1
|
Doval S, López-Sanz D, Bruña R, Cuesta P, Antón-Toro L, Taguas I, Torres-Simón L, Chino B, Maestú F. When Maturation is Not Linear: Brain Oscillatory Activity in the Process of Aging as Measured by Electrophysiology. Brain Topogr 2024; 37:1068-1088. [PMID: 38900389 DOI: 10.1007/s10548-024-01064-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Changes in brain oscillatory activity are commonly used as biomarkers both in cognitive neuroscience and in neuropsychiatric conditions. However, little is known about how its profile changes across maturation. Here we use regression models to characterize magnetoencephalography power changes within classical frequency bands in a sample of 792 healthy participants, covering the range 13 to 80 years old. Our findings unveil complex, non-linear power trajectories that defy the traditional linear paradigm, with notable cortical region variations. Interestingly, slow wave activity increases correlate with improved cognitive performance throughout life and larger gray matter volume in the elderly. Conversely, fast wave activity diminishes in adulthood. Elevated low-frequency activity during aging, traditionally seen as compensatory, may also signify neural deterioration. This dual interpretation, highlighted by our study, reveals the intricate dynamics between brain oscillations, cognitive performance, and aging. It advances our understanding of neurodevelopment and aging by emphasizing the regional specificity and complexity of brain rhythm changes, with implications for cognitive and structural integrity.
Collapse
Affiliation(s)
- Sandra Doval
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, 28015, Spain.
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, 28223, Spain.
| | - David López-Sanz
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, 28223, Spain
| | - Ricardo Bruña
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, 28015, Spain
- Department of Radiology, Rehabilitation and Physiotherapy, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Pablo Cuesta
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, 28015, Spain
- Department of Radiology, Rehabilitation and Physiotherapy, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Luis Antón-Toro
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, 28015, Spain
- Department of Psychology, University Camilo José Cela (UCJC), Madrid, 28692, Spain
| | - Ignacio Taguas
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, 28015, Spain
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, 28223, Spain
| | - Lucía Torres-Simón
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, 28015, Spain
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, 28223, Spain
| | - Brenda Chino
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, 28015, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Vicaya, 48940, Spain
| | - Fernando Maestú
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, 28015, Spain
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, 28223, Spain
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, 28040, Spain
| |
Collapse
|
2
|
Dalilian F, Nembhard D. Cognitive and behavioral markers for human detection error in AI-assisted bridge inspection. APPLIED ERGONOMICS 2024; 121:104346. [PMID: 39018705 DOI: 10.1016/j.apergo.2024.104346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/13/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024]
Abstract
Integrating Artificial Intelligence (AI) and drone technology into bridge inspections offers numerous advantages, including increased efficiency and enhanced safety. However, it is essential to recognize that this integration changes the cognitive ergonomics of the inspection task. Gaining a deeper understanding of how humans process information and behave when collaborating with drones and AI systems is necessary for designing and implementing effective AI-assisted inspection drones. To further understand human-drone-AI intricate dynamics, an experiment was conducted in which participants' biometric and behavioral data were collected during a simulated drone-enabled bridge inspection under two conditions: with an 80% accurate AI assistance and with no AI assistance. Results indicate that cognitive and behavioral factors, including vigilance, cognitive processing intensity, gaze patterns, and visual scanning efficiency can influence inspectors' performance respectively in either condition. This highlights the importance of designing inspection protocols, drones and AI systems based on a comprehensive understanding of the cognitive processes required in each condition to prevent cognitive overload and minimize errors. We also remark on the visual scanning and gaze patterns associated with a higher chance of missing critical information in each condition, insights that inspectors can use to enhance their inspection performance.
Collapse
|
3
|
Nagornova ZV, Shemyakina NV. Competition during verbal creative processes influences on ERS/ERD. Soc Neurosci 2024:1-11. [PMID: 39442547 DOI: 10.1080/17470919.2024.2419655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Humans are social creatures, and many tasks in our daily lives are solved together. The two main forms of social interaction in problem solving could be defined as competition and cooperation. In our study, we compared the ERS/ERD when performing a creative task (Alternative Uses Test, AUT) and a control task ("naming the objects from the presented category") under competitive conditions in dyads (22 dyads, m-m, f-f, 18-23 years old) compared to the performance of tasks individually. The number of answers given by subjects under competitive conditions was significantly lower than during the execution of the tasks individually. The solving of the creative task in competition versus individual performance was accompanied by EEG synchronization (9-30 hz) clusters: 140-1220 ms and 900-1780 ms after stimulus presentation; 13.5-30 hz (1800-1980 ms), reflecting the creative thinking mode, and expected cognitive, emotional answers' assessment. The control task under competitive conditions was accompanied by pronounced synchronization of low frequencies in the frontal areas (2-7 hz, 0-1980 ms), due to a greater working memory load; synchronization clusters in broadband (10-30 hz, 100-320 ms, 400-860 ms) and in the beta EEG band (17-30 hz, 1140-1980 ms). The competitive conditions significantly modulated the brain activity underlying creative and non-creative cognitive task performance, and resulted in greater induced EEG synchronization.
Collapse
Affiliation(s)
- Zhanna V Nagornova
- Laboratory of Comparative Ecological and Physiological Researches, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Natalia V Shemyakina
- Laboratory of Comparative Ecological and Physiological Researches, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
4
|
Abubaker M, Al Qasem W, Pilátová K, Ježdík P, Kvašňák E. Theta-gamma-coupling as predictor of working memory performance in young and elderly healthy people. Mol Brain 2024; 17:74. [PMID: 39415245 DOI: 10.1186/s13041-024-01149-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/05/2024] [Indexed: 10/18/2024] Open
Abstract
The relationship between working memory (WM) and neuronal oscillations can be studied in detail using brain stimulation techniques, which provide a method for modulating these oscillations and thus influencing WM. The endogenous coupling between the amplitude of gamma oscillations and the phase of theta oscillations is crucial for cognitive control. Theta/gamma peak-coupled transcranial alternating current stimulation (TGCp-tACS) can modulate this coupling and thus influence WM performance. This study investigated the effects of TGCp-tACS on WM in older adults and compared their responses with those of younger participants from our previous work who underwent the same experimental design. Twenty-eight older subjects underwent both TGCp-tACS and sham stimulation sessions at least 72 h apart. Resting-state electroencephalography (EEG) was recorded before and after the interventions, and a WM task battery with five different WM tasks was performed during the interventions to assess various WM components. Outcomes measured included WM task performance (e.g., accuracy, reaction time (RT)) and changes in power spectral density (PSD) in different frequency bands. TGCp-tACS significantly decreased accuracy and RT on the 10- and 14-point Sternberg tasks and increased RT on the Digit Symbol Substitution Test in older adults. In contrast, younger participants showed a significant increase in accuracy only on the 14-item Sternberg task. Electrophysiological analysis revealed a decrease in delta and theta PSD and an increase in high gamma PSD in both younger and older participants after verum stimulation. In conclusion, theta-gamma coupling is essential for WM and modulation of this coupling affects WM performance. The effects of TGCp-tACS on WM vary with age due to natural brain changes. To better support older adults, the study suggests several strategies to improve cognitive function, including: Adjusting stimulation parameters, applying stimulation to two sites, conducting multiple sessions, and using brain imaging techniques for precise targeting.
Collapse
Affiliation(s)
- Mohammed Abubaker
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia.
| | - Wiam Al Qasem
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Kateřina Pilátová
- Department of Information and Communication Technology in Medicine, Faculty of Biomedical Engineering, Czech Technical University in Prague, Prague, Czechia
| | - Petr Ježdík
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czechia
| | - Eugen Kvašňák
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| |
Collapse
|
5
|
Magosso E, Borra D. The strength of anticipated distractors shapes EEG alpha and theta oscillations in a Working Memory task. Neuroimage 2024; 300:120835. [PMID: 39245399 DOI: 10.1016/j.neuroimage.2024.120835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/10/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024] Open
Abstract
Working Memory (WM) requires maintenance of task-relevant information and suppression of task-irrelevant/distracting information. Alpha and theta oscillations have been extensively investigated in relation to WM. However, studies that examine both theta and alpha bands in relation to distractors, encompassing not only power modulation but also connectivity modulation, remain scarce. Here, we depicted, at the EEG-source level, the increase in power and connectivity in theta and alpha bands induced by strong relative to weak distractors during a visual Sternberg-like WM task involving the encoding of verbal items. During retention, a strong or weak distractor was presented, predictable in time and nature. Analysis focused on the encoding and retention phases before distractor presentation. Theta and alpha power were computed in cortical regions of interest, and connectivity networks estimated via spectral Granger causality and synthetized using in/out degree indices. The following modulations were observed for strong vs. weak distractors. In theta band during encoding, the power in frontal regions increased, together with frontal-to-frontal and bottom-up occipital-to-temporal-to-frontal connectivity; even during retention, bottom-up theta connectivity increased. In alpha band during retention, but not during encoding, the power in temporal-occipital regions increased, together with top-down frontal-to-occipital and temporal-to-occipital connectivity. From our results, we postulate a proactive cooperation between theta and alpha mechanisms: the first would mediate enhancement of target representation both during encoding and retention, and the second would mediate increased inhibition of sensory areas during retention only, to suppress the processing of imminent distractor without interfering with the processing of ongoing target stimulus during encoding.
Collapse
Affiliation(s)
- Elisa Magosso
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, Cesena Campus, Cesena, 47521, Italy; Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of Bologna, Bologna, 40126, Italy.
| | - Davide Borra
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, Cesena Campus, Cesena, 47521, Italy
| |
Collapse
|
6
|
Ruan N, Li X, Xu T, Zhao Z, Mei X, Zheng C. Cortical activation in elderly patients with Alzheimer's disease dementia during working memory tasks: a multichannel fNIRS study. Front Aging Neurosci 2024; 16:1433551. [PMID: 39385828 PMCID: PMC11461194 DOI: 10.3389/fnagi.2024.1433551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024] Open
Abstract
Objective This study aimed to investigate cortical activation and functional connectivity in the cortex during working memory (WM) tasks in patients with Alzheimer's disease (AD) using functional near-infrared spectroscopy (fNIRS). Methods A total of 17 older adults with AD and 17 cognitively normal (CN) participants were recruited. fNIRS was utilized to monitor oxygenated hemoglobin (HbO) concentrations in the frontotemporal lobe, while participants performed WM tasks to examine WM impairments in subjects with AD. Student's t-test for continuous variables and the chi-square test for categorical variables were used to compare the clinical and HbO variables between the AD and CN groups. Functional connectivity was analyzed using Pearson's correlation coefficient between the time series of each channel-to-channel pair. Results The changes in HbO concentrations and cortical activations during the WM task showed that the HbO concentration curve of the CN group was higher than that of the AD group during the encoding and maintenance phases of the WM task. Although in the brain region scale, there were no significant differences in average HbO concentrations between the two groups, many channels located in the frontal and temporal lobes showed significant differences (p < 0.05) in the average HbO (channels 7 and 32) and slope HbO values (channels 7, 8, 9, 23, 30, 34, and 38) during the WM task. The average functional connectivity of the AD group was significantly lower than that of the CN group (p < 0.05). The functional connectivity was stronger in the frontopolar (FP) region than in other areas in both groups. Conclusion This study revealed there were significant differences in HbO concentration in older adult patients with AD compared to CN during the WM task. The characteristics of HbO measured by the fNIRS technique can be valuable for distinguishing between AD and CN in older adults.
Collapse
Affiliation(s)
- Nairong Ruan
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China
| | - Xingxing Li
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China
| | - Ting Xu
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China
| | - Zheng Zhao
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China
| | - Xi Mei
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China
| | - Chengying Zheng
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China
| |
Collapse
|
7
|
Nilsen AS, Storm JF, Juel BE. Does Cognitive Load Affect Measures of Consciousness? Brain Sci 2024; 14:919. [PMID: 39335414 PMCID: PMC11429988 DOI: 10.3390/brainsci14090919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Developing and testing methods for reliably measuring the state of consciousness of individuals is important for both basic research and clinical purposes. In recent years, several promising measures of consciousness, grounded in theoretical developments, have been proposed. However, the degrees to which these measures are affected by changes in brain activity that are not related to changes in the degree of consciousness has not been well tested. In this study, we examined whether several of these measures are modulated by the loading of cognitive resources. METHODS We recorded electroencephalography (EEG) from 12 participants in two conditions: (1) while passively attending to sensory stimuli related to the measures and (2) during increased cognitive load consisting of a demanding working memory task. We investigated whether a set of proposed objective EEG-based measures of consciousness differed between the passive and the cognitively demanding conditions. RESULTS The P300b event-related potential (sensitive to conscious awareness of deviance from an expected pattern in auditory stimuli) was significantly affected by concurrent performance on a working memory task, whereas various measures based on signal diversity of spontaneous and perturbed EEG were not. CONCLUSION Because signal diversity-based measures of spontaneous or perturbed EEG are not sensitive to the degree of cognitive load, we suggest that these measures may be used in clinical situations where attention, sensory processing, or command following might be impaired.
Collapse
Affiliation(s)
- André Sevenius Nilsen
- Brain Signaling Group, Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway;
| | - Johan Frederik Storm
- Brain Signaling Group, Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway;
| | - Bjørn Erik Juel
- Vestre Viken Klinisk Nevrofysiologi, Kongsberg Hospital, Vestre Viken Health Trust, 3004 Drammen, Norway;
| |
Collapse
|
8
|
Zheng Y, Shi A, Liu XL. A working memory dependent dual process model of the testing effect. NPJ SCIENCE OF LEARNING 2024; 9:56. [PMID: 39251700 PMCID: PMC11385580 DOI: 10.1038/s41539-024-00268-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
This Perspective article expands on a working memory-dependent dual-process model, originally proposed by Zheng et al.1, to elucidate individual differences in the testing effect. This model posits that the testing effect comprises two processes: retrieval-attempt and post-retrieval re-encoding. We substantiate this model with empirical evidence and propose future research. This model invites further studies on the trade-off between testing benefits and WM demands, facilitating the development of personalized educational practices.
