1
|
Ekhtiari H, Sangchooli A, Carmichael O, Moeller FG, O'Donnell P, Oquendo M, Paulus MP, Pizzagalli DA, Ramey T, Schacht J, Zare-Bidoky M, Childress AR, Brady K. Neuroimaging Biomarkers in Addiction. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.02.24312084. [PMID: 39281741 PMCID: PMC11398440 DOI: 10.1101/2024.09.02.24312084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
As a neurobiological process, addiction involves pathological patterns of engagement with substances and a range of behaviors with a chronic and relapsing course. Neuroimaging technologies assess brain activity, structure, physiology, and metabolism at scales ranging from neurotransmitter receptors to large-scale brain networks, providing unique windows into the core neural processes implicated in substance use disorders. Identified aberrations in the neural substrates of reward and salience processing, response inhibition, interoception, and executive functions with neuroimaging can inform the development of pharmacological, neuromodulatory, and psychotherapeutic interventions to modulate the disordered neurobiology. Based on our systematic search, 409 protocols registered on ClinicalTrials.gov include the use of one or more neuroimaging paradigms as an outcome measure in addiction, with the majority (N=268) employing functional magnetic resonance imaging (fMRI), followed by positron emission tomography (PET) (N=71), electroencephalography (EEG) (N=50), structural magnetic resonance imaging (MRI) (N=35) and magnetic resonance spectroscopy (MRS) (N=35). Furthermore, in a PubMed systematic review, we identified 61 meta-analyses including 30 fMRI, 22 structural MRI, 8 EEG, 7 PET, and 3 MRS meta-analyses suggesting potential biomarkers in addictions. These studies can facilitate the development of a range of biomarkers that may prove useful in the arsenal of addiction treatments in the coming years. There is evidence that these markers of large-scale brain structure and activity may indicate vulnerability or separate disease subtypes, predict response to treatment, or provide objective measures of treatment response or recovery. Neuroimaging biomarkers can also suggest novel targets for interventions. Closed or open loop interventions can integrate these biomarkers with neuromodulation in real-time or offline to personalize stimulation parameters and deliver the precise intervention. This review provides an overview of neuroimaging modalities in addiction, potential neuroimaging biomarkers, and their physiologic and clinical relevance. Future directions and challenges in bringing these putative biomarkers from the bench to the bedside are also discussed.
Collapse
Affiliation(s)
- Hamed Ekhtiari
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Arshiya Sangchooli
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Owen Carmichael
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - F Gerard Moeller
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Patricio O'Donnell
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Maria Oquendo
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Martin P Paulus
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Diego A Pizzagalli
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Tatiana Ramey
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Joseph Schacht
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Mehran Zare-Bidoky
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Anna Rose Childress
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Kathleen Brady
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| |
Collapse
|
2
|
Di Dona G, Zamfira DA, Battista M, Battaglini L, Perani D, Ronconi L. The role of parietal beta-band activity in the resolution of visual crowding. Neuroimage 2024; 289:120550. [PMID: 38382861 DOI: 10.1016/j.neuroimage.2024.120550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/23/2024] Open
Abstract
Visual crowding is the difficulty in identifying an object when surrounded by neighbouring flankers, representing a bottleneck for object perception. Crowding arises not only from the activity of visual areas but also from parietal areas and fronto-parietal network activity. Parietal areas would provide the dorsal-to-ventral guidance for object identification and the fronto-parietal network would modulate the attentional resolution. Several studies highlighted the relevance of beta oscillations (15-25 Hz) in these areas for visual crowding and other connatural visual phenomena. In the present study, we investigated the differential contribution of beta oscillations in the parietal cortex and fronto-parietal network in the resolution of visual crowding. During a crowding task with letter stimuli, high-definition transcranial Alternating Current Stimulation (tACS) in the beta band (18 Hz) was delivered bilaterally on parietal sites, on the right fronto-parietal network, and in a sham regime. Resting-state EEG was recorded before and after stimulation to measure tACS-induced aftereffects. The influence of crowding was reduced only when tACS was delivered bilaterally on parietal sites. In this condition, beta power was reduced after the stimulation. Furthermore, the magnitude of tACS-induced aftereffects varied as a function of individual differences in beta oscillations. Results corroborate the link between parietal beta oscillations and visual crowding, providing fundamental insights on brain rhythms underlying the dorsal-to-ventral guidance in visual perception and suggesting that beta tACS can induce plastic changes in these areas. Remarkably, these findings open new possibilities for neuromodulatory interventions for disorders characterised by abnormal crowding, such as dyslexia.
Collapse
Affiliation(s)
- Giuseppe Di Dona
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano MI, Italy; School of Psychology, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milano MI, Italy.
| | - Denisa Adina Zamfira
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano MI, Italy; School of Psychology, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milano MI, Italy
| | - Martina Battista
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano MI, Italy; MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Piazza S. Francesco 19, 55100 Lucca LU, Italy
| | - Luca Battaglini
- Dipartimento di Psicologia Generale, University of Padova, Via Venezia 8, 35131 Padova PD, Italy
| | - Daniela Perani
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano MI, Italy; School of Psychology, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milano MI, Italy
| | - Luca Ronconi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano MI, Italy; School of Psychology, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milano MI, Italy.
| |
Collapse
|
3
|
Harquel S, Cian C, Torlay L, Cousin E, Barraud PA, Bougerol T, Guerraz M. Modulation of Visually Induced Self-motion Illusions by α Transcranial Electric Stimulation over the Superior Parietal Cortex. J Cogn Neurosci 2024; 36:143-154. [PMID: 37870524 DOI: 10.1162/jocn_a_02074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
The growing popularity of virtual reality systems has led to a renewed interest in understanding the neurophysiological correlates of the illusion of self-motion (vection), a phenomenon that can be both intentionally induced or avoided in such systems, depending on the application. Recent research has highlighted the modulation of α power oscillations over the superior parietal cortex during vection, suggesting the occurrence of inhibitory mechanisms in the sensorimotor and vestibular functional networks to resolve the inherent visuo-vestibular conflict. The present study aims to further explore this relationship and investigate whether neuromodulating these waves could causally affect the quality of vection. In a crossover design, 22 healthy volunteers received high amplitude and focused α-tACS (transcranial alternating current stimulation) over the superior parietal cortex while experiencing visually induced vection triggered by optokinetic stimulation. The tACS was tuned to each participant's individual α peak frequency, with θ-tACS and sham stimulation serving as controls. Overall, participants experienced better quality vection during α-tACS compared with control θ-tACS and sham stimulations, as quantified by the intensity of vection. The observed neuromodulation supports a causal relationship between parietal α oscillations and visually induced self-motion illusions, with their entrainment triggering overinhibition of the conflict within the sensorimotor and vestibular functional networks. These results confirm the potential of noninvasive brain stimulation for modulating visuo-vestibular conflicts, which could help to enhance the sense of presence in virtual reality environments.
Collapse
Affiliation(s)
- Sylvain Harquel
- Université Grenoble-Alpes, Université Savoie Mont Blanc, CNRS, UMR5105, LPNC, Grenoble, France
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Corinne Cian
- Université Grenoble-Alpes, Université Savoie Mont Blanc, CNRS, UMR5105, LPNC, Grenoble, France
- Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France
| | - Laurent Torlay
- Université Grenoble-Alpes, Université Savoie Mont Blanc, CNRS, UMR5105, LPNC, Grenoble, France
| | - Emilie Cousin
- Université Grenoble-Alpes, Université Savoie Mont Blanc, CNRS, UMR5105, LPNC, Grenoble, France
| | - Pierre-Alain Barraud
- Université Grenoble-Alpes, CNRS, CHU Grenoble-Alpes, Grenoble INP, TIMC-IMAG, Grenoble, France
| | - Thierry Bougerol
- Centre Hospitalier Université Grenoble-Alpes, Pôle Psychiatrie, Grenoble, France
- Université Grenoble-Alpes, Inserm, U1216, Grenoble Institut des Neurosciences, Grenoble, France
| | - Michel Guerraz
- Université Grenoble-Alpes, Université Savoie Mont Blanc, CNRS, UMR5105, LPNC, Grenoble, France
| |
Collapse
|
4
|
Weise A, Hartmann T, Parmentier F, Weisz N, Ruhnau P. Involuntary shifts of spatial attention contribute to distraction-Evidence from oscillatory alpha power and reaction time data. Psychophysiology 2023; 60:e14353. [PMID: 37246813 DOI: 10.1111/psyp.14353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 02/18/2023] [Accepted: 05/06/2023] [Indexed: 05/30/2023]
Abstract
Imagine you are focusing on the traffic on a busy street to ride your bike safely when suddenly you hear the siren of an ambulance. This unexpected sound involuntarily captures your attention and interferes with ongoing performance. We tested whether this type of distraction involves a spatial shift of attention. We measured behavioral data and magnetoencephalographic alpha power during a cross-modal paradigm that combined an exogenous cueing task and a distraction task. In each trial, a task-irrelevant sound preceded a visual target (left or right). The sound was usually the same animal sound (i.e., standard sound). Rarely, it was replaced by an unexpected environmental sound (i.e., deviant sound). Fifty percent of the deviants occurred on the same side as the target, and 50% occurred on the opposite side. Participants responded to the location of the target. As expected, responses were slower to targets that followed a deviant compared to a standard. Crucially, this distraction effect was mitigated by the spatial relationship between the targets and the deviants: responses were faster when targets followed deviants on the same versus different side, indexing a spatial shift of attention. This was further corroborated by a posterior alpha power modulation that was higher in the hemisphere ipsilateral (vs. contralateral) to the location of the attention-capturing deviant. We suggest that this alpha power lateralization reflects a spatial attention bias. Overall, our data support the contention that spatial shifts of attention contribute to deviant distraction.
Collapse
Affiliation(s)
- Annekathrin Weise
- CCNS and Division of Physiological Psychology, Paris Lodron University of Salzburg, Salzburg, Austria
- Department of Psychology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Thomas Hartmann
- CCNS and Division of Physiological Psychology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Fabrice Parmentier
- Neuropsychology & Cognition Group, Department of Psychology and Institute of Health Sciences (iUNICS), University of the Balearic Islands, Palma, Spain
- Balearic Islands Health Research Institute (IdISBa), Palma, Spain
- Department of Psychology, University of Western Australia, Perth, Western Australia, Australia
| | - Nathan Weisz
- CCNS and Division of Physiological Psychology, Paris Lodron University of Salzburg, Salzburg, Austria
- Neuroscience Institute, Christian Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Philipp Ruhnau
- School of Psychology, University of Central Lancashire, Preston, UK
| |
Collapse
|
5
|
Shirota Y, Fushimi M, Sekino M, Yumoto M. Investigating the technical feasibility of magnetoencephalography during transcranial direct current stimulation. Front Hum Neurosci 2023; 17:1270605. [PMID: 37771350 PMCID: PMC10525331 DOI: 10.3389/fnhum.2023.1270605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Introduction Magnetoencephalography (MEG) can measure weak magnetic fields produced by electrical brain activity. Transcranial direct current stimulation (tDCS) can affect such brain activities. The concurrent application of both, however, is challenging because tDCS presents artifacts on the MEG signal. If brain activity during tDCS can be elucidated by MEG, mechanisms of plasticity-inducing and other effects of tDCS would be more comprehensively understood. We tested the technical feasibility of MEG during tDCS using a phantom that produces an artificial current dipole simulating focal brain activity. An earlier study investigated estimation of a single oscillating phantom dipole during tDCS, and we systematically tested multiple dipole locations with a different MEG device. Methods A phantom provided by the manufacturer was used to produce current dipoles from 32 locations. For the 32 dipoles, MEG was recorded with and without tDCS. Temporally extended signal space separation (tSSS) was applied for artifact rejection. Current dipole sources were estimated as equivalent current dipoles (ECDs). The ECD modeling quality was assessed using localization error, amplitude error, and goodness of fit (GOF). The ECD modeling performance with and without tDCS, and with and without tSSS was assessed. Results Mean localization errors of the 32 dipoles were 1.70 ± 0.72 mm (tDCS off, tSSS off, mean ± standard deviation), 6.13 ± 3.32 mm (tDCS on, tSSS off), 1.78 ± 0.83 mm (tDCS off, tSSS on), and 5.73 ± 1.60 mm (tDCS on, tSSS on). Mean GOF findings were, respectively, 92.3, 87.4, 97.5, and 96.7%. Modeling was affected by tDCS and restored by tSSS, but improvement of the localization error was marginal, even with tSSS. Also, the quality was dependent on the dipole location. Discussion Concurrent tDCS-MEG recording is feasible, especially when tSSS is applied for artifact rejection and when the assumed location of the source of activity is favorable for modeling. More technical studies must be conducted to confirm its feasibility with different source modeling methods and stimulation protocols. Recovery of single-trial activity under tDCS warrants further research.
Collapse
Affiliation(s)
- Yuichiro Shirota
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Motofumi Fushimi
- Department of Bioengineering, The Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Masaki Sekino
- Department of Bioengineering, The Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Masato Yumoto
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
- Department of Clinical Engineering, Gunma Paz University, Takasaki, Japan
| |
Collapse
|
6
|
Wang Y, Hou P, Li W, Zhang M, Zheng H, Chen X. The influence of different current-intensity transcranial alternating current stimulation on the eyes-open and eyes-closed resting-state electroencephalography. Front Hum Neurosci 2022; 16:934382. [PMID: 36061496 PMCID: PMC9429605 DOI: 10.3389/fnhum.2022.934382] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Transcranial alternating current stimulation (tACS) applies a sinusoidal oscillating current to modulate intrinsic oscillatory activity. Relevant studies of tACS have indicated that tACS can increase spontaneous brain activity in the occipital area. However, few studies have compared the effects of tACS with different current intensities on spontaneous brain activity in the occipital region. In this study, 10-Hz tACS was delivered to the occipital region at different current intensities (i.e., 1 and 2 mA). We investigated the effect of the tACS on both eyes-open and eyes-closed resting-state electroencephalography (EEG). A total of 20 subjects and fifteen subjects were recruited to participate in the 1-mA tACS experiment and the 2-mA tACS experiment, respectively. Ten subjects participated in both experiments. The experimental results demonstrated that both 1-mA tACS and 2-mA tACS could increase occipital resting-state EEG activities. For the eyes-open condition, alpha activity elicited by 2-mA tACS increased significantly greater than that elicited by 1-mA tACS, while 1-mA tACS could produce greater alpha activity compared to 2 mA for the eyes-closed condition. These results suggested that the optimal current intensity might be different for the eyes-open and eyes-closed resting-state conditions, laying a foundation for the subsequent study of occipital tACS on task-state EEG activities.
Collapse
Affiliation(s)
- Yao Wang
- School of Life Sciences, Tiangong University, Tianjin, China
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Peiyun Hou
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Wenjing Li
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Mingxing Zhang
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Hongliang Zheng
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Xiaogang Chen
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- *Correspondence: Xiaogang Chen,
| |
Collapse
|
7
|
Janssens SEW, Oever ST, Sack AT, de Graaf TA. "Broadband Alpha Transcranial Alternating Current Stimulation": Exploring a new biologically calibrated brain stimulation protocol. Neuroimage 2022; 253:119109. [PMID: 35306159 DOI: 10.1016/j.neuroimage.2022.119109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 11/26/2022] Open
Abstract
Transcranial alternating current stimulation (tACS) can be used to study causal contributions of oscillatory brain mechanisms to cognition and behavior. For instance, individual alpha frequency (IAF) tACS was reported to enhance alpha power and impact visuospatial attention performance. Unfortunately, such results have been inconsistent and difficult to replicate. In tACS, stimulation generally involves one frequency, sometimes individually calibrated to a peak value observed in an M/EEG power spectrum. Yet, the 'peak' actually observed in such power spectra often contains a broader range of frequencies, raising the question whether a biologically calibrated tACS protocol containing this fuller range of alpha-band frequencies might be more effective. Here, we introduce 'Broadband-alpha-tACS', a complex individually calibrated electrical stimulation protocol. We band-pass filtered left posterior resting-state EEG data around the IAF (± 2 Hz), and converted that time series into an electrical waveform for tACS stimulation of that same left posterior parietal cortex location. In other words, we stimulated a brain region with a 'replay' of its own alpha-band frequency content, based on spontaneous activity. Within-subjects (N = 24), we compared to a sham tACS session the effects of broadband-alpha tACS, power-matched spectral inverse ('alpha-removed') control tACS, and individual alpha frequency (IAF) tACS, on EEG alpha power and performance in an endogenous attention task previously reported to be affected by alpha tACS. Broadband-alpha-tACS significantly modulated attention task performance (i.e., reduced the rightward visuospatial attention bias in trials without distractors, and reduced attention benefits). Alpha-removed tACS also reduced the rightward visuospatial attention bias. IAF-tACS did not significantly modulate attention task performance compared to sham tACS, but also did not statistically significantly differ from broadband-alpha-tACS. This new broadband-alpha-tACS approach seems promising, but should be further explored and validated in future studies.
Collapse
Affiliation(s)
- Shanice E W Janssens
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; Maastricht Brain Imaging Centre (MBIC), Maastricht, Netherlands.
| | - Sanne Ten Oever
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; Language and Computation in Neural Systems Group, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands; Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, Netherlands
| | - Alexander T Sack
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; Maastricht Brain Imaging Centre (MBIC), Maastricht, Netherlands; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Brain+Nerve Centre, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands; Center for Integrative Neuroscience (CIN), Maastricht University, Maastricht, Netherlands
| | - Tom A de Graaf
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; Maastricht Brain Imaging Centre (MBIC), Maastricht, Netherlands; Center for Integrative Neuroscience (CIN), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
8
|
Boukarras S, Özkan DG, Era V, Moreau Q, Tieri G, Candidi M. Midfrontal Theta tACS Facilitates Motor Coordination in Dyadic Human-Avatar Interactions. J Cogn Neurosci 2022; 34:897-915. [PMID: 35171250 DOI: 10.1162/jocn_a_01834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Synchronous interpersonal motor interactions require moment-to-moment prediction and proactive monitoring of the partner's actions. Neurophysiologically, this is highlighted by an enhancement of midfrontal theta (4-7 Hz) oscillations. In this study, we explored the causal role of midfrontal theta for interpersonal motor interactions using transcranial alternating current stimulation (tACS). We implemented a realistic human-avatar interaction task in immersive virtual reality where participants controlled a virtual arm and hand to press a button synchronously with a virtual partner. Participants completed the task while receiving EEG-informed theta (Experiment 1) or beta (control frequency, Experiment 2) tACS over the frontal midline, as well as sham stimulation as a control. Results showed that midfrontal theta tACS significantly improved behavioral performance (i.e., reduced interpersonal asynchrony) and participants' motor strategies (i.e., increased movement times and reduced RTs), whereas beta tACS had no effect on these measures. These results suggest that theta tACS over frontal areas facilitates action monitoring and motor abilities supporting interpersonal interactions.
Collapse
Affiliation(s)
- Sarah Boukarras
- Sapienza University, Rome, Italy.,IRCCS Santa Lucia Foundation, Rome, Italy
| | - Duru Gun Özkan
- Sapienza University, Rome, Italy.,IRCCS Santa Lucia Foundation, Rome, Italy
| | - Vanessa Era
- Sapienza University, Rome, Italy.,IRCCS Santa Lucia Foundation, Rome, Italy
| | - Quentin Moreau
- Sapienza University, Rome, Italy.,IRCCS Santa Lucia Foundation, Rome, Italy
| | - Gaetano Tieri
- IRCCS Santa Lucia Foundation, Rome, Italy.,Unitelma Sapienza, Rome, Italy
| | - Matteo Candidi
- Sapienza University, Rome, Italy.,IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
9
|
Liu B, Yan X, Chen X, Wang Y, Gao X. tACS facilitates flickering driving by boosting steady-state visual evoked potentials. J Neural Eng 2021; 18. [PMID: 34962233 DOI: 10.1088/1741-2552/ac3ef3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/01/2021] [Indexed: 11/12/2022]
Abstract
Objective.There has become of increasing interest in transcranial alternating current stimulation (tACS) since its inception nearly a decade ago. tACS in modulating brain state is an active area of research and has been demonstrated effective in various neuropsychological and clinical domains. In the visual domain, much effort has been dedicated to brain rhythms and rhythmic stimulation, i.e. tACS. However, less is known about the interplay between the rhythmic stimulation and visual stimulation.Approach.Here, we used steady-state visual evoked potential (SSVEP), induced by flickering driving as a widely used technique for frequency-tagging, to investigate the aftereffect of tACS in healthy human subjects. Seven blocks of 64-channel electroencephalogram were recorded before and after the administration of 20min 10Hz tACS, while subjects performed several blocks of SSVEP tasks. We characterized the physiological properties of tACS aftereffect by comparing and validating the temporal, spatial, spatiotemporal and signal-to-noise ratio (SNR) patterns between and within blocks in real tACS and sham tACS.Main results.Our result revealed that tACS boosted the 10Hz SSVEP significantly. Besides, the aftereffect on SSVEP was mitigated with time and lasted up to 5 min.Significance.Our results demonstrate the feasibility of facilitating the flickering driving by external rhythmic stimulation and open a new possibility to alter the brain state in a direction by noninvasive transcranial brain stimulation.
Collapse
Affiliation(s)
- Bingchuan Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Xinyi Yan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Xiaogang Chen
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China
| | - Yijun Wang
- State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaorong Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| |
Collapse
|
10
|
Amplitude modulated transcranial alternating current stimulation (AM-TACS) efficacy evaluation via phosphene induction. Sci Rep 2021; 11:22245. [PMID: 34782626 PMCID: PMC8593032 DOI: 10.1038/s41598-021-01482-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/18/2021] [Indexed: 12/01/2022] Open
Abstract
Amplitude modulated transcranial alternating current stimulation (AM-tACS) is a novel method of electrostimulation which enables the recording of electrophysiological signals during stimulation, thanks to an easier removable stimulation artefact compared to classical electrostimulation methods. To gauge the neuromodulatory potential of AM-tACS, we tested its capacity to induce phosphenes as an indicator of stimulation efficacy. AM-tACS was applied via a two-electrode setup, attached on FpZ and below the right eye. AM-tACS waveforms comprised of different carrier (50 Hz, 200 Hz, 1000 Hz) and modulation frequencies (8 Hz, 16 Hz, 28 Hz) were administered with at maximum 2 mA peak-to-peak stimulation strength. TACS conditions in the same frequencies were used as a benchmark for phosphene induction. AM-tACS conditions using a 50 Hz carrier frequency were able to induce phosphenes, but with no difference in phosphene thresholds between modulation frequencies. AM-tACS using a 200 Hz or 1000 Hz carrier frequency did not induce phosphenes. TACS conditions induced phosphenes in line with previous studies. Stimulation effects of AM-tACS conditions were independent of amplitude modulation and instead relied solely on the carrier frequency. A possible explanation may be that AM-tACS needs higher stimulation intensities for its amplitude modulation to have a neuromodulatory effect.
Collapse
|
11
|
Hosseinian T, Yavari F, Biagi MC, Kuo MF, Ruffini G, Nitsche MA, Jamil A. External induction and stabilization of brain oscillations in the human. Brain Stimul 2021; 14:579-587. [PMID: 33781955 PMCID: PMC8144019 DOI: 10.1016/j.brs.2021.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/18/2021] [Accepted: 03/18/2021] [Indexed: 11/26/2022] Open
Abstract
Background Neural oscillations in the cerebral cortex are associated with a range of cognitive processes and neuropsychiatric disorders. However, non-invasively modulating oscillatory activity remains technically challenging, due to limited strength, duration, or non-synchronization of stimulation waveforms with endogenous rhythms. Objective We hypothesized that applying controllable phase-synchronized repetitive transcranial magnetic stimulation pulses (rTMS) with alternating currents (tACS) may induce and stabilize neuro-oscillatory resting-state activity at targeted frequencies. Methods Using a novel circuit to precisely synchronize rTMS pulses with phase of tACS, we empirically tested whether combined, 10-Hz prefrontal bilateral stimulation could induce and stabilize 10-Hz oscillations in the bilateral prefrontal cortex (PFC). 25 healthy participants took part in a repeated-measures design. Whole-brain resting-state EEG in eyes-open (EO) and eyes-closed (EC) was recorded before (baseline), immediately (1-min), and 15- and 30-min after stimulation. Bilateral, phase-synchronized rTMS aligned to the positive tACS peak was compared with rTMS at tACS trough, with bilateral tACS or rTMS on its own, and to sham. Results 10-Hz resting-state PFC power increased significantly with peak-synchronized rTMS + tACS (EO: 44.64%, EC: 46.30%, p < 0.05) compared to each stimulation protocol on its own, and sham, with effects spanning between prefrontal and parietal regions and sustaining throughout 30-min. No effects were observed with the sham protocol. Moreover, rTMS timed to the negative tACS trough did not induce local or global changes in oscillations. Conclusion Phase-synchronizing rTMS with tACS may be a viable approach for inducing and stabilizing neuro-oscillatory activity, particularly in scenarios where endogenous oscillatory tone is attenuated, such as disorders of consciousness or major depression. Non-invasively inducing and stabilizing neural oscillations remains challenging. We develop a controllable phase-synchronized circuit to combine rTMS and tACS. This circuit was tested for inducing 10 Hz oscillations in healthy prefrontal cortex. 10 Hz rTMS synchronized to the positive 10 Hz tACS peak induced stable after-effects. Phase-synchronized stimulation is a viable approach for oscillatory neuromodulation.
Collapse
Affiliation(s)
- Tiam Hosseinian
- Dept. Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors. Dortmund, Germany
| | - Fatemeh Yavari
- Dept. Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors. Dortmund, Germany
| | | | - Min-Fang Kuo
- Dept. Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors. Dortmund, Germany
| | | | - Michael A Nitsche
- Dept. Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors. Dortmund, Germany; Dept. Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany.
| | - Asif Jamil
- Dept. Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors. Dortmund, Germany; Laboratory for Neuropsychiatry & Neuromodulation, Harvard Medical School/Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
12
|
Vosskuhl J, Mutanen TP, Neuling T, Ilmoniemi RJ, Herrmann CS. Signal-Space Projection Suppresses the tACS Artifact in EEG Recordings. Front Hum Neurosci 2020; 14:536070. [PMID: 33390915 PMCID: PMC7775555 DOI: 10.3389/fnhum.2020.536070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 11/09/2020] [Indexed: 12/02/2022] Open
Abstract
Background To probe the functional role of brain oscillations, transcranial alternating current stimulation (tACS) has proven to be a useful neuroscientific tool. Because of the excessive tACS-caused artifact at the stimulation frequency in electroencephalography (EEG) signals, tACS + EEG studies have been mostly limited to compare brain activity between recordings before and after concurrent tACS. Critically, attempts to suppress the artifact in the data cannot assure that the entire artifact is removed while brain activity is preserved. The current study aims to evaluate the feasibility of specific artifact correction techniques to clean tACS-contaminated EEG data. New Method In the first experiment, we used a phantom head to have full control over the signal to be analyzed. Driving pre-recorded human brain-oscillation signals through a dipolar current source within the phantom, we simultaneously applied tACS and compared the performance of different artifact-correction techniques: sine subtraction, template subtraction, and signal-space projection (SSP). In the second experiment, we combined tACS and EEG on one human subject to demonstrate the best-performing data-correction approach in a proof of principle. Results The tACS artifact was highly attenuated by SSP in the phantom and the human EEG; thus, we were able to recover the amplitude and phase of the oscillatory activity. In the human experiment, event-related desynchronization could be restored after correcting the artifact. Comparison With Existing Methods The best results were achieved with SSP, which outperformed sine subtraction and template subtraction. Conclusion Our results demonstrate the feasibility of SSP by applying it to a phantom measurement with pre-recorded signal and one human tACS + EEG dataset. For a full validation of SSP, more data are needed.
Collapse
Affiliation(s)
- Johannes Vosskuhl
- Experimental Psychology Lab, Cluster of Excellence "Hearing4all", European Medical School, University of Oldenburg, Oldenburg, Germany
| | - Tuomas P Mutanen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Toralf Neuling
- Physiological Psychology Lab, University of Salzburg, Salzburg, Austria.,Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Christoph S Herrmann
- Experimental Psychology Lab, Cluster of Excellence "Hearing4all", European Medical School, University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
13
|
van der Plas M, Wang D, Brittain JS, Hanslmayr S. Investigating the role of phase-synchrony during encoding of episodic memories using electrical stimulation. Cortex 2020; 133:37-47. [PMID: 33099074 DOI: 10.1016/j.cortex.2020.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/03/2020] [Accepted: 09/15/2020] [Indexed: 01/15/2023]
Abstract
The multi-sensory nature of episodic memories indicates that communication between a multitude of brain areas is required for their effective creation and recollection. Previous studies have suggested that the effectiveness of memory processes depends on theta synchronization (4 Hz) of sensory areas relevant to the memory. This study aimed to manipulate theta synchronization between different sensory areas in order to further test this hypothesis. We intend to entrain visual cortex with 4 Hz alternating current stimulation (tACS), while simultaneously entraining auditory cortex with 4 Hz amplitude-modulated sounds. By entraining these different sensory areas, which pertain to learned audio-visual memory associations, we expect to find that when theta is synchronized across the different sensory areas, the memory performance would be enhanced compared to when theta is not synchronized across the sensory areas. We found no evidence for such an effect in this study. It is unclear whether this is due to an inability of 4 Hz tACS to entrain the visual cortex reliably, or whether sensory entrainment is not the underlying mechanism required for episodic memory.
Collapse
Affiliation(s)
- Mircea van der Plas
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, United Kingdom; Centre for Human Brain Health, University of Birmingham, Edgbaston, Birmingham, United Kingdom; Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow, United Kingdom
| | - Danying Wang
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, United Kingdom; Centre for Human Brain Health, University of Birmingham, Edgbaston, Birmingham, United Kingdom; Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow, United Kingdom
| | - John-Stuart Brittain
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, United Kingdom; Centre for Human Brain Health, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Simon Hanslmayr
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, United Kingdom; Centre for Human Brain Health, University of Birmingham, Edgbaston, Birmingham, United Kingdom; Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
14
|
Kasten FH, Herrmann CS. Discrete sampling in perception via neuronal oscillations-Evidence from rhythmic, non-invasive brain stimulation. Eur J Neurosci 2020; 55:3402-3417. [PMID: 33048382 DOI: 10.1111/ejn.15006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 11/26/2022]
Abstract
A variety of perceptual phenomena suggest that, in contrast to our everyday experience, our perception may be discrete rather than continuous. The possibility of such discrete sampling processes inevitably prompts the question of how such discretization is implemented in the brain. Evidence from neurophysiological measurements suggest that neural oscillations, particularly in the lower frequencies, may provide a mechanism by which such discretization can be implemented. It is hypothesized that cortical excitability is rhythmically enhanced or reduced along the positive and negative half-cycle of such oscillations. In recent years, rhythmic non-invasive brain stimulation approaches such as rhythmic transcranial magnetic stimulation (rTMS) and transcranial alternating current stimulation (tACS) are increasingly used to test this hypothesis. Both methods are thought to entrain endogenous brain oscillations, allowing them to alter their power, frequency, and phase in order to study their roles in perception. After a brief introduction to the core mechanisms of both methods, we will provide an overview of rTMS and tACS studies probing the role of brain oscillations for discretized perception in different domains and will contrast these results with unsuccessful attempts. Further, we will discuss methodological pitfalls and challenges associated with the methods.
Collapse
Affiliation(s)
- Florian H Kasten
- Experimental Psychology Lab, Department of Psychology, Cluster of Excellence "Hearing for All", European Medical School, Carl von Ossietzky University, Oldenburg, Germany.,Neuroimaging Unit, European Medical School, Carl von Ossietzky University, Oldenburg, Germany
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, Cluster of Excellence "Hearing for All", European Medical School, Carl von Ossietzky University, Oldenburg, Germany.,Neuroimaging Unit, European Medical School, Carl von Ossietzky University, Oldenburg, Germany.,Research Center Neurosensory Science, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
15
|
Investigating the effects of transcranial alternating current stimulation on primary somatosensory cortex. Sci Rep 2020; 10:17129. [PMID: 33051523 PMCID: PMC7553944 DOI: 10.1038/s41598-020-74072-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/06/2020] [Indexed: 01/08/2023] Open
Abstract
Near-threshold tactile stimuli perception and somatosensory temporal discrimination threshold (STDT) are encoded in the primary somatosensory cortex (S1) and largely depend on alpha and beta S1 rhythm. Transcranial alternating current stimulation (tACS) is a non-invasive neurophysiological technique that allows cortical rhythm modulation. We investigated the effects of tACS delivered over S1 at alpha, beta, and gamma frequencies on near-threshold tactile stimuli perception and STDT, as well as phase-dependent tACS effects on near-threshold tactile stimuli perception in healthy subjects. In separate sessions, we tested the effects of different tACS montages, and tACS at the individualised S1 μ-alpha frequency peak, on STDT and near-threshold tactile stimuli perception. We found that tACS applied over S1 at alpha, beta, and gamma frequencies did not modify STDT or near-threshold tactile stimuli perception. Moreover, we did not detect effects of tACS phase or montage. Finally, tACS did not modify near-threshold tactile stimuli perception and STDT even when delivered at the individualised μ-alpha frequency peak. Our study showed that tACS does not alter near-threshold tactile stimuli or STDT, possibly due to the inability of tACS to activate deep S1 layers. Future investigations may clarify tACS effects over S1 in patients with focal dystonia, whose pathophysiology implicates increased STDT.
Collapse
|
16
|
Abstract
Impaired cognition is common in many neuropsychiatric disorders and severely compromises quality of life. Synchronous electrophysiological rhythms represent a core mechanism for sculpting communication dynamics among large-scale brain networks that underpin cognition and its breakdown in neuropsychiatric disorders. Here, we review an emerging neuromodulation technology called transcranial alternating current stimulation that has shown remarkable early results in rapidly improving various domains of human cognition by modulating properties of rhythmic network synchronization. Future noninvasive neuromodulation research holds promise for potentially rescuing network activity patterns and improving cognition, setting groundwork for the development of drug-free, circuit-based therapeutics for people with cognitive brain disorders.
Collapse
Affiliation(s)
- Shrey Grover
- Department of Psychological & Brain Sciences, Boston University, Boston, Massachusetts 02215, USA; , ,
| | - John A Nguyen
- Department of Psychological & Brain Sciences, Boston University, Boston, Massachusetts 02215, USA; , ,
| | - Robert M G Reinhart
- Department of Psychological & Brain Sciences, Boston University, Boston, Massachusetts 02215, USA; , , .,Center for Systems Neuroscience, Boston University, Boston, Massachusetts 02215, USA.,Cognitive Neuroimaging Center, Boston University, Boston, Massachusetts 02215, USA.,Center for Research in Sensory Communication & Emerging Neural Technology, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
17
|
Papadopoulos L, Lynn CW, Battaglia D, Bassett DS. Relations between large-scale brain connectivity and effects of regional stimulation depend on collective dynamical state. PLoS Comput Biol 2020; 16:e1008144. [PMID: 32886673 PMCID: PMC7537889 DOI: 10.1371/journal.pcbi.1008144] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 10/06/2020] [Accepted: 07/12/2020] [Indexed: 01/09/2023] Open
Abstract
At the macroscale, the brain operates as a network of interconnected neuronal populations, which display coordinated rhythmic dynamics that support interareal communication. Understanding how stimulation of different brain areas impacts such activity is important for gaining basic insights into brain function and for further developing therapeutic neurmodulation. However, the complexity of brain structure and dynamics hinders predictions regarding the downstream effects of focal stimulation. More specifically, little is known about how the collective oscillatory regime of brain network activity—in concert with network structure—affects the outcomes of perturbations. Here, we combine human connectome data and biophysical modeling to begin filling these gaps. By tuning parameters that control collective system dynamics, we identify distinct states of simulated brain activity and investigate how the distributed effects of stimulation manifest at different dynamical working points. When baseline oscillations are weak, the stimulated area exhibits enhanced power and frequency, and due to network interactions, activity in this excited frequency band propagates to nearby regions. Notably, beyond these linear effects, we further find that focal stimulation causes more distributed modifications to interareal coherence in a band containing regions’ baseline oscillation frequencies. Importantly, depending on the dynamical state of the system, these broadband effects can be better predicted by functional rather than structural connectivity, emphasizing a complex interplay between anatomical organization, dynamics, and response to perturbation. In contrast, when the network operates in a regime of strong regional oscillations, stimulation causes only slight shifts in power and frequency, and structural connectivity becomes most predictive of stimulation-induced changes in network activity patterns. In sum, this work builds upon and extends previous computational studies investigating the impacts of stimulation, and underscores the fact that both the stimulation site, and, crucially, the regime of brain network dynamics, can influence the network-wide responses to local perturbations. Stimulation can be used to alter brain activity and is a therapeutic option for certain neurological conditions. However, predicting the distributed effects of local perturbations is difficult. Previous studies show that responses to stimulation depend on anatomical (or structural) coupling. In addition to structure, here we consider how stimulation effects also depend on the brain’s collective dynamical (or functional) state, arising from the coordination of rhythmic activity across large-scale networks. In a whole-brain computational model, we show that global responses to regional stimulation can indeed be contingent upon and differ across various dynamical working points. Notably, depending on the network’s oscillatory regime, stimulation can accelerate the activity of the stimulated site, and lead to widespread effects at both the new, excited frequency, as well as in a much broader frequency range including areas’ baseline frequencies. While structural connectivity is a good predictor of “excited band” changes, in some states “baseline band” effects can be better predicted by functional connectivity, which depends upon the system’s oscillatory regime. By integrating and extending past efforts, our results thus indicate that dynamical—in additional to structural—brain organization plays a role in governing how focal stimulation modulates interactions between distributed network elements.
Collapse
Affiliation(s)
- Lia Papadopoulos
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Christopher W. Lynn
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Demian Battaglia
- Université Aix-Marseille, INSERM UMR 1106, Institut de Neurosciences des Systèmes, F-13005, Marseille, France
| | - Danielle S. Bassett
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
18
|
Zarubin G, Gundlach C, Nikulin V, Villringer A, Bogdan M. Transient Amplitude Modulation of Alpha-Band Oscillations by Short-Time Intermittent Closed-Loop tACS. Front Hum Neurosci 2020; 14:366. [PMID: 33100993 PMCID: PMC7500443 DOI: 10.3389/fnhum.2020.00366] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
Non-invasive brain stimulation (NIBS) techniques such as transcranial alternating current stimulation (tACS) have recently become extensively utilized due to their potential to modulate ongoing neuronal oscillatory activity and consequently to induce cortical plasticity relevant for various cognitive functions. However, the neurophysiological basis for stimulation effects as well as their inter-individual differences is not yet understood. In the present study, we used a closed-loop electroencephalography-tACS(EEG-tACS) protocol to examine the modulation of alpha oscillations generated in occipito-parietal areas. In particular, we investigated the effects of a repeated short-time intermittent stimulation protocol (1 s in every trial) applied over the visual cortex (Cz and Oz) and adjusted according to the phase and frequency of visual alpha oscillations on the amplitude of these oscillations. Based on previous findings, we expected higher increases in alpha amplitudes for tACS applied in-phase with ongoing oscillations as compared to an application in anti-phase and this modulation to be present in low-alpha amplitude states of the visual system (eyes opened, EO) but not high (eyes closed, EC). Contrary to our expectations, we found a transient suppression of alpha power in inter-individually derived spatially specific parieto-occipital components obtained via the estimation of spatial filters by using the common spatial patterns approach. The amplitude modulation was independent of the phase relationship between the tACS signal and alpha oscillations, and the state of the visual system manipulated via closed- and open-eye conditions. It was also absent in conventionally analyzed single-channel and multi-channel data from an average parieto-occipital region. The fact that the tACS modulation of oscillations was phase-independent suggests that mechanisms driving the effects of tACS may not be explained by entrainment alone, but rather require neuroplastic changes or transient disruption of neural oscillations. Our study also supports the notion that the response to tACS is subject-specific, where the modulatory effects are shaped by the interplay between the stimulation and different alpha generators. This favors stimulation protocols as well as analysis regimes exploiting inter-individual differences, such as spatial filters to reveal otherwise hidden stimulation effects and, thereby, comprehensively induce and study the effects and underlying mechanisms of tACS.
Collapse
Affiliation(s)
- Georgy Zarubin
- Technical Informatics Department, Leipzig University, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Christopher Gundlach
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Psychology, University of Leipzig, Leipzig, Germany
| | - Vadim Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Neurophysics Group, Department of Neurology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
- Mind Brain Body Institute at the Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin Bogdan
- Technical Informatics Department, Leipzig University, Leipzig, Germany
| |
Collapse
|
19
|
Sabel BA, Thut G, Haueisen J, Henrich-Noack P, Herrmann CS, Hunold A, Kammer T, Matteo B, Sergeeva EG, Waleszczyk W, Antal A. Vision modulation, plasticity and restoration using non-invasive brain stimulation – An IFCN-sponsored review. Clin Neurophysiol 2020; 131:887-911. [DOI: 10.1016/j.clinph.2020.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 12/18/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022]
|
20
|
Dallmer-Zerbe I, Popp F, Lam AP, Philipsen A, Herrmann CS. Transcranial Alternating Current Stimulation (tACS) as a Tool to Modulate P300 Amplitude in Attention Deficit Hyperactivity Disorder (ADHD): Preliminary Findings. Brain Topogr 2020; 33:191-207. [PMID: 31974733 PMCID: PMC7066286 DOI: 10.1007/s10548-020-00752-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 01/04/2020] [Indexed: 12/22/2022]
Abstract
Studies examining event-related potentials (ERP) in patients affected by attention deficit/hyperactivity disorder (ADHD) have found considerable evidence of reduced target P300 amplitude across different perceptual modalities. P300 amplitude has been related to attention-driven context comparison and resource allocation processes. Altered P300 amplitude in ADHD can be reasonably assumed to be related to ADHD typical cognitive performance deficits. Transcranial alternating current stimulation (tACS) can increase the amplitude of endogenous brain oscillations. Because ERP components can be viewed as event-related oscillations (EROs), with P300 translating into the delta (0–4 Hz) and theta (4–8 Hz) frequency range, an increase of delta and theta ERO amplitudes by tACS should result in an increase of P300 amplitudes in ADHD patients. In this pilot study, 18 adult ADHD patients (7 female) performed three consecutive blocks of a visual oddball task while the electroencephalogram (EEG) was recorded. Patients received either 20 min of tACS or sham stimulation at a stimulation intensity of 1 mA. Individual stimulation frequency was determined using a time–frequency decomposition of the P300. Our preliminary results demonstrate a significant increase in P300 amplitude in the stimulation group which was accompanied by a decrease in omission errors pre-to-post tACS. However, studies including larger sample sizes are advised.
Collapse
Affiliation(s)
- Isa Dallmer-Zerbe
- Department of Complex Systems, Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic.,Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.,Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster for Excellence "Hearing for All", Carl Von Ossietzky University Oldenburg, Ammerländer Heerstr. 114-118, 26129, Oldenburg, Germany
| | - Fabian Popp
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster for Excellence "Hearing for All", Carl Von Ossietzky University Oldenburg, Ammerländer Heerstr. 114-118, 26129, Oldenburg, Germany
| | - Alexandra Philomena Lam
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany.,Medical Campus University of Oldenburg, School of Medicine and Health Sciences, Psychiatry and Psychotherapy - University Hospital, Karl-Jaspers-Klinik, Bad Zwischenahn, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany.,Medical Campus University of Oldenburg, School of Medicine and Health Sciences, Psychiatry and Psychotherapy - University Hospital, Karl-Jaspers-Klinik, Bad Zwischenahn, Germany
| | - Christoph Siegfried Herrmann
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster for Excellence "Hearing for All", Carl Von Ossietzky University Oldenburg, Ammerländer Heerstr. 114-118, 26129, Oldenburg, Germany. .,Research Center Neurosensory Science, Carl Von Ossietzky University, Oldenburg, Germany.
| |
Collapse
|
21
|
Barchiesi G, Demarchi G, Wilhelm FH, Hauswald A, Sanchez G, Weisz N. Head magnetomyography (hMMG): A novel approach to monitor face and whole head muscular activity. Psychophysiology 2019; 57:e13507. [PMID: 31763700 PMCID: PMC7027552 DOI: 10.1111/psyp.13507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 11/28/2022]
Abstract
Muscular activity recording is of high basic science and clinical relevance and is typically achieved using electromyography (EMG). While providing detailed information about the state of a specific muscle, this technique has limitations such as the need for a priori assumptions about electrode placement and difficulty with recording muscular activity patterns from extended body areas at once. For head and face muscle activity, the present work aimed to overcome these restrictions by exploiting magnetoencephalography (MEG) as a whole head myographic recorder (head magnetomyography, hMMG). This is in contrast to common MEG studies, which treat muscular activity as artifact in electromagnetic brain activity. In a first proof‐of‐concept step, participants imitated emotional facial expressions performed by a model. Exploiting source projection algorithms, we were able to reconstruct muscular activity, showing spatial activation patterns in accord with the hypothesized muscular contractions. Going one step further, participants passively observed affective pictures with negative, neutral, or positive valence. Applying multivariate pattern analysis to the reconstructed hMMG signal, we were able to decode above chance the valence category of the presented pictures. Underlining the potential of hMMG, a searchlight analysis revealed that generally neglected neck muscles exhibit information on stimulus valence. Results confirm the utility of hMMG as a whole head electromyographic recorder to quantify muscular activation patterns including muscular regions that are typically not recorded with EMG. This key advantage beyond conventional EMG has substantial scientific and clinical potential. We present an innovative method called head magnetomyography (hMMG), which exploits magnetoencephalography (MEG) as a whole head electromyographic (EMG) recorder. Differently from the typical EMG recording, which needs an a priori selection of the placement of the electrodes, hMMG is able to detect muscular activity from many regions of the face and head simultaneously, including typically overlooked muscles. Our data show that hMMG can readily serve researchers in the emotion field and hold further scientific as well as clinical promise.
Collapse
Affiliation(s)
- Guido Barchiesi
- Centre for Cognitive Neuroscience and Department of Psychology, University of Salzburg, Salzburg, Austria
| | - Gianpaolo Demarchi
- Centre for Cognitive Neuroscience and Department of Psychology, University of Salzburg, Salzburg, Austria
| | - Frank H Wilhelm
- Division of Clinical Psychology, Psychotherapy, and Health Psychology, Department of Psychology, University of Salzburg, Salzburg, Austria
| | - Anne Hauswald
- Centre for Cognitive Neuroscience and Department of Psychology, University of Salzburg, Salzburg, Austria
| | - Gaëtan Sanchez
- Lyon Neuroscience Research Center, Brain Dynamics and Cognition Team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Nathan Weisz
- Centre for Cognitive Neuroscience and Department of Psychology, University of Salzburg, Salzburg, Austria
| |
Collapse
|
22
|
Recovering Brain Dynamics During Concurrent tACS-M/EEG: An Overview of Analysis Approaches and Their Methodological and Interpretational Pitfalls. Brain Topogr 2019; 32:1013-1019. [DOI: 10.1007/s10548-019-00727-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/20/2019] [Indexed: 12/27/2022]
|
23
|
Dowsett J, Herrmann CS, Dieterich M, Taylor PCJ. Shift in lateralization during illusory self-motion: EEG responses to visual flicker at 10 Hz and frequency-specific modulation by tACS. Eur J Neurosci 2019; 51:1657-1675. [PMID: 31408562 DOI: 10.1111/ejn.14543] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/25/2019] [Accepted: 08/05/2019] [Indexed: 01/23/2023]
Abstract
Self-motion perception is a key aspect of higher vestibular processing, suggested to rely upon hemispheric lateralization and alpha-band oscillations. The first aim of this study was to test for any lateralization in the EEG alpha band during the illusory sense of self-movement (vection) induced by large optic flow stimuli. Visual stimuli flickered at alpha frequency (approx. 10 Hz) in order to produce steady state visually evoked potentials (SSVEPs), a robust EEG measure which allows probing the frequency-specific response of the cortex. The first main result was that differential lateralization of the alpha SSVEP response was found during vection compared with a matched random motion control condition, supporting the idea of lateralization of visual-vestibular function. Additionally, this effect was frequency-specific, not evident with lower frequency SSVEPs. The second aim of this study was to test for a causal role of the right hemisphere in producing this lateralization effect and to explore the possibility of selectively modulating the SSVEP response. Transcranial alternating current stimulation (tACS) was applied over the right hemisphere simultaneously with SSVEP recording, using a novel artefact removal strategy for combined tACS-EEG. The second main result was that tACS enhanced SSVEP amplitudes, and the effect of tACS was not confined to the right hemisphere. Subsequent control experiments showed the effect of tACS requires the flicker frequency and tACS frequency to be closely matched and tACS to be of sufficient intensity. Combined tACS-SSVEPs are a promising method for future investigation into the role of neural oscillations and for optimizing tACS.
Collapse
Affiliation(s)
- James Dowsett
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany.,German Center for Vertigo and Balance Disorders, University Hospital, LMU Munich, Munich, Germany
| | - Christoph S Herrmann
- Experimental Psychology Lab, Center for Excellence "Hearing4all", European Medical School, University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | - Marianne Dieterich
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany.,German Center for Vertigo and Balance Disorders, University Hospital, LMU Munich, Munich, Germany.,Graduate School of Systemic Neurosciences, LMU Munich, Munich, Germany.,SyNergy - Munich Cluster for Systems Neurology, Munich, Germany
| | - Paul C J Taylor
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany.,German Center for Vertigo and Balance Disorders, University Hospital, LMU Munich, Munich, Germany.,Graduate School of Systemic Neurosciences, LMU Munich, Munich, Germany
| |
Collapse
|
24
|
Meier J, Nolte G, Schneider TR, Engel AK, Leicht G, Mulert C. Intrinsic 40Hz-phase asymmetries predict tACS effects during conscious auditory perception. PLoS One 2019; 14:e0213996. [PMID: 30943251 PMCID: PMC6447177 DOI: 10.1371/journal.pone.0213996] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 03/05/2019] [Indexed: 12/31/2022] Open
Abstract
Synchronized oscillatory gamma-band activity (30-100Hz) has been suggested to constitute a key mechanism to dynamically orchestrate sensory information integration across multiple spatio-temporal scales. We here tested whether interhemispheric functional connectivity and ensuing auditory perception can selectively be modulated by high-density transcranial alternating current stimulation (HD-tACS). For this purpose, we applied multi-site HD-tACS at 40Hz bilaterally with a phase lag of 180° and recorded a 64-channel EEG to study the oscillatory phase dynamics at the source-space level during a dichotic listening (DL) task in twenty-six healthy participants. In this study, we revealed an oscillatory phase signature at 40Hz which reflects different temporal profiles of the phase asymmetries during left and right ear percept. Here we report that 180°-tACS did not affect the right ear advantage during DL at group level. However, a follow-up analysis revealed that the intrinsic phase asymmetries during sham-tACS determined the directionality of the behavioral modulations: While a shift to left ear percept was associated with augmented interhemispheric asymmetry (closer to 180°), a shift to right ear processing was elicited in subjects with lower asymmetry (closer to 0°). Crucially, the modulation of the interhemispheric network dynamics depended on the deviation of the tACS-induced phase-lag from the intrinsic phase asymmetry. Our characterization of the oscillatory network trends is giving rise to the importance of phase-specific gamma-band coupling during ambiguous auditory perception, and emphasizes the necessity to address the inter-individual variability of phase asymmetries in future studies by tailored stimulation protocols.
Collapse
Affiliation(s)
- Jan Meier
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| | - Guido Nolte
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till R. Schneider
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas K. Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gregor Leicht
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Mulert
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Centre for Psychiatry and Psychotherapy, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
25
|
Wittenberg MA, Morr M, Schnitzler A, Lange J. 10 Hz tACS Over Somatosensory Cortex Does Not Modulate Supra-Threshold Tactile Temporal Discrimination in Humans. Front Neurosci 2019; 13:311. [PMID: 31001078 PMCID: PMC6456678 DOI: 10.3389/fnins.2019.00311] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/19/2019] [Indexed: 12/23/2022] Open
Abstract
Perception of physical identical stimuli can differ over time depending on the brain state. One marker of this brain state can be neuronal oscillations in the alpha band (8–12 Hz). A previous study showed that the power of prestimulus alpha oscillations in the contralateral somatosensory area negatively correlate with the ability to temporally discriminate between two subsequent tactile suprathreshold stimuli. That is, with high alpha power subjects were impaired in discriminating two stimuli and more frequently reported to perceive only one stimulus. While this previous study found correlative evidence for a role of alpha oscillations on tactile temporal discrimination, here, we aimed to study the causal influence of alpha power on tactile temporal discrimination by using transcranial alternating current stimulation (tACS). We hypothesized that tACS in the alpha frequency should entrain alpha oscillations and thus modulate alpha power. This modulated alpha power should alter temporal discrimination ability compared to a control frequency or sham. To this end, 17 subjects received one or two electrical stimuli to their left index finger with different stimulus onset asynchronies (SOAs). They reported whether they perceived one or two stimuli. Subjects performed the paradigm before (pre), during (peri), and 25 min after tACS (post). tACS was applied to the contralateral somatosensory-parietal area with either 10, 5 Hz or sham on three different days. We found no significant difference in discrimination abilities between 10 Hz tACS and the control conditions, independent of SOAs. In addition to choosing all SOAs as the independent variable, we chose individually different SOAs, for which we expected the strongest effects of tACS. Again, we found no significant effects of 10 Hz tACS on temporal discrimination abilities. We discuss potential reasons for the inability to modulate tactile temporal discrimination abilities with tACS.
Collapse
Affiliation(s)
- Marc A Wittenberg
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Mitjan Morr
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.,Division of Medical Psychology, University of Bonn, Bonn, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Joachim Lange
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
26
|
Cabral-Calderin Y, Wilke M. Probing the Link Between Perception and Oscillations: Lessons from Transcranial Alternating Current Stimulation. Neuroscientist 2019; 26:57-73. [PMID: 30730265 PMCID: PMC7003153 DOI: 10.1177/1073858419828646] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Brain oscillations are regarded as important for perception as they open and close time windows for neural spiking to enable the effective communication within and across brain regions. In the past, studies on perception primarily relied on the use of electrophysiological techniques for probing a correlative link between brain oscillations and perception. The emergence of noninvasive brain stimulation techniques such as transcranial alternating current stimulation (tACS) provides the possibility to study the causal contribution of specific oscillatory frequencies to perception. Here, we review the studies on visual, auditory, and somatosensory perception that employed tACS to probe the causality of brain oscillations for perception. The current literature is consistent with a causal role of alpha and gamma oscillations in parieto-occipital regions for visual perception and theta and gamma oscillations in auditory cortices for auditory perception. In addition, the sensory gating by alpha oscillations applies not only to the visual but also to the somatosensory domain. We conclude that albeit more refined perceptual paradigms and individualized stimulation practices remain to be systematically adopted, tACS is a promising tool for establishing a causal link between neural oscillations and perception.
Collapse
Affiliation(s)
- Yuranny Cabral-Calderin
- MEG Unit, Brain Imaging Center, Goethe University Frankfurt, Frankfurt am Main, Germany.,German Resilience Center, University Medical Center Mainz, Mainz, Germany
| | - Melanie Wilke
- Department of Cognitive Neurology, University Medicine Göttingen, Göttingen, Germany.,German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany.,DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| |
Collapse
|
27
|
Kohli S, Casson AJ. Removal of Gross Artifacts of Transcranial Alternating Current Stimulation in Simultaneous EEG Monitoring. SENSORS 2019; 19:s19010190. [PMID: 30621077 PMCID: PMC6338981 DOI: 10.3390/s19010190] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/08/2018] [Accepted: 01/02/2019] [Indexed: 01/24/2023]
Abstract
Transcranial electrical stimulation is a widely used non-invasive brain stimulation approach. To date, EEG has been used to evaluate the effect of transcranial Direct Current Stimulation (tDCS) and transcranial Alternating Current Stimulation (tACS), but most studies have been limited to exploring changes in EEG before and after stimulation due to the presence of stimulation artifacts in the EEG data. This paper presents two different algorithms for removing the gross tACS artifact from simultaneous EEG recordings. These give different trade-offs in removal performance, in the amount of data required, and in their suitability for closed loop systems. Superposition of Moving Averages and Adaptive Filtering techniques are investigated, with significant emphasis on verification. We present head phantom testing results for controlled analysis, together with on-person EEG recordings in the time domain, frequency domain, and Event Related Potential (ERP) domain. The results show that EEG during tACS can be recovered free of large scale stimulation artifacts. Previous studies have not quantified the performance of the tACS artifact removal procedures, instead focusing on the removal of second order artifacts such as respiration related oscillations. We focus on the unresolved challenge of removing the first order stimulation artifact, presented with a new multi-stage validation strategy.
Collapse
Affiliation(s)
- Siddharth Kohli
- School of Electrical and Electronic Engineering, The University of Manchester, Manchester M13 9PL, UK.
| | - Alexander J Casson
- School of Electrical and Electronic Engineering, The University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
28
|
Helfrich RF, Knight RT. Cognitive neurophysiology of the prefrontal cortex. HANDBOOK OF CLINICAL NEUROLOGY 2019; 163:35-59. [DOI: 10.1016/b978-0-12-804281-6.00003-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Iturrate I, Pereira M, Millán JDR. Closed-loop electrical neurostimulation: Challenges and opportunities. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018. [DOI: 10.1016/j.cobme.2018.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
30
|
Ahmed S, Plazier M, Ost J, Stassijns G, Deleye S, Ceyssens S, Dupont P, Stroobants S, Staelens S, De Ridder D, Vanneste S. The effect of occipital nerve field stimulation on the descending pain pathway in patients with fibromyalgia: a water PET and EEG imaging study. BMC Neurol 2018; 18:191. [PMID: 30419855 PMCID: PMC6233518 DOI: 10.1186/s12883-018-1190-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/28/2018] [Indexed: 12/26/2022] Open
Abstract
Background Fibromyalgia is a chronic disorder characterized by widespread musculoskeletal pain accompanied by fatigue, sleep, memory, and mood problems. Recently, occipital nerve field stimulation (ONS) has been proposed as an effective potential treatment for fibromyalgia-related pain. The aim of this study is to unravel the neural mechanism behind occipital nerve stimulation’s ability to suppress pain in fibromyalgia patients. Materials and methods Seven patients implanted with subcutaneous electrodes in the C2 dermatoma were enrolled for a Positron Emission Tomography (PET) H215O activation study. These seven patients were selected from a cohort of 40 patients who were part of a double blind, placebo-controlled study followed by an open label follow up at six months. The H215O PET scans were taken during both the “ON” (active stimulation) and “OFF” (stimulating device turned off) conditions. Electroencephalogram (EEG) data were also recorded for the implanted fibromyalgia patients during both the “ON” and “OFF” conditions. Results Relative to the “OFF” condition, ONS stimulation resulted in activation in the dorsal lateral prefrontal cortex, comprising the medial pain pathway, the ventral medial prefrontal cortex, and the bilateral anterior cingulate cortex as well as parahippocampal area, the latter two of which comprise the descending pain pathway. Relative deactivation was observed in the left somatosensory cortex, constituting the lateral pain pathway as well as other sensory areas such as the visual and auditory cortex. The EEG results also showed increased activity in the descending pain pathway. The pregenual anterior cingulate cortex extending into the ventral medial prefrontal cortex displayed this increase in the theta, alpha1, alpha2, beta1, and beta2 frequency bands. Conclusion PET shows that ONS exerts its effect via activation of the descending pain inhibitory pathway and the lateral pain pathway in fibromyalgia, while EEG shows activation of those cortical areas that could be responsible for descending inhibition system recruitment. Trial Registration This study is registered with ClinicalTrials.gov, number NCT00917176 (June 10, 2009).
Collapse
Affiliation(s)
- Shaheen Ahmed
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Mark Plazier
- Department of Neurosurgery, University Hospital Antwerp, Antwerp, Belgium
| | | | - Gaetane Stassijns
- Department of physical health hand rehabilitation, University Hospital Antwerp, Edegem, Belgium
| | - Steven Deleye
- Department of Cognitive Neurology, UZ Leuven, Leuven, Belgium
| | - Sarah Ceyssens
- Department of Cognitive Neurology, UZ Leuven, Leuven, Belgium
| | - Patrick Dupont
- Department of Cognitive Neurology, UZ Leuven, Leuven, Belgium
| | - Sigrid Stroobants
- Department of nuclear medicine, University Hospital Antwerp, Edegem, Belgium
| | - Steven Staelens
- Molecular Imaging Centre, University of Antwerp, Edegem, Belgium
| | - Dirk De Ridder
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Sven Vanneste
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, USA.
| |
Collapse
|
31
|
Ahn S, Mellin JM, Alagapan S, Alexander ML, Gilmore JH, Jarskog LF, Fröhlich F. Targeting reduced neural oscillations in patients with schizophrenia by transcranial alternating current stimulation. Neuroimage 2018; 186:126-136. [PMID: 30367952 DOI: 10.1016/j.neuroimage.2018.10.056] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 10/01/2018] [Accepted: 10/21/2018] [Indexed: 12/28/2022] Open
Abstract
Transcranial alternating current stimulation (tACS) modulates endogenous neural oscillations in healthy human participants by the application of a low-amplitude electrical current with a periodic stimulation waveform. Yet, it is unclear if tACS can modulate and restore neural oscillations that are reduced in patients with psychiatric illnesses such as schizophrenia. Here, we asked if tACS modulates network oscillations in schizophrenia. We performed a randomized, double-blind, sham-controlled clinical trial to contrast tACS with transcranial direct current stimulation (tDCS) and sham stimulation in 22 schizophrenia patients with auditory hallucinations. We used high-density electroencephalography to investigate if a five-day, twice-daily 10Hz-tACS protocol enhances alpha oscillations and modulates network dynamics that are reduced in schizophrenia. We found that 10Hz-tACS enhanced alpha oscillations and modulated functional connectivity in the alpha frequency band. In addition, 10Hz-tACS enhanced the 40Hz auditory steady-state response (ASSR), which is reduced in patients with schizophrenia. Importantly, clinical improvement of auditory hallucinations correlated with enhancement of alpha oscillations and the 40Hz-ASSR. Together, our findings suggest that tACS has potential as a network-level approach to modulate reduced neural oscillations related to clinical symptoms in patients with schizophrenia.
Collapse
Affiliation(s)
- Sangtae Ahn
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Juliann M Mellin
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Sankaraleengam Alagapan
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Morgan L Alexander
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - L Fredrik Jarskog
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States; North Carolina Psychiatric Research Center, Raleigh, NC, 27610, United States
| | - Flavio Fröhlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States; Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States.
| |
Collapse
|
32
|
Non-linear transfer characteristics of stimulation and recording hardware account for spurious low-frequency artifacts during amplitude modulated transcranial alternating current stimulation (AM-tACS). Neuroimage 2018; 179:134-143. [DOI: 10.1016/j.neuroimage.2018.05.068] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/25/2018] [Accepted: 05/28/2018] [Indexed: 01/01/2023] Open
|
33
|
Herring JD, Esterer S, Marshall TR, Jensen O, Bergmann TO. Low-frequency alternating current stimulation rhythmically suppresses gamma-band oscillations and impairs perceptual performance. Neuroimage 2018; 184:440-449. [PMID: 30243972 DOI: 10.1016/j.neuroimage.2018.09.047] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/11/2018] [Accepted: 09/18/2018] [Indexed: 10/28/2022] Open
Abstract
Low frequency oscillations such as alpha (8-12 Hz) are hypothesized to rhythmically gate sensory processing, reflected by 40-100 Hz gamma band activity, via the mechanism of pulsed inhibition. We applied transcranial alternating current stimulation (TACS) at individual alpha frequency (IAF) and flanking frequencies (IAF-4 Hz, IAF+4 Hz) to the occipital cortex of healthy human volunteers during concurrent magnetoencephalography (MEG), while participants performed a visual detection task inducing strong gamma-band responses. Occipital (but not retinal) TACS phasically suppressed stimulus-induced gamma oscillations in the visual cortex and impaired target detection, with stronger phase-to-amplitude coupling predicting behavioral impairments. Retinal control TACS ruled out retino-thalamo-cortical entrainment resulting from (subthreshold) retinal stimulation. All TACS frequencies tested were effective, suggesting that visual gamma-band responses can be modulated by a range of low frequency oscillations. We propose that TACS-induced membrane potential modulations mimic the rhythmic change in cortical excitability by which spontaneous low frequency oscillations may eventually exert their impact when gating sensory processing via pulsed inhibition.
Collapse
Affiliation(s)
- Jim D Herring
- Donders Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Sophie Esterer
- CUBRIC, School of Psychology, Cardiff University, Cardiff, United Kingdom; Donders Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Tom R Marshall
- Department of Experimental Psychology, University of Oxford, United Kingdom; Donders Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Ole Jensen
- School of Psychology, University of Birmingham, Birmingham, United Kingdom; Donders Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Til O Bergmann
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Donders Institute, Radboud University Nijmegen, Nijmegen, the Netherlands.
| |
Collapse
|
34
|
Facilitated Event-Related Power Modulations during Transcranial Alternating Current Stimulation (tACS) Revealed by Concurrent tACS-MEG. eNeuro 2018; 5:eN-TNWR-0069-18. [PMID: 30073188 PMCID: PMC6070188 DOI: 10.1523/eneuro.0069-18.2018] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/01/2018] [Accepted: 06/07/2018] [Indexed: 01/02/2023] Open
Abstract
Non-invasive approaches to modulate oscillatory activity in the brain are increasingly popular in the scientific community. Transcranial alternating current stimulation (tACS) has been shown to modulate neural oscillations in a frequency-specific manner. However, due to a massive stimulation artifact at the targeted frequency, little is known about effects of tACS during stimulation. It remains unclear how the continuous application of tACS affects event-related oscillations during cognitive tasks. Depending on whether tACS influences pre- or post-stimulus oscillations, or both, the endogenous, event-related oscillatory dynamics could be pushed in various directions or not at all. A better understanding of these effects is crucial to plan, predict, and understand outcomes of solely behavioral tACS experiments. In the present study, a recently proposed procedure to suppress tACS artifacts by projecting MEG data into source-space using spatial filtering was utilized to recover event-related power modulations in the alpha-band during a mental rotation task. MEG data of 25 human subjects was continuously recorded. After 10-minute baseline measurement, participants received either 20 minutes of tACS at their individual alpha frequency or sham stimulation. Another 40 minutes of MEG data were acquired thereafter. Data were projected into source-space and carefully examined for residual artifacts. Results revealed strong facilitation of event-related power modulations in the alpha-band during tACS application. These results provide first direct evidence that tACS does not counteract top-down suppression of intrinsic oscillations, but rather enhances pre-existent power modulations within the range of the individual alpha (= stimulation) frequency.
Collapse
|
35
|
tACS-mediated modulation of the auditory steady-state response as seen with MEG. Hear Res 2018; 364:90-95. [DOI: 10.1016/j.heares.2018.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/11/2018] [Accepted: 03/23/2018] [Indexed: 11/20/2022]
|
36
|
Stecher HI, Herrmann CS. Absence of Alpha-tACS Aftereffects in Darkness Reveals Importance of Taking Derivations of Stimulation Frequency and Individual Alpha Variability Into Account. Front Psychol 2018; 9:984. [PMID: 29973896 PMCID: PMC6019480 DOI: 10.3389/fpsyg.2018.00984] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/28/2018] [Indexed: 11/13/2022] Open
Abstract
Transcranial alternating current stimulation (tACS) has found widespread use as a basic tool in the exploration of the role of brain oscillations. Many studies have shown that frequency-specific tACS is able to not only alter cognitive processes during stimulation, but also cause specific physiological aftereffects visible in the electroencephalogram (EEG). The relationship between the emergence of these aftereffects and the necessary duration of stimulation is inconclusive. Our goal in this study was to narrow down the crucial length of tACS-blocks, by which aftereffects can be elicited. We stimulated participants with α-tACS in four blocks of 1-, 3-, 5-, and 10-min length, once in increasing and once in decreasing order. After each block, we measured the resting EEG for 10 min during a visual vigilance task. We could not find lasting enhancement of α-power following any stimulation block, when comparing the stimulated groups to the sham group. These findings offer no information regarding the crucial stimulation duration. In addition, this conflicts with previous findings, showing a power increase following 10 min of tACS in the alpha range. We performed additional explorative analyses, based on known confounds of (1) mismatches between stimulation frequency and individual alpha frequency and (2) abnormalities in baseline α-activity. The results of an ANCOVA suggested that both factor explain variance, but could not resolve how exactly both factors interfere with the stimulation effect. Employing a linear mixed model, we found a significant effect of stimulation following 10 min of α-tACS in the increasing sequence and a significant effect of the mismatch between stimulated frequency and individual alpha frequency. The implications of these findings for future research are discussed.
Collapse
Affiliation(s)
- Heiko I Stecher
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster for Excellence "Hearing for all", Carl von Ossietzky University, Oldenburg, Germany
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster for Excellence "Hearing for all", Carl von Ossietzky University, Oldenburg, Germany.,Research Center Neurosensory Science, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
37
|
Vosskuhl J, Strüber D, Herrmann CS. Non-invasive Brain Stimulation: A Paradigm Shift in Understanding Brain Oscillations. Front Hum Neurosci 2018; 12:211. [PMID: 29887799 PMCID: PMC5980979 DOI: 10.3389/fnhum.2018.00211] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/07/2018] [Indexed: 11/13/2022] Open
Abstract
Cognitive neuroscience set out to understand the neural mechanisms underlying cognition. One central question is how oscillatory brain activity relates to cognitive processes. Up to now, most of the evidence supporting this relationship was correlative in nature. This situation changed dramatically with the recent development of non-invasive brain stimulation (NIBS) techniques, which open up new vistas for neuroscience by allowing researchers for the first time to validate their correlational theories by manipulating brain functioning directly. In this review, we focus on transcranial alternating current stimulation (tACS), an electrical brain stimulation method that applies sinusoidal currents to the intact scalp of human individuals to directly interfere with ongoing brain oscillations. We outline how tACS can impact human brain oscillations by employing different levels of observation from non-invasive tACS application in healthy volunteers and intracranial recordings in patients to animal studies demonstrating the effectiveness of alternating electric fields on neurons in vitro and in vivo. These findings likely translate to humans as comparable effects can be observed in human and animal studies. Neural entrainment and plasticity are suggested to mediate the behavioral effects of tACS. Furthermore, we focus on mechanistic theories about the relationship between certain cognitive functions and specific parameters of brain oscillaitons such as its amplitude, frequency, phase and phase coherence. For each of these parameters we present the current state of testing its functional relevance by means of tACS. Recent developments in the field of tACS are outlined which include the stimulation with physiologically inspired non-sinusoidal waveforms, stimulation protocols which allow for the observation of online-effects, and closed loop applications of tACS.
Collapse
Affiliation(s)
- Johannes Vosskuhl
- Experimental Psychology Lab, Center for Excellence “Hearing4all,” European Medical School, University of Oldenburg, Oldenburg, Germany
| | - Daniel Strüber
- Experimental Psychology Lab, Center for Excellence “Hearing4all,” European Medical School, University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | - Christoph S. Herrmann
- Experimental Psychology Lab, Center for Excellence “Hearing4all,” European Medical School, University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
38
|
Fuscà M, Ruhnau P, Neuling T, Weisz N. Local Network-Level Integration Mediates Effects of Transcranial Alternating Current Stimulation. Brain Connect 2018; 8:212-219. [DOI: 10.1089/brain.2017.0564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Marco Fuscà
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| | - Philipp Ruhnau
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Toralf Neuling
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy
- Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Nathan Weisz
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy
- Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| |
Collapse
|
39
|
Bikson M, Brunoni AR, Charvet LE, Clark VP, Cohen LG, Deng ZD, Dmochowski J, Edwards DJ, Frohlich F, Kappenman ES, Lim KO, Loo C, Mantovani A, McMullen DP, Parra LC, Pearson M, Richardson JD, Rumsey JM, Sehatpour P, Sommers D, Unal G, Wassermann EM, Woods AJ, Lisanby SH. Rigor and reproducibility in research with transcranial electrical stimulation: An NIMH-sponsored workshop. Brain Stimul 2018; 11:465-480. [PMID: 29398575 PMCID: PMC5997279 DOI: 10.1016/j.brs.2017.12.008] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 12/01/2017] [Accepted: 12/21/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Neuropsychiatric disorders are a leading source of disability and require novel treatments that target mechanisms of disease. As such disorders are thought to result from aberrant neuronal circuit activity, neuromodulation approaches are of increasing interest given their potential for manipulating circuits directly. Low intensity transcranial electrical stimulation (tES) with direct currents (transcranial direct current stimulation, tDCS) or alternating currents (transcranial alternating current stimulation, tACS) represent novel, safe, well-tolerated, and relatively inexpensive putative treatment modalities. OBJECTIVE This report seeks to promote the science, technology and effective clinical applications of these modalities, identify research challenges, and suggest approaches for addressing these needs in order to achieve rigorous, reproducible findings that can advance clinical treatment. METHODS The National Institute of Mental Health (NIMH) convened a workshop in September 2016 that brought together experts in basic and human neuroscience, electrical stimulation biophysics and devices, and clinical trial methods to examine the physiological mechanisms underlying tDCS/tACS, technologies and technical strategies for optimizing stimulation protocols, and the state of the science with respect to therapeutic applications and trial designs. RESULTS Advances in understanding mechanisms, methodological and technological improvements (e.g., electronics, computational models to facilitate proper dosing), and improved clinical trial designs are poised to advance rigorous, reproducible therapeutic applications of these techniques. A number of challenges were identified and meeting participants made recommendations made to address them. CONCLUSIONS These recommendations align with requirements in NIMH funding opportunity announcements to, among other needs, define dosimetry, demonstrate dose/response relationships, implement rigorous blinded trial designs, employ computational modeling, and demonstrate target engagement when testing stimulation-based interventions for the treatment of mental disorders.
Collapse
Affiliation(s)
- Marom Bikson
- Department of Biomedical Engineering, The City College of the City University of New York, United States
| | - Andre R Brunoni
- Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, University of Sao Paulo, Sao Paulo, Brazil
| | - Leigh E Charvet
- Department of Neurology, New York University School of Medicine, New York, NY, United States
| | - Vincent P Clark
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Zhi-De Deng
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, United States
| | - Jacek Dmochowski
- Department of Biomedical Engineering, The City College of the City University of New York, United States
| | - Dylan J Edwards
- Non-invasive Brain Stimulation and Human Motor Control Laboratory, Burke Rehabilitation and Research, Burke-Cornell Medical Research Facility, White Plains, New York and School of Medicine and Health Sciences, Edith Cowan University, Perth, Australia
| | - Flavio Frohlich
- Department of Psychiatry, Cell Biology and Physiology, Biomedical Engineering, and Neurology, Carolina Center for Neurostimulation, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Emily S Kappenman
- Department of Psychology, San Diego State University, San Diego, CA, United States
| | - Kelvin O Lim
- Department of Psychiatry, University of Minnesota, Minneapolis Veterans Administration Health Care System, and Defense Veterans Brain Injury Center, Minneapolis, MN, United States
| | - Colleen Loo
- School of Psychiatry and Black Dog Institute, University of New South Wales, Sydney, Australia
| | - Antonio Mantovani
- Department of Physiology, Pharmacology and Neuroscience, City College of the City University of New York, New York, NY, United States
| | - David P McMullen
- Division of Translational Research, National Institute of Mental Health, Bethesda, MD, United States
| | - Lucas C Parra
- Department of Biomedical Engineering, The City College of the City University of New York, United States
| | - Michele Pearson
- Division of Translational Research, National Institute of Mental Health, Bethesda, MD, United States
| | - Jessica D Richardson
- Department of Speech and Hearing Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Judith M Rumsey
- Division of Translational Research, National Institute of Mental Health, Bethesda, MD, United States.
| | - Pejman Sehatpour
- Department of Psychiatry, Columbia University, New York, NY, United States
| | - David Sommers
- Scientific Review Branch, National Institute of Mental Health, Bethesda, MD, United States
| | - Gozde Unal
- Department of Biomedical Engineering, The City College of the City University of New York, United States
| | - Eric M Wassermann
- Behavioral Neurology Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Adam J Woods
- Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Sarah H Lisanby
- Division of Translational Research, National Institute of Mental Health, Bethesda, MD, United States
| |
Collapse
|
40
|
Berger A, Pixa NH, Steinberg F, Doppelmayr M. Brain Oscillatory and Hemodynamic Activity in a Bimanual Coordination Task Following Transcranial Alternating Current Stimulation (tACS): A Combined EEG-fNIRS Study. Front Behav Neurosci 2018; 12:67. [PMID: 29720935 PMCID: PMC5915568 DOI: 10.3389/fnbeh.2018.00067] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/23/2018] [Indexed: 11/13/2022] Open
Abstract
Motor control is associated with synchronized oscillatory activity at alpha (8–12 Hz) and beta (12–30 Hz) frequencies in a cerebello-thalamo-cortical network. Previous studies demonstrated that transcranial alternating current stimulation (tACS) is capable of entraining ongoing oscillatory activity while also modulating motor control. However, the modulatory effects of tACS on both motor control and its underlying electro- and neurophysiological mechanisms remain ambiguous. Thus, the purpose of this study was to contribute to gathering neurophysiological knowledge regarding tACS effects by investigating the after-effects of 10 Hz tACS and 20 Hz tACS at parietal brain areas on bimanual coordination and its concurrent oscillatory and hemodynamic activity. Twenty-four right-handed healthy volunteers (12 females) aged between 18 and 30 (M = 22.35 ± 3.62) participated in the study and performed a coordination task requiring bimanual movements. Concurrent to bimanual motor training, participants received either 10 Hz tACS, 20 Hz tACS or a sham stimulation over the parietal cortex (at P3/P4 electrode positions) for 20 min via small gel electrodes (3,14 cm2 Ag/AgCl, amperage = 1 mA). Before and three time-points after tACS (immediately, 30 min and 1 day), bimanual coordination performance was assessed. Oscillatory activities were measured by electroencephalography (EEG) and hemodynamic changes were examined using functional near-infrared spectroscopy (fNIRS). Improvements of bimanual coordination performance were not differently between groups, thus, no tACS-specific effect on bimanual coordination performance emerged. However, physiological measures during the task revealed significant increases in parietal alpha activity immediately following 10 Hz tACS and 20 Hz tACS which were accompanied by significant decreases of Hboxy concentration in the right hemispheric motor cortex compared to the sham group. Based on the physiological responses, we conclude that tACS applied at parietal brain areas provoked electrophysiological and hemodynamic changes at brain regions of the motor network which are relevant for bimanual motor behavior. The existence of neurophysiological alterations immediately following tACS, especially in the absence of behavioral effects, are elementary for a profound understanding of the mechanisms underlying tACS. The lack of behavioral modifications strengthens the need for further research on tACS effects on neurophysiology and behavior using combined electrophysiological and neuroimaging methods.
Collapse
Affiliation(s)
- Alisa Berger
- Department of Sports Psychology, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nils H Pixa
- Department of Sports Psychology, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Fabian Steinberg
- Department of Sports Psychology, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Michael Doppelmayr
- Department of Sports Psychology, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany.,Centre for Cognitive Neuroscience, Paris Lodron University of Salzburg, Salzburg, Austria
| |
Collapse
|
41
|
Sheldon SS, Mathewson KE. Does 10-Hz Cathodal Oscillating Current of the Parieto-Occipital Lobe Modulate Target Detection? Front Neurosci 2018. [PMID: 29520215 PMCID: PMC5827548 DOI: 10.3389/fnins.2018.00083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The phase of alpha (8–12 Hz) brain oscillations have been associated with moment to moment changes in visual attention and awareness. Previous work has demonstrated that endogenous oscillations and subsequent behavior can be modulated by oscillating transcranial current stimulation (otCS). The purpose of the current study is to establish the efficacy of cathodal otCS for modulation of the ongoing alpha brain oscillations, allowing for modulation of individual's visual perception. Thirty-six participants performed a target detection with sham and 10-Hz cathodal otCS. Each participant had two practice and two experimental sets composed of three blocks of 128 trials per block. Stimulating electrodes were placed on the participant's head with the anode electrode at Cz and the cathode electrode at Oz. A 0.5 mA current was applied every 100 ms (10 Hz frequency) during the otCS condition. The same current and frequency was applied for the first 10–20 s of the sham condition, after which the current was turned off. Target detection rates were compared between the sham and otCS experimental conditions in order to test for effects of otCS phase on target detection. We found no significant difference in target detection rates between the sham and otCS conditions, and discuss potential reasons for the apparent inability of cathodal otCS to effectively modulate visual perception.
Collapse
Affiliation(s)
- Sarah S Sheldon
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Kyle E Mathewson
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
42
|
Clayton MS, Yeung N, Cohen Kadosh R. The Effects of 10 Hz Transcranial Alternating Current Stimulation on Audiovisual Task Switching. Front Neurosci 2018; 12:67. [PMID: 29487500 PMCID: PMC5816909 DOI: 10.3389/fnins.2018.00067] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/29/2018] [Indexed: 11/13/2022] Open
Abstract
Neural oscillations in the alpha band (7–13 Hz) are commonly associated with disengagement of visual attention. However, recent studies have also associated alpha with processes of attentional control and stability. We addressed this issue in previous experiments by delivering transcranial alternating current stimulation at 10 Hz over posterior cortex during visual tasks (alpha tACS). As this stimulation can induce reliable increases in EEG alpha power, and given that performance on each of our visual tasks was negatively associated with alpha power, we assumed that alpha tACS would reliably impair visual performance. However, alpha tACS was instead found to prevent both deteriorations and improvements in visual performance that otherwise occurred during sham & 50 Hz tACS. Alpha tACS therefore appeared to exert a stabilizing effect on visual attention. This hypothesis was tested in the current, pre-registered experiment by delivering alpha tACS during a task that required rapid switching of attention between motion, color, and auditory subtasks. We assumed that, if alpha tACS stabilizes visual attention, this stimulation should make it harder for people to switch between visual tasks, but should have little influence on transitions between auditory and visual subtasks. However, in contrast to this prediction, we observed no evidence of impairments in visuovisual vs. audiovisual switching during alpha vs. control tACS. Instead, we observed a trend-level reduction in visuoauditory switching accuracy during alpha tACS. Post-hoc analyses showed no effects of alpha tACS in response time variability, diffusion model parameters, or on performance of repeat trials. EEG analyses also showed no effects of alpha tACS on endogenous or stimulus-evoked alpha power. We discuss possible explanations for these results, as well as their broader implications for current efforts to study the roles of neural oscillations in cognition using tACS.
Collapse
Affiliation(s)
- Michael S Clayton
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Nick Yeung
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Roi Cohen Kadosh
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
43
|
Rimmele JM, Gross J, Molholm S, Keitel A. Editorial: Brain Oscillations in Human Communication. Front Hum Neurosci 2018; 12:39. [PMID: 29467639 PMCID: PMC5808291 DOI: 10.3389/fnhum.2018.00039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 11/22/2022] Open
Affiliation(s)
- Johanna M Rimmele
- Department of Neuroscience, Max Planck Institute for Empirical Aesthetics (MPG), Frankfurt am Main, Germany
| | - Joachim Gross
- Institut für Biomagnetismus und Biosignalanalyse, Universitätsklinikum Münster, Münster, Germany
| | - Sophie Molholm
- Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Anne Keitel
- Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
44
|
Noury N, Siegel M. Analyzing EEG and MEG signals recorded during tES, a reply. Neuroimage 2017; 167:53-61. [PMID: 29155079 DOI: 10.1016/j.neuroimage.2017.11.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/20/2017] [Accepted: 11/12/2017] [Indexed: 10/18/2022] Open
Abstract
Transcranial Electric Stimulation (tES) is a widely used non-invasive brain stimulation technique. However, strong stimulation artifacts complicate the investigation of neural activity with EEG or MEG during tES. Thus, studying brain signals during tES requires detailed knowledge about the properties of these artifacts. Recently, we characterized the phase- and amplitude-relationship between tES stimulation currents and tES artifacts in EEG and MEG and provided a mathematical model of these artifacts (Noury and Siegel, 2017, and Noury et al., 2016, respectively). Among several other features, we showed that, independent of the stimulation current, the amplitude of tES artifacts is modulated time locked to heartbeat and respiration. In response to our work, a recent paper (Neuling et al., 2017) raised several points concerning the employed stimulation device and methodology. Here, we discuss these points, explain potential misunderstandings, and show that none of the raised concerns are applicable to our results. Furthermore, we explain in detail the physics underlying tES artifacts, and discuss several approaches how to study brain function during tES in the presence of residual artifacts.
Collapse
Affiliation(s)
- Nima Noury
- Centre for Integrative Neuroscience & MEG Center, University of Tübingen, Germany; IMPRS for Cognitive and Systems Neuroscience, Tübingen, Germany.
| | - Markus Siegel
- Centre for Integrative Neuroscience & MEG Center, University of Tübingen, Germany.
| |
Collapse
|
45
|
Szymanski C, Müller V, Brick TR, von Oertzen T, Lindenberger U. Hyper-Transcranial Alternating Current Stimulation: Experimental Manipulation of Inter-Brain Synchrony. Front Hum Neurosci 2017; 11:539. [PMID: 29167638 PMCID: PMC5682643 DOI: 10.3389/fnhum.2017.00539] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 10/24/2017] [Indexed: 01/29/2023] Open
Abstract
We walk together, we watch together, we win together: Interpersonally coordinated actions are omnipresent in everyday life, yet the associated neural mechanisms are not well understood. Available evidence suggests that the synchronization of oscillatory activity across brains may provide a mechanism for the temporal alignment of actions between two or more individuals. In an attempt to provide a direct test of this hypothesis, we applied transcranial alternating current stimulation simultaneously to two individuals (hyper-tACS) who were asked to drum in synchrony at a set pace. Thirty-eight female-female dyads performed the dyadic drumming in the course of 3 weeks under three different hyper-tACS stimulation conditions: same-phase-same-frequency; different-phase-different-frequency; sham. Based on available evidence and theoretical considerations, stimulation was applied over right frontal and parietal sites in the theta frequency range. We predicted that same-phase-same-frequency stimulation would improve interpersonal action coordination, expressed as the degree of synchrony in dyadic drumming, relative to the other two conditions. Contrary to expectations, both the same-phase-same-frequency and the different-phase-different-frequency conditions were associated with greater dyadic drumming asynchrony relative to the sham condition. No influence of hyper-tACS on behavioral performance was seen when participants were asked to drum separately in synchrony to a metronome. Individual and dyad preferred drumming tempo was also unaffected by hyper-tACS. We discuss limitations of the present version of the hyper-tACS paradigm, and suggest avenues for future research.
Collapse
Affiliation(s)
- Caroline Szymanski
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,Berlin School of Mind and Brain, Humboldt University of Berlin, Berlin, Germany
| | - Viktor Müller
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Timothy R Brick
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,Department of Human Development and Family Studies, Pennsylvania State University, State College, PA, United States
| | - Timo von Oertzen
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,Department of Humanities, Universität der Bundeswehr München, München, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,European University Institute, Fiesole, Italy
| |
Collapse
|
46
|
Wischnewski M, Schutter DJ. After-effects of transcranial alternating current stimulation on evoked delta and theta power. Clin Neurophysiol 2017; 128:2227-2232. [DOI: 10.1016/j.clinph.2017.08.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/06/2017] [Accepted: 08/24/2017] [Indexed: 11/28/2022]
|
47
|
Fehér KD, Nakataki M, Morishima Y. Phase-Dependent Modulation of Signal Transmission in Cortical Networks through tACS-Induced Neural Oscillations. Front Hum Neurosci 2017; 11:471. [PMID: 29021749 PMCID: PMC5624081 DOI: 10.3389/fnhum.2017.00471] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/08/2017] [Indexed: 11/13/2022] Open
Abstract
Oscillatory neural activity is considered a basis of signal transmission in brain networks. However, the causal role of neural oscillations in regulating cortico-cortical signal transmission has so far not been directly demonstrated. To date, due to methodological limitations, studies on the online modulatory mechanisms of transcranial alternating current stimulation (tACS)-induced neural oscillations are confined to the primary motor cortex. To address the causal role of oscillatory activity in modulating cortico-cortical signal transmission, we have established a new method using concurrent tACS, transcranial magnetic stimulation (TMS) and electroencephalography (EEG). Through tACS, we introduced 6-Hz (theta) oscillatory activity in the human dorsolateral prefrontal cortex (DLPFC). During tACS, we applied single-pulse TMS over the DLPFC at different phases of tACS and assessed propagation of TMS-induced neural activity with EEG. We show that tACS-induced theta oscillations modulate the propagation of TMS-induced activity in a phase-dependent manner and that phase-dependent modulation is not simply explained by the instantaneous amplitude of tACS. The results demonstrate a phase-dependent modulatory mechanism of tACS at a cortical network level, which is consistent with a causal role of neural oscillations in regulating the efficacy of signal transmission in the brain.
Collapse
Affiliation(s)
- Kristoffer D. Fehér
- Division of Systems Neuroscience of Psychopathology, Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Masahito Nakataki
- Division of Systems Neuroscience of Psychopathology, Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Yosuke Morishima
- Division of Systems Neuroscience of Psychopathology, Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
48
|
Noury N, Siegel M. Phase properties of transcranial electrical stimulation artifacts in electrophysiological recordings. Neuroimage 2017; 158:406-416. [DOI: 10.1016/j.neuroimage.2017.07.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/14/2017] [Accepted: 07/09/2017] [Indexed: 11/27/2022] Open
|
49
|
Tavakoli AV, Yun K. Transcranial Alternating Current Stimulation (tACS) Mechanisms and Protocols. Front Cell Neurosci 2017; 11:214. [PMID: 28928634 PMCID: PMC5591642 DOI: 10.3389/fncel.2017.00214] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/04/2017] [Indexed: 12/20/2022] Open
Abstract
Perception, cognition and consciousness can be modulated as a function of oscillating neural activity, while ongoing neuronal dynamics are influenced by synaptic activity and membrane potential. Consequently, transcranial alternating current stimulation (tACS) may be used for neurological intervention. The advantageous features of tACS include the biphasic and sinusoidal tACS currents, the ability to entrain large neuronal populations, and subtle control over somatic effects. Through neuromodulation of phasic, neural activity, tACS is a powerful tool to investigate the neural correlates of cognition. The rapid development in this area requires clarity about best practices. Here we briefly introduce tACS and review the most compelling findings in the literature to provide a starting point for using tACS. We suggest that tACS protocols be based on functional brain mechanisms and appropriate control experiments, including active sham and condition blinding.
Collapse
Affiliation(s)
- Amir V Tavakoli
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadena, CA, United States.,Department of Psychology, University of California, Los AngelesLos Angeles, CA, United States
| | - Kyongsik Yun
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadena, CA, United States.,Computation and Neural Systems, California Institute of TechnologyPasadena, CA, United States.,Bio-Inspired Technologies and Systems, Jet Propulsion Laboratory, California Institute of TechnologyPasadena, CA, United States
| |
Collapse
|
50
|
Antal A, Alekseichuk I, Bikson M, Brockmöller J, Brunoni AR, Chen R, Cohen LG, Dowthwaite G, Ellrich J, Flöel A, Fregni F, George MS, Hamilton R, Haueisen J, Herrmann CS, Hummel FC, Lefaucheur JP, Liebetanz D, Loo CK, McCaig CD, Miniussi C, Miranda PC, Moliadze V, Nitsche MA, Nowak R, Padberg F, Pascual-Leone A, Poppendieck W, Priori A, Rossi S, Rossini PM, Rothwell J, Rueger MA, Ruffini G, Schellhorn K, Siebner HR, Ugawa Y, Wexler A, Ziemann U, Hallett M, Paulus W. Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol 2017; 128:1774-1809. [PMID: 28709880 PMCID: PMC5985830 DOI: 10.1016/j.clinph.2017.06.001] [Citation(s) in RCA: 683] [Impact Index Per Article: 97.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/29/2017] [Accepted: 06/06/2017] [Indexed: 12/11/2022]
Abstract
Low intensity transcranial electrical stimulation (TES) in humans, encompassing transcranial direct current (tDCS), transcutaneous spinal Direct Current Stimulation (tsDCS), transcranial alternating current (tACS), and transcranial random noise (tRNS) stimulation or their combinations, appears to be safe. No serious adverse events (SAEs) have been reported so far in over 18,000 sessions administered to healthy subjects, neurological and psychiatric patients, as summarized here. Moderate adverse events (AEs), as defined by the necessity to intervene, are rare, and include skin burns with tDCS due to suboptimal electrode-skin contact. Very rarely mania or hypomania was induced in patients with depression (11 documented cases), yet a causal relationship is difficult to prove because of the low incidence rate and limited numbers of subjects in controlled trials. Mild AEs (MAEs) include headache and fatigue following stimulation as well as prickling and burning sensations occurring during tDCS at peak-to-baseline intensities of 1-2mA and during tACS at higher peak-to-peak intensities above 2mA. The prevalence of published AEs is different in studies specifically assessing AEs vs. those not assessing them, being higher in the former. AEs are frequently reported by individuals receiving placebo stimulation. The profile of AEs in terms of frequency, magnitude and type is comparable in healthy and clinical populations, and this is also the case for more vulnerable populations, such as children, elderly persons, or pregnant women. Combined interventions (e.g., co-application of drugs, electrophysiological measurements, neuroimaging) were not associated with further safety issues. Safety is established for low-intensity 'conventional' TES defined as <4mA, up to 60min duration per day. Animal studies and modeling evidence indicate that brain injury could occur at predicted current densities in the brain of 6.3-13A/m2 that are over an order of magnitude above those produced by tDCS in humans. Using AC stimulation fewer AEs were reported compared to DC. In specific paradigms with amplitudes of up to 10mA, frequencies in the kHz range appear to be safe. In this paper we provide structured interviews and recommend their use in future controlled studies, in particular when trying to extend the parameters applied. We also discuss recent regulatory issues, reporting practices and ethical issues. These recommendations achieved consensus in a meeting, which took place in Göttingen, Germany, on September 6-7, 2016 and were refined thereafter by email correspondence.
Collapse
Affiliation(s)
- A Antal
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany.
| | - I Alekseichuk
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - M Bikson
- Department of Biomedical Engineering, The City College of New York, New York, USA
| | - J Brockmöller
- Department of Clinical Pharmacology, University Medical Center Goettingen, Germany
| | - A R Brunoni
- Service of Interdisciplinary Neuromodulation, Department and Institute of Psychiatry, Laboratory of Neurosciences (LIM-27) and Interdisciplinary Center for Applied Neuromodulation University Hospital, University of São Paulo, São Paulo, Brazil
| | - R Chen
- Division of Neurology, Department of Medicine, University of Toronto and Krembil Research Institute, Toronto, Ontario, Canada
| | - L G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke NIH, Bethesda, USA
| | | | - J Ellrich
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark; Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany; EBS Technologies GmbH, Europarc Dreilinden, Germany
| | - A Flöel
- Universitätsmedizin Greifswald, Klinik und Poliklinik für Neurologie, Greifswald, Germany
| | - F Fregni
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - M S George
- Brain Stimulation Division, Medical University of South Carolina, and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA
| | - R Hamilton
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - J Haueisen
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Germany
| | - C S Herrmann
- Experimental Psychology Lab, Department of Psychology, European Medical School, Carl von Ossietzky Universität, Oldenburg, Germany
| | - F C Hummel
- Defitech Chair of Clinical Neuroengineering, Centre of Neuroprosthetics (CNP) and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland; Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Swiss Federal Institute of Technology (EPFL Valais), Sion, Switzerland
| | - J P Lefaucheur
- Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, and EA 4391, Nerve Excitability and Therapeutic Team (ENT), Faculty of Medicine, Paris Est Créteil University, Créteil, France
| | - D Liebetanz
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - C K Loo
- School of Psychiatry & Black Dog Institute, University of New South Wales, Sydney, Australia
| | - C D McCaig
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - C Miniussi
- Center for Mind/Brain Sciences CIMeC, University of Trento, Rovereto, Italy; Cognitive Neuroscience Section, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - P C Miranda
- Institute of Biophysics and Biomedical Engineering, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - V Moliadze
- Institute of Medical Psychology and Medical Sociology, University Hospital of Schleswig-Holstein (UKSH), Campus Kiel, Christian-Albrechts-University, Kiel, Germany
| | - M A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Department of Neurology, University Hospital Bergmannsheil, Bochum, Germany
| | - R Nowak
- Neuroelectrics, Barcelona, Spain
| | - F Padberg
- Department of Psychiatry and Psychotherapy, Munich Center for Brain Stimulation, Ludwig-Maximilian University Munich, Germany
| | - A Pascual-Leone
- Division of Cognitive Neurology, Harvard Medical Center and Berenson-Allen Center for Noninvasive Brain Stimulation at Beth Israel Deaconess Medical Center, Boston, USA
| | - W Poppendieck
- Department of Information Technology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - A Priori
- Center for Neurotechnology and Experimental Brain Therapeutich, Department of Health Sciences, University of Milan Italy; Deparment of Clinical Neurology, University Hospital Asst Santi Paolo E Carlo, Milan, Italy
| | - S Rossi
- Department of Medicine, Surgery and Neuroscience, Human Physiology Section and Neurology and Clinical Neurophysiology Section, Brain Investigation & Neuromodulation Lab, University of Siena, Italy
| | - P M Rossini
- Area of Neuroscience, Institute of Neurology, University Clinic A. Gemelli, Catholic University, Rome, Italy
| | | | - M A Rueger
- Department of Neurology, University Hospital of Cologne, Germany
| | | | | | - H R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Y Ugawa
- Department of Neurology, Fukushima Medical University, Fukushima, Japan; Fukushima Global Medical Science Center, Advanced Clinical Research Center, Fukushima Medical University, Japan
| | - A Wexler
- Department of Science, Technology & Society, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - U Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - M Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - W Paulus
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| |
Collapse
|