1
|
Wang Z, Fontaine M, Cyr M, Rynn MA, Simpson HB, Marsh R, Pagliaccio D. Subcortical shape in pediatric and adult obsessive-compulsive disorder. Depress Anxiety 2022; 39:504-514. [PMID: 35485920 PMCID: PMC9813975 DOI: 10.1002/da.23261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/22/2022] [Accepted: 04/16/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) implicates alterations in cortico-striato-thalamo-cortical and fronto-limbic circuits. Building on prior structural findings, this is the largest study to date examining subcortical surface morphometry in OCD. METHODS Structural magnetic resonance imaging data were collected from 200 participants across development (5-55 years): 28 youth and 75 adults with OCD and 27 psychiatrically healthy youth and 70 adults. General linear models were used to assess group differences and group-by-age interactions on subcortical shape (FSL FIRST). RESULTS Compared to healthy participants, those with OCD exhibited surface expansions on the right nucleus accumbens and inward left amygdala deformations, which were associated with greater OCD symptom severity ([Children's] Yale-Brown Obsessive-Compulsive Scale). Group-by-age interactions indicated that accumbens group differences were driven by younger participants and that right pallidum shape was associated inversely with age in healthy participants, but not in participants with OCD. No differences in the shape of other subcortical regions or in volumes (FreeSurfer) were detected in supplementary analyses. CONCLUSIONS This study is the largest to date examining subcortical shape in OCD and the first to do so across the developmental spectrum. NAcc and amygdala shape deformation builds on extant neuroimaging findings and suggests subtle, subregional alterations beyond volumetric findings. Results shed light on morphometric alterations in OCD, informing current pathophysiological models.
Collapse
Affiliation(s)
- Zhishun Wang
- The Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA,New York State Psychiatric Institute, New York, New York, USA
| | - Martine Fontaine
- The Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA,New York State Psychiatric Institute, New York, New York, USA
| | - Marilyn Cyr
- The Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA,New York State Psychiatric Institute, New York, New York, USA
| | - Moira A. Rynn
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Helen Blair Simpson
- The Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA,New York State Psychiatric Institute, New York, New York, USA
| | - Rachel Marsh
- The Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA,New York State Psychiatric Institute, New York, New York, USA
| | - David Pagliaccio
- The Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA,New York State Psychiatric Institute, New York, New York, USA
| |
Collapse
|
2
|
López-Ojeda W, Hurley RA. Sexual Dimorphism in Brain Development: Influence on Affective Disorders. J Neuropsychiatry Clin Neurosci 2021; 33:A485-89. [PMID: 34018811 DOI: 10.1176/appi.neuropsych.20100269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wilfredo López-Ojeda
- The Veterans Affairs Mid-Atlantic Mental Illness Research, Education, and Clinical Center, and the Research and Academic Affairs Service Line, W.G. Hefner Veterans Affairs Medical Center, Salisbury, N.C. (López-Ojeda, Hurley). The Departments of Psychiatry and Behavioral Medicine (López-Ojeda) and Psychiatry and Radiology (Hurley), Wake Forest School of Medicine, Winston-Salem, N.C.; and the Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston (Hurley)
| | - Robin A Hurley
- The Veterans Affairs Mid-Atlantic Mental Illness Research, Education, and Clinical Center, and the Research and Academic Affairs Service Line, W.G. Hefner Veterans Affairs Medical Center, Salisbury, N.C. (López-Ojeda, Hurley). The Departments of Psychiatry and Behavioral Medicine (López-Ojeda) and Psychiatry and Radiology (Hurley), Wake Forest School of Medicine, Winston-Salem, N.C.; and the Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston (Hurley)
| |
Collapse
|
3
|
van Eijk L, Zhu D, Couvy-Duchesne B, Strike LT, Lee AJ, Hansell NK, Thompson PM, de Zubicaray GI, McMahon KL, Wright MJ, Zietsch BP. Are Sex Differences in Human Brain Structure Associated With Sex Differences in Behavior? Psychol Sci 2021; 32:1183-1197. [PMID: 34323639 DOI: 10.1177/0956797621996664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
On average, men and women differ in brain structure and behavior, raising the possibility of a link between sex differences in brain and behavior. But women and men are also subject to different societal and cultural norms. We navigated this challenge by investigating variability of sex-differentiated brain structure within each sex. Using data from the Queensland Twin IMaging study (n = 1,040) and Human Connectome Project (n = 1,113), we obtained data-driven measures of individual differences along a male-female dimension for brain and behavior based on average sex differences in brain structure and behavior, respectively. We found a weak association between these brain and behavioral differences, driven by brain size. These brain and behavioral differences were moderately heritable. Our findings suggest that behavioral sex differences are, to some extent, related to sex differences in brain structure but that this is mainly driven by differences in brain size, and causality should be interpreted cautiously.
Collapse
Affiliation(s)
- Liza van Eijk
- Centre for Psychology and Evolution, School of Psychology, University of Queensland.,Queensland Brain Institute, University of Queensland.,Australian e-Health Research Centre, CSIRO, Herston, Australia.,Department of Psychology, James Cook University
| | - Dajiang Zhu
- Department of Computer Science and Engineering, The University of Texas at Arlington
| | | | | | | | | | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| | - Greig I de Zubicaray
- Institute of Health and Biomedical Innovation, Queensland University of Technology
| | - Katie L McMahon
- Herston Imaging Research Facility and School of Clinical Sciences, Queensland University of Technology
| | - Margaret J Wright
- Queensland Brain Institute, University of Queensland.,Centre for Advanced Imaging, University of Queensland
| | - Brendan P Zietsch
- Centre for Psychology and Evolution, School of Psychology, University of Queensland
| |
Collapse
|
4
|
Collet S, Bhaduri S, Kiyar M, T’Sjoen G, Mueller S, Guillamon A. Characterization of the 1H-MRS Metabolite Spectra in Transgender Men with Gender Dysphoria and Cisgender People. J Clin Med 2021; 10:2623. [PMID: 34198690 PMCID: PMC8232168 DOI: 10.3390/jcm10122623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 11/29/2022] Open
Abstract
Much research has been conducted on sexual differences of the human brain to determine whether and to what extent a brain gender exists. Consequently, a variety of studies using different neuroimaging techniques attempted to identify the existence of a brain phenotype in people with gender dysphoria (GD). However, to date, brain sexual differences at the metabolite level using magnetic resonance spectroscopy (1H-MRS) have not been explored in transgender people. In this study, 28 cisgender men (CM) and 34 cisgender women (CW) and 29 transgender men with GD (TMGD) underwent 1H-MRS at 3 Tesla MRI to characterize common brain metabolites. Specifically, levels of N-acetyl aspartate (NAA), choline (Cho), creatine (Cr), glutamate and glutamine (Glx), and myo-inositol + glycine (mI + Gly) were assessed in two brain regions, the amygdala-anterior hippocampus and the lateral parietal cortex. The results indicated a sex-assigned at birth pattern for Cho/Cr in the amygdala of TMGD. In the parietal cortex, a sex-assigned at birth and an intermediate pattern were found. Though assessed post-hoc, exploration of the age of onset of GD in TMGD demonstrated within-group differences in absolute NAA and relative Cho/Cr levels, suggestive for a possible developmental trend. While brain metabolite levels in TMGD resembled those of CW, some interesting findings, such as modulation of metabolite concentrations by age of onset of GD, warrant future inquiry.