Collapse
Affiliation(s)
- Yicong Zheng
- Department of Psychology, University of California, Davis, CA, USA
| | - Aike Shi
- Department of Psychology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xiaonan L Liu
- Department of Psychology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
9
|
Pereira Soares SM, Prystauka Y, DeLuca V, Poch C, Rothman J. Brain correlates of attentional load processing reflect degree of bilingual engagement: Evidence from EEG. Neuroimage 2024; 298:120786. [PMID: 39147289 DOI: 10.1016/j.neuroimage.2024.120786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/09/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024] Open
Abstract
The present study uses electroencephalography (EEG) with an N-back task (0-, 1-, and 2-back) to investigate if and how individual bilingual experiences modulate brain activity and cognitive processes. The N-back is an especially appropriate task given recent proposals situating bilingual effects on neurocognition within the broader attentional control system (Bialystok and Craik, 2022). Beyond its working memory component, the N-Back task builds in complexity incrementally, progressively taxing the attentional system. EEG, behavioral and language/social background data were collected from 60 bilinguals. Two cognitive loads were calculated: low (1-back minus 0-back) and high (2-back minus 0-back). Behavioral performance and brain recruitment were modeled as a function of individual differences in bilingual engagement. We predicted task performance as modulated by bilingual engagement would reflect cognitive demands of increased complexity: slower reaction times and lower accuracy, and increase in theta, decrease in alpha and modulated N2/P3 amplitudes. The data show no modulation of the expected behavioral effects by degree of bilingual engagement. However, individual differences analyses reveal significant correlations between non-societal language use in Social contexts and alpha in the low cognitive load condition and age of acquisition of the L2/2L1 with theta in the high cognitive load. These findings lend some initial support to Bialystok and Craik (2022), showing how certain adaptations at the brain level take place in order to deal with the cognitive demands associated with variations in bilingual language experience and increases in attentional load. Furthermore, the present data highlight how these effects can play out differentially depending on cognitive testing/modalities - that is, effects were found at the TFR level but not behaviorally or in the ERPs, showing how the choice of analysis can be deterministic when investigating bilingual effects.
Collapse
Affiliation(s)
| | - Yanina Prystauka
- Department of Linguistic, Literary and Aesthetic Studies, University of Bergen, Bergen, Norway
| | - Vincent DeLuca
- Department of Language and Culture, UiT the Arctic University of Norway, Tromsø, Norway
| | - Claudia Poch
- Nebrija Research Center in Cognition, University of Nebrija, Madrid, Spain
| | - Jason Rothman
- Department of Language and Culture, UiT the Arctic University of Norway, Tromsø, Norway; Nebrija Research Center in Cognition, University of Nebrija, Madrid, Spain; Department of Linguistics and English Language, Lancaster University, Bailrigg, Lancaster LA1 4YW, UK
| |
Collapse
|
10
|
Tian S, Cheng YA, Luo H. Rhythm Facilitates Auditory Working Memory via Beta-Band Encoding and Theta-Band Maintenance. Neurosci Bull 2024:10.1007/s12264-024-01289-w. [PMID: 39215886 DOI: 10.1007/s12264-024-01289-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/04/2024] [Indexed: 09/04/2024] Open
Abstract
Rhythm, as a prominent characteristic of auditory experiences such as speech and music, is known to facilitate attention, yet its contribution to working memory (WM) remains unclear. Here, human participants temporarily retained a 12-tone sequence presented rhythmically or arrhythmically in WM and performed a pitch change-detection task. Behaviorally, while having comparable accuracy, rhythmic tone sequences showed a faster response time and lower response boundaries in decision-making. Electroencephalographic recordings revealed that rhythmic sequences elicited enhanced non-phase-locked beta-band (16 Hz-33 Hz) and theta-band (3 Hz-5 Hz) neural oscillations during sensory encoding and WM retention periods, respectively. Importantly, the two-stage neural signatures were correlated with each other and contributed to behavior. As beta-band and theta-band oscillations denote the engagement of motor systems and WM maintenance, respectively, our findings imply that rhythm facilitates auditory WM through intricate oscillation-based interactions between the motor and auditory systems that facilitate predictive attention to auditory sequences.
Collapse
Affiliation(s)
- Suizi Tian
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Yu-Ang Cheng
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, RI, 02912, USA
| | - Huan Luo
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, China.
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
11
|
Herff SA, Bonetti L, Cecchetti G, Vuust P, Kringelbach ML, Rohrmeier MA. Hierarchical syntax model of music predicts theta power during music listening. Neuropsychologia 2024; 199:108905. [PMID: 38740179 DOI: 10.1016/j.neuropsychologia.2024.108905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 03/07/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Linguistic research showed that the depth of syntactic embedding is reflected in brain theta power. Here, we test whether this also extends to non-linguistic stimuli, specifically music. We used a hierarchical model of musical syntax to continuously quantify two types of expert-annotated harmonic dependencies throughout a piece of Western classical music: prolongation and preparation. Prolongations can roughly be understood as a musical analogue to linguistic coordination between constituents that share the same function (e.g., 'pizza' and 'pasta' in 'I ate pizza and pasta'). Preparation refers to the dependency between two harmonies whereby the first implies a resolution towards the second (e.g., dominant towards tonic; similar to how the adjective implies the presence of a noun in 'I like spicy … '). Source reconstructed MEG data of sixty-five participants listening to the musical piece was then analysed. We used Bayesian Mixed Effects models to predict theta envelope in the brain, using the number of open prolongation and preparation dependencies as predictors whilst controlling for audio envelope. We observed that prolongation and preparation both carry independent and distinguishable predictive value for theta band fluctuation in key linguistic areas such as the Angular, Superior Temporal, and Heschl's Gyri, or their right-lateralised homologues, with preparation showing additional predictive value for areas associated with the reward system and prediction. Musical expertise further mediated these effects in language-related brain areas. Results show that predictions of precisely formalised music-theoretical models are reflected in the brain activity of listeners which furthers our understanding of the perception and cognition of musical structure.
Collapse
Affiliation(s)
- Steffen A Herff
- Sydney Conservatorium of Music, University of Sydney, Sydney, Australia; The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, Australia; Digital and Cognitive Musicology Lab, College of Humanities, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Leonardo Bonetti
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Denmark; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom; Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Gabriele Cecchetti
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, Australia; Digital and Cognitive Musicology Lab, College of Humanities, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Denmark
| | - Morten L Kringelbach
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Denmark; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom; Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Martin A Rohrmeier
- Digital and Cognitive Musicology Lab, College of Humanities, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
12
|
Haslacher D, Cavallo A, Reber P, Kattein A, Thiele M, Nasr K, Hashemi K, Sokoliuk R, Thut G, Soekadar SR. Working memory enhancement using real-time phase-tuned transcranial alternating current stimulation. Brain Stimul 2024; 17:850-859. [PMID: 39029737 DOI: 10.1016/j.brs.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Prior work has shown that transcranial alternating current stimulation (tACS) of parietooccipital alpha oscillations (8-14 Hz) can modulate working memory (WM) performance as a function of the phase lag to endogenous oscillations. However, leveraging this effect using real-time phase-tuned tACS has not been feasible so far due to stimulation artifacts preventing continuous phase tracking. OBJECTIVES AND HYPOTHESIS We aimed to develop a system that tracks and adapts the phase lag between tACS and ongoing parietooccipital alpha oscillations in real-time. We hypothesized that such real-time phase-tuned tACS enhances working memory performance, depending on the phase lag. METHODS We developed real-time phase-tuned closed-loop amplitude-modulated tACS (CLAM-tACS) targeting parietooccipital alpha oscillations. CLAM-tACS was applied at six different phase lags relative to ongoing alpha oscillations while participants (N = 21) performed a working memory task. To exclude that behavioral effects of CLAM-tACS were mediated by other factors such as sensory co-stimulation, a second group of participants (N = 25) received equivalent stimulation of the forehead. RESULTS WM accuracy improved in a phase lag dependent manner (p = 0.0350) in the group receiving parietooccipital stimulation, with the strongest enhancement observed at 330° phase lag between tACS and ongoing alpha oscillations (p = 0.00273, d = 0.976). Moreover, across participants, modulation of frontoparietal alpha oscillations correlated both in amplitude (p = 0.0248) and phase (p = 0.0270) with the modulation of WM accuracy. No such effects were observed in the control group receiving frontal stimulation. CONCLUSIONS Our results demonstrate the feasibility and efficacy of real-time phase-tuned CLAM-tACS in modulating both brain activity and behavior, thereby paving the way for further investigation into brain-behavior relationships and the exploration of innovative therapeutic applications.
Collapse
Affiliation(s)
- David Haslacher
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Alessia Cavallo
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Neurology and Experimental Neurology, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Philipp Reber
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Psychology, University of California, Berkeley, CA, USA
| | - Anna Kattein
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Moritz Thiele
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Khaled Nasr
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kimia Hashemi
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Rodika Sokoliuk
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gregor Thut
- School of Psychology & Neuroscience, University of Glasgow, Glasgow, UK
| | - Surjo R Soekadar
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
13
|
Pfeiffer M, Kübler A, Hilger K. Modulation of human frontal midline theta by neurofeedback: A systematic review and quantitative meta-analysis. Neurosci Biobehav Rev 2024; 162:105696. [PMID: 38723734 DOI: 10.1016/j.neubiorev.2024.105696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/27/2024] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
Human brain activity consists of different frequency bands associated with varying functions. Oscillatory activity of frontal brain regions in the theta range (4-8 Hz) is linked to cognitive processing and can be modulated by neurofeedback - a technique where participants receive real-time feedback about their brain activity and learn to modulate it. However, criticism of this technique evolved, and high heterogeneity of study designs complicates a valid evaluation of its effectiveness. This meta-analysis provides the first systematic overview over studies attempting to modulate frontal midline theta with neurofeedback in healthy human participants. Out of 1261 articles screened, 14 studies were eligible for systematic review and 11 for quantitative meta-analyses. Studies were evaluated following the DIAD model and the PRISMA guidelines. A significant across-study effect of medium size (Hedges' g = .66; 95%-CI [-0.62, 1.73]) with substantial between-study heterogeneity (Q(16) = 167.43, p < .001) was observed and subanalysis revealed effective frontal midline theta upregulation. We discuss moderators of effect sizes and provide guidelines for future research in this dynamic field.
Collapse
Affiliation(s)
- Maria Pfeiffer
- Institute of Psychology, Department of Psychology I, Würzburg University, Marcusstr. 9-11, Würzburg D-97070, Germany
| | - Andrea Kübler
- Institute of Psychology, Department of Psychology I, Würzburg University, Marcusstr. 9-11, Würzburg D-97070, Germany
| | - Kirsten Hilger
- Institute of Psychology, Department of Psychology I, Würzburg University, Marcusstr. 9-11, Würzburg D-97070, Germany.
| |
Collapse
|
14
|
Zhozhikashvili N, Protopova M, Shkurenko T, Arsalidou M, Zakharov I, Kotchoubey B, Malykh S, Pavlov YG. Working memory processes and intrinsic motivation: An EEG study. Int J Psychophysiol 2024; 201:112355. [PMID: 38718899 DOI: 10.1016/j.ijpsycho.2024.112355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 06/11/2024]
Abstract
Processes typically encompassed by working memory (WM) include encoding, retention, and retrieval of information. Previous research has demonstrated that motivation can influence WM performance, although the specific WM processes affected by motivation are not yet fully understood. In this study, we investigated the effects of motivation on different WM processes, examining how task difficulty modulates these effects. We hypothesized that motivation level and personality traits of the participants (N = 48, 32 females; mean age = 21) would modulate the parietal alpha and frontal theta electroencephalography (EEG) correlates of WM encoding, retention, and retrieval phases of the Sternberg task. This effect was expected to be more pronounced under conditions of very high task difficulty. We found that increasing difficulty led to reduced accuracy and increased response time, but no significant relationship was found between motivation and accuracy. However, EEG data revealed that motivation influenced WM processes, as indicated by changes in alpha and theta oscillations. Specifically, higher levels of the Resilience trait-associated with mental toughness, hardiness, self-efficacy, achievement motivation, and low anxiety-were related to increased alpha desynchronization during encoding and retrieval. Increased scores of Subjective Motivation to perform well in the task were related to enhanced frontal midline theta during retention. Additionally, these effects were significantly stronger under conditions of high difficulty. These findings provide insights into the specific WM processes that are influenced by motivation, and underscore the importance of considering both task difficulty and intrinsic motivation in WM research.
