1
|
Sheldrake E, Nishat E, Wheeler AL, Goldstein BI, Reed N, Scratch SE. Functional network disruptions in youth with concussion using the Adolescent Brain Cognitive Development study. Brain Inj 2024:1-12. [PMID: 39415428 DOI: 10.1080/02699052.2024.2416545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 09/12/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
OBJECTIVE This study aimed to compare psychosocial outcomes and functional neuroimaging among youth with concussion, youth with anxiety, and age- and sex-matched controls. METHODS Using archival data from the Adolescent Brain Cognitive DevelopmentSM Study, we analyzed between-group differences in psychosocial outcomes measured by the Child Behavior Checklist's internalizing and externalizing problem scales, and assessed brain function using resting-state fMRI network-region connectivity (specifically frontoparietal network (FPN) and default mode network (DMN) connectivity with the amygdala). RESULTS Significant differences in psychosocial outcomes were found across all groups, with the anxiety group reporting the most internalizing problems, followed by the concussion group which significantly differed from controls. Additionally, FPN-amygdala connectivity was significantly reduced in the concussion group only; this reduced connectivity did not predict psychosocial outcomes across groups. CONCLUSION This study provided preliminary findings that brain connectivity is reduced exclusively in individuals with concussion. Although disruptions were observed in the concussion group, further investigation is warranted to understand how disruptions may be associated with concussion symptoms. Studies that utilize well-defined control and study groups, and comprehensive cognitive and mental health measures will offer a deeper understanding of the relationship between brain function and psychosocial outcomes.
Collapse
Affiliation(s)
- Elena Sheldrake
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
| | - Eman Nishat
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Anne L Wheeler
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, The Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Nick Reed
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
- Department of Occupational Science & Occupational Therapy, University of Toronto, Toronto, Ontario, Canada
| | - Shannon E Scratch
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Nairuz T, Sangwoo-Cho, Lee JH. Photobiomodulation Therapy on Brain: Pioneering an Innovative Approach to Revolutionize Cognitive Dynamics. Cells 2024; 13:966. [PMID: 38891098 PMCID: PMC11171912 DOI: 10.3390/cells13110966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Photobiomodulation (PBM) therapy on the brain employs red to near-infrared (NIR) light to treat various neurological and psychological disorders. The mechanism involves the activation of cytochrome c oxidase in the mitochondrial respiratory chain, thereby enhancing ATP synthesis. Additionally, light absorption by ion channels triggers the release of calcium ions, instigating the activation of transcription factors and subsequent gene expression. This cascade of events not only augments neuronal metabolic capacity but also orchestrates anti-oxidant, anti-inflammatory, and anti-apoptotic responses, fostering neurogenesis and synaptogenesis. It shows promise for treating conditions like dementia, stroke, brain trauma, Parkinson's disease, and depression, even enhancing cognitive functions in healthy individuals and eliciting growing interest within the medical community. However, delivering sufficient light to the brain through transcranial approaches poses a significant challenge due to its limited penetration into tissue, prompting an exploration of alternative delivery methods such as intracranial and intranasal approaches. This comprehensive review aims to explore the mechanisms through which PBM exerts its effects on the brain and provide a summary of notable preclinical investigations and clinical trials conducted on various brain disorders, highlighting PBM's potential as a therapeutic modality capable of effectively impeding disease progression within the organism-a task often elusive with conventional pharmacological interventions.
Collapse
Affiliation(s)
| | | | - Jong-Ha Lee
- Department of Biomedical Engineering, Keimyung University, Daegu 42601, Republic of Korea; (T.N.); (S.-C.)
| |
Collapse
|
3
|
Kagialis A, Simos N, Manolitsi K, Vakis A, Simos P, Papadaki E. Functional connectivity-hemodynamic (un)coupling changes in chronic mild brain injury are associated with mental health and neurocognitive indices: a resting state fMRI study. Neuroradiology 2024; 66:985-998. [PMID: 38605104 PMCID: PMC11133187 DOI: 10.1007/s00234-024-03352-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
PURPOSE To examine hemodynamic and functional connectivity alterations and their association with neurocognitive and mental health indices in patients with chronic mild traumatic brain injury (mTBI). METHODS Resting-state functional MRI (rs-fMRI) and neuropsychological assessment of 37 patients with chronic mTBI were performed. Intrinsic connectivity contrast (ICC) and time-shift analysis (TSA) of the rs-fMRI data allowed the assessment of regional hemodynamic and functional connectivity disturbances and their coupling (or uncoupling). Thirty-nine healthy age- and gender-matched participants were also examined. RESULTS Patients with chronic mTBI displayed hypoconnectivity in bilateral hippocampi and parahippocampal gyri and increased connectivity in parietal areas (right angular gyrus and left superior parietal lobule (SPL)). Slower perfusion (hemodynamic lag) in the left anterior hippocampus was associated with higher self-reported symptoms of depression (r = - 0.53, p = .0006) and anxiety (r = - 0.484, p = .002), while faster perfusion (hemodynamic lead) in the left SPL was associated with lower semantic fluency (r = - 0.474, p = .002). Finally, functional coupling (high connectivity and hemodynamic lead) in the right anterior cingulate cortex (ACC)) was associated with lower performance on attention and visuomotor coordination (r = - 0.50, p = .001), while dysfunctional coupling (low connectivity and hemodynamic lag) in the left ventral posterior cingulate cortex (PCC) and right SPL was associated with lower scores on immediate passage memory (r = - 0.52, p = .001; r = - 0.53, p = .0006, respectively). Uncoupling in the right extrastriate visual cortex and posterior middle temporal gyrus was negatively associated with cognitive flexibility (r = - 0.50, p = .001). CONCLUSION Hemodynamic and functional connectivity differences, indicating neurovascular (un)coupling, may be linked to mental health and neurocognitive indices in patients with chronic mTBI.
Collapse
Affiliation(s)
- Antonios Kagialis
- Department of Psychiatry, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
- Department of Radiology, School of Medicine, University of Crete, University Hospital of Heraklion, 71003, Crete, Greece
| | - Nicholas Simos
- Institute of Computer Science, Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece
| | - Katina Manolitsi
- Department of Neurosurgery, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
| | - Antonios Vakis
- Department of Neurosurgery, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
| | - Panagiotis Simos
- Department of Psychiatry, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
- Institute of Computer Science, Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece
| | - Efrosini Papadaki
- Department of Radiology, School of Medicine, University of Crete, University Hospital of Heraklion, 71003, Crete, Greece.
- Institute of Computer Science, Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece.
| |
Collapse
|
4
|
Arabshahi S, Chung S, Alivar A, Amorapanth PX, Flanagan SR, Foo FYA, Laine AF, Lui YW. A Comprehensive and Broad Approach to Resting-State Functional Connectivity in Adult Patients with Mild Traumatic Brain Injury. AJNR Am J Neuroradiol 2024; 45:637-646. [PMID: 38604737 PMCID: PMC11288538 DOI: 10.3174/ajnr.a8193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/12/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND AND PURPOSE Several recent works using resting-state fMRI suggest possible alterations of resting-state functional connectivity after mild traumatic brain injury. However, the literature is plagued by various analysis approaches and small study cohorts, resulting in an inconsistent array of reported findings. In this study, we aimed to investigate differences in whole-brain resting-state functional connectivity between adult patients with mild traumatic brain injury within 1 month of injury and healthy control subjects using several comprehensive resting-state functional connectivity measurement methods and analyses. MATERIALS AND METHODS A total of 123 subjects (72 patients with mild traumatic brain injury and 51 healthy controls) were included. A standard fMRI preprocessing pipeline was used. ROI/seed-based analyses were conducted using 4 standard brain parcellation methods, and the independent component analysis method was applied to measure resting-state functional connectivity. The fractional amplitude of low-frequency fluctuations was also measured. Group comparisons were performed on all measurements with appropriate whole-brain multilevel statistical analysis and correction. RESULTS There were no significant differences in age, sex, education, and hand preference between groups as well as no significant correlation between all measurements and these potential confounders. We found that each resting-state functional connectivity measurement revealed various regions or connections that were different between groups. However, after we corrected for multiple comparisons, the results showed no statistically significant differences between groups in terms of resting-state functional connectivity across methods and analyses. CONCLUSIONS Although previous studies point to multiple regions and networks as possible mild traumatic brain injury biomarkers, this study shows that the effect of mild injury on brain resting-state functional connectivity has not survived after rigorous statistical correction. A further study using subject-level connectivity analyses may be necessary due to both subtle and variable effects of mild traumatic brain injury on brain functional connectivity across individuals.
Collapse
Affiliation(s)
- Soroush Arabshahi
- From Biomedical Engineering Department (S.A., A.F.L.), Columbia University, New York, New York
| | - Sohae Chung
- Departments of Radiology (S.C., A.A., Y.W.L.), NYU Grossman School of Medicine, New York, New York
| | - Alaleh Alivar
- Departments of Radiology (S.C., A.A., Y.W.L.), NYU Grossman School of Medicine, New York, New York
| | - Prin X Amorapanth
- Rehabilitation Medicine (P.X.A., S.R.F.), NYU Grossman School of Medicine, New York, New York
| | - Steven R Flanagan
- Rehabilitation Medicine (P.X.A., S.R.F.), NYU Grossman School of Medicine, New York, New York
| | - Farng-Yang A Foo
- Department of Neurology (F.-Y.A.F.), NYU Grossman School of Medicine, New York, New York
| | - Andrew F Laine
- From Biomedical Engineering Department (S.A., A.F.L.), Columbia University, New York, New York
| | - Yvonne W Lui
- Departments of Radiology (S.C., A.A., Y.W.L.), NYU Grossman School of Medicine, New York, New York
| |
Collapse
|
5
|
Sultana T, Hasan MA, Kang X, Liou-Johnson V, Adamson MM, Razi A. Neural mechanisms of emotional health in traumatic brain injury patients undergoing rTMS treatment. Mol Psychiatry 2023; 28:5150-5158. [PMID: 37414927 DOI: 10.1038/s41380-023-02159-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/08/2023]
Abstract
Emotional dysregulation such as that seen in depression, are a long-term consequence of mild traumatic brain injury (TBI), that can be improved by using neuromodulation treatments such as repetitive transcranial magnetic stimulation (rTMS). Previous studies provide insights into the changes in functional connectivity related to general emotional health after the application of rTMS procedures in patients with TBI. However, these studies provide little understanding of the underlying neuronal mechanisms that drive the improvement of the emotional health in these patients. The current study focuses on inferring the effective (causal) connectivity changes and their association with emotional health, after rTMS treatment of cognitive problems in TBI patients (N = 32). Specifically, we used resting state functional magnetic resonance imaging (fMRI) together with spectral dynamic causal model (spDCM) to investigate changes in brain effective connectivity, before and after the application of high frequency (10 Hz) rTMS over left dorsolateral prefrontal cortex. We investigated the effective connectivity of the cortico-limbic network comprised of 11 regions of interest (ROIs) which are part of the default mode, salience, and executive control networks, known to be implicated in emotional processing. The results indicate that overall, among extrinsic connections, the strength of excitatory connections decreased while that of inhibitory connections increased after the neuromodulation. The cardinal region in the analysis was dorsal anterior cingulate cortex (dACC) which is considered to be the most influenced during emotional health disorders. Our findings implicate the altered connectivity of dACC with left anterior insula and medial prefrontal cortex, after the application of rTMS, as a potential neural mechanism underlying improvement of emotional health. Our investigation highlights the importance of these brain regions as treatment targets in emotional processing in TBI.
Collapse
Affiliation(s)
- Tajwar Sultana
- Department of Computer and Information Systems Engineering, NED University of Engineering & Technology, Karachi, 75270, Pakistan
- Department of Biomedical Engineering, NED University of Engineering & Technology, Karachi, 75270, Pakistan
- Neurocomputation Laboratory, National Centre of Artificial Intelligence, Peshawar, Pakistan
| | - Muhammad Abul Hasan
- Department of Biomedical Engineering, NED University of Engineering & Technology, Karachi, 75270, Pakistan
- Neurocomputation Laboratory, National Centre of Artificial Intelligence, Peshawar, Pakistan
| | - Xiaojian Kang
- WRIISC-WOMEN, VA Palo Alto Healthcare System, Palo Alto, CA, 94304, USA
- Rehabilitation Service, Veterans Affairs Palo Alto Healthcare System (VAPAHCS), 3801 Miranda Avenue, Palo Alto, CA, 94304, USA
| | - Victoria Liou-Johnson
- Rehabilitation Service, Veterans Affairs Palo Alto Healthcare System (VAPAHCS), 3801 Miranda Avenue, Palo Alto, CA, 94304, USA
- Clinical Excellence Research Center, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Maheen Mausoof Adamson
- WRIISC-WOMEN, VA Palo Alto Healthcare System, Palo Alto, CA, 94304, USA
- Rehabilitation Service, Veterans Affairs Palo Alto Healthcare System (VAPAHCS), 3801 Miranda Avenue, Palo Alto, CA, 94304, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Adeel Razi
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, 3800, Australia.
- Wellcome Centre for Human Neuroimaging, University College London, WC1N 3AR, London, United Kingdom.
- CIFAR Azrieli Global Scholars Program, CIFAR, Toronto, ON, Canada.
| |
Collapse
|
6
|
Flores G, Monteiro D, Silva F, Duarte-Mendes P. Heart rate variability behavior in athletes after a sports concussion: A systematic review. Scand J Med Sci Sports 2023; 33:1598-1606. [PMID: 37246359 DOI: 10.1111/sms.14409] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/30/2023]
Abstract
OBJECTIVE This systematic review aims to investigate the adaptations of the autonomic nervous system (ANS) after a concussion by measuring HRV in athletes over the age of 16 after injury. METHODS This systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). Web of Science, Pubmed, SCOPUS, and Sport Discus were searched using predefined search terms to identify relevant original cross-sectional, longitudinal, and cohort epidemiological studies published before December 2021. RESULTS After screening 1737 potential articles, four studies met the inclusion criteria. Studies included participants with concussion (n = 63) and healthy control athletes (n = 140) who practised different sports. Two studies describe a decrease in HRV following a sports concussion, and one proposed that the resolution of symptoms does not necessarily reflect ANS recovery. Lastly, one study concluded that submaximal exercise induces alteration in ANS, not seen in rest after an injury. CONCLUSIONS In the frequency domain, a decrease in high frequency power and an increase of low frequency/high frequency ratio is expected, as the activity of the sympathetic nervous system increases, and the parasympathetic nervous system decreases after injury. In the frequency domain, heart rate variability (HRV) may help monitor the activity of ANS evaluating signals of somatic tissue distress and early identification of other types of musculoskeletal injuries. Further research should investigate the relationship between HRV and other musculoskeletal injuries.
Collapse
Affiliation(s)
| | - Diogo Monteiro
- ESECS-Polytechnic of Leiria, Leiria, Portugal
- Research Centre in Sport, Health and Human Development (CIDESD), Vila Real, Portugal
- Life Quality Research Center (CIEQV), Leiria, Portugal
| | - Fernanda Silva
- Research Unit for Sport and Physical Activity, University of Coimbra, Coimbra, Portugal
| | - Pedro Duarte-Mendes
- Department of Sports and Well-being, Polytechnic Institute of Castelo Branco, Castelo Branco, Portugal
- Sport, Health and Exercise Research Unit-SHERU, Polytechnic Institute of Castelo Branco, Castelo Branco, Portugal
| |
Collapse
|
7
|
Anderson ED, Talukdar T, Goodwin G, Di Pietro V, Yakoub KM, Zwilling CE, Davies D, Belli A, Barbey AK. Assessing blood oxygen level-dependent signal variability as a biomarker of brain injury in sport-related concussion. Brain Commun 2023; 5:fcad215. [PMID: 37649639 PMCID: PMC10465085 DOI: 10.1093/braincomms/fcad215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/02/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023] Open
Abstract
Mild traumatic brain injury is a complex neurological disorder of significant concern among athletes who play contact sports. Athletes who sustain sport-related concussion typically undergo physical examination and neurocognitive evaluation to determine injury severity and return-to-play status. However, traumatic disruption to neurometabolic processes can occur with minimal detectable anatomic pathology or neurocognitive alteration, increasing the risk that athletes may be cleared for return-to-play during a vulnerable period and receive a repetitive injury. This underscores the need for sensitive functional neuroimaging methods to detect altered cerebral physiology in concussed athletes. The present study compared the efficacy of Immediate Post-concussion Assessment and Cognitive Testing composite scores and whole-brain measures of blood oxygen level-dependent signal variability for classifying concussion status and predicting concussion symptomatology in healthy, concussed and repetitively concussed athletes, assessing blood oxygen level-dependent signal variability as a potential diagnostic tool for characterizing functional alterations to cerebral physiology and assisting in the detection of sport-related concussion. We observed significant differences in regional blood oxygen level-dependent signal variability measures for concussed athletes but did not observe significant differences in Immediate Post-concussion Assessment and Cognitive Testing scores of concussed athletes. We further demonstrate that incorporating measures of functional brain alteration alongside Immediate Post-concussion Assessment and Cognitive Testing scores enhances the sensitivity and specificity of supervised random forest machine learning methods when classifying and predicting concussion status and post-concussion symptoms, suggesting that alterations to cerebrovascular status characterize unique variance that may aid in the detection of sport-related concussion and repetitive mild traumatic brain injury. These results indicate that altered blood oxygen level-dependent variability holds promise as a novel neurobiological marker for detecting alterations in cerebral perfusion and neuronal functioning in sport-related concussion, motivating future research to establish and validate clinical assessment protocols that can incorporate advanced neuroimaging methods to characterize altered cerebral physiology following mild traumatic brain injury.
Collapse
Affiliation(s)
- Evan D Anderson
- Decision Neuroscience Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Air Force Research Laboratory, Wright-Patterson AFB, OH 45433, USA
| | - Tanveer Talukdar
- Decision Neuroscience Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Grace Goodwin
- Decision Neuroscience Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Psychology, University of Nevada, Las Vegas, NV 89557, USA
| | - Valentina Di Pietro
- Decision Neuroscience Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Neurotrauma and Ophthalmology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Kamal M Yakoub
- Neurotrauma and Ophthalmology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Christopher E Zwilling
- Decision Neuroscience Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - David Davies
- Neurotrauma and Ophthalmology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Antonio Belli
- Neurotrauma and Ophthalmology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Aron K Barbey
- Decision Neuroscience Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Psychology, University of Illinois, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois, Urbana, IL 61801, USA
- Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
8
|
Powell JR, Hopfinger JB, Giovanello KS, Walton SR, DeLellis SM, Kane SF, Means GE, Mihalik JP. Mild traumatic brain injury history is associated with lower brain network resilience in soldiers. Brain Commun 2023; 5:fcad201. [PMID: 37545546 PMCID: PMC10400114 DOI: 10.1093/braincomms/fcad201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/12/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023] Open
Abstract
Special Operations Forces combat soldiers sustain frequent blast and blunt neurotrauma, most often classified as mild traumatic brain injuries. Exposure to repetitive mild traumatic brain injuries is associated with persistent behavioural, cognitive, emotional and neurological symptoms later in life. Identifying neurophysiological changes associated with mild traumatic brain injury exposure, in the absence of present-day symptoms, is necessary for detecting future neurological risk. Advancements in graph theory and functional MRI have offered novel ways to analyse complex whole-brain network connectivity. Our purpose was to determine how mild traumatic brain injury history, lifetime incidence and recency affected whole-brain graph theoretical outcome measures. Healthy male Special Operations Forces combat soldiers (age = 33.2 ± 4.3 years) underwent multimodal neuroimaging at a biomedical research imaging centre using 3T Siemens Prisma or Biograph MRI scanners in this cross-sectional study. Anatomical and functional scans were preprocessed. The blood-oxygen-level-dependent signal was extracted from each functional MRI time series using the Big Brain 300 atlas. Correlations between atlas regions were calculated and Fisher z-transformed to generate subject-level correlation matrices. The Brain Connectivity Toolbox was used to obtain functional network measures for global efficiency (the average inverse shortest path length), local efficiency (the average global efficiency of each node and its neighbours), and assortativity coefficient (the correlation coefficient between the degrees of all nodes on two opposite ends of a link). General linear models were fit to compare mild traumatic brain injury lifetime incidence and recency. Nonparametric ANOVAs were used for tests on non-normally distributed data. Soldiers with a history of mild traumatic brain injury had significantly lower assortativity than those who did not self-report mild traumatic brain injury (t148 = 2.44, P = 0.016). The assortativity coefficient was significantly predicted by continuous mild traumatic brain injury lifetime incidence [F1,144 = 6.51, P = 0.012]. No differences were observed between recency groups, and no global or local efficiency differences were observed between mild traumatic brain injury history and lifetime incidence groups. Brain networks with greater assortativity have more resilient, interconnected hubs, while those with lower assortativity indicate widely distributed, vulnerable hubs. Greater lifetime mild traumatic brain injury incidence predicted lower assortativity in our study sample. Less resilient brain networks may represent a lack of physiological recovery in mild traumatic brain injury patients, who otherwise demonstrate clinical recovery, more vulnerability to future brain injury and increased risk for accelerated age-related neurodegenerative changes. Future longitudinal studies should investigate whether decreased brain network resilience may be a predictor for long-term neurological dysfunction.
Collapse
Affiliation(s)
- Jacob R Powell
- Matthew Gfeller Center, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joseph B Hopfinger
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kelly S Giovanello
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Samuel R Walton
- Physical Medicine and Rehabilitation, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Stephen M DeLellis
- Fort Liberty Research Institute, The Geneva Foundation, Tacoma, WA 98402, USA
| | - Shawn F Kane
- Matthew Gfeller Center, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Family Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gary E Means
- United States Army Special Operations Command, Fort Liberty, NC 28303, USA
| | - Jason P Mihalik
- Correspondence to: Jason P. Mihalik Matthew Gfeller Center, Department of Exercise and Sport Science The University of North Carolina at Chapel Hill, 2201 Stallings-Evans Sports Medicine Center Campus Box 8700, Chapel Hill, NC 27599, USA E-mail:
| |
Collapse
|
9
|
Esopenko C, Sollmann N, Bonke EM, Wiegand TLT, Heinen F, de Souza NL, Breedlove KM, Shenton ME, Lin AP, Koerte IK. Current and Emerging Techniques in Neuroimaging of Sport-Related Concussion. J Clin Neurophysiol 2023; 40:398-407. [PMID: 36930218 PMCID: PMC10329721 DOI: 10.1097/wnp.0000000000000864] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
SUMMARY Sport-related concussion (SRC) affects an estimated 1.6 to 3.8 million Americans each year. Sport-related concussion results from biomechanical forces to the head or neck that lead to a broad range of neurologic symptoms and impaired cognitive function. Although most individuals recover within weeks, some develop chronic symptoms. The heterogeneity of both the clinical presentation and the underlying brain injury profile make SRC a challenging condition. Adding to this challenge, there is also a lack of objective and reliable biomarkers to support diagnosis, to inform clinical decision making, and to monitor recovery after SRC. In this review, the authors provide an overview of advanced neuroimaging techniques that provide the sensitivity needed to capture subtle changes in brain structure, metabolism, function, and perfusion after SRC. This is followed by a discussion of emerging neuroimaging techniques, as well as current efforts of international research consortia committed to the study of SRC. Finally, the authors emphasize the need for advanced multimodal neuroimaging to develop objective biomarkers that will inform targeted treatment strategies after SRC.
Collapse
Affiliation(s)
- Carrie Esopenko
- Department of Rehabilitation and Movement Sciences, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Nico Sollmann
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Elena M. Bonke
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Munich, Germany
| | - Tim L. T. Wiegand
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Felicitas Heinen
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Nicola L. de Souza
- School of Graduate Studies, Biomedical Sciences, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Katherine M. Breedlove
- Center for Clinical Spectroscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Martha E. Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- VA Boston Healthcare System, Brockton Division, Brockton, MA, USA
| | - Alexander P. Lin
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Clinical Spectroscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Inga K. Koerte
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Brown O, Healey K, Fang Z, Zemek R, Smith A, Ledoux AA. Associations between psychological resilience and metrics of white matter microstructure in pediatric concussion. Hum Brain Mapp 2023. [PMID: 37126608 DOI: 10.1002/hbm.26321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023] Open
Abstract
This study investigated associations between psychological resilience and characteristics of white matter microstructure in pediatric concussion. This is a case control study and a planned substudy of a larger randomized controlled trial. Children with an acute concussion or orthopedic injury were recruited from the emergency department. Participants completed both the Connor-Davidson Resilience Scale 10 and an MRI at 72 h and 4-weeks post-injury. The association between resiliency and fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) at both timepoints were examined. We examined whether these associations were moderated by group. The association between resiliency captured at 72 h and diffusion tensor imaging metrics at 4 weeks was also investigated. Clusters were extracted using a significance threshold of threshold-free cluster enhancement corrected p < .05. A total of 66 children with concussion (median (IQR) age = 12.88 (IQR: 11.80-14.36); 47% female) and 29 children with orthopedic-injury (median (IQR) age = 12.49 (IQR: 11.18-14.01); 41% female) were included. A negative correlation was identified in the concussion group between 72 h resilience and 72 h FA. Meanwhile, positive correlations were identified in the concussion group with concussion between 72 h resilience and both 72 h MD and 72 h RD. These findings suggest that 72 h resilience is associated with white matter microstructure of the forceps minor, superior longitudinal fasciculus, and anterior thalamic radiation at 72 h post-concussion. Resilience seems to be associated with neural integrity only in the acute phase of concussion and thus may be considered when researching concussion recovery.
Collapse
Affiliation(s)
- Olivier Brown
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | - Katherine Healey
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Zhuo Fang
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | - Roger Zemek
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Pediatrics and Emergency Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Andra Smith
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | - Andrée-Anne Ledoux
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
- Department of Cellular Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
11
|
Ghiles CW, Clark MD, Kuzminski SJ, Fraser MA, Petrella JR, Guskiewicz KM. Changes in resting state networks in high school football athletes across a single season. Br J Radiol 2023; 96:20220359. [PMID: 36607807 PMCID: PMC10078860 DOI: 10.1259/bjr.20220359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE The aim of this pilot cohort study was to examine changes in the organization of resting-state brain networks in high school football athletes and its relationship to exposure to on-field head impacts over the course of a single season. METHODS Seventeen male high school football players underwent functional magnetic resonance imaging and computerized neurocognitive testing (CNS Vital Signs) before the start of contact practices and again after the conclusion of the season. The players were equipped with helmet accelerometer systems (Head Impact Telemetry System) to record head impacts in practices and games. Graph theory analysis was applied to study intranetwork local efficiency and strength of connectivity within six anatomically defined brain networks. RESULTS We observed a significant decrease in the local efficiency (-24.9 ± 51.4%, r = 0.7, p < 0.01) and strength (-14.5 ± 26.8%, r = 0.5, p < 0.01) of functional connectivity within the frontal lobe resting-state network and strength within the parietal lobe resting-state network (-7.5 ± 17.3%, r = 0.1, p < 0.01), as well as a concomitant increase in the local efficiency (+55.0 +/- 59.8%, r = 0.5, p < 0.01) and strength (+47.4 +/- 47.3%, r = 0.5, p < 0.01) within the mediotemporal networks. These alterations in network organization were associated with changes in performance on verbal memory (p < 0.05) and executive function (p < 0.05). We did not observe a significant relationship between the frequency or cumulative magnitude of impacts sustained during the season and neurocognitive or imaging outcomes (p > 0.05). CONCLUSION Our findings suggest the efficiency and strength of resting-state networks are altered across a season of high school football, but the association of exposure levels to subconcussive impacts is unclear. ADVANCES IN KNOWLEDGE The efficiency of resting-state networks is dynamic in high school football athletes; such changes may be related to impacts sustained during the season, though further study is needed.