Collapse
Affiliation(s)
- Sarah Collet
- Department of Endocrinology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Sourav Bhaduri
- Department of Experimental Clinical and Health Psychology, Ghent University, 9000 Ghent, Belgium; (S.B.); (M.K.); (S.M.)
| | - Meltem Kiyar
- Department of Experimental Clinical and Health Psychology, Ghent University, 9000 Ghent, Belgium; (S.B.); (M.K.); (S.M.)
| | - Guy T’Sjoen
- Department of Endocrinology, Center for Sexology and Gender, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Sven Mueller
- Department of Experimental Clinical and Health Psychology, Ghent University, 9000 Ghent, Belgium; (S.B.); (M.K.); (S.M.)
- Department of Personality, Psychological Assessment and Treatment, University of Deusto, 48007 Bilbao, Spain
| | - Antonio Guillamon
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia, 28040 Madrid, Spain;
| |
Collapse
|
5
|
Adeli E, Zhao Q, Zahr NM, Goldstone A, Pfefferbaum A, Sullivan EV, Pohl KM. Deep learning identifies morphological determinants of sex differences in the pre-adolescent brain. Neuroimage 2020; 223:117293. [PMID: 32841716 PMCID: PMC7780846 DOI: 10.1016/j.neuroimage.2020.117293] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/06/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
The application of data-driven deep learning to identify sex differences in developing brain structures of pre-adolescents has heretofore not been accomplished. Here, the approach identifies sex differences by analyzing the minimally processed MRIs of the first 8144 participants (age 9 and 10 years) recruited by the Adolescent Brain Cognitive Development (ABCD) study. The identified pattern accounted for confounding factors (i.e., head size, age, puberty development, socioeconomic status) and comprised cerebellar (corpus medullare, lobules III, IV/V, and VI) and subcortical (pallidum, amygdala, hippocampus, parahippocampus, insula, putamen) structures. While these have been individually linked to expressing sex differences, a novel discovery was that their grouping accurately predicted the sex in individual pre-adolescents. Another novelty was relating differences specific to the cerebellum to pubertal development. Finally, we found that reducing the pattern to a single score not only accurately predicted sex but also correlated with cognitive behavior linked to working memory. The predictive power of this score and the constellation of identified brain structures provide evidence for sex differences in pre-adolescent neurodevelopment and may augment understanding of sex-specific vulnerability or resilience to psychiatric disorders and presage sex-linked learning disabilities.
Collapse
Affiliation(s)
- Ehsan Adeli
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Qingyu Zhao
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Natalie M Zahr
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Center for Biomedical Sciences, SRI International, Menlo Park, CA 94025, USA
| | - Aimee Goldstone
- Center for Biomedical Sciences, SRI International, Menlo Park, CA 94025, USA
| | - Adolf Pfefferbaum
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Center for Biomedical Sciences, SRI International, Menlo Park, CA 94025, USA
| | - Edith V Sullivan
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Kilian M Pohl
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Center for Biomedical Sciences, SRI International, Menlo Park, CA 94025, USA.
| |
Collapse
|
6
|
Zeng F, Sun R, He Z, Chen Y, Lei D, Yin T, Liu X, Yang Y, Ma P, Qu Y, Zhang D, Lang C, Park J, Lu J, Lan L, Li Z, Gong Q, Liang F, Kong J. Altered Functional Connectivity of the Amygdala and Sex Differences in Functional Dyspepsia. Clin Transl Gastroenterol 2019; 10:e00046. [PMID: 31136362 PMCID: PMC6613861 DOI: 10.14309/ctg.0000000000000046] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/22/2019] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION The influence of sex on the prevalence and clinical manifestations of functional dyspepsia (FD) has recently been a topic of increasing interest. However, brain MRI pathology based on sexual dimorphism in FD has not yet been investigated. The amygdala, which plays a vital role in processing gastrointestinal signals, may be associated with the sex-related pathophysiology of FD. METHODS We investigated the resting-state functional connectivity (rsFC) of amygdala subregions in patients with FD and healthy subjects as well as the sex differences between male and female FD patients. RESULTS The results showed that FD patients manifested altered rsFC in the basolateral amygdala (BLA) and centromedial amygdala subregions compared with HS and that female FD patients showed increased BLA rsFC with the insula (INS) and decreased BLA rsFC with the medial prefrontal cortex and dorsal lateral prefrontal cortex compared with male FD patients and female HS. DISCUSSION Our findings suggest that FD females tend to have more severe dysfunction of cognitive-affective processing among the brain regions associated with the salience network, central executive network, and default mode network.
Collapse
Affiliation(s)
- Fang Zeng
- Brain Research Center, Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ruirui Sun
- Brain Research Center, Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhaoxuan He
- Brain Research Center, Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yuan Chen
- Brain Research Center, Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Du Lei
- Departments of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Tao Yin
- Brain Research Center, Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoyan Liu
- Brain Research Center, Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yue Yang
- Department of Radiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Peihong Ma
- Brain Research Center, Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yuzhu Qu
- Brain Research Center, Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Danhua Zhang
- Department of Neurological Rehabilitation of the 181st Chinese People's Liberation Army Hospital, Guilin, Guangxi, China
| | - Courtney Lang
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Joel Park
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jin Lu
- Brain Research Center, Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lei Lan
- Brain Research Center, Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhengjie Li
- Brain Research Center, Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qiyong Gong
- Departments of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Fanrong Liang
- Brain Research Center, Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| |
Collapse
|
7
|
Dalpian F, Rasia-Filho AA, Calcagnotto ME. Sexual dimorphism, estrous cycle and laterality determine the intrinsic and synaptic properties of medial amygdala neurons in rat. J Cell Sci 2019; 132:jcs.227793. [PMID: 30967401 DOI: 10.1242/jcs.227793] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/29/2019] [Indexed: 01/06/2023] Open
Abstract
The posterodorsal medial amygdala (MePD) is a sex steroid-sensitive area that modulates different social behavior by relaying chemosensorial information to hypothalamic nuclei. However, little is known about MePD cell type diversity and functional connectivity. Here, we have characterized neurons and synaptic inputs in the right and left MePD of adult male and cycling female (in diestrus, proestrus or estrus) rats. Based on their electrophysiological properties and morphology, we found two coexisting subpopulations of spiny neurons that are sexually dimorphic. They were classified as Class I (predominantly bitufted-shaped neurons showing irregular spikes with frequency adaptation) or Class II (predominantly stellate-shaped neurons showing full spike frequency adaptation). Furthermore, excitatory and inhibitory inputs onto MePD cells were modulated by sex, estrous cycle and hemispheric lateralization. In the left MePD, there was an overall increase in the excitatory input to neurons of males compared to cycling females. However, in proestrus, the MePD neurons received mainly inhibitory inputs. Our findings indicate the existence of hemispheric lateralization, estrous cycle and sexual dimorphism influences at cellular and synaptic levels in the adult rat MePD.
Collapse
Affiliation(s)
- Francine Dalpian
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90170-050, Brazil
| | - Alberto A Rasia-Filho
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90170-050, Brazil.,Department of Basic Sciences/Physiology, Federal University of Health Sciences, Porto Alegre, RS 90170-050, Brazil
| | - Maria Elisa Calcagnotto
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90170-050, Brazil .,Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| |
Collapse
|
8
|
Zimmermann J, Deris N, Montag C, Reuter M, Felten A, Becker B, Weber B, Markett S. A common polymorphism on the oxytocin receptor gene (rs2268498) and resting-state functional connectivity of amygdala subregions - A genetic imaging study. Neuroimage 2018; 179:1-10. [DOI: 10.1016/j.neuroimage.2018.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/22/2018] [Accepted: 06/05/2018] [Indexed: 01/09/2023] Open
|
9
|
Nadig A, Reardon PK, Seidlitz J, McDermott CL, Blumenthal JD, Clasen LS, Lalonde F, Lerch JP, Chakravarty MM, Raznahan A. Carriage of Supernumerary Sex Chromosomes Decreases the Volume and Alters the Shape of Limbic Structures. eNeuro 2018; 5:ENEURO.0265-18.2018. [PMID: 30713992 PMCID: PMC6354783 DOI: 10.1523/eneuro.0265-18.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/30/2018] [Accepted: 09/24/2018] [Indexed: 01/10/2023] Open
Abstract
Sex chromosome aneuploidy (SCA) increases risk for several psychiatric disorders associated with the limbic system, including mood and autism spectrum disorders. Thus, SCA offers a genetics-first model for understanding the biological basis of psychopathology. Additionally, the sex-biased prevalence of many psychiatric disorders could potentially reflect sex chromosome dosage effects on brain development. To clarify how limbic anatomy varies across sex and sex chromosome complement, we characterized amygdala and hippocampus structure in a uniquely large sample of patients carrying supernumerary sex chromosomes (n = 132) and typically developing controls (n = 166). After adjustment for sex-differences in brain size, karyotypically normal males (XY) and females (XX) did not differ in volume or shape of either structure. In contrast, all SCAs were associated with lowered amygdala volume relative to gonadally-matched controls. This effect was robust to three different methods for total brain volume adjustment, including an allometric analysis that derived normative scaling rules for these structures in a separate, typically developing population (n = 79). Hippocampal volume was insensitive to SCA after adjustment for total brain volume. However, surface-based analysis revealed that SCA, regardless of specific karyotype, was consistently associated with a spatially specific pattern of shape change in both amygdala and hippocampus. In particular, SCA was accompanied by contraction around the basomedial nucleus of the amygdala and an area crossing the hippocampal tail. These results demonstrate the power of SCA as a model to understand how copy number variation can precipitate changes in brain systems relevant to psychiatric disease.
Collapse
Affiliation(s)
- Ajay Nadig
- Developmental Neurogenomics Unit, Human Genetics Branch, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Paul K. Reardon
- Developmental Neurogenomics Unit, Human Genetics Branch, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Jakob Seidlitz
- Developmental Neurogenomics Unit, Human Genetics Branch, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Cassidy L. McDermott
- Developmental Neurogenomics Unit, Human Genetics Branch, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Jonathan D. Blumenthal
- Developmental Neurogenomics Unit, Human Genetics Branch, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Liv S. Clasen
- Developmental Neurogenomics Unit, Human Genetics Branch, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Francois Lalonde
- Developmental Neurogenomics Unit, Human Genetics Branch, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Jason P. Lerch
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5T 1R8, Canada
- Neurosciences and Mental Health, the Hospital for Sick Children, Toronto, Ontario M5T 3H7, Canada
| | - M. Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, Quebec H3A OG4, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A OG4, Canada
| | - Armin Raznahan
- Developmental Neurogenomics Unit, Human Genetics Branch, National Institute of Mental Health, Bethesda, Maryland 20892
| |
Collapse
|
10
|
Mancke F, Herpertz SC, Hirjak D, Knies R, Bertsch K. Amygdala structure and aggressiveness in borderline personality disorder. Eur Arch Psychiatry Clin Neurosci 2018; 268:417-427. [PMID: 27878376 DOI: 10.1007/s00406-016-0747-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 11/06/2016] [Indexed: 12/29/2022]
Abstract
Aggressiveness is considered an important clinical feature of borderline personality disorder (BPD) and has been associated with alterations of the amygdala. However, studies that analyzed the exact location of amygdala alterations associated with aggressiveness in BPD or that systematically compared female and male BPD patients are missing. In the current study, we therefore investigated a sex-mixed sample of BPD patients and healthy volunteers and applied an automated segmentation method that allows the study of both, alterations of amygdala volume and localized amygdala shape. Volumetric results revealed no difference in amygdala volume between BPD patients and healthy volunteers, but a trend for a positive association between volume of the right amygdala and aggressiveness in male BPD patients. Analyses of amygdala shape showed a trend for a group by sex interaction effect in the left laterobasal amygdala, without a difference in subgroup analyses. Finally, regions of the left superficial and laterobasal amygdala of male BPD patients were positively associated with aggressiveness. In sum, our results emphasize the need to consider sex-specific effects and demonstrate a link between male BPD patients' aggressiveness and amygdala regions that are particularly related to social information processing and associative emotional learning.
Collapse
Affiliation(s)
- Falk Mancke
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Voßstraße 2, 69115, Heidelberg, Germany.
| | - Sabine C Herpertz
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Voßstraße 2, 69115, Heidelberg, Germany
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Rebekka Knies
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Katja Bertsch
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Voßstraße 2, 69115, Heidelberg, Germany
| |
Collapse
|
11
|
Cacciaglia R, Nees F, Grimm O, Ridder S, Pohlack ST, Diener SJ, Liebscher C, Flor H. Trauma exposure relates to heightened stress, altered amygdala morphology and deficient extinction learning: Implications for psychopathology. Psychoneuroendocrinology 2017; 76:19-28. [PMID: 27871027 DOI: 10.1016/j.psyneuen.2016.11.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 11/06/2016] [Accepted: 11/10/2016] [Indexed: 12/13/2022]
Abstract
Stress exposure causes a structural reorganization in neurons of the amygdala. In particular, animal models have repeatedly shown that both acute and chronic stress induce neuronal hypertrophy and volumetric increase in the lateral and basolateral nuclei of amygdala. These effects are visible on the behavioral level, where stress enhances anxiety behaviors and provokes greater fear learning. We assessed stress and anxiety levels in a group of 18 healthy human trauma-exposed individuals (TR group) compared to 18 non-exposed matched controls (HC group), and related these measurements to amygdala volume. Traumas included unexpected adverse experiences such as vehicle accidents or sudden loss of a loved one. As a measure of aversive learning, we implemented a cued fear conditioning paradigm. Additionally, to provide a biological marker of chronic stress, we measured the sensitivity of the hypothalamus-pituitary-adrenal (HPA) axis using a dexamethasone suppression test. Compared to the HC, the TR group showed significantly higher levels of chronic stress, current stress and trait anxiety, as well as increased volume of the left amygdala. Specifically, we observed a focal enlargement in its lateral portion, in line with previous animal data. Compared to HC, the TR group also showed enhanced late acquisition of conditioned fear and deficient extinction learning, as well as salivary cortisol hypo-suppression to dexamethasone. Left amygdala volumes positively correlated with suppressed morning salivary cortisol. Our results indicate differences in trauma-exposed individuals which resemble those previously reported in animals exposed to stress and in patients with post-traumatic stress disorder and depression. These data provide new insights into the mechanisms through which traumatic stress might prompt vulnerability for psychopathology.
Collapse
Affiliation(s)
- Raffaele Cacciaglia
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany; Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Passeig de la vall d'Hebron 171, Barcelona, Catalonia, Spain.
| | - Frauke Nees
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Oliver Grimm
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Frankfurt, Frankfurt, Germany
| | - Stephanie Ridder
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Sebastian T Pohlack
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Slawomira J Diener
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Claudia Liebscher
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany.
| |
Collapse
|
12
|
Marwha D, Halari M, Eliot L. Meta-analysis reveals a lack of sexual dimorphism in human amygdala volume. Neuroimage 2016; 147:282-294. [PMID: 27956206 DOI: 10.1016/j.neuroimage.2016.12.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/27/2016] [Accepted: 12/08/2016] [Indexed: 12/31/2022] Open
Abstract
The amygdala plays a key role in many affective behaviors and psychiatric disorders that differ between men and women. To test whether human amygdala volume (AV) differs reliably between the sexes, we performed a systematic review and meta-analysis of AVs reported in MRI studies of age-matched healthy male and female groups. Using four search strategies, we identified 46 total studies (58 matched samples) from which we extracted effect sizes for the sex difference in AV. All data were converted to Hedges g values and pooled effect sizes were calculated using a random-effects model. Each dataset was further meta-regressed against study year and average participant age. We found that uncorrected amygdala volume is about 10% larger in males, with pooled sex difference effect sizes of g=0.581 for right amygdala (κ=28, n=2022), 0.666 for left amygdala (κ=28, n=2006), and 0.876 for bilateral amygdala (κ=16, n=1585) volumes (all p values < 0.001). However, this difference is comparable to the sex differences in intracranial volume (ICV; g=1.186, p<.001, 11.9% larger in males, κ=11) and total brain volume (TBV; g=1.278, p<0.001, 11.5% larger in males, κ=15) reported in subsets of the same studies, suggesting the sex difference in AV is a product of larger brain size in males. Among studies reporting AVs normalized for ICV or TBV, sex difference effect sizes were small and not statistically significant: g=0.171 for the right amygdala (p=0.206, κ=13, n=1560); 0.233 for the left amygdala (p=0.092, κ=12, n=1512); and 0.257 for bilateral volume (p=0.131, κ=5, n=1629). These values correspond to less than 0.1% larger corrected right AV and 2.5% larger corrected left AV in males compared to females. In summary, AV is not selectively enhanced in human males, as often claimed. Although we cannot rule out subtle male-female group differences, it is not accurate to refer to the human amygdala as "sexually dimorphic."
Collapse
Affiliation(s)
- Dhruv Marwha
- Department of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine & Science, United States
| | - Meha Halari
- Department of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine & Science, United States
| | - Lise Eliot
- Department of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine & Science, United States.
| |
Collapse
|
13
|
Mao CP, Yang HJ. Smaller Amygdala Volumes in Patients With Chronic Low Back Pain Compared With Healthy Control Individuals. THE JOURNAL OF PAIN 2016; 16:1366-1376. [PMID: 26431880 DOI: 10.1016/j.jpain.2015.08.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 06/07/2015] [Accepted: 08/05/2015] [Indexed: 12/22/2022]
Abstract
UNLABELLED Although preclinical and clinical data strongly support an association between the amygdala and chronic pain by the presence of mood and cognitive disturbances in affected individuals, little attention has been paid to morphometric measurement of the structure in patients with chronic low back pain (CLBP). In the present study, magnetic resonance volumetric and surface analysis, using FMRIB's integrated registration and segmentation tool (FIRST), were performed to compare structural magnetic resonance imaging data obtained from 33 patients with CLBP with those obtained from 33 demographically similar healthy control individuals. Our results indicated that the normalized volumes of the left and right amygdala were significantly smaller in the CLBP group than in the control group. Detailed surface analyses further localized these differences. The degree of volume reduction was different between the left and right amygdala, with a greater involvement of the left side. Both groups exhibited similar significant hemispheric asymmetry for the amygdala (left > right). Similar asymmetry was suggested in the subgroup of 24 unmedicated patients. No significant correlations were found between amygdala volumes and pain characteristics or depressive symptoms. Our study provides in vivo imaging evidence of abnormal morphology of the amygdala in patients with CLBP using a fully automated segmentation method. PERSPECTIVE Our study found that patients with CLBP had statistically significantly smaller normalized volumes of the bilateral amygdala, compared with healthy control individuals, with a greater involvement of the left side. These results may help to characterize the impaired affective-cognitive dimension in patients with chronic pain.
Collapse
Affiliation(s)
- Cui Ping Mao
- Department of Medical Imaging, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China.
| | - Hua Juan Yang
- Department of Medical Imaging, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
| |
Collapse
|
14
|
Wu Y, Li H, Zhou Y, Yu J, Zhang Y, Song M, Qin W, Yu C, Jiang T. Sex-specific neural circuits of emotion regulation in the centromedial amygdala. Sci Rep 2016; 6:23112. [PMID: 27004933 PMCID: PMC4804331 DOI: 10.1038/srep23112] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/29/2016] [Indexed: 12/24/2022] Open
Abstract
Sex-related differences in emotion regulation (ER) in the frequency power distribution within the human amygdala, a brain region involved in emotion processing, have been reported. However, how sex differences in ER are manifested in the brain networks which are seeded on the amygdala subregions is unclear. The goal of this study was to investigate this issue from a brain network perspective. Utilizing resting-state functional connectivity (RSFC) analysis, we found that the sex-specific functional connectivity patterns associated with ER trait level were only seeded in the centromedial amygdala (CM). Women with a higher trait-level ER had a stronger negative RSFC between the right CM and the medial superior frontal gyrus (mSFG), and stronger positive RSFC between the right CM and the anterior insula (AI) and the superior temporal gyrus (STG). But men with a higher trait-level ER was associated with weaker negative RSFC of the right CM-mSFG and positive RSFCs of the right CM-left AI, right CM-right AI/STG, and right CM-left STG. These results provide evidence for the sex-related effects in ER based on CM and indicate that men and women may differ in the neural circuits associated with emotion representation and integration.
Collapse
Affiliation(s)
- Yan Wu
- Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Huandong Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuan Zhou
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jian Yu
- Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yuanchao Zhang
- Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ming Song
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Wen Qin
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chunshui Yu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Tianzi Jiang
- Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,CAS Center for Excellence in Brain Science, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
15
|
Green T, Fierro KC, Raman MM, Foland-Ross L, Hong DS, Reiss AL. Sex differences in amygdala shape: Insights from Turner syndrome. Hum Brain Mapp 2016; 37:1593-601. [PMID: 26819071 DOI: 10.1002/hbm.23122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/10/2015] [Accepted: 01/08/2016] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE Sex differences in the manifestation of psychiatric disorders, including anxiety disorders, are among the most prominent findings in psychiatry. The study of Turner syndrome (TS), caused by X-monosomy, has the potential to reveal mechanisms that underline male/female differences in neuropsychiatric disorders. The amygdala has been implicated in numerous neuropsychiatric disorders. Previous studies suggest an effect of TS on amygdala volume as well as on amygdala-related behaviors such as anxiety. Our objective is to investigate the amygdala shape in TS. Specifically, we tested whether amygdala enlargements in TS are localized to specific nuclei implicated in anxiety, such as the basomedial nucleus. EXPERIMENTAL DESIGN We use a surface-based analytical modeling approach to contrast 41 pre-estrogen treatment girls with TS (mean age 8.6 ± 2.4) with 34 age-and sex-matched typically developing (TD) controls (mean age 8.0 ± 2.8). Anxiety symptoms were assessed using the Revised Children's Manifest Anxiety Scale - 2 (RCMAS-2) in both groups. PRINCIPAL OBSERVATIONS TS was associated with anomalous enlargement of the amygdala. Surface-based modeling revealed shape differences (increased radial-distances) in bilateral basal and basomedial nuclei within the basolateral complex. RCMAS-2 Total Anxiety t-score was significantly higher in participants with TS compared with TD controls (P = 0.012). CONCLUSIONS Group differences in global amygdala volumes were driven by local morphological increases in areas that are critically involved in face emotion processing and anxiety. In the context of increased amygdala volumes in TS, our results also showed increased worry and social anxiety in young girls with TS compared with TD.
Collapse
Affiliation(s)
- Tamar Green
- Center for Interdisciplinary Brain Sciences Research, Stanford University School of Medicine, Stanford, California.,Psychiatry, Sackler Faculty of Medicine, Tel Aviv University, Israel.,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Kyle C Fierro
- Center for Interdisciplinary Brain Sciences Research, Stanford University School of Medicine, Stanford, California
| | - Mira M Raman
- Center for Interdisciplinary Brain Sciences Research, Stanford University School of Medicine, Stanford, California
| | - Lara Foland-Ross
- Center for Interdisciplinary Brain Sciences Research, Stanford University School of Medicine, Stanford, California
| | - David S Hong
- Center for Interdisciplinary Brain Sciences Research, Stanford University School of Medicine, Stanford, California.,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Allan L Reiss
- Center for Interdisciplinary Brain Sciences Research, Stanford University School of Medicine, Stanford, California.,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California.,Department of Radiology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
16
|
Li SY, Xie YQ, Li H, Li XW, Zhang ZX, Zhao QL, Xie S, Gong GL. Morphological Changes of Amygdala in Turner Syndrome Patients. CNS Neurosci Ther 2016; 22:194-9. [PMID: 26778543 DOI: 10.1111/cns.12482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 10/02/2015] [Accepted: 10/17/2015] [Indexed: 01/29/2023] Open
Abstract
AIMS Turner's syndrome (TS) losts one of the X chromosomes and exhibits social cognition deficits. Previous studies have reported that women with TS demonstrated structural and functional abnormalities in brain, including increased volume in amygdala. However, most studies regarded the amygdala as a whole, and the abnormalities in the specific subregions of amygdala in TS have not been studied. Here, we aimed to investigate the local morphological changes of amygdala in TS using the surface morphology analysis method. METHODS A total of 19 adolescents with 45XO TS and 20 matched adolescents with typical development were evaluated using magnetic resonance imaging. The amygdalae of all participants were manually delineated. 3D surface remodeling and parameterization were performed based on the outlined boundaries of amygdalae. We extracted two surface metrics, namely direct Euclidean displacement and normal projection that were used to represent the morphology of amygdala. RESULTS Statistical analysis showed significant outward deformation in the laterobasal subregion of left amygdala in patients with TS, compared with the controls using either direct Euclidean displacement or normal displacement. CONCLUSIONS Our findings provide novel insight into the pathological changes in the amygdala of patients with TS.
Collapse
Affiliation(s)
- Shu-Yu Li
- School of Biological Science & Medical Engineering, Beihang University, Beijing, China
| | - Yong-Qi Xie
- School of Biological Science & Medical Engineering, Beihang University, Beijing, China
| | - Han Li
- School of Biological Science & Medical Engineering, Beihang University, Beijing, China
| | - Xin-Wei Li
- School of Biological Science & Medical Engineering, Beihang University, Beijing, China
| | - Zhi-Xin Zhang
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Qiu-Ling Zhao
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Sheng Xie
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Gao-Lang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
17
|
Alarcón G, Cservenka A, Rudolph MD, Fair DA, Nagel BJ. Developmental sex differences in resting state functional connectivity of amygdala sub-regions. Neuroimage 2015; 115:235-44. [PMID: 25887261 DOI: 10.1016/j.neuroimage.2015.04.013] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/10/2015] [Accepted: 04/07/2015] [Indexed: 10/23/2022] Open
Abstract
During adolescence, considerable social and biological changes occur that interact with functional brain maturation, some of which are sex-specific. The amygdala is one brain area that has displayed sexual dimorphism, specifically in socio-affective (superficial amygdala [SFA]), stress (centromedial amygdala [CMA]), and learning and memory (basolateral amygdala [BLA]) processing. The amygdala has also been implicated in mood and anxiety disorders which display sex-specific features, most prominently observed during adolescence. Using functional magnetic resonance imaging (fMRI), the present study examined the interaction of age and sex on resting state functional connectivity (RSFC) of amygdala sub-regions, BLA and SFA, in a sample of healthy adolescents between the ages 10 and 16 years (n = 122, 71 boys). Whole-brain, voxel-wise partial correlation analyses were conducted to determine RSFC of bilateral BLA and SFA seed regions, created using the Eickhoff-Zilles maximum probability maps based on cytoarchitectonic mapping and FMRIB's Integrated Registration and Segmentation Tool (FIRST). Monte Carlo simulation was implemented to correct for multiple comparisons (threshold of 53 contiguous voxels with a z-value ≥ 2.25). Results indicated that with increasing age, there was a corresponding decrease in RSFC between both amygdala sub-regions and parieto-occipital cortices, with a concurrent increase in RSFC with medial prefrontal cortex (mPFC). Specifically, boys and girls demonstrated increased coupling of mPFC and left and right SFA with age, respectively; however, neither sex showed increased connectivity between mPFC and BLA, which could indicate relative immaturity of fronto-limbic networks that is similar across sex. A dissociation in connectivity between BLA- and SFA-parieto-occipital RSFC emerged, in which girls had weaker negative RSFC between SFA and parieto-occipital regions and boys had weaker negative RSFC of BLA and parieto-occipital regions with increased age, both standing in contrast to adult patterns of amygdala sub-regional RSFC. The present findings suggest relative immaturity of amygdala sub-regional RSFC with parieto-occipital cortices during adolescence, with unique patterns in both sexes that may support memory and socio-affective processing in boys and girls, respectively. Understanding the underlying normative functional architecture of brain networks associated with the amygdala during adolescence may better inform future research of the neural features associated with increased risk for internalizing psychopathology.
Collapse
Affiliation(s)
- Gabriela Alarcón
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | - Anita Cservenka
- Department of Psychiatry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Marc D Rudolph
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | - Damien A Fair
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; Department of Psychiatry, Oregon Health & Science University, Portland, OR 97239, USA; Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Bonnie J Nagel
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; Department of Psychiatry, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
18
|
Meadows KL, Byrnes EM. Sex- and age-specific differences in relaxin family peptide receptor expression within the hippocampus and amygdala in rats. Neuroscience 2014; 284:337-348. [PMID: 25313002 DOI: 10.1016/j.neuroscience.2014.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 09/04/2014] [Accepted: 10/03/2014] [Indexed: 01/04/2023]
Abstract
Relaxin is an essential pregnancy-related hormone with broad peripheral effects mediated by activation of relaxin-like family peptide 1 receptors (RXFP1). More recent studies suggest an additional role for relaxin as a neuropeptide, with RXFP1 receptors expressed in numerous brain regions. Neurons in an area of the brainstem known as the nucleus incertus (NI) produce relaxin 3 (RLN3), the most recently identified neuropeptide in the relaxin family. RLN3 has been shown to activate both RXFP1 and relaxin-like family peptide receptor 3 (RXFP3) receptor subtypes. Studies suggest wide-ranging neuromodulatory effects of both RXFP1 and RXFP3 activation, although to date the majority of studies have been conducted in young males. In the current study, we examined potential sex- and age-related changes in RLN3 gene expression in the NI as well as RXFP1 and RXFP3 gene expression in the dorsal hippocampus (HI), ventral hippocampus (vHI) and amygdala (AMYG) using young adult (9-12weeks) and middle-aged (9-12months) male and female rats. In addition, regional changes in RXFP1 and RXFP3 protein expression were examined in the CA1, CA2/CA3 and dentate gyrus (DG) as well as within basolateral (BLA), central (CeA), and medial (MeA) amygdaloid nuclei. In the NI, RLN3 showed an age-related decrease in males. In the HI, only the RXFP3 receptor showed an age-related change in gene expression, however, both receptor subtypes showed age-related changes in protein expression that were region specific. Additionally, while gene and protein expression of both receptors increased with age in AMYG, these effects were both region- and sex-specific. Finally, overall males displayed a greater number of cells that express the RXFP3 protein in all of the amygdaloid nuclei examined. Cognitive and emotional processes regulated by activity within the HI and AMYG are modulated by both sex and age. The vast majority of studies exploring the influence of sex on age-related changes in the HI and AMYG have focused on sex hormones, with few studies examining the role of neuropeptides. The current findings suggest that changes in relaxin family peptides may contribute to the significant sex differences observed in these brain regions as a function of aging.
Collapse
Affiliation(s)
- K L Meadows
- Tufts University Cummings School of Veterinary Medicine, 200 Westboro Road, Grafton, MA 01536, United States.
| | - E M Byrnes
- Tufts University Cummings School of Veterinary Medicine, 200 Westboro Road, Grafton, MA 01536, United States.
| |
Collapse
|
19
|
Amygdala responses to valence and its interaction by arousal revealed by MEG. Int J Psychophysiol 2014; 93:121-33. [DOI: 10.1016/j.ijpsycho.2013.05.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 04/17/2013] [Accepted: 05/10/2013] [Indexed: 11/24/2022]
|
20
|
Zhang J, Gao J, Shi H, Huang B, Wang X, Situ W, Cai W, Yi J, Zhu X, Yao S. Sex differences of uncinate fasciculus structural connectivity in individuals with conduct disorder. BIOMED RESEARCH INTERNATIONAL 2014; 2014:673165. [PMID: 24829912 PMCID: PMC4009134 DOI: 10.1155/2014/673165] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/17/2014] [Accepted: 03/24/2014] [Indexed: 11/29/2022]
Abstract
Conduct disorder (CD) is one of the most common behavior disorders in adolescents, such as impulsivity, aggression, and running from school. Males are more likely to develop CD than females, and two previous diffusion tensor imaging (DTI) studies have demonstrated abnormal microstructural integrity in the uncinate fasciculus (UF) in boys with CD compared to a healthy control group. However, little is known about changes in the UF in females with CD. In this study, the UF was illustrated by tractography; then, the fractional anisotropy (FA), axial diffusivity, mean diffusion, radial diffusivity (RD), and the length and number of the UF fiber bundles were compared between male and female patients with CD and between female patients with CD and female healthy controls, as well as between males with CD and healthy males. We found that males with CD showed significantly higher FA of the bilateral UF and significantly lower RD of the left UF when comparing with females with CD. Meanwhile, significantly higher FA and lower RD of the bilateral UF were also found in boys with CD relative to the male healthy controls. Our results replicated previous reports that the microstructural integrity of the UF was abnormal in boys with CD. Additionally, our results demonstrated significant gender effects on the UF of patients with CD, which may indicate why boys have higher rates of conduct problems than girls.
Collapse
Affiliation(s)
- Jibiao Zhang
- Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Science, Ministry of Justice, No. 1347 West Guangfu Road, Shanghai 200063, China
- Medical Psychological Institute, The Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Changsha, Hunan 410011, China
| | - Junling Gao
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, No. 102 Pokfulam Road, Hong Kong
- Centre of Buddhists Studies, The University of Hong Kong, No. 102 Pokfulam Road, Hong Kong
| | - Huqing Shi
- Medical Psychological Institute, The Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Changsha, Hunan 410011, China
| | - Bingsheng Huang
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, No. 3688, Nanhai Ave, Shenzhen, Guangdong 518060, China
| | - Xiang Wang
- Medical Psychological Institute, The Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Changsha, Hunan 410011, China
| | - Weijun Situ
- Medical Psychological Institute, The Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Changsha, Hunan 410011, China
| | - Weixiong Cai
- Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Science, Ministry of Justice, No. 1347 West Guangfu Road, Shanghai 200063, China
| | - Jinyao Yi
- Medical Psychological Institute, The Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Changsha, Hunan 410011, China
| | - Xiongzhao Zhu
- Medical Psychological Institute, The Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Changsha, Hunan 410011, China
| | - Shuqiao Yao
- Medical Psychological Institute, The Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Changsha, Hunan 410011, China
| |
Collapse
|
21
|
Jie B, Zhang D, Gao W, Wang Q, Wee CY, Shen D. Integration of network topological and connectivity properties for neuroimaging classification. IEEE Trans Biomed Eng 2014; 61:576-89. [PMID: 24108708 PMCID: PMC4106141 DOI: 10.1109/tbme.2013.2284195] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Rapid advances in neuroimaging techniques have provided an efficient and noninvasive way for exploring the structural and functional connectivity of the human brain. Quantitative measurement of abnormality of brain connectivity in patients with neurodegenerative diseases, such as mild cognitive impairment (MCI) and Alzheimer's disease (AD), have also been widely reported, especially at a group level. Recently, machine learning techniques have been applied to the study of AD and MCI, i.e., to identify the individuals with AD/MCI from the healthy controls (HCs). However, most existing methods focus on using only a single property of a connectivity network, although multiple network properties, such as local connectivity and global topological properties, can potentially be used. In this paper, by employing multikernel based approach, we propose a novel connectivity based framework to integrate multiple properties of connectivity network for improving the classification performance. Specifically, two different types of kernels (i.e., vector-based kernel and graph kernel) are used to quantify two different yet complementary properties of the network, i.e., local connectivity and global topological properties. Then, multikernel learning (MKL) technique is adopted to fuse these heterogeneous kernels for neuroimaging classification. We test the performance of our proposed method on two different data sets. First, we test it on the functional connectivity networks of 12 MCI and 25 HC subjects. The results show that our method achieves significant performance improvement over those using only one type of network property. Specifically, our method achieves a classification accuracy of 91.9%, which is 10.8% better than those by single network-property-based methods. Then, we test our method for gender classification on a large set of functional connectivity networks with 133 infants scanned at birth, 1 year, and 2 years, also demonstrating very promising results.
Collapse
Affiliation(s)
- Biao Jie
- Department of Computer Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China, and also with the School of Mathematics and Computer Science, Anhui Normal University, Wuhui, 241000, China
| | - Daoqiang Zhang
- Department of Computer Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Wei Gao
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Qian Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Chong-Yaw Wee
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Dinggang Shen
- Department of Radiology and BRIC, the University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA, and also with the Department of Brain and Cognitive Engineering, Korea University, Seoul 136-701, Korea
| |
Collapse
|
22
|
MRI-based morphometric characterizations of sexual dimorphism of the cerebrum of ferrets (Mustela putorius). Neuroimage 2013; 83:294-306. [DOI: 10.1016/j.neuroimage.2013.06.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 05/30/2013] [Accepted: 06/03/2013] [Indexed: 11/17/2022] Open
|
23
|
Bos PA, van Honk J, Ramsey NF, Stein DJ, Hermans EJ. Testosterone administration in women increases amygdala responses to fearful and happy faces. Psychoneuroendocrinology 2013; 38:808-17. [PMID: 22999654 DOI: 10.1016/j.psyneuen.2012.09.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 09/03/2012] [Accepted: 09/03/2012] [Indexed: 01/03/2023]
Abstract
Data from both rodents and humans show that testosterone reduces fear. This effect is hypothesized to result from testosterone's down regulating effects on the amygdala, a key region in the detection of threat and instigator of fight-or-flight behavior. However, neuroimaging studies employing testosterone administration in humans have consistently shown increased amygdala responsivity. Yet, no study to date has investigated specifically how testosterone affects the amygdala response to fearful emotional expressions. Such stimuli signal the presence of environmental threat and elicit robust amygdala responses that have consistently been associated with anxious traits. In the present study, we therefore used functional magnetic resonance imaging combined with a single administration of 0.5mg testosterone in 12 healthy women to assess testosterone's effects on amygdala responses to dynamic fearful (and happy control) faces. Our results show that both stimuli activate the amygdala. Notably, testosterone increased the amygdala response to both stimuli, and to an equal degree. Thus, testosterone appears not to reduce fear by attenuating the amygdala response toward signals of threat. Data further show that testosterone selectively increases activation of the superficial amygdala (SFA) and, to a lesser extent, the basolateral amygdala (BLA). No effect was found in the central nucleus, which is involved in the generation of autonomic fear responses. Both the SFA and BLA are considered input regions, and enhanced activation by testosterone might reflect the role of this hormone in adaptive responding to socially relevant stimuli. Furthermore, literature on the distinct roles of the SFA and BLA in fear processing show that increased activation of these subregions of the amygdala is consistent with a fear reducing effect of testosterone.
Collapse
Affiliation(s)
- Peter A Bos
- Utrecht University, Department of Experimental Psychology, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
24
|
Tohno Y, Tohno S, Azuma C, Ongkana N, Mahakkanukrauh P, Minami T, Suwannahoy P, Viwatpinyo K, Ke L. Age-related differences and relationships between elements in human amygdala and other limbic system or basal ganglia. Biol Trace Elem Res 2013; 152:161-73. [PMID: 23354542 DOI: 10.1007/s12011-013-9607-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 01/10/2013] [Indexed: 11/25/2022]
Abstract
To elucidate the compositional changes of the amygdala with aging, the authors investigated age-related differences of elements in human amygdalae. In addition, the relationships between the amygdala and other brain regions were investigated from a viewpoint of elements. After ordinary dissections at Nara Medical University were finished, the amygdalae were removed from the cerebra of the subjects who consisted of 22 men and 23 women, ranging in age from 70 to 101 years. In addition, the hippocampus, dentate gyrus, mammillary body of the limbic system and the caudate nucleus, putamen, and globus pallidus of the basal ganglia were also removed from the identical cerebra. After the brain samples were incinerated with nitric acid and perchloric acid, the element contents were determined by inductively coupled plasma-atomic emission spectrometry. It was found that both the Ca and Mg contents increased significantly in the amygdalae with aging, but the other five element contents (P, S, Zn, Fe, and Na) did not change significantly in the amygdalae with aging. Regarding the relationships among elements, very significant or significant direct correlations were found among the Ca, P, and Mg contents in the amygdalae. To explore the relationships between the amygdala and either other limbic system or basal ganglia, the correlations between seven elements of the amygdala and hippocampus, dentate gyrus, or mammillary body, and between those of the amygdala and caudate nucleus, putamen, or globus pallidus which derived from the identical cerebra, were analyzed with Pearson's correlation. It was found that regarding the four elements of Ca, P, Mg, and Fe, a close relationship existed between the amygdala and hippocampus, globus pallidus, or mammillary body.
Collapse
Affiliation(s)
- Yoshiyuki Tohno
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Li S, Wang Y, Xu P, Pu F, Li D, Fan Y, Gong G, Luo Y. Surface morphology of amygdala is associated with trait anxiety. PLoS One 2012; 7:e47817. [PMID: 23112851 PMCID: PMC3480410 DOI: 10.1371/journal.pone.0047817] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 09/17/2012] [Indexed: 11/25/2022] Open
Abstract
Previous neuroimaging studies have suggested a role of amygdala in trait anxiety level, in which amygdala was typically treated as a whole. To date, it remains unknown whether the morphology of specific subregions of amygdala are associated with trait anxiety. Here, we employed a shape analysis approach to locate the association between its morphology and trait anxiety on the surface of amygdala. 24 healthy young participants were included. The boundary of amygdala for each subject was first manually outlined using high-resolution magnetic resonance (MR) image, followed by 3D surface reconstruction and parameterization using spherical harmonic description. Two point-wise metrics, direct displacement between the individual surface and atlas surface and its normal projection, were used to quantify the surface morphology of amygdala. Statistical analysis revealed significant correlations between the two surface metrics and trait anxiety levels, which were located around the lateral and central nucleus of right amygdala. Our results provided localized information for the association between amygdala and trait anxiety, and suggested a central role of the lateral and central nucleus of right amygdala on trait anxiety.
Collapse
Affiliation(s)
- Shuyu Li
- State Key Laboratory of Software Development Environment, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yanan Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Pengfei Xu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Fang Pu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Deyu Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- * E-mail: (GG); (YL)
| | - Yuejia Luo
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- * E-mail: (GG); (YL)
| |
Collapse
|
26
|
An MRI study of amygdala in schizophrenia and psychotic bipolar disorder. Schizophr Res 2012; 138:188-91. [PMID: 22559949 PMCID: PMC3372630 DOI: 10.1016/j.schres.2012.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 03/28/2012] [Accepted: 04/03/2012] [Indexed: 11/22/2022]
Abstract
Meta-analyses report larger amygdala in subjects with bipolar disorder compared to schizophrenia. However, few studies have compared the size of amygdala in psychotic bipolar disorder with schizophrenia. Here we examine size of amygdala in a sample of 36 patients with psychotic bipolar disorder, 31 patients with schizophrenia and 27 healthy comparison subjects. Patients with schizophrenia had smaller amygdala compared with patients with psychotic bipolar disorder (p=0.014). These results suggest that change in volume of amygdala may represent a morphologic feature distinguishing psychotic bipolar disorder from schizophrenia.
Collapse
|