Collapse
Affiliation(s)
- Natalia Zhozhikashvili
- Faculty of Social Sciences, HSE University, Moscow, Russia; Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany.
| | - Maria Protopova
- Center for Language and Brain, HSE University, Moscow, Russia
| | | | | | - Ilya Zakharov
- Ural Federal University named after the first President of Russia B.N. Yeltsin, Yekaterinburg, Russia
| | - Boris Kotchoubey
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
| | - Sergey Malykh
- Developmental Behavioral Genetics Lab, Psychological Institute of Russian Academy of Education, Moscow, Russia
| | - Yuri G Pavlov
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
15
|
Ying Q, Dong W, Fabrikant SI. How Do In-Car Navigation Aids Impair Expert Navigators' Spatial Learning Ability? ANNALS OF THE AMERICAN ASSOCIATION OF GEOGRAPHERS 2024; 114:1483-1504. [PMID: 39193381 PMCID: PMC11346390 DOI: 10.1080/24694452.2024.2356858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/05/2024] [Accepted: 04/05/2024] [Indexed: 08/29/2024]
Abstract
Reliance on digital navigation aids has already shown negative impacts on navigators' innate spatial abilities. How this happens is still an open research question. We report on an empirical study with twenty-four experienced (male) taxi drivers to evaluate the long-term impacts of in-car navigation system use on the spatial learning ability of these navigation experts. Specifically, we measured cognitive load by means of electroencephalography (EEG) coupled with eye tracking to assess their visuospatial attention allocation during a video-based route-following task while driving through an unknown urban environment. We found that long-term reliance on in-car navigation aids did not affect participants' visual attention allocation during spatial learning but rather limited their ability to encode viewed geographic information into memory, which, in turn, led to greater cognitive load, especially along route segments between intersections. Participants with greater dependence on in-car navigation aids performed worse on the spatial knowledge tests. Our combined behavioral and neuropsychological findings provide evidence for the impairment of expert navigators' spatial learning ability when exposed to long-term use of digital in-car navigation aids.
Collapse
Affiliation(s)
- Qi Ying
- Faculty of Geographical Science, Beijing Normal University, China
- Department of Geography, University of Zurich, Switzerland
| | - Weihua Dong
- Faculty of Geographical Science, Beijing Normal University, China
| | - Sara Irina Fabrikant
- Department of Geography, University of Zurich, Switzerland
- Digital Society Initiative, University of Zurich, Switzerland
| |
Collapse
|
16
|
Patterson RA, Brooks H, Mirjalili M, Rashidi-Ranjbar N, Zomorrodi R, Blumberger DM, Fischer CE, Flint AJ, Graff-Guerrero A, Herrmann N, Kennedy JL, Kumar S, Lanctôt KL, Mah L, Mulsant BH, Pollock BG, Voineskos AN, Wang W, Rajji TK. Neurophysiological and other features of working memory in older adults at risk for dementia. Cogn Neurodyn 2024; 18:795-811. [PMID: 38826646 PMCID: PMC11143125 DOI: 10.1007/s11571-023-09938-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 03/06/2023] Open
Abstract
Theta-gamma coupling (TGC) is a neurophysiological process that supports working memory. Working memory is associated with other clinical and biological features. The extent to which TGC is associated with these other features and whether it contributes to working memory beyond these features is unknown. Two-hundred-and-three older participants at risk for Alzheimer's dementia-98 with mild cognitive impairment (MCI), 39 with major depressive disorder (MDD) in remission, and 66 with MCI and MDD (MCI + MDD)-completed a clinical assessment, N-back-EEG, and brain MRI. Among them, 190 completed genetic testing, and 121 completed [11C] Pittsburgh Compound B ([11C] PIB) PET imaging. Hierarchical linear regressions were used to assess whether TGC is associated with demographic and clinical variables; Alzheimer's disease-related features (APOE ε4 carrier status and β-amyloid load); and structural features related to working memory. Then, linear regressions were used to assess whether TGC is associated with 2-back performance after accounting for these features. Other than age, TGC was not associated with any non-neurophysiological features. In contrast, TGC (β = 0.27; p = 0.006), age (β = - 0.29; p = 0.012), and parietal cortical thickness (β = 0.24; p = 0.020) were associated with 2-back performance. We also examined two other EEG features that are linked to working memory-theta event-related synchronization and alpha event-related desynchronization-and found them not to be associated with any feature or performance after accounting for TGC. Our findings suggest that TGC is a process that is independent of other clinical, genetic, neurochemical, and structural variables, and supports working memory in older adults at risk for dementia. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-023-09938-y.
Collapse
Affiliation(s)
| | - Heather Brooks
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
| | - Mina Mirjalili
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
| | | | - Reza Zomorrodi
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
| | - Daniel M. Blumberger
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- Temerty Centre for Therapeutic Brain Intervention, CAMH, Toronto, ON M6J 1H1 Canada
| | - Corinne E. Fischer
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B, 1T8 Canada
| | - Alastair J. Flint
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- University Health Network, Toronto, ON M5G 1L7 Canada
| | - Ariel Graff-Guerrero
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
| | - Nathan Herrmann
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- Sunnybrook Health Sciences Centre, ON M4N 3M5 Toronto, Canada
| | - James L. Kennedy
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
| | - Sanjeev Kumar
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- Toronto Dementia Research Alliance, University of Toronto, ON M5S 1A1 Toronto, Canada
| | - Krista L. Lanctôt
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- Sunnybrook Health Sciences Centre, ON M4N 3M5 Toronto, Canada
| | - Linda Mah
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- Rotman Research Institute, Baycrest, Toronto, ON M6A 2E1 Canada
| | - Benoit H. Mulsant
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- Temerty Centre for Therapeutic Brain Intervention, CAMH, Toronto, ON M6J 1H1 Canada
| | - Bruce G. Pollock
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- Toronto Dementia Research Alliance, University of Toronto, ON M5S 1A1 Toronto, Canada
| | - Aristotle N. Voineskos
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
| | - Wei Wang
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
| | - Tarek K. Rajji
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- Toronto Dementia Research Alliance, University of Toronto, ON M5S 1A1 Toronto, Canada
| |
Collapse
|
17
|
Mohammadi Y, Graversen C, Manresa JB, Østergaard J, Andersen OK. Effects of Background Noise and Linguistic Violations on Frontal Theta Oscillations During Effortful Listening. Ear Hear 2024; 45:721-729. [PMID: 38287477 DOI: 10.1097/aud.0000000000001464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
OBJECTIVES Background noise and linguistic violations have been shown to increase the listening effort. The present study aims to examine the effects of the interaction between background noise and linguistic violations on subjective listening effort and frontal theta oscillations during effortful listening. DESIGN Thirty-two normal-hearing listeners participated in this study. The linguistic violation was operationalized as sentences versus random words (strings). Behavioral and electroencephalography data were collected while participants listened to sentences and strings in background noise at different signal to noise ratios (SNRs) (-9, -6, -3, 0 dB), maintained them in memory for about 3 sec in the presence of background noise, and then chose the correct sequence of words from a base matrix of words. RESULTS Results showed the interaction effects of SNR and speech type on effort ratings. Although strings were inherently more effortful than sentences, decreasing SNR from 0 to -9 dB (in 3 dB steps), increased effort rating more for sentences than strings in each step, suggesting the more pronounced effect of noise on sentence processing that strings in low SNRs. Results also showed a significant interaction between SNR and speech type on frontal theta event-related synchronization during the retention interval. This interaction indicated that strings exhibited higher frontal theta event-related synchronization than sentences at SNR of 0 dB, suggesting increased verbal working memory demand for strings under challenging listening conditions. CONCLUSIONS The study demonstrated that the interplay between linguistic violation and background noise shapes perceived effort and cognitive load during speech comprehension under challenging listening conditions. The differential impact of noise on processing sentences versus strings highlights the influential role of context and cognitive resource allocation in the processing of speech.
Collapse
Affiliation(s)
- Yousef Mohammadi
- Department of Health Science and Technology, Integrative Neuroscience, Aalborg University, Aalborg, Denmark
| | - Carina Graversen
- Department of Health Science and Technology, Integrative Neuroscience, Aalborg University, Aalborg, Denmark
- Department of Health Science and Technology, Center for Neuroplasticity and Pain, Aalborg University, Aalborg, Denmark
| | - José Biurrun Manresa
- Department of Health Science and Technology, Center for Neuroplasticity and Pain, Aalborg University, Aalborg, Denmark
- Institute for Research and Development in Bioengineering and Bioinformatics, National Scientific and Technical Research Council (CONICET) - National University of Entre Ríos (UNER), Oro Verde, Argentina
| | - Jan Østergaard
- Department of Electronic Systems, Aalborg University, Aalborg, Denmark
| | - Ole Kæseler Andersen
- Department of Health Science and Technology, Integrative Neuroscience, Aalborg University, Aalborg, Denmark
- Department of Health Science and Technology, Center for Neuroplasticity and Pain, Aalborg University, Aalborg, Denmark
| |
Collapse
|
18
|
Ding Y, Postle BR, van Ede F. Neural Signatures of Competition between Voluntary and Involuntary Influences over the Focus of Attention in Visual Working Memory. J Cogn Neurosci 2024; 36:815-827. [PMID: 38319683 DOI: 10.1162/jocn_a_02123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Adaptive behavior relies on the selection and prioritization of relevant sensory inputs from the external environment as well as from among internal sensory representations held in working memory. Recent behavioral evidence suggests that the classic distinction between voluntary (goal-driven) and involuntary (stimulus-driven) influences over attentional allocation also applies to the selection of internal representations held in working memory. In the current EEG study, we set out to investigate the neural dynamics associated with the competition between voluntary and involuntary control over the focus of attention in visual working memory. We show that when voluntary and involuntary factors compete for the internal focus of attention, prioritization of the appropriate item is delayed-as reflected both in delayed gaze biases that track internal selection and in delayed neural beta (15-25 Hz) dynamics that track the planning for the upcoming memory-guided manual action. We further show how this competition is paralleled-possibly resolved-by an increase in frontal midline theta (4-8 Hz) activity that, moreover, predicts the speed of ensuing memory-guided behavior. Finally, because theta increased following retrocues that effectively reduced working-memory load, our data unveil how frontal theta activity during internal attentional focusing tracks demands on cognitive control over and above working-memory load. Together, these data yield new insight into the neural dynamics that govern the focus of attention in visual working memory, and disentangle the contributions of frontal midline theta activity to the processes of control versus retention in working memory.
Collapse
|
19
|
Zając-Lamparska L, Zabielska-Mendyk E, Zapała D, Augustynowicz P. Compensatory brain activity pattern is not present in older adults during the n-back task performance-Findings based on EEG frequency analysis. Front Psychol 2024; 15:1371035. [PMID: 38666231 PMCID: PMC11043891 DOI: 10.3389/fpsyg.2024.1371035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/15/2024] [Indexed: 04/28/2024] Open
Abstract
Introduction Cognitive ability is one of the most important enablers for successful aging. At the same time, cognitive decline is a well-documented phenomenon accompanying the aging process. Nevertheless, it is acknowledged that aging can also be related to positive processes that allow one to compensate for the decline. These processes include the compensatory brain activity of older adults primarily investigated using fMRI and PET. To strengthen the cognitive interpretation of compensatory brain activity in older adults, we searched for its indicators in brain activity measured by EEG. Methods The study sample comprised 110 volunteers, including 50 older adults (60-75 years old) and 60 young adults (20-35 years old) who performed 1-back, 2-back, and 3-back tasks while recording the EEG signal. The study analyzed (1) the level of cognitive performance, including sensitivity index, the percentage of correct answers to the target, and the percentage of false alarm errors; (2) theta and alpha power for electrodes located in the frontal-midline (Fz, AF3, AF4, F3, F4, FC1, and FC2) and the centro-parietal (CP1, CP2, P3, P4, and Pz) areas. Results Cognitive performance was worse in older adults than in young adults, which manifested in a significantly lower sensitivity index and a significantly higher false alarm error rate at all levels of the n-back task difficulty. Simultaneously, performance worsened with increasing task difficulty regardless of age. Significantly lower theta power in the older participants was observed at all difficulty levels, even at the lowest one, where compensatory activity was expected. At the same time, at this difficulty level, cognitive performance was worse in older adults than in young adults, which could reduce the chances of observing compensatory brain activity. The significant decrease in theta power observed in both age groups with rising task difficulty can reflect a declining capacity for efficient cognitive functioning under increasing demands rather than adapting to this increase. Moreover, in young adults, alpha power decreased to some extent with increasing cognitive demand, reflecting adaptation to them, while in older adults, no analogous pattern was observed. Discussion In conclusion, based on the results of the current study, the presence of compensatory activity in older adults cannot be inferred.
Collapse
Affiliation(s)
- Ludmiła Zając-Lamparska
- Department of General and Human Development Psychology, Faculty of Psychology, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Emilia Zabielska-Mendyk
- Department of Experimental Psychology, Institute of Psychology, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Dariusz Zapała
- Department of Experimental Psychology, Institute of Psychology, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Paweł Augustynowicz
- Department of Experimental Psychology, Institute of Psychology, The John Paul II Catholic University of Lublin, Lublin, Poland
| |
Collapse
|
20
|
Ostrowski J, Rose M. Increases in pre-stimulus theta and alpha oscillations precede successful encoding of crossmodal associations. Sci Rep 2024; 14:7895. [PMID: 38570599 PMCID: PMC10991485 DOI: 10.1038/s41598-024-58227-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
A central aspect of episodic memory is the formation of associations between stimuli from different modalities. Current theoretical approaches assume a functional role of ongoing oscillatory power and phase in the theta band (3-7 Hz) for the encoding of crossmodal associations. Furthermore, ongoing activity in the theta range as well as alpha (8-12 Hz) and low beta activity (13-20 Hz) before the presentation of a stimulus is thought to modulate subsequent cognitive processing, including processes that are related to memory. In this study, we tested the hypothesis that pre-stimulus characteristics of low frequency activity are relevant for the successful formation of crossmodal memory. The experimental design that was used specifically allowed for the investigation of associative memory independent from individual item memory. Participants (n = 51) were required to memorize associations between audiovisual stimulus pairs and distinguish them from newly arranged ones consisting of the same single stimuli in the subsequent recognition task. Our results show significant differences in the state of pre-stimulus theta and alpha power between remembered and not remembered crossmodal associations, clearly relating increased power to successful recognition. These differences were positively correlated with memory performance, suggesting functional relevance for behavioral measures of associative memory. Further analysis revealed similar effects in the low beta frequency ranges, indicating the involvement of different pre-stimulus-related cognitive processes. Phase-based connectivity measures in the theta band did not differ between remembered and not remembered stimulus pairs. The findings support the assumed functional relevance of theta band oscillations for the formation of associative memory and demonstrate that an increase of theta as well as alpha band oscillations in the pre-stimulus period is beneficial for the establishment of crossmodal memory.
Collapse
Affiliation(s)
- Jan Ostrowski
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Michael Rose
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
21
|
Wischnewski M, Berger TA, Opitz A, Alekseichuk I. Causal functional maps of brain rhythms in working memory. Proc Natl Acad Sci U S A 2024; 121:e2318528121. [PMID: 38536752 PMCID: PMC10998564 DOI: 10.1073/pnas.2318528121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/27/2024] [Indexed: 04/08/2024] Open
Abstract
Human working memory is a key cognitive process that engages multiple functional anatomical nodes across the brain. Despite a plethora of correlative neuroimaging evidence regarding the working memory architecture, our understanding of critical hubs causally controlling overall performance is incomplete. Causal interpretation requires cognitive testing following safe, temporal, and controllable neuromodulation of specific functional anatomical nodes. Such experiments became available in healthy humans with the advance of transcranial alternating current stimulation (tACS). Here, we synthesize findings of 28 placebo-controlled studies (in total, 1,057 participants) that applied frequency-specific noninvasive stimulation of neural oscillations and examined working memory performance in neurotypical adults. We use a computational meta-modeling method to simulate each intervention in realistic virtual brains and test reported behavioral outcomes against the stimulation-induced electric fields in different brain nodes. Our results show that stimulating anterior frontal and medial temporal theta oscillations and occipitoparietal gamma rhythms leads to significant dose-dependent improvement in working memory task performance. Conversely, prefrontal gamma modulation is detrimental to performance. Moreover, we found distinct spatial expression of theta subbands, where working memory changes followed orbitofrontal high-theta modulation and medial temporal low-theta modulation. Finally, all these results are driven by changes in working memory accuracy rather than processing time measures. These findings provide a fresh view of the working memory mechanisms, complementary to neuroimaging research, and propose hypothesis-driven targets for the clinical treatment of working memory deficits.
Collapse
Affiliation(s)
- Miles Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN55455
- Department of Experimental Psychology, University of Groningen, Groningen9712TS, The Netherlands
| | - Taylor A. Berger
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN55455
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN55455
| | - Ivan Alekseichuk
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN55455
| |
Collapse
|
22
|
Santo-Angles A, Temudo A, Babushkin V, Sreenivasan KK. Effective connectivity of working memory performance: a DCM study of MEG data. Front Hum Neurosci 2024; 18:1339728. [PMID: 38501039 PMCID: PMC10944968 DOI: 10.3389/fnhum.2024.1339728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/12/2024] [Indexed: 03/20/2024] Open
Abstract
Visual working memory (WM) engages several nodes of a large-scale network that includes frontal, parietal, and visual regions; however, little is understood about how these regions interact to support WM behavior. In particular, it is unclear whether network dynamics during WM maintenance primarily represent feedforward or feedback connections. This question has important implications for current debates about the relative roles of frontoparietal and visual regions in WM maintenance. In the current study, we investigated the network activity supporting WM using MEG data acquired while healthy subjects performed a multi-item delayed estimation WM task. We used computational modeling of behavior to discriminate correct responses (high accuracy trials) from two different types of incorrect responses (low accuracy and swap trials), and dynamic causal modeling of MEG data to measure effective connectivity. We observed behaviorally dependent changes in effective connectivity in a brain network comprising frontoparietal and early visual areas. In comparison with high accuracy trials, frontoparietal and frontooccipital networks showed disrupted signals depending on type of behavioral error. Low accuracy trials showed disrupted feedback signals during early portions of WM maintenance and disrupted feedforward signals during later portions of maintenance delay, while swap errors showed disrupted feedback signals during the whole delay period. These results support a distributed model of WM that emphasizes the role of visual regions in WM storage and where changes in large scale network configurations can have important consequences for memory-guided behavior.
Collapse
Affiliation(s)
- Aniol Santo-Angles
- Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Brain and Health, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ainsley Temudo
- Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Vahan Babushkin
- Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kartik K. Sreenivasan
- Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Brain and Health, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
23
|
Kisker J, Johnsdorf M, Sagehorn M, Schöne B, Gruber T. Induced oscillatory brain responses under virtual reality conditions in the context of repetition priming. Exp Brain Res 2024; 242:525-541. [PMID: 38200371 PMCID: PMC10894769 DOI: 10.1007/s00221-023-06766-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
In the human electroencephalogram (EEG), induced oscillatory responses in various frequency bands are regarded as valuable indices to examine the neural mechanisms underlying human memory. While the advent of virtual reality (VR) drives the investigation of mnemonic processing under more lifelike settings, the joint application of VR and EEG methods is still in its infancy (e.g., due to technical limitations impeding the signal acquisition). The objective of the present EEG study was twofold. First, we examined whether the investigation of induced oscillations under VR conditions yields equivalent results compared to standard paradigms. Second, we aimed at obtaining further insights into basic memory-related brain mechanisms in VR. To these ends, we relied on a standard implicit memory design, namely repetition priming, for which the to-be-expected effects are well-documented for conventional studies. Congruently, we replicated a suppression of the evoked potential after stimulus onset. Regarding the induced responses, we observed a modulation of induced alphaband in response to a repeated stimulus. Importantly, our results revealed a repetition-related suppression of the high-frequency induced gammaband response (>30 Hz), indicating the sharpening of a cortical object representation fostering behavioral priming effects. Noteworthy, the analysis of the induced gammaband responses required a number of measures to minimize the influence of external and internal sources of artefacts (i.e., the electrical shielding of the technical equipment and the control for miniature eye movements). In conclusion, joint VR-EEG studies with a particular focus on induced oscillatory responses offer a promising advanced understanding of mnemonic processing under lifelike conditions.
Collapse
Affiliation(s)
- Joanna Kisker
- Institute of Psychology, Osnabrück University, Osnabrück, Germany.
| | - Marike Johnsdorf
- Institute of Psychology, Osnabrück University, Osnabrück, Germany
| | - Merle Sagehorn
- Institute of Psychology, Osnabrück University, Osnabrück, Germany
| | - Benjamin Schöne
- Institute of Psychology, Osnabrück University, Osnabrück, Germany
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Thomas Gruber
- Institute of Psychology, Osnabrück University, Osnabrück, Germany
| |
Collapse
|
24
|
Shtoots L, Nadler A, Partouche R, Sharir D, Rothstein A, Shati L, Levy DA. Frontal midline theta transcranial alternating current stimulation enhances early consolidation of episodic memory. NPJ SCIENCE OF LEARNING 2024; 9:8. [PMID: 38365886 PMCID: PMC10873319 DOI: 10.1038/s41539-024-00222-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 02/02/2024] [Indexed: 02/18/2024]
Abstract
Evidence implicating theta rhythms in declarative memory encoding and retrieval, together with the notion that both retrieval and consolidation involve memory reinstatement or replay, suggests that post-learning theta rhythm modulation can promote early consolidation of newly formed memories. Building on earlier work employing theta neurofeedback, we examined whether theta-frequency transcranial alternating stimulation (tACS) can engender effective consolidation of newly formed episodic memories, compared with beta frequency stimulation or sham control conditions. We compared midline frontal and posterior parietal theta stimulation montages and examined whether benefits to memory of theta upregulation are attributable to consolidation rather than to retrieval processes by using a washout period to eliminate tACS after-effects between stimulation and memory assessment. Four groups of participants viewed object pictures followed by a free recall test during three study-test cycles. They then engaged in tACS (frontal theta montage/parietal theta montage/frontal beta montage/sham) for a period of 20 min, followed by a 2-h break. Free recall assessments were conducted after the break, 24 h later, and 7 days later. Frontal midline theta-tACS induced significant off-line retrieval gains at all assessment time points relative to all other conditions. This indicates that theta upregulation provides optimal conditions for the consolidation of episodic memory, independent of mental-state strategies.
Collapse
Affiliation(s)
- Limor Shtoots
- Baruch Ivcher School of Psychology, Reichman University, Herzliya, 4610101, Israel
| | - Asher Nadler
- Baruch Ivcher School of Psychology, Reichman University, Herzliya, 4610101, Israel
| | - Roni Partouche
- Baruch Ivcher School of Psychology, Reichman University, Herzliya, 4610101, Israel
| | - Dorin Sharir
- Baruch Ivcher School of Psychology, Reichman University, Herzliya, 4610101, Israel
| | - Aryeh Rothstein
- Baruch Ivcher School of Psychology, Reichman University, Herzliya, 4610101, Israel
| | - Liran Shati
- Baruch Ivcher School of Psychology, Reichman University, Herzliya, 4610101, Israel
| | - Daniel A Levy
- Baruch Ivcher School of Psychology, Reichman University, Herzliya, 4610101, Israel.
- Department of Psychology, Palo Alto University, Palo Alto, CA, 94304, USA.
| |
Collapse
|
25
|
Soto-Icaza P, Soto-Fernández P, Kausel L, Márquez-Rodríguez V, Carvajal-Paredes P, Martínez-Molina MP, Figueroa-Vargas A, Billeke P. Oscillatory activity underlying cognitive performance in children and adolescents with autism: a systematic review. Front Hum Neurosci 2024; 18:1320761. [PMID: 38384334 PMCID: PMC10879575 DOI: 10.3389/fnhum.2024.1320761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/15/2024] [Indexed: 02/23/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition that exhibits a widely heterogeneous range of social and cognitive symptoms. This feature has challenged a broad comprehension of this neurodevelopmental disorder and therapeutic efforts to address its difficulties. Current therapeutic strategies have focused primarily on treating behavioral symptoms rather than on brain psychophysiology. During the past years, the emergence of non-invasive brain stimulation techniques (NIBS) has opened alternatives to the design of potential combined treatments focused on the neurophysiopathology of neuropsychiatric disorders like ASD. Such interventions require identifying the key brain mechanisms underlying the symptomatology and cognitive features. Evidence has shown alterations in oscillatory features of the neural ensembles associated with cognitive functions in ASD. In this line, we elaborated a systematic revision of the evidence of alterations in brain oscillations that underlie key cognitive processes that have been shown to be affected in ASD during childhood and adolescence, namely, social cognition, attention, working memory, inhibitory control, and cognitive flexibility. This knowledge could contribute to developing therapies based on NIBS to improve these processes in populations with ASD.
Collapse
Affiliation(s)
- Patricia Soto-Icaza
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social, (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| | | | - Leonie Kausel
- Centro de Estudios en Neurociencia Humana y Neuropsicología (CENHN), Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
| | - Víctor Márquez-Rodríguez
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social, (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| | - Patricio Carvajal-Paredes
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social, (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| | - María Paz Martínez-Molina
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social, (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| | - Alejandra Figueroa-Vargas
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social, (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
- Laboratory for Cognitive and Evolutionary Neuroscience (LaNCE), Centro Interdisciplinario de Neurociencia, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Billeke
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social, (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| |
Collapse
|
26
|
Pan L, Wang J, Wu W, Wang Y, Zhu Y, Song Y. Transcutaneous auricular vagus nerve stimulation improves working memory in temporal lobe epilepsy: A randomized double-blind study. CNS Neurosci Ther 2024; 30:e14395. [PMID: 37553557 PMCID: PMC10848055 DOI: 10.1111/cns.14395] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/08/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023] Open
Abstract
AIMS This study investigated the impact of transcutaneous auricular vagus nerve stimulation (taVNS) on working memory (WM) in refractory temporal lobe epilepsy (rTLE) and the underlying mechanisms. METHODS In this randomized double-blind study, 28 rTLE patients were subjected to an active or sham taVNS (a/s-taVNS) protocol for 20 weeks (a-taVNS group, n = 19; s-ta VNS group, n = 9). Patients performed visual WM tasks during stimulation and neural oscillations were simultaneously recorded by 19-channel electroencephalography. RESULTS Compared with the baseline state, reaction time was significantly shorter after 20 weeks of taVNS in the a-taVNS group (p = 0.010), whereas no difference was observed in the s-taVNS group (p > 0.05). The power spectral density (PSD) of the theta frequency band in the Fz channel decreased significantly after a-taVNS during WM-encoding (p = 0.020), maintenance (p = 0.038), and retrieval (p = 0.039) phases, but not in the s-taVNS group (all p > 0.05). CONCLUSION Neural oscillations during WM were altered by taVNS and WM performance was improved. Alterations in frontal midline theta oscillations may be a marker for the effect of taVNS on cognitive regulation.
Collapse
Affiliation(s)
- Liping Pan
- General Medicine DepartmentTianjin Medical University General HospitalTianjinChina
| | - Jiajing Wang
- Department of Intensive Care Medicine, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
- Tianjin Medical UniversityTianjinChina
| | - Wenjuan Wu
- Department of NeurologyThe First Affiliated Hospital of Henan University of Science and TechnologyLuoyangChina
| | | | | | - Yijun Song
- Department of Intensive Care Medicine, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| |
Collapse
|
27
|
Liu X, Chen Q, Cheng F, Zhuang W, Zhang W, Tang Y, Zhou D. The abnormal brain activation pattern of adolescents with major depressive disorder based on working memory tasks: A fNIRS study. J Psychiatr Res 2024; 169:31-37. [PMID: 38000181 DOI: 10.1016/j.jpsychires.2023.10.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/16/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023]
Abstract
OBJECTIVE Although studies have confirmed that working memory (WM) is impaired among adults with major depressive disorder (MDD), generalizing these neurocognitive impairments to adolescents with MDD would be tenuous. Therefore, separate studies for adolescents with MDD are needed. Relatively little is known about the neural processes associated with WM dysfunction in adolescents with MDD. Thus, we examined whether adolescents with MDD have abnormal brain activation patterns compared to healthy controls (HC) during WM tasks and whether it was possible to distinguish adolescents with MDD and HC based on mean oxy-hemoglobin (Oxy-Hb) changes. METHOD A total of 87 adolescents with MDD and 63 HC were recruited. Functional near-infrared spectroscopy (fNIRS) was performed to monitor the concentrations of Oxy-Hb in the frontotemporal lobe while participants performed three WM tasks in order to examine WM impairments in adolescents with depression. RESULTS The mean changes in Oxy-Hb concentrations in the left prefrontal cortex and right prefrontal cortex were higher among HC than among patients during the encoding and maintenance phase under each WM-load task. Machine learning was used to distinguish adolescents with MDD and HC based on Oxy-Hb changes, with a moderate area under the curve of 0.84. CONCLUSIONS This study revealed WM defects in adolescents with MDD compared to HC based on mean Oxy-Hb changes, which can be valuable for distinguishing adolescents with MDD from HC.
Collapse
Affiliation(s)
- Xiaoli Liu
- Department of Psychiatry, Ningbo Kangning Hospital & Affiliated Mental Health Centre, Ningbo Key Laboratory for Physical Diagnosis and Treatment of Mental and Psychological Disorders, Ningbo University, Ningbo, Zhejiang, 315201, China
| | - Qianqian Chen
- Department of Psychosomatic, Taizhou Second People's Hospital, Taizhou, Zhejiang, 317200, China
| | - Fang Cheng
- Department of Psychiatry, Ningbo Kangning Hospital & Affiliated Mental Health Centre, Ningbo Key Laboratory for Physical Diagnosis and Treatment of Mental and Psychological Disorders, Ningbo University, Ningbo, Zhejiang, 315201, China
| | - Wenhao Zhuang
- Department of Psychiatry, Ningbo Kangning Hospital & Affiliated Mental Health Centre, Ningbo Key Laboratory for Physical Diagnosis and Treatment of Mental and Psychological Disorders, Ningbo University, Ningbo, Zhejiang, 315201, China
| | - Wenwu Zhang
- Department of Psychiatry, Ningbo Kangning Hospital & Affiliated Mental Health Centre, Ningbo Key Laboratory for Physical Diagnosis and Treatment of Mental and Psychological Disorders, Ningbo University, Ningbo, Zhejiang, 315201, China.
| | - Yiping Tang
- Department of Psychosomatic, Taizhou Second People's Hospital, Taizhou, Zhejiang, 317200, China.
| | - Dongsheng Zhou
- Department of Psychiatry, Ningbo Kangning Hospital & Affiliated Mental Health Centre, Ningbo Key Laboratory for Physical Diagnosis and Treatment of Mental and Psychological Disorders, Ningbo University, Ningbo, Zhejiang, 315201, China.
| |
Collapse
|
28
|
Gattas S, Larson MS, Mnatsakanyan L, Sen-Gupta I, Vadera S, Swindlehurst AL, Rapp PE, Lin JJ, Yassa MA. Theta mediated dynamics of human hippocampal-neocortical learning systems in memory formation and retrieval. Nat Commun 2023; 14:8505. [PMID: 38129375 PMCID: PMC10739909 DOI: 10.1038/s41467-023-44011-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Episodic memory arises as a function of dynamic interactions between the hippocampus and the neocortex, yet the mechanisms have remained elusive. Here, using human intracranial recordings during a mnemonic discrimination task, we report that 4-5 Hz (theta) power is differentially recruited during discrimination vs. overgeneralization, and its phase supports hippocampal-neocortical when memories are being formed and correctly retrieved. Interactions were largely bidirectional, with small but significant net directional biases; a hippocampus-to-neocortex bias during acquisition of new information that was subsequently correctly discriminated, and a neocortex-to-hippocampus bias during accurate discrimination of new stimuli from similar previously learned stimuli. The 4-5 Hz rhythm may facilitate the initial stages of information acquisition by neocortex during learning and the recall of stored information from cortex during retrieval. Future work should further probe these dynamics across different types of tasks and stimuli and computational models may need to be expanded accordingly to accommodate these findings.
Collapse
Affiliation(s)
- Sandra Gattas
- Department of Electrical Engineering and Computer Science, School of Engineering, University of California, Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, 92697, USA
| | - Myra Sarai Larson
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, 92697, USA
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, CA, 92697, USA
| | - Lilit Mnatsakanyan
- Department of Neurology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Indranil Sen-Gupta
- Department of Neurology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Sumeet Vadera
- Department of Neurological Surgery, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - A Lee Swindlehurst
- Department of Electrical Engineering and Computer Science, School of Engineering, University of California, Irvine, CA, 92617, USA
| | - Paul E Rapp
- Department of Military & Emergency Medicine, Uniformed Services University, Bethesda, MD, 20814, USA
| | - Jack J Lin
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, 92697, USA
- Department of Neurology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Michael A Yassa
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, 92697, USA.
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, CA, 92697, USA.
- Department of Neurology, School of Medicine, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
29
|
Koizumi K, Kunii N, Ueda K, Takabatake K, Nagata K, Fujitani S, Shimada S, Nakao M. Intracranial Neurofeedback Modulating Neural Activity in the Mesial Temporal Lobe During Memory Encoding: A Pilot Study. Appl Psychophysiol Biofeedback 2023; 48:439-451. [PMID: 37405548 PMCID: PMC10581957 DOI: 10.1007/s10484-023-09595-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2023] [Indexed: 07/06/2023]
Abstract
Removal of the mesial temporal lobe (MTL) is an established surgical procedure that leads to seizure freedom in patients with intractable MTL epilepsy; however, it carries the potential risk of memory damage. Neurofeedback (NF), which regulates brain function by converting brain activity into perceptible information and providing feedback, has attracted considerable attention in recent years for its potential as a novel complementary treatment for many neurological disorders. However, no research has attempted to artificially reorganize memory functions by applying NF before resective surgery to preserve memory functions. Thus, this study aimed (1) to construct a memory NF system that used intracranial electrodes to feedback neural activity on the language-dominant side of the MTL during memory encoding and (2) to verify whether neural activity and memory function in the MTL change with NF training. Two intractable epilepsy patients with implanted intracranial electrodes underwent at least five sessions of memory NF training to increase the theta power in the MTL. There was an increase in theta power and a decrease in fast beta and gamma powers in one of the patients in the late stage of memory NF sessions. NF signals were not correlated with memory function. Despite its limitations as a pilot study, to our best knowledge, this study is the first to report that intracranial NF may modulate neural activity in the MTL, which is involved in memory encoding. The findings provide important insights into the future development of NF systems for the artificial reorganization of memory functions.
Collapse
Affiliation(s)
- Koji Koizumi
- Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Naoto Kunii
- Department of Neurosurgery, The University of Tokyo, Tokyo, Japan
| | - Kazutaka Ueda
- Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | | | - Keisuke Nagata
- Department of Neurosurgery, The University of Tokyo, Tokyo, Japan
| | - Shigeta Fujitani
- Department of Neurosurgery, The University of Tokyo, Tokyo, Japan
| | - Seijiro Shimada
- Department of Neurosurgery, The University of Tokyo, Tokyo, Japan
| | - Masayuki Nakao
- Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
30
|
Rozengurt R, Kuznietsov I, Kachynska T, Kozachuk N, Abramchuk O, Zhuravlov O, Mendelsohn A, Levy DA. Theta EEG neurofeedback promotes early consolidation of real life-like episodic memory. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023; 23:1473-1481. [PMID: 37752389 DOI: 10.3758/s13415-023-01125-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 09/28/2023]
Abstract
Theta oscillations are believed to coordinate neuronal activity related to human cognition, especially for memory functions. Theta power during learning and retrieval has been found to correlate with memory performance success. Additionally, up-regulating theta oscillations during a post-encoding epoch crucial for memory consolidation was previously shown to benefit long-term memory for acquired motor sequences, pictures, and object-location associations. However, it remains to be determined whether such effects would be found for more ecological aspects of long-term episodic memory. Therefore, the current study assessed neurofeedback-based theta upregulation effects on movie memory. After viewing a 15-minute silent, narrative movie, participants engaged in neurofeedback-based theta/beta up-regulation, neurofeedback beta/theta up-regulation as an active control condition, or an unrelated passive control task. Memory was tested three times: once immediately after watching the movie (as baseline); 24 hours thereafter; and once again 1 week later. Memory performance 1 week after encoding was significantly enhanced in the theta/beta up-regulation group compared with the other groups. Additionally, changes in neurofeedback theta/beta ratio from baseline EEG recordings correlated with long-term memory gains in retrieving the movie's content. These findings highlight the relationship between post-learning theta oscillations and the consolidation of episodic memory for a naturalistic event.
Collapse
Affiliation(s)
- Roman Rozengurt
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | | | | | | | - Olha Abramchuk
- Lesya Ukrainka Volyn National University, Lutsk, Ukraine
| | | | - Avi Mendelsohn
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.
- Institute of Information Processing and Decision Making (IIPDM), University of Haifa, Haifa, Israel.
| | - Daniel A Levy
- Reichman University, Herzliya, Israel
- Palo Alto University, Palo Alto, CA, USA
| |
Collapse
|
31
|
Mohammadi Y, Østergaard J, Graversen C, Andersen OK, Biurrun Manresa J. Validity and reliability of self-reported and neural measures of listening effort. Eur J Neurosci 2023; 58:4357-4370. [PMID: 37984406 DOI: 10.1111/ejn.16187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023]
Abstract
Listening effort can be defined as a measure of cognitive resources used by listeners to perform a listening task. Various methods have been proposed to measure this effort, yet their reliability remains unestablished, a crucial step before their application in research or clinical settings. This study encompassed 32 participants undertaking speech-in-noise tasks across two sessions, approximately a week apart. They listened to sentences and word lists at varying signal-to-noise ratios (SNRs) (-9, -6, -3 and 0 dB), then retaining them for roughly 3 s. We evaluated the test-retest reliability of self-reported effort ratings, theta (4-7 Hz) and alpha (8-13 Hz) oscillatory power, suggested previously as neural markers of listening effort. Additionally, we examined the reliability of correct word percentages. Both relative and absolute reliability were assessed using intraclass correlation coefficients (ICC) and Bland-Altman analysis. We also computed the standard error of measurement (SEM) and smallest detectable change (SDC). Our findings indicated heightened frontal midline theta power for word lists compared to sentences during the retention phase under high SNRs (0 dB, -3 dB), likely indicating a greater memory load for word lists. We observed SNR's impact on alpha power in the right central region during the listening phase and frontal theta power during the retention phase in sentences. Overall, the reliability analysis demonstrated satisfactory between-session variability for correct words and effort ratings. However, neural measures (frontal midline theta power and right central alpha power) displayed substantial variability, even though group-level outcomes appeared consistent across sessions.
Collapse
Affiliation(s)
- Yousef Mohammadi
- Integrative Neuroscience, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Jan Østergaard
- Department of Electronic Systems, Aalborg University, Aalborg, Denmark
| | - Carina Graversen
- Integrative Neuroscience, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Ole Kaeseler Andersen
- Integrative Neuroscience, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - José Biurrun Manresa
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Institute for Research and Development in Bioengineering and Bioinformatics (IBB), CONICET-UNER, Oro Verde, Argentina
| |
Collapse
|
32
|
Yang L, Xiao X, Yu L, Shen Z, Luo Y, Zhao G, Dou Z, Lin W, Yang J, Yang L, Yu S. Neural mechanisms of working memory dysfunction in patients with chronic insomnia disorder. Sleep Med 2023; 112:151-158. [PMID: 37865032 DOI: 10.1016/j.sleep.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/17/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023]
Abstract
OBJECTIVE This study aimed to investigate the neural mechanisms underlying working memory impairment in patients with chronic insomnia disorder (CID) using event-related potentials (ERP) and resting-state functional connectivity (rsFC) approaches. METHODS Participants, including CID patients and healthy controls (HCs), completed clinical scales and underwent electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). EEG analysis compared reaction times, P3 amplitudes, event-related spectral perturbations (ERSP), and inter-trial phase synchronisation (ITPS) between CID patients and HCs. Subsequently, frontal regions (i.e., the Superior Frontal Gyrus [SFG] and Middle Frontal Gyrus [MFG]) corresponding to the EEG were selected as seeds for rsFC analysis. Correlation analyses were conducted to further investigate the relationship between functional connectivity abnormalities in brain regions and clinical symptom severity and P3 amplitude in CID patients. RESULTS Compared to HCs, CID patients exhibited slower reaction times across all working memory conditions, with the deficits becoming more pronounced as memory load increased. ERP analysis revealed increased P3 amplitude, theta wave power, and reduced inter-trial synchrony in CID patients. rsFC analysis showed decreased connectivity of SFG-posterior cingulated cortex (PCC), SFG-MFG, and MFG-frontal pole (FP), and increased connectivity of MFG- Middle Temporal Gyrus (MTG)in CID patients. Importantly, a significant correlation was found between the rsFC of SFG-MTG and P3 amplitude during 1-back. CONCLUSION This study confirms deficits in working memory capacity in patients with CID, specifically in the neural mechanisms of cognitive processing that vary depending on the level of cognitive load. Alterations in connectivity patterns within and between the frontal and temporal regions may be the neural basis of the cognitive impairment.
Collapse
Affiliation(s)
- Lu Yang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiangwen Xiao
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liyong Yu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhifu Shen
- Center of Interventional Medicine, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong, China
| | - Yucai Luo
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guangli Zhao
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zeyang Dou
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenting Lin
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Yang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lili Yang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Siyi Yu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
33
|
Pscherer C, Wendiggensen P, Mückschel M, Bluschke A, Beste C. Alpha and theta band activity share information relevant to proactive and reactive control during conflict-modulated response inhibition. Hum Brain Mapp 2023; 44:5936-5952. [PMID: 37728249 PMCID: PMC10619371 DOI: 10.1002/hbm.26486] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/28/2023] [Accepted: 09/04/2023] [Indexed: 09/21/2023] Open
Abstract
Response inhibition is an important instance of cognitive control and can be complicated by perceptual conflict. The neurophysiological mechanisms underlying these processes are still not understood. Especially the relationship between neural processes directly preceding cognitive control (proactive control) and processes underlying cognitive control (reactive control) has not been examined although there should be close links. In the current study, we investigate these aspects in a sample of N = 50 healthy adults. Time-frequency and beamforming approaches were applied to analyze the interrelation of brain states before (pre-trial) and during (within-trial) cognitive control. The behavioral data replicate a perceptual conflict-dependent modulation of response inhibition. During the pre-trial period, insular, inferior frontal, superior temporal, and precentral alpha activity was positively correlated with theta activity in the same regions and the superior frontal gyrus. Additionally, participants with a stronger pre-trial alpha activity in the primary motor cortex showed a stronger (within-trial) conflict effect in the theta band in the primary motor cortex. This theta conflict effect was further related to a stronger theta conflict effect in the midcingulate cortex until the end of the trial. The temporal cascade of these processes suggests that successful proactive preparation (anticipatory information gating) entails a stronger reactive processing of the conflicting stimulus information likely resulting in a realization of the need to adapt the current action plan. The results indicate that theta and alpha band activity share and transfer aspects of information when it comes to the interrelationship between proactive and reactive control during conflict-modulated motor inhibition.
Collapse
Affiliation(s)
- Charlotte Pscherer
- Cognitive Neurophysiology, Department of Child and Adolescent PsychiatryFaculty of Medicine of the TU DresdenDresdenGermany
- University Neuropsychology CenterFaculty of Medicine, TU DresdenDresdenGermany
| | - Paul Wendiggensen
- Cognitive Neurophysiology, Department of Child and Adolescent PsychiatryFaculty of Medicine of the TU DresdenDresdenGermany
- University Neuropsychology CenterFaculty of Medicine, TU DresdenDresdenGermany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent PsychiatryFaculty of Medicine of the TU DresdenDresdenGermany
- University Neuropsychology CenterFaculty of Medicine, TU DresdenDresdenGermany
| | - Annet Bluschke
- Cognitive Neurophysiology, Department of Child and Adolescent PsychiatryFaculty of Medicine of the TU DresdenDresdenGermany
- University Neuropsychology CenterFaculty of Medicine, TU DresdenDresdenGermany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent PsychiatryFaculty of Medicine of the TU DresdenDresdenGermany
- University Neuropsychology CenterFaculty of Medicine, TU DresdenDresdenGermany
| |
Collapse
|
34
|
Balconi M, Acconito C, Allegretta RA, Crivelli D. What Is the Relationship between Metacognition and Mental Effort in Executive Functions? The Contribution of Neurophysiology. Behav Sci (Basel) 2023; 13:918. [PMID: 37998665 PMCID: PMC10669885 DOI: 10.3390/bs13110918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
Prolonged cognitive effort can be considered one of the core determinants of mental fatigue and may negatively affect the efficacy and efficiency of cognitive performance. Metacognition-understood as a multi-componential set of skills concerning awareness and control of one's own cognition-might reduce such negative outcomes. This study aimed to explore the relation between metacognitive skills, neurocognitive performance, and the level of mental effort as mirrored by electrophysiological (EEG) markers of cognitive load and task demand. A challenging cognitive task was used to prompt and collect metacognition reports, performance data (accuracy and response times-RTs), and physiological markers of mental effort (task-related changes of spectral power for standard EEG frequency bands) via wearable EEG. Data analysis highlighted that different aspects of metacognitive skills are associated with performance as measured by, respectively, accuracy and RTs. Furthermore, specific aspects of metacognitive skills were found to be consistently correlated with EEG markers of cognitive effort, regardless of increasing task demands. Finally, behavioral metrics mirroring the efficiency of information processing were found to be associated with different EEG markers of cognitive effort depending on the low or high demand imposed by the task.
Collapse
Affiliation(s)
- Michela Balconi
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Faculty of Psychology, Università Cattolica del Sacro Cuore, 20123 Milan, Italy; (M.B.); (C.A.); (R.A.A.)
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, 20123 Milan, Italy
| | - Carlotta Acconito
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Faculty of Psychology, Università Cattolica del Sacro Cuore, 20123 Milan, Italy; (M.B.); (C.A.); (R.A.A.)
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, 20123 Milan, Italy
| | - Roberta A. Allegretta
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Faculty of Psychology, Università Cattolica del Sacro Cuore, 20123 Milan, Italy; (M.B.); (C.A.); (R.A.A.)
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, 20123 Milan, Italy
| | - Davide Crivelli
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Faculty of Psychology, Università Cattolica del Sacro Cuore, 20123 Milan, Italy; (M.B.); (C.A.); (R.A.A.)
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, 20123 Milan, Italy
| |
Collapse
|
35
|
Larsen JK, Hollands GJ, Garland EL, Evers AWM, Wiers RW. Be more mindful: Targeting addictive responses by integrating mindfulness with cognitive bias modification or cue exposure interventions. Neurosci Biobehav Rev 2023; 153:105408. [PMID: 37758008 DOI: 10.1016/j.neubiorev.2023.105408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/01/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
This review provides an overview of the most prominent neurocognitive effects of cognitive bias modification (CBM), cue-exposure therapy and mindfulness interventions for targeting addictive responses. It highlights the key insights that have stemmed from cognitive neuroscience and brain imaging research and combines these with insights from behavioural science in building a conceptual model integrating mindfulness with response-focused CBM or cue-exposure interventions. This furthers our understanding of whether and how mindfulness strategies may i) facilitate or add to the induced response-focused effects decreasing cue-induced craving, and ii) further weaken the link between craving and addictive responses. Specifically, awareness/monitoring may facilitate, and decentering may add to, response-focused effects. Combined awareness acceptance strategies may also diminish the craving-addiction link. The conceptual model presented in this review provides a specific theoretical framework to deepen our understanding of how mindfulness strategies and CBM or cue-exposure interventions can be combined to greatest effect. This is important in both suggesting a roadmap for future research, and for the further development of clinical interventions.
Collapse
Affiliation(s)
- Junilla K Larsen
- Behavioural Science Institute, Radboud University, PO Box 9104, 6500 HE Nijmegen, the Netherlands.
| | - Gareth J Hollands
- EPPI Centre, UCL Social Research Institute, University College London, UK
| | - Eric L Garland
- Center on Mindfulness and Integrative Health Intervention Development, College of Social Work, University of Utah, Salt Lake City, USA
| | - Andrea W M Evers
- Health, Medical and Neuropsychology Unit, Leiden University, NL, and Medical Delta, Leiden University, TU Delft and Erasmus University, UK
| | - Reinout W Wiers
- Addiction Development and Psychopathology (ADAPT)-lab, Department of Psychology, University of Amsterdam and Centre for Urban Mental Health, University of Amsterdam, the Netherlands
| |
Collapse
|
36
|
Kim HW, Happe J, Lee YS. Beta and gamma binaural beats enhance auditory sentence comprehension. PSYCHOLOGICAL RESEARCH 2023; 87:2218-2227. [PMID: 36854935 DOI: 10.1007/s00426-023-01808-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/11/2023] [Indexed: 03/02/2023]
Abstract
Binaural beats-an auditory illusion produced when two pure tones of slightly different frequencies are dichotically presented-have been shown to modulate various cognitive and psychological states. Here, we investigated the effects of binaural beat stimulation on auditory sentence processing that required interpretation of syntactic relations (Experiment 1) or an evaluation of syntactic well formedness (Experiment 2) with a large cohort of healthy young adults (N = 200). In both experiments, participants performed a language task after listening to one of four sounds (i.e., between-subject design): theta (7 Hz), beta (18 Hz), and gamma (40 Hz) binaural beats embedded in music, or the music only (baseline). In Experiment 1, 100 participants indicated the gender of a noun linked to a transitive action verb in spoken sentences containing either a subject or object-relative center-embedded clause. We found that both beta and gamma binaural beats yielded better performance, compared to the baseline, especially for syntactically more complex object-relative sentences. To determine if the binaural beat effect can be generalized to another type of syntactic analysis, we conducted Experiment 2 in which another 100 participants indicated whether or not there was a grammatical error in spoken sentences. However, none of the binaural beats yielded better performance for this task indicating that the benefit of beta and gamma binaural beats may be specific to the interpretation of syntactic relations. Together, we demonstrate, for the first time, the positive impact of binaural beats on auditory language comprehension. Both theoretical and practical implications are discussed.
Collapse
Affiliation(s)
- Hyun-Woong Kim
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, USA
- Callier Center for Communication Disorders, The University of Texas at Dallas, Dallas, USA
- Department of Psychology, The University of Texas at Dallas, Dallas, USA
| | - Jenna Happe
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, USA
- Callier Center for Communication Disorders, The University of Texas at Dallas, Dallas, USA
| | - Yune Sang Lee
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, USA.
- Callier Center for Communication Disorders, The University of Texas at Dallas, Dallas, USA.
- Department of Speech, Language, and Hearing, The University of Texas at Dallas, Dallas, USA.
| |
Collapse
|
37
|
Addante RJ, Lopez-Calderon J, Allen N, Luck C, Muller A, Sirianni L, Inman CS, Drane DL. An ERP measure of non-conscious memory reveals dissociable implicit processes in human recognition using an open-source automated analytic pipeline. Psychophysiology 2023; 60:e14334. [PMID: 37287106 PMCID: PMC10524783 DOI: 10.1111/psyp.14334] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/07/2023] [Accepted: 05/01/2023] [Indexed: 06/09/2023]
Abstract
Non-conscious processing of human memory has traditionally been difficult to objectively measure and thus understand. A prior study on a group of hippocampal amnesia (N = 3) patients and healthy controls (N = 6) used a novel procedure for capturing neural correlates of implicit memory using event-related potentials (ERPs): old and new items were equated for varying levels of memory awareness, with ERP differences observed from 400 to 800 ms in bilateral parietal regions that were hippocampal-dependent. The current investigation sought to address the limitations of that study by increasing the sample of healthy subjects (N = 54), applying new controls for construct validity, and developing an improved, open-source tool for automated analysis of the procedure used for equating levels of memory awareness. Results faithfully reproduced prior ERP findings of parietal effects that a series of systematic control analyses validated were not contributed to nor contaminated by explicit memory. Implicit memory effects extended from 600 to 1000 ms, localized to right parietal sites. These ERP effects were found to be behaviorally relevant and specific in predicting implicit memory response times, and were topographically dissociable from other traditional ERP measures of implicit memory (miss vs. correct rejections) that instead occurred in left parietal regions. Results suggest first that equating for reported awareness of memory strength is a valid, powerful new method for revealing neural correlates of non-conscious human memory, and second, behavioral correlations suggest that these implicit effects reflect a pure form of priming, whereas misses represent fluency leading to the subjective experience of familiarity.
Collapse
Affiliation(s)
- Richard J Addante
- School of Psychology, Florida Institute of Technology, Melbourne, Florida, USA
| | - Javier Lopez-Calderon
- Instituto de Matemáticas, Universidad de Talca, Talca, Chile
- Newencode Analytics, Talca, Chile
| | - Nathaniel Allen
- School of Psychology, Florida Institute of Technology, Melbourne, Florida, USA
| | - Carter Luck
- Department of Computer Science, Reed College, Portland, Oregon, USA
| | - Alana Muller
- Department of Psychology, University of Arizona, Tucson, Arizona, USA
| | - Lindsey Sirianni
- School of Health Sciences, University of California - San Diego Moores Cancer Center, San Diego, CA, USA
| | - Cory S Inman
- Department of Psychology, University of Utah, Salt Lake City, Utah, USA
| | - Daniel L Drane
- Departments of Neurology and Pediatrics, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
38
|
Gattas S, Larson MS, Mnatsakanyan L, Sen-Gupta I, Vadera S, Swindlehurst L, Rapp PE, Lin JJ, Yassa MA. Theta mediated dynamics of human hippocampal-neocortical learning systems in memory formation and retrieval. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558688. [PMID: 37790541 PMCID: PMC10542525 DOI: 10.1101/2023.09.20.558688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Episodic memory arises as a function of dynamic interactions between the hippocampus and the neocortex, yet the mechanisms have remained elusive. Here, using human intracranial recordings during a mnemonic discrimination task, we report that 4-5 Hz (theta) power is differentially recruited during discrimination vs. overgeneralization, and its phase supports hippocampal-neocortical when memories are being formed and correctly retrieved. Interactions were largely bidirectional, with small but significant net directional biases; a hippocampus-to-neocortex bias during acquisition of new information that was subsequently correctly discriminated, and a neocortex-to-hippocampus bias during accurate discrimination of new stimuli from similar previously learned stimuli. The 4-5 Hz rhythm may facilitate the initial stages of information acquisition by neocortex during learning and the recall of stored information from cortex during retrieval. Future work should further probe these dynamics across different types of tasks and stimuli and computational models may need to be expanded accordingly to accommodate these findings.
Collapse
Affiliation(s)
- Sandra Gattas
- Department of Electrical Engineering and Computer Science, School of Engineering, University of California, Irvine, Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California, 92697, USA
| | - Myra Sarai Larson
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California, 92697, USA
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA
| | - Lilit Mnatsakanyan
- Department of Neurology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Indranil Sen-Gupta
- Department of Neurology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Sumeet Vadera
- Department of Neurological Surgery, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
| | - Lee Swindlehurst
- Department of Electrical Engineering and Computer Science, School of Engineering, University of California, Irvine, Irvine, CA, 92617, USA
| | - Paul E. Rapp
- Department of Military & Emergency Medicine, Uniformed Services University, Bethesda, MD, 20814, USA
| | - Jack J. Lin
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California, 92697, USA
- Department of Neurology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Michael A. Yassa
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California, 92697, USA
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA
- Department of Neurology, School of Medicine, University of California, Irvine, CA, 92697, USA
| |
Collapse
|
39
|
Chaudhari A, Wang X, Wu A, Liu H. Repeated Transcranial Photobiomodulation with Light-Emitting Diodes Improves Psychomotor Vigilance and EEG Networks of the Human Brain. Bioengineering (Basel) 2023; 10:1043. [PMID: 37760145 PMCID: PMC10525861 DOI: 10.3390/bioengineering10091043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/16/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Transcranial photobiomodulation (tPBM) has been suggested as a non-invasive neuromodulation tool. The repetitive administration of light-emitting diode (LED)-based tPBM for several weeks significantly improves human cognition. To understand the electrophysiological effects of LED-tPBM on the human brain, we investigated alterations by repeated tPBM in vigilance performance and brain networks using electroencephalography (EEG) in healthy participants. Active and sham LED-based tPBM were administered to the right forehead of young participants twice a week for four weeks. The participants performed a psychomotor vigilance task (PVT) during each tPBM/sham experiment. A 64-electrode EEG system recorded electrophysiological signals from each participant during the first and last visits in a 4-week study. Topographical maps of the EEG power enhanced by tPBM were statistically compared for the repeated tPBM effect. A new data processing framework combining the group's singular value decomposition (gSVD) with eLORETA was implemented to identify EEG brain networks. The reaction time of the PVT in the tPBM-treated group was significantly improved over four weeks compared to that in the sham group. We observed acute increases in EEG delta and alpha powers during a 10 min LED-tPBM while the participants performed the PVT task. We also found that the theta, beta, and gamma EEG powers significantly increased overall after four weeks of LED-tPBM. Combining gSVD with eLORETA enabled us to identify EEG brain networks and the corresponding network power changes by repeated 4-week tPBM. This study clearly demonstrated that a 4-week prefrontal LED-tPBM can neuromodulate several key EEG networks, implying a possible causal effect between modulated brain networks and improved psychomotor vigilance outcomes.
Collapse
Affiliation(s)
| | | | | | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd, Arlington, TX 76019, USA; (A.C.); (X.W.); (A.W.)
| |
Collapse
|
40
|
Chang WS, Liang WK, Li DH, Muggleton NG, Balachandran P, Huang NE, Juan CH. The association between working memory precision and the nonlinear dynamics of frontal and parieto-occipital EEG activity. Sci Rep 2023; 13:14252. [PMID: 37653059 PMCID: PMC10471634 DOI: 10.1038/s41598-023-41358-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023] Open
Abstract
Electrophysiological working memory (WM) research shows brain areas communicate via macroscopic oscillations across frequency bands, generating nonlinear amplitude modulation (AM) in the signal. Traditionally, AM is expressed as the coupling strength between the signal and a prespecified modulator at a lower frequency. Therefore, the idea of AM and coupling cannot be studied separately. In this study, 33 participants completed a color recall task while their brain activity was recorded through EEG. The AM of the EEG data was extracted using the Holo-Hilbert spectral analysis (HHSA), an adaptive method based on the Hilbert-Huang transforms. The results showed that WM load modulated parieto-occipital alpha/beta power suppression. Furthermore, individuals with higher frontal theta power and lower parieto-occipital alpha/beta power exhibited superior WM precision. In addition, the AM of parieto-occipital alpha/beta power predicted WM precision after presenting a target-defining probe array. The phase-amplitude coupling (PAC) between the frontal theta phase and parieto-occipital alpha/beta AM increased with WM load while processing incoming stimuli, but the PAC itself did not predict the subsequent recall performance. These results suggest frontal and parieto-occipital regions communicate through theta-alpha/beta PAC. However, the overall recall precision depends on the alpha/beta AM following the onset of the retro cue.
Collapse
Affiliation(s)
- Wen-Sheng Chang
- Institute of Cognitive Neuroscience, College of Health Sciences and Technology, National Central University, Taoyuan City, Taiwan
| | - Wei-Kuang Liang
- Institute of Cognitive Neuroscience, College of Health Sciences and Technology, National Central University, Taoyuan City, Taiwan
- Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan City, Taiwan
| | - Dong-Han Li
- Institute of Cognitive Neuroscience, College of Health Sciences and Technology, National Central University, Taoyuan City, Taiwan
- Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan City, Taiwan
| | - Neil G Muggleton
- Institute of Cognitive Neuroscience, College of Health Sciences and Technology, National Central University, Taoyuan City, Taiwan
- Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan City, Taiwan
- Institute of Cognitive Neuroscience, University College London, London, UK
- Department of Psychology, Goldsmiths, University of London, London, UK
| | - Prasad Balachandran
- Institute of Cognitive Neuroscience, College of Health Sciences and Technology, National Central University, Taoyuan City, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan
| | - Norden E Huang
- Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan City, Taiwan
- Data Analysis and Application Laboratory, The First Institute of Oceanography, Qingdao, China
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, College of Health Sciences and Technology, National Central University, Taoyuan City, Taiwan.
- Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan City, Taiwan.
- Department of Psychology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
41
|
Koizumi K, Kunii N, Ueda K, Nagata K, Fujitani S, Shimada S, Nakao M. Paving the Way for Memory Enhancement: Development and Examination of a Neurofeedback System Targeting the Medial Temporal Lobe. Biomedicines 2023; 11:2262. [PMID: 37626758 PMCID: PMC10452721 DOI: 10.3390/biomedicines11082262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/01/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Neurofeedback (NF) shows promise in enhancing memory, but its application to the medial temporal lobe (MTL) still needs to be studied. Therefore, we aimed to develop an NF system for the memory function of the MTL and examine neural activity changes and memory task score changes through NF training. We created a memory NF system using intracranial electrodes to acquire and visualise the neural activity of the MTL during memory encoding. Twenty trials of a tug-of-war game per session were employed for NF and designed to control neural activity bidirectionally (Up/Down condition). NF training was conducted with three patients with drug-resistant epilepsy, and we observed an increasing difference in NF signal between conditions (Up-Down) as NF training progressed. Similarities and negative correlation tendencies between the transition of neural activity and the transition of memory function were also observed. Our findings demonstrate NF's potential to modulate MTL activity and memory encoding. Future research needs further improvements to the NF system to validate its effects on memory functions. Nonetheless, this study represents a crucial step in understanding NF's application to memory and provides valuable insights into developing more efficient memory enhancement strategies.
Collapse
Affiliation(s)
- Koji Koizumi
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan; (K.U.); (M.N.)
| | - Naoto Kunii
- Department of Neurosurgery, The University of Tokyo, Tokyo 113-8655, Japan; (N.K.); (K.N.); (S.F.); (S.S.)
| | - Kazutaka Ueda
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan; (K.U.); (M.N.)
| | - Keisuke Nagata
- Department of Neurosurgery, The University of Tokyo, Tokyo 113-8655, Japan; (N.K.); (K.N.); (S.F.); (S.S.)
| | - Shigeta Fujitani
- Department of Neurosurgery, The University of Tokyo, Tokyo 113-8655, Japan; (N.K.); (K.N.); (S.F.); (S.S.)
| | - Seijiro Shimada
- Department of Neurosurgery, The University of Tokyo, Tokyo 113-8655, Japan; (N.K.); (K.N.); (S.F.); (S.S.)
| | - Masayuki Nakao
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan; (K.U.); (M.N.)
| |
Collapse
|
42
|
Zhang T, Yang J, Liang N, Pitts BJ, Prakah-Asante K, Curry R, Duerstock B, Wachs JP, Yu D. Physiological Measurements of Situation Awareness: A Systematic Review. HUMAN FACTORS 2023; 65:737-758. [PMID: 33241945 DOI: 10.1177/0018720820969071] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
OBJECTIVE The goal of this systematic literature review is to investigate the relationship between indirect physiological measurements and direct measures of situation awareness (SA). BACKGROUND Across different environments and tasks, assessments of SA are often performed using techniques designed specifically to directly measure SA, such as SAGAT, SPAM, and/or SART. However, research suggests that indirect physiological sensing methods may also be capable of predicting SA. Currently, it is unclear which particular physiological approaches are sensitive to changes in SA. METHOD Seven databases were searched using the PRISMA reporting guidelines. Eligibility criteria included human-subject experiments that used at least one direct SA assessment technique, as well as at least one physiological measurement. Information extracted from each article was the physiological metric(s), the direct SA measurement(s), the correlation between these two metrics, and the experimental task(s). All studies underwent a quality assessment. RESULTS Twenty-five articles were included in this review. Eye tracking techniques were the most commonly used physiological measures, and correlations between conscious aspects of eye movement measures and direct SA scores were observed. Evidence for cardiovascular predictors of SA were mixed. EEG studies were too few to form strong conclusions, but were consistently positive. CONCLUSION Further investigation is needed to methodically collect more relevant data and comprehensively model the relationships between a wider range of physiological measurements and direct assessments of SA. APPLICATION This review will guide researchers and practitioners in methods to indirectly assess SA with sensors and highlight opportunities for future research on wearables and SA.
Collapse
Affiliation(s)
- Ting Zhang
- Purdue University, Industrial Engineering, West Lafayette, United States
| | - Jing Yang
- Purdue University, Industrial Engineering, West Lafayette, United States
| | - Nade Liang
- Purdue University, Industrial Engineering, West Lafayette, United States
| | - Brandon J Pitts
- Purdue University, School of Industrial Engineering, West Lafayette, United States
| | | | | | - Bradley Duerstock
- Purdue University, Industrial Engineering, West Lafayette, United States
| | - Juan P Wachs
- Purdue University, Industrial Engineering, West Lafayette, United States
| | - Denny Yu
- Purdue University, Industrial Engineering, West Lafayette, United States
| |
Collapse
|
43
|
Pei L, Northoff G, Ouyang G. Comparative analysis of multifaceted neural effects associated with varying endogenous cognitive load. Commun Biol 2023; 6:795. [PMID: 37524883 PMCID: PMC10390511 DOI: 10.1038/s42003-023-05168-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 07/24/2023] [Indexed: 08/02/2023] Open
Abstract
Contemporary neuroscience has firmly established that mental state variation concurs with changes in neural dynamic activity in a complex way that a one-to-one mapping cannot describe. To explore the scenario of the multifaceted changes in neural dynamics associated with simple mental state variation, we took cognitive load - a common cognitive manipulation in psychology - as a venue to characterize how multiple neural dynamic features are simultaneously altered by the manipulation and how their sensitivity differs. Electroencephalogram was collected from 152 participants performing stimulus-free tasks with different demands. The results show that task demand alters wide-ranging neural dynamic features, including band-specific oscillations across broad frequency bands, scale-free dynamics, and cross-frequency phase-amplitude coupling. The scale-free dynamics outperformed others in indexing cognitive load variation. This study demonstrates a complex relationship between cognitive dynamics and neural dynamics, which points to a necessity to integrate multifaceted neural dynamic features when studying mind-brain relationship in the future.
Collapse
Affiliation(s)
- Leisi Pei
- Faculty of Education, The University of Hong Kong, Hong Kong, China
| | - Georg Northoff
- Institute of Mental Health Research, Mind, Brain Imaging and Neuroethics Research Unit, University of Ottawa, Ottawa, Canada
| | - Guang Ouyang
- Faculty of Education, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
44
|
Nakamura-Palacios EM, Falçoni Júnior AT, Anders QS, de Paula LDSP, Zottele MZ, Ronchete CF, Lirio PHC. Would frontal midline theta indicate cognitive changes induced by non-invasive brain stimulation? A mini review. Front Hum Neurosci 2023; 17:1116890. [PMID: 37520930 PMCID: PMC10375045 DOI: 10.3389/fnhum.2023.1116890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
To the best of our knowledge, neurophysiological markers indicating changes induced by non-invasive brain stimulation (NIBS) on cognitive performance, especially one of the most investigated under these procedures, working memory (WM), are little known. Here, we will briefly introduce frontal midline theta (FM-theta) oscillation (4-8 Hz) as a possible indicator for NIBS effects on WM processing. Electrophysiological recordings of FM-theta oscillation seem to originate in the medial frontal cortex and the anterior cingulate cortex, but they may be driven more subcortically. FM-theta has been acknowledged to occur during memory and emotion processing, and it has been related to WM and sustained attention. It mainly occurs in the frontal region during a delay period, in which specific information previously shown is no longer perceived and must be manipulated to allow a later (delayed) response and observed in posterior regions during information maintenance. Most NIBS studies investigating effects on cognitive performance have used n-back tasks that mix manipulation and maintenance processes. Thus, if considering FM-theta as a potential neurophysiological indicator for NIBS effects on different WM components, adequate cognitive tasks should be considered to better address the complexity of WM processing. Future research should also evaluate the potential use of FM-theta as an index of the therapeutic effects of NIBS intervention on neuropsychiatric disorders, especially those involving the ventral medial prefrontal cortex and cognitive dysfunctions.
Collapse
Affiliation(s)
| | | | - Quézia Silva Anders
- Superior School of Sciences of the Santa Casa de Misericórdia de Vitória (EMESCAM), Vitória, Brazil
| | | | | | | | | |
Collapse
|
45
|
Berridge CW, Devilbiss DM, Martin AJ, Spencer RC, Jenison RL. Stress degrades working memory-related frontostriatal circuit function. Cereb Cortex 2023; 33:7857-7869. [PMID: 36935095 PMCID: PMC10267631 DOI: 10.1093/cercor/bhad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/20/2023] Open
Abstract
Goal-directed behavior is dependent on neuronal activity in the prefrontal cortex (PFC) and extended frontostriatal circuitry. Stress and stress-related disorders are associated with impaired frontostriatal-dependent cognition. Our understanding of the neural mechanisms that underlie stress-related cognitive impairment is limited, with the majority of prior research focused on the PFC. To date, the actions of stress across cognition-related frontostriatal circuitry are unknown. To address this gap, the current studies examined the effects of acute noise-stress on the spiking activity of neurons and local field potential oscillatory activity within the dorsomedial PFC (dmPFC) and dorsomedial striatum (dmSTR) in rats engaged in a test of spatial working memory. Stress robustly suppressed responses of both dmPFC and dmSTR neurons strongly tuned to key task events (delay, reward). Additionally, stress strongly suppressed delay-related, but not reward-related, theta and alpha spectral power within, and synchrony between, the dmPFC and dmSTR. These observations provide the first demonstration that stress disrupts the neural coding and functional connectivity of key task events, particularly delay, within cognition-supporting dorsomedial frontostriatal circuitry. These results suggest that stress-related degradation of neural coding within both the PFC and striatum likely contributes to the cognition-impairing effects of stress.
Collapse
Affiliation(s)
- Craig W Berridge
- Department of Psychology, University of Wisconsin, Madison, WI 53706, United States
| | | | - Andrea J Martin
- Department of Psychology, University of Wisconsin, Madison, WI 53706, United States
| | - Robert C Spencer
- Department of Psychology, University of Wisconsin, Madison, WI 53706, United States
| | - Rick L Jenison
- Department of Psychology, University of Wisconsin, Madison, WI 53706, United States
| |
Collapse
|
46
|
Abdalaziz M, Redding ZV, Fiebelkorn IC. Rhythmic temporal coordination of neural activity prevents representational conflict during working memory. Curr Biol 2023; 33:1855-1863.e3. [PMID: 37100058 DOI: 10.1016/j.cub.2023.03.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/27/2023] [Accepted: 03/31/2023] [Indexed: 04/28/2023]
Abstract
Selective attention1 is characterized by alternating states associated with either attentional sampling or attentional shifting, helping to prevent functional conflicts by isolating function-specific neural activity in time.2,3,4,5 We hypothesized that such rhythmic temporal coordination might also help to prevent representational conflicts during working memory.6 Multiple items can be simultaneously held in working memory, and these items can be represented by overlapping neural populations.7,8,9 Traditional theories propose that the short-term storage of to-be-remembered items occurs through persistent neural activity,10,11,12 but when neurons are simultaneously representing multiple items, persistent activity creates a potential for representational conflicts. In comparison, more recent, "activity-silent" theories of working memory propose that synaptic changes also contribute to short-term storage of to-be-remembered items.13,14,15,16 Transient bursts in neural activity,17 rather than persistent activity, could serve to occasionally refresh these synaptic changes. Here, we used EEG and response times to test whether rhythmic temporal coordination helps to isolate neural activity associated with different to-be-remembered items, thereby helping to prevent representational conflicts. Consistent with this hypothesis, we report that the relative strength of different item representations alternates over time as a function of the frequency-specific phase. Although RTs were linked to theta (∼6 Hz) and beta (∼25 Hz) phases during a memory delay, the relative strength of item representations only alternated as a function of the beta phase. The present findings (1) are consistent with rhythmic temporal coordination being a general mechanism for preventing functional or representational conflicts during cognitive processes and (2) inform models describing the role of oscillatory dynamics in organizing working memory.13,18,19,20,21.
Collapse
Affiliation(s)
- Miral Abdalaziz
- Department of Neuroscience and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14627, USA
| | - Zach V Redding
- Department of Neuroscience and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14627, USA
| | - Ian C Fiebelkorn
- Department of Neuroscience and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14627, USA.
| |
Collapse
|
47
|
Kolisnyk M, Pereira AE, Tozios CJI, Fukuda K. Dissociating the Impact of Memorability on Electrophysiological Correlates of Memory Encoding Success. J Cogn Neurosci 2023; 35:603-627. [PMID: 36626358 DOI: 10.1162/jocn_a_01960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Despite its unlimited capacity, not all visual information we encounter is encoded into visual long-term memory. Traditionally, variability in encoding success has been ascribed to variability in the types and efficacy of an individual's cognitive processes during encoding. Accordingly, past studies have identified several neural correlates of variability in encoding success, namely, frontal positivity, occipital alpha amplitude, and frontal theta amplitude, by contrasting the electrophysiological signals recorded during successful and failed encoding processes (i.e., subsequent memory). However, recent research demonstrated individuals remember and forget consistent sets of stimuli, thereby elucidating stimulus-intrinsic factors (i.e., memorability) that determine the ease of memory encoding independent of individual-specific variability in encoding processes. The existence of memorability raises the possibility that canonical EEG correlates of subsequent memory may reflect variability in stimulus-intrinsic factors rather than individual-specific encoding processes. To test this, we recorded the EEG correlates of subsequent memory while participants encoded 600 images of real-world objects and assessed the unique contribution of individual-specific and stimulus-intrinsic factors on each EEG correlate. Here, we found that frontal theta amplitude and occipital alpha amplitude were only influenced by individual-specific encoding success, whereas frontal positivity was influenced by stimulus-intrinsic and individual-specific encoding success. Overall, our results offer novel interpretations of canonical EEG correlates of subsequent memory by demonstrating a dissociable impact of stimulus-intrinsic and individual-specific factors of memory encoding success.
Collapse
Affiliation(s)
- Matthew Kolisnyk
- University of Toronto Mississauga, Ontario, Canada.,Western University, London, Ontario, Canada
| | | | | | - Keisuke Fukuda
- University of Toronto Mississauga, Ontario, Canada.,University of Toronto, Ontario, Canada
| |
Collapse
|
48
|
Li D, Hu Y, Qi M, Zhao C, Jensen O, Huang J, Song Y. Prioritizing flexible working memory representations through retrospective attentional strengthening. Neuroimage 2023; 269:119902. [PMID: 36708973 DOI: 10.1016/j.neuroimage.2023.119902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/14/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023] Open
Abstract
Previous work has proposed two potential benefits of retrospective attention on working memory (WM): target strengthening and non-target inhibition. It remains unknown which hypothesis contributes to the improved WM performance, yet the neural mechanisms responsible for this attentional benefit are unclear. Here, we recorded electroencephalography (EEG) signals while 33 participants performed a retrospective-cue WM task. Multivariate pattern classification analysis revealed that only representations of target features were enhanced by valid retrospective attention during retention, supporting the target strengthening hypothesis. Further univariate analysis found that mid-frontal theta inter-trial phase coherence (ITPC) and ERP components were modulated by valid retrospective attention and correlated with individual differences and moment-to-moment fluctuations on behavioral outcomes, suggesting that both trait- and state-level variability in attentional preparatory processes influence goal-directed behavior. Furthermore, task-irrelevant target spatial location could be decoded from EEG signals, indicating that enhanced spatial binding of target representation is vital to high WM precision. Importantly, frontoparietal theta-alpha phase-amplitude coupling was increased by valid retrospective attention and predicted the reduced random guessing rates. This long-range connection supported top-down information flow in the engagement of frontoparietal networks, which might organize attentional states to integrate target features. Altogether, these results provide neurophysiological bases that retrospective attention improves WM precision by enhancing flexible target representation and emphasize the critical role of the frontoparietal attentional network in the control of WM representations.
Collapse
Affiliation(s)
- Dongwei Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Yiqing Hu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Mengdi Qi
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Chenguang Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai, China
| | - Ole Jensen
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Jing Huang
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai, China.
| | - Yan Song
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China.
| |
Collapse
|
49
|
Qin Y, Jiang S, Xiong S, Li S, Fu Q, Yang L, Du P, Luo C, Yao D. Unbalance between working memory task-activation and task-deactivation networks in epilepsy: Simultaneous EEG-fMRI study. J Neurosci Res 2023; 101:1188-1199. [PMID: 36866516 DOI: 10.1002/jnr.25183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 03/04/2023]
Abstract
Working memory (WM) is a cognitive function involving emergent properties of theta oscillations and large-scale network interactions. The synchronization of WM task-related networks in the brain enhanced WM performance. However, how these networks regulate WM processing is not well known, and the alteration of the interaction among these networks may play an important role in patients with cognitive dysfunction. In this study, we used simultaneous EEG-fMRI to examine the features of theta oscillations and the functional interactions among activation/deactivation networks during the n-back WM task in patients with idiopathic generalized epilepsy (IGE). The results showed that there was more enhancement of frontal theta power along with WM load increase in IGE, and the theta power was positively correlated with the accuracy of the WM tasks. Moreover, fMRI activations/deactivations correlated with n-back tasks were estimated, and we found that the IGE group had increased and widespread activations in high-load WM tasks, including the frontoparietal activation network and task-related deactivation areas, such as the default mode network and primary visual and auditory networks. In addition, the network connectivity results demonstrated decreased counteraction between the activation network and deactivation network, and the counteraction was correlated with the higher theta power in IGE. These results indicated the important role of the interactions between activation and deactivation networks during the WM process, and the unbalance among them may indicate the pathophysiological mechanism of cognitive dysfunction in generalized epilepsy.
Collapse
Affiliation(s)
- Yun Qin
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,Sichuan Institute for Brain Science and Brain-Inspired Intelligence, Chengdu, China
| | - Sisi Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Siwei Xiong
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Sipei Li
- Glasgow College, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiankun Fu
- Glasgow College, University of Electronic Science and Technology of China, Chengdu, China
| | - Lili Yang
- Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Peishan Du
- Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,Sichuan Institute for Brain Science and Brain-Inspired Intelligence, Chengdu, China
| |
Collapse
|
50
|
Abul Hasan M, Shahid H, Ahmed Qazi S, Ejaz O, Danish Mujib M, Vuckovic A. Underpinning the neurological source of executive function following cross hemispheric tDCS stimulation. Int J Psychophysiol 2023; 185:1-10. [PMID: 36634750 DOI: 10.1016/j.ijpsycho.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
Transcranial direct current stimulation (tDCS) is a promising technique for enhancement of executive functions in healthy as well as neurologically disturbed patients. However, the evidence regarding the neuropsychological and behavioral change with neurophysiological shifts as well as the mechanism of tDCS action as evidenced by activation of neuronal sources important for executive functions have remained unaddressed. The study thereby endeavors to (1) determine the neuropsychological, behavioral, and neurophysiological change induced with five sessions of bilateral tDCS stimulation and (2) identify putative neuronal sources related to the executive functions responsible for neuropsychological and behavioral change. For this single blinded study, a total of 40 healthy participants, randomly allocated to active (n = 19) or sham (n = 21) groups completed five sessions of 2 mA tDCS stimulation administered over Dorso-Lateral Prefrontal Cortex (DLPFC) (F3 as anode, F4 as cathode). Repeated measure analysis was performed on neuropsychological (Everyday Memory Questionnaire and Mindful Attention Awareness Scale), and behavioral assessment (n-Back and Stroop tests) to investigate within and between group differences. Pre and post neurophysiological (Electroencephalogram) results showed that bilateral tDCS stimulation activates cortical regions responsible for executive functions including updation (working memory) and inhibition (interference control or attention). Multiple sessions of bilateral tDCS stimulation results in a significant increase in theta, alpha, and beta-band activity in the DLPFC, cingulate and parietal cortex. This study provides evidence that tDCS can be used for performance enhancement of executive functions in able-bodied people.
Collapse
Affiliation(s)
- Muhammad Abul Hasan
- Department of Biomedical Engineering, NED University of Engineering & Technology, Karachi, Pakistan; Neurocomputation Laboratory, National Center of Artificial Intelligence, Karachi, Pakistan
| | - Hira Shahid
- Neurocomputation Laboratory, National Center of Artificial Intelligence, Karachi, Pakistan; Research Centre for Intelligent Healthcare, Coventry University, Coventry, United Kingdom.
| | - Saad Ahmed Qazi
- Neurocomputation Laboratory, National Center of Artificial Intelligence, Karachi, Pakistan; Department of Electrical Engineering, NED University of Engineering & Technology, Karachi, Pakistan
| | - Osama Ejaz
- Neurocomputation Laboratory, National Center of Artificial Intelligence, Karachi, Pakistan
| | - Muhammad Danish Mujib
- Department of Biomedical Engineering, NED University of Engineering & Technology, Karachi, Pakistan
| | - Aleksandra Vuckovic
- Biomedical Engineering Division, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|