Collapse
Affiliation(s)
- Connor W Ghiles
- Wake Forest University School of Medicine, Winston-Salem, United States
| | - Michael D Clark
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, United States
| | | | - Melissa A Fraser
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, United States
| | | | - Kevin M Guskiewicz
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, United States
| |
Collapse
|
12
|
Xu N, Zhou Y, Patel A, Zhang N, Liu Y. Parkinson's Disease Diagnosis beyond Clinical Features: A Bio-marker using Topological Machine Learning of Resting-state Functional Magnetic Resonance Imaging. Neuroscience 2023; 509:43-50. [PMID: 36436700 DOI: 10.1016/j.neuroscience.2022.11.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022]
Abstract
Parkinson's disease (PD) is one of the leading causes of neurological disability, and its prevalence is expected to increase rapidly in the following few decades. PD diagnosis heavily depends on clinical features using the patient's symptoms. Therefore, an accurate, robust, and non-invasive bio-marker is of critical clinical importance for PD. This study proposes to develop a new bio-marker for PD diagnosis using resting-state functional Magnetic Resonance Imaging (rs-fMRI). Unlike most existing rs-fMRI data analytics using correlational analysis, a Topological Machine Learning approach is proposed to construct the bio-marker. The default functional network is identified first using rs-fMRI. Next, rs-fMRI's high dimensional spatial-temporal data structure is mapped on a Riemann Manifold using topological dimensional reduction. Following the topological dimensional reduction, machine learning is used for classification and sensitivity analysis. The proposed methodology is applied to three open fMRI databases for demonstration and validation. The PD diagnosis accuracy can reach 96.4% when the proposed methodology is used. Thus, rs-fMRI and topological machine learning provide a quantifiable and verifiable bio-marker for future PD early detection and treatment evaluation.
Collapse
Affiliation(s)
- Nan Xu
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Yuxiang Zhou
- Department of Radiology, Mayo Clinic, Scottsdale, AZ, USA.
| | - Ameet Patel
- Department of Radiology, Mayo Clinic, Scottsdale, AZ, USA
| | - Na Zhang
- Independent Researcher, Chandler, AZ, USA
| | - Yongming Liu
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
13
|
Cramer SW, Haley SP, Popa LS, Carter RE, Scott E, Flaherty EB, Dominguez J, Aronson JD, Sabal L, Surinach D, Chen CC, Kodandaramaiah SB, Ebner TJ. Wide-field calcium imaging reveals widespread changes in cortical functional connectivity following mild traumatic brain injury in the mouse. Neurobiol Dis 2023; 176:105943. [PMID: 36476979 PMCID: PMC9972226 DOI: 10.1016/j.nbd.2022.105943] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
>2.5 million individuals in the United States suffer mild traumatic brain injuries (mTBI) annually. Mild TBI is characterized by a brief period of altered consciousness, without objective findings of anatomic injury on clinical imaging or physical deficit on examination. Nevertheless, a subset of mTBI patients experience persistent subjective symptoms and repeated mTBI can lead to quantifiable neurological deficits, suggesting that each mTBI alters neurophysiology in a deleterious manner not detected using current clinical methods. To better understand these effects, we performed mesoscopic Ca2+ imaging in mice to evaluate how mTBI alters patterns of neuronal interactions across the dorsal cerebral cortex. Spatial Independent Component Analysis (sICA) and Localized semi-Nonnegative Matrix Factorization (LocaNMF) were used to quantify changes in cerebral functional connectivity (FC). Repetitive, mild, controlled cortical impacts induce temporary neuroinflammatory responses, characterized by increased density of microglia exhibiting de-ramified morphology. These temporary neuro-inflammatory changes were not associated with compromised cognitive performance in the Barnes maze or motor function as assessed by rotarod. However, long-term alterations in functional connectivity (FC) were observed. Widespread, bilateral changes in FC occurred immediately following impact and persisted for up to 7 weeks, the duration of the experiment. Network alterations include decreases in global efficiency, clustering coefficient, and nodal strength, thereby disrupting functional interactions and information flow throughout the dorsal cerebral cortex. A subnetwork analysis shows the largest disruptions in FC were concentrated near the impact site. Therefore, mTBI induces a transient neuroinflammation, without alterations in cognitive or motor behavior, and a reorganized cortical network evidenced by the widespread, chronic alterations in cortical FC.
Collapse
Affiliation(s)
- Samuel W Cramer
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Samuel P Haley
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Laurentiu S Popa
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Russell E Carter
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Earl Scott
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Evelyn B Flaherty
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Judith Dominguez
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Justin D Aronson
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Luke Sabal
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel Surinach
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Timothy J Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
14
|
Adolescents with a concussion have altered brain network functional connectivity one month following injury when compared to adolescents with orthopedic injuries. Neuroimage Clin 2022; 36:103211. [PMID: 36182818 PMCID: PMC9668608 DOI: 10.1016/j.nicl.2022.103211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 12/14/2022]
Abstract
Concussion is a mild traumatic brain injury (mTBI) with increasing prevalence among children and adolescents. Functional connectivity (FC) within and between the default mode network (DMN), central executive network (CEN) and salience network (SN) has been shown to be altered post-concussion. Few studies have investigated connectivity within and between these 3 networks following a pediatric concussion. The present study explored whether within and between-network FC differs between a pediatric concussion and orthopedic injury (OI) group aged 10-18. Participants underwent a resting-state functional magnetic resonance imaging (rs-fMRI) scan at 4 weeks post-injury. One-way ANCOVA analyses were conducted between groups with the seed-based FC of the 3 networks. A total of 55 concussion and 27 OI participants were included in the analyses. Increased within-network FC of the CEN and decreased between-network FC of the DMN-CEN was found in the concussion group when compared to the OI group. Secondary analyses using spherical SN regions of interest revealed increased within-network FC of the SN and increased between-network FC of the DMN-SN and CEN-SN in the concussion group when compared to the OI group. This study identified differential connectivity patterns following a pediatric concussion as compared to an OI 4 weeks post-injury. These differences indicate potential adaptive brain mechanisms that may provide insight into recovery trajectories and appropriate timing of treatment within the first month following a concussion.
Collapse
|
15
|
Rajtmajer SM, Errington TM, Hillary FG. How failure to falsify in high-volume science contributes to the replication crisis. eLife 2022; 11:e78830. [PMID: 35939392 PMCID: PMC9398444 DOI: 10.7554/elife.78830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022] Open
Abstract
The number of scientific papers published every year continues to increase, but scientific knowledge is not progressing at the same rate. Here we argue that a greater emphasis on falsification - the direct testing of strong hypotheses - would lead to faster progress by allowing well-specified hypotheses to be eliminated. We describe an example from neuroscience where there has been little work to directly test two prominent but incompatible hypotheses related to traumatic brain injury. Based on this example, we discuss how building strong hypotheses and then setting out to falsify them can bring greater precision to the clinical neurosciences, and argue that this approach could be beneficial to all areas of science.
Collapse
Affiliation(s)
- Sarah M Rajtmajer
- College of Information Sciences and Technology, The Pennsylvania State UniversityUniversity ParkUnited States
| | | | - Frank G Hillary
- Department of Psychology and the Social Life and Engineering Sciences Imaging Center, The Pennsylvania State UniversityUniversity ParkUnited States
| |
Collapse
|
16
|
Posterior-prefrontal and medial orbitofrontal regions play crucial roles in happiness and sadness recognition. Neuroimage Clin 2022; 35:103072. [PMID: 35689975 PMCID: PMC9192961 DOI: 10.1016/j.nicl.2022.103072] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 11/23/2022]
Abstract
Brain areas underlying trade-off relations between emotions were identified. Damage to the PPF area reduces accuracy of happiness recognition. Damage to the PPF increases accuracy of sadness recognition. A similar tendency was observed in orbitofrontal regions for sadness recognition. Only a deficit in sadness, but not happiness, persisted in the chronic phase.
The core brain regions responsible for basic human emotions are not yet fully understood. We investigated the key areas responsible for emotion recognition of facial expressions of happiness and sadness using data obtained from patients who underwent local brain resection. A total of 44 patients with right cerebral hemispheric brain tumors and 33 healthy volunteers were enrolled and subjected to a facial expression recognition test. Voxel-based lesion-symptom mapping was performed to investigate the relationship between the accuracy of emotion recognition and the resected regions. Consequently, trade-off relationships were discovered: the posterior-prefrontal region was related to a low score of happiness recognition and a high score of sadness recognition (disorder-of-happiness group), whereas the medial orbitofrontal region was related to a low score of sadness recognition and a high score of happiness recognition (disorder-of-sadness group). The emotion recognition score in both the happiness and sadness disorder groups was significantly lower than that in the control group (p = 0.0009 and p = 0.021, respectively). Interestingly, the deficit in happiness recognition was temporary, whereas the deficit in sadness recognition persisted during the chronic phase. Using graph theoretical analysis, we identified structural connectivity between the posterior-prefrontal and medial orbitofrontal regions. When either of these regions was damaged, the tract volume connecting them was significantly reduced (p = 0.013). These results indicate that the posterior-prefrontal and medial orbitofrontal regions may be crucial for maintaining a balance between happiness and sadness recognition in humans. Investigating the clinical impact of certain area resections using lesion studies combined with connectivity analysis is a useful neuroimaging method for understanding neural networks.
Collapse
|
17
|
Brett BL, Bryant AM, España LY, Mayer AR, Meier TB. Investigating the overlapping associations of prior concussion, default mode connectivity, and executive function-based symptoms. Brain Imaging Behav 2022; 16:1275-1283. [PMID: 34989980 PMCID: PMC9107488 DOI: 10.1007/s11682-021-00617-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2021] [Indexed: 11/02/2022]
Abstract
Growing evidence suggests that younger athletes with greater concussion history are more likely to endorse greater subjective cognitive (e.g., executive function) symptoms, but not perform worse on objective cognitive testing. We sought to identify biological correlates of elevated cognitive symptoms in 100 healthy, collegiate-aged athletes with varying degrees of concussion history. Associations between concussion history with subjectively-rated executive function were assessed with generalized linear models. Using resting state fMRI, we examined associations between concussion history and between-and within-network connectivity across three networks integral to executive function; default mode network (DMN), frontoparietal network (FPN), and ventral attention network (VAN). Relationships of between-and within-network connectivity with subjective executive function were assessed. Although the large majority of participants did not report clinically relevant levels of executive difficulties, there was a significant association between concussion history and higher behavioral regulation-related symptoms; B = .04[.01, .07], p = .011. A significant elevation in total within-network connectivity was observed among those with a greater concussion history, B = .02[.002, .03], p = .028, which was primarily driven by a positive association between concussion history and within DMN connectivity, B = .02[.004, .04], p = .014. Higher behavioral regulation-related symptoms were associated with greater total within-network connectivity, B = 0.57[0.18, 0.96], p = .005, and increased within-network connectivity for the DMN, B = .49[.12, .86], p = .010). The current study identified a distinct biological correlate, increased within-DMN connectivity, which was associated with both a greater history of concussion and greater behavioral regulation symptoms. Future studies are required to determine the degree to which these changes associated with concussion history may evolve toward objective cognitive decline over the lifespan.
Collapse
Affiliation(s)
- Benjamin L Brett
- Department of Neurosurgery, Medical College of Wisconsin, 8701 West Watertown Plank Road, Milwaukee, WI, 53226, USA
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Andrew M Bryant
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lezlie Y España
- Department of Neurosurgery, Medical College of Wisconsin, 8701 West Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Andrew R Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Neurology and Psychiatry Departments, University of New Mexico School of Medicine, Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, 8701 West Watertown Plank Road, Milwaukee, WI, 53226, USA.
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
18
|
Manelis A, Lima Santos JP, Suss SJ, Holland CL, Stiffler RS, Bitzer HB, Mailliard S, Shaffer MA, Caviston K, Collins MW, Phillips ML, Kontos AP, Versace A. Vestibular/ocular motor symptoms in concussed adolescents are linked to retrosplenial activation. Brain Commun 2022; 4:fcac123. [PMID: 35615112 PMCID: PMC9127539 DOI: 10.1093/braincomms/fcac123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/07/2022] [Accepted: 05/11/2022] [Indexed: 11/23/2022] Open
Abstract
Following concussion, adolescents often experience vestibular and ocular motor symptoms as well as working memory deficits that may affect their cognitive, academic and social well-being. Complex visual environments including school activities, playing sports, or socializing with friends may be overwhelming for concussed adolescents suffering from headache, dizziness, nausea and fogginess, thus imposing heightened requirements on working memory to adequately function in such environments. While understanding the relationship between working memory and vestibular/ocular motor symptoms is critically important, no previous study has examined how an increase in working memory task difficulty affects the relationship between severity of vestibular/ocular motor symptoms and brain and behavioural responses in a working memory task. To address this question, we examined 80 adolescents (53 concussed, 27 non-concussed) using functional MRI while performing a 1-back (easy) and 2-back (difficult) working memory tasks with angry, happy, neutral and sad face distractors. Concussed adolescents completed the vestibular/ocular motor screening and were scanned within 10 days of injury. We found that all participants showed lower accuracy and slower reaction time on difficult (2-back) versus easy (1-back) tasks (P-values < 0.05). Concussed adolescents were significantly slower than controls across all conditions (P < 0.05). In concussed adolescents, higher vestibular/ocular motor screening total scores were associated with significantly greater differences in reaction time between 1-back and 2-back across all distractor conditions and significantly greater differences in retrosplenial cortex activation for the 1-back versus 2-back condition with neutral face distractors (P-values < 0.05). Our findings suggest that processing of emotionally ambiguous information (e.g. neutral faces) additionally increases the task difficulty for concussed adolescents. Post-concussion vestibular/ocular motor symptoms may reduce the ability to inhibit emotionally ambiguous information during working memory tasks, potentially affecting cognitive, academic and social functioning in concussed adolescents.
Collapse
Affiliation(s)
- Anna Manelis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Stephen J. Suss
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cynthia L. Holland
- Department of Orthopaedic Surgery/UPMC Sports Medicine Concussion Program, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Hannah B. Bitzer
- Department of Orthopaedic Surgery/UPMC Sports Medicine Concussion Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarrah Mailliard
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Madelyn A. Shaffer
- Department of Orthopaedic Surgery/UPMC Sports Medicine Concussion Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kaitlin Caviston
- Department of Orthopaedic Surgery/UPMC Sports Medicine Concussion Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael W. Collins
- Department of Orthopaedic Surgery/UPMC Sports Medicine Concussion Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mary L. Phillips
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anthony P. Kontos
- Department of Orthopaedic Surgery/UPMC Sports Medicine Concussion Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amelia Versace
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Radiology, Magnetic Resonance Research Center, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
19
|
Kieffer EE, Brolinson PG, Rowson S. Dual-Task Gait Performance Following Head Impact Exposure in Male and Female Collegiate Rugby Players. Int J Sports Phys Ther 2022; 17:355-365. [PMID: 35391870 PMCID: PMC8975566 DOI: 10.26603/001c.32591] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/09/2022] [Indexed: 11/28/2022] Open
Abstract
Background Gait impairments have been well-studied in concussed athletes. However, the sex-specific effect of cumulative head impacts on gait is not well understood. When a cognitive task is added to a walking task, dual-task gait assessments can help amplify deficits in gait and are representative of tasks in everyday life. Dual-task cost is the difference in performance from walking (single-task) to walking with a cognitive load (dual-task). Purpose The objectives of this study were to explore the differences between sexes in 1) dual-task gait metrics, 2) gait metric changes from pre-season to post-concussion and post-season, and 3) the dual-task costs associated with gait metrics. Study Design Cross-sectional study. Methods Over two seasons, 77 female athlete-seasons and 64 male athlete-seasons from collegiate club rugby teams participated in this study. Subjects wore inertial sensors and completed walking trials with and without a cognitive test at pre-season, post-season, and post-concussion (if applicable). Results Females athletes showed improvement in cadence (mean = 2.7 step/min increase), double support time (mean = -0.8% gait cycle time decrease), gait speed (mean = 0.1 m/s increase), and stride length (mean = 0.2 m increase) in both task conditions over the course of the season (p < 0.030). Male athletes showed no differences in gait metrics over the course of the season, except for faster gait speeds and longer stride lengths in the dual-task condition (p < 0.034). In all four gait characteristics, at baseline and post-season, females had higher dual-task costs (mean difference = 4.4, p < 0.003) than the males. Conclusions This results of this study showed little evidence suggesting a relationship between repetitive head impact exposure and gait deficits. However, there are sex-specific differences that should be considered during the diagnosis and management of sports-related concussion. Level of Evidence Level 2b.
Collapse
|
20
|
Vaughn KA, DeMaster D, Kook JH, Vannucci M, Ewing-Cobbs L. Effective connectivity in the default mode network after paediatric traumatic brain injury. Eur J Neurosci 2022; 55:318-336. [PMID: 34841600 PMCID: PMC9198945 DOI: 10.1111/ejn.15546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 01/03/2023]
Abstract
Children who experience a traumatic brain injury (TBI) are at elevated risk for a range of negative cognitive and neuropsychological outcomes. Identifying which children are at greatest risk for negative outcomes can be difficult due to the heterogeneity of TBI. To address this barrier, the current study applied a novel method of characterizing brain connectivity networks, Bayesian multi-subject vector autoregressive modelling (BVAR-connect), which used white matter integrity as priors to evaluate effective connectivity-the time-dependent relationship in functional magnetic resonance imaging (fMRI) activity between two brain regions-within the default mode network (DMN). In a prospective longitudinal study, children ages 8-15 years with mild to severe TBI underwent diffusion tensor imaging and resting state fMRI 7 weeks after injury; post-concussion and anxiety symptoms were assessed 7 months after injury. The goals of this study were to (1) characterize differences in positive effective connectivity of resting-state DMN circuitry between healthy controls and children with TBI, (2) determine if severity of TBI was associated with differences in DMN connectivity and (3) evaluate whether patterns of DMN effective connectivity predicted persistent post-concussion symptoms and anxiety. Healthy controls had unique positive connectivity that mostly emerged from the inferior temporal lobes. In contrast, children with TBI had unique effective connectivity among orbitofrontal and parietal regions. These positive orbitofrontal-parietal DMN effective connectivity patterns also differed by TBI severity and were associated with persisting behavioural outcomes. Effective connectivity may be a sensitive neuroimaging marker of TBI severity as well as a predictor of chronic post-concussion symptoms and anxiety.
Collapse
Affiliation(s)
- Kelly A. Vaughn
- University of Texas Health Science Center at Houston,,Corresponding Author
| | - Dana DeMaster
- University of Texas Health Science Center at Houston
| | | | | | | |
Collapse
|
21
|
Fan L, Xu H, Su J, Qin J, Gao K, Ou M, Peng S, Shen H, Li N. Discriminating mild traumatic brain injury using sparse dictionary learning of functional network dynamics. Brain Behav 2021; 11:e2414. [PMID: 34775693 PMCID: PMC8671791 DOI: 10.1002/brb3.2414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 09/23/2021] [Accepted: 10/13/2021] [Indexed: 11/06/2022] Open
Abstract
Mild traumatic brain injury (mTBI) is usually caused by a bump, blow, or jolt to the head or penetrating head injury, and carries the risk of inducing cognitive disorders. However, identifying the biomarkers for the diagnosis of mTBI is challenging as evident abnormalities in brain anatomy are rarely found in patients with mTBI. In this study, we tested whether the alteration of functional network dynamics could be used as potential biomarkers to better diagnose mTBI. We propose a sparse dictionary learning framework to delineate spontaneous fluctuation of functional connectivity into the subject-specific time-varying evolution of a set of overlapping group-level sparse connectivity components (SCCs) based on the resting-state functional magnetic resonance imaging (fMRI) data from 31 mTBI patients in the early acute phase (<3 days postinjury) and 31 healthy controls (HCs). The identified SCCs were consistently distributed in the cohort of subjects without significant inter-group differences in connectivity patterns. Nevertheless, subject-specific temporal expression of these SCCs could be used to discriminate patients with mTBI from HCs with a classification accuracy of 74.2% (specificity 64.5% and sensitivity 83.9%) using leave-one-out cross-validation. Taken together, our findings indicate neuroimaging biomarkers for mTBI individual diagnosis based on the temporal expression of SCCs underlying time-resolved functional connectivity.
Collapse
Affiliation(s)
- Liangwei Fan
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Huaze Xu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Jianpo Su
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Jian Qin
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Kai Gao
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Min Ou
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Song Peng
- Radiology Department, Xiangya 3rd Hospital, Central South University, Changsha, China
| | - Hui Shen
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Na Li
- Radiology Department, Xiangya 3rd Hospital, Central South University, Changsha, China
| |
Collapse
|
22
|
Ibrahim O, Sutherland HG, Lea RA, Nasrallah F, Maksemous N, Smith RA, Haupt LM, Griffiths LR. Discriminating head trauma outcomes using machine learning and genomics. J Mol Med (Berl) 2021; 100:303-312. [PMID: 34797388 DOI: 10.1007/s00109-021-02158-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 10/19/2022]
Abstract
A percentage of the population suffers prolonged and persistent post-concussion symptoms (PCS) following average head injuries or develops severe neurological dysfunction following minor head trauma. Genetic variants that may contribute to individual response to head trauma have been investigated in some studies, but to date none have explored the use of machine learning (ML) methods with genomic data to specifically explore outcomes of head trauma. Whole exome sequencing (WES) was completed for three groups of individuals (N = 60): (a) 16 individuals with severe neurological responses to minor head trauma, (b) 26 individuals with persistent PCS and (c) 18 individuals with normal recovery from concussion or mTBI. Gradient boosted tree algorithms were applied to the data using XGBoost. By using variants with CADD scores above 15 in the training set (randomly sampled 70%), we identified signatures that accurately distinguish to accurately distinguish the test groups with an average area under the curve (AUC) of 0.8 (SE = 0.019). Metrics including positive and negative prediction values, as well as kappa were all within acceptable range to support the prediction accuracy. This study illustrates how ML methods in combination with WES data have the potential to predict severe or prolonged responses to head trauma from healthy recovery. KEY MESSAGES: Linear association analysis has been inconclusive in concussion genetics. Non-linear methods as boosted trees can offer better insights in small samples. Strong discrimination trends can be achieved from exome data of cases and controls.
Collapse
Affiliation(s)
- Omar Ibrahim
- Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia
| | - Heidi G Sutherland
- Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia
| | - Rodney A Lea
- Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia
| | - Fatima Nasrallah
- The Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Neven Maksemous
- Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia
| | - Robert A Smith
- Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia
| | - Larisa M Haupt
- Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia
| | - Lyn R Griffiths
- Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia.
| |
Collapse
|
23
|
Song J, Li J, Chen L, Lu X, Zheng S, Yang Y, Cao B, Weng Y, Chen Q, Ding J, Huang R. Altered gray matter structural covariance networks at both acute and chronic stages of mild traumatic brain injury. Brain Imaging Behav 2021; 15:1840-1854. [PMID: 32880075 DOI: 10.1007/s11682-020-00378-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cognitive and emotional impairments observed in mild traumatic brain injury (mTBI) patients may reflect variances of brain connectivity within specific networks. Although previous studies found altered functional connectivity (FC) in mTBI patients, the alterations of brain structural properties remain unclear. In the present study, we analyzed structural covariance (SC) for the acute stages of mTBI (amTBI) patients, the chronic stages of mTBI (cmTBI) patients, and healthy controls. We first extracted the mean gray matter volume (GMV) of seed regions that are located in the default-mode network (DMN), executive control network (ECN), salience network (SN), sensorimotor network (SMN), and the visual network (VN). Then we determined and compared the SC for each seed region among the amTBI, the cmTBI and the healthy controls. Compared with healthy controls, the amTBI patients showed lower SC for the ECN, and the cmTBI patients showed higher SC for the both DMN and SN but lower SC for the SMN. The results revealed disrupted ECN in the amTBI patients and disrupted DMN, SN and SMN in the cmTBI patients. These alterations suggest that early disruptions in SC between bilateral insula and the bilateral prefrontal cortices may appear in amTBI and persist into cmTBI, which might be potentially related to the cognitive and emotional impairments.
Collapse
Affiliation(s)
- Jie Song
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China.,School of Psychology, South China Normal University, Guangzhou, 510631, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Jie Li
- Department of Radiology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310015, China
| | - Lixiang Chen
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China.,School of Psychology, South China Normal University, Guangzhou, 510631, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Xingqi Lu
- Department of Radiology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310015, China
| | - Senning Zheng
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China.,School of Psychology, South China Normal University, Guangzhou, 510631, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Ying Yang
- Department of Radiology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310015, China
| | - Bolin Cao
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China.,School of Psychology, South China Normal University, Guangzhou, 510631, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Yihe Weng
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China.,School of Psychology, South China Normal University, Guangzhou, 510631, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Qinyuan Chen
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Jianping Ding
- Department of Radiology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310015, China. .,School of Medicine, Hangzhou Normal University, Hangzhou, 310015, China.
| | - Ruiwang Huang
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China. .,School of Psychology, South China Normal University, Guangzhou, 510631, China. .,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
24
|
Morelli N, Johnson NF, Kaiser K, Andreatta RD, Heebner NR, Hoch MC. Resting state functional connectivity responses post-mild traumatic brain injury: a systematic review. Brain Inj 2021; 35:1326-1337. [PMID: 34487458 DOI: 10.1080/02699052.2021.1972339] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Mild traumatic brain injuries (mTBI) are associated with functional network connectivity alterations throughout recovery. Yet, little is known about the adaptive or maladaptive nature of post-mTBI connectivity and which networks are predisposed to altered function and adaptation. The objective of this review was to determine functional connectivity changes post-mTBI and to determine the adaptive or maladaptive nature of connectivity through direct comparisons of connectivity and behavioral data. Literature was systematically searched and appraised for methodological quality. A total of 16 articles were included for review. There was conflicting evidence of post-mTBI connectivity responses as decreased connectivity was noted in 4 articles, 6 articles reported increased connectivity, 5 reported a mixture of increased and decreased connectivity, while 1 found no differences in connectivity. Supporting evidence for adaptive post-mTBI increases in connectivity were found, particularly in the frontoparietal, cerebellar, and default mode networks. Although initial results are promising, continued longitudinal research that systematically controls for confounding variables and that standardizes methodologies is warranted to adequately understand the neurophysiological recovery trajectory of mTBI.
Collapse
Affiliation(s)
- Nathan Morelli
- Department of Physical Therapy, High Point University, High Point, North Carolina, USA
| | - Nathan F Johnson
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Kimberly Kaiser
- Department of Orthopaedic Surgery and Sports Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Richard D Andreatta
- Rehabilitation Sciences Doctoral Program, College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Nicholas R Heebner
- Sports Medicine Research Institute, University of Kentucky, Lexington, Kentucky, USA
| | - Matthew C Hoch
- Sports Medicine Research Institute, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
25
|
Lee TA, Lycke RJ, Lee PJ, Cudal CM, Torolski KJ, Bucherl SE, Leiva-Molano N, Auerbach PS, Talavage TM, Nauman EA. Distribution of Head Acceleration Events Varies by Position and Play Type in North American Football. Clin J Sport Med 2021; 31:e245-e250. [PMID: 32032162 DOI: 10.1097/jsm.0000000000000778] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/19/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The goal of this pilot study was to evaluate the number of head acceleration events (HAEs) based on position, play type, and starting stance. DESIGN Prospective cohort study. SETTING Postcollegiate skill development camp during practice sessions and 1 exhibition game. PARTICIPANTS Seventy-eight male adult North American football athletes. INDEPENDENT VARIABLES A position was assigned to each participant, and plays in the exhibition game were separated by play type for analysis. During the exhibition game, video data were used to determine the effects of the starting position ("up" in a 2-point stance or "down" in a 3- or 4-point stance) on the HAEs experienced by players on the offensive line. MAIN OUTCOME MEASURES Peak linear acceleration and number of HAEs greater than 20 g (g = 9.81 m/s2) were measured using an xPatch (X2 Biosystems, Seattle, WA). RESULTS Four hundred thirty-seven HAEs were recorded during practices and 272 recorded during the exhibition game; 98 and 52 HAEs, the greatest number of HAEs by position in the game, were experienced by the offensive and defensive linemen, respectively. Linebackers and tight ends experienced high percentages of HAEs above 60 g. Offensive line players in a down stance had a higher likelihood of sustaining a HAE than players in an up stance regardless of the type of play (run vs pass). CONCLUSIONS Changing the stance of players on the offensive line and reducing the number of full-contact practices will lower HAEs.
Collapse
Affiliation(s)
- Taylor A Lee
- Department of Mechanical Engineering, Purdue University, West Lafayette, Indiana
| | - Roy J Lycke
- Department of Biomedical Engineering, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Patrick J Lee
- Department of Mechanical Engineering, Purdue University, West Lafayette, Indiana
| | - Caroline M Cudal
- Department of Biomedical Engineering, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Kelly J Torolski
- Department of Mechanical Engineering, Purdue University, West Lafayette, Indiana
| | - Sean E Bucherl
- Department of Biomedical Engineering, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Nicolas Leiva-Molano
- Department of Biomedical Engineering, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Paul S Auerbach
- Military/Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, California
| | - Thomas M Talavage
- Department of Biomedical Engineering, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
- Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana; and
| | - Eric A Nauman
- Department of Mechanical Engineering, Purdue University, West Lafayette, Indiana
- Department of Biomedical Engineering, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana
| |
Collapse
|
26
|
Aberrant Static and Dynamic Functional Network Connectivity in Acute Mild Traumatic Brain Injury with Cognitive Impairment. Clin Neuroradiol 2021; 32:205-214. [PMID: 34463779 DOI: 10.1007/s00062-021-01082-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/31/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE This study aimed to investigate differences in static and dynamic functional network connectivity (FNC) and explore their association with neurocognitive performance in acute mild traumatic brain injury (mTBI). METHODS A total of 76 patients with acute mTBI and 70 age-matched and sex-matched healthy controls were enrolled (age 43.79 ± 10.22 years vs. 45.63 ± 9.49 years; male/female: 34/42 vs. 38/32; all p > 0.05) and underwent resting-state functional magnetic resonance imaging (fMRI) scan (repetition time/echo time = 2000/30 ms, 230 volumes). Independent component analysis was conducted to evaluate static and dynamic FNC patterns on the basis of nine resting-state networks, namely, auditory network (AUDN), dorsal attention network (dAN), ventral attention network (vAN), default mode network (DMN), left frontoparietal network (LFPN), right frontoparietal network (RFPN), somatomotor network (SMN), visual network (VN), and salience network (SN). Spearman's correlation among aberrances in FNC values, and Montreal cognitive assessment (MoCA) scores was further measured in mTBI. RESULTS Compared with controls, patients with mTBI showed wide aberrances of static FNC, such as reduced FNC in DMN-vAN and VN-vAN pairs. The mTBI patients exhibited aberrant dynamic FNC in state 2, involving reduced FNC aberrance in the vAN with AUDN, VN with DMN and dAN, and SN with SMN and vAN. Reduced dFNC in the SN-vAN pair was negatively correlated with the MoCA score. CONCLUSION Our findings suggest that aberrant static and dynamic FNC at the acute stage may contribute to cognitive symptoms, which not only may expand knowledge regarding FNC cognition relations from the static perspective but also from the dynamic perspective.
Collapse
|
27
|
McGeown JP, Hume PA, Kara S, King D, Theadom A. Preliminary Evidence for the Clinical Utility of Tactile Somatosensory Assessments of Sport-Related mTBI. SPORTS MEDICINE - OPEN 2021; 7:56. [PMID: 34370132 PMCID: PMC8353035 DOI: 10.1186/s40798-021-00340-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 06/23/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To evaluate the clinical utility of tactile somatosensory assessments to assist clinicians in diagnosing sport-related mild traumatic brain injury (SR-mTBI), classifying recovery trajectory based on performance at initial clinical assessment, and determining if neurophysiological recovery coincided with clinical recovery. RESEARCH DESIGN Prospective cohort study with normative controls. METHODS At admission (n = 79) and discharge (n = 45/79), SR-mTBI patients completed the SCAT-5 symptom scale, along with the following three components from the Cortical Metrics Brain Gauge somatosensory assessment (BG-SA): temporal order judgement (TOJ), TOJ with confounding condition (TOJc), and duration discrimination (DUR). To assist SR-mTBI diagnosis on admission, BG-SA performance was used in logistic regression to discriminate cases belonging to the SR-mTBI sample or a healthy reference sample (pooled BG-SA data for healthy participants in previous studies). Decision trees evaluated how accurately BG-SA performance classified SR-mTBI recovery trajectories. RESULTS BG-SA TOJ, TOJc, and DUR poorly discriminated between cases belonging to the SR-mTBI sample or a healthy reference sample (0.54-0.70 AUC, 47.46-64.71 PPV, 48.48-61.11 NPV). The BG-SA evaluated did not accurately classify SR-mTBI recovery trajectories (> 14-day resolution 48%, ≤14-day resolution 54%, lost to referral/follow-up 45%). Mann-Whitney U tests revealed differences in BG-SA TOJc performance between SR-mTBI participants and the healthy reference sample at initial clinical assessment and at clinical recovery (p < 0.05). CONCLUSIONS BG-SA TOJ, TOJc, and DUR appear to have limited clinical utility to assist clinicians with diagnosing SR-mTBI or predicting recovery trajectories under ecologically valid conditions. Neurophysiological abnormalities persisted beyond clinical recovery given abnormal BG-SA TOJc performance observed when SR-mTBI patients achieved clinical recovery.
Collapse
Affiliation(s)
- Joshua P McGeown
- Sports Performance Research Institute New Zealand (SPRINZ), Faculty of Health and Environmental Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand.
- Traumatic Brain Injury Network, Auckland University of Technology, Auckland, New Zealand.
| | - Patria A Hume
- Sports Performance Research Institute New Zealand (SPRINZ), Faculty of Health and Environmental Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
- Traumatic Brain Injury Network, Auckland University of Technology, Auckland, New Zealand
| | - Stephen Kara
- Axis Sports Medicine Clinic, Auckland, New Zealand
| | - Doug King
- Sports Performance Research Institute New Zealand (SPRINZ), Faculty of Health and Environmental Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
- Traumatic Brain Injury Network, Auckland University of Technology, Auckland, New Zealand
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - Alice Theadom
- Traumatic Brain Injury Network, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
28
|
Amir J, Nair JKR, Del Carpio-O'Donovan R, Ptito A, Chen JK, Chankowsky J, Tinawi S, Lunkova E, Saluja RS. Atypical resting state functional connectivity in mild traumatic brain injury. Brain Behav 2021; 11:e2261. [PMID: 34152089 PMCID: PMC8413771 DOI: 10.1002/brb3.2261] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES This study aimed to investigate changes in three intrinsic functional connectivity networks (IFCNs; default mode network [DMN], salience network [SN], and task-positive network [TPN]) in individuals who had sustained a mild traumatic brain injury (mTBI). METHODS Resting-state functional magnetic resonance imaging (rs-fMRI) data were acquired from 27 mTBI patients with persistent postconcussive symptoms, along with 26 age- and sex-matched controls. These individuals were recruited from a Level-1 trauma center, at least 3 months after a traumatic episode. IFCNs were established based on seed-to-voxel, region-of-interest (ROI) to ROI, and independent component analyses (ICA). Subsequently, we analyzed the relationship between functional connectivity and postconcussive symptoms. RESULTS Seed-to-voxel analysis of rs-fMRI demonstrated decreased functional connectivity in the right lateral parietal lobe, part of the DMN, and increased functional connectivity in the supramarginal gyrus, part of the SN. Our TPN showed both hypo- and hyperconnectivity dependent on seed location. Within network hypoconnectivity was observed in the visual network also using group comparison. Using an ICA, we identified altered network functional connectivity in regions within four IFCNs (sensorimotor, visual, DMN, and dorsal attentional). A significant negative correlation between dorsal attentional network connectivity and behavioral symptoms score was also found. CONCLUSIONS Our findings indicate that rs-fMRI may be of use clinically in order to assess disrupted functional connectivity among IFCNs in mTBI patients. Improved mTBI diagnostic and prognostic information could be especially relevant for athletes looking to safely return to play, as well for individuals from the general population with persistent postconcussive symptoms months after injury, who hope to resume activity.
Collapse
Affiliation(s)
- Joelle Amir
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | | | | | - Alain Ptito
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.,Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Jen-Kai Chen
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Jeffrey Chankowsky
- Department of Radiology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Simon Tinawi
- Department of Rehabilitation Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - Ekaterina Lunkova
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Rajeet Singh Saluja
- Department of Radiology, McGill University Health Centre, Montreal, Quebec, Canada.,Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
29
|
Churchill NW, Hutchison MG, Graham SJ, Schweizer TA. Brain function associated with reaction time after sport-related concussion. Brain Imaging Behav 2021; 15:1508-1517. [PMID: 32851585 DOI: 10.1007/s11682-020-00349-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Concussion is associated with significant functional disturbances in the first week post-injury. Computerized neurocognitive testing tools have become widely adopted in concussion management, to identify specific domains of impairment and obtain more objective measures of recovery. Reaction time (RT) slowing is a common sequela of concussion, however, the functional brain networks that underlie RT performance remain under-studied in both healthy and concussed athletic cohorts. This study used blood-oxygenation-level-dependent function magnetic resonance imaging (BOLD fMRI) to evaluate resting brain function of 45 university-level athletes with concussion in the first week post-injury, along with a control cohort of 102 athletes without recent concussion. We evaluated the main effects of concussion and RT on functional connectivity, along with concussion × RT interactions, using multivariate analysis techniques. Concussion was associated with reduced connectivity throughout the brain, whereas RT slowing was associated with elevated connectivity in parietal and temporal regions, for both control and concussed groups. For the concussed group, RT slowing was also associated with disrupted connectivity between fronto-insular and default mode networks. For concussed athletes, the brain networks associated with slower post-injury RT also showed similar but non-significant associations with longitudinal changes in RT performance relative to pre-injury baseline. These study findings provide new insights into the effects of concussion on neurocognitive function and suggest the presence of functional brain networks that are specific to concussion-related RT slowing.
Collapse
Affiliation(s)
- Nathan W Churchill
- Keenan Research Centre of the Li Ka Shing Knowledge Institute at St. Michael's Hospital Neuroscience Research Program, St. Michael's Hospital, Toronto, ON, Canada. .,Neuroscience Research Program, St. Michael's Hospital, ON, Toronto, Canada.
| | - Michael G Hutchison
- Keenan Research Centre of the Li Ka Shing Knowledge Institute at St. Michael's Hospital Neuroscience Research Program, St. Michael's Hospital, Toronto, ON, Canada.,Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Simon J Graham
- Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, ON, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, ON, Toronto, Canada
| | - Tom A Schweizer
- Keenan Research Centre of the Li Ka Shing Knowledge Institute at St. Michael's Hospital Neuroscience Research Program, St. Michael's Hospital, Toronto, ON, Canada.,Neuroscience Research Program, St. Michael's Hospital, ON, Toronto, Canada.,Faculty of Medicine (Neurosurgery), University of Toronto, Toronto, ON, Canada.,The Institute of Biomaterials & Biomedical Engineering (IBBME), University of Toronto, ON, Toronto, Canada
| |
Collapse
|
30
|
du Plessis S, Oni IK, Lapointe AP, Campbell C, Dunn JF, Debert CT. Treatment of Persistent Post-Concussion Syndrome with Repetitive Transcranial Magnetic Stimulation Using Functional Near-Infrared Spectroscopy as a Biomarker of Response: A Randomized Sham-Controlled Clinical Trial Protocol (Preprint). JMIR Res Protoc 2021; 11:e31308. [PMID: 35315783 PMCID: PMC8984821 DOI: 10.2196/31308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/29/2021] [Accepted: 01/25/2022] [Indexed: 01/13/2023] Open
Abstract
Background Approximately one-third of all concussions lead to persistent postconcussion syndrome (PPCS). Repetitive transcranial magnetic stimulation (rTMS) is a form of noninvasive brain stimulation that has been extensively used to treat refractory major depressive disorder and has a strong potential to be used as a treatment for patients with PPCS. Functional near-infrared spectroscopy (fNIRS) has already been used as a tool to assess patients with PPCS and may provide insight into the pathophysiology of rTMS treatment in patients with PPCS. Objective The primary objective of this research is to determine whether rTMS treatment improves symptom burden in patients with PPCS compared to sham treatment using the Rivermead postconcussion symptom questionnaire. The secondary objective is to explore the neuropathophysiological changes that occur following rTMS in participants with PPCS using fNIRS. Exploratory objectives include determining whether rTMS treatment in participants with PPCS will also improve quality of life, anxiety, depressive symptoms, cognition, posttraumatic stress, and function secondary to headaches. Methods A total of 44 adults (18-65 years old) with PPCS (>3 months to 5 years) will participate in a double-blind, sham-controlled, concealed allocation, randomized clinical trial. The participants will engage in either a 4-week rTMS treatment protocol or sham rTMS protocol (20 treatments). The left dorsolateral prefrontal cortex will be located through Montreal Neurologic Institute coordinates. The intensity of the rTMS treatment over the left dorsolateral prefrontal cortex will be 120% of resting motor threshold, with a frequency of 10 Hz, 10 trains of 60 pulses per train (total of 600 pulses), and intertrain interval of 45 seconds. Prior to starting the rTMS treatment, participant and injury characteristics, questionnaires (symptom burden, quality of life, depression, anxiety, cognition, and headache), and fNIRS assessment will be collected. Repeat questionnaires and fNIRS will occur immediately after rTMS treatment and at 1 month and 3 months post rTMS. Outcome parameters will be analyzed by a 2-way (treatment × time) mixed analysis of variance. Results As of May 6, 2021, 5 participants have been recruited for the study, and 3 have completed the rTMS protocol. The estimated completion date of the trial is May 2022. Conclusions This trial will expand our knowledge of how rTMS can be used as a treatment option of PPCS and will explore the neuropathophysiological response of rTMS through fNIRS analysis. Trial Registration ClinicalTrials.gov NCT04568369; https://clinicaltrials.gov/ct2/show/NCT04568369 International Registered Report Identifier (IRRID) DERR1-10.2196/31308
Collapse
Affiliation(s)
- Sané du Plessis
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Calgary, AB, Canada
| | - Ibukunoluwa K Oni
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Calgary, AB, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Andrew P Lapointe
- Hotchkiss Brain Institute, Calgary, AB, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Christina Campbell
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeff F Dunn
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Calgary, AB, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Chantel T Debert
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Calgary, AB, Canada
| |
Collapse
|
31
|
Shi J, Teng J, Du X, Li N. Multi-Modal Analysis of Resting-State fMRI Data in mTBI Patients and Association With Neuropsychological Outcomes. Front Neurol 2021; 12:639760. [PMID: 34079510 PMCID: PMC8165539 DOI: 10.3389/fneur.2021.639760] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Various cognitive disorders have been reported for mild traumatic brain injury (mTBI) patients during the acute stage. This acute stage provides an opportunity for clinicians to optimize treatment protocols, which are based on the evaluation of brain structural connectivity. So far, most brain functional magnetic resonance imaging studies are focused on moderate to severe traumatic brain injuries (TBIs). In this study, we prospectively collected resting state data on 50 mTBI within 3 days of injury and 50 healthy volunteers and analyzed them using Amplitude of low-frequency fluctuation (ALFF), Regional Homogeneity (ReHo), graph theory methods and behavior measure, to explore the dysfunctional brain regions in acute mTBI. In our study, a total of 50 patients suffering <3 days mTBI and 50 healthy subjects were tested in rs-fMRI, as well as under neuropsychological examinations including the Wechsler Intelligence Scale and Stroop Color and Word Test. The correlation analysis was conducted between graph theoretic parameters and neuropsychological results. For the mTBI group, the ReHo of the inferior temporal gyrus and the cerebellum superior are significantly lower than in the control group, and the ALFF of the left insula, the cerebellum inferior, and the middle occipital gyrus were significantly higher than in the control group, which implies the dysfunctionality usually observed in Parkinson's disease. Executive function disorder was significantly correlated with the global efficiencies of the dorsolateral superior frontal gyrus and the anterior cingulate cortex, which is consistent with the literature: the acute mTBI patients demonstrate abnormality in terms of motor speed, association, information processing speed, attention, and short-term memory function. Correlation analysis between the neuropsychological outcomes and the network efficiency for the mTBI group indicates that executive dysfunction might be caused by local brain changes. Our data support the idea that the cerebral internal network has compensatory reactions in response to sudden pathological and neurophysiological changes. In the future, multimode rs-fMRI analysis could be a valuable tool for evaluating dysfunctional brain regions after mTBI.
Collapse
Affiliation(s)
- Jian Shi
- Department of Spine Surgury, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jing Teng
- School of Control and Computer Engineering, North China Electric Power University, Beijing, China
| | - Xianping Du
- Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, NJ, United States
| | - Na Li
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
32
|
Baker TL, Agoston DV, Brady RD, Major B, McDonald SJ, Mychasiuk R, Wright DK, Yamakawa GR, Sun M, Shultz SR. Targeting the Cerebrovascular System: Next-Generation Biomarkers and Treatment for Mild Traumatic Brain Injury. Neuroscientist 2021; 28:594-612. [PMID: 33966527 DOI: 10.1177/10738584211012264] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The diagnosis, prognosis, and treatment of mild traumatic brain injuries (mTBIs), such as concussions, are significant unmet medical issues. The kinetic forces that occur in mTBI adversely affect the cerebral vasculature, making cerebrovascular injury (CVI) a pathophysiological hallmark of mTBI. Given the importance of a healthy cerebrovascular system in overall brain function, CVI is likely to contribute to neurological dysfunction after mTBI. As such, CVI and related pathomechanisms may provide objective biomarkers and therapeutic targets to improve the clinical management and outcomes of mTBI. Despite this potential, until recently, few studies have focused on the cerebral vasculature in this context. This article will begin by providing a brief overview of the cerebrovascular system followed by a review of the literature regarding how mTBI can affect the integrity and function of the cerebrovascular system, and how this may ultimately contribute to neurological dysfunction and neurodegenerative conditions. We then discuss promising avenues of research related to mTBI biomarkers and interventions that target CVI, and conclude that a clinical approach that takes CVI into account could result in substantial improvements in the care and outcomes of patients with mTBI.
Collapse
Affiliation(s)
- Tamara L Baker
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Denes V Agoston
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, MD, USA
| | - Rhys D Brady
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Brendan Major
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - David K Wright
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Glenn R Yamakawa
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Mujun Sun
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
33
|
Gimbel SI, Ettenhofer ML, Cordero E, Roy M, Chan L. Brain bases of recovery following cognitive rehabilitation for traumatic brain injury: a preliminary study. Brain Imaging Behav 2021; 15:410-420. [PMID: 32328915 DOI: 10.1007/s11682-020-00269-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Many patients with traumatic brain injury (TBI) have persistent cognitive deficits, including decreased attention and working memory. This preliminary study examined fMRI data from a clinical trial implementing a 4-week virtual reality driving intervention to assess how sustained training can improve deficits related to traumatic brain injury. Previously-reported behavioral findings showed improvements in working memory and processing speed in those who received the intervention; this report explores the brain bases of these effects by comparing neural activity related to working memory (n-back task) and resting state connectivity before and after the intervention. In the baseline visit (n = 24), working memory activity was prominent in bilateral DLPFC and prefrontal cortex, anterior insula, medial superior frontal gyrus, left thalamus, bilateral supramarginal / angular gyrus, precuneus, and left posterior middle temporal gyrus. Following intervention, participants showed less global activation on the n-back task, with regions of activity only in the bilateral middle frontal cortex, posterior middle frontal gyrus, and supramarginal gyrus. Activity related to working memory load was reduced for the group that went through the intervention (n = 7) compared to the waitlist control group (n = 4). These results suggest that successful cognitive rehabilitation of working memory in TBI may be associated with increased efficiency of brain networks, evidenced by reduced activation of brain activity during cognitive processing. These results highlight the importance of examining brain activity related to cognitive rehabilitation of attention and working memory after brain injury.
Collapse
Affiliation(s)
- Sarah I Gimbel
- Naval Medical Center San Diego, 34730 Bob Wilson Drive, San Diego, CA, 92134, USA
- Henry M. Jackson Foundation, 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Defense and Veterans Brain Injury Center, 7700 Arlington Blvd Suite 5101, Falls Church, VA, 22041, USA
| | - Mark L Ettenhofer
- Naval Medical Center San Diego, 34730 Bob Wilson Drive, San Diego, CA, 92134, USA.
- Defense and Veterans Brain Injury Center, 7700 Arlington Blvd Suite 5101, Falls Church, VA, 22041, USA.
- Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
- Center for Neuroscience and Regenerative Medicine, 12725 Twinbrook Parkway, Rockville, MD, 20852, USA.
| | - Evelyn Cordero
- Naval Medical Center San Diego, 34730 Bob Wilson Drive, San Diego, CA, 92134, USA
- Henry M. Jackson Foundation, 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Michael Roy
- Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
- Center for Neuroscience and Regenerative Medicine, 12725 Twinbrook Parkway, Rockville, MD, 20852, USA
| | - Leighton Chan
- Center for Neuroscience and Regenerative Medicine, 12725 Twinbrook Parkway, Rockville, MD, 20852, USA
- National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| |
Collapse
|
34
|
Urban K, Schudlo L, Keightley M, Alain S, Reed N, Chau T. Altered Brain Activation in Youth following Concussion: Using a Dual-task Paradigm. Dev Neurorehabil 2021; 24:187-198. [PMID: 33012188 DOI: 10.1080/17518423.2020.1825539] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A concussion is known as a functional injury affecting brain communication, integration, and processing. There is a need to objectively measure how concussions disrupt brain activation while completing ecologically relevant tasks.The objective of this study was to compare brain activation patterns between concussion and comparison groups (non-concussed youth) during a cognitive-motor single and dual-task paradigm utilizing functional near-infrared spectroscopy (fNIRS) in regions of the frontal-parietal attention network and compared to task performance.Youth with concussion generally exhibited hyperactivation and recruitment of additional brain regions in the dorsal lateral prefrontal (DLPFC), superior (SPC) and inferior parietal cortices (IPC), which are associated with processing, information integration, and response selection. Additionally, hyper- or hypo-activation patterns were associated with slower processing speed on the cognitive task. Our findings corroborate the growing literature suggesting that neural recovery may be delayed compared to the restoration of behavioral performance post-concussion.Concussion, near-infrared spectroscopy, dual-task paradigm, cognitive, motor, brain activation.
Collapse
Affiliation(s)
- Karolina Urban
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada.,Rehabilitation Science Institute, University of Toronto, Toronto, Canada
| | - Larissa Schudlo
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.,Electrical, Computer and Biomedical Engineering Department, Ryerson University, Toronto, Canada
| | | | - Sam Alain
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| | - Nick Reed
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada.,Rehabilitation Science Institute, University of Toronto, Toronto, Canada.,Department of Occupational Science and Occupational Therapy, University of Toronto, Toronto, Canada
| | - Tom Chau
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| |
Collapse
|
35
|
Churchill NW, Hutchison MG, Graham SJ, Schweizer TA. Long-term changes in the small-world organization of brain networks after concussion. Sci Rep 2021; 11:6862. [PMID: 33767293 PMCID: PMC7994718 DOI: 10.1038/s41598-021-85811-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 03/04/2021] [Indexed: 11/09/2022] Open
Abstract
There is a growing body of literature using functional MRI to study the acute and long-term effects of concussion on functional brain networks. To date, studies have largely focused on changes in pairwise connectivity strength between brain regions. Less is known about how concussion affects whole-brain network topology, particularly the “small-world” organization which facilitates efficient communication at both local and global scales. The present study addressed this knowledge gap by measuring local and global efficiency of 26 concussed athletes at acute injury, return to play (RTP) and one year post-RTP, along with a cohort of 167 athletic controls. On average, concussed athletes showed no alterations in local efficiency but had elevated global efficiency at acute injury, which had resolved by RTP. Athletes with atypically long recovery, however, had reduced global efficiency at 1 year post-RTP, suggesting long-term functional abnormalities for this subgroup. Analyses of nodal efficiency further indicated that global network changes were driven by high-efficiency visual and sensorimotor regions and low-efficiency frontal and subcortical regions. This study provides evidence that concussion causes subtle acute and long-term changes in the small-world organization of the brain, with effects that are related to the clinical profile of recovery.
Collapse
Affiliation(s)
- N W Churchill
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada. .,Neuroscience Research Program, St. Michael's Hospital, Toronto, ON, Canada.
| | - M G Hutchison
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - S J Graham
- Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Science Center, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - T A Schweizer
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Neuroscience Research Program, St. Michael's Hospital, Toronto, ON, Canada.,Faculty of Medicine (Neurosurgery), University of Toronto, Toronto, ON, Canada.,The Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, ON, Canada
| |
Collapse
|
36
|
DeSimone JC, Davenport EM, Urban J, Xi Y, Holcomb JM, Kelley ME, Whitlow CT, Powers AK, Stitzel JD, Maldjian JA. Mapping default mode connectivity alterations following a single season of subconcussive impact exposure in youth football. Hum Brain Mapp 2021; 42:2529-2545. [PMID: 33734521 PMCID: PMC8090779 DOI: 10.1002/hbm.25384] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/14/2022] Open
Abstract
Repetitive head impact (RHI) exposure in collision sports may contribute to adverse neurological outcomes in former players. In contrast to a concussion, or mild traumatic brain injury, “subconcussive” RHIs represent a more frequent and asymptomatic form of exposure. The neural network‐level signatures characterizing subconcussive RHIs in youth collision‐sport cohorts such as American Football are not known. Here, we used resting‐state functional MRI to examine default mode network (DMN) functional connectivity (FC) following a single football season in youth players (n = 50, ages 8–14) without concussion. Football players demonstrated reduced FC across widespread DMN regions compared with non‐collision sport controls at postseason but not preseason. In a subsample from the original cohort (n = 17), players revealed a negative change in FC between preseason and postseason and a positive and compensatory change in FC during the offseason across the majority of DMN regions. Lastly, significant FC changes, including between preseason and postseason and between in‐ and off‐season, were specific to players at the upper end of the head impact frequency distribution. These findings represent initial evidence of network‐level FC abnormalities following repetitive, non‐concussive RHIs in youth football. Furthermore, the number of subconcussive RHIs proved to be a key factor influencing DMN FC.
Collapse
Affiliation(s)
- Jesse C. DeSimone
- Advanced Neuroscience Imaging Research (ANSIR) LaboratoryUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of RadiologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Elizabeth M. Davenport
- Advanced Neuroscience Imaging Research (ANSIR) LaboratoryUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of RadiologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Jillian Urban
- Department of Biomedical EngineeringWake Forest School of MedicineWinston SalemNorth CarolinaUSA
- Virginia Tech – Wake Forest School of Biomedical EngineeringWake Forest School of MedicineWinston SalemNorth CarolinaUSA
| | - Yin Xi
- Department of RadiologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - James M. Holcomb
- Advanced Neuroscience Imaging Research (ANSIR) LaboratoryUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of RadiologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Mireille E. Kelley
- Department of Biomedical EngineeringWake Forest School of MedicineWinston SalemNorth CarolinaUSA
- Virginia Tech – Wake Forest School of Biomedical EngineeringWake Forest School of MedicineWinston SalemNorth CarolinaUSA
| | - Christopher T. Whitlow
- Virginia Tech – Wake Forest School of Biomedical EngineeringWake Forest School of MedicineWinston SalemNorth CarolinaUSA
- Department of Radiology – NeuroradiologyWake Forest School of MedicineWinston SalemNorth CarolinaUSA
- Clinical and Translational Sciences InstituteWake Forest School of MedicineWinston SalemNorth CarolinaUSA
| | - Alexander K. Powers
- Department of NeurosurgeryWake Forest School of MedicineWinston SalemNorth CarolinaUSA
| | - Joel D. Stitzel
- Department of Biomedical EngineeringWake Forest School of MedicineWinston SalemNorth CarolinaUSA
- Virginia Tech – Wake Forest School of Biomedical EngineeringWake Forest School of MedicineWinston SalemNorth CarolinaUSA
- Clinical and Translational Sciences InstituteWake Forest School of MedicineWinston SalemNorth CarolinaUSA
- Childress Institute for Pediatric TraumaWake Forest School of MedicineWinston SalemNorth CarolinaUSA
| | - Joseph A. Maldjian
- Advanced Neuroscience Imaging Research (ANSIR) LaboratoryUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of RadiologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
37
|
Resting-State Network Plasticity Induced by Music Therapy after Traumatic Brain Injury. Neural Plast 2021; 2021:6682471. [PMID: 33763126 PMCID: PMC7964116 DOI: 10.1155/2021/6682471] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/22/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) is characterized by a complex pattern of abnormalities in resting-state functional connectivity (rsFC) and network dysfunction, which can potentially be ameliorated by rehabilitation. In our previous randomized controlled trial, we found that a 3-month neurological music therapy intervention enhanced executive function (EF) and increased grey matter volume in the right inferior frontal gyrus (IFG) in patients with moderate-to-severe TBI (N = 40). Extending this study, we performed longitudinal rsFC analyses of resting-state fMRI data using a ROI-to-ROI approach assessing within-network and between-network rsFC in the frontoparietal (FPN), dorsal attention (DAN), default mode (DMN), and salience (SAL) networks, which all have been associated with cognitive impairment after TBI. We also performed a seed-based connectivity analysis between the right IFG and whole-brain rsFC. The results showed that neurological music therapy increased the coupling between the FPN and DAN as well as between these networks and primary sensory networks. By contrast, the DMN was less connected with sensory networks after the intervention. Similarly, there was a shift towards a less connected state within the FPN and SAL networks, which are typically hyperconnected following TBI. Improvements in EF were correlated with rsFC within the FPN and between the DMN and sensorimotor networks. Finally, in the seed-based connectivity analysis, the right IFG showed increased rsFC with the right inferior parietal and left frontoparietal (Rolandic operculum) regions. Together, these results indicate that the rehabilitative effects of neurological music therapy after TBI are underpinned by a pattern of within- and between-network connectivity changes in cognitive networks as well as increased connectivity between frontal and parietal regions associated with music processing.
Collapse
|
38
|
Upper-Extremity Perceptual-Motor Training Improves Whole-Body Reactive Agility Among Elite Athletes With History of Sport-Related Concussion. J Sport Rehabil 2021; 30:844-849. [PMID: 33418536 DOI: 10.1123/jsr.2020-0337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/25/2020] [Accepted: 10/18/2020] [Indexed: 11/18/2022]
Abstract
CONTEXT Sport-related concussion (SRC) elevates risk for subsequent injury, which may relate to impaired perceptual-motor processes that are potentially modifiable. OBJECTIVE To assess a possible upper-extremity (UE) training effect on whole-body (WB) reactive agility performance among elite athletes with history of SRC (HxSRC) and without such history of SRC. DESIGN Cohort study. SETTING Residential training center. PARTICIPANTS Elite athletes (12 males and 8 females), including 10 HxSRC and 10 without such history of SRC. INTERVENTION One-minute training sessions completed 2 to 3 times per week over a 3-week period involved verbal identification of center arrow direction for 10 incongruent and 10 congruent flanker test trials with simultaneous reaching responses to deactivate illuminated buttons. MAIN OUTCOME MEASURES Pretraining and posttraining assessments of UE and WB reactive responses included flanker test conflict effect (incongruent minus congruent reaction time) and WB lateral average asymmetry derived from reaction time, speed, acceleration, and deceleration in opposite directions. Discrimination was assessed by receiver operating characteristic analysis, and training effect was assessed by repeated-measures analysis of variance. RESULTS Pretraining discrimination between HxSRC and without such history of SRC was greatest for conflict effect ≥80 milliseconds and WB lateral average asymmetry ≥18%. Each athlete completed 6 training sessions, which improved UE mean reaction time from 767 to 646 milliseconds (P < .001) and reduced mean conflict effect from 96 to 53 milliseconds (P = .039). A significant group × trial interaction was evident for WB lateral average asymmetry (P = .004), which was reduced from 24.3% to 12.5% among those with HxSRC. CONCLUSIONS Suboptimal perceptual-motor performance may represent a subtle long-term effect of concussion that is modifiable through UE training, which appears to improve WB reactive capabilities.
Collapse
|
39
|
To XV, Nasrallah FA. A roadmap of brain recovery in a mouse model of concussion: insights from neuroimaging. Acta Neuropathol Commun 2021; 9:2. [PMID: 33407949 PMCID: PMC7789702 DOI: 10.1186/s40478-020-01098-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Abstract
Concussion or mild traumatic brain injury is the most common form of traumatic brain injury with potentially long-term consequences. Current objective diagnosis and treatment options are limited to clinical assessment, cognitive rest, and symptom management, which raises the real danger of concussed patients being released back into activities where subsequent and cumulative injuries may cause disproportionate damages. This study conducted a cross-sectional multi-modal examination investigation of the temporal changes in behavioural and brain changes in a mouse model of concussion using magnetic resonance imaging. Sham and concussed mice were assessed at day 2, day 7, and day 14 post-sham or injury procedures following a single concussion event for motor deficits, psychological symptoms with open field assessment, T2-weighted structural imaging, diffusion tensor imaging (DTI), neurite orientation density dispersion imaging (NODDI), stimulus-evoked and resting-state functional magnetic resonance imaging (fMRI). Overall, a mismatch in the temporal onsets and durations of the behavioural symptoms and structural/functional changes in the brain was seen. Deficits in behaviour persisted until day 7 post-concussion but recovered at day 14 post-concussion. DTI and NODDI changes were most extensive at day 7 and persisted in some regions at day 14 post-concussion. A persistent increase in connectivity was seen at day 2 and day 14 on rsfMRI. Stimulus-invoked fMRI detected increased cortical activation at day 7 and 14 post-concussion. Our results demonstrate the capabilities of advanced MRI in detecting the effects of a single concussive impact in the brain, and highlight a mismatch in the onset and temporal evolution of behaviour, structure, and function after a concussion. These results have significant translational impact in developing methods for the detection of human concussion and the time course of brain recovery.
Collapse
|
40
|
Memmini AK, Fountaine MFL, Broglio SP, Moore RD. Long-Term Influence of Concussion on Cardio-Autonomic Function in Adolescent Hockey Players. J Athl Train 2021; 56:141-147. [PMID: 33400783 DOI: 10.4085/1062-6050-0578.19] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CONTEXT Concussion may negatively influence cardiovascular function and the autonomic nervous system, defined by alteration in heart rate variability (HRV). Differences in HRV most commonly emerge during a physical challenge, such as the final steps of the return-to-sport progression. OBJECTIVE To assess the effect of concussion history on aspects of cardio-autonomic function during recovery from a bout of submaximal exercise in adolescent male hockey athletes. DESIGN Case-control study. SETTING Research laboratory. PATIENTS OR OTHER PARTICIPANTS Thirty-three male athletes participating in Midget-AAA hockey were divided into those with (n = 15; age = 16 ± 1 years, height = 1.78 ± 0.06 m, mass = 73.9 ± 7.4 kg, 10.5 ± 1.6 years of sport experience, 25.2 ± 18.3 months since last injury) or without (n = 18; age = 16 ± 1 years, height = 1.78 ± 0.05 m, mass = 74.8 ± 7.6 kg, 10.6 ± 1.9 years of sport experience) a concussion history. Those with a concussion history were binned on total count: concussion) or 2 or more concussions. INTERVENTION(S) All athletes underwent 5 minutes of resting HRV assessment, followed by 20 minutes of aerobic exercise at 60% to 70% of their maximal target heart rate and a 9-minute, postexercise HRV assessment. MAIN OUTCOME MEASURE(S) Heart rate variability measures of mean NN interval, root mean square of successive differences, and standard deviation of NN interval (SDNN). RESULTS Group demographic characteristics were not different. When the control and concussed groups were compared, group and time main effects for heart rate recovery, root mean square of successive differences, and SDNN (P values < .01), and an interaction effect for SDNN (P < .05) were demonstrated. Recovery trends for each group indicated that a history of 2 or more concussions may negatively affect cardio-autonomic recovery postexercise. CONCLUSIONS Our findings suggest that those with more than 1 previous concussion may be associated with a greater risk for long-term dysautonomia. Future use of HRV may provide clinicians with objective guidelines for concussion-management and safe return-to-participation protocols.
Collapse
Affiliation(s)
| | - Michael F La Fountaine
- Department of Physical Therapy, School of Health and Medical Sciences; Institute for Advanced Study of Rehabilitation and Sports Science; Department of Medical Sciences and Neurology, Hackensack Meridian School of Medicine, Seton Hall University, Nutley, NJ
| | | | - Robert D Moore
- Arnold School of Public Health; Institute for Mind and Brain, University of South Carolina, Columbia
| |
Collapse
|
41
|
Whitehouse DP, Kelleher‐Unger IR, Newcombe VFJ. Head injury and concussion in cricket: Incidence, current guidance, and implications of sports concussion literature. TRANSLATIONAL SPORTS MEDICINE 2020. [DOI: 10.1002/tsm2.222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Shafi R, Crawley AP, Tartaglia MC, Tator CH, Green RE, Mikulis DJ, Colantonio A. Sex-specific differences in resting-state functional connectivity of large-scale networks in postconcussion syndrome. Sci Rep 2020; 10:21982. [PMID: 33319807 PMCID: PMC7738671 DOI: 10.1038/s41598-020-77137-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/05/2020] [Indexed: 12/30/2022] Open
Abstract
Concussions are associated with a range of cognitive, neuropsychological and behavioral sequelae that, at times, persist beyond typical recovery times and are referred to as postconcussion syndrome (PCS). There is growing support that concussion can disrupt network-based connectivity post-injury. To date, a significant knowledge gap remains regarding the sex-specific impact of concussion on resting state functional connectivity (rs-FC). The aims of this study were to (1) investigate the injury-based rs-FC differences across three large-scale neural networks and (2) explore the sex-specific impact of injury on network-based connectivity. MRI data was collected from a sample of 80 concussed participants who fulfilled the criteria for postconcussion syndrome and 31 control participants who did not have any history of concussion. Connectivity maps between network nodes and brain regions were used to assess connectivity using the Functional Connectivity (CONN) toolbox. Network based statistics showed that concussed participants were significantly different from healthy controls across both salience and fronto-parietal network nodes. More specifically, distinct subnetwork components were identified in the concussed sample, with hyperconnected frontal nodes and hypoconnected posterior nodes across both the salience and fronto-parietal networks, when compared to the healthy controls. Node-to-region analyses showed sex-specific differences across association cortices, however, driven by distinct networks. Sex-specific network-based alterations in rs-FC post concussion need to be examined to better understand the underlying mechanisms and associations to clinical outcomes.
Collapse
Affiliation(s)
- Reema Shafi
- Rehabilitation Sciences Institute, University of Toronto, 160-500 University Avenue, Toronto, ON, M5G 1V7, Canada. .,KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, ON, M5G 2A2, Canada.
| | - Adrian P Crawley
- Department of Medical Imaging, Toronto Western Hospital, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada.,Canadian Concussion Center, Toronto Western Hospital, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada.,Division of Neurology, Krembil Neuroscience Centre, Toronto Western Hospital, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada.,Division of Brain, Imaging and Behaviour-Systems Neuroscience, Krembil Neuroscience Centre, Toronto Western Hospital, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - Charles H Tator
- Institute of Medical Sciences, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Canadian Concussion Center, Toronto Western Hospital, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada.,Division of Neurology, Krembil Neuroscience Centre, Toronto Western Hospital, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada.,Department of Surgery, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.,Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - Robin E Green
- Rehabilitation Sciences Institute, University of Toronto, 160-500 University Avenue, Toronto, ON, M5G 1V7, Canada.,KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, ON, M5G 2A2, Canada.,Department of Medical Imaging, Toronto Western Hospital, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Canadian Concussion Center, Toronto Western Hospital, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - David J Mikulis
- Department of Medical Imaging, Toronto Western Hospital, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Canadian Concussion Center, Toronto Western Hospital, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - Angela Colantonio
- Rehabilitation Sciences Institute, University of Toronto, 160-500 University Avenue, Toronto, ON, M5G 1V7, Canada.,KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, ON, M5G 2A2, Canada.,Department of Occupational Science and Occupational Therapy, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
43
|
Zhuang X, Mishra V, Nandy R, Yang Z, Sreenivasan K, Bennett L, Bernick C, Cordes D. Resting-State Static and Dynamic Functional Abnormalities in Active Professional Fighters With Repetitive Head Trauma and With Neuropsychological Impairments. Front Neurol 2020; 11:602586. [PMID: 33362704 PMCID: PMC7758536 DOI: 10.3389/fneur.2020.602586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/17/2020] [Indexed: 11/17/2022] Open
Abstract
Previous neuroimaging studies have identified structural brain abnormalities in active professional fighters with repetitive head trauma and correlated these changes with fighters' neuropsychological impairments. However, functional brain changes in these fighters derived using neuroimaging techniques remain unclear. In this study, both static and dynamic functional connectivity alterations were investigated (1) between healthy normal control subjects (NC) and fighters and (2) between non-impaired and impaired fighters. Resting-state fMRI data were collected on 35 NC and 133 active professional fighters, including 68 impaired fighters and 65 non-impaired fighters, from the Professional Fighters Brain Health Study at our center. Impaired fighters performed worse on processing speed (PSS) tasks with visual-attention and working-memory demands. The static functional connectivity (sFC) matrix was estimated for every pair of regions of interest (ROI) using a subject-specific parcellation. The dynamic functional connectivity (dFC) was estimated using a sliding-window method, where the variability of each ROI pair across all windows represented the temporal dynamics. A linear regression model was fitted for all 168 subjects, and different t-contrast vectors were used for between-group comparisons. An association analysis was further conducted to evaluate FC changes associated with PSS task performances without creating artificial impairment group-divisions in fighters. Following corrections for multiple comparisons using network-based statistics, our study identified significantly reduced long-range frontal-temporal, frontal-occipital, temporal-occipital, and parietal-occipital sFC strengths in fighters than in NCs, corroborating with previously observed structural damages in corresponding white matter tracts in subjects experiencing repetitive head trauma. In impaired fighters, significantly decreased sFC strengths were found among key regions involved in visual-attention, executive and cognitive process, as compared to non-impaired fighters. Association analysis further reveals similar sFC deficits to worse PSS task performances in all 133 fighters. With our choice of dFC indices, we were not able to observe any significant dFC changes beyond a trend-level increased temporal variability among similar regions with weaker sFC strengths in impaired fighters. Collectively, our functional brain findings supplement previously reported structural brain abnormalities in fighters and are important to comprehensively understand brain changes in fighters with repetitive head trauma.
Collapse
Affiliation(s)
- Xiaowei Zhuang
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, United States.,Department of Brain Health, University of Nevada, Las Vegas, NV, United States
| | - Virendra Mishra
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, United States
| | - Rajesh Nandy
- School of Public Health, University of North Texas, Fort Worth, TX, United States
| | - Zhengshi Yang
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, United States.,Department of Brain Health, University of Nevada, Las Vegas, NV, United States
| | - Karthik Sreenivasan
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, United States.,Department of Brain Health, University of Nevada, Las Vegas, NV, United States
| | - Lauren Bennett
- Pickup Family Neuroscience Institute, Hoag Memorial Hospital Presbyterian, Newport Beach, CA, United States
| | - Charles Bernick
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, United States.,UW Medicine, Seattle, WA, United States
| | - Dietmar Cordes
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, United States.,Department of Brain Health, University of Nevada, Las Vegas, NV, United States.,Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States
| |
Collapse
|
44
|
Gabrieli D, Schumm SN, Vigilante NF, Meaney DF. NMDA Receptor Alterations After Mild Traumatic Brain Injury Induce Deficits in Memory Acquisition and Recall. Neural Comput 2020; 33:67-95. [PMID: 33253030 DOI: 10.1162/neco_a_01343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Mild traumatic brain injury (mTBI) presents a significant health concern with potential persisting deficits that can last decades. Although a growing body of literature improves our understanding of the brain network response and corresponding underlying cellular alterations after injury, the effects of cellular disruptions on local circuitry after mTBI are poorly understood. Our group recently reported how mTBI in neuronal networks affects the functional wiring of neural circuits and how neuronal inactivation influences the synchrony of coupled microcircuits. Here, we utilized a computational neural network model to investigate the circuit-level effects of N-methyl D-aspartate receptor dysfunction. The initial increase in activity in injured neurons spreads to downstream neurons, but this increase was partially reduced by restructuring the network with spike-timing-dependent plasticity. As a model of network-based learning, we also investigated how injury alters pattern acquisition, recall, and maintenance of a conditioned response to stimulus. Although pattern acquisition and maintenance were impaired in injured networks, the greatest deficits arose in recall of previously trained patterns. These results demonstrate how one specific mechanism of cellular-level damage in mTBI affects the overall function of a neural network and point to the importance of reversing cellular-level changes to recover important properties of learning and memory in a microcircuit.
Collapse
Affiliation(s)
- David Gabrieli
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, U.S.A.
| | - Samantha N Schumm
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, U.S.A.
| | - Nicholas F Vigilante
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, U.S.A.
| | - David F Meaney
- Department of Bioengineering, School of Engineering and Applied Sciences, and Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A.
| |
Collapse
|
45
|
Johnson B, Dodd A, Mayer AR, Hallett M, Slobounov S. Are there any differential responses to concussive injury in civilian versus athletic populations: a neuroimaging study. Brain Imaging Behav 2020; 14:110-117. [PMID: 30361946 DOI: 10.1007/s11682-018-9982-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Accurate identification and classification of patients suffering from mild traumatic brain injury (mTBI) is a significant challenge faced by clinicians and researchers. To examine if there are different pathophysiological responses to concussive injury in different populations, evaluated here comparing collegiate athletes versus age-matched non-athletes. Resting-state fMRI data were acquired in the acute phase of concussion from 30 collegiate athletes and from 30 injury and age matched non-athletes. Resting-state functional connectivity measures revealed group differences with reduced connectivity in the anterior cingulate cortex (p < .05) and posterior cingulate cortex (p < 0.05) hubs of the Default Mode Network in the athletes. Given the known positive effects of exercise on brain functional reserves and neural efficiency concept, we expected less pronounced effect of concussion in athletic population. In contrast, there were significant decreases in functional connectivity in athletes that could be a result of previous repetitive subconcussive impacts and history of concussion.
Collapse
Affiliation(s)
- Brian Johnson
- Department of Kinesiology, The Pennsylvania State University, 276, Recreation Building, University Park, PA, 16802, USA
| | - Andrew Dodd
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA
| | - Andrew R Mayer
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA.,Departments of Neurology and Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Mark Hallett
- National Institutes of Health, National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20892, USA
| | - Semyon Slobounov
- Department of Kinesiology, The Pennsylvania State University, 276, Recreation Building, University Park, PA, 16802, USA. .,Department of Neurosurgery, Penn State Milton S. Hershey Medical Center, Hershey, PA, 17033, USA.
| |
Collapse
|
46
|
Abstract
This article focuses on 3 concepts that continue to be investigated in the search for the holy grail of concussion-a valid diagnostic test. Imaging advances are discussed with optimism that functional MRI and diffusion tensor imaging may be available clinically. Biomarkers and the use of genetic tests are covered. Sideline accelerometer use may help steer discussions of head trauma risk once technology exists to accurately estimate acceleration of the brain. In the meantime, strategies including allowing athletes to be substituted out of games for an evaluation and video review in elite sports can improve recognition of sports-related concussion.
Collapse
Affiliation(s)
- Hamish Kerr
- Sports Medicine, Department of Medicine, Albany Medical College, 1019 New Loudon Road, Cohoes, NY 12047, USA.
| | - Bjørn Bakken
- Department of Medicine, Albany Medical Center, 1019 New Loudon Road, Cohoes, NY 12047, USA
| | - Gregory House
- Department of Family and Community Medicine, Albany Medical Center, 391 Myrtle Avenue, Albany, NY 12208, USA
| |
Collapse
|
47
|
Lee T, Lycke R, Auger J, Music J, Dziekan M, Newman S, Talavage T, Leverenz L, Nauman E. Head acceleration event metrics in youth contact sports more dependent on sport than level of play. Proc Inst Mech Eng H 2020; 235:208-221. [PMID: 33183139 DOI: 10.1177/0954411920970812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The goal of the study was to evaluate how repetitive head traumas sustained by athletes in contact sports depend on sport and level of play. A total of 16 middle school football players, 107 high school football players, and 65 high school female soccer players participated. Players were separated into levels of play: middle school (MS), freshman (FR), junior varsity (JV), junior varsity-varsity (JV-V), and varsity (V). xPatch sensors were used to measure peak translational and angular accelerations (PTA and PAA, respectively) for each head acceleration event (HAE) during practice and game sessions. Data were analyzed using a custom MATLAB program to compare metrics that have been correlated with functional neurological changes: session metrics (median HAEs per contact session), season metrics (total HAEs, cumulative PTA/PAA), and regressions (cumulative PTA/PAA versus total HAEs, total HAEs versus median HAEs per contact session). Football players had greater session (p<.001) and season (p<.001) metrics than soccer players, but soccer players had a significantly greater player average PAA per HAE than football players (p<.001). Middle school football players had similar session and season metrics to high school level athletes. In conclusion, sport has a greater influence on HAE characteristics than level of play.
Collapse
Affiliation(s)
- Taylor Lee
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Roy Lycke
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Joshua Auger
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Jacob Music
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Michael Dziekan
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Sharlene Newman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Thomas Talavage
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.,Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - Larry Leverenz
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, USA
| | - Eric Nauman
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.,Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
48
|
Giudice JS, Alshareef A, Wu T, Gancayco CA, Reynier KA, Tustison NJ, Druzgal TJ, Panzer MB. An Image Registration-Based Morphing Technique for Generating Subject-Specific Brain Finite Element Models. Ann Biomed Eng 2020; 48:2412-2424. [PMID: 32725547 DOI: 10.1007/s10439-020-02584-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/22/2020] [Indexed: 01/10/2023]
Abstract
Finite element (FE) models of the brain are crucial for investigating the mechanisms of traumatic brain injury (TBI). However, FE brain models are often limited to a single neuroanatomy because the manual development of subject-specific models is time consuming. The objective of this study was to develop a pipeline to automatically generate subject-specific FE brain models using previously developed nonlinear image registration techniques, preserving both external and internal neuroanatomical characteristics. To verify the morphing-induced mesh distortions did not influence the brain deformation response, strain distributions predicted using the morphed model were compared to those from manually created voxel models of the same subject. Morphed and voxel models were generated for 44 subjects ranging in age, and simulated using head kinematics from a football concussion case. For each subject, brain strain distributions predicted by each model type were consistent, and differences in strain prediction was less than 4% between model type. This automated technique, taking approximately 2 h to generate a subject-specific model, will facilitate interdisciplinary research between the biomechanics and neuroimaging fields and could enable future use of biomechanical models in the clinical setting as a tool for improving diagnosis.
Collapse
Affiliation(s)
- J Sebastian Giudice
- Department of Mechanical and Aerospace Engineering, Center for Applied Biomechanics, University of Virginia, 4040 Lewis and Clark Dr., Charlottesville, VA, 229011, USA
| | - Ahmed Alshareef
- Department of Mechanical and Aerospace Engineering, Center for Applied Biomechanics, University of Virginia, 4040 Lewis and Clark Dr., Charlottesville, VA, 229011, USA
| | - Taotao Wu
- Department of Mechanical and Aerospace Engineering, Center for Applied Biomechanics, University of Virginia, 4040 Lewis and Clark Dr., Charlottesville, VA, 229011, USA
| | | | - Kristen A Reynier
- Department of Mechanical and Aerospace Engineering, Center for Applied Biomechanics, University of Virginia, 4040 Lewis and Clark Dr., Charlottesville, VA, 229011, USA
| | - Nicholas J Tustison
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - T Jason Druzgal
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Matthew B Panzer
- Department of Mechanical and Aerospace Engineering, Center for Applied Biomechanics, University of Virginia, 4040 Lewis and Clark Dr., Charlottesville, VA, 229011, USA. .,Brain Injury and Sports Concussion Center, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
49
|
Chao LL, Barlow C, Karimpoor M, Lim L. Changes in Brain Function and Structure After Self-Administered Home Photobiomodulation Treatment in a Concussion Case. Front Neurol 2020; 11:952. [PMID: 33013635 PMCID: PMC7509409 DOI: 10.3389/fneur.2020.00952] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) is a common neurological disorder among athletes. Although there are no widely accepted treatments for TBI, new investigational approaches, such as photobiomodulation (PBM), are being tested. PBM is a light therapy that uses red to near-infrared (NIR) light to stimulate, heal, and protect tissue that has been injured or is at risk of dying. Benefits following transcranial PBM treatments in animal models of acute TBI and a small number of chronic TBI patients have been reported. However, the human PBM TBI studies published to date have been based on behavioral assessments. This report describes changes in behavioral and neuroimaging measures after 8 weeks of PBM treatments. The subject was a 23-year professional hockey player with a history of concussions, presumed to have caused his symptoms of headaches, mild anxiety, and difficulty concentrating. He treated himself at home with commercially available, low-risk PBM devices that used light-emitting diodes (LEDs) to emit 810-nm light pulsing at 10 or 40 Hz delivered by an intranasal and four transcranial modules that targeted nodes of the default mode network (DMN) with a maximum power density of 100 mW/cm2. After 8 weeks of PBM treatments, increased brain volumes, improved functional connectivity, and increased cerebral perfusion and improvements on neuropsychological test scores were observed. Although this is a single, sport-related case with a history of concussions, these positive findings encourage replication studies that could provide further validation for this non-invasive, non-pharmacological modality as a viable treatment option for TBI.
Collapse
Affiliation(s)
- Linda L Chao
- Departments of Radiology & Biomedical Imaging and Psychiatry & Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States.,VA Advanced Imaging Research Center, San Francisco VA Health Care System, San Francisco, CA, United States
| | - Cody Barlow
- VA Advanced Imaging Research Center, San Francisco VA Health Care System, San Francisco, CA, United States
| | | | - Lew Lim
- Vielight Inc., Toronto, ON, Canada
| |
Collapse
|
50
|
Puig J, Ellis MJ, Kornelsen J, Figley TD, Figley CR, Daunis-i-Estadella P, Mutch WAC, Essig M. Magnetic Resonance Imaging Biomarkers of Brain Connectivity in Predicting Outcome after Mild Traumatic Brain Injury: A Systematic Review. J Neurotrauma 2020; 37:1761-1776. [DOI: 10.1089/neu.2019.6623] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Josep Puig
- Department of Radiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Radiology (IDI), Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr. Josep Trueta, Girona, Spain
| | - Michael J. Ellis
- Canada North Concussion Network, Winnipeg, Manitoba, Canada
- Department of Surgery and Pediatrics and Child Health, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Section of Neurosurgery, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Pan Am Concussion Program, Winnipeg, Manitoba, Canada
- Childrens Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Jennifer Kornelsen
- Department of Radiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Center, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Teresa D. Figley
- Department of Radiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Center, Winnipeg, Manitoba, Canada
| | - Chase R. Figley
- Department of Radiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Center, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Pepus Daunis-i-Estadella
- Department of Computer Science, Applied Mathematics and Statistics, Universitat de Girona, Girona, Spain
| | - W. Alan C. Mutch
- Canada North Concussion Network, Winnipeg, Manitoba, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Center, Winnipeg, Manitoba, Canada
- Department of Anesthesiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Marco Essig
- Department of Radiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Canada North Concussion Network, Winnipeg, Manitoba, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Center, Winnipeg, Manitoba, Canada
| |
Collapse
|