1
|
Hagen J, Ramkiran S, Schnellbächer GJ, Rajkumar R, Collee M, Khudeish N, Veselinović T, Shah NJ, Neuner I. Phenomena of hypo- and hyperconnectivity in basal ganglia-thalamo-cortical circuits linked to major depression: a 7T fMRI study. Mol Psychiatry 2025; 30:158-167. [PMID: 39020104 PMCID: PMC11649570 DOI: 10.1038/s41380-024-02669-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024]
Abstract
Major depressive disorder (MDD) typically manifests itself in depressed affect, anhedonia, low energy, and additional symptoms. Despite its high global prevalence, its pathophysiology still gives rise to questions. Current research places alterations in functional connectivity among MDD's most promising biomarkers. However, given the heterogeneity of previous findings, the use of higher-resolution imaging techniques, like ultra-high field (UHF) fMRI (≥7 Tesla, 7T), may offer greater specificity in delineating fundamental impairments. In this study, 7T UHF fMRI scans were conducted on 31 MDD patients and 27 age-gender matched healthy controls to exploratorily contrast cerebral resting-state functional connectivity patterns between both groups. The CONN toolbox was used to generate functional network connectivity (FNC) analysis based on the region of interest (ROI)-to-ROI correlations in order to enable the identification of clusters of significantly different connections. Correction for multiple comparisons was implemented at the cluster level using a false discovery rate (FDR). The analysis revealed three significant clusters differentiating MDD patients and healthy controls. In Clusters 1 and 2, MDD patients exhibited between-network hypoconnectivity in basal ganglia-cortical pathways as well as hyperconnectivity in thalamo-cortical pathways, including several individual ROI-to-ROI connections. In Cluster 3, they showed increased occipital interhemispheric within-network connectivity. These findings suggest that alterations in basal ganglia-thalamo-cortical circuits play a substantial role in the pathophysiology of MDD. Furthermore, they indicate potential MDD-related deficits relating to a combination of perception (vision, audition, and somatosensation) as well as more complex functions, especially social-emotional processing, modulation, and regulation. It is anticipated that these findings might further inform more accurate clinical procedures for addressing MDD.
Collapse
Affiliation(s)
- Jana Hagen
- Department of Psychiatry, Psychotherapy and Psychosomatics, Uniklinik RWTH Aachen, Aachen, Germany
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich, Jülich, Germany
| | - Shukti Ramkiran
- Department of Psychiatry, Psychotherapy and Psychosomatics, Uniklinik RWTH Aachen, Aachen, Germany
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich, Jülich, Germany
| | - Gereon J Schnellbächer
- Department of Psychiatry, Psychotherapy and Psychosomatics, Uniklinik RWTH Aachen, Aachen, Germany
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich, Jülich, Germany
| | - Ravichandran Rajkumar
- Department of Psychiatry, Psychotherapy and Psychosomatics, Uniklinik RWTH Aachen, Aachen, Germany
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich, Jülich, Germany
| | - Maria Collee
- Department of Psychiatry, Psychotherapy and Psychosomatics, Uniklinik RWTH Aachen, Aachen, Germany
| | - Nibal Khudeish
- Department of Psychiatry, Psychotherapy and Psychosomatics, Uniklinik RWTH Aachen, Aachen, Germany
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich, Jülich, Germany
| | - Tanja Veselinović
- Department of Psychiatry, Psychotherapy and Psychosomatics, Uniklinik RWTH Aachen, Aachen, Germany
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich, Jülich, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich, Jülich, Germany
- Department of Neurology, Uniklinik RWTH Aachen, Aachen, Germany
- Institute of Neuroscience and Medicine - 11, Forschungszentrum Jülich, Jülich, Germany
| | - Irene Neuner
- Department of Psychiatry, Psychotherapy and Psychosomatics, Uniklinik RWTH Aachen, Aachen, Germany.
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
2
|
Chai Y, Zhang RY. Exploring methodological frontiers in laminar fMRI. PSYCHORADIOLOGY 2024; 4:kkae027. [PMID: 39777367 PMCID: PMC11706213 DOI: 10.1093/psyrad/kkae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/09/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025]
Abstract
This review examines the methodological challenges and advancements in laminar functional magnetic resonance imaging (fMRI). With the advent of ultra-high-field MRI scanners, laminar fMRI has become pivotal in elucidating the intricate micro-architectures and functionalities of the human brain at a mesoscopic scale. Despite its profound potential, laminar fMRI faces significant challenges such as signal loss at high spatial resolution, limited specificity to laminar signatures, complex layer-specific analysis, the necessity for precise anatomical alignment, and prolonged acquisition times. This review discusses current methodologies, highlights typical challenges in laminar fMRI research, introduces innovative sequence and analysis methods, and outlines potential solutions for overcoming existing technical barriers. It aims to provide a technical overview of the field's current state, emphasizing both the impact of existing hurdles and the advancements that shape future prospects.
Collapse
Affiliation(s)
- Yuhui Chai
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana 61801, Illinois, USA
| | - Ru-Yuan Zhang
- Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine and School of Psychology, Shanghai 200030, the People Republic of China
| |
Collapse
|
3
|
Gomez DEP, Polimeni JR, Lewis LD. The temporal specificity of BOLD fMRI is systematically related to anatomical and vascular features of the human brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578428. [PMID: 38352610 PMCID: PMC10862860 DOI: 10.1101/2024.02.01.578428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The ability to detect fast responses with functional MRI depends on the speed of hemodynamic responses to neural activity, because hemodynamic responses act as a temporal low-pass filter which blurs rapid changes. However, the shape and timing of hemodynamic responses are highly variable across the brain and across stimuli. This heterogeneity of responses implies that the temporal specificity of fMRI signals, or the ability of fMRI to preserve fast information, could also vary substantially across the cortex. In this work we investigated how local differences in hemodynamic response timing affect the temporal specificity of fMRI. We used ultra-high field (7T) fMRI at high spatiotemporal resolution, studying the primary visual cortex (V1) as a model area for investigation. We used visual stimuli oscillating at slow and fast frequencies to probe the temporal specificity of individual voxels. As expected, we identified substantial variability in temporal specificity, with some voxels preserving their responses to fast neural activity more effectively than others. We investigated which voxels had the highest temporal specificity, and tested whether voxel timing was related to anatomical and vascular features. We found that low temporal specificity is only weakly explained by the presence of large veins or cerebral cortical depth. Notably, however, temporal specificity depended strongly on a voxel's position along the anterior-posterior anatomical axis of V1, with voxels within the calcarine sulcus being capable of preserving close to 25% of their amplitude as the frequency of stimulation increased from 0.05Hz to 0.20Hz, and voxels nearest to the occipital pole preserving less than 18%. These results indicate that detection biases in high-resolution fMRI will depend on the anatomical and vascular features of the area being imaged, and that these biases will differ depending on the timing of the underlying neuronal activity. While we attribute this variance primarily to hemodynamic effects, neuronal nonlinearities may also influence response timing. Importantly, this spatial heterogeneity of temporal specificity suggests that it could be exploited to achieve higher specificity in some locations, and that tailored data analysis strategies may help improve the detection and interpretation of fast fMRI responses.
Collapse
Affiliation(s)
- Daniel E. P. Gomez
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jonathan R. Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Laura D. Lewis
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
4
|
Roefs EC, Schellekens W, Báez-Yáñez MG, Bhogal AA, Groen II, van Osch MJ, Siero JC, Petridou N. The contribution of the vascular architecture and cerebrovascular reactivity to the BOLD signal formation across cortical depth. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:1-19. [PMID: 39411228 PMCID: PMC11472217 DOI: 10.1162/imag_a_00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/12/2024] [Accepted: 05/22/2024] [Indexed: 10/19/2024]
Abstract
Assessment of neuronal activity using blood oxygenation level-dependent (BOLD) is confounded by how the cerebrovascular architecture modulates hemodynamic responses. To understand brain function at the laminar level, it is crucial to distinguish neuronal signal contributions from those determined by the cortical vascular organization. Therefore, our aim was to investigate the purely vascular contribution in the BOLD signal by using vasoactive stimuli and compare that with neuronal-induced BOLD responses from a visual task. To do so, we estimated the hemodynamic response function (HRF) across cortical depth following brief visual stimulations under different conditions using ultrahigh-field (7 Tesla) functional (f)MRI. We acquired gradient-echo (GE)-echo-planar-imaging (EPI) BOLD, containing contributions from all vessel sizes, and spin-echo (SE)-EPI BOLD for which signal changes predominately originate from microvessels, to distinguish signal weighting from different vascular compartments. Non-neuronal hemodynamic changes were induced by hypercapnia and hyperoxia to estimate cerebrovascular reactivity and venous cerebral blood volume ( C B V v O 2 ). Results show that increases in GE HRF amplitude from deeper to superficial layers coincided with increased macrovascular C B V v O 2 . C B V v O 2 -normalized GE-HRF amplitudes yielded similar cortical depth profiles as SE, thereby possibly improving specificity to neuronal activation. For GE BOLD, faster onset time and shorter time-to-peak were observed toward the deeper layers. Hypercapnia reduced the amplitude of visual stimulus-induced signal responses as denoted by lower GE-HRF amplitudes and longer time-to-peak. In contrast, the SE-HRF amplitude was unaffected by hypercapnia, suggesting that these responses reflect predominantly neurovascular processes that are less contaminated by macrovascular signal contributions.
Collapse
Affiliation(s)
- Emiel C.A. Roefs
- Department of Radiology, Center for Image Sciences, University Medical Center Utrecht, Utrecht, Netherlands
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Wouter Schellekens
- Department of Radiology, Center for Image Sciences, University Medical Center Utrecht, Utrecht, Netherlands
- Donders Centre for Cognitive Neuroimaging, Radboud UMC, Nijmegen, Netherlands
| | - Mario G. Báez-Yáñez
- Department of Radiology, Center for Image Sciences, University Medical Center Utrecht, Utrecht, Netherlands
| | - Alex A. Bhogal
- Department of Radiology, Center for Image Sciences, University Medical Center Utrecht, Utrecht, Netherlands
| | - Iris I.A. Groen
- Departement of Psychology, New York University, New York, NY, USA
- Video & Image Sense Lab, Institute for Informatics, University of Amsterdam, Amsterdam, Netherlands
| | - Matthias J.P. van Osch
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Jeroen C.W. Siero
- Department of Radiology, Center for Image Sciences, University Medical Center Utrecht, Utrecht, Netherlands
- Spinoza Centre for Neuroimaging, Amsterdam, Netherlands
| | - Natalia Petridou
- Department of Radiology, Center for Image Sciences, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
5
|
Báez-Yáñez MG, Siero JCW, Curcic V, van Osch MJP, Petridou N. On the influence of the vascular architecture on Gradient Echo and Spin Echo BOLD fMRI signals across cortical depth: a simulation approach based on realistic 3D vascular networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596593. [PMID: 38853905 PMCID: PMC11160811 DOI: 10.1101/2024.05.30.596593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
GE-BOLD contrast stands out as the predominant technique in functional MRI experiments for its high sensitivity and straightforward implementation. GE-BOLD exhibits rather similar sensitivity to vessels independent of their size at submillimeter resolution studies like those examining cortical columns and laminae. However, the presence of nonspecific macrovascular contributions poses a challenge to accurately isolate neuronal activity. SE-BOLD increases specificity towards small vessels, thereby enhancing its specificity to neuronal activity, due to the effective suppression of extravascular contributions caused by macrovessels with its refocusing pulse. However, even SE-BOLD measurements may not completely remove these macrovascular contributions. By simulating hemodynamic signals across cortical depth, we gain insights into vascular contributions to the laminar BOLD signal. In this study, we employed four realistic 3D vascular models to simulate oxygen saturation states in various vascular compartments, aiming to characterize both intravascular and extravascular contributions to GE and SE signals, and corresponding BOLD signal changes, across cortical depth at 7T. Simulations suggest that SE-BOLD cannot completely reduce the macrovascular contribution near the pial surface. Simulations also show that both the specificity and signal amplitude of BOLD signals at 7T depend on the spatial arrangement of large vessels throughout cortical depth and on the pial surface.
Collapse
Affiliation(s)
- Mario Gilberto Báez-Yáñez
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jeroen C W Siero
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
- Spinoza Centre for Neuroimaging Amsterdam, Amsterdam, the Netherlands
| | - Vanja Curcic
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Matthias J P van Osch
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Natalia Petridou
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
6
|
Báez-Yáñez MG, Schellekens W, Bhogal AA, Roefs ECA, van Osch MJP, Siero JCW, Petridou N. A fully synthetic three-dimensional human cerebrovascular model based on histological characteristics to investigate the hemodynamic fingerprint of the layer BOLD fMRI signal formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595716. [PMID: 38826311 PMCID: PMC11142244 DOI: 10.1101/2024.05.24.595716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Recent advances in functional magnetic resonance imaging (fMRI) at ultra-high field (≥7 tesla), novel hardware, and data analysis methods have enabled detailed research on neurovascular function, such as cortical layer-specific activity, in both human and nonhuman species. A widely used fMRI technique relies on the blood oxygen level-dependent (BOLD) signal. BOLD fMRI offers insights into brain function by measuring local changes in cerebral blood volume, cerebral blood flow, and oxygen metabolism induced by increased neuronal activity. Despite its potential, interpreting BOLD fMRI data is challenging as it is only an indirect measurement of neuronal activity. Computational modeling can help interpret BOLD data by simulating the BOLD signal formation. Current developments have focused on realistic 3D vascular models based on rodent data to understand the spatial and temporal BOLD characteristics. While such rodent-based vascular models highlight the impact of the angioarchitecture on the BOLD signal amplitude, anatomical differences between the rodent and human vasculature necessitate the development of human-specific models. Therefore, a computational framework integrating human cortical vasculature, hemodynamic changes, and biophysical properties is essential. Here, we present a novel computational approach: a three-dimensional VAscular MOdel based on Statistics (3D VAMOS), enabling the investigation of the hemodynamic fingerprint of the BOLD signal within a model encompassing a fully synthetic human 3D cortical vasculature and hemodynamics. Our algorithm generates microvascular and macrovascular architectures based on morphological and topological features from the literature on human cortical vasculature. By simulating specific oxygen saturation states and biophysical interactions, our framework characterizes the intravascular and extravascular signal contributions across cortical depth and voxel-wise levels for gradient-echo and spin-echo readouts. Thereby, the 3D VAMOS computational framework demonstrates that using human characteristics significantly affects the BOLD fingerprint, making it an essential step in understanding the fundamental underpinnings of layer-specific fMRI experiments.
Collapse
Affiliation(s)
- Mario Gilberto Báez-Yáñez
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Wouter Schellekens
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
- Donders Centre for Cognitive Neuroimaging, Radboud UMC, Nijmegen, Netherlands
| | - Alex A Bhogal
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Emiel C A Roefs
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Matthias J P van Osch
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jeroen C W Siero
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
- Spinoza Centre for Neuroimaging Amsterdam, Amsterdam, the Netherlands
| | - Natalia Petridou
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
7
|
Choi SH, Im GH, Choi S, Yu X, Bandettini PA, Menon RS, Kim SG. No replication of direct neuronal activity-related (DIANA) fMRI in anesthetized mice. SCIENCE ADVANCES 2024; 10:eadl0999. [PMID: 38536912 PMCID: PMC10971415 DOI: 10.1126/sciadv.adl0999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/18/2024] [Indexed: 04/04/2024]
Abstract
Direct imaging of neuronal activity (DIANA) by functional magnetic resonance imaging (fMRI) could be a revolutionary approach for advancing systems neuroscience research. To independently replicate this observation, we performed fMRI experiments in anesthetized mice. The blood oxygenation level-dependent (BOLD) response to whisker stimulation was reliably detected in the primary barrel cortex before and after DIANA experiments; however, no DIANA-like fMRI peak was observed in individual animals' data with the 50 to 300 trials. Extensively averaged data involving 1050 trials in six mice showed a flat baseline and no detectable neuronal activity-like fMRI peak. However, spurious, nonreplicable peaks were found when using a small number of trials, and artifactual peaks were detected when some outlier-like trials were excluded. Further, no detectable DIANA peak was observed in the BOLD-responding thalamus from the selected trials with the neuronal activity-like reference function in the barrel cortex. Thus, we were unable to replicate the previously reported results without data preselection.
Collapse
Affiliation(s)
- Sang-Han Choi
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Geun Ho Im
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Sangcheon Choi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Xin Yu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Peter A. Bandettini
- Section on Functional Imaging Methods and Functional MRI Facility, NIMH, NIH, Bethesda, MD, USA
| | - Ravi S. Menon
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, Ontario N6A 5B7, Canada
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
8
|
Haast RAM, Kashyap S, Ivanov D, Yousif MD, DeKraker J, Poser BA, Khan AR. Insights into hippocampal perfusion using high-resolution, multi-modal 7T MRI. Proc Natl Acad Sci U S A 2024; 121:e2310044121. [PMID: 38446857 PMCID: PMC10945835 DOI: 10.1073/pnas.2310044121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/26/2023] [Indexed: 03/08/2024] Open
Abstract
We present a comprehensive study on the non-invasive measurement of hippocampal perfusion. Using high-resolution 7 tesla arterial spin labeling (ASL) data, we generated robust perfusion maps and observed significant variations in perfusion among hippocampal subfields, with CA1 exhibiting the lowest perfusion levels. Notably, these perfusion differences were robust and already detectable with 50 perfusion-weighted images per subject, acquired in 5 min. To understand the underlying factors, we examined the influence of image quality metrics, various tissue microstructure and morphometric properties, macrovasculature, and cytoarchitecture. We observed higher perfusion in regions located closer to arteries, demonstrating the influence of vascular proximity on hippocampal perfusion. Moreover, ex vivo cytoarchitectonic features based on neuronal density differences appeared to correlate stronger with hippocampal perfusion than morphometric measures like gray matter thickness. These findings emphasize the interplay between microvasculature, macrovasculature, and metabolic demand in shaping hippocampal perfusion. Our study expands the current understanding of hippocampal physiology and its relevance to neurological disorders. By providing in vivo evidence of perfusion differences between hippocampal subfields, our findings have implications for diagnosis and potential therapeutic interventions. In conclusion, our study provides a valuable resource for extensively characterizing hippocampal perfusion.
Collapse
Affiliation(s)
- Roy A. M. Haast
- Centre of Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, ONN6A 3K7, Canada
| | - Sriranga Kashyap
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht6200, The Netherlands
- Krembil Brain Institute, University Health Network, Toronto, ONM5G 2C4, Canada
| | - Dimo Ivanov
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht6200, The Netherlands
| | - Mohamed D. Yousif
- Centre of Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, ONN6A 3K7, Canada
| | - Jordan DeKraker
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QCH3A 0G4, Canada
| | - Benedikt A. Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht6200, The Netherlands
| | - Ali R. Khan
- Centre of Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, ONN6A 3K7, Canada
| |
Collapse
|
9
|
Zhong XZ, Polimeni JR, Chen JJ. Predicting the macrovascular contribution to resting-state fMRI functional connectivity at 3 Tesla: A model-informed approach. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580143. [PMID: 38405829 PMCID: PMC10888884 DOI: 10.1101/2024.02.13.580143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Macrovascular biases have been a long-standing challenge for fMRI, limiting its ability to detect spatially specific neural activity. Recent experimental studies, including our own (Huck et al., 2023; Zhong et al., 2023), found substantial resting-state macrovascular BOLD fMRI contributions from large veins and arteries, extending into the perivascular tissue at 3 T and 7 T. The objective of this study is to demonstrate the feasibility of predicting, using a biophysical model, the experimental resting-state BOLD fluctuation amplitude (RSFA) and associated functional connectivity (FC) values at 3 Tesla. We investigated the feasibility of both 2D and 3D infinite-cylinder models as well as macrovascular anatomical networks (mVANs) derived from angiograms. Our results demonstrate that: 1) with the availability of mVANs, it is feasible to model macrovascular BOLD FC using both the mVAN-based model and 3D infinite-cylinder models, though the former performed better; 2) biophysical modelling can accurately predict the BOLD pairwise correlation near to large veins (with R 2 ranging from 0.53 to 0.93 across different subjects), but not near to large arteries; 3) compared with FC, biophysical modelling provided less accurate predictions for RSFA; 4) modelling of perivascular BOLD connectivity was feasible at close distances from veins (with R 2 ranging from 0.08 to 0.57), but not arteries, with performance deteriorating with increasing distance. While our current study demonstrates the feasibility of simulating macrovascular BOLD in the resting state, our methodology may also apply to understanding task-based BOLD. Furthermore, these results suggest the possibility of correcting for macrovascular bias in resting-state fMRI and other types of fMRI using biophysical modelling based on vascular anatomy.
Collapse
|
10
|
Soloukey S, Collée E, Verhoef L, Satoer DD, Dirven CMF, Bos EM, Schouten JW, Generowicz BS, Mastik F, De Zeeuw CI, Koekkoek SKE, Vincent AJPE, Smits M, Kruizinga P. Human brain mapping using co-registered fUS, fMRI and ESM during awake brain surgeries: A proof-of-concept study. Neuroimage 2023; 283:120435. [PMID: 37914090 DOI: 10.1016/j.neuroimage.2023.120435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/15/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023] Open
Abstract
Accurate, depth-resolved functional imaging is key in both understanding and treatment of the human brain. A new sonography-based imaging technique named functional Ultrasound (fUS) uniquely combines high sensitivity with submillimeter-subsecond spatiotemporal resolution available in large fields-of-view. In this proof-of-concept study we show that: (A) fUS reveals the same eloquent regions as found by fMRI while concomitantly visualizing in-vivo microvascular morphology underlying these functional hemodynamics and (B) fUS-based functional maps are confirmed by Electrocortical Stimulation Mapping (ESM), the current gold-standard in awake neurosurgical practice. This unique cross-modality experiment was performed using motor, visual and language-related functional tasks in patients undergoing awake brain tumor resection. The current work serves as an important milestone towards further maturity of fUS as well as a novel avenue to increase our understanding of hemodynamics-based functional brain imaging.
Collapse
Affiliation(s)
- S Soloukey
- Department of Neuroscience, Erasmus MC, Wytemaweg 80 3015 CN, Rotterdam 3015 CN, the Netherlands; Department of Neurosurgery, Erasmus MC, Rotterdam 3015 CN, the Netherlands
| | - E Collée
- Department of Neurosurgery, Erasmus MC, Rotterdam 3015 CN, the Netherlands
| | - L Verhoef
- Department of Neuroscience, Erasmus MC, Wytemaweg 80 3015 CN, Rotterdam 3015 CN, the Netherlands
| | - D D Satoer
- Department of Neurosurgery, Erasmus MC, Rotterdam 3015 CN, the Netherlands
| | - C M F Dirven
- Department of Neurosurgery, Erasmus MC, Rotterdam 3015 CN, the Netherlands
| | - E M Bos
- Department of Neurosurgery, Erasmus MC, Rotterdam 3015 CN, the Netherlands
| | - J W Schouten
- Department of Neurosurgery, Erasmus MC, Rotterdam 3015 CN, the Netherlands
| | - B S Generowicz
- Department of Neuroscience, Erasmus MC, Wytemaweg 80 3015 CN, Rotterdam 3015 CN, the Netherlands
| | - F Mastik
- Department of Neuroscience, Erasmus MC, Wytemaweg 80 3015 CN, Rotterdam 3015 CN, the Netherlands
| | - C I De Zeeuw
- Department of Neuroscience, Erasmus MC, Wytemaweg 80 3015 CN, Rotterdam 3015 CN, the Netherlands; Netherlands Institute for Neuroscience, Royal Dutch Academy for Arts and Sciences, Amsterdam 1105 BA, the Netherlands
| | - S K E Koekkoek
- Department of Neuroscience, Erasmus MC, Wytemaweg 80 3015 CN, Rotterdam 3015 CN, the Netherlands
| | - A J P E Vincent
- Department of Neurosurgery, Erasmus MC, Rotterdam 3015 CN, the Netherlands
| | - M Smits
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam 3015 CN, the Netherlands
| | - P Kruizinga
- Department of Neuroscience, Erasmus MC, Wytemaweg 80 3015 CN, Rotterdam 3015 CN, the Netherlands.
| |
Collapse
|
11
|
Báez-Yáñez MG, Siero JCW, Petridou N. A mechanistic computational framework to investigate the hemodynamic fingerprint of the blood oxygenation level-dependent signal. NMR IN BIOMEDICINE 2023; 36:e5026. [PMID: 37643645 DOI: 10.1002/nbm.5026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/31/2023]
Abstract
Blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) is one of the most used imaging techniques to map brain activity or to obtain clinical information about human cortical vasculature, in both healthy and disease conditions. Nevertheless, BOLD fMRI is an indirect measurement of brain functioning triggered by neurovascular coupling. The origin of the BOLD signal is quite complex, and the signal formation thus depends, among other factors, on the topology of the cortical vasculature and the associated hemodynamic changes. To understand the hemodynamic evolution of the BOLD signal response in humans, it is beneficial to have a computational framework available that virtually resembles the human cortical vasculature, and simulates hemodynamic changes and corresponding MRI signal changes via interactions of intrinsic biophysical and magnetic properties of the tissues. To this end, we have developed a mechanistic computational framework that simulates the hemodynamic fingerprint of the BOLD signal based on a statistically defined, three-dimensional, vascular model that approaches the human cortical vascular architecture. The microvasculature is approximated through a Voronoi tessellation method and the macrovasculature is adapted from two-photon microscopy mice data. Using this computational framework, we simulated hemodynamic changes-cerebral blood flow, cerebral blood volume, and blood oxygen saturation-induced by virtual arterial dilation. Then we computed local magnetic field disturbances generated by the vascular topology and the corresponding blood oxygen saturation changes. This mechanistic computational framework also considers the intrinsic biophysical and magnetic properties of nearby tissue, such as water diffusion and relaxation properties, resulting in a dynamic BOLD signal response. The proposed mechanistic computational framework provides an integrated biophysical model that can offer better insights regarding the spatial and temporal properties of the BOLD signal changes.
Collapse
Affiliation(s)
- Mario Gilberto Báez-Yáñez
- Department of Radiology, Centre for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen C W Siero
- Department of Radiology, Centre for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
- Spinoza Centre for Neuroimaging Amsterdam, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Natalia Petridou
- Department of Radiology, Centre for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
12
|
van Horen T, Siero J, Bhogal A, Petridou N, Báez-Yáñez M. Microvascular Specificity of Spin Echo BOLD fMRI: Impact of EPI Echo Train Length. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.557938. [PMID: 37745507 PMCID: PMC10516014 DOI: 10.1101/2023.09.15.557938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
A spatially specific fMRI acquisition requires specificity to the microvasculature that serves active neuronal sites. Macrovascular contributions will reduce the microvascular specificity but can be reduced by using spin echo (SE) sequences that use a π pulse to refocus static field inhomogeneities near large veins. The microvascular specificity of a SE-echo planar imaging (SE-EPI) scan depends on the echo train length (ETL)-duration, but the dependence is not well-characterized in humans at 7T. To determine how microvascular-specific SE-EPI BOLD is in humans at 7T, we developed a Monte Carlo voxel model that computes the signal of a proton ensemble residing in a vasculature subjected to a SE-EPI pulse sequence. We characterized the ETL-duration dependence of the microvascular specificity by simulating the BOLD signal as a function of ETL, the range adhering to experimentally realistic readouts. We performed a validation experiment for our simulation observations, in which we acquired a set of SE-EPI BOLD time series with varying ETL during a hyperoxic gas challenge. Both our simulations and measurements show an increase in macrovascular contamination as a function of ETL, with an increase of 30% according to our simulation and 60% according to our validation experiment between the shortest and longest ETL durations (23.1 - 49.7 ms). We conclude that the microvascular specificity decreases heavily with increasing ETL-durations. We recommend reducing the ETL-duration as much as possible to minimize macrovascular contamination in SE-EPI BOLD experiments. We additionally recommend scanning at high resolutions to minimize partial volume effects with CSF. CSF voxels show a large BOLD response, which can be attributed to both the presence of large veins (high blood volume) and molecular oxygen-induced T1-shortening (significant in a hyperoxia experiment). The magnified BOLD signal in a GM-CSF partial volume voxel reduces the desired microvascular specificity and, therefore, will hinder the interpretation of functional MRI activation patterns.
Collapse
Affiliation(s)
- T.W.P. van Horen
- Department of Radiology, Centre for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - J.C.W. Siero
- Department of Radiology, Centre for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
- Spinoza Center for Neuroimaging, Amsterdam, The Netherlands
| | - A.A. Bhogal
- Department of Radiology, Centre for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - N. Petridou
- Department of Radiology, Centre for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M.G. Báez-Yáñez
- Department of Radiology, Centre for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
13
|
Dan Q, Jiang X, Wang R, Dai Z, Sun D. Biogenic Imaging Contrast Agents. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207090. [PMID: 37401173 PMCID: PMC10477908 DOI: 10.1002/advs.202207090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/08/2023] [Indexed: 07/05/2023]
Abstract
Imaging contrast agents are widely investigated in preclinical and clinical studies, among which biogenic imaging contrast agents (BICAs) are developing rapidly and playing an increasingly important role in biomedical research ranging from subcellular level to individual level. The unique properties of BICAs, including expression by cells as reporters and specific genetic modification, facilitate various in vitro and in vivo studies, such as quantification of gene expression, observation of protein interactions, visualization of cellular proliferation, monitoring of metabolism, and detection of dysfunctions. Furthermore, in human body, BICAs are remarkably helpful for disease diagnosis when the dysregulation of these agents occurs and can be detected through imaging techniques. There are various BICAs matched with a set of imaging techniques, including fluorescent proteins for fluorescence imaging, gas vesicles for ultrasound imaging, and ferritin for magnetic resonance imaging. In addition, bimodal and multimodal imaging can be realized through combining the functions of different BICAs, which helps overcome the limitations of monomodal imaging. In this review, the focus is on the properties, mechanisms, applications, and future directions of BICAs.
Collapse
Affiliation(s)
- Qing Dan
- Shenzhen Key Laboratory for Drug Addiction and Medication SafetyDepartment of UltrasoundInstitute of Ultrasonic MedicinePeking University Shenzhen HospitalShenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhen518036P. R. China
| | - Xinpeng Jiang
- Department of Biomedical EngineeringCollege of Future TechnologyPeking UniversityBeijing100871P. R. China
| | - Run Wang
- Shenzhen Key Laboratory for Drug Addiction and Medication SafetyDepartment of UltrasoundInstitute of Ultrasonic MedicinePeking University Shenzhen HospitalShenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhen518036P. R. China
| | - Zhifei Dai
- Department of Biomedical EngineeringCollege of Future TechnologyPeking UniversityBeijing100871P. R. China
| | - Desheng Sun
- Shenzhen Key Laboratory for Drug Addiction and Medication SafetyDepartment of UltrasoundInstitute of Ultrasonic MedicinePeking University Shenzhen HospitalShenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhen518036P. R. China
| |
Collapse
|
14
|
Chitrit O, Bao Q, Cai A, Gabriela Chuartzman S, Zilkha N, Haddad R, Kimchi T, Frydman L. Functional MRI of murine olfactory bulbs at 15.2T reveals characteristic activation patters when stimulated by different odors. Sci Rep 2023; 13:13343. [PMID: 37587261 PMCID: PMC10432392 DOI: 10.1038/s41598-023-39650-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/28/2023] [Indexed: 08/18/2023] Open
Abstract
Thanks to its increased sensitivity, single-shot ultrahigh field functional MRI (UHF fMRI) could lead to valuable insight about subtle brain functions such as olfaction. However, UHF fMRI experiments targeting small organs next to air voids, such as the olfactory bulb, are severely affected by field inhomogeneity problems. Spatiotemporal Encoding (SPEN) is an emerging single-shot MRI technique that could provide a route for bypassing these complications. This is here explored with single-shot fMRI studies on the olfactory bulbs of male and female mice performed at 15.2T. SPEN images collected on these organs at a 108 µm in-plane resolution yielded remarkably large and well-defined responses to olfactory cues. Under suitable T2* weightings these activation-driven changes exceeded 5% of the overall signal intensity, becoming clearly visible in the images without statistical treatment. The nature of the SPEN signal intensity changes in such experiments was unambiguously linked to olfaction, via single-nostril experiments. These experiments highlighted specific activation regions in the external plexiform region and in glomeruli in the lateral part of the bulb, when stimulated by aversive or appetitive odors, respectively. These strong signal activations were non-linear with concentration, and shed light on how chemosensory signals reaching the olfactory epithelium react in response to different cues. Second-level analyses highlighted clear differences among the appetitive, aversive and neutral odor maps; no such differences were evident upon comparing male against female olfactory activation regions.
Collapse
Affiliation(s)
- Odélia Chitrit
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Qingjia Bao
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Aoling Cai
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | | | - Noga Zilkha
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Rafi Haddad
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Tali Kimchi
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
15
|
Uludağ K. Physiological modeling of the BOLD signal and implications for effective connectivity: A primer. Neuroimage 2023; 277:120249. [PMID: 37356779 DOI: 10.1016/j.neuroimage.2023.120249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/12/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023] Open
Abstract
In this primer, I provide an overview of the physiological processes that contribute to the observed BOLD signal (i.e., the generative biophysical model), including their time course properties within the framework of the physiologically-informed dynamic causal modeling (P-DCM). The BOLD signal is primarily determined by the change in paramagnetic deoxygenated hemoglobin, which results from combination of changes in oxygen metabolism, and cerebral blood flow and volume. Specifically, the physiological origin of the so-called BOLD signal "transients" will be discussed, including the initial overshoot, steady-state activation and the post-stimulus undershoot. I argue that incorrect physiological assumptions in the generative model of the BOLD signal can lead to incorrect inferences pertaining to both local neuronal activity and effective connectivity between brain regions. In addition, I introduce the recent laminar BOLD signal model, which extends P-DCM to cortical depths-resolved BOLD signals, allowing for laminar neuronal activity to be determined using high-resolution fMRI data.
Collapse
Affiliation(s)
- Kâmil Uludağ
- Krembil Brain Institute, University Health Network Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Center for Neuroscience Imaging Research, Institute for Basic Science & Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
16
|
Bailes SM, Gomez DEP, Setzer B, Lewis LD. Resting-state fMRI signals contain spectral signatures of local hemodynamic response timing. eLife 2023; 12:e86453. [PMID: 37565644 PMCID: PMC10506795 DOI: 10.7554/elife.86453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/10/2023] [Indexed: 08/12/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) has proven to be a powerful tool for noninvasively measuring human brain activity; yet, thus far, fMRI has been relatively limited in its temporal resolution. A key challenge is understanding the relationship between neural activity and the blood-oxygenation-level-dependent (BOLD) signal obtained from fMRI, generally modeled by the hemodynamic response function (HRF). The timing of the HRF varies across the brain and individuals, confounding our ability to make inferences about the timing of the underlying neural processes. Here, we show that resting-state fMRI signals contain information about HRF temporal dynamics that can be leveraged to understand and characterize variations in HRF timing across both cortical and subcortical regions. We found that the frequency spectrum of resting-state fMRI signals significantly differs between voxels with fast versus slow HRFs in human visual cortex. These spectral differences extended to subcortex as well, revealing significantly faster hemodynamic timing in the lateral geniculate nucleus of the thalamus. Ultimately, our results demonstrate that the temporal properties of the HRF impact the spectral content of resting-state fMRI signals and enable voxel-wise characterization of relative hemodynamic response timing. Furthermore, our results show that caution should be used in studies of resting-state fMRI spectral properties, because differences in fMRI frequency content can arise from purely vascular origins. This finding provides new insight into the temporal properties of fMRI signals across voxels, which is crucial for accurate fMRI analyses, and enhances the ability of fast fMRI to identify and track fast neural dynamics.
Collapse
Affiliation(s)
- Sydney M Bailes
- Department of Biomedical Engineering, Boston UniversityBostonUnited States
| | - Daniel EP Gomez
- Department of Biomedical Engineering, Boston UniversityBostonUnited States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General HospitalCharlestownUnited States
- Department of Radiology, Harvard Medical SchoolBostonUnited States
| | - Beverly Setzer
- Department of Biomedical Engineering, Boston UniversityBostonUnited States
- Graduate Program for Neuroscience, Boston UniversityBostonUnited States
| | - Laura D Lewis
- Department of Biomedical Engineering, Boston UniversityBostonUnited States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General HospitalCharlestownUnited States
- Institute for Medical Engineering and Science, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
17
|
Haast RAM, Kashyap S, Ivanov D, Yousif MD, DeKraker J, Poser BA, Khan AR. Novel insights into hippocampal perfusion using high-resolution, multi-modal 7T MRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549533. [PMID: 37503042 PMCID: PMC10370151 DOI: 10.1101/2023.07.19.549533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
We present a comprehensive study on the non-invasive measurement of hippocampal perfusion. Using high-resolution 7 Tesla arterial spin labelling data, we generated robust perfusion maps and observed significant variations in perfusion among hippocampal subfields, with CA1 exhibiting the lowest perfusion levels. Notably, these perfusion differences were robust and detectable even within five minutes and just fifty perfusion-weighted images per subject. To understand the underlying factors, we examined the influence of image quality metrics, various tissue microstructure and morphometry properties, macrovasculature and cytoarchitecture. We observed higher perfusion in regions located closer to arteries, demonstrating the influence of vascular proximity on hippocampal perfusion. Moreover, ex vivo cytoarchitectonic features based on neuronal density differences appeared to correlate stronger with hippocampal perfusion than morphometric measures like gray matter thickness. These findings emphasize the interplay between microvasculature, macrovasculature, and metabolic demand in shaping hippocampal perfusion. Our study expands the current understanding of hippocampal physiology and its relevance to neurological disorders. By providing in vivo evidence of perfusion differences between hippocampal subfields, our findings have implications for diagnosis and potential therapeutic interventions. In conclusion, our study provides a valuable resource for extensively characterising hippocampal perfusion.
Collapse
Affiliation(s)
- Roy A M Haast
- Centre of Functional and Metabolic Mapping, Western University, London, Ontario, Canada
| | - Sriranga Kashyap
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Dimo Ivanov
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Mohamed D Yousif
- Centre of Functional and Metabolic Mapping, Western University, London, Ontario, Canada
| | - Jordan DeKraker
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Benedikt A Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Ali R Khan
- Centre of Functional and Metabolic Mapping, Western University, London, Ontario, Canada
| |
Collapse
|
18
|
Choi SH, Im GH, Choi S, Yu X, Bandettini PA, Menon RS, Kim SG. No Replication of Direct Neuronal Activity-related (DIANA) fMRI in Anesthetized Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542419. [PMID: 37398157 PMCID: PMC10312747 DOI: 10.1101/2023.05.26.542419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Toi et al. (Science, 378, 160-168, 2022) reported direct imaging of neuronal activity (DIANA) by fMRI in anesthetized mice at 9.4 T, which could be a revolutionary approach for advancing systems neuroscience research. There have been no independent replications of this observation to date. We performed fMRI experiments in anesthetized mice at an ultrahigh field of 15.2 T using the identical protocol as in their paper. The BOLD response to whisker stimulation was reliably detected in the primary barrel cortex before and after DIANA experiments; however, no direct neuronal activity-like fMRI peak was observed in individual animals' data with the 50-300 trials used in the DIANA publication. Extensively averaged data involving 1,050 trials in 6 mice (1,050×54 = 56,700 stimulus events) and having a temporal signal-to-noise ratio of 7,370, showed a flat baseline and no detectable neuronal activity-like fMRI peak. Thus we were unable to replicate the previously reported results using the same methods, despite a much higher number of trials, a much higher temporal signal-to-noise ratio, and a much higher magnetic field strength. We were able to demonstrate spurious, non-replicable peaks when using a small number of trials. It was only when performing the inappropriate approach of excluding outliers not conforming to the expected temporal characteristics of the response did we see a clear signal change; however, these signals were not observed when such a outlier elimination approach was not used.
Collapse
Affiliation(s)
- Sang-Han Choi
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Geun Ho Im
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Sangcheon Choi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Xin Yu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Peter A Bandettini
- Section on Functional Imaging Methods and Functional MRI Facility, NIMH, NIH, Bethesda, MD, USA
| | - Ravi S Menon
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, Ontario N6A 5B7, Canada
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
19
|
Pais-Roldán P, Yun SD, Palomero-Gallagher N, Shah NJ. Cortical depth-dependent human fMRI of resting-state networks using EPIK. Front Neurosci 2023; 17:1151544. [PMID: 37274214 PMCID: PMC10232833 DOI: 10.3389/fnins.2023.1151544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/26/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction Recent laminar-fMRI studies have substantially improved understanding of the evoked cortical responses in multiple sub-systems; in contrast, the laminar component of resting-state networks spread over the whole brain has been less studied due to technical limitations. Animal research strongly suggests that the supragranular layers of the cortex play a critical role in maintaining communication within the default mode network (DMN); however, whether this is true in this and other human cortical networks remains unclear. Methods Here, we used EPIK, which offers unprecedented coverage at sub-millimeter resolution, to investigate cortical broad resting-state dynamics with depth specificity in healthy volunteers. Results Our results suggest that human DMN connectivity is primarily supported by intermediate and superficial layers of the cortex, and furthermore, the preferred cortical depth used for communication can vary from one network to another. In addition, the laminar connectivity profile of some networks showed a tendency to change upon engagement in a motor task. In line with these connectivity changes, we observed that the amplitude of the low-frequency-fluctuations (ALFF), as well as the regional homogeneity (ReHo), exhibited a different laminar slope when subjects were either performing a task or were in a resting state (less variation among laminae, i.e., lower slope, during task performance compared to rest). Discussion The identification of varied laminar profiles concerning network connectivity, ALFF, and ReHo, observed across two brain states (task vs. rest) has major implications for the characterization of network-related diseases and suggests the potential diagnostic value of laminar fMRI in psychiatric disorders, e.g., to differentiate the cortical dynamics associated with disease stages linked, or not linked, to behavioral changes. The evaluation of laminar-fMRI across the brain encompasses computational challenges; nonetheless, it enables the investigation of a new dimension of the human neocortex, which may be key to understanding neurological disorders from a novel perspective.
Collapse
Affiliation(s)
- Patricia Pais-Roldán
- Institute of Neuroscience and Medicine 4, Medical Imaging Physics, Forschungszentrum Jülich, Jülich, Germany
| | - Seong Dae Yun
- Institute of Neuroscience and Medicine 4, Medical Imaging Physics, Forschungszentrum Jülich, Jülich, Germany
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine 1, Structural and Functional Organisation of the Brain, Forschungszentrum Jülich, Jülich, Germany
- C. and O. Vogt Institute for Brain Research, Heinrich-Heine-University, Düsseldorf, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Aachen, Germany
| | - N. Jon Shah
- Institute of Neuroscience and Medicine 4, Medical Imaging Physics, Forschungszentrum Jülich, Jülich, Germany
- Institute of Neuroscience and Medicine 11, Molecular Neuroscience and Neuroimaging, JARA, Forschungszentrum Jülich, Jülich, Germany
- JARA–BRAIN–Translational Medicine, Aachen, Germany
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
20
|
Priovoulos N, de Oliveira IAF, Poser BA, Norris DG, van der Zwaag W. Combining arterial blood contrast with BOLD increases fMRI intracortical contrast. Hum Brain Mapp 2023; 44:2509-2522. [PMID: 36763562 PMCID: PMC10028680 DOI: 10.1002/hbm.26227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
BOLD fMRI is widely applied in human neuroscience but is limited in its spatial specificity due to a cortical-depth-dependent venous bias. This reduces its localization specificity with respect to neuronal responses, a disadvantage for neuroscientific research. Here, we modified a submillimeter BOLD protocol to selectively reduce venous and tissue signal and increase cerebral blood volume weighting through a pulsed saturation scheme (dubbed Arterial Blood Contrast) at 7 T. Adding Arterial Blood Contrast on top of the existing BOLD contrast modulated the intracortical contrast. Isolating the Arterial Blood Contrast showed a response free of pial-surface bias. The results suggest that Arterial Blood Contrast can modulate the typical fMRI spatial specificity, with important applications in in-vivo neuroscience.
Collapse
Affiliation(s)
- Nikos Priovoulos
- Spinoza Center for Neuroimaging, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Icaro Agenor Ferreira de Oliveira
- Spinoza Center for Neuroimaging, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- Experimental and Applied Psychology, VU University, Amsterdam, The Netherlands
| | - Benedikt A Poser
- MR-Methods Group, Maastricht Brain Imaging Center, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - David G Norris
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany
| | - Wietske van der Zwaag
- Spinoza Center for Neuroimaging, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Heynckes M, Lage-Castellanos A, De Weerd P, Formisano E, De Martino F. Layer-specific correlates of detected and undetected auditory targets during attention. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 4:100075. [PMID: 36755988 PMCID: PMC9900365 DOI: 10.1016/j.crneur.2023.100075] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/24/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023] Open
Abstract
In everyday life, the processing of acoustic information allows us to react to subtle changes in the auditory scene. Yet even when closely attending to sounds in the context of a task, we occasionally miss task-relevant features. The neural computations that underlie our ability to detect behavioral relevant sound changes are thought to be grounded in both feedforward and feedback processes within the auditory hierarchy. Here, we assessed the role of feedforward and feedback contributions in primary and non-primary auditory areas during behavioral detection of target sounds using submillimeter spatial resolution functional magnetic resonance imaging (fMRI) at high-fields (7 T) in humans. We demonstrate that the successful detection of subtle temporal shifts in target sounds leads to a selective increase of activation in superficial layers of primary auditory cortex (PAC). These results indicate that feedback signals reaching as far back as PAC may be relevant to the detection of targets in the auditory scene.
Collapse
Affiliation(s)
- Miriam Heynckes
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 ER, Maastricht, the Netherlands
| | - Agustin Lage-Castellanos
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 ER, Maastricht, the Netherlands
| | - Peter De Weerd
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 ER, Maastricht, the Netherlands
| | - Elia Formisano
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 ER, Maastricht, the Netherlands,Maastricht Centre for Systems Biology, Maastricht University, Universiteitssingel 60, 6229 ER, Maastricht, the Netherlands
| | - Federico De Martino
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 ER, Maastricht, the Netherlands,Corresponding author. Federico De Martino Department Cognitive Neuroscience Oxfordlaan 55, 6229EV, Maastricht, the Netherlands.
| |
Collapse
|
22
|
Zhu L, Wang M, Fu P, Liu Y, Zhang H, Roe AW, Xi W. Precision 1070 nm Ultrafast Laser-Induced Photothrombosis of Depth-Targeted Vessels In Vivo. SMALL METHODS 2023; 7:e2200917. [PMID: 36286988 DOI: 10.1002/smtd.202200917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/09/2022] [Indexed: 06/16/2023]
Abstract
The cerebrovasculature plays an essential role in neurovascular and homeostatic functions in health and disease conditions. Many efforts have been made for developing vascular thrombosis methods to study vascular dysfunction in vivo, while technical challenges remain, such as accuracy and depth-selectivity to target a single vessel in the cerebral cortex. Herein, this paper first demonstrates the evaluation and quantification of the feasibility and effects of Rose Bengal (RB)-induced photothrombosis with 720-1070 nm ultrafast lasers in a raster scan. A flexible and reproducible approach is then proposed to employ a 1070 nm ultrafast laser with a spiral scan for producing RB-induced occlusion, which is described as precision ultrafast laser-induced photothrombosis (PLP). Combine with two-photon microscopy imaging, this PLP displays highly precise and fast occlusion induction of various vessel types, sizes, and depths, which enhances the precision and power of the photothrombosis protocol. Overall, the PLP method provides a real-time, practical, precise, and depth-selected single-vessel photothrombosis technology in the cerebral cortex with commercially available optical equipment, which is crucial for exploring brain vascular function with high spatial-temporal resolution in the brain.
Collapse
Affiliation(s)
- Liang Zhu
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Mengqi Wang
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
| | - Peng Fu
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
| | - Yin Liu
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
| | - Hequn Zhang
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
| | - Anna Wang Roe
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
- MOE Frontier Science Center for Brain Research and Brain Machine Integration, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Wang Xi
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
- MOE Frontier Science Center for Brain Research and Brain Machine Integration, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
23
|
de Oliveira ÍAF, Siero JCW, Dumoulin SO, van der Zwaag W. Improved Selectivity in 7 T Digit Mapping Using VASO-CBV. Brain Topogr 2023; 36:23-31. [PMID: 36517699 PMCID: PMC9834127 DOI: 10.1007/s10548-022-00932-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022]
Abstract
Functional magnetic resonance imaging (fMRI) at Ultra-high field (UHF, ≥ 7 T) benefits from significant gains in the BOLD contrast-to-noise ratio (CNR) and temporal signal-to-noise ratio (tSNR) compared to conventional field strengths (3 T). Although these improvements enabled researchers to study the human brain to unprecedented spatial resolution, the blood pooling effect reduces the spatial specificity of the widely-used gradient-echo BOLD acquisitions. In this context, vascular space occupancy (VASO-CBV) imaging may be advantageous since it is proposed to have a higher spatial specificity than BOLD. We hypothesized that the assumed higher specificity of VASO-CBV imaging would translate to reduced overlap in fine-scale digit representation maps compared to BOLD-based digit maps. We used sub-millimeter resolution VASO fMRI at 7 T to map VASO-CBV and BOLD responses simultaneously in the motor and somatosensory cortices during individual finger movement tasks. We assessed the cortical overlap in different ways, first by calculating similarity coefficient metrics (DICE and Jaccard) and second by calculating selectivity measures. In addition, we demonstrate a consistent topographical organization of the targeted digit representations (thumb-index-little finger) in the motor areas. We show that the VASO-CBV responses yielded less overlap between the digit clusters than BOLD, and other selectivity measures were higher for VASO-CBV too. In summary, these results were consistent across metrics and participants, confirming the higher spatial specificity of VASO-CBV compared to BOLD.
Collapse
Affiliation(s)
- Ícaro A. F. de Oliveira
- grid.458380.20000 0004 0368 8664Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105 BK Amsterdam, The Netherlands ,grid.12380.380000 0004 1754 9227Experimental and Applied Psychology, VU University, Amsterdam, The Netherlands ,grid.419918.c0000 0001 2171 8263Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Jeroen C. W. Siero
- grid.458380.20000 0004 0368 8664Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105 BK Amsterdam, The Netherlands ,grid.7692.a0000000090126352Radiology, Utrecht Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Serge O. Dumoulin
- grid.458380.20000 0004 0368 8664Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105 BK Amsterdam, The Netherlands ,grid.12380.380000 0004 1754 9227Experimental and Applied Psychology, VU University, Amsterdam, The Netherlands ,grid.419918.c0000 0001 2171 8263Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands ,grid.5477.10000000120346234Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | - Wietske van der Zwaag
- grid.458380.20000 0004 0368 8664Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105 BK Amsterdam, The Netherlands ,grid.419918.c0000 0001 2171 8263Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
24
|
van den Brink H, Kopczak A, Arts T, Onkenhout L, Siero JCW, Zwanenburg JJM, Hein S, Hübner M, Gesierich B, Duering M, Stringer MS, Hendrikse J, Wardlaw JM, Joutel A, Dichgans M, Biessels GJ. CADASIL Affects Multiple Aspects of Cerebral Small Vessel Function on 7T-MRI. Ann Neurol 2023; 93:29-39. [PMID: 36222455 DOI: 10.1002/ana.26527] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Cerebral small vessel diseases (cSVDs) are a major cause of stroke and dementia. We used cutting-edge 7T-MRI techniques in patients with Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL), to establish which aspects of cerebral small vessel function are affected by this monogenic form of cSVD. METHODS We recruited 23 CADASIL patients (age 51.1 ± 10.1 years, 52% women) and 13 age- and sex-matched controls (46.1 ± 12.6, 46% women). Small vessel function measures included: basal ganglia and centrum semiovale perforating artery blood flow velocity and pulsatility, vascular reactivity to a visual stimulus in the occipital cortex and reactivity to hypercapnia in the cortex, subcortical gray matter, white matter, and white matter hyperintensities. RESULTS Compared with controls, CADASIL patients showed lower blood flow velocity and higher pulsatility index within perforating arteries of the centrum semiovale (mean difference - 0.09 cm/s, p = 0.03 and 0.20, p = 0.009) and basal ganglia (mean difference - 0.98 cm/s, p = 0.003 and 0.17, p = 0.06). Small vessel reactivity to a short visual stimulus was decreased (blood-oxygen-level dependent [BOLD] mean difference -0.21%, p = 0.04) in patients, while reactivity to hypercapnia was preserved in the cortex, subcortical gray matter, and normal appearing white matter. Among patients, reactivity to hypercapnia was decreased in white matter hyperintensities compared to normal appearing white matter (BOLD mean difference -0.29%, p = 0.02). INTERPRETATION Multiple aspects of cerebral small vessel function on 7T-MRI were abnormal in CADASIL patients, indicative of increased arteriolar stiffness and regional abnormalities in reactivity, locally also in relation to white matter injury. These observations provide novel markers of cSVD for mechanistic and intervention studies. ANN NEUROL 2023;93:29-39.
Collapse
Affiliation(s)
- Hilde van den Brink
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anna Kopczak
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tine Arts
- Department of Radiology, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Laurien Onkenhout
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen C W Siero
- Department of Radiology, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands.,Spinoza Centre for Neuroimaging Amsterdam, Amsterdam, The Netherlands
| | - Jaco J M Zwanenburg
- Department of Radiology, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sandra Hein
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Mathias Hübner
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Benno Gesierich
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany.,Medical Image Analysis Center (MIAC AG) and qbig, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Marco Duering
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany.,Medical Image Analysis Center (MIAC AG) and qbig, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Michael S Stringer
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, UK Dementia Research Institute Centre at the University of Edinburgh, Edinburgh, UK
| | - Jeroen Hendrikse
- Department of Radiology, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Joanna M Wardlaw
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, UK Dementia Research Institute Centre at the University of Edinburgh, Edinburgh, UK
| | - Anne Joutel
- Institute of Psychiatry and Neurosciences of Paris, Université de Paris, Inserm U1266, Paris, France
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,German Center for Neurodegenerative Disease (DZNE), Munich, Germany
| | - Geert Jan Biessels
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
25
|
Oishi H, Takemura H, Amano K. Macromolecular tissue volume mapping of lateral geniculate nucleus subdivisions in living human brains. Neuroimage 2023; 265:119777. [PMID: 36462730 DOI: 10.1016/j.neuroimage.2022.119777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
The lateral geniculate nucleus (LGN) is a key thalamic nucleus in the visual system, which has an important function in relaying retinal visual input to the visual cortex. The human LGN is composed mainly of magnocellular (M) and parvocellular (P) subdivisions, each of which has different stimulus selectivity in neural response properties. Previous studies have discussed the potential relationship between LGN subdivisions and visual disorders based on psychophysical data on specific types of visual stimuli. However, these relationships remain speculative because non-invasive measurements of these subdivisions are difficult due to the small size of the LGN. Here we propose a method to identify these subdivisions by combining two structural MR measures: high-resolution proton-density weighted images and macromolecular tissue volume (MTV) maps. We defined the M and P subdivisions based on MTV fraction data and tested the validity of the definition by (1) comparing the data with that from human histological studies, (2) comparing the data with functional magnetic resonance imaging measurements on stimulus selectivity, and (3) analyzing the test-retest reliability. The findings demonstrated that the spatial organization of the M and P subdivisions was consistent across subjects and in line with LGN subdivisions observed in human histological data. Moreover, the difference in stimulus selectivity between the subdivisions identified using MTV was consistent with previous physiology literature. The definition of the subdivisions based on MTV was shown to be robust over measurements taken on different days. These results suggest that MTV mapping is a promising approach for evaluating the tissue properties of LGN subdivisions in living humans. This method potentially will enable neuroscientific and clinical hypotheses about the human LGN subdivisions to be tested.
Collapse
Affiliation(s)
- Hiroki Oishi
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita 565-0871, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan; Department of Psychology, University of California, Berkeley, Berkeley, CA 94704, United States.
| | - Hiromasa Takemura
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita 565-0871, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan; Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki 444-8585, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193, Japan.
| | - Kaoru Amano
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita 565-0871, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan; Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
26
|
Nag S, Uludag K. Dynamic Effective Connectivity using Physiologically informed Dynamic Causal Model with Recurrent Units: A functional Magnetic Resonance Imaging simulation study. Front Hum Neurosci 2023; 17:1001848. [PMID: 36936613 PMCID: PMC10014816 DOI: 10.3389/fnhum.2023.1001848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/25/2023] [Indexed: 03/05/2023] Open
Abstract
Functional MRI (fMRI) is an indirect reflection of neuronal activity. Using generative biophysical model of fMRI data such as Dynamic Causal Model (DCM), the underlying neuronal activities of different brain areas and their causal interactions (i.e., effective connectivity) can be calculated. Most DCM studies typically consider the effective connectivity to be static for a cognitive task within an experimental run. However, changes in experimental conditions during complex tasks such as movie-watching might result in temporal variations in the connectivity strengths. In this fMRI simulation study, we leverage state-of-the-art Physiologically informed DCM (P-DCM) along with a recurrent window approach and discretization of the equations to infer the underlying neuronal dynamics and concurrently the dynamic (time-varying) effective connectivities between various brain regions for task-based fMRI. Results from simulation studies on 3- and 10-region models showed that functional magnetic resonance imaging (fMRI) blood oxygenation level-dependent (BOLD) responses and effective connectivity time-courses can be accurately predicted and distinguished from faulty graphical connectivity models representing cognitive hypotheses. In summary, we propose and validate a novel approach to determine dynamic effective connectivity between brain areas during complex cognitive tasks by combining P-DCM with recurrent units.
Collapse
Affiliation(s)
- Sayan Nag
- Techna Institute & Koerner Scientist in MR Imaging, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- *Correspondence: Sayan Nag,
| | - Kamil Uludag
- Techna Institute & Koerner Scientist in MR Imaging, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Kamil Uludag,
| |
Collapse
|
27
|
Coleman SC, Seedat ZA, Whittaker AC, Lenartowicz A, Mullinger KJ. Beyond the Beta Rebound: Post-Task Responses in Oscillatory Activity follow Cessation of Working Memory Processes. Neuroimage 2023; 265:119801. [PMID: 36496181 PMCID: PMC11698023 DOI: 10.1016/j.neuroimage.2022.119801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Post-task responses (PTRs) are transitionary responses occurring for several seconds between the end of a stimulus/task and a period of rest. The most well-studied of these are beta band (13 - 30 Hz) PTRs in motor networks following movement, often called post-movement beta rebounds, which have been shown to differ in patients with schizophrenia and autism. Previous studies have proposed that beta PTRs reflect inhibition of task-positive networks to enable a return to resting brain activity, scaling with cognitive demand and reflecting cortical self-regulation. It is unknown whether PTRs are a phenomenon of the motor system, or whether they are a more general self-modulatory property of cortex that occur following cessation of higher cognitive processes as well as movement. To test this, we recorded magnetoencephalography (MEG) responses in 20 healthy participants to a working-memory task, known to recruit cortical networks associated with higher cognition. Our results revealed PTRs in the theta, alpha and beta bands across many regions of the brain, including the dorsal attention network (DAN) and lateral visual regions. These PTRs increased significantly (p < 0.05) in magnitude with working-memory load, an effect which is independent of oscillatory modulations occurring over the task period as well as those following individual stimuli. Furthermore, we showed that PTRs are functionally related to reaction times in left lateral visual (p < 0.05) and left parietal (p < 0.1) regions, while the oscillatory responses measured during the task period are not. Importantly, motor PTRs following button presses did not modulate with task condition, suggesting that PTRs in different networks are driven by different aspects of cognition. Our findings show that PTRs are not limited to motor networks but are widespread in regions which are recruited during the task. We provide evidence that PTRs have unique properties, scaling with cognitive load and correlating significantly with behaviour. Based on the evidence, we suggest that PTRs inhibit task-positive network activity to enable a transition to rest, however, further investigation is required to uncover their role in neuroscience and pathology.
Collapse
Affiliation(s)
- Sebastian C Coleman
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Zelekha A Seedat
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK; Young Epilepsy, St Pier's Lane, Dormansland, Lingfield, RH7 6PW, UK
| | - Anna C Whittaker
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, UK
| | - Agatha Lenartowicz
- Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles
| | - Karen J Mullinger
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK; Centre for Human Brain Health, School of Psychology, University of Birmingham, UK.
| |
Collapse
|
28
|
Improved laminar specificity and sensitivity by combining SE and GE BOLD signals. Neuroimage 2022; 264:119675. [PMID: 36243267 DOI: 10.1016/j.neuroimage.2022.119675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/20/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
The most widely used gradient-echo (GE) blood oxygenation level-dependent (BOLD) contrast has high sensitivity, but low specificity due to draining vein contributions, while spin-echo (SE) BOLD approach at ultra-high magnetic fields is highly specific to neural active sites but has lower sensitivity. To obtain high specificity and sensitivity, we propose to utilize a vessel-size-sensitive filter to the GE-BOLD signal, which suppresses macrovascular contributions and to combine selectively retained microvascular GE-BOLD signals with the SE-BOLD signals. To investigate our proposed idea, fMRI with 0.8 mm isotropic resolution was performed on the primary motor and sensory cortices in humans at 7 T by implementing spin- and gradient-echo (SAGE) echo planar imaging (EPI) acquisition. Microvascular-passed sigmoidal filters were designed based upon the vessel-size-sensitive ΔR2*/ΔR2 value for retaining GE-BOLD signals originating from venous vessels with ≤ 45 μm and ≤ 65 μm diameter. Unlike GE-BOLD fMRI, the laminar profile of SAGE-BOLD fMRI with the vessel-size-sensitive filter peaked at ∼ 1.0 mm from the surface of the primary motor and sensory cortices, demonstrating an improvement of laminar specificity over GE-BOLD fMRI. Also, the functional sensitivity of SAGE BOLD at middle layers (0.75-1.5 mm) was improved by ∼ 80% to ∼100% when compared with SE BOLD. In summary, we showed that combined GE- and SE-BOLD fMRI with the vessel-size-sensitive filter indeed yielded improved laminar specificity and sensitivity and is therefore an excellent tool for high spatial resolution ultra-high filed (UHF)-fMRI studies for resolving mesoscopic functional units.
Collapse
|
29
|
Kim JH, Taylor AJ, Himmelbach M, Hagberg GE, Scheffler K, Ress D. Characterization of the blood oxygen level dependent hemodynamic response function in human subcortical regions with high spatiotemporal resolution. Front Neurosci 2022; 16:1009295. [PMID: 36303946 PMCID: PMC9592726 DOI: 10.3389/fnins.2022.1009295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022] Open
Abstract
Subcortical brain regions are absolutely essential for normal human function. These phylogenetically early brain regions play critical roles in human behaviors such as the orientation of attention, arousal, and the modulation of sensory signals to cerebral cortex. Despite the critical health importance of subcortical brain regions, there has been a dearth of research on their neurovascular responses. Blood oxygen level dependent (BOLD) functional MRI (fMRI) experiments can help fill this gap in our understanding. The BOLD hemodynamic response function (HRF) evoked by brief (<4 s) neural activation is crucial for the interpretation of fMRI results because linear analysis between neural activity and the BOLD response relies on the HRF. Moreover, the HRF is a consequence of underlying local blood flow and oxygen metabolism, so characterization of the HRF enables understanding of neurovascular and neurometabolic coupling. We measured the subcortical HRF at 9.4T and 3T with high spatiotemporal resolution using protocols that enabled reliable delineation of HRFs in individual subjects. These results were compared with the HRF in visual cortex. The HRF was faster in subcortical regions than cortical regions at both field strengths. There was no significant undershoot in subcortical areas while there was a significant post-stimulus undershoot that was tightly coupled with its peak amplitude in cortex. The different BOLD temporal dynamics indicate different vascular dynamics and neurometabolic responses between cortex and subcortical nuclei.
Collapse
Affiliation(s)
- Jung Hwan Kim
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Amanda J. Taylor
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Marc Himmelbach
- Division of Neuropsychology, Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Gisela E. Hagberg
- High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, Eberhard Karl’s University of Tübingen and University Hospital, Tübingen, Germany
| | - Klaus Scheffler
- High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, Eberhard Karl’s University of Tübingen and University Hospital, Tübingen, Germany
| | - David Ress
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
30
|
Zhang H, Fu P, Liu Y, Zheng Z, Zhu L, Wang M, Abdellah M, He M, Qian J, Roe AW, Xi W. Large-depth three-photon fluorescence microscopy imaging of cortical microvasculature on nonhuman primates with bright AIE probe In vivo. Biomaterials 2022; 289:121809. [PMID: 36166895 DOI: 10.1016/j.biomaterials.2022.121809] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/02/2022]
Abstract
Multiphoton microscopy has been a powerful tool in brain research, three-photon fluorescence microscopy is increasingly becoming an emerging technique for neurological research of the cortex in depth. Nonhuman primates play important roles in the study of brain science because of their neural and vascular similarity to humans. However, there are few research results of three-photon fluorescence microscopy on the brain of nonhuman primates due to the lack of optimized imaging systems and excellent fluorescent probes. Here we introduced a bright aggregation-induced emission (AIE) probe with excellent three-photon fluorescence efficiency as well as facile synthesis process and we validated its biocompatibility in the macaque monkey. We achieved a large-depth vascular imaging of approximately 1 mm in the cerebral cortex of macaque monkey with our lab-modified three-photon fluorescence microscopy system and the AIE probe. Functional measurement of blood velocity in deep cortex capillaries was also performed. Furthermore, the comparison of cortical deep vascular structure parameters across species was presented on the monkey and mouse cortex. This work is the first in vivo three-photon fluorescence microscopic imaging research on the macaque monkey cortex reaching the imaging depth of ∼1 mm with the bright AIE probe. The results demonstrate the potential of three-photon microscopy as primate-compatible method for imaging fine vascular networks and will advance our understanding of vascular function in normal and disease in humans.
Collapse
Affiliation(s)
- Hequn Zhang
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), Department of Anesthesiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China; MOE Frontier Science Center for Brain Research and Brain Machine Integration, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China
| | - Peng Fu
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), Department of Anesthesiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China; MOE Frontier Science Center for Brain Research and Brain Machine Integration, Zhejiang University, Hangzhou, 310058, China
| | - Yin Liu
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), Department of Anesthesiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China; MOE Frontier Science Center for Brain Research and Brain Machine Integration, Zhejiang University, Hangzhou, 310058, China
| | - Zheng Zheng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Liang Zhu
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Mengqi Wang
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), Department of Anesthesiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China; MOE Frontier Science Center for Brain Research and Brain Machine Integration, Zhejiang University, Hangzhou, 310058, China
| | - Marwan Abdellah
- Blue Brain Project (BBP), École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, 1202, Geneva, Switzerland
| | - Mubin He
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China.
| | - Anna Wang Roe
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), Department of Anesthesiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China; MOE Frontier Science Center for Brain Research and Brain Machine Integration, Zhejiang University, Hangzhou, 310058, China
| | - Wang Xi
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), Department of Anesthesiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China; MOE Frontier Science Center for Brain Research and Brain Machine Integration, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
31
|
Shafiei G, Baillet S, Misic B. Human electromagnetic and haemodynamic networks systematically converge in unimodal cortex and diverge in transmodal cortex. PLoS Biol 2022; 20:e3001735. [PMID: 35914002 PMCID: PMC9371256 DOI: 10.1371/journal.pbio.3001735] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/11/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022] Open
Abstract
Whole-brain neural communication is typically estimated from statistical associations among electromagnetic or haemodynamic time-series. The relationship between functional network architectures recovered from these 2 types of neural activity remains unknown. Here, we map electromagnetic networks (measured using magnetoencephalography (MEG)) to haemodynamic networks (measured using functional magnetic resonance imaging (fMRI)). We find that the relationship between the 2 modalities is regionally heterogeneous and systematically follows the cortical hierarchy, with close correspondence in unimodal cortex and poor correspondence in transmodal cortex. Comparison with the BigBrain histological atlas reveals that electromagnetic-haemodynamic coupling is driven by laminar differentiation and neuron density, suggesting that the mapping between the 2 modalities can be explained by cytoarchitectural variation. Importantly, haemodynamic connectivity cannot be explained by electromagnetic activity in a single frequency band, but rather arises from the mixing of multiple neurophysiological rhythms. Correspondence between the two is largely driven by MEG functional connectivity at the beta (15 to 29 Hz) frequency band. Collectively, these findings demonstrate highly organized but only partly overlapping patterns of connectivity in MEG and fMRI functional networks, opening fundamentally new avenues for studying the relationship between cortical microarchitecture and multimodal connectivity patterns.
Collapse
Affiliation(s)
- Golia Shafiei
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| |
Collapse
|
32
|
Emiliani V, Entcheva E, Hedrich R, Hegemann P, Konrad KR, Lüscher C, Mahn M, Pan ZH, Sims RR, Vierock J, Yizhar O. Optogenetics for light control of biological systems. NATURE REVIEWS. METHODS PRIMERS 2022; 2:55. [PMID: 37933248 PMCID: PMC10627578 DOI: 10.1038/s43586-022-00136-4] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 11/08/2023]
Abstract
Optogenetic techniques have been developed to allow control over the activity of selected cells within a highly heterogeneous tissue, using a combination of genetic engineering and light. Optogenetics employs natural and engineered photoreceptors, mostly of microbial origin, to be genetically introduced into the cells of interest. As a result, cells that are naturally light-insensitive can be made photosensitive and addressable by illumination and precisely controllable in time and space. The selectivity of expression and subcellular targeting in the host is enabled by applying control elements such as promoters, enhancers and specific targeting sequences to the employed photoreceptor-encoding DNA. This powerful approach allows precise characterization and manipulation of cellular functions and has motivated the development of advanced optical methods for patterned photostimulation. Optogenetics has revolutionized neuroscience during the past 15 years and is primed to have a similar impact in other fields, including cardiology, cell biology and plant sciences. In this Primer, we describe the principles of optogenetics, review the most commonly used optogenetic tools, illumination approaches and scientific applications and discuss the possibilities and limitations associated with optogenetic manipulations across a wide variety of optical techniques, cells, circuits and organisms.
Collapse
Affiliation(s)
- Valentina Emiliani
- Wavefront Engineering Microscopy Group, Photonics Department, Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Emilia Entcheva
- Department of Biomedical Engineering, George Washington University, Washington, DC, USA
| | - Rainer Hedrich
- Julius-von-Sachs Institute for Biosciences, Molecular Plant Physiology and Biophysics, University of Wuerzburg, Wuerzburg, Germany
| | - Peter Hegemann
- Institute for Biology, Experimental Biophysics, Humboldt-Universitaet zu Berlin, Berlin, Germany
| | - Kai R. Konrad
- Julius-von-Sachs Institute for Biosciences, Molecular Plant Physiology and Biophysics, University of Wuerzburg, Wuerzburg, Germany
| | - Christian Lüscher
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Clinic of Neurology, Department of Clinical Neurosciences, Geneva University Hospital, Geneva, Switzerland
| | - Mathias Mahn
- Department of Neurobiology, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Zhuo-Hua Pan
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ruth R. Sims
- Wavefront Engineering Microscopy Group, Photonics Department, Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Johannes Vierock
- Institute for Biology, Experimental Biophysics, Humboldt-Universitaet zu Berlin, Berlin, Germany
- Neuroscience Research Center, Charité – Universitaetsmedizin Berlin, Berlin, Germany
| | - Ofer Yizhar
- Departments of Brain Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
33
|
Zhang WT, Chao THH, Yang Y, Wang TW, Lee SH, Oyarzabal EA, Zhou J, Nonneman R, Pegard NC, Zhu H, Cui G, Shih YYI. Spectral fiber photometry derives hemoglobin concentration changes for accurate measurement of fluorescent sensor activity. CELL REPORTS METHODS 2022; 2:100243. [PMID: 35880016 PMCID: PMC9308135 DOI: 10.1016/j.crmeth.2022.100243] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/08/2022] [Accepted: 06/08/2022] [Indexed: 12/22/2022]
Abstract
Fiber photometry is an emerging technique for recording fluorescent sensor activity in the brain. However, significant hemoglobin absorption artifacts in fiber photometry data may be misinterpreted as sensor activity changes. Because hemoglobin exists widely in the brain, and its concentration varies temporally, such artifacts could impede the accuracy of photometry recordings. Here we present use of spectral photometry and computational methods to quantify photon absorption effects by using activity-independent fluorescence signals, which can be used to derive oxy- and deoxy-hemoglobin concentration changes. Although these changes are often temporally delayed compared with the fast-responding fluorescence spikes, we found that erroneous interpretation may occur when examining pharmacology-induced sustained changes and that sometimes hemoglobin absorption could flip the GCaMP signal polarity. We provide hemoglobin-based correction methods to restore fluorescence signals and compare our results with other commonly used approaches. We also demonstrated the utility of spectral fiber photometry for delineating regional differences in hemodynamic response functions.
Collapse
Affiliation(s)
- Wei-Ting Zhang
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tzu-Hao Harry Chao
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yue Yang
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tzu-Wen Wang
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sung-Ho Lee
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Esteban A. Oyarzabal
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jingheng Zhou
- In Vivo Neurobiology Group, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| | - Randy Nonneman
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nicolas C. Pegard
- Department of Applied Physical Sciences, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hongtu Zhu
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Guohong Cui
- In Vivo Neurobiology Group, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| | - Yen-Yu Ian Shih
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
34
|
Haarsma J, Kok P, Browning M. The promise of layer-specific neuroimaging for testing predictive coding theories of psychosis. Schizophr Res 2022; 245:68-76. [PMID: 33199171 PMCID: PMC9241988 DOI: 10.1016/j.schres.2020.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/03/2020] [Accepted: 10/28/2020] [Indexed: 12/24/2022]
Abstract
Predictive coding potentially provides an explanatory model for understanding the neurocognitive mechanisms of psychosis. It proposes that cognitive processes, such as perception and inference, are implemented by a hierarchical system, with the influence of each level being a function of the estimated precision of beliefs at that level. However, predictive coding models of psychosis are insufficiently constrained-any phenomenon can be explained in multiple ways by postulating different changes to precision at different levels of processing. One reason for the lack of constraint in these models is that the core processes are thought to be implemented by the function of specific cortical layers, and the technology to measure layer specific neural activity in humans has until recently been lacking. As a result, our ability to constrain the models with empirical data has been limited. In this review we provide a brief overview of predictive processing models of psychosis and then describe the potential for newly developed, layer specific neuroimaging techniques to test and thus constrain these models. We conclude by discussing the most promising avenues for this research as well as the technical and conceptual challenges which may limit its application.
Collapse
Affiliation(s)
- J. Haarsma
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom,Department of Psychiatry, University of Oxford, Oxford, United Kingdom,Corresponding author at: Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom.
| | - P. Kok
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| | - M. Browning
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom,Oxford Health NHS Trust, Oxford, United Kingdom
| |
Collapse
|
35
|
Pais-Roldán P, Yun SD, Shah NJ. Pre-processing of Sub-millimeter GE-BOLD fMRI Data for Laminar Applications. FRONTIERS IN NEUROIMAGING 2022; 1:869454. [PMID: 37555171 PMCID: PMC10406219 DOI: 10.3389/fnimg.2022.869454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/31/2022] [Indexed: 08/10/2023]
Abstract
Over the past 30 years, brain function has primarily been evaluated non-invasively using functional magnetic resonance imaging (fMRI) with gradient-echo (GE) sequences to measure blood-oxygen-level-dependent (BOLD) signals. Despite the multiple advantages of GE sequences, e.g., higher signal-to-noise ratio, faster acquisitions, etc., their relatively inferior spatial localization compromises the routine use of GE-BOLD in laminar applications. Here, in an attempt to rescue the benefits of GE sequences, we evaluated the effect of existing pre-processing methods on the spatial localization of signals obtained with EPIK, a GE sequence that affords voxel volumes of 0.25 mm3 with near whole-brain coverage. The methods assessed here apply to both task and resting-state fMRI data assuming the availability of reconstructed magnitude and phase images.
Collapse
Affiliation(s)
- Patricia Pais-Roldán
- Institute of Neuroscience and Medicine 4, Medical Imaging Physics, Forschungszentrum Jülich, Jülich, Germany
| | - Seong Dae Yun
- Institute of Neuroscience and Medicine 4, Medical Imaging Physics, Forschungszentrum Jülich, Jülich, Germany
| | - N. Jon Shah
- Institute of Neuroscience and Medicine 4, Medical Imaging Physics, Forschungszentrum Jülich, Jülich, Germany
- Institute of Neuroscience and Medicine 11, Molecular Neuroscience and Neuroimaging, Jülich Aachen Research Alliance, Forschungszentrum Jülich, Jülich, Germany
- Jlich Aachen Research Alliance, Brain - Translational Medicine, Aachen, Germany
- Department of Neurology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| |
Collapse
|
36
|
Bollmann S, Mattern H, Bernier M, Robinson SD, Park DJ, Speck O, Polimeni JR. Imaging of the pial arterial vasculature of the human brain in vivo using high-resolution 7T time-of-flight angiography. eLife 2022; 11:71186. [PMID: 35486089 PMCID: PMC9150892 DOI: 10.7554/elife.71186] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 04/28/2022] [Indexed: 11/30/2022] Open
Abstract
The pial arterial vasculature of the human brain is the only blood supply to the neocortex, but quantitative data on the morphology and topology of these mesoscopic arteries (diameter 50–300 µm) remains scarce. Because it is commonly assumed that blood flow velocities in these vessels are prohibitively slow, non-invasive time-of-flight magnetic resonance angiography (TOF-MRA)—which is well suited to high 3D imaging resolutions—has not been applied to imaging the pial arteries. Here, we provide a theoretical framework that outlines how TOF-MRA can visualize small pial arteries in vivo, by employing extremely small voxels at the size of individual vessels. We then provide evidence for this theory by imaging the pial arteries at 140 µm isotropic resolution using a 7 Tesla (T) magnetic resonance imaging (MRI) scanner and prospective motion correction, and show that pial arteries one voxel width in diameter can be detected. We conclude that imaging pial arteries is not limited by slow blood flow, but instead by achievable image resolution. This study represents the first targeted, comprehensive account of imaging pial arteries in vivo in the human brain. This ultra-high-resolution angiography will enable the characterization of pial vascular anatomy across the brain to investigate patterns of blood supply and relationships between vascular and functional architecture.
Collapse
Affiliation(s)
- Saskia Bollmann
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Hendrik Mattern
- Department of Biomedical Magnetic Resonance, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Michaël Bernier
- Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, United States
| | - Simon D Robinson
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Daniel J Park
- Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, United States
| | - Oliver Speck
- German Center for Neurodegenerative Diseases, Magdeburg, Germany
| | | |
Collapse
|
37
|
Abstract
Sensory stimulation generates a robust decrease in oxygen concentration (pO2 initial dip) in brain tissue of anesthetized cats and rodents. This dip reports local activation of neurons much better than the delayed pO2 increase associated with functional hyperemia. Here, we reinvestigated the issue in animals that recovered from acute surgery using two-photon lifetime microscopy. Targeting a distinct neuronal network that is the site of strong activation and energy consumption, we show that in anesthetized animals the pO2 initial dip is present but extremely small in juxtasynaptic capillaries. In awake animals, it is no longer detectable in vessels or in the neuropil. This demonstrates that in healthy animals, neurovascular coupling is too fast and efficient to reveal a pO2 initial dip. An ongoing controversy in brain metabolism is whether increases in neural activity cause a local and rapid decrease in oxygen concentration (i.e., the “initial dip”) preceding functional hyperemia. This initial dip has been suggested to cause a transient increase in vascular deoxyhemoglobin with several imaging techniques and stimulation paradigms, but not consistently. Here, we investigate contributors to this initial dip in a distinct neuronal network, an olfactory bulb (OB) glomerulus most sensitive to a specific odorant (ethyl tiglate [ET]) and a site of strong activation and energy consumption upon ET stimulation. Combining two-photon fluorescence and phosphorescence lifetime microscopy, and calcium, blood flow, and pO2 measurements, we characterized this initial dip in pO2 in mice chronically implanted with a glass cranial window, during both awake and anesthetized conditions. In anesthetized mice, a transient dip in vascular pO2 was detected in this glomerulus when functional hyperemia was slightly delayed, but its amplitude was minute (0.3 SD of resting baseline). This vascular pO2 dip was not observed in other glomeruli responding nonspecifically to ET, and it was poorly influenced by resting pO2. In awake mice, the dip in pO2 was absent in capillaries as well as, surprisingly, in the neuropil. These high-resolution pO2 measurements demonstrate that in awake mice recovered from brain surgery, neurovascular coupling was too fast and efficient to reveal an initial dip in pO2.
Collapse
|
38
|
Yu Y, Huber L, Yang J, Fukunaga M, Chai Y, Jangraw DC, Chen G, Handwerker DA, Molfese PJ, Ejima Y, Sadato N, Wu J, Bandettini PA. Layer-specific activation in human primary somatosensory cortex during tactile temporal prediction error processing. Neuroimage 2021; 248:118867. [PMID: 34974114 DOI: 10.1016/j.neuroimage.2021.118867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 10/19/2022] Open
Abstract
The human brain continuously generates predictions of incoming sensory input and calculates corresponding prediction errors from the perceived inputs to update internal predictions. In human primary somatosensory cortex (area 3b), different cortical layers are involved in receiving the sensory input and generation of error signals. It remains unknown, however, how the layers in the human area 3b contribute to the temporal prediction error processing. To investigate prediction error representation in the area 3b across layers, we acquired layer-specific functional magnetic resonance imaging (fMRI) data at 7T from human area 3b during a task of index finger poking with no-delay, short-delay and long-delay touching sequences. We demonstrate that all three tasks increased activity in both superficial and deep layers of area 3b compared to the random sensory input. The fMRI signal was differentially modulated solely in the deep layers rather than the superficial layers of area 3b by the delay time. Compared with the no-delay stimuli, activity was greater in the deep layers of area 3b during the short-delay stimuli but lower during the long-delay stimuli. This difference activity features in the superficial and deep layers suggest distinct functional contributions of area 3b layers to tactile temporal prediction error processing. The functional segregation in area 3b across layers may reflect that the excitatory and inhibitory interplay in the sensory cortex contributions to flexible communication between cortical layers or between cortical areas.
Collapse
Affiliation(s)
- Yinghua Yu
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan; Section on Functional Imaging Methods, National Institute of Mental Health, Building 10, 10 Center Dr Bethesda, MD 20892, USA.
| | - Laurentius Huber
- MR-Methods Group, MBIC, Cognitive Neuroscience Department, Faculty of Psychology and Neuroscience, University of Maastricht, Cognitive Neuroscience, Room 1.014, Oxfordlaan 55, 6229 EV Maastricht, The Netherlands
| | - Jiajia Yang
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan; Section on Functional Imaging Methods, National Institute of Mental Health, Building 10, 10 Center Dr Bethesda, MD 20892, USA
| | - Masaki Fukunaga
- Division of Cerebral Research, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585 Japan
| | - Yuhui Chai
- Section on Functional Imaging Methods, National Institute of Mental Health, Building 10, 10 Center Dr Bethesda, MD 20892, USA
| | - David C Jangraw
- Section on Functional Imaging Methods, National Institute of Mental Health, Building 10, 10 Center Dr Bethesda, MD 20892, USA
| | - Gang Chen
- Scientific and Statistical Computational Core, National Institute of Mental Health, Building 10, 10 Center Dr Bethesda, MD 20892, USA
| | - Daniel A Handwerker
- Section on Functional Imaging Methods, National Institute of Mental Health, Building 10, 10 Center Dr Bethesda, MD 20892, USA
| | - Peter J Molfese
- Section on Functional Imaging Methods, National Institute of Mental Health, Building 10, 10 Center Dr Bethesda, MD 20892, USA
| | - Yoshimichi Ejima
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Norihiro Sadato
- Division of Cerebral Research, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585 Japan
| | - Jinglong Wu
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan; Beijing Institute of Technology, 5 South Zhongguancun Street, Hiadian District, Beijing 100081, China
| | - Peter A Bandettini
- Section on Functional Imaging Methods, National Institute of Mental Health, Building 10, 10 Center Dr Bethesda, MD 20892, USA; Functional MRI Core Facility, National Institute of Mental Health, Building 10, 10 Center Dr Bethesda, MD 20892, USA
| |
Collapse
|
39
|
Bhogal AA. Medullary vein architecture modulates the white matter BOLD cerebrovascular reactivity signal response to CO 2: Observations from high-resolution T2* weighted imaging at 7T. Neuroimage 2021; 245:118771. [PMID: 34861395 DOI: 10.1016/j.neuroimage.2021.118771] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/13/2021] [Accepted: 11/29/2021] [Indexed: 01/24/2023] Open
Abstract
Brain stress testing using blood oxygenation level-dependent (BOLD) MRI to evaluate changes in cerebrovascular reactivity (CVR) is of growing interest for evaluating white matter integrity. However, even under healthy conditions, the white matter BOLD-CVR response differs notably from that observed in the gray matter. In addition to actual arterial vascular control, the venous draining topology may influence the WM-CVR response leading to signal delays and dispersions. These types of alterations in hemodynamic parameters are sometimes linked with pathology, but may also arise from differences in normal venous architecture. In this work, high-resolution T2*weighted anatomical images combined with BOLD imaging during a hypercapnic breathing protocol were acquired using a 7 tesla MRI system. Hemodynamic parameters including base CVR, hemodynamic lag, lag-corrected CVR, response onset and signal dispersion, and finally ΔCVR (corrected CVR minus base CVR) were calculated in 8 subjects. Parameter maps were spatially normalized and correlated against an MNI-registered white matter medullary vein atlas. Moderate correlations (Pearson's rho) were observed between medullary vessel frequency (MVF) and ΔCVR (0.52; 0.58 for total WM), MVF and hemodynamic lag (0.42; 0.54 for total WM), MVF and signal dispersion (0.44; 0.53 for total WM), and finally MVF and signal onset (0.43; 0.52 for total WM). Results indicate that, when assessed in the context of the WM venous architecture, changes in the response shape may only be partially reflective of the actual vascular reactivity response occurring further upstream by control vessels. This finding may have implications when attributing diseases mechanisms and/or progression to presumed impaired WM BOLD-CVR.
Collapse
Affiliation(s)
- Alex A Bhogal
- Radiology, University Medical Center Utrecht, Heidelberglaan 100, , Utrecht 3584 CX, the Netherland.
| |
Collapse
|
40
|
Polimeni JR, Lewis LD. Imaging faster neural dynamics with fast fMRI: A need for updated models of the hemodynamic response. Prog Neurobiol 2021; 207:102174. [PMID: 34525404 PMCID: PMC8688322 DOI: 10.1016/j.pneurobio.2021.102174] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 07/30/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022]
Abstract
Fast fMRI enables the detection of neural dynamics over timescales of hundreds of milliseconds, suggesting it may provide a new avenue for studying subsecond neural processes in the human brain. The magnitudes of these fast fMRI dynamics are far greater than predicted by canonical models of the hemodynamic response. Several studies have established nonlinear properties of the hemodynamic response that have significant implications for fast fMRI. We first review nonlinear properties of the hemodynamic response function that may underlie fast fMRI signals. We then illustrate the breakdown of canonical hemodynamic response models in the context of fast neural dynamics. We will then argue that the canonical hemodynamic response function is not likely to reflect the BOLD response to neuronal activity driven by sparse or naturalistic stimuli or perhaps to spontaneous neuronal fluctuations in the resting state. These properties suggest that fast fMRI is capable of tracking surprisingly fast neuronal dynamics, and we discuss the neuroscientific questions that could be addressed using this approach.
Collapse
Affiliation(s)
- Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA; Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Laura D Lewis
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
41
|
Advances in spiral fMRI: A high-resolution study with single-shot acquisition. Neuroimage 2021; 246:118738. [PMID: 34800666 DOI: 10.1016/j.neuroimage.2021.118738] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 10/23/2021] [Accepted: 11/15/2021] [Indexed: 01/15/2023] Open
Abstract
Spiral fMRI has been put forward as a viable alternative to rectilinear echo-planar imaging, in particular due to its enhanced average k-space speed and thus high acquisition efficiency. This renders spirals attractive for contemporary fMRI applications that require high spatiotemporal resolution, such as laminar or columnar fMRI. However, in practice, spiral fMRI is typically hampered by its reduced robustness and ensuing blurring artifacts, which arise from imperfections in both static and dynamic magnetic fields. Recently, these limitations have been overcome by the concerted application of an expanded signal model that accounts for such field imperfections, and its inversion by iterative image reconstruction. In the challenging ultra-high field environment of 7 Tesla, where field inhomogeneity effects are aggravated, both multi-shot and single-shot 2D spiral imaging at sub-millimeter resolution was demonstrated with high depiction quality and anatomical congruency. In this work, we further these advances towards a time series application of spiral readouts, namely, single-shot spiral BOLD fMRI at 0.8 mm in-plane resolution. We demonstrate that high-resolution spiral fMRI at 7 T is not only feasible, but delivers both excellent image quality, BOLD sensitivity, and spatial specificity of the activation maps, with little artifactual blurring. Furthermore, we show the versatility of the approach with a combined in/out spiral readout at a more typical resolution (1.5 mm), where the high acquisition efficiency allows to acquire two images per shot for improved sensitivity by echo combination.
Collapse
|
42
|
Suarez A, Valdés-Hernández PA, Bernal B, Dunoyer C, Khoo HM, Bosch-Bayard J, Riera JJ. Identification of Negative BOLD Responses in Epilepsy Using Windkessel Models. Front Neurol 2021; 12:659081. [PMID: 34690906 PMCID: PMC8531269 DOI: 10.3389/fneur.2021.659081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
Alongside positive blood oxygenation level–dependent (BOLD) responses associated with interictal epileptic discharges, a variety of negative BOLD responses (NBRs) are typically found in epileptic patients. Previous studies suggest that, in general, up to four mechanisms might underlie the genesis of NBRs in the brain: (i) neuronal disruption of network activity, (ii) altered balance of neurometabolic/vascular couplings, (iii) arterial blood stealing, and (iv) enhanced cortical inhibition. Detecting and classifying these mechanisms from BOLD signals are pivotal for the improvement of the specificity of the electroencephalography–functional magnetic resonance imaging (EEG-fMRI) image modality to identify the seizure-onset zones in refractory local epilepsy. This requires models with physiological interpretation that furnish the understanding of how these mechanisms are fingerprinted by their BOLD responses. Here, we used a Windkessel model with viscoelastic compliance/inductance in combination with dynamic models of both neuronal population activity and tissue/blood O2 to classify the hemodynamic response functions (HRFs) linked to the above mechanisms in the irritative zones of epileptic patients. First, we evaluated the most relevant imprints on the BOLD response caused by variations of key model parameters. Second, we demonstrated that a general linear model is enough to accurately represent the four different types of NBRs. Third, we tested the ability of a machine learning classifier, built from a simulated ensemble of HRFs, to predict the mechanism underlying the BOLD signal from irritative zones. Cross-validation indicates that these four mechanisms can be classified from realistic fMRI BOLD signals. To demonstrate proof of concept, we applied our methodology to EEG-fMRI data from five epileptic patients undergoing neurosurgery, suggesting the presence of some of these mechanisms. We concluded that a proper identification and interpretation of NBR mechanisms in epilepsy can be performed by combining general linear models and biophysically inspired models.
Collapse
Affiliation(s)
- Alejandro Suarez
- Neuronal Mass Dynamics Laboratory, Florida International University, Miami, FL, United States
| | | | - Byron Bernal
- Nicklaus Children Hospital, Miami, FL, United States
| | | | - Hui Ming Khoo
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Department of Neurosurgery, Osaka University, Suita, Japan
| | - Jorge Bosch-Bayard
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Jorge J Riera
- Neuronal Mass Dynamics Laboratory, Florida International University, Miami, FL, United States
| |
Collapse
|
43
|
Investigating mechanisms of fast BOLD responses: The effects of stimulus intensity and of spatial heterogeneity of hemodynamics. Neuroimage 2021; 245:118658. [PMID: 34656783 DOI: 10.1016/j.neuroimage.2021.118658] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 09/18/2021] [Accepted: 10/12/2021] [Indexed: 12/17/2022] Open
Abstract
Recent studies have demonstrated that fast fMRI can track neural activity well above the temporal limit predicted by the canonical hemodynamic response model. While these findings are promising, the biophysical mechanisms underlying these fast fMRI phenomena remain underexplored. In this study, we discuss two aspects of the hemodynamic response, complementary to several existing hypotheses, that can accommodate faster fMRI dynamics beyond those predicted by the canonical model. First, we demonstrate, using both visual and somatosensory paradigms, that the timing and shape of hemodynamic response functions (HRFs) vary across graded levels of stimulus intensity-with lower-intensity stimulation eliciting faster and narrower HRFs. Second, we show that as the spatial resolution of fMRI increases, voxel-wise HRFs begin to deviate from the canonical model, with a considerable portion of voxels exhibiting faster temporal dynamics than predicted by the canonical HRF. Collectively, both stimulus/task intensity and image resolution can affect the sensitivity of fMRI to fast brain activity, which may partly explain recent observations of fast fMRI signals. It is further noteworthy that, while the present investigations focus on fast neural responses, our findings suggest that a revised hemodynamic model may benefit the many fMRI studies using paradigms with wide ranges of contrast levels (e.g., resting or naturalistic conditions) or with modern, high-resolution MR acquisitions.
Collapse
|
44
|
Huang P, Correia MM, Rua C, Rodgers CT, Henson RN, Carlin JD. Correcting for Superficial Bias in 7T Gradient Echo fMRI. Front Neurosci 2021; 15:715549. [PMID: 34630010 PMCID: PMC8494131 DOI: 10.3389/fnins.2021.715549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/17/2021] [Indexed: 11/29/2022] Open
Abstract
The arrival of submillimeter ultra high-field fMRI makes it possible to compare activation profiles across cortical layers. However, the blood oxygenation level dependent (BOLD) signal measured by gradient echo (GE) fMRI is biased toward superficial layers of the cortex, which is a serious confound for laminar analysis. Several univariate and multivariate analysis methods have been proposed to correct this bias. We compare these methods using computational simulations of 7T fMRI data from regions of interest (ROI) during a visual attention paradigm. We also tested the methods on a pilot dataset of human 7T fMRI data. The simulations show that two methods–the ratio of ROI means across conditions and a novel application of Deming regression–offer the most robust correction for superficial bias. Deming regression has the additional advantage that it does not require that the conditions differ in their mean activation over voxels within an ROI. When applied to the pilot dataset, we observed strikingly different layer profiles when different attention metrics were used, but were unable to discern any differences in laminar attention across layers when Deming regression or ROI ratio was applied. Our simulations demonstrates that accurate correction of superficial bias is crucial to avoid drawing erroneous conclusions from laminar analyses of GE fMRI data, and this is affirmed by the results from our pilot 7T fMRI data.
Collapse
Affiliation(s)
- Pei Huang
- Singapore Institute for Clinical Sciences, A∗STAR, Singapore, Singapore.,MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - Marta M Correia
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - Catarina Rua
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| | | | - Richard N Henson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - Johan D Carlin
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
45
|
Contribution of animal models toward understanding resting state functional connectivity. Neuroimage 2021; 245:118630. [PMID: 34644593 DOI: 10.1016/j.neuroimage.2021.118630] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/06/2021] [Accepted: 09/29/2021] [Indexed: 12/27/2022] Open
Abstract
Functional connectivity, which reflects the spatial and temporal organization of intrinsic activity throughout the brain, is one of the most studied measures in human neuroimaging research. The noninvasive acquisition of resting state functional magnetic resonance imaging (rs-fMRI) allows the characterization of features designated as functional networks, functional connectivity gradients, and time-varying activity patterns that provide insight into the intrinsic functional organization of the brain and potential alterations related to brain dysfunction. Functional connectivity, hence, captures dimensions of the brain's activity that have enormous potential for both clinical and preclinical research. However, the mechanisms underlying functional connectivity have yet to be fully characterized, hindering interpretation of rs-fMRI studies. As in other branches of neuroscience, the identification of the neurophysiological processes that contribute to functional connectivity largely depends on research conducted on laboratory animals, which provide a platform where specific, multi-dimensional investigations that involve invasive measurements can be carried out. These highly controlled experiments facilitate the interpretation of the temporal correlations observed across the brain. Indeed, information obtained from animal experimentation to date is the basis for our current understanding of the underlying basis for functional brain connectivity. This review presents a compendium of some of the most critical advances in the field based on the efforts made by the animal neuroimaging community.
Collapse
|
46
|
Iamshchinina P, Kaiser D, Yakupov R, Haenelt D, Sciarra A, Mattern H, Luesebrink F, Duezel E, Speck O, Weiskopf N, Cichy RM. Perceived and mentally rotated contents are differentially represented in cortical depth of V1. Commun Biol 2021; 4:1069. [PMID: 34521987 PMCID: PMC8440580 DOI: 10.1038/s42003-021-02582-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 08/20/2021] [Indexed: 11/12/2022] Open
Abstract
Primary visual cortex (V1) in humans is known to represent both veridically perceived external input and internally-generated contents underlying imagery and mental rotation. However, it is unknown how the brain keeps these contents separate thus avoiding a mixture of the perceived and the imagined which could lead to potentially detrimental consequences. Inspired by neuroanatomical studies showing that feedforward and feedback connections in V1 terminate in different cortical layers, we hypothesized that this anatomical compartmentalization underlies functional segregation of external and internally-generated visual contents, respectively. We used high-resolution layer-specific fMRI to test this hypothesis in a mental rotation task. We found that rotated contents were predominant at outer cortical depth bins (i.e. superficial and deep). At the same time perceived contents were represented stronger at the middle cortical bin. These results identify how through cortical depth compartmentalization V1 functionally segregates rather than confuses external from internally-generated visual contents. These results indicate that feedforward and feedback manifest in distinct subdivisions of the early visual cortex, thereby reflecting a general strategy for implementing multiple cognitive functions within a single brain region.
Collapse
Affiliation(s)
- Polina Iamshchinina
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany.
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Daniel Kaiser
- Department of Psychology, University of York, Heslington, York, UK
| | - Renat Yakupov
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Daniel Haenelt
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Alessandro Sciarra
- Department of Biomedical Magnetic Resonance, Institute for Physics, Otto-von-Guericke-University, Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Hendrik Mattern
- Department of Biomedical Magnetic Resonance, Institute for Physics, Otto-von-Guericke-University, Magdeburg, Germany
| | - Falk Luesebrink
- Department of Biomedical Magnetic Resonance, Institute for Physics, Otto-von-Guericke-University, Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Emrah Duezel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Oliver Speck
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Department of Biomedical Magnetic Resonance, Institute for Physics, Otto-von-Guericke-University, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| | - Radoslaw Martin Cichy
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
47
|
Raimondo L, Oliveira ĹAF, Heij J, Priovoulos N, Kundu P, Leoni RF, van der Zwaag W. Advances in resting state fMRI acquisitions for functional connectomics. Neuroimage 2021; 243:118503. [PMID: 34479041 DOI: 10.1016/j.neuroimage.2021.118503] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/16/2021] [Accepted: 08/22/2021] [Indexed: 01/21/2023] Open
Abstract
Resting state functional magnetic resonance imaging (rs-fMRI) is based on spontaneous fluctuations in the blood oxygen level dependent (BOLD) signal, which occur simultaneously in different brain regions, without the subject performing an explicit task. The low-frequency oscillations of the rs-fMRI signal demonstrate an intrinsic spatiotemporal organization in the brain (brain networks) that may relate to the underlying neural activity. In this review article, we briefly describe the current acquisition techniques for rs-fMRI data, from the most common approaches for resting state acquisition strategies, to more recent investigations with dedicated hardware and ultra-high fields. Specific sequences that allow very fast acquisitions, or multiple echoes, are discussed next. We then consider how acquisition methods weighted towards specific parts of the BOLD signal, like the Cerebral Blood Flow (CBF) or Volume (CBV), can provide more spatially specific network information. These approaches are being developed alongside the commonly used BOLD-weighted acquisitions. Finally, specific applications of rs-fMRI to challenging regions such as the laminae in the neocortex, and the networks within the large areas of subcortical white matter regions are discussed. We finish the review with recommendations for acquisition strategies for a range of typical applications of resting state fMRI.
Collapse
Affiliation(s)
- Luisa Raimondo
- Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands; Experimental and Applied Psychology, VU University, Amsterdam, the Netherlands
| | - Ĺcaro A F Oliveira
- Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands; Experimental and Applied Psychology, VU University, Amsterdam, the Netherlands
| | - Jurjen Heij
- Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands; Experimental and Applied Psychology, VU University, Amsterdam, the Netherlands
| | | | - Prantik Kundu
- Hyperfine Research Inc, Guilford, CT, United States; Icahn School of Medicine at Mt. Sinai, New York, United States
| | - Renata Ferranti Leoni
- InBrain, Department of Physics, FFCLRP, University of São Paulo, Ribeirão Preto, Brazil
| | | |
Collapse
|
48
|
Han S, Eun S, Cho H, Uludaǧ K, Kim SG. Improvement of sensitivity and specificity for laminar BOLD fMRI with double spin-echo EPI in humans at 7 T. Neuroimage 2021; 241:118435. [PMID: 34324976 DOI: 10.1016/j.neuroimage.2021.118435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/26/2021] [Indexed: 12/19/2022] Open
Abstract
Mapping mesoscopic cortical functional units such as columns or laminae is increasingly pursued by ultra-high field (UHF) functional magnetic resonance imaging (fMRI). The most popular approach for high-resolution fMRI is currently gradient-echo (GE) blood oxