1
|
Zhao J, Zhang G, Xu D. The effect of reward on motor learning: different stage, different effect. Front Hum Neurosci 2024; 18:1381935. [PMID: 38532789 PMCID: PMC10963647 DOI: 10.3389/fnhum.2024.1381935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Motor learning is a prominent and extensively studied subject in rehabilitation following various types of neurological disorders. Motor repair and rehabilitation often extend over months and years post-injury with a slow pace of recovery, particularly affecting the fine movements of the distal extremities. This extended period can diminish the motivation and persistence of patients, a facet that has historically been overlooked in motor learning until recent years. Reward, including monetary compensation, social praise, video gaming, music, and virtual reality, is currently garnering heightened attention for its potential to enhance motor motivation and improve function. Numerous studies have examined the effects and attempted to explore potential mechanisms in various motor paradigms, yet they have yielded inconsistent or even contradictory results and conclusions. A comprehensive review is necessary to summarize studies on the effects of rewards on motor learning and to deduce a central pattern from these existing studies. Therefore, in this review, we initially outline a framework of motor learning considering two major types, two major components, and three stages. Subsequently, we summarize the effects of rewards on different stages of motor learning within the mentioned framework and analyze the underlying mechanisms at the level of behavior or neural circuit. Reward accelerates learning speed and enhances the extent of learning during the acquisition and consolidation stages, possibly by regulating the balance between the direct and indirect pathways (activating more D1-MSN than D2-MSN) of the ventral striatum and by increasing motor dynamics and kinematics. However, the effect varies depending on several experimental conditions. During the retention stage, there is a consensus that reward enhances both short-term and long-term memory retention in both types of motor learning, attributed to the LTP learning mechanism mediated by the VTA-M1 dopaminergic projection. Reward is a promising enhancer to bolster waning confidence and motivation, thereby increasing the efficiency of motor learning and rehabilitation. Further exploration of the circuit and functional connections between reward and the motor loop may provide a novel target for neural modulation to promote motor behavior.
Collapse
Affiliation(s)
- Jingwang Zhao
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guanghu Zhang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongsheng Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- Department of Rehabilitation Medicine, Shuguang Hospital, Shanghai, China
| |
Collapse
|
2
|
Voegtle A, Terlutter C, Nikolai K, Farahat A, Hinrichs H, Sweeney-Reed CM. Suppression of Motor Sequence Learning and Execution Through Anodal Cerebellar Transcranial Electrical Stimulation. CEREBELLUM (LONDON, ENGLAND) 2023; 22:1152-1165. [PMID: 36239839 PMCID: PMC10657296 DOI: 10.1007/s12311-022-01487-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Cerebellum (CB) and primary motor cortex (M1) have been associated with motor learning, with different putative roles. Modulation of task performance through application of transcranial direct current stimulation (TDCS) to brain structures provides causal evidence for their engagement in the task. Studies evaluating and comparing TDCS to these structures have provided conflicting results, however, likely due to varying paradigms and stimulation parameters. Here we applied TDCS to CB and M1 within the same experimental design, to enable direct comparison of their roles in motor sequence learning. We examined the effects of anodal TDCS during motor sequence learning in 60 healthy participants, randomly allocated to CB-TDCS, M1-TDCS, or Sham stimulation groups during a serial reaction time task. Key to the design was an equal number of repeated and random sequences. Reaction times (RTs) to implicitly learned and random sequences were compared between groups using ANOVAs and post hoc t-tests. A speed-accuracy trade-off was excluded by analogous analysis of accuracy scores. An interaction was observed between whether responses were to learned or random sequences and the stimulation group. Post hoc analyses revealed a preferential slowing of RTs to implicitly learned sequences in the group receiving CB-TDCS. Our findings provide evidence that CB function can be modulated through transcranial application of a weak electrical current, that the CB and M1 cortex perform separable functions in the task, and that the CB plays a specific role in motor sequence learning during implicit motor sequence learning.
Collapse
Affiliation(s)
- Angela Voegtle
- Department of Neurology, Neurocybernetics and Rehabilitation, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Clara Terlutter
- Department of Neurology, Neurocybernetics and Rehabilitation, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Katharina Nikolai
- Department of Neurology, Neurocybernetics and Rehabilitation, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Amr Farahat
- Department of Neurology, Neurocybernetics and Rehabilitation, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
- Ernst Strüngmann Institute for Neuroscience in Cooperation With Max Planck Society, Deutschordenstr. 46, 60528, Frankfurt, Frankfurt am Main, Germany
| | - Hermann Hinrichs
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- Department of Neurology, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
- Center for Behavioral Brain Sciences - CBBS, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Catherine M Sweeney-Reed
- Department of Neurology, Neurocybernetics and Rehabilitation, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
- Center for Behavioral Brain Sciences - CBBS, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany.
| |
Collapse
|
3
|
Sehatpour P, Kreither J, Lopez-Calderon J, Shastry AM, De Baun HM, Martinez A, Javitt DC. Network-level mechanisms underlying effects of transcranial direct current stimulation (tDCS) on visuomotor learning in schizophrenia. Transl Psychiatry 2023; 13:360. [PMID: 37993420 PMCID: PMC10665365 DOI: 10.1038/s41398-023-02656-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023] Open
Abstract
Motor learning is a fundamental skill to our daily lives. Dysfunction in motor performance in schizophrenia (Sz) has been associated with poor social and functional outcomes. Transcranial direct current stimulation (tDCS), a non-invasive electrical brain stimulation approach, can influence underlying brain function with potential for improving motor learning in Sz. We used a well-established Serial Reaction Time Task (SRTT) to study motor learning, in combination with simultaneous tDCS and EEG recording, to investigate mechanisms of motor and procedural learning deficits in Sz, and to develop refined non-invasive brain stimulation approaches to improve neurocognitive dysfunction. We recruited 27 individuals with Sz and 21 healthy controls (HC). Individuals performed the SRTT task as they received sham and active tDCS with simultaneous EEG recording. Reaction time (RT), neuropsychological, and measures of global functioning were assessed. SRTT performance was significantly impaired in Sz and showed significant correlations with motor-related and working memory measures as well as global function. Source-space time-frequency decomposition of EEG showed beta-band coherence across supplementary-motor, primary-motor and visual cortex forming a network involved in SRTT performance. Motor-cathodal and visual-cathodal stimulations resulted in significant modulation in coherence particularly across the motor-visual nodes of the network accompanied by significant improvement in motor learning in both controls and patients. Here, we confirm earlier reports of SRTT impairment in Sz and demonstrate significant reversal of the deficits with tDCS. The findings support continued development of tDCS for enhancement of plasticity-based interventions in Sz, as well as source-space EEG analytic approaches for evaluating underlying neural mechanisms.
Collapse
Affiliation(s)
- Pejman Sehatpour
- Division of Experimental Therapeutics, Columbia University Irving Medical Center, New York, NY, USA.
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
| | - Johanna Kreither
- PIA Ciencias Cognitivas, Centro de Investigación en Ciencias Cognitivas, Facultad de Psicología, and Laboratorio de Neurofisiología, Escuela de Medicina, Universidad de Talca, Talca, Chile
| | | | - Adithya M Shastry
- Division of Experimental Therapeutics, Columbia University Irving Medical Center, New York, NY, USA
| | - Heloise M De Baun
- Division of Experimental Therapeutics, Columbia University Irving Medical Center, New York, NY, USA
| | - Antigona Martinez
- Division of Experimental Therapeutics, Columbia University Irving Medical Center, New York, NY, USA
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Daniel C Javitt
- Division of Experimental Therapeutics, Columbia University Irving Medical Center, New York, NY, USA.
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
| |
Collapse
|
4
|
Chrobak AA, Siuda-Krzywicka K, Soltys Z, Bielak S, Nowaczek D, Żyrkowska A, Fafrowicz M, Marek T, Pęcherzewska E, Kużdżał J, Starowicz-Filip A, Gorostowicz A, Dudek D, Siwek M. When practice does not make a perfect - paradoxical learning curve in schizophrenia and bipolar disorder revealed by different serial reaction time task variants. Front Psychiatry 2023; 14:1238473. [PMID: 37766926 PMCID: PMC10521726 DOI: 10.3389/fpsyt.2023.1238473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
Introduction Our previous studies identified a paradoxical implicit motor learning curve in schizophrenia (SZ) and bipolar disorder (BD) patients. This study aimed to verify whether those previously observed deficits may be captured by a new version of the ambidextrous serial reaction time task (SRTT), prepared for use in the MRI. Methods This study involved 186 participants. A total of 97 participants (33 BD, 33 SZ, and 31 healthy controls, HCs) completed the original, unlimited time response variant of SRTT. A total of 90 individuals (30 BD, 30 SZ, and 30 HCs) underwent a newer, limited response time version of this procedure. Results There was no significant difference in terms of implicit motor learning indices between both limited and unlimited response time SRTT. Compared to HCs, SZ, and BD patients presented decreased indices of implicit motor learning. Both clinical groups showed a paradoxical learning pattern that differed significantly from the HCs. Moreover, in the SZ group, the pattern depended on the hand performing SRTT. Discussion The limited response time SRTT variant allowed us to replicate the findings of disrupted implicit motor learning in SZ and BD. The use of this paradigm in further neuroimaging studies may help to determine the neuronal underpinnings of this cognitive dysfunction in the abovementioned clinical groups.
Collapse
Affiliation(s)
| | | | - Zbigniew Soltys
- Laboratory of Experimental Neuropathology, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Sylwia Bielak
- Department of Adult, Child and Adolescent Psychiatry, University Hospital in Cracow, Kraków, Poland
| | | | - Aleksandra Żyrkowska
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
- Doctoral School in the Social Sciences, Jagiellonian University, Kraków, Poland
| | - Magdalena Fafrowicz
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | - Tadeusz Marek
- Faculty of Psychology, SWPS University of Social Sciences and Humanities, Katowice, Poland
| | | | - Jan Kużdżał
- Malopolska Centre of Biotechnology, Kraków, Poland
| | - Anna Starowicz-Filip
- Medical Psychology Department, Jagiellonian University Medical College, Kraków, Poland
| | | | - Dominika Dudek
- Department of Adult Psychiatry, Jagiellonian University Medical College, Kraków, Poland
| | - Marcin Siwek
- Department of Affective Disorders, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
5
|
Herzog R, Bolte C, Radecke JO, von Möller K, Lencer R, Tzvi E, Münchau A, Bäumer T, Weissbach A. Neuronavigated Cerebellar 50 Hz tACS: Attenuation of Stimulation Effects by Motor Sequence Learning. Biomedicines 2023; 11:2218. [PMID: 37626715 PMCID: PMC10452137 DOI: 10.3390/biomedicines11082218] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Cerebellar transcranial alternating current stimulation (tACS) is an emerging non-invasive technique that induces electric fields to modulate cerebellar function. Although the effect of cortical tACS seems to be state-dependent, the impact of concurrent motor activation and the duration of stimulation on the effects of cerebellar tACS has not yet been examined. In our study, 20 healthy subjects received neuronavigated 50 Hz cerebellar tACS for 40 s or 20 min, each during performance using a motor sequence learning task (MSL) and at rest. We measured the motor evoked potential (MEP) before and at two time points after tACS application to assess corticospinal excitability. Additionally, we investigated the online effect of tACS on MSL. Individual electric field simulations were computed to evaluate the distribution of electric fields, showing a focal electric field in the right cerebellar hemisphere with the highest intensities in lobe VIIb, VIII and IX. Corticospinal excitability was only increased after tACS was applied for 40 s or 20 min at rest, and motor activation during tACS (MSL) cancelled this effect. In addition, performance was better (shorter reaction times) for the learned sequences after 20 min of tACS, indicating more pronounced learning under 20 min of tACS compared to tACS applied only in the first 40 s.
Collapse
Affiliation(s)
- Rebecca Herzog
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; (R.H.); (C.B.)
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Department of Neurology, University Hospital Schleswig Holstein, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Christina Bolte
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; (R.H.); (C.B.)
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Jan-Ole Radecke
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Department of Psychiatry and Psychotherapy, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Kathinka von Möller
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; (R.H.); (C.B.)
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Rebekka Lencer
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Department of Psychiatry and Psychotherapy, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Elinor Tzvi
- Department of Neurology, Leipzig University, Liebigstraße 20, 04103 Leipzig, Germany
- Syte Institute, Hohe Bleichen 8, 20354 Hamburg, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; (R.H.); (C.B.)
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Tobias Bäumer
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; (R.H.); (C.B.)
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Anne Weissbach
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; (R.H.); (C.B.)
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| |
Collapse
|
6
|
Javitt D, Sehatpour P, Kreither J, Lopez-Calderon J, Shastry A, De-Baun H, Martinez A. Network-level mechanisms underlying effects of transcranial direct current stimulation (tDCS) on visuomotor learning impairments in schizophrenia. RESEARCH SQUARE 2023:rs.3.rs-2711867. [PMID: 37066410 PMCID: PMC10104242 DOI: 10.21203/rs.3.rs-2711867/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Motor learning is a fundamental skill to our daily lives. Dysfunction in motor performance in schizophrenia (Sz) is associated with poor social and functional outcomes, but nevertheless remains understudied relative to other neurocognitive domains. Moreover, transcranial direct current stimulation (tDCS) can influence underlying brain function in Sz and may be especially useful in enhancing local cortical plasticity, but underlying neural mechanisms remain incompletely understood. Here, we evaluated performance of Sz individuals on the Serial Reaction Time Task (SRTT), which has been extensively used in prior tDCS research, in combination with concurrent tDCS and EEG source localization first to evaluate the integrity of visuomotor learning in Sz relative to other cognitive domains and second to investigate underlying neural mechanisms. Twenty-seven individuals with Sz and 21 healthy controls (HC) performed the SRTT task as they received sham or active tDCS and simultaneous EEG recording. Measures of motor, neuropsychological and global functioning were also assessed. Impaired SRTT performance correlated significantly with deficits in motor performance, working memory, and global functioning. Time-frequency ("Beamformer") EEG source localization showed beta-band coherence across supplementary-motor, primary-motor and visual cortex regions, with reduced visuomotor coherence in Sz relative to HC. Cathodal tDCS targeting both visual and motor regions resulted in significant modulation in coherence particularly across the motor-visual nodes of the network accompanied by significant improvement in motor learning in both controls and patients. Overall, these findings demonstrate the utility of the SRTT to study mechanisms of visuomotor impairment in Sz and demonstrate significant tDCS effects on both learning and connectivity when applied over either visual or motor regions. The findings support continued study of dysfunctional dorsal-stream visual connectivity and motor plasticity as components of cognitive impairment in Sz, of local tDCS administration for enhancement of plasticity, and of source-space EEG-based biomarkers for evaluation of underlying neural mechanisms.
Collapse
Affiliation(s)
- Daniel Javitt
- Columbia University Medical Center/Nathan Kline Institute
| | | | | | | | | | | | | |
Collapse
|
7
|
Freidle M, Thompson WH, Albrecht F, Franzén E. Implicit Motor Sequence Learning in People with Mild to Moderate Parkinson's Disease: Behavior and Related Brain Function. JOURNAL OF PARKINSON'S DISEASE 2023; 13:367-378. [PMID: 36938739 DOI: 10.3233/jpd-223480] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
BACKGROUND Deficits in motor learning could be an important explanation for the balance and gait impairments characteristic of people with Parkinson's disease (PD). Empirical studies often report that so-called implicit motor sequence learning is impaired in people with PD, but the results are inconclusive. Altered brain activity during implicit motor sequence learning has also been reported for people with PD in comparison to healthy individuals. OBJECTIVE To investigate implicit motor sequence learning and associated neural correlates in individuals with mild to moderate PD. METHODS Fifty-seven participants with PD and 34 healthy participants, all ≥60 years of age, performed the serial reaction time task (SRTT) during the acquisition of functional magnetic resonance imaging (fMRI) data. We analyzed the SRTT as a measure of implicit motor sequence learning in two complementary ways. We analyzed the task-induced fMRI data within regions of interest (ROIs) as well as functional connectivity between ROIs. RESULTS We found a significant group difference in SRTT performance indicating that the participants with PD had a somewhat lower level of implicit motor sequence learning than the healthy participants. Exploratory analyses suggested that impairments in implicit motor sequence learning for people with PD might be due to a lower learning rate. We did not find any significant group differences in the fMRI data. CONCLUSION Our exploratory finding of a lower implicit motor learning rate in PD could have important implications for how people with PD should practice new motor tasks and physical exercise. Future studies need to confirm this finding with hypothesis-driven analyses.
Collapse
Affiliation(s)
- Malin Freidle
- Department of Neurobiology, Care Sciences and Society, Division of Physiotherapy, Karolinska Institute, Stockholm, Sweden
| | - William H Thompson
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.,Department of Applied Information Technology, Gothenburg, University of Gothenburg, Gothenburg, Sweden
| | - Franziska Albrecht
- Department of Neurobiology, Care Sciences and Society, Division of Physiotherapy, Karolinska Institute, Stockholm, Sweden.,Women's Health and Allied Health Professionals Theme, Medical unit Occupational Therapy & Physiotherapy, Karolinska University Hospital, Stockholm, Sweden
| | - Erika Franzén
- Department of Neurobiology, Care Sciences and Society, Division of Physiotherapy, Karolinska Institute, Stockholm, Sweden.,Women's Health and Allied Health Professionals Theme, Medical unit Occupational Therapy & Physiotherapy, Karolinska University Hospital, Stockholm, Sweden.,R&D unit, Stockholms Sjukhem, Stockholm, Sweden
| |
Collapse
|
8
|
Watanabe A, Sawamura D, Nakazono H, Tokikuni Y, Miura H, Sugawara K, Fuyama K, Tohyama H, Yoshida S, Sakai S. Transcranial direct current stimulation to the left dorsolateral prefrontal cortex enhances early dexterity skills with the left non-dominant hand: a randomized controlled trial. J Transl Med 2023; 21:143. [PMID: 36823635 PMCID: PMC9951449 DOI: 10.1186/s12967-023-03989-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND The left dorsolateral prefrontal cortex (DLPFC) is involved in early-phase manual dexterity skill acquisition when cognitive control processes, such as integration and complexity demands, are required. However, the effectiveness of left DLPFC transcranial direct current stimulation (tDCS) on early-phase motor learning and whether its effectiveness depends on the cognitive demand of the target task are unclear. This study aimed to investigate whether tDCS over the left DLPFC improves non-dominant hand dexterity performance and determine if its efficacy depends on the cognitive demand of the target task. METHODS In this randomized, double-blind, sham-controlled trial, 70 healthy, right-handed, young adult participants were recruited. They were randomly allocated to the active tDCS (2 mA for 20 min) or sham groups and repeatedly performed the Purdue Pegboard Test (PPT) left-handed peg task and left-handed assembly task three times: pre-tDCS, during tDCS, and post tDCS. RESULTS The final sample comprised 66 healthy young adults (mean age, 22.73 ± 1.57 years). There were significant interactions between group and time in both PPT tasks, indicating significantly higher performance of those in the active tDCS group than those in the sham group post tDCS (p < 0.001). Moreover, a greater benefit was observed in the left-handed assembly task performance than in the peg task performance (p < 0.001). No significant correlation between baseline performance and benefits from tDCS was observed in either task. CONCLUSIONS These results demonstrated that prefrontal tDCS significantly improved early-phase manual dexterity skill acquisition, and its benefits were greater for the task with high cognitive demands. These findings contribute to a deeper understanding of the underlying neurophysiological mechanisms of the left DLPFC in the modulation of early-phase dexterity skill acquisition. TRIAL REGISTRATION This study was registered in the University Hospital Medical Information Network Clinical Trial Registry in Japan (UMIN000046868), Registered February 8, 2022 https://center6.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000053467.
Collapse
Affiliation(s)
- Akihiro Watanabe
- grid.39158.360000 0001 2173 7691Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812 Japan
| | - Daisuke Sawamura
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan.
| | - Hisato Nakazono
- grid.443459.b0000 0004 0374 9105Department of Occupational Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, 814-0001 Japan
| | - Yukina Tokikuni
- grid.39158.360000 0001 2173 7691Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812 Japan
| | - Hiroshi Miura
- grid.39158.360000 0001 2173 7691Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812 Japan
| | - Kazuhiro Sugawara
- grid.263171.00000 0001 0691 0855Department of Physical Therapy, Sapporo Medical University, Sapporo, 060-8556 Japan
| | - Kanako Fuyama
- grid.412167.70000 0004 0378 6088Data Science Center, Promotion Unit, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, 060-8648 Japan
| | - Harukazu Tohyama
- grid.39158.360000 0001 2173 7691Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812 Japan
| | - Susumu Yoshida
- grid.412021.40000 0004 1769 5590Department of Rehabilitation Sciences, Health Sciences University of Hokkaido, Tobetsu, 061-0293 Japan
| | - Shinya Sakai
- grid.39158.360000 0001 2173 7691Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812 Japan
| |
Collapse
|
9
|
The deep cerebellar nuclei to striatum disynaptic connection contributes to skilled forelimb movement. Cell Rep 2023; 42:112000. [PMID: 36656714 DOI: 10.1016/j.celrep.2023.112000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Cerebellar-thalamo-striatal synaptic communication has been implicated in a wide range of behaviors, including goal-directed actions, and is altered in cerebellar dystonia. However, its detailed connectivity through the thalamus and its contribution to the execution of forelimb movements is unclear. Here, we use trans-synaptic and retrograde tracing, ex vivo slice recordings, and optogenetic inhibitions during the execution of unidirectional or sequential joystick displacements to demonstrate that the deep cerebellar nuclei (DCN) influence the dorsal striatum with a very high probability. We show that this mainly occurs through the centrolateral (CL), parafascicular (PF), and ventrolateral (VL) nuclei of the thalamus, observing that the DCN→VL and DCN→CL pathways contribute to the execution of unidirectional forelimb displacements while the DCN→PF and DCN→thalamo→striatal pathways contribute to the appropriate execution of forelimb reaching and sequential displacements. These findings highlight specific contributions of the different cerebellar-thalamo-striatal paths to the control of skilled forelimb movement.
Collapse
|
10
|
Terzic L, Voegtle A, Farahat A, Hartong N, Galazky I, Nasuto SJ, Andrade ADO, Knight RT, Ivry RB, Voges J, Buentjen L, Sweeney‐Reed CM. Deep brain stimulation of the ventrointermediate nucleus of the thalamus to treat essential tremor improves motor sequence learning. Hum Brain Mapp 2022; 43:4791-4799. [PMID: 35792001 PMCID: PMC9491285 DOI: 10.1002/hbm.25989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/25/2022] [Accepted: 06/13/2022] [Indexed: 11/06/2022] Open
Abstract
The network of brain structures engaged in motor sequence learning comprises the same structures as those involved in tremor, including basal ganglia, cerebellum, thalamus, and motor cortex. Deep brain stimulation (DBS) of the ventrointermediate nucleus of the thalamus (VIM) reduces tremor, but the effects on motor sequence learning are unknown. We investigated whether VIM stimulation has an impact on motor sequence learning and hypothesized that stimulation effects depend on the laterality of electrode location. Twenty patients (age: 38-81 years; 12 female) with VIM electrodes implanted to treat essential tremor (ET) successfully performed a serial reaction time task, varying whether the stimuli followed a repeating pattern or were selected at random, during which VIM-DBS was either on or off. Analyses of variance were applied to evaluate motor sequence learning performance according to reaction times (RTs) and accuracy. An interaction was observed between whether the sequence was repeated or random and whether VIM-DBS was on or off (F[1,18] = 7.89, p = .012). Motor sequence learning, reflected by reduced RTs for repeated sequences, was greater with DBS on than off (T[19] = 2.34, p = .031). Stimulation location correlated with the degree of motor learning, with greater motor learning when stimulation targeted the lateral VIM (n = 23, ρ = 0.46; p = .027). These results demonstrate the beneficial effects of VIM-DBS on motor sequence learning in ET patients, particularly with lateral VIM electrode location, and provide evidence for a role for the VIM in motor sequence learning.
Collapse
Affiliation(s)
- Laila Terzic
- Neurocybernetics and Rehabilitation, Department of NeurologyOtto von Guericke University MagdeburgMagdeburgGermany
| | - Angela Voegtle
- Neurocybernetics and Rehabilitation, Department of NeurologyOtto von Guericke University MagdeburgMagdeburgGermany
| | - Amr Farahat
- Neurocybernetics and Rehabilitation, Department of NeurologyOtto von Guericke University MagdeburgMagdeburgGermany
- Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck SocietyFrankfurtGermany
| | - Nanna Hartong
- Department of NeurologyOtto von Guericke University MagdeburgMagdeburgGermany
| | - Imke Galazky
- Department of NeurologyOtto von Guericke University MagdeburgMagdeburgGermany
| | - Slawomir J. Nasuto
- Biomedical Sciences and Biomedical Engineering Division, School of Biological SciencesUniversity of ReadingReadingUK
| | - Adriano de Oliveira Andrade
- Faculty of Electrical Engineering, Center for Innovation and Technology Assessment in Health, Postgraduate Program in Electrical and Biomedical EngineeringFederal University of UberlândiaUberlândiaBrazil
| | - Robert T. Knight
- Helen Wills Neuroscience InstituteUniversity of California—BerkeleyBerkeleyCaliforniaUSA
- Department of PsychologyUniversity of California—BerkeleyBerkeleyCaliforniaUSA
| | - Richard B. Ivry
- Department of PsychologyUniversity of California—BerkeleyBerkeleyCaliforniaUSA
| | - Jürgen Voges
- Department of Stereotactic NeurosurgeryOtto von Guericke University MagdeburgMagdeburgGermany
| | - Lars Buentjen
- Department of Stereotactic NeurosurgeryOtto von Guericke University MagdeburgMagdeburgGermany
| | - Catherine M. Sweeney‐Reed
- Neurocybernetics and Rehabilitation, Department of NeurologyOtto von Guericke University MagdeburgMagdeburgGermany
- Center for Behavioral Brain SciencesOtto von Guericke University MagdeburgMagdeburgGermany
| |
Collapse
|
11
|
Sasaki R, Hand BJ, Liao WY, Rogasch NC, Fernandez L, Semmler JG, Opie GM. Utilising TMS-EEG to Assess the Response to Cerebellar-Brain Inhibition. CEREBELLUM (LONDON, ENGLAND) 2022:10.1007/s12311-022-01419-y. [PMID: 35661100 DOI: 10.1007/s12311-022-01419-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Cerebellar-brain inhibition (CBI) is a transcranial magnetic stimulation (TMS) paradigm indexing excitability of cerebellar projections to motor cortex (M1). Stimulation involved with CBI is often considered to be uncomfortable, and alternative ways to index connectivity between cerebellum and the cortex would be valuable. We therefore sought to assess the utility of electroencephalography in conjunction with TMS (combined TMS-EEG) to record the response to CBI. A total of 33 volunteers (25.7 ± 4.9 years, 20 females) participated across three experiments. These investigated EEG responses to CBI induced with a figure-of-eight (F8; experiment 1) or double cone (DC; experiment 2) conditioning coil over cerebellum, in addition to multisensory sham stimulation (experiment 3). Both F8 and DC coils suppressed early TMS-evoked EEG potentials (TEPs) produced by TMS to M1 (P < 0.05). Furthermore, the TEP produced by CBI stimulation was related to the motor inhibitory response to CBI recorded in a hand muscle (P < 0.05), but only when using the DC coil. Multisensory sham stimulation failed to modify the M1 TEP. Cerebellar conditioning produced changes in the M1 TEP that were not apparent following sham stimulation, and that were related to the motor inhibitory effects of CBI. Our findings therefore suggest that it is possible to index the response to CBI using TMS-EEG. In addition, while both F8 and DC coils appear to recruit cerebellar projections, the nature of these may be different.
Collapse
Affiliation(s)
- R Sasaki
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - B J Hand
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - W Y Liao
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - N C Rogasch
- Discipline of Psychiatry, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
| | - L Fernandez
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - J G Semmler
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - G M Opie
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
| |
Collapse
|
12
|
Sussman BL, Wyckoff SN, Heim J, Wilfong AA, Adelson PD, Kruer MC, Gonzalez MJ, Boerwinkle VL. Is Resting State Functional MRI Effective Connectivity in Movement Disorders Helpful? A Focused Review Across Lifespan and Disease. Front Neurol 2022; 13:847834. [PMID: 35493815 PMCID: PMC9046695 DOI: 10.3389/fneur.2022.847834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/23/2022] [Indexed: 11/20/2022] Open
Abstract
In the evolving modern era of neuromodulation for movement disorders in adults and children, much progress has been made recently characterizing the human motor network (MN) with potentially important treatment implications. Herein is a focused review of relevant resting state fMRI functional and effective connectivity of the human motor network across the lifespan in health and disease. The goal is to examine how the transition from functional connectivity to dynamic effective connectivity may be especially informative of network-targeted movement disorder therapies, with hopeful implications for children.
Collapse
Affiliation(s)
- Bethany L. Sussman
- Division of Neuroscience, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
- *Correspondence: Bethany L. Sussman
| | - Sarah N. Wyckoff
- Division of Neuroscience, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
- Department of Research, Phoenix Children's Hospital, Phoenix, AZ, United States
| | - Jennifer Heim
- Division of Pediatric Neurology, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
| | - Angus A. Wilfong
- Division of Pediatric Neurology, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
| | - P. David Adelson
- Division of Pediatric Neurosurgery, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
| | - Michael C. Kruer
- Division of Pediatric Neurology, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
- Departments of Child Health, Neurology, Genetics and Cellular & Molecular Medicine, University of Arizona College of Medicine – Phoenix, Phoenix, AZ, United States
| | | | - Varina L. Boerwinkle
- Division of Pediatric Neurology, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
| |
Collapse
|
13
|
Tzvi E, Alizadeh J, Schubert C, Classen J. Classification of EEG signals reveals a focal aftereffect of 10 Hz motor cortex transcranial alternating current stimulation. Cereb Cortex Commun 2022; 3:tgab067. [PMID: 35088053 PMCID: PMC8790173 DOI: 10.1093/texcom/tgab067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/15/2022] Open
Abstract
Abstract
Transcranial alternating current stimulation (tACS) modulates oscillations in a frequency- and location-specific manner and affects cognitive and motor functions. This effect appears during stimulation as well as “offline,” following stimulation, presumably reflecting neuroplasticity. Whether tACS produces long-lasting aftereffects that are physiologically meaningful, is still of current debate. Thus, for tACS to serve as a reliable method for modulating activity within neural networks, it is important to first establish whether “offline” aftereffects are robust and reliable. In this study, we employed a novel machine-learning approach to detect signatures of neuroplasticity following 10 Hz tACS to two critical nodes of the motor network: left motor cortex (lMC) and right cerebellum (rCB). To this end, we trained a classifier to distinguish between signals following lMC-tACS, rCB-tACS and sham. Our results demonstrate better classification of EEG signals in both theta (θ, 4 Hz-8 Hz) and alpha (α, 8 Hz-13 Hz) frequency bands to lMC-tACS compared to rCB-tACS/sham, at lMC-tACS stimulation location. Source reconstruction allocated these effects to premotor cortex. Stronger correlation between classification accuracies in θ and α in lMC-tACS suggested an association between θ and α efffects. Together these results suggest that EEG signals over premotor cortex contains unique signatures of neuroplasticity following 10 Hz motor cortex tACS.
Collapse
|
14
|
Schubert C, Dabbagh A, Classen J, Krämer UM, Tzvi E. Alpha oscillations modulate premotor-cerebellar connectivity in motor learning: Insights from transcranial alternating current stimulation. Neuroimage 2021; 241:118410. [PMID: 34303797 DOI: 10.1016/j.neuroimage.2021.118410] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/15/2021] [Accepted: 07/19/2021] [Indexed: 11/25/2022] Open
Abstract
Alpha oscillations (8-13 Hz) have been suggested to play an important role in dynamic neural processes underlying learning and memory. The goal of this study was to scrutinize the role of alpha oscillations in communication within a cortico-cerebellar network implicated in motor sequence learning. To this end, we conducted two EEG experiments using a serial reaction time task. In the first experiment, we explored changes in alpha power and cross-channel alpha coherence as subjects learned a motor sequence. We found a gradual decrease in spectral alpha power over left premotor cortex (PMC) and sensorimotor cortex (SM1) during learning blocks. In addition, alpha coherence between left PMC/SM1 and left cerebellar crus I was specifically decreased during sequence learning, possibly reflecting a functional decoupling in the broader motor learning network. In the second experiment in a different cohort, we applied 10Hz transcranial alternating current stimulation (tACS), a method shown to entrain local oscillatory activity, to left M1 (lM1) and right cerebellum (rCB) during sequence learning. We observed a tendency for diminished learning following rCB tACS compared to sham, but not following lM1 tACS. Learning-related alpha power following rCB tACS was increased in left PMC, possibly reflecting increase in local inhibitory neural activity. Importantly, learning-specific alpha coherence between left PMC and right cerebellar lobule VIIb was enhanced following rCB tACS. These findings provide strong evidence for a causal role of alpha oscillations in controlling information transfer in a premotor-cerebellar loop during motor sequence learning. Our findings are consistent with a model in which sequence learning may be impaired by enhancing premotor cortical alpha oscillation via external modulation of cerebellar oscillations.
Collapse
Affiliation(s)
- Christine Schubert
- Department of Neurology, University of Leipzig, Liebigstraße 20, Leipzig 04103, Germany
| | - Alhuda Dabbagh
- Department of Neurology, University of Leipzig, Liebigstraße 20, Leipzig 04103, Germany
| | - Joseph Classen
- Department of Neurology, University of Leipzig, Liebigstraße 20, Leipzig 04103, Germany
| | - Ulrike M Krämer
- Department of Neurology, University of Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany; Department of Psychology, University of Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany; Center for Brain, Behavior and Metabolism, University of Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany
| | - Elinor Tzvi
- Department of Neurology, University of Leipzig, Liebigstraße 20, Leipzig 04103, Germany.
| |
Collapse
|
15
|
Tzvi E, Bey R, Nitschke M, Brüggemann N, Classen J, Münte TF, Krämer UM, Rumpf JJ. Motor Sequence Learning Deficits in Idiopathic Parkinson's Disease Are Associated With Increased Substantia Nigra Activity. Front Aging Neurosci 2021; 13:685168. [PMID: 34194317 PMCID: PMC8236713 DOI: 10.3389/fnagi.2021.685168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/21/2021] [Indexed: 11/19/2022] Open
Abstract
Previous studies have shown that persons with Parkinson’s disease (pwPD) share specific deficits in learning new sequential movements, but the neural substrates of this impairment remain unclear. In addition, the degree to which striatal dopaminergic denervation in PD affects the cortico-striato-thalamo-cerebellar motor learning network remains unknown. We aimed to answer these questions using fMRI in 16 pwPD and 16 healthy age-matched control subjects while they performed an implicit motor sequence learning task. While learning was absent in both pwPD and controls assessed with reaction time differences between sequential and random trials, larger error-rates during the latter suggest that at least some of the complex sequence was encoded. Moreover, we found that while healthy controls could improve general task performance indexed by decreased reaction times across both sequence and random blocks, pwPD could not, suggesting disease-specific deficits in learning of stimulus-response associations. Using fMRI, we found that this effect in pwPD was correlated with decreased activity in the hippocampus over time. Importantly, activity in the substantia nigra (SN) and adjacent bilateral midbrain was specifically increased during sequence learning in pwPD compared to healthy controls, and significantly correlated with sequence-specific learning deficits. As increased SN activity was also associated (on trend) with higher doses of dopaminergic medication as well as disease duration, the results suggest that learning deficits in PD are associated with disease progression, indexing an increased drive to recruit dopaminergic neurons in the SN, however, unsuccessfully. Finally, there were no differences between pwPD and controls in task modulation of the cortico-striato-thalamo-cerebellar network. However, a restricted nigral-striatal model showed that negative modulation of SN to putamen connection was larger in pwPD compared to controls during random trials, while no differences between the groups were found during sequence learning. We speculate that learning-specific SN recruitment leads to a relative increase in SN- > putamen connectivity, which returns to a pathological reduced state when no learning takes place.
Collapse
Affiliation(s)
- Elinor Tzvi
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Richard Bey
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | | | - Norbert Brüggemann
- Department of Neurology, University of Lübeck, Lübeck, Germany.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Joseph Classen
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Thomas F Münte
- Department of Neurology, University of Lübeck, Lübeck, Germany.,Department of Psychology, University of Lübeck, Lübeck, Germany.,Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Ulrike M Krämer
- Department of Neurology, University of Lübeck, Lübeck, Germany.,Department of Psychology, University of Lübeck, Lübeck, Germany.,Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | | |
Collapse
|
16
|
Motor learning deficits in cervical dystonia point to defective basal ganglia circuitry. Sci Rep 2021; 11:7332. [PMID: 33795752 PMCID: PMC8016965 DOI: 10.1038/s41598-021-86513-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/11/2021] [Indexed: 12/28/2022] Open
Abstract
Dystonia is conceptualized as a network disorder involving basal ganglia, thalamus, sensorimotor cortex and the cerebellum. The cerebellum has been implicated in dystonia pathophysiology, but studies testing cerebellar function in dystonia patients have provided equivocal results. This study aimed to further elucidate motor network deficits in cervical dystonia with special interest in the role of the cerebellum. To this end we investigated motor learning tasks, that differ in their dependence on cerebellar and basal ganglia functioning. In 18 cervical dystonia patients and 18 age matched healthy controls we measured implicit motor sequence learning using a 12-item serial reaction time task mostly targeting basal ganglia circuitry and motor adaptation and eyeblink conditioning as markers of cerebellar functioning. ANOVA showed that motor sequence learning was overall impaired in cervical dystonia (p = 0.01). Moreover, unlike healthy controls, patients did not show a learning effect in the first part of the experiment. Visuomotor adaptation and eyeblink conditioning were normal. In conclusion, these data lend support to the notion that motor learning deficits in cervical dystonia relate to basal ganglia-thalamo-cortical loops rather than being a result of defective cerebellar circuitry.
Collapse
|
17
|
Tzvi E, Koeth F, Karabanov AN, Siebner HR, Krämer UM. Cerebellar – Premotor cortex interactions underlying visuomotor adaptation. Neuroimage 2020; 220:117142. [DOI: 10.1016/j.neuroimage.2020.117142] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/18/2020] [Accepted: 07/02/2020] [Indexed: 01/13/2023] Open
|
18
|
Azarpaikan A, Torbati HRT, Sohrabi M, Boostani R, Ghoshoni M. Timing-Dependent Priming Effects of Anodal tDCS on Two-Hand Coordination. J PSYCHOPHYSIOL 2020. [DOI: 10.1027/0269-8803/a000250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract. The aim of study was to investigate the interaction of time of applying anodal transcranial direct current stimulation (tDCS) with motor learning using a two-hand coordination (THC) task. Sixty-four healthy participants were tested under four stimulation conditions: anodal tDCS a head of the motor task, anodal tDCS during the motor task, anodal tDCS following the motor task, and sham tDCS. Transcranial direct current stimulation (tDCS) stimulation was applied on cerebellum by using a weak direct current (15 min) of 1.5 mA generated by a battery and regulated by the drive stimulator. The results show that on-line learning increased in the anodal tDCS-during group ( p = .039). The anodal tDCS-after group relied more on off-line learning ( p = .05). The during-tDCS and after-tDCS groups achieved greater improvements in speed/accuracy than the before-tDCS and sham-tDCS groups. The cerebellar tDCS may play a significant role to speed up motor skill acquisition and improve motor skill accuracy.
Collapse
Affiliation(s)
- Atefeh Azarpaikan
- Department of Motor Behavior, Faculty of Physical Education and Sport Science, Ferdowsi University of Mashhad, Iran
| | - Hamid Reza Taherii Torbati
- Department of Motor Behavior, Faculty of Physical Education and Sport Science, Ferdowsi University of Mashhad, Iran
| | - Mehdi Sohrabi
- Department of Motor Behavior, Faculty of Physical Education and Sport Science, Ferdowsi University of Mashhad, Iran
| | - Reza Boostani
- Department of Neurology, Mashhad University of Medical Sciences, Iran
| | - Majid Ghoshoni
- Department of Medicine Engineering, Faculty of Engineering, Azad University of Mashhad, Iran
| |
Collapse
|
19
|
Beneficial effects of cerebellar tDCS on motor learning are associated with altered putamen-cerebellar connectivity: A simultaneous tDCS-fMRI study. Neuroimage 2020; 223:117363. [PMID: 32919057 DOI: 10.1016/j.neuroimage.2020.117363] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022] Open
Abstract
Non-invasive transcranial stimulation of cerebellum and primary motor cortex (M1) has been shown to enhance motor learning. However, the mechanisms by which stimulation improves learning remain largely unknown. Here, we sought to shed light on the neural correlates of transcranial direct current stimulation (tDCS) during motor learning by simultaneously recording functional magnetic resonance imaging (fMRI). We found that right cerebellar tDCS, but not left M1 tDCS, led to enhanced sequence learning in the serial reaction time task. Performance was also improved following cerebellar tDCS compared to sham in a sequence production task, reflecting superior training effects persisting into the post-training period. These behavioral effects were accompanied by increased learning-specific activity in right M1, left cerebellum lobule VI, left inferior frontal gyrus and right inferior parietal lobule during cerebellar tDCS compared to sham. Despite the lack of group-level changes comparing left M1 tDCS to sham, activity increase in right M1, supplementary motor area, and bilateral middle frontal cortex, under M1 tDCS, was associated with better sequence performance. This suggests that lack of group effects in M1 tDCS relate to inter-individual variability in learning-related activation patterns. We further investigated how tDCS modulates effective connectivity in the cortico-striato-cerebellar learning network. Using dynamic causal modelling, we found altered connectivity patterns during both M1 and cerebellar tDCS when compared to sham. Specifically, during cerebellar tDCS, negative modulation of a connection from putamen to cerebellum was decreased for sequence learning only, effectively leading to decreased inhibition of the cerebellum. These results show specific effects of cerebellar tDCS on functional activity and connectivity in the motor learning network and may facilitate the optimization of motor rehabilitation involving cerebellar non-invasive stimulation.
Collapse
|
20
|
Sehatpour P, Dondé C, Hoptman MJ, Kreither J, Adair D, Dias E, Vail B, Rohrig S, Silipo G, Lopez-Calderon J, Martinez A, Javitt DC. Network-level mechanisms underlying effects of transcranial direct current stimulation (tDCS) on visuomotor learning. Neuroimage 2020; 223:117311. [PMID: 32889116 PMCID: PMC7778833 DOI: 10.1016/j.neuroimage.2020.117311] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/15/2020] [Accepted: 08/18/2020] [Indexed: 02/02/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation approach in which low level currents are administered over the scalp to influence underlying brain function. Prevailing theories of tDCS focus on modulation of excitation-inhibition balance at the local stimulation location. However, network level effects are reported as well, and appear to depend upon differential underlying mechanisms. Here, we evaluated potential network-level effects of tDCS during the Serial Reaction Time Task (SRTT) using convergent EEG- and fMRI-based connectivity approaches. Motor learning manifested as a significant (p <.0001) shift from slow to fast responses and corresponded to a significant increase in beta-coherence (p <.0001) and fMRI connectivity (p <.01) particularly within the visual-motor pathway. Differential patterns of tDCS effect were observed within different parametric task versions, consistent with network models. Overall, these findings demonstrate objective physiological effects of tDCS at the network level that result in effective behavioral modulation when tDCS parameters are matched to network-level requirements of the underlying task.
Collapse
Affiliation(s)
- Pejman Sehatpour
- Division of Experimental Therapeutics, College of Physicians and Surgeons, Columbia University/New York State Psychiatric Institute, New York, NY, USA; Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
| | - Clément Dondé
- Université Grenoble Alpes, Inserm U1216, Grenoble Institut des Neurosciences, CHU Grenoble-Alpes, F-38000 Grenoble, France
| | - Matthew J Hoptman
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Johanna Kreither
- PIA Ciencias Cognitivas, Centro de Investigación en Ciencias Cognitivas, Centro de Psicología Aplicada, Facultad de Psicología, Universidad de Talca, Chile
| | - Devin Adair
- Department of Biomedical Engineering, The City College of New York, CUNY, NY, USA
| | - Elisa Dias
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Blair Vail
- Division of Experimental Therapeutics, College of Physicians and Surgeons, Columbia University/New York State Psychiatric Institute, New York, NY, USA
| | - Stephanie Rohrig
- Department of Psychology, Hofstra University, New Hempstead, NY, USA
| | - Gail Silipo
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | | | - Antigona Martinez
- Division of Experimental Therapeutics, College of Physicians and Surgeons, Columbia University/New York State Psychiatric Institute, New York, NY, USA; Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Daniel C Javitt
- Division of Experimental Therapeutics, College of Physicians and Surgeons, Columbia University/New York State Psychiatric Institute, New York, NY, USA; Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| |
Collapse
|
21
|
Sun Y, Zhao L, Lan Z, Jia XZ, Xue SW. Differentiating Boys with ADHD from Those with Typical Development Based on Whole-Brain Functional Connections Using a Machine Learning Approach. Neuropsychiatr Dis Treat 2020; 16:691-702. [PMID: 32210565 PMCID: PMC7071874 DOI: 10.2147/ndt.s239013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/01/2020] [Indexed: 12/20/2022] Open
Abstract
PURPOSE In recent years, machine learning techniques have received increasing attention as a promising approach to differentiating patients from healthy subjects. Therefore, some resting-state functional magnetic resonance neuroimaging (R-fMRI) studies have used interregional functional connections as discriminative features. The aim of this study was to investigate ADHD-related spatially distributed discriminative features derived from whole-brain resting-state functional connectivity patterns using machine learning. PATIENTS AND METHODS We measured the interregional functional connections of the R-fMRI data from 40 ADHD patients and 28 matched typically developing controls. Machine learning was used to discriminate ADHD patients from controls. Classification performance was assessed by permutation tests. RESULTS The results from the model with the highest classification accuracy showed that 85.3% of participants were correctly identified using leave-one-out cross-validation (LOOV) with support vector machine (SVM). The majority of the most discriminative functional connections were located within or between the cerebellum, default mode network (DMN) and frontoparietal regions. Approximately half of the most discriminative connections were associated with the cerebellum. The cerebellum, right superior orbitofrontal cortex, left olfactory cortex, left gyrus rectus, right superior temporal pole, right calcarine gyrus and bilateral inferior occipital cortex showed the highest discriminative power in classification. Regarding the brain-behaviour relationships, some functional connections between the cerebellum and DMN regions were significantly correlated with behavioural symptoms in ADHD (P < 0.05). CONCLUSION This study indicated that whole-brain resting-state functional connections might provide potential neuroimaging-based information for clinically assisting the diagnosis of ADHD.
Collapse
Affiliation(s)
- Yunkai Sun
- Center for Cognition and Brain Disorders, Institute of Psychological Sciences and the Affiliated Hospital, Hangzhou Normal University, Hangzhou 311121, People's Republic of China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou 311121, People's Republic of China
| | - Lei Zhao
- Center for Cognition and Brain Disorders, Institute of Psychological Sciences and the Affiliated Hospital, Hangzhou Normal University, Hangzhou 311121, People's Republic of China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou 311121, People's Republic of China
| | - Zhihui Lan
- Center for Cognition and Brain Disorders, Institute of Psychological Sciences and the Affiliated Hospital, Hangzhou Normal University, Hangzhou 311121, People's Republic of China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou 311121, People's Republic of China
| | - Xi-Ze Jia
- Center for Cognition and Brain Disorders, Institute of Psychological Sciences and the Affiliated Hospital, Hangzhou Normal University, Hangzhou 311121, People's Republic of China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou 311121, People's Republic of China
| | - Shao-Wei Xue
- Center for Cognition and Brain Disorders, Institute of Psychological Sciences and the Affiliated Hospital, Hangzhou Normal University, Hangzhou 311121, People's Republic of China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou 311121, People's Republic of China
| |
Collapse
|
22
|
Tzvi E, Bauhaus LJ, Kessler TU, Liebrand M, Wöstmann M, Krämer UM. Alpha-gamma phase amplitude coupling subserves information transfer during perceptual sequence learning. Neurobiol Learn Mem 2018; 149:107-117. [DOI: 10.1016/j.nlm.2018.02.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 02/09/2018] [Accepted: 02/19/2018] [Indexed: 11/30/2022]
|
23
|
Dynamic causal modeling revealed dysfunctional effective connectivity in both, the cortico-basal-ganglia and the cerebello-cortical motor network in writers' cramp. NEUROIMAGE-CLINICAL 2018; 18:149-159. [PMID: 29868443 PMCID: PMC5984595 DOI: 10.1016/j.nicl.2018.01.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/09/2018] [Accepted: 01/15/2018] [Indexed: 12/25/2022]
Abstract
Writer's cramp (WC) is a focal task-specific dystonia characterized by sustained or intermittent muscle contractions while writing, particularly with the dominant hand. Since structural lesions rarely cause WC, it has been assumed that the disease might be caused by a functional maladaptation within the sensory-motor system. Therefore, our objective was to examine the differences between patients suffering from WC and a healthy control (HC) group with regard to the effective connectivity that describes causal influences one brain region exerts over another within the motor network. The effective connectivity within a network including contralateral motor cortex (M1), supplementary motor area (SMA), globus pallidus (GP), putamen (PU) and ipsilateral cerebellum (CB) was investigated using dynamic causal modeling (DCM) for fMRI. Eight connectivity models of functional motor systems were compared. Fifteen WC patients and 18 age-matched HC performed a sequential, five-element finger-tapping task with the non-dominant and non-affected left hand within a 3 T MRI-scanner as quickly and accurately as possible. The task was conducted in a fixed block design repeated 15 times and included 30 s of tapping followed by 30 s of rest. DCM identified the same model in WC and HC as superior for reflecting basal ganglia and cerebellar motor circuits of healthy subjects. The M1-PU, as well as M1-CB connectivity, was more strongly influenced by tapping in WC, but the intracortical M1-SMA connection was more facilitating in controls. Inhibiting influences originating from GP to M1 were stronger in controls compared to WC patients whereby facilitating influences the PU exerts over CB and CB exerts over M1 were not as strong. Although the same model structure explains the given data best, DCM confirms previous research demonstrating a malfunction in effective connectivity intracortically (M1-SMA) and in the cortico-basal ganglia circuitry in WC. In addition, DCM analysis demonstrates abnormal reciprocal excitatory connectivity in the cortico-cerebellar circuitry. These results highlight the dysfunctional cerebello-cortical as well as basalganglio-cortical interaction in WC. Effective connectivity in writer`s cramp differs under sequential finger movements. We found a deficient inhibitory pallido-cortical connectivity in writer`s cramp. We found a diverging effective connectivity in the cortico-cerebellar loop. We found a diverging effective connectivity in the cortico-basal ganglia pathway. Pathophysiological interaction between the cerebellum and the basal ganglia.
Collapse
|
24
|
Nackaerts E, Michely J, Heremans E, Swinnen SP, Smits-Engelsman BCM, Vandenberghe W, Grefkes C, Nieuwboer A. Training for Micrographia Alters Neural Connectivity in Parkinson's Disease. Front Neurosci 2018; 12:3. [PMID: 29403348 PMCID: PMC5780425 DOI: 10.3389/fnins.2018.00003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/04/2018] [Indexed: 12/23/2022] Open
Abstract
Despite recent advances in clarifying the neural networks underlying rehabilitation in Parkinson's disease (PD), the impact of prolonged motor learning interventions on brain connectivity in people with PD is currently unknown. Therefore, the objective of this study was to compare cortical network changes after 6 weeks of visually cued handwriting training (= experimental) with a placebo intervention to address micrographia, a common problem in PD. Twenty seven early Parkinson's patients on dopaminergic medication performed a pre-writing task in both the presence and absence of visual cues during behavioral tests and during fMRI. Subsequently, patients were randomized to the experimental (N = 13) or placebo intervention (N = 14) both lasting 6 weeks, after which they underwent the same testing procedure. We used dynamic causal modeling to compare the neural network dynamics in both groups before and after training. Most importantly, intensive writing training propagated connectivity via the left hemispheric visuomotor stream to an increased coupling with the supplementary motor area, not witnessed in the placebo group. Training enhanced communication in the left visuomotor integration system in line with the learned visually steered training. Notably, this pattern was apparent irrespective of the presence of cues, suggesting transfer from cued to uncued handwriting. We conclude that in early PD intensive motor skill learning, which led to clinical improvement, alters cortical network functioning. We showed for the first time in a placebo-controlled design that it remains possible to enhance the drive to the supplementary motor area through motor learning.
Collapse
Affiliation(s)
| | - Jochen Michely
- Department of Neurology, Cologne University Hospital, Cologne, Germany
| | - Elke Heremans
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | | | | | - Wim Vandenberghe
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Christian Grefkes
- Department of Neurology, Cologne University Hospital, Cologne, Germany.,Institute of Neuroscience and Medicine - Cognitive Neurology (INM-3), Research Centre Jülich, Jülich, Germany
| | - Alice Nieuwboer
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
25
|
Nackaerts E, Michely J, Heremans E, Swinnen S, Smits-Engelsman B, Vandenberghe W, Grefkes C, Nieuwboer A. Being on Target: Visual Information during Writing Affects Effective Connectivity in Parkinson's Disease. Neuroscience 2017; 371:484-494. [PMID: 29294336 DOI: 10.1016/j.neuroscience.2017.12.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/30/2017] [Accepted: 12/19/2017] [Indexed: 12/12/2022]
Abstract
A common motor symptom of Parkinson's disease (PD) is micrographia, characterized by a decrease in writing amplitude. Despite the relevance of this impairment for activities of daily living, the underlying neural network abnormalities and the impact of cueing strategies on brain connectivity are unknown. Therefore, we investigated the effects of visual cues on visuomotor network interactions during handwriting in PD and healthy controls (HCs). Twenty-eight patients with early disease, ON dopaminergic medication, and 14 age-matched controls performed a pre-writing task with and without visual cues in the scanner. Patients displayed weaker right visuo-parietal coupling than controls, suggesting impaired visuomotor integration during writing. Surprisingly, cueing did not have the expected positive effects on writing performance. Patients and controls, however, did activate similar networks during cued and uncued writing. During cued writing, the stronger influence of both visual and motor areas on the left superior parietal lobe suggested that visual cueing induced greater visual steering. In the absence of cues, there was enhanced coupling between parietal and supplementary motor areas (SMA) in line with previous findings in HCs during uncued motor tasks. In conclusion, the present study showed that patients with PD, despite their compromised brain function, were able to shift neural networks similar to controls. However, it seemed that visual cues provided a greater accuracy constraint on handwriting rather than offering unequivocal beneficial effects. Altogether, the results suggest that the effectiveness of using compensatory neural networks through applying external stimuli is task dependent and may compromise motor control during writing.
Collapse
Affiliation(s)
- Evelien Nackaerts
- Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, Bus 1501, 3001 Heverlee, Belgium.
| | - Jochen Michely
- Department of Neurology, Cologne University Hospital, Kerpener Straße 62, 50924 Köln, Germany.
| | - Elke Heremans
- Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, Bus 1501, 3001 Heverlee, Belgium.
| | - Stephan Swinnen
- Department of Kinesiology, KU Leuven, Tervuursevest 101, Bus 1501, 3001 Heverlee, Belgium.
| | - Bouwien Smits-Engelsman
- Department of Health and Rehabilitation Sciences, University of Cape Town, Old Main Building Groote Schuur Hospital, Cape Town, South Africa.
| | - Wim Vandenberghe
- Department of Neurology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Christian Grefkes
- Department of Neurology, Cologne University Hospital, Kerpener Straße 62, 50924 Köln, Germany; Institute of Neuroscience and Medicine - Cognitive Neurology (INM-3), Research Centre Jülich, 52425 Jülich, Germany.
| | - Alice Nieuwboer
- Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, Bus 1501, 3001 Heverlee, Belgium.
| |
Collapse
|
26
|
fMRI Investigation on Gradual Change of Awareness States in Implicit Sequence Learning. Sci Rep 2017; 7:16731. [PMID: 29196661 PMCID: PMC5711927 DOI: 10.1038/s41598-017-16340-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 11/11/2017] [Indexed: 11/26/2022] Open
Abstract
Awareness of implicit knowledge is a changing process. Previous studies have examined brain activation patterns corresponding to the start and end stages of implicit learning, but failed to reveal the gradual changing course of awareness in implicit learning. The present study explored brain activation changes corresponding to different awareness states elicited by two different stimulus onset asynchrony (SOA, 850 ms and 1350 ms) over the whole course of implicit sequence learning (i.e., divided into three phases), by using a process dissociation procedure (PDP) paradigm and the technique of functional magnetic resonance imaging (fMRI). In the results, it was found that the 850 ms SOA elicited primarily an awareness state of unconsciousness, under which the frontal lobe was significantly activated during the early phase of implicit sequence learning, with its activation levels correlated positively to consciousness levels. In contrast, the 1350 ms SOA triggered predominantly an awareness state of consciousness, under which the activation levels of the inferior parietal lobule correlated positively to consciousness levels during the middle phase, and positively to consciousness levels as well as negatively to unconsciousness levels during the late phase of implicit sequence learning. Overall, the frontal lobe and inferior parietal lobule were found to play critical roles in mediating awareness states over the course of implicit sequence learning.
Collapse
|
27
|
Chrobak AA, Siuda-Krzywicka K, Siwek GP, Tereszko A, Janeczko W, Starowicz-Filip A, Siwek M, Dudek D. Disrupted implicit motor sequence learning in schizophrenia and bipolar disorder revealed with ambidextrous Serial Reaction Time Task. Prog Neuropsychopharmacol Biol Psychiatry 2017. [PMID: 28648566 DOI: 10.1016/j.pnpbp.2017.06.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Impairment of implicit motor sequence learning was shown in schizophrenia (SZ) and, most recently, in bipolar disorder (BD), and was connected to cerebellar abnormalities. The goal of this study was to compare implicit motor sequence learning in BD and SZ. METHODS We examined 33 patients with BD, 33 patients with SZ and 31 healthy controls with a use of ambidextrous Serial Reaction Time Task (SRTT), which allows exploring asymmetries in performance depending on the hand used. RESULTS BD and SZ patients presented impaired implicit motor sequence learning, although the pattern of their impairments was different. While BD patients showed no signs of implicit motor sequence learning for both hands, the SZ group presented some features of motor learning when performing with the right, but not with the left hand. CONCLUSIONS To our best knowledge this is the first study comparing implicit motor sequence learning in BD and SZ. We show that both diseases share impairments in this domain, however in the case of SZ this impairment differs dependently on the hand performing SRTT. We propose that implicit motor sequence learning impairments constitute an overlapping symptom in BD and SZ and suggest further neuroimaging studies to verify cerebellar underpinnings as its cause.
Collapse
Affiliation(s)
| | - Katarzyna Siuda-Krzywicka
- Department of Psychophysiology, Faculty of Psychology, Jagiellonian University, Kraków, Poland; Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | | | - Anna Tereszko
- Department of Psychiatry, Jagiellonian University, Medical College, Kraków, Poland
| | - Weronika Janeczko
- Students' Scientific Association of Affective Disorders, Jagiellonian University, Medical College, Kraków, Poland
| | - Anna Starowicz-Filip
- Medical Psychology Department, Jagiellonian University, Medical College, Kraków, Poland
| | - Marcin Siwek
- Department of Affective Disorders, Chair of Psychiatry, Jagiellonian University, Medical College, Kraków, Poland
| | - Dominika Dudek
- Department of Affective Disorders, Chair of Psychiatry, Jagiellonian University, Medical College, Kraków, Poland
| |
Collapse
|
28
|
Marchal-Crespo L, Michels L, Jaeger L, López-Olóriz J, Riener R. Effect of Error Augmentation on Brain Activation and Motor Learning of a Complex Locomotor Task. Front Neurosci 2017; 11:526. [PMID: 29021739 PMCID: PMC5623679 DOI: 10.3389/fnins.2017.00526] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/08/2017] [Indexed: 01/14/2023] Open
Abstract
Up to date, the functional gains obtained after robot-aided gait rehabilitation training are limited. Error augmenting strategies have a great potential to enhance motor learning of simple motor tasks. However, little is known about the effect of these error modulating strategies on complex tasks, such as relearning to walk after a neurologic accident. Additionally, neuroimaging evaluation of brain regions involved in learning processes could provide valuable information on behavioral outcomes. We investigated the effect of robotic training strategies that augment errors—error amplification and random force disturbance—and training without perturbations on brain activation and motor learning of a complex locomotor task. Thirty-four healthy subjects performed the experiment with a robotic stepper (MARCOS) in a 1.5 T MR scanner. The task consisted in tracking a Lissajous figure presented on a display by coordinating the legs in a gait-like movement pattern. Behavioral results showed that training without perturbations enhanced motor learning in initially less skilled subjects, while error amplification benefited better-skilled subjects. Training with error amplification, however, hampered transfer of learning. Randomly disturbing forces induced learning and promoted transfer in all subjects, probably because the unexpected forces increased subjects' attention. Functional MRI revealed main effects of training strategy and skill level during training. A main effect of training strategy was seen in brain regions typically associated with motor control and learning, such as, the basal ganglia, cerebellum, intraparietal sulcus, and angular gyrus. Especially, random disturbance and no perturbation lead to stronger brain activation in similar brain regions than error amplification. Skill-level related effects were observed in the IPS, in parts of the superior parietal lobe (SPL), i.e., precuneus, and temporal cortex. These neuroimaging findings indicate that gait-like motor learning depends on interplay between subcortical, cerebellar, and fronto-parietal brain regions. An interesting observation was the low activation observed in the brain's reward system after training with error amplification compared to training without perturbations. Our results suggest that to enhance learning of a locomotor task, errors should be augmented based on subjects' skill level. The impacts of these strategies on motor learning, brain activation, and motivation in neurological patients need further investigation.
Collapse
Affiliation(s)
- Laura Marchal-Crespo
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland.,Reharobotics Group, Spinal Cord Injury Center, Balgrist University Hospital, Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Lars Michels
- Clinic of Neuroradiology, University Hospital Zurich, Zurich, Switzerland.,MR-Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Lukas Jaeger
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland.,Clinic of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
| | - Jorge López-Olóriz
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
| | - Robert Riener
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland.,Reharobotics Group, Spinal Cord Injury Center, Balgrist University Hospital, Medical Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Ziegler W, Ackermann H. Subcortical Contributions to Motor Speech: Phylogenetic, Developmental, Clinical. Trends Neurosci 2017; 40:458-468. [DOI: 10.1016/j.tins.2017.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/13/2017] [Accepted: 06/20/2017] [Indexed: 02/01/2023]
|
30
|
Tzvi E, Zimmermann C, Bey R, Münte TF, Nitschke M, Krämer UM. Cerebellar degeneration affects cortico-cortical connectivity in motor learning networks. NEUROIMAGE-CLINICAL 2017; 16:66-78. [PMID: 28761810 PMCID: PMC5521032 DOI: 10.1016/j.nicl.2017.07.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/14/2017] [Accepted: 07/14/2017] [Indexed: 12/17/2022]
Abstract
The cerebellum plays an important role in motor learning as part of a cortico-striato-cerebellar network. Patients with cerebellar degeneration typically show impairments in different aspects of motor learning, including implicit motor sequence learning. How cerebellar dysfunction affects interactions in this cortico-striato-cerebellar network is poorly understood. The present study investigated the effect of cerebellar degeneration on activity in causal interactions between cortical and subcortical regions involved in motor learning. We found that cerebellar patients showed learning-related increase in activity in two regions known to be involved in learning and memory, namely parahippocampal cortex and cerebellar Crus I. The cerebellar activity increase was observed in non-learners of the patient group whereas learners showed an activity decrease. Dynamic causal modeling analysis revealed that modulation of M1 to cerebellum and putamen to cerebellum connections were significantly more negative for sequence compared to random blocks in controls, replicating our previous results, and did not differ in patients. In addition, a separate analysis revealed a similar effect in connections from SMA and PMC to M1 bilaterally. Again, neural network changes were associated with learning performance in patients. Specifically, learners showed a negative modulation from right SMA to right M1 that was similar to controls, whereas this effect was close to zero in non-learners. These results highlight the role of cerebellum in motor learning and demonstrate the functional role cerebellum plays as part of the cortico-striato-cerebellar network.
Collapse
Affiliation(s)
- Elinor Tzvi
- Dept. of Neurology, University of Lübeck, Germany
| | | | - Richard Bey
- Dept. of Neurology, University of Lübeck, Germany
| | - Thomas F Münte
- Dept. of Neurology, University of Lübeck, Germany.,Institute of Psychology II, University of Lübeck, Germany
| | | | - Ulrike M Krämer
- Dept. of Neurology, University of Lübeck, Germany.,Institute of Psychology II, University of Lübeck, Germany
| |
Collapse
|
31
|
Barkhuizen M, Van de Berg WDJ, De Vente J, Blanco CE, Gavilanes AWD, Steinbusch HWM. Nitric Oxide Production in the Striatum and Cerebellum of a Rat Model of Preterm Global Perinatal Asphyxia. Neurotox Res 2017; 31:400-409. [PMID: 28110393 PMCID: PMC5360831 DOI: 10.1007/s12640-017-9700-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/30/2016] [Accepted: 01/02/2017] [Indexed: 11/29/2022]
Abstract
Encephalopathy due to perinatal asphyxia (PA) is a major cause of neonatal morbidity and mortality in the period around birth. Preterm infants are especially at risk for cognitive, attention and motor impairments. Therapy for this subgroup is limited to supportive care, and new targets are thus urgently needed. Post-asphyxic excitotoxicity is partially mediated by excessive nitric oxide (NO) release. The aims of this study were to determine the timing and distribution of nitric oxide (NO) production after global PA in brain areas involved in motor regulation and coordination. This study focused on the rat striatum and cerebellum, as these areas also affect cognition or attention, in addition to their central role in motor control. NO/peroxynitrite levels were determined empirically with a fluorescent marker on postnatal days P5, P8 and P12. The distributions of neuronal NO synthase (nNOS), cyclic guanosine monophosphate (cGMP), astroglia and caspase-3 were determined with immunohistochemistry. Apoptosis was additionally assessed by measuring caspase-3-like activity from P2-P15. On P5 and P8, increased intensity of NO-associated fluorescence and cGMP immunoreactivity after PA was apparent in the striatum, but not in the cerebellum. No changes in nNOS immunoreactivity or astrocytes were observed. Modest changes in caspase-3-activity were observed between groups, but the overall time course of apoptosis over the first 11 days of life was similar between PA and controls. Altogether, these data suggest that PA increases NO/peroxynitrite levels during the first week after birth within the striatum, but not within the cerebellum, without marked astrogliosis. Therapeutic benefits of interventions that reduce endogenous NO production would likely be greater during this time frame.
Collapse
Affiliation(s)
- M Barkhuizen
- Department Pediatrics, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands.,Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands.,EURON - European Graduate School of Neuroscience, Maastricht, The Netherlands.,DST/NWU Preclinical Drug Development Platform, North-West University, Potchefstroom, South Africa
| | - W D J Van de Berg
- Department Pediatrics, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands.,Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands.,Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Centre, Amsterdam, Netherlands
| | - J De Vente
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - C E Blanco
- Department Pediatrics, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - A W D Gavilanes
- Department Pediatrics, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands.,EURON - European Graduate School of Neuroscience, Maastricht, The Netherlands.,Institute of Biomedicine, Faculty of Medicine, Catholic University of Guayaquil, Guayaquil, Ecuador
| | - H W M Steinbusch
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands. .,EURON - European Graduate School of Neuroscience, Maastricht, The Netherlands. .,Department of Translational Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 5800, 6212 AZ, Maastricht, The Netherlands.
| |
Collapse
|
32
|
Motor imagery-based skill acquisition disrupted following rTMS of the inferior parietal lobule. Exp Brain Res 2016; 234:397-407. [PMID: 26487181 DOI: 10.1007/s00221-015-4472-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/09/2015] [Indexed: 01/13/2023]
Abstract
Motor imagery (MI), the mental rehearsal of motor tasks, has promise as a therapy in post-stroke rehabilitation. The potential effectiveness of MI is attributed to the facilitation of plasticity in numerous brain regions akin to those recruited for physical practice. It is suggested, however, that MI relies more heavily on regions commonly affected post-stroke, including left hemisphere parietal regions involved in visuospatial processes. However, the impact of parietal damage on MI-based skill acquisition that underlies rehabilitation remains unclear. Here, we examine the contribution of the left inferior parietal lobule (IPL) to MI using inhibitory transcranial magnetic stimulation (TMS) and an MI-based implicit sequence learning (ISL) paradigm. Participants (N = 27) completed the MI-based ISL paradigm after receiving continuous theta burst stimulation to the left IPL (TMS), or with the coil angled away from the scalp (sham). Reaction time differences (dRT) and effect sizes between implicit and random sequences assessed success of MI-based learning. Mean dRT for the sham group was 36.1 ± 28.2 ms (d = 0.71). Mean dRT in the TMS group was 7.7 ± 38.5 ms (d = 0.11). These results indicate that inhibition of the left IPL impaired MI-based learning. We conclude that the IPL and likely the visuospatial processes it mediates are critical for MI performance and thus MI-based skill acquisition or learning. Ultimately, these findings have implications for the use of MI in post-stroke rehabilitation.
Collapse
|
33
|
Tzvi E, Verleger R, Münte TF, Krämer UM. Reduced alpha-gamma phase amplitude coupling over right parietal cortex is associated with implicit visuomotor sequence learning. Neuroimage 2016; 141:60-70. [PMID: 27403869 DOI: 10.1016/j.neuroimage.2016.07.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 06/23/2016] [Accepted: 07/07/2016] [Indexed: 10/21/2022] Open
Abstract
Implicit visuomotor sequence learning is important for our daily life, e.g., when writing or playing an instrument. Previous research identified a network of cortical regions that is relevant for motor sequence learning, namely primary motor cortex, premotor cortex, superior parietal cortex, and subcortical regions, including basal ganglia and cerebellum. Here, we investigated learning-related changes in oscillatory activity (theta, alpha and gamma power) and cross-frequency interactions (theta- and alpha-gamma phase-amplitude coupling) within cortical regions during sensorimotor memory formation. EEG was recorded from a large group of participants (n=73) performing the serial reaction time task (SRTT). Posterior parietal alpha power was larger early-on during sequence learning and smaller in later sessions. Alpha/low-gamma (8-13Hz and 30-48Hz) phase-amplitude coupling (PAC) was significantly smaller during sequence learning over right superior parietal cortex and frontal cortex. During the transition from sequential stimuli to random stimuli, participants made more errors, indicating that they still implicitly attempted to implement the learned motor sequence. At the same time, alpha/low-gamma phase-amplitude coupling was found to be smaller during the transition relative to later random trials. Our results show that learning and implementing a learned motor sequence reduces alpha/low-gamma PAC over parietal and frontal cortex. Fronto-parietal alpha/low-gamma PAC might be relevant for visuomotor mapping which becomes less relevant once the motor sequence has been encoded.
Collapse
Affiliation(s)
- Elinor Tzvi
- Dept. of Neurology, University of Lübeck, 23538 Lübeck, Germany.
| | - Rolf Verleger
- Dept. of Neurology, University of Lübeck, 23538 Lübeck, Germany; Inst. of Psychology II, University of Lübeck, 23538 Lübeck, Germany
| | - Thomas F Münte
- Dept. of Neurology, University of Lübeck, 23538 Lübeck, Germany; Inst. of Psychology II, University of Lübeck, 23538 Lübeck, Germany
| | - Ulrike M Krämer
- Dept. of Neurology, University of Lübeck, 23538 Lübeck, Germany; Inst. of Psychology II, University of Lübeck, 23538 Lübeck, Germany
| |
Collapse
|
34
|
Upregulation of cortico-cerebellar functional connectivity after motor learning. Neuroimage 2016; 128:252-263. [DOI: 10.1016/j.neuroimage.2015.12.052] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/03/2015] [Accepted: 12/30/2015] [Indexed: 01/24/2023] Open
|
35
|
Verburgh L, Scherder EJA, van Lange PAM, Oosterlaan J. The key to success in elite athletes? Explicit and implicit motor learning in youth elite and non-elite soccer players. J Sports Sci 2016; 34:1782-90. [PMID: 26788666 DOI: 10.1080/02640414.2015.1137344] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In sports, fast and accurate execution of movements is required. It has been shown that implicitly learned movements might be less vulnerable than explicitly learned movements to stressful and fast changing circumstances that exist at the elite sports level. The present study provides insight in explicit and implicit motor learning in youth soccer players with different expertise levels. Twenty-seven youth elite soccer players and 25 non-elite soccer players (aged 10-12) performed a serial reaction time task (SRTT). In the SRTT, one of the sequences must be learned explicitly, the other was implicitly learned. No main effect of group was found for implicit and explicit learning on mean reaction time (MRT) and accuracy. However, for MRT, an interaction was found between learning condition, learning phase and group. Analyses showed no group effects for the explicit learning condition, but youth elite soccer players showed better learning in the implicit learning condition. In particular, during implicit motor learning youth elite soccer showed faster MRTs in the early learning phase and earlier reached asymptote performance in terms of MRT. Present findings may be important for sports because children with superior implicit learning abilities in early learning phases may be able to learn more (durable) motor skills in a shorter time period as compared to other children.
Collapse
Affiliation(s)
- L Verburgh
- a Section of Clinical Neuropsychology , Vrije Universiteit Amsterdam , Amsterdam , The Netherlands
| | - E J A Scherder
- a Section of Clinical Neuropsychology , Vrije Universiteit Amsterdam , Amsterdam , The Netherlands
| | - P A M van Lange
- b Department of Experimental and Applied Psychology , Vrije Universiteit Amsterdam , Amsterdam , The Netherlands
| | - J Oosterlaan
- a Section of Clinical Neuropsychology , Vrije Universiteit Amsterdam , Amsterdam , The Netherlands
| |
Collapse
|
36
|
Striatal–cerebellar networks mediate consolidation in a motor sequence learning task: An fMRI study using dynamic causal modelling. Neuroimage 2015; 122:52-64. [DOI: 10.1016/j.neuroimage.2015.07.077] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 07/14/2015] [Accepted: 07/28/2015] [Indexed: 11/23/2022] Open
|
37
|
The effects of N-Acetylcysteine on frontostriatal resting-state functional connectivity, withdrawal symptoms and smoking abstinence: A double-blind, placebo-controlled fMRI pilot study. Drug Alcohol Depend 2015; 156:234-242. [PMID: 26454838 PMCID: PMC4633320 DOI: 10.1016/j.drugalcdep.2015.09.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Chronic exposure to drugs of abuse disrupts frontostriatal glutamate transmission, which in turn meditates drug seeking. In animal models, N-Acetylcysteine normalizes dysregulated frontostriatal glutamatergic neurotransmission and prevents reinstated drug seeking; however, the effects of N-Acetylcysteine on human frontostriatal circuitry function and maintaining smoking abstinence is unknown. Thus, the current study tested the hypothesis that N-Acetylcysteine would be associated with stronger frontostriatal resting-state functional connectivity (rsFC), attenuated nicotine withdrawal and would help smokers to maintain abstinence over the study period. METHODS The present study examined the effects of N-Acetylcysteine on frontostriatal rsFC, nicotine-withdrawal symptoms and maintaining abstinence. Healthy adult, non-treatment seeking smokers (N=16; mean (SD) age 36.5±11.9; cigs/day 15.8±6.1; years/smoking 15.7±8.9) were randomized to a double-blind course of 2400mg N-Acetylcysteine (1200mg b.i.d.) or placebo over the course of 3½ days of monetary-incentivized smoking abstinence. On each abstinent day, measures of mood and craving were collected and participants attended a lab visit in order to assess smoking (i.e., expired-air carbon monoxide [CO]). On day 4, participants underwent fMRI scanning. RESULTS As compared to placebo (n=8), smokers in the N-Acetylcysteine group (n=8) maintained abstinence, reported less craving and higher positive affect (all p's<.01), and concomitantly exhibited stronger rsFC between ventral striatal nodes, medial prefrontal cortex and precuneus-key default mode network nodes, and the cerebellum [p<.025; FWE]). CONCLUSIONS Taken together, these findings suggest that N-Acetylcysteine may positively affect dysregulated corticostriatal connectivity, help to restructure reward processing, and help to maintain abstinence immediately following a quit attempt.
Collapse
|
38
|
Verleger R, Seitz A, Yordanova J, Kolev V. Is insight a godsend? Explicit knowledge in the serial response-time task has precursors in EEG potentials already at task onset. Neurobiol Learn Mem 2015; 125:24-35. [PMID: 26226325 DOI: 10.1016/j.nlm.2015.07.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/17/2015] [Accepted: 07/18/2015] [Indexed: 11/30/2022]
Abstract
Whether, and how, explicit knowledge about some regularity arises from implicit sensorimotor learning by practice has been a matter of long-standing debate. Previously, we had found in the number reduction task that participants who will acquire explicit knowledge differ from other participants in their event-related potentials (ERPs) already at task onset. In the present study, we investigated such ERP precursors and correlates both of explicit and of sensorimotor knowledge (response speeding) about the regular sequence in a large sample of participants (n≈100) in the serial response time task. Already when perceiving random sequences at task onset, those participants had largest P3 amplitudes who would later gain explicit knowledge but whose responses were not speeded. Later in the task, sensorimotor knowledge was reflected in increased fronto-central negativity in irregular blocks, overlapping the early part of P3, and participants with later explicit knowledge generally had increased P3 amplitudes. These results support the notion that explicit knowledge about covert regularities is acquired in two ways: on the one hand by a particular subgroup of participants possibly independently of sequence-specific response speeding, and on the other hand by transforming such sensorimotor to explicit knowledge through practice.
Collapse
Affiliation(s)
- Rolf Verleger
- Department of Neurology, University of Lübeck, Germany; Institute of Psychology II, University of Lübeck, Germany.
| | - Annemarie Seitz
- Department of Neurology, University of Lübeck, Germany; Department of Ear, Nose, and Throat, University of Lübeck, Germany
| | - Juliana Yordanova
- Department of Neurology, University of Lübeck, Germany; Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Vasil Kolev
- Department of Neurology, University of Lübeck, Germany; Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
39
|
Di Bernardi Luft C, Baker R, Bentham P, Kourtzi Z. Learning temporal statistics for sensory predictions in mild cognitive impairment. Neuropsychologia 2015; 75:368-80. [PMID: 26093288 DOI: 10.1016/j.neuropsychologia.2015.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/28/2015] [Accepted: 06/02/2015] [Indexed: 10/23/2022]
Abstract
Training is known to improve performance in a variety of perceptual and cognitive skills. However, there is accumulating evidence that mere exposure (i.e. without supervised training) to regularities (i.e. patterns that co-occur in the environment) facilitates our ability to learn contingencies that allow us to interpret the current scene and make predictions about future events. Recent neuroimaging studies have implicated fronto-striatal and medial temporal lobe brain regions in the learning of spatial and temporal statistics. Here, we ask whether patients with mild cognitive impairment due to Alzheimer's disease (MCI-AD) that are characterized by hippocampal dysfunction are able to learn temporal regularities and predict upcoming events. We tested the ability of MCI-AD patients and age-matched controls to predict the orientation of a test stimulus following exposure to sequences of leftwards or rightwards orientated gratings. Our results demonstrate that exposure to temporal sequences without feedback facilitates the ability to predict an upcoming stimulus in both MCI-AD patients and controls. However, our fMRI results demonstrate that MCI-AD patients recruit an alternate circuit to hippocampus to succeed in learning of predictive structures. In particular, we observed stronger learning-dependent activations for structured sequences in frontal, subcortical and cerebellar regions for patients compared to age-matched controls. Thus, our findings suggest a cortico-striatal-cerebellar network that may mediate the ability for predictive learning despite hippocampal dysfunction in MCI-AD.
Collapse
Affiliation(s)
| | - Rosalind Baker
- School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Peter Bentham
- Birmingham and Solihull Mental Health Foundation Trust (BSMHFT), Edgbaston, Birmingham, UK
| | - Zoe Kourtzi
- Department of Psychology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
40
|
Fling BW, Gera Dutta G, Horak FB. Functional connectivity underlying postural motor adaptation in people with multiple sclerosis. NEUROIMAGE-CLINICAL 2015; 8:281-9. [PMID: 26106552 PMCID: PMC4474363 DOI: 10.1016/j.nicl.2015.04.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/14/2015] [Accepted: 04/30/2015] [Indexed: 01/04/2023]
Abstract
A well-characterized neural network is associated with motor learning, involving several brain regions known to have functional and structural deficits in persons with multiple sclerosis (PwMS). However, it is not known how MS affects postural motor learning or the neural networks involved. The aim of this study was to gain a better understanding of the neural networks underlying adaptation of postural responses within PwMS. Participants stood on a hydraulically driven, servo-controlled platform that translated horizontally forward and backward in a continuous sinusoidal pattern across multiple trials over two consecutive days. Our results show similar postural adaptation between PwMS and age-matched control participants despite overall deficits in postural motor control in PwMS. Moreover, PwMS demonstrated better retention the following day. PwMS had significantly reduced functional connectivity within both the cortico-cerebellar and cortico-striatal motor loops; neural networks that subserve implicit motor learning. In PwMS, greater connectivity strength within the cortico-cerebellar circuit was strongly related to better baseline postural control, but not to postural adaptation as it was in control participants. Further, anti-correlated cortico-striatal connectivity within the right hemisphere was related to improved postural adaptation in both groups. Taken together with previous studies showing a reduced reliance on cerebellar- and proprioceptive-related feedback control in PwMS, we suggest that PwMS may rely on cortico-striatal circuitry to a greater extent than cortico-cerebellar circuitry for the acquisition and retention of motor skills.
Collapse
Affiliation(s)
- Brett W Fling
- Department of Neurology, School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239-3098, USA ; Portland VA Medical Center, 3710 SW US Veterans Hospital Rd., Portland, OR 97239-9264, USA
| | - Geetanjali Gera Dutta
- Department of Neurology, School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239-3098, USA
| | - Fay B Horak
- Department of Neurology, School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239-3098, USA ; Portland VA Medical Center, 3710 SW US Veterans Hospital Rd., Portland, OR 97239-9264, USA
| |
Collapse
|
41
|
Maintaining vs. enhancing motor sequence memories: respective roles of striatal and hippocampal systems. Neuroimage 2014; 108:423-34. [PMID: 25542533 DOI: 10.1016/j.neuroimage.2014.12.049] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/11/2014] [Accepted: 12/16/2014] [Indexed: 11/23/2022] Open
Abstract
It is now accepted that hippocampal- and striatal-dependent memory systems do not act independently, but rather interact during both memory acquisition and consolidation. However, the respective functional roles of the hippocampus and the striatum in these processes remain unknown. Here, functional magnetic resonance imaging (fMRI) was used in a daytime sleep/wake protocol to investigate this knowledge gap. Using a protocol developed earlier in our lab (Albouy et al., 2013a), the manipulation of an explicit sequential finger-tapping task, allowed us to isolate allocentric (spatial) and egocentric (motor) representations of the sequence, which were supported by distinct hippocampo- and striato-cortical networks, respectively. Importantly, a sleep-dependent performance enhancement emerged for the hippocampal-dependent memory trace, whereas performance was maintained for the striatal-dependent memory trace, irrespective of the sleep condition. Regression analyses indicated that the interaction between these two systems influenced subsequent performance improvements. While striatal activity was negatively correlated with performance enhancement after both sleep and wakefulness in the allocentric representation, hippocampal activity was positively related to performance improvement for the egocentric representation, but only if sleep was allowed after training. Our results provide the first direct evidence of a functional dissociation in consolidation processes whereby memory stabilization seems supported by the striatum in a time-dependent manner whereas memory enhancement seems linked to hippocampal activity and sleep-dependent processes.
Collapse
|
42
|
Gregory MD, Agam Y, Selvadurai C, Nagy A, Vangel M, Tucker M, Robertson EM, Stickgold R, Manoach DS. Resting state connectivity immediately following learning correlates with subsequent sleep-dependent enhancement of motor task performance. Neuroimage 2014; 102 Pt 2:666-73. [PMID: 25173415 DOI: 10.1016/j.neuroimage.2014.08.044] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 08/06/2014] [Accepted: 08/22/2014] [Indexed: 01/08/2023] Open
Abstract
There is ongoing debate concerning the functions of resting-state brain activity. Prior work demonstrates that memory encoding enhances subsequent resting-state functional connectivity within task-relevant networks and that these changes predict better recognition. Here, we used functional connectivity MRI (fcMRI) to examine whether task-induced changes in resting-state connectivity correlate with performance improvement after sleep. In two separate sessions, resting-state scans were acquired before and after participants performed a motor task. In one session participants trained on the motor sequence task (MST), a well-established probe of sleep-dependent memory consolidation, and were tested the next day, after a night of sleep. In the other session they performed a motor control task (MCT) that minimized learning. In an accompanying behavioral control study, participants trained on the MST and were tested after either a night of sleep or an equivalent interval of daytime wake. Both the fcMRI and the sleep control groups showed significant improvement of MST performance, while the wake control group did not. In the fcMRI group, increased connectivity in bilateral motor cortex following MST training correlated with this next-day improvement. This increased connectivity did not appear to reflect initial learning since it did not correlate with learning during training and was not greater after MST training than MCT performance. Instead, we hypothesize that this increased connectivity processed the new memories for sleep-dependent consolidation. Our findings demonstrate that physiological processes immediately after learning correlate with sleep-dependent performance improvement and suggest that the wakeful resting brain prepares memories of recent experiences for later consolidation during sleep.
Collapse
Affiliation(s)
- Michael D Gregory
- Harvard Medical School, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Yigal Agam
- Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA; Harvard Medical School, Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Chindhuri Selvadurai
- Harvard Medical School, Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | | - Mark Vangel
- Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
| | - Matthew Tucker
- Harvard Medical School, Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Edwin M Robertson
- Harvard Medical School, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Robert Stickgold
- Harvard Medical School, Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Dara S Manoach
- Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA; Harvard Medical School, Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA 02129, USA.
| |
Collapse
|