, Neonatology, Prague, Czech Republic.,Charles University, 3rd Faculty of Medicine, Prague, Czech Republic
| |
Collapse
|
18
|
Chandwani R, Kline JE, Harpster K, Tkach J, Parikh NA. Early micro- and macrostructure of sensorimotor tracts and development of cerebral palsy in high risk infants. Hum Brain Mapp 2021; 42:4708-4721. [PMID: 34322949 PMCID: PMC8410533 DOI: 10.1002/hbm.25579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/12/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Infants born very preterm (VPT) are at high risk of motor impairments such as cerebral palsy (CP), and diagnosis can take 2 years. Identifying in vivo determinants of CP could facilitate presymptomatic detection and targeted intervention. Our objectives were to derive micro‐ and macrostructural measures of sensorimotor white matter tract integrity from diffusion MRI at term‐equivalent age, and determine their association with early diagnosis of CP. We enrolled 263 VPT infants (≤32 weeks gestational age) as part of a large prospective cohort study. Diffusion and structural MRI were acquired at term. Following consensus guidelines, we defined early diagnosis of CP based on abnormal structural MRI at term and abnormal neuromotor exam at 3–4 months corrected age. Using Constrained Spherical Deconvolution, we derived a white matter fiber orientation distribution (fOD) for subjects, performed probabilistic whole‐brain tractography, and segmented nine sensorimotor tracts of interest. We used the recently developed fixel‐based (FB) analysis to compute fiber density (FD), fiber‐bundle cross‐section (FC), and combined fiber density and cross‐section (FDC) for each tract. Of 223 VPT infants with high‐quality diffusion MRI data, 14 (6.3%) received an early diagnosis of CP. The cohort's mean (SD) gestational age was 29.4 (2.4) weeks and postmenstrual age at MRI scan was 42.8 (1.3) weeks. FD, FC, and FDC for each sensorimotor tract were significantly associated with early CP diagnosis, with and without adjustment for confounders. Measures of sensorimotor tract integrity enhance our understanding of white matter changes that antecede and potentially contribute to the development of CP in VPT infants.
Collapse
Affiliation(s)
- Rahul Chandwani
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Julia E Kline
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Karen Harpster
- Division of Occupational Therapy and Physical Therapy, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Rehabilitation, Exercise and Nutrition Sciences, University of Cincinnati College of Allied Health Sciences, Cincinnati, Ohio, USA
| | - Jean Tkach
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Nehal A Parikh
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | |
Collapse
|
19
|
Campbell KSJ, Williams LJ, Bjornson BH, Weik E, Brain U, Grunau RE, Miller SP, Oberlander TF. Prenatal antidepressant exposure and sex differences in neonatal corpus callosum microstructure. Dev Psychobiol 2021; 63:e22125. [PMID: 33942888 DOI: 10.1002/dev.22125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/09/2022]
Abstract
Prenatal exposure to selective serotonin reuptake inhibitor (SSRI) antidepressants may influence white matter (WM) development, as previous studies report widespread microstructural alterations and reduced interhemispheric connectivity in SSRI-exposed infants. In rodents, perinatal SSRIs had sex-specific disruptions in corpus callosum (CC) axon architecture and connectivity; yet it is unknown whether SSRI-related brain outcomes in humans are sex specific. In this study, the neonate CC was selected as a region-of-interest to investigate whether prenatal SSRI exposure has sex-specific effects on early WM microstructure. On postnatal day 7, diffusion tensor imaging was used to assess WM microstructure in SSRI-exposed (n = 24; 12 male) and nonexposed (n = 48; 28 male) term-born neonates. Fractional anisotropy was extracted from CC voxels and a multivariate discriminant analysis was used to identify latent patterns differing between neonates grouped by SSRI-exposure and sex. Analysis revealed localized variations in CC fractional anisotropy that significantly discriminated neonate groups and correctly predicted group membership with an 82% accuracy. Such effects were identified across three dimensions, representing sex differences in SSRI-exposed neonates (genu, splenium), SSRI-related effects independent of sex (genu-to-rostral body), and sex differences in nonexposed neonates (isthmus-splenium, posterior midbody). Our findings suggest that CC microstructure may have a sex-specific, localized, developmental sensitivity to prenatal SSRI exposure.
Collapse
Affiliation(s)
- Kayleigh S J Campbell
- BC Children's Hospital Research Institute, Vancouver, Canada.,Department of Obstetrics & Gynaecology, University of British Columbia, Vancouver, Canada
| | | | - Bruce H Bjornson
- BC Children's Hospital Research Institute, Vancouver, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Ella Weik
- BC Children's Hospital Research Institute, Vancouver, Canada
| | - Ursula Brain
- BC Children's Hospital Research Institute, Vancouver, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Ruth E Grunau
- BC Children's Hospital Research Institute, Vancouver, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Steven P Miller
- Department of Pediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, Canada
| | - Tim F Oberlander
- BC Children's Hospital Research Institute, Vancouver, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
20
|
Dibble M, Ang JZ, Mariga L, Molloy EJ, Bokde ALW. Diffusion Tensor Imaging in Very Preterm, Moderate-Late Preterm and Term-Born Neonates: A Systematic Review. J Pediatr 2021; 232:48-58.e3. [PMID: 33453200 DOI: 10.1016/j.jpeds.2021.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To examine white matter abnormalities, measured by diffusion tensor imaging, in very preterm (<32 weeks) and moderate-late preterm neonates (32-37 weeks) at term-equivalent age, compared with healthy full-term controls (≥37 weeks). STUDY DESIGN A search of Medline (PubMed) was conducted to identify studies with diffusion data collected on very preterm, moderate-late preterm and full-term neonates, using the guidelines from the Meta-analysis of Observational Studies in Epidemiology and PRISMA statements. RESULTS Eleven studies were included with diffusion tensor imaging data from 554 very preterm, 575 moderate-late preterm, and 318 full-term neonates. Widespread statistically significant diffusion measures were found in all preterm subgroups at term-equivalent age compared with full-term neonates, and this difference was more marked for the very preterm group. These abnormalities are suggestive of changes in the white matter microstructure in the preterm groups. The corpus callosum was a region of interest in both early and moderate-late preterm groups, which showed statistically significant diffusion measures in all 11 studies. CONCLUSIONS Microstructural white matter changes may underpin the increased risk of neurodevelopmental disability seen in preterm infants in later life. diffusion tensor imaging may therefore be a useful prognostic tool for neuro-disability in preterm neonates.
Collapse
Affiliation(s)
- Megan Dibble
- Cognitive Systems Group, Discipline of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland.
| | - Jin Zhe Ang
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Liam Mariga
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Eleanor J Molloy
- Pediatrics and Child Health, Trinity College Dublin, Dublin, Ireland; Neonatologist and Pediatrician, CHI at Crumlin and Tallaght, Coombe Women and Infants University Hospital, Dublin, Ireland; Trinity Translational Medicine Institute (TTMI) & Trinity Research in Childhood Centre (TRICC), Trinity College Dublin, Dublin, Ireland
| | - Arun L W Bokde
- Cognitive Systems Group, Discipline of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
21
|
Haebich KM, Willmott C, Scratch SE, Pascoe L, Lee KJ, Spencer-Smith MM, Cheong JLY, Inder TE, Doyle LW, Thompson DK, Anderson PJ. Neonatal brain abnormalities and brain volumes associated with goal setting outcomes in very preterm 13-year-olds. Brain Imaging Behav 2021; 14:1062-1073. [PMID: 30684152 DOI: 10.1007/s11682-019-00039-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Executive dysfunction including impaired goal setting (i.e., planning, organization skills, strategic reasoning) is documented in children born very preterm (VP; <30 weeks/<1250 g), however the neurological basis for this impairment is unknown. This study sought to examine the relationship between brain abnormalities and brain volumes on neonatal magnetic resonance imaging (MRI) and goal setting abilities of VP 13-year-olds. Participants were 159 children born VP in a prospective longitudinal study. Qualitative brain abnormality scores and quantitative brain volumes were derived from neonatal MRI brain scans (40 weeks' gestational age ± 2 weeks). Goal setting at 13 years was assessed using the Delis-Kaplan Executive Function Systems Tower Test, the Rey Complex Figure, and the Behavioural Assessment of the Dysexecutive System for Children Zoo Map and Six Part Test. A composite score was generated denoting overall performance on these goal setting measures. Separate regression models examined the association of neonatal brain abnormality scores and brain volumes with goal setting performance. There was evidence that higher neonatal white matter, deep grey matter and cerebellum abnormality scores were associated with poorer goal setting scores at 13 years. There was also evidence of positive associations between total brain volume, cerebellum, thalamic and cortical grey matter volumes and goal setting performance. Evidence for the associations largely persisted after controlling for potential confounders. Neonatal brain abnormality and brain volumes are associated with goal setting outcome in VP 13-year-olds. Used in conjunction with other clinical indicators, neonatal MRI may help to identify VP children at risk for later executive dysfunction.
Collapse
Affiliation(s)
- Kristina M Haebich
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Australia.,Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia
| | - Catherine Willmott
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Australia.,Monash Epworth Rehabilitation Research Centre, Melbourne, Australia
| | - Shannon E Scratch
- Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia.,Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada.,Department of Pediatrics, University of Toronto, Toronto, Canada
| | - Leona Pascoe
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Australia.,Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia
| | - Katherine J Lee
- Clinical Epidemiology and Biostatistics Unit, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Megan M Spencer-Smith
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Australia.,Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia
| | - Jeanie L Y Cheong
- Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia.,Premature Infant Follow-up Programme, Royal Women's Hospital, Melbourne, Australia.,Department of Obstetrics and Gynaecology, Royal Women's Hospital, Melbourne, Australia
| | - Terrie E Inder
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Lex W Doyle
- Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia.,Premature Infant Follow-up Programme, Royal Women's Hospital, Melbourne, Australia.,Department of Obstetrics and Gynaecology, Royal Women's Hospital, Melbourne, Australia
| | - Deanne K Thompson
- Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Pediatrics, University of Toronto, Toronto, Canada.,Florey Institute of Neurosciences and Mental Health, Melbourne, Australia
| | - Peter J Anderson
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Australia. .,Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia.
| |
Collapse
|
22
|
Oei JL. Alcohol use in pregnancy and its impact on the mother and child. Addiction 2020; 115:2148-2163. [PMID: 32149441 DOI: 10.1111/add.15036] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/23/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022]
Abstract
AIMS To review the impact of prenatal alcohol exposure on the outcomes of the mother and child. DESIGN Narrative review. SETTING Review of literature. PARTICIPANTS Mothers and infants affected by prenatal alcohol use. MEASUREMENTS Outcomes of mothers and children. FINDINGS Prenatal alcohol exposure is one of the most important causes of preventable cognitive impairment in the world. The developing neurological system is exquisitely sensitive to harm from alcohol and there is now also substantial evidence that alcohol-related harm can extend beyond the individual person, leading to epigenetic changes and intergenerational vulnerability and disadvantage. There is no known safe level or timing of drinking for pregnant or lactating women and binge drinking (> four drinks within 2 hours for women) is the most harmful. Alcohol-exposure increases the risk of congenital problems, including Fetal Alcohol Spectrum Disorder (FASD) and its most severe form, Fetal Alcohol Syndrome (FAS). CONCLUSION The impact of FASD and FAS is enduring and life-long with no current treatment or cure. Emerging therapeutic options may mitigate the worst impact of alcohol exposure but significant knowledge gaps remain. This review discusses the history, epidemiology and clinical presentations of prenatal alcohol exposure, focusing on FASD and FAS, and the impact of evidence on future research, practice and policy directions.
Collapse
Affiliation(s)
- Ju Lee Oei
- School of Women's and Children's Health, University of New South Wales, Randwick, NSW, Australia.,Department of Newborn Care, the Royal Hospital for Women, Randwick, NSW, Australia.,Drug and Alcohol Services, Murrumbidgee Local Health District, NSW, Australia
| |
Collapse
|
23
|
Dubner SE, Rose J, Bruckert L, Feldman HM, Travis KE. Neonatal white matter tract microstructure and 2-year language outcomes after preterm birth. NEUROIMAGE-CLINICAL 2020; 28:102446. [PMID: 33035964 PMCID: PMC7554644 DOI: 10.1016/j.nicl.2020.102446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 01/04/2023]
Abstract
Preterm infant white matter tracts uniquely predict later toddler language. Neonatal medical history moderates posterior corpus callosum–language relations. Different associations by tract may relate to brain maturation and medical history.
Aim To determine whether variability in diffusion MRI (dMRI) white matter tract metrics, obtained in a cohort of preterm infants prior to neonatal hospital discharge, would be associated with language outcomes at age 2 years, after consideration of age at scan and number of major neonatal complications. Method 30 children, gestational age 28.9 (2.4) weeks, underwent dMRI at mean post menstrual age 36.4 (1.4) weeks and language assessment with the Bayley Scales of Infant Development–III at mean age 22.2 (1.7) months chronological age. Mean fractional anisotropy (FA) and mean diffusivity (MD) were calculated for 5 white matter tracts. Hierarchical linear regression assessed associations between tract FA, moderating variables, and language outcomes. Results FA of the left inferior longitudinal fasciculus accounted for 17% (p = 0.03) of the variance in composite language and FA of the posterior corpus callosum accounted for 19% (p = 0.02) of the variance in composite language, beyond that accounted for by post-menstrual age at scan and neonatal medical complications. The number of neonatal medical complications moderated the relationship between language and posterior corpus callosum FA but did not moderate the association in the other tract. Conclusion Language at age 2 is associated with white matter metrics in early infancy in preterm children. The different pattern of associations by fiber group may relate to the stage of brain maturation and/or the nature and timing of medical complications related to preterm birth. Future studies should replicate these findings with a larger sample size to assure reliability of the findings.
Collapse
Affiliation(s)
- Sarah E Dubner
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Jessica Rose
- Division of Pediatric Orthopaedics, Stanford University School of Medicine, Stanford, CA, USA
| | - Lisa Bruckert
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Heidi M Feldman
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Katherine E Travis
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
24
|
Wu D, Chang L, Ernst TM, Caffo BS, Oishi K. Developmental score of the infant brain: characterizing diffusion MRI in term- and preterm-born infants. Brain Struct Funct 2020; 225:2431-2445. [PMID: 32804327 DOI: 10.1007/s00429-020-02132-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/10/2020] [Indexed: 10/23/2022]
Abstract
Large-scale longitudinal neuroimaging studies of the infant brain allow us to map the spatiotemporal development of the brain in its early phase. While the postmenstrual age (PMA) is commonly used as a time index to analyze longitudinal MRI data, the nonlinear relationship between PMA and MRI data imposes challenges for downstream analyses. We propose a mathematical model that provides a Developmental Score (DevS) as a data-driven time index to characterize the brain development based on MRI features. 319 diffusion tensor imaging (DTI) datasets were collected from 87 term-born and 66 preterm-born infants at multiple visits, which were automatically segmented based on the JHU neonatal atlas. The mean diffusivity (MD) and fractional anisotropy (FA) in 126 brain parcels were used in the model to derive DevS. We demonstrate that transforming the time index from PMA to DevS improves the linearity of the longitudinal changes in MD and FA in both gray and white matter structures. More importantly, regional developmental differences in DTI metrics between preterm- and term-born infants were identified more clearly using DevS, e.g. 79 structures showed significantly different regression patterns in MD between preterm- and term-born infants, compared to only 27 structures that showed group differences using PMA as the index. Therefore, the DevS model facilitates linear analyses of DTI metrics in the infant brain, and provides a useful tool to characterize altered brain development due to preterm-birth.
Collapse
Affiliation(s)
- Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Linda Chang
- Departments of Diagnostic Radiology and Nuclear Medicine, and Neurology, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas M Ernst
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Brian S Caffo
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kenichi Oishi
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Traylor 217, 720 Rutland Ave, Baltimore, MD, 21215, USA.
| |
Collapse
|
25
|
Pineda R, Liszka L, Inder T. Early neurobehavior at 30 weeks postmenstrual age is related to outcome at term equivalent age. Early Hum Dev 2020; 146:105057. [PMID: 32470768 PMCID: PMC7377927 DOI: 10.1016/j.earlhumdev.2020.105057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/03/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
Abstract
AIMS To determine 1) the relationship between infant medical factors and early neurobehavior, and 2) the relationship between early neurobehavior at 30 weeks postmenstrual age (PMA) and neurobehavior at term equivalent age. STUDY DESIGN In this prospective longitudinal study, 88 very preterm infants born ≤30 weeks estimated gestational age (EGA) had neurobehavioral assessments at 30 weeks PMA using the Premie-Neuro and at term equivalent age using the NICU Network Neurobehavioral Scale (NNNS) and Hammersmith Neonatal Neurological Evaluation (HNNE). RESULTS Lower Premie-Neuro scores at 30 weeks PMA were related to being more immature at birth (p = 0.01; β = 3.87); the presence of patent ductus arteriosus (PDA; p < 0.01; β = -16.50) and cerebral injury (p < 0.01; β = -20.46); and prolonged exposure to oxygen therapy (p < 0.01; β = -0.01), endotracheal intubation (p < 0.01; β = -0.23), and total parenteral nutrition (p < 0.01; β = -0.35). After controlling for EGA, PDA, and number of days of endotracheal intubation, lower Premie-Neuro scores at 30 weeks PMA were independently related to lower total HNNE scores at term (p < 0.01; β = 0.12) and worse outcome on the NNNS with poorer quality of movement (p < 0.01; β = 0.02) and more stress (p < 0.01; ß = -0.004), asymmetry (p = 0.01; β = -0.04), excitability (p < 0.01; β = -0.05) and suboptimal reflexes (p < 0.01; ß = -0.06). CONCLUSION Medical factors were associated with early neurobehavioral performance at 30 weeks PMA. Early neurobehavior at 30 weeks PMA was a good marker of adverse neurobehavior at NICU discharge.
Collapse
Affiliation(s)
- Roberta Pineda
- University of Southern California, Chan Division of Occupational Science and Occupational Therapy, Los Angeles, CA, United States of America; Keck School of Medicine, Department of Pediatrics, Los Angeles, CA, United States of America; Washington University School of Medicine, Program in Occupational Therapy, St. Louis, MO, United States of America.
| | - Lara Liszka
- Washington University School of Medicine, Program in Occupational Therapy, St. Louis, MO, United States of America; Seattle Children's Hospital, Seattle, WA, United States of America
| | - Terrie Inder
- Brigham and Women's Hospital, Department of Pediatric Newborn Medicine, Boston, MA, United States of America; Harvard University, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
26
|
Inhibition is associated with whole-brain structural brain connectivity on network level in school-aged children born very preterm and at term. Neuroimage 2020; 218:116937. [PMID: 32416228 DOI: 10.1016/j.neuroimage.2020.116937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/31/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022] Open
Abstract
Inhibition abilities are often impaired in children born very preterm. In typically-developing individuals, inhibition has been associated with structural brain connectivity (SC). As SC is frequently altered following preterm birth, this study investigated whether aberrant SC underlies inhibition deficits in school-aged children born very preterm. In a group of 67 very preterm participants aged 8-13 years and 69 term-born peers, inhibition abilities were assessed with two tasks. In a subgroup of 50 very preterm and 62 term-born participants, diffusion tensor imaging (DTI) data were collected. Using network-based statistics (NBS), mean fractional anisotropy (FAmean) was compared between groups. Associations of FAmean and inhibition abilities were explored through linear regression. The composite score of inhibition abilities was lower in the very preterm group (M = -0.4, SD = 0.8) than in the term-born group (M = 0.0, SD = 0.8) but group differences were not significant when adjusting for age, sex and socio-economic status (β = -0.13, 95%-CI [-0.30, 0.04], p = 0.13). In the very preterm group, FAmean was significantly lower in a network comprising thalamo-frontal, thalamo-temporal, frontal, cerebellar and intra-hemispheric connections than in the term-born group (t = 5.21, lowest p-value = 0.001). Irrespective of birth status, a network comprising parietal, cerebellar and subcortical connections was positively associated with inhibition abilities (t = 4.23, lowest p-value = 0.02). Very preterm birth results in long-term alterations of SC at network-level. As networks underlying inhibition abilities do not overlap with those differing between the groups, FAmean may not be adequate to explain inhibition problems in very preterm children. Future studies should combine complementary measures of brain connectivity to address neural correlates of inhibition abilities.
Collapse
|
27
|
Mongerson CRL, Jaimes C, Zurakowski D, Jennings RW, Bajic D. Infant Corpus Callosum Size After Surgery and Critical Care for Long-Gap Esophageal Atresia: Qualitative and Quantitative MRI. Sci Rep 2020; 10:6408. [PMID: 32286423 PMCID: PMC7156662 DOI: 10.1038/s41598-020-63212-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/26/2020] [Indexed: 12/02/2022] Open
Abstract
Previous studies in preterm infants report white matter abnormalities of the corpus callosum (CC) as an important predictor of neurodevelopmental outcomes. Our cross-sectional study aimed to describe qualitative and quantitative CC size in critically ill infants following surgical and critical care for long-gap esophageal atresia (LGEA) - in comparison to healthy infants - using MRI. Non-sedated brain MRI was acquired for full-term (n = 13) and premature (n = 13) patients following treatment for LGEA, and controls (n = 20) <1 year corrected age. A neuroradiologist performed qualitative evaluation of T1-weighted images. ITK-SNAP was used for linear, 2-D and 3-D manual CC measures and segmentations as part of CC size quantification. Qualitative MRI analysis indicated underdeveloped CC in both patient groups in comparison to controls. We show no group differences in mid-sagittal CC length. Although 2-D results were inconclusive, volumetric analysis showed smaller absolute (F(2,42) = 20.40, p < 0.001) and normalized (F(2,42) = 16.61, p < 0.001) CC volumes following complex perioperative treatment for LGEA in both full-term and premature patients, suggesting delayed or diminished CC growth in comparison to controls, with no difference between patient groups. Future research should look into etiology of described differences, neurodevelopmental outcomes, and role of the CC as an early marker of neurodevelopment in this unique infant population.
Collapse
Affiliation(s)
- Chandler R L Mongerson
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, 02115, USA
| | - Camilo Jaimes
- Department of Radiology, Division of Neuroradiology, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, 02115, USA
- Harvard Medical School, Harvard University, 25 Shattuck St., Boston, MA, 02115, USA
| | - David Zurakowski
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, 02115, USA
- Harvard Medical School, Harvard University, 25 Shattuck St., Boston, MA, 02115, USA
| | - Russell W Jennings
- Harvard Medical School, Harvard University, 25 Shattuck St., Boston, MA, 02115, USA
- Department of Surgery, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, 02115, USA
- Esophageal and Airway Treatment Center, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, 02115, USA
| | - Dusica Bajic
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, 02115, USA.
- Harvard Medical School, Harvard University, 25 Shattuck St., Boston, MA, 02115, USA.
| |
Collapse
|
28
|
Blesa M, Galdi P, Sullivan G, Wheater EN, Stoye DQ, Lamb GJ, Quigley AJ, Thrippleton MJ, Bastin ME, Boardman JP. Peak Width of Skeletonized Water Diffusion MRI in the Neonatal Brain. Front Neurol 2020; 11:235. [PMID: 32318015 PMCID: PMC7146826 DOI: 10.3389/fneur.2020.00235] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/11/2020] [Indexed: 12/22/2022] Open
Abstract
Preterm birth is closely associated with cognitive impairment and generalized dysconnectivity of neural networks inferred from water diffusion MRI (dMRI) metrics. Peak width of skeletonized mean diffusivity (PSMD) is a metric derived from histogram analysis of mean diffusivity across the white matter skeleton, and it is a useful biomarker of generalized dysconnectivity and cognition in adulthood. We calculated PSMD and five other histogram based metrics derived from diffusion tensor imaging (DTI) and neurite orientation and dispersion imaging (NODDI) in the newborn, and evaluated their accuracy as biomarkers of microstructural brain white matter alterations associated with preterm birth. One hundred and thirty five neonates (76 preterm, 59 term) underwent 3T MRI at term equivalent age. There were group differences in peak width of skeletonized mean, axial, and radial diffusivities (PSMD, PSAD, PSRD), orientation dispersion index (PSODI) and neurite dispersion index (PSNDI), all p < 10-4. PSFA did not differ between groups. PSNDI was the best classifier of gestational age at birth with an accuracy of 81±10%, followed by PSMD, which had 77±9% accuracy. Models built on both NODDI metrics, and on all dMRI metrics combined, did not outperform the model based on PSNDI alone. We conclude that histogram based analyses of DTI and NODDI parameters are promising new image markers for investigating diffuse changes in brain connectivity in early life.
Collapse
Affiliation(s)
- Manuel Blesa
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Paola Galdi
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Gemma Sullivan
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Emily N. Wheater
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - David Q. Stoye
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Gillian J. Lamb
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Alan J. Quigley
- Department of Radiology, Royal Hospital for Sick Children, Edinburgh, United Kingdom
| | - Michael J. Thrippleton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark E. Bastin
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - James P. Boardman
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
29
|
Alexander B, Yang JYM, Yao SHW, Wu MH, Chen J, Kelly CE, Ball G, Matthews LG, Seal ML, Anderson PJ, Doyle LW, Cheong JLY, Spittle AJ, Thompson DK. White matter extension of the Melbourne Children's Regional Infant Brain atlas: M-CRIB-WM. Hum Brain Mapp 2020; 41:2317-2333. [PMID: 32083379 PMCID: PMC7267918 DOI: 10.1002/hbm.24948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/29/2020] [Accepted: 02/02/2020] [Indexed: 11/05/2022] Open
Abstract
Brain atlases providing standardised identification of neonatal brain regions are key in investigating neurological disorders of early childhood. Our previously developed Melbourne Children's Regional Infant Brain (M-CRIB) and M-CRIB 2.0 neonatal brain atlases provide standardised parcellation of 100 brain regions including cortical, subcortical, and cerebellar regions. The aim of this study was to extend M-CRIB atlas coverage to include 54 white matter (WM) regions. Participants were 10 healthy term-born neonates that were used to create the initial M-CRIB atlas. WM regions were manually segmented based on T2 images and co-registered diffusion tensor imaging-based, direction-encoded colour maps. Our labelled regions imitate the Johns Hopkins University neonatal atlas, with minor anatomical modifications. All segmentations were reviewed and approved by a paediatric radiologist and a neurosurgery research fellow for anatomical accuracy. The resulting neonatal WM atlas comprises 54 WM regions: 24 paired regions, and six unpaired regions comprising five corpus callosum subdivisions, and one pontine crossing tract. Detailed protocols for manual WM parcellations are provided, and the M-CRIB-WM atlas is presented together with the existing M-CRIB cortical, subcortical, and cerebellar parcellations in 10 individual neonatal MRI data sets. The novel M-CRIB-WM atlas, along with the M-CRIB cortical and subcortical atlases, provide neonatal whole brain MRI coverage in the first multi-subject manually parcellated neonatal atlas compatible with atlases commonly used at older time points. The M-CRIB-WM atlas is publicly available, providing a valuable tool that will help facilitate neuroimaging research into neonatal brain development in both healthy and diseased states.
Collapse
Affiliation(s)
- Bonnie Alexander
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Joseph Yuan-Mou Yang
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Neuroscience Research, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Neurosurgery, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Sarah Hui Wen Yao
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Monash School of Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Michelle Hao Wu
- Medical Imaging, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Jian Chen
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Claire E Kelly
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Gareth Ball
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Lillian G Matthews
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Marc L Seal
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Peter J Anderson
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Lex W Doyle
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia.,Newborn research, Royal Women's Hospital, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jeanie L Y Cheong
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Newborn research, Royal Women's Hospital, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Alicia J Spittle
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Newborn research, Royal Women's Hospital, Melbourne, Victoria, Australia.,Department of Physiotherapy, The University of Melbourne, Melbourne, Victoria, Australia
| | - Deanne K Thompson
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia.,Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| |
Collapse
|
30
|
Paquette N, Gajawelli N, Lepore N. Structural neuroimaging. HANDBOOK OF CLINICAL NEUROLOGY 2020; 174:251-264. [PMID: 32977882 DOI: 10.1016/b978-0-444-64148-9.00018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Characterizing the neuroanatomical correlates of brain development is essential in understanding brain-behavior relationships and neurodevelopmental disorders. Advances in brain MRI acquisition protocols and image processing techniques have made it possible to detect and track with great precision anatomical brain development and pediatric neurologic disorders. In this chapter, we provide a brief overview of the modern neuroimaging techniques for pediatric brain development and review key normal brain development studies. Characteristic disorders affecting neurodevelopment in childhood, such as prematurity, attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), epilepsy, and brain cancer, and key neuroanatomical findings are described and then reviewed. Large datasets of typically developing children and children with various neurodevelopmental conditions are now being acquired to help provide the biomarkers of such impairments. While there are still several challenges in imaging brain structures specific to the pediatric populations, such as subject cooperation and tissues contrast variability, considerable imaging research is now being devoted to solving these problems and improving pediatric data analysis.
Collapse
Affiliation(s)
- Natacha Paquette
- CIBORG Lab, Department of Radiology, Children's Hospital of Los Angeles and University of Southern California, Los Angeles, CA, United States
| | - Niharika Gajawelli
- CIBORG Lab, Department of Radiology, Children's Hospital of Los Angeles and University of Southern California, Los Angeles, CA, United States
| | - Natasha Lepore
- CIBORG Lab, Department of Radiology, Children's Hospital of Los Angeles and University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
31
|
Fontana C, De Carli A, Ricci D, Dessimone F, Passera S, Pesenti N, Bonzini M, Bassi L, Squarcina L, Cinnante C, Mosca F, Fumagalli M. Effects of Early Intervention on Visual Function in Preterm Infants: A Randomized Controlled Trial. Front Pediatr 2020; 8:291. [PMID: 32582595 PMCID: PMC7287146 DOI: 10.3389/fped.2020.00291] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/07/2020] [Indexed: 11/25/2022] Open
Abstract
Objectives: To determine the effectiveness of an early intervention program in enhancing visual function in very preterm infants. Methods: We conducted a RCT. We included preterm infants born between 25+0 and 29+6 weeks of gestational age (GA), without severe morbidities, and their families. Infants were randomized to either receive Standard Care (SC) or Early Intervention (EI). SC, according to NICU protocols, included Kangaroo Mother Care and minimal handling. EI included, in addition to routine care, parental training according to the PremieStart program, and multisensory stimulation (infant massage and visual interaction) performed by parents. Visual function was assessed at term equivalent age (TEA) using a prevalidated battery evaluating ocular spontaneous motility, ability to fix and follow a target, reaction to color, stripes discrimination and visual attention at distance. Results: Seventy preterm (EI n = 34, SC n = 36) infants were enrolled. Thirteen were excluded according to protocol. Fifty-seven infants (EI = 27, SC = 30) were assessed at TEA. The two groups were comparable for parental and infant characteristics. In total, 59% of infants in the EI group achieved the highest score in all the nine assessed items compared to 17% in the SC group (p = 0.001): all infants in both groups showed complete maturation in four items, but EI infants showed more mature findings in the other five items (ocular motility both spontaneous and with target, tracking arc, stripes discrimination and attention at distance). Conclusions: Our results suggest that EI has a positive effect on visual function maturation in preterm infants at TEA. Trial Registration: clinicalTrial.gov (NCT02983513).
Collapse
Affiliation(s)
- Camilla Fontana
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Agnese De Carli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, NICU, Milan, Italy
| | - Daniela Ricci
- Pediatric Neurology, Department of Human and Child Health and Public Health, Child Health Area, Catholic University UCSC, Rome, Italy.,Department of Ophthalmology, National Centre of Services and Research for the Prevention of Blindness and Rehabilitation of the Visually Impaired, IAPB, Rome, Italy
| | - Francesca Dessimone
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, NICU, Milan, Italy
| | - Sofia Passera
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, NICU, Milan, Italy
| | - Nicola Pesenti
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, NICU, Milan, Italy.,Department of Statistics and Quantitative Methods, Division of Biostatistics, Epidemiology and Public Health, University of Milano-Bicocca, Milan, Italy
| | - Matteo Bonzini
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Occupational Health Unit, Milan, Italy
| | - Laura Bassi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, NICU, Milan, Italy
| | - Letizia Squarcina
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Claudia Cinnante
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Neuroradiology Unit, Milan, Italy
| | - Fabio Mosca
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, NICU, Milan, Italy
| | - Monica Fumagalli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, NICU, Milan, Italy
| |
Collapse
|
32
|
Rudisill SS, Wang JT, Jaimes C, Mongerson CRL, Hansen AR, Jennings RW, Bajic D. Neurologic Injury and Brain Growth in the Setting of Long-Gap Esophageal Atresia Perioperative Critical Care: A Pilot Study. Brain Sci 2019; 9:E383. [PMID: 31861169 PMCID: PMC6955668 DOI: 10.3390/brainsci9120383] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/11/2019] [Accepted: 12/14/2019] [Indexed: 12/14/2022] Open
Abstract
We previously showed that infants born with long-gap esophageal atresia (LGEA) demonstrate clinically significant brain MRI findings following repair with the Foker process. The current pilot study sought to identify any pre-existing (PRE-Foker process) signs of brain injury and to characterize brain and corpus callosum (CC) growth. Preterm and full-term infants (n = 3/group) underwent non-sedated brain MRI twice: before (PRE-Foker scan) and after (POST-Foker scan) completion of perioperative care. A neuroradiologist reported on qualitative brain findings. The research team quantified intracranial space, brain, cerebrospinal fluid (CSF), and CC volumes. We report novel qualitative brain findings in preterm and full-term infants born with LGEA before undergoing Foker process. Patients had a unique hospital course, as assessed by secondary clinical end-point measures. Despite increased total body weight and absolute intracranial and brain volumes (cm3) between scans, normalized brain volume was decreased in 5/6 patients, implying delayed brain growth. This was accompanied by both an absolute and relative CSF volume increase. In addition to qualitative findings of CC abnormalities in 3/6 infants, normative CC size (% brain volume) was consistently smaller in all infants, suggesting delayed or abnormal CC maturation. A future larger study group is warranted to determine the impact on the neurodevelopmental outcomes of infants born with LGEA.
Collapse
Affiliation(s)
- Samuel S. Rudisill
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA; (S.S.R.); (J.T.W.); (C.R.L.M.)
| | - Jue T. Wang
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA; (S.S.R.); (J.T.W.); (C.R.L.M.)
- Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA
| | - Camilo Jaimes
- Department of Radiology, Division of Neuroradiology, Boston Children’s Hospital, and Department of Radiology, Harvard Medical School, Boston, MA 02115, USA;
| | - Chandler R. L. Mongerson
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA; (S.S.R.); (J.T.W.); (C.R.L.M.)
| | - Anne R. Hansen
- Department of Pediatrics, Division of Neonatal Medicine, Boston Children’s Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA;
| | - Russell W. Jennings
- Department of Surgery, Boston Children’s Hospital, and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA;
- Esophageal and Airway Treatment Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Dusica Bajic
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA; (S.S.R.); (J.T.W.); (C.R.L.M.)
- Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
33
|
Boardman JP, Counsell SJ. Invited Review: Factors associated with atypical brain development in preterm infants: insights from magnetic resonance imaging. Neuropathol Appl Neurobiol 2019; 46:413-421. [PMID: 31747472 PMCID: PMC7496638 DOI: 10.1111/nan.12589] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/13/2019] [Indexed: 12/18/2022]
Abstract
Preterm birth (PTB) is a leading cause of neurodevelopmental and neurocognitive impairment in childhood and is closely associated with psychiatric disease. The biological and environmental factors that confer risk and resilience for healthy brain development and long‐term outcome after PTB are uncertain, which presents challenges for risk stratification and for the discovery and evaluation of neuroprotective strategies. Neonatal magnetic resonance imaging reveals a signature of PTB that includes dysconnectivity of neural networks and atypical development of cortical and deep grey matter structures. Here we provide a brief review of perinatal factors that are associated with the MRI signature of PTB. We consider maternal and foetal factors including chorioamnionitis, foetal growth restriction, socioeconomic deprivation and prenatal alcohol, drug and stress exposures; and neonatal factors including co‐morbidities of PTB, nutrition, pain and medication during neonatal intensive care and variation conferred by the genome/epigenome. Association studies offer the first insights into pathways to adversity and resilience after PTB. Future challenges are to analyse quantitative brain MRI data with collateral biological and environmental data in study designs that support causal inference, and ultimately to use the output of such analyses to stratify infants for clinical trials of therapies designed to improve outcome.
Collapse
Affiliation(s)
- J P Boardman
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - S J Counsell
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| |
Collapse
|
34
|
Sa de Almeida J, Lordier L, Zollinger B, Kunz N, Bastiani M, Gui L, Adam-Darque A, Borradori-Tolsa C, Lazeyras F, Hüppi PS. Music enhances structural maturation of emotional processing neural pathways in very preterm infants. Neuroimage 2019; 207:116391. [PMID: 31765804 DOI: 10.1016/j.neuroimage.2019.116391] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/18/2019] [Accepted: 11/21/2019] [Indexed: 11/26/2022] Open
Abstract
Prematurity disrupts brain maturation by exposing the developing brain to different noxious stimuli present in the neonatal intensive care unit (NICU) and depriving it from meaningful sensory inputs during a critical period of brain development, leading to later neurodevelopmental impairments. Musicotherapy in the NICU environment has been proposed to promote sensory stimulation, relevant for activity-dependent brain plasticity, but its impact on brain structural maturation is unknown. Neuroimaging studies have demonstrated that music listening triggers neural substrates implied in socio-emotional processing and, thus, it might influence networks formed early in development and known to be affected by prematurity. Using multi-modal MRI, we aimed to evaluate the impact of a specially composed music intervention during NICU stay on preterm infant's brain structure maturation. 30 preterm newborns (out of which 15 were exposed to music during NICU stay and 15 without music intervention) and 15 full-term newborns underwent an MRI examination at term-equivalent age, comprising diffusion tensor imaging (DTI), used to evaluate white matter maturation using both region-of-interest and seed-based tractography approaches, as well as a T2-weighted image, used to perform amygdala volumetric analysis. Overall, WM microstructural maturity measured through DTI metrics was reduced in preterm infants receiving the standard-of-care in comparison to full-term newborns, whereas preterm infants exposed to the music intervention demonstrated significantly improved white matter maturation in acoustic radiations, external capsule/claustrum/extreme capsule and uncinate fasciculus, as well as larger amygdala volumes, in comparison to preterm infants with standard-of-care. These results suggest a structural maturational effect of the proposed music intervention on premature infants' auditory and emotional processing neural pathways during a key period of brain development.
Collapse
Affiliation(s)
- Joana Sa de Almeida
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Lara Lordier
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | | | - Nicolas Kunz
- Center of BioMedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Matteo Bastiani
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, UK; NIHR Biomedical Research Centre, University of Nottingham, UK; Wellcome Centre for Integrative Neuroimaging (WIN) - Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), University of Oxford, UK
| | - Laura Gui
- Department of Radiology and Medical Informatics, Center of BioMedical Imaging (CIBM), University of Geneva, Geneva, Switzerland
| | - Alexandra Adam-Darque
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Cristina Borradori-Tolsa
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - François Lazeyras
- Department of Radiology and Medical Informatics, Center of BioMedical Imaging (CIBM), University of Geneva, Geneva, Switzerland
| | - Petra S Hüppi
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland.
| |
Collapse
|
35
|
Isaacs AM, Smyser CD, Lean RE, Alexopoulos D, Han RH, Neil JJ, Zimbalist SA, Rogers CE, Yan Y, Shimony JS, Limbrick DD. MR diffusion changes in the perimeter of the lateral ventricles demonstrate periventricular injury in post-hemorrhagic hydrocephalus of prematurity. NEUROIMAGE-CLINICAL 2019; 24:102031. [PMID: 31795043 PMCID: PMC6909338 DOI: 10.1016/j.nicl.2019.102031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 10/01/2019] [Accepted: 10/04/2019] [Indexed: 12/14/2022]
Abstract
Diffusion MRI demonstrates PHH is associated with LVP microstructural injury. The greatest PHH-associated disruption occurs at the frontal and occipital horns. Greater ventricular size is associated with greater disruption. dMRI may provide useful biomarkers for PHH monitoring and intervention. The region of LVP injury encompasses neuroprogenitor regions.
Objectives Injury to the preterm lateral ventricular perimeter (LVP), which contains the neural stem cells responsible for brain development, may contribute to the neurological sequelae of intraventricular hemorrhage (IVH) and post-hemorrhagic hydrocephalus of prematurity (PHH). This study utilizes diffusion MRI (dMRI) to characterize the microstructural effects of IVH/PHH on the LVP and segmented frontal-occipital horn perimeters (FOHP). Study design Prospective study of 56 full-term infants, 72 very preterm infants without brain injury (VPT), 17 VPT infants with high-grade IVH without hydrocephalus (HG-IVH), and 13 VPT infants with PHH who underwent dMRI at term equivalent. LVP and FOHP dMRI measures and ventricular size-dMRI correlations were assessed. Results In the LVP, PHH had consistently lower FA and higher MD and RD than FT and VPT (p<.050). However, while PHH FA was lower, and PHH RD was higher than their respective HG-IVH measures (p<.050), the MD and AD values did not differ. In the FOHP, PHH infants had lower FA and higher RD than FT and VPT (p<.010), and a lower FA than the HG-IVH group (p<.001). While the magnitude of AD in both the LVP and FOHP were consistently less in the PHH group on pairwise comparisons to the other groups, the differences were not significant (p>.050). Ventricular size correlated negatively with FA, and positively with MD and RD (p<.001) in both the LVP and FOHP. In the PHH group, FA was lower in the FOHP than in the LVP, which was contrary to the observed findings in the healthy infants (p<.001). Nevertheless, there were no regional differences in AD, MD, and RD in the PHH group. Conclusion HG-IVH and PHH results in aberrant LVP/FOHP microstructure, with prominent abnormalities among the PHH group, most notably in the FOHP. Larger ventricular size was associated with greater magnitude of abnormality. LVP/FOHP dMRI measures may provide valuable biomarkers for future studies directed at improving the management and neurological outcomes of IVH/PHH.
Collapse
Affiliation(s)
- Albert M Isaacs
- Department of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, United States; Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.
| | - Christopher D Smyser
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States; Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Rachel E Lean
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Dimitrios Alexopoulos
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Rowland H Han
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Jeffrey J Neil
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Sophia A Zimbalist
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Cynthia E Rogers
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Yan Yan
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - David D Limbrick
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States; Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
36
|
Zöllei L, Jaimes C, Saliba E, Grant PE, Yendiki A. TRActs constrained by UnderLying INfant anatomy (TRACULInA): An automated probabilistic tractography tool with anatomical priors for use in the newborn brain. Neuroimage 2019; 199:1-17. [PMID: 31132451 PMCID: PMC6688923 DOI: 10.1016/j.neuroimage.2019.05.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 05/14/2019] [Accepted: 05/18/2019] [Indexed: 10/26/2022] Open
Abstract
The ongoing myelination of white-matter fiber bundles plays a significant role in brain development. However, reliable and consistent identification of these bundles from infant brain MRIs is often challenging due to inherently low diffusion anisotropy, as well as motion and other artifacts. In this paper we introduce a new tool for automated probabilistic tractography specifically designed for newborn infants. Our tool incorporates prior information about the anatomical neighborhood of white-matter pathways from a training data set. In our experiments, we evaluate this tool on data from both full-term and prematurely born infants and demonstrate that it can reconstruct known white-matter tracts in both groups robustly, even in the presence of differences between the training set and study subjects. Additionally, we evaluate it on a publicly available large data set of healthy term infants (UNC Early Brain Development Program). This paves the way for performing a host of sophisticated analyses in newborns that we have previously implemented for the adult brain, such as pointwise analysis along tracts and longitudinal analysis, in both health and disease.
Collapse
Affiliation(s)
- Lilla Zöllei
- Massachusetts General Hospital, Boston, United States.
| | | | | | | | | |
Collapse
|
37
|
Dubner SE, Dodson CK, Marchman VA, Ben-Shachar M, Feldman HM, Travis KE. White matter microstructure and cognitive outcomes in relation to neonatal inflammation in 6-year-old children born preterm. NEUROIMAGE-CLINICAL 2019; 23:101832. [PMID: 31075555 PMCID: PMC6603335 DOI: 10.1016/j.nicl.2019.101832] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/03/2019] [Accepted: 04/18/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cognitive outcomes in preterm (PT) children have been associated with microstructural properties of white matter. PT children who experienced neonatal inflammatory conditions have poorer cognitive outcomes than those who did not. The goal of this study was to contrast white matter microstructure and cognitive outcomes after preterm birth in relation to the presence or absence of severe inflammatory conditions in the neonatal period. METHODS PT children (n = 35), born at gestational age 22-32 weeks, were classified as either PT+ (n = 12) based on a neonatal history of inflammatory conditions, including bronchopulmonary dysplasia, necrotizing enterocolitis or culture positive sepsis, or PT- (n = 23) based on the absence of the three inflammatory conditions. Full term (FT) children (n = 43) served as controls. Participants underwent diffusion MRI and cognitive testing (intelligence, reading, and executive function) at age 6 years. The corpus callosum was segmented into 7 regions using deterministic tractography and based on the cortical projection zones of the callosal fibers. Mean fractional anisotropy (FA) and mean diffusivity (MD) were calculated for each segment. General linear models with planned contrasts assessed group differences in FA, MD and cognitive outcomes. Pearson correlations assessed associations of white matter metrics and cognitive outcome measures. RESULTS FA was significantly lower and MD was significantly higher in PT+ compared to PT- or FT groups in multiple callosal segments, even after adjusting for gestational age. Executive function scores, but not intelligence or reading scores, were less favorable in PT+ than in PT- groups. Among the entire sample, occipital FA was significantly correlated with IQ (r = 0.25, p < 0.05), reading (r = 0.32, p < 0.01), and executive function (r = -0.28, p < 0.05) measures. Anterior frontal FA and superior parietal FA were significantly correlated with executive function (r = -0.25, r = 0.23, respectively, p < 0.05). CONCLUSIONS We observed differences in the white matter microstructure of the corpus callosum and in the cognitive skills of 6-year-old PT children based on their history of neonatal inflammation. Neonatal inflammation is one medical factor that may contribute to variation in long-term neurobiological and neuropsychological outcomes in PT samples.
Collapse
Affiliation(s)
- Sarah E Dubner
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Cory K Dodson
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Michal Ben-Shachar
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel; Department of English Literature and Linguistics, Bar Ilan University, Ramat Gan, Israel
| | - Heidi M Feldman
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Katherine E Travis
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
38
|
Rogers CE, Lean RE, Wheelock MD, Smyser CD. Aberrant structural and functional connectivity and neurodevelopmental impairment in preterm children. J Neurodev Disord 2018; 10:38. [PMID: 30541449 PMCID: PMC6291944 DOI: 10.1186/s11689-018-9253-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 11/14/2018] [Indexed: 12/15/2022] Open
Abstract
Background Despite advances in antenatal and neonatal care, preterm birth remains a leading cause of neurological disabilities in children. Infants born prematurely, particularly those delivered at the earliest gestational ages, commonly demonstrate increased rates of impairment across multiple neurodevelopmental domains. Indeed, the current literature establishes that preterm birth is a leading risk factor for cerebral palsy, is associated with executive function deficits, increases risk for impaired receptive and expressive language skills, and is linked with higher rates of co-occurring attention deficit hyperactivity disorder, anxiety, and autism spectrum disorders. These same infants also demonstrate elevated rates of aberrant cerebral structural and functional connectivity, with persistent changes evident across advanced magnetic resonance imaging modalities as early as the neonatal period. Emerging findings from cross-sectional and longitudinal investigations increasingly suggest that aberrant connectivity within key functional networks and white matter tracts may underlie the neurodevelopmental impairments common in this population. Main body This review begins by highlighting the elevated rates of neurodevelopmental disorders across domains in this clinical population, describes the patterns of aberrant structural and functional connectivity common in prematurely-born infants and children, and then reviews the increasingly established body of literature delineating the relationship between these brain abnormalities and adverse neurodevelopmental outcomes. We also detail important, typically understudied, clinical, and social variables that may influence these relationships among preterm children, including heritability and psychosocial risks. Conclusion Future work in this domain should continue to leverage longitudinal evaluations of preterm infants which include both neuroimaging and detailed serial neurodevelopmental assessments to further characterize relationships between imaging measures and impairment, information necessary for advancing our understanding of modifiable risk factors underlying these disorders and best practices for improving neurodevelopmental trajectories in this high-risk clinical population.
Collapse
Affiliation(s)
- Cynthia E Rogers
- Departments of Psychiatry and Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8504, St. Louis, MO, 63110, USA.
| | - Rachel E Lean
- Departments of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8504, St. Louis, MO, 63110, USA
| | - Muriah D Wheelock
- Departments of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8504, St. Louis, MO, 63110, USA
| | - Christopher D Smyser
- Departments of Neurology, Pediatrics and Mallinckrodt Institute of Radiology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8111, St. Louis, MO, 63110, USA
| |
Collapse
|
39
|
Thompson DK, Kelly CE, Chen J, Beare R, Alexander B, Seal ML, Lee KJ, Matthews LG, Anderson PJ, Doyle LW, Cheong JLY, Spittle AJ. Characterisation of brain volume and microstructure at term-equivalent age in infants born across the gestational age spectrum. Neuroimage Clin 2018; 21:101630. [PMID: 30555004 PMCID: PMC6411910 DOI: 10.1016/j.nicl.2018.101630] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 01/23/2023]
Abstract
BACKGROUND Risk of morbidity differs between very preterm (VP; <32 weeks' gestational age (GA)), moderate preterm (MP; 32-33 weeks' GA), late preterm (LP; 34-36 weeks' GA), and full-term (FT; ≥37 weeks' GA) infants. However, brain structure at term-equivalent age (TEA; 38-44 weeks) remains to be characterised in all clinically important GA groups. We aimed to compare global and regional brain volumes, and regional white matter microstructure, between VP, MP, LP and FT groups at TEA, in order to establish the magnitude and anatomical locations of between-group differences. METHODS Structural images from 328 infants (91 VP, 63 MP, 104 LP and 70 FT) were segmented into white matter, cortical grey matter, cerebrospinal fluid (CSF), subcortical grey matter, brainstem and cerebellum. Global tissue volumes were analysed, and additionally, cortical grey matter and white matter volumes were analysed at the regional level using voxel-based morphometry. Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) images from 361 infants (92 VP, 69 MP, 120 LP and 80 FT) were analysed using Tract-Based Spatial Statistics. Statistical analyses involved examining the overall effect of GA group on global volumes (using linear regressions) and regional volumes and microstructure (using non-parametric permutation testing), as well performing post-hoc comparisons between the GA sub-groups. RESULTS On global analysis, cerebrospinal fluid (CSF) volume was larger in all preterm sub-groups compared with the FT group. On regional analysis, volume was smaller in parts of the temporal cortical grey matter, and parts of the temporal white matter and corpus callosum, in all preterm sub-groups compared with the FT group. FA was lower, and RD and MD were higher in voxels located in much of the white matter in all preterm sub-groups compared with the FT group. The anatomical locations of group differences were similar for each preterm vs. FT comparison, but the magnitude and spatial extent of group differences was largest for the VP, followed by the MP, and then the LP comparison. Comparing within the preterm groups, the VP sub-group had smaller frontal and temporal grey and white matter volume, and lower FA and higher MD and RD within voxels in the approximate location of the corpus callosum compared with the MP sub-group. There were few volume and microstructural differences between the MP and LP sub-groups. CONCLUSION All preterm sub-groups had atypical brain volume and microstructure at TEA when compared with a FT group, particularly for the CSF, temporal grey and white matter, and corpus callosum. In general, the groups followed a gradient, where the differences were most pronounced for the VP group, less pronounced for the MP group, and least pronounced for the LP group. The VP sub-group was particularly vulnerable compared with the MP and LP sub-groups.
Collapse
Affiliation(s)
- Deanne K Thompson
- Murdoch Children's Research Institute, Melbourne, VIC, Australia; Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia.
| | - Claire E Kelly
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Jian Chen
- Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Medicine, Monash University, Melbourne, Australia
| | - Richard Beare
- Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Medicine, Monash University, Melbourne, Australia
| | - Bonnie Alexander
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Marc L Seal
- Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
| | - Katherine J Lee
- Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
| | - Lillian G Matthews
- Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia; Department of Newborn Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Peter J Anderson
- Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia; Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, VIC, Australia
| | - Lex W Doyle
- Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia; Neonatal Services, The Royal Women's Hospital, Melbourne, VIC, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, VIC, Australia
| | - Jeanie L Y Cheong
- Murdoch Children's Research Institute, Melbourne, VIC, Australia; Neonatal Services, The Royal Women's Hospital, Melbourne, VIC, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, VIC, Australia
| | - Alicia J Spittle
- Murdoch Children's Research Institute, Melbourne, VIC, Australia; Neonatal Services, The Royal Women's Hospital, Melbourne, VIC, Australia; Department of Physiotherapy, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
40
|
Kelly CE, Ooi WL, Yang JYM, Chen J, Adamson C, Lee KJ, Cheong JLY, Anderson PJ, Doyle LW, Thompson DK. Caffeine for apnea of prematurity and brain development at 11 years of age. Ann Clin Transl Neurol 2018; 5:1112-1127. [PMID: 30250867 PMCID: PMC6144456 DOI: 10.1002/acn3.628] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022] Open
Abstract
Objective Caffeine therapy for apnea of prematurity has been reported to improve brain white matter microstructure at term‐equivalent age, but its long‐term effects are unknown. This study aimed to investigate whether caffeine affects (1) brain structure at 11 years of age, and (2) brain development from term‐equivalent age to 11 years of age, compared with placebo. Methods Preterm infants born ≤1250 g were randomly allocated to caffeine or placebo. Magnetic resonance imaging (MRI) was performed on 70 participants (33 caffeine, 37 placebo) at term‐equivalent age and 117 participants (63 caffeine, 54 placebo) at 11 years of age. Global and regional brain volumes and white matter microstructure were measured at both time points. Results In general, there was little evidence for differences between treatment groups in brain volumes or white matter microstructure at age 11 years. There was, however, evidence that the caffeine group had a smaller corpus callosum than the placebo group. Volumetric brain development from term‐equivalent to 11 years of age was generally similar between treatment groups. However, there was evidence that caffeine was associated with slower growth of the corpus callosum, and slower decreases in axial, radial, and mean diffusivities in the white matter, particularly at the level of the centrum semiovale, over time than placebo. Interpretation This study suggests any benefits of neonatal caffeine therapy on brain structure in preterm infants weaken over time and are not clearly detectable by MRI at age 11 years, although caffeine may have long‐term effects on corpus callosum development.
Collapse
Affiliation(s)
- Claire E Kelly
- Victorian Infant Brain Studies Murdoch Children's Research Institute Melbourne Australia.,Developmental Imaging Murdoch Children's Research Institute Melbourne Australia
| | - Wenn Lynn Ooi
- Victorian Infant Brain Studies Murdoch Children's Research Institute Melbourne Australia.,Developmental Imaging Murdoch Children's Research Institute Melbourne Australia
| | - Joseph Yuan-Mou Yang
- Developmental Imaging Murdoch Children's Research Institute Melbourne Australia.,Department of Neurosurgery The Royal Children's Hospital Melbourne Australia.,Neuroscience Research Murdoch Children's Research Institute Melbourne Australia
| | - Jian Chen
- Developmental Imaging Murdoch Children's Research Institute Melbourne Australia
| | - Chris Adamson
- Developmental Imaging Murdoch Children's Research Institute Melbourne Australia
| | - Katherine J Lee
- Victorian Infant Brain Studies Murdoch Children's Research Institute Melbourne Australia.,Clinical Epidemiology & Biostatistics Unit Murdoch Children's Research Institute Melbourne Australia.,Department of Paediatrics The University of Melbourne Melbourne Australia
| | - Jeanie L Y Cheong
- Victorian Infant Brain Studies Murdoch Children's Research Institute Melbourne Australia.,Department of Neonatal Services The Royal Women's Hospital Melbourne Australia.,Department of Obstetrics and Gynaecology The University of Melbourne Melbourne Australia
| | - Peter J Anderson
- Victorian Infant Brain Studies Murdoch Children's Research Institute Melbourne Australia.,Monash Institute of Cognitive and Clinical Neurosciences Monash University Melbourne Australia
| | - Lex W Doyle
- Victorian Infant Brain Studies Murdoch Children's Research Institute Melbourne Australia.,Department of Paediatrics The University of Melbourne Melbourne Australia.,Department of Neonatal Services The Royal Women's Hospital Melbourne Australia.,Department of Obstetrics and Gynaecology The University of Melbourne Melbourne Australia
| | - Deanne K Thompson
- Victorian Infant Brain Studies Murdoch Children's Research Institute Melbourne Australia.,Developmental Imaging Murdoch Children's Research Institute Melbourne Australia.,Department of Paediatrics The University of Melbourne Melbourne Australia.,Florey Institute of Neuroscience and Mental Health Melbourne Australia
| |
Collapse
|
41
|
Sparrow SA, Anblagan D, Drake AJ, Telford EJ, Pataky R, Piyasena C, Semple SI, Bastin ME, Boardman JP. Diffusion MRI parameters of corpus callosum and corticospinal tract in neonates: Comparison between region-of-interest and whole tract averaged measurements. Eur J Paediatr Neurol 2018; 22:807-813. [PMID: 29804802 PMCID: PMC6148214 DOI: 10.1016/j.ejpn.2018.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 03/28/2018] [Accepted: 05/11/2018] [Indexed: 11/29/2022]
Abstract
PURPOSE Measures of white matter (WM) microstructure inferred from diffusion magnetic resonance imaging (dMRI) are useful for studying brain development. There is uncertainty about agreement between FA and MD values obtained from region-of-interest (ROI) versus whole tract approaches. We investigated agreement between dMRI measures using ROI and Probabilistic Neighbourhood Tractography (PNT) in genu of corpus callosum (gCC) and corticospinal tracts (CST). MATERIALS AND METHODS 81 neonates underwent 64 direction DTI at term equivalent age. FA and MD values were extracted from a 8 mm3 ROI placed within the gCC, right and left posterior limbs of internal capsule. PNT was used to segment gCC and CSTs to calculate whole tract-averaged FA and MD. Agreement between values obtained by each method was compared using Bland-Altman statistics and Pearson's correlation. RESULTS Across the 3 tracts the mean difference in FA measured by PNT and ROI ranged between 0.13 and 0.17, and the 95% limits of agreement did not include the possibility of no difference. For MD, the mean difference in values obtained from PNT and ROI ranged between 0.101 and 0.184 mm2/s × 10-3 mm2/s: the mean difference in gCC was 0.101 × 10-3 mm2/s with 95% limits of agreement that included the possibility of no difference, but there was significant disagreement in MD values measured in the CSTs. CONCLUSION Agreement between dMRI measures of neonatal WM microstructure calculated from ROI and whole tract averaged methods is weak. ROI approaches may not provide sufficient representation of tract microstructure at the level of neural systems in newborns.
Collapse
Affiliation(s)
- Sarah A Sparrow
- MRC Centre for Reproductive Health, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Devasuda Anblagan
- Centre for Clinical Brain Sciences, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Amanda J Drake
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Emma J Telford
- MRC Centre for Reproductive Health, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Rozalia Pataky
- MRC Centre for Reproductive Health, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Chinthika Piyasena
- MRC Centre for Reproductive Health, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; University/BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Scott I Semple
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; Clinical Research Imaging Centre, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Mark E Bastin
- Centre for Clinical Brain Sciences, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - James P Boardman
- MRC Centre for Reproductive Health, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; Centre for Clinical Brain Sciences, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
42
|
Pecheva D, Kelly C, Kimpton J, Bonthrone A, Batalle D, Zhang H, Counsell SJ. Recent advances in diffusion neuroimaging: applications in the developing preterm brain. F1000Res 2018; 7. [PMID: 30210783 PMCID: PMC6107996 DOI: 10.12688/f1000research.15073.1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/17/2018] [Indexed: 12/13/2022] Open
Abstract
Measures obtained from diffusion-weighted imaging provide objective indices of white matter development and injury in the developing preterm brain. To date, diffusion tensor imaging (DTI) has been used widely, highlighting differences in fractional anisotropy (FA) and mean diffusivity (MD) between preterm infants at term and healthy term controls; altered white matter development associated with a number of perinatal risk factors; and correlations between FA values in the white matter in the neonatal period and subsequent neurodevelopmental outcome. Recent developments, including neurite orientation dispersion and density imaging (NODDI) and fixel-based analysis (FBA), enable white matter microstructure to be assessed in detail. Constrained spherical deconvolution (CSD) enables multiple fibre populations in an imaging voxel to be resolved and allows delineation of fibres that traverse regions of fibre-crossings, such as the arcuate fasciculus and cerebellar–cortical pathways. This review summarises DTI findings in the preterm brain and discusses initial findings in this population using CSD, NODDI, and FBA.
Collapse
Affiliation(s)
- Diliana Pecheva
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Christopher Kelly
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Jessica Kimpton
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Alexandra Bonthrone
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Dafnis Batalle
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Hui Zhang
- Department of Computer Science & Centre for Medical Image Computing, University College London, London, UK
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| |
Collapse
|
43
|
Teli R, Hay M, Hershey A, Kumar M, Yin H, Parikh NA. Postnatal Microstructural Developmental Trajectory of Corpus Callosum Subregions and Relationship to Clinical Factors in Very Preterm Infants. Sci Rep 2018; 8:7550. [PMID: 29765059 PMCID: PMC5954149 DOI: 10.1038/s41598-018-25245-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/13/2018] [Indexed: 11/30/2022] Open
Abstract
Our objectives were to define the microstructural developmental trajectory of six corpus callosum subregions and identify perinatal clinical factors that influence early development of these subregions in very preterm infants. We performed a longitudinal cohort study of very preterm infants (32 weeks gestational age or younger) (N = 36) who underwent structural MRI and diffusion tensor imaging serially at four time points - before 32, 32, 38, and 52 weeks postmenstrual age. We divided the corpus callosum into six subregions, performed probabilistic tractography, and used linear mixed effects models to evaluate the influence of antecedent clinical factors on its microstructural growth trajectory. The genu and splenium demonstrated the most rapid developmental maturation, exhibited by a steep increase in fractional anisotropy. We identified several factors that favored greater corpus callosum microstructural development, including advancing postmenstrual age, higher birth weight, and college level or higher maternal education. Bronchopulmonary dysplasia, low 5-minute Apgar scores, caffeine therapy/apnea of prematurity and male sex were associated with reduced corpus callosum microstructural integrity/development over the first six months after very preterm birth. We identified a unique postnatal microstructural growth trajectory and associated clinical factor profile for each of the six corpus callosum subregions that is consistent with the heterogeneous functional role of these white matter subregions.
Collapse
Affiliation(s)
- Radhika Teli
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Margaret Hay
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Alexa Hershey
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Manoj Kumar
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Han Yin
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Nehal A Parikh
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America. .,Center for Perinatal Research, Nationwide Children's Hospital, Columbus, Ohio, United States of America.
| |
Collapse
|
44
|
Abstract
OBJECTIVES Preterm children demonstrate deficits in executive functions including inhibition, working memory, and cognitive flexibility; however, their goal setting abilities (planning, organization, strategic reasoning) remain unclear. This study compared goal setting abilities between very preterm (VP: <30 weeks/<1250 grams) and term born controls during late childhood. Additionally, early risk factors (neonatal brain abnormalities, medical complications, and sex) were examined in relationship to goal setting outcomes within the VP group. METHODS Participants included 177 VP and 61 full-term born control children aged 13 years. Goal setting was assessed using several measures of planning, organization, and strategic reasoning. Parents also completed the Behavior Rating Inventory of Executive Function. Regression models were performed to compare groups, with secondary analyses adjusting for potential confounders (sex and social risk), and excluding children with major neurosensory impairment and/or IQ<70. Within the VP group, regression models were performed to examine the relationship between brain abnormalities, medical complications, and sex, on goal setting scores. RESULTS The VP group demonstrated a clear pattern of impairment and inefficiency across goal setting measures, consistent with parental report, compared with their full-term born peers. Within the VP group, moderate/severe brain abnormalities on neonatal MRI predicted adverse goal setting outcomes at 13. CONCLUSIONS Goal setting difficulties are a significant area of concern in VP children during late childhood. These difficulties are associated with neonatal brain abnormalities, and are likely to have functional consequences academically, socially and vocationally. (JINS, 2018, 24, 372-381).
Collapse
|
45
|
Knight MJ, Smith-Collins A, Newell S, Denbow M, Kauppinen RA. Cerebral White Matter Maturation Patterns in Preterm Infants: An MRI T2 Relaxation Anisotropy and Diffusion Tensor Imaging Study. J Neuroimaging 2017; 28:86-94. [PMID: 29205635 DOI: 10.1111/jon.12486] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/01/2017] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Preterm birth is associated with worse neurodevelopmental outcome, but brain maturation in preterm infants is poorly characterized with standard methods. We evaluated white matter (WM) of infant brains at term-equivalent age, as a function of gestational age at birth, using multimodal magnetic resonance imaging (MRI). METHODS Infants born very preterm (<32 weeks gestation) and late preterm (33-36 weeks gestation) were scanned at 3 T at term-equivalent age using diffusion tensor imaging (DTI) and T2 relaxometry. MRI data were analyzed using tract-based spatial statistics, and anisotropy of T2 relaxation was also determined. Principal component analysis and linear discriminant analysis were applied to seek the variables best distinguishing very preterm and late preterm groups. RESULTS Across widespread regions of WM, T2 is longer in very preterm infants than in late preterm ones. These effects are more prevalent in regions of WM that myelinate earlier and faster. Similar effects are obtained from DTI, showing that fractional anisotropy (FA) is lower and radial diffusivity higher in the very preterm group, with a bias toward earlier myelinating regions. Discriminant analysis shows high sensitivity and specificity of combined T2 relaxometry and DTI for the detection of a distinct WM development pathway in very preterm infants. T2 relaxation is anisotropic, depending on the angle between WM fiber and magnetic field, and this effect is modulated by FA. CONCLUSIONS Combined T2 relaxometry and DTI characterizes specific patterns of retarded WM maturation, at term equivalent age, in infants born very preterm relative to late preterm.
Collapse
Affiliation(s)
| | - Adam Smith-Collins
- Clinical Research and Imaging Centre, University of Bristol, UK.,Fetal Medicine Unit, St Michael's Hospital, University Hospitals Bristol NHS Foundation Trust, UK
| | - Sarah Newell
- Fetal Medicine Unit, St Michael's Hospital, University Hospitals Bristol NHS Foundation Trust, UK
| | - Mark Denbow
- Fetal Medicine Unit, St Michael's Hospital, University Hospitals Bristol NHS Foundation Trust, UK
| | - Risto A Kauppinen
- School of Experimental Psychology, University of Bristol, UK.,Clinical Research and Imaging Centre, University of Bristol, UK
| |
Collapse
|
46
|
Dodson CK, Travis KE, Ben-Shachar M, Feldman HM. White matter microstructure of 6-year old children born preterm and full term. NEUROIMAGE-CLINICAL 2017; 16:268-275. [PMID: 28840098 PMCID: PMC5558468 DOI: 10.1016/j.nicl.2017.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 01/03/2023]
Abstract
AIM We previously observed a complex pattern of differences in white matter (WM) microstructure between preterm-born (PT) and full-term-born (FT) children and adolescents age 9-17 years. The aim of this study was to determine if the same differences exist as early as age 6 years. METHOD We obtained diffusion MRI (dMRI) scans in children born PT at age 6 years (n = 20; 11 males) and FT (n = 38; 14 males), using two scanning protocols: 30 diffusion directions (b = 1000 s/mm2) and 96 diffusion directions (b = 2500 s/mm2). We used deterministic tractography and analyzed fractional anisotropy (FA) along bilateral cerebral WM pathways that demonstrated differences in the older sample. RESULTS Compared to the FT group, the PT group showed (1) significantly decreased FA in the uncinate fasciculi and forceps major and (2) significantly increased FA in the right anterior thalamic radiation, inferior fronto-occipital fasciculi, and inferior longitudinal fasciculi. This pattern of group differences resembles findings in the previous study of older PT and FT participants. Group differences were similar across dMRI acquisition protocols. INTERPRETATION The underlying neurobiology driving the pattern of PT-FT differences in FA is present as early as age 6 years. Generalization across dMRI acquisition protocols demonstrates the robustness of group differences in FA. Future studies will use quantitative neuroimaging techniques to understand the tissue properties that give rise to this consistent pattern of WM differences after PT birth.
Collapse
Affiliation(s)
- Cory K Dodson
- Division of Developmental and Behavioral Medicine, Department of Pediatrics, Stanford University School of Medicine, 1265 Welch Road X119, Stanford, CA 94305, USA
| | - Katherine E Travis
- Division of Developmental and Behavioral Medicine, Department of Pediatrics, Stanford University School of Medicine, 1265 Welch Road X119, Stanford, CA 94305, USA
| | - Michal Ben-Shachar
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 5290002, Israel.,Department of English Literature and Linguistics, Bar Ilan University, 5290002 Ramat Gan, Israel
| | - Heidi M Feldman
- Division of Developmental and Behavioral Medicine, Department of Pediatrics, Stanford University School of Medicine, 1265 Welch Road X119, Stanford, CA 94305, USA
| |
Collapse
|
47
|
Jacobson SW, Jacobson JL, Molteno CD, Warton CMR, Wintermark P, Hoyme HE, De Jong G, Taylor P, Warton F, Lindinger NM, Carter RC, Dodge NC, Grant E, Warfield SK, Zöllei L, van der Kouwe AJW, Meintjes EM. Heavy Prenatal Alcohol Exposure is Related to Smaller Corpus Callosum in Newborn MRI Scans. Alcohol Clin Exp Res 2017; 41:965-975. [PMID: 28247416 DOI: 10.1111/acer.13363] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/23/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND Magnetic resonance imaging (MRI) studies have consistently demonstrated disproportionately smaller corpus callosa in individuals with a history of prenatal alcohol exposure (PAE) but have not previously examined the feasibility of detecting this effect in infants. Tissue segmentation of the newborn brain is challenging because analysis techniques developed for the adult brain are not directly transferable, and segmentation for cerebral morphometry is difficult in neonates, due to the latter's incomplete myelination. This study is the first to use volumetric structural MRI to investigate PAE effects in newborns using manual tracing and to examine the cross-sectional area of the corpus callosum (CC). METHODS Forty-three nonsedated infants born to 32 Cape Coloured heavy drinkers and 11 controls recruited prospectively during pregnancy were scanned using a custom-designed birdcage coil for infants, which increases signal-to-noise ratio almost 2-fold compared to the standard head coil. Alcohol use was ascertained prospectively during pregnancy, and fetal alcohol spectrum disorders diagnosis was conducted by expert dysmorphologists. Data were acquired using a multi-echo FLASH protocol adapted for newborns, and a knowledge-based procedure was used to hand-segment the neonatal brains. RESULTS CC was disproportionately smaller in alcohol-exposed neonates than controls after controlling for intracranial volume. By contrast, CC area was unrelated to infant sex, gestational age, age at scan, or maternal smoking, marijuana, or methamphetamine use during pregnancy. CONCLUSIONS Given that midline craniofacial anomalies have been recognized as a hallmark of fetal alcohol syndrome in humans and animal models since this syndrome was first identified, the CC deficit identified here in newborns may support early identification of a range of midline structural impairments. Smaller CC during the newborn period may provide an early indicator of fetal alcohol-related cognitive deficits that have been linked to this critically important brain structure in childhood and adolescence.
Collapse
Affiliation(s)
- Sandra W Jacobson
- Department of Psychiatry and Behavioral Neurosciences , Wayne State University School of Medicine, Detroit, Michigan.,Department of Human Biology , Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Mental Health , Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Joseph L Jacobson
- Department of Psychiatry and Behavioral Neurosciences , Wayne State University School of Medicine, Detroit, Michigan.,Department of Human Biology , Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Mental Health , Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Christopher D Molteno
- Department of Psychiatry and Mental Health , Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Christopher M R Warton
- Department of Human Biology , Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | | | - H Eugene Hoyme
- Department of Pediatrics , Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota.,College of Medicine , University of Arizona, Tucson, Arizona
| | - Greetje De Jong
- Division of Molecular Biology and Human Genetics , Stellenbosch University, Faculty of Medicine and Health Sciences, Cape Town, South Africa
| | - Paul Taylor
- Department of Human Biology , Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Scientific and Statistical Computing Core , National Institutes of Health, Bethesda, Maryland
| | - Fleur Warton
- Department of Human Biology , Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nadine M Lindinger
- Department of Psychology , University of Cape Town, Cape Town, South Africa
| | - R Colin Carter
- Division of Pediatric Emergency Medicine , Morgan Stanley Children's Hospital of New York, Columbia University Medical Center, New York, New York
| | - Neil C Dodge
- Department of Psychiatry and Behavioral Neurosciences , Wayne State University School of Medicine, Detroit, Michigan
| | - Ellen Grant
- Division of Pediatric Emergency Medicine , Morgan Stanley Children's Hospital of New York, Columbia University Medical Center, New York, New York
| | - Simon K Warfield
- Department of Pediatrics , Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts
| | - Lilla Zöllei
- Department of Radiology , Massachusetts General Hospital, Boston, Massachusetts
| | | | - Ernesta M Meintjes
- Department of Human Biology , Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,MRC/UCT Medical Imaging Research Unit , Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
48
|
Malavolti AM, Chau V, Brown-Lum M, Poskitt KJ, Brant R, Synnes A, Grunau RE, Miller SP. Association between corpus callosum development on magnetic resonance imaging and diffusion tensor imaging, and neurodevelopmental outcome in neonates born very preterm. Dev Med Child Neurol 2017; 59:433-440. [PMID: 27976377 DOI: 10.1111/dmcn.13364] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2016] [Indexed: 11/28/2022]
Abstract
AIM To characterize corpus callosum development in neonates born very preterm from early in life to term-equivalent age and its relationship with neurodevelopmental outcome at 18 months corrected age. METHOD In a prospective cohort of 193 neonates born preterm, 24 to 32 weeks' gestation, we used magnetic resonance imaging and diffusion tensor imaging acquired early in life (n=193) and at term-equivalent age (n=159) to measure corpus callosum development: mid-sagittal area (including corpus callosum subdivisions) and length, and fractional anisotropy from the genu and splenium. We examined the association of (1) intraventricular haemorrhage (IVH) and white matter injury (WMI) severity, and (2) neurodevelopmental outcome at 18 months corrected age with corpus callosum development. RESULTS Severe WMI and severe IVH were strongly associated with reduced corpus callosum area (both p<0.001) and WMI with lower fractional anisotropy (p=0.002). Mild WMI predicted smaller corpus callosum area only posteriorly; mild IVH predicted smaller area throughout. Adverse motor outcome was associated with smaller corpus callosum size in the posterior subdivision (p=0.003). Abnormal cognitive outcomes were associated with lower corpus callosum fractional anisotropy (p=0.008). INTERPRETATION In newborn infants born very preterm, brain injury is associated with changes in simple metrics of corpus callosum development. In this population, the development of the corpus callosum, as reflected by size and microstructure, is associated with neurodevelopmental outcomes at 18 months corrected age.
Collapse
Affiliation(s)
- Anna M Malavolti
- Department of Pediatrics, University of British Columbia and BC Children's and Women's Hospital, Vancouver, BC, Canada
| | - Vann Chau
- Department of Pediatrics, University of British Columbia and BC Children's and Women's Hospital, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Paediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, ON, Canada.,Neurosciences and Mental Health, SickKids Research Institute, Toronto, ON, Canada
| | - Meisan Brown-Lum
- Department of Pediatrics, University of British Columbia and BC Children's and Women's Hospital, Vancouver, BC, Canada
| | - Kenneth J Poskitt
- Department of Pediatrics, University of British Columbia and BC Children's and Women's Hospital, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Radiology, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Rollin Brant
- BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Statistics, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Anne Synnes
- Department of Pediatrics, University of British Columbia and BC Children's and Women's Hospital, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Ruth E Grunau
- Department of Pediatrics, University of British Columbia and BC Children's and Women's Hospital, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Steven P Miller
- Department of Pediatrics, University of British Columbia and BC Children's and Women's Hospital, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Paediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, ON, Canada.,Neurosciences and Mental Health, SickKids Research Institute, Toronto, ON, Canada
| |
Collapse
|
49
|
Cerebellar Microstructural Organization is Altered by Complications of Premature Birth: A Case-Control Study. J Pediatr 2017; 182:28-33.e1. [PMID: 27843009 DOI: 10.1016/j.jpeds.2016.10.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/08/2016] [Accepted: 10/10/2016] [Indexed: 11/20/2022]
Abstract
OBJECTIVES To compare regional cerebellar microstructure, as measured by diffusion tensor imaging (DTI), between preterm infants at term-equivalent age and healthy term-born control neonates, and to explore associations between DTI findings and clinical risk factors. STUDY DESIGN In this case-control study, DTI studies were performed in 73 premature infants born ≤32 weeks and ≤1500 g birth weight and 73 full-term-born controls from healthy pregnancies. Using a region of interest approach, fractional anisotropy (FA) and mean diffusivity (MD) were extracted in 7 cerebellar regions including the anterior vermis, the right/left superior cerebellar peduncles, the middle cerebellar peduncle, and the dentate nuclei. To validate further our DTI measurements, we measured FA and MD in the genu of the corpus callosum and splenium. FA and MD were compared between groups using analyses of multiple linear regression models. RESULTS Preterm infants at term-equivalent age presented with higher FA in the dentate nuclei (<.001) and middle cerebellar peduncle (.028), and lower MD in the vermis (.023) compared with controls. Conversely, preterm infants showed reduced FA and increased MD in both the genu of the corpus callosum and splenium (P < .001). Independent risk factors associated with altered FA and MD in the cerebellum included low Apgar score, supratentorial injury, compromised cardiorespiratory function, and surgery for necrotizing enterocolitis and patent ductus arteriosus. CONCLUSIONS This DTI study provides evidence that complications of premature birth are associated with altered cerebellar microstructural organization when compared with term-born control infants.
Collapse
|
50
|
Wu D, Chang L, Akazawa K, Oishi K, Skranes J, Ernst T, Oishi K. Mapping the critical gestational age at birth that alters brain development in preterm-born infants using multi-modal MRI. Neuroimage 2017; 149:33-43. [PMID: 28111189 DOI: 10.1016/j.neuroimage.2017.01.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/07/2017] [Accepted: 01/18/2017] [Indexed: 02/06/2023] Open
Abstract
Preterm birth adversely affects postnatal brain development. In order to investigate the critical gestational age at birth (GAB) that alters the developmental trajectory of gray and white matter structures in the brain, we investigated diffusion tensor and quantitative T2 mapping data in 43 term-born and 43 preterm-born infants. A novel multivariate linear model-the change point model, was applied to detect change points in fractional anisotropy, mean diffusivity, and T2 relaxation time. Change points captured the "critical" GAB value associated with a change in the linear relation between GAB and MRI measures. The analysis was performed in 126 regions across the whole brain using an atlas-based image quantification approach to investigate the spatial pattern of the critical GAB. Our results demonstrate that the critical GABs are region- and modality-specific, generally following a central-to-peripheral and bottom-to-top order of structural development. This study may offer unique insights into the postnatal neurological development associated with differential degrees of preterm birth.
Collapse
Affiliation(s)
- Dan Wu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Linda Chang
- Department of Medicine, School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Kentaro Akazawa
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kumiko Oishi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jon Skranes
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Thomas Ernst
- Department of Medicine, School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Kenichi Oishi
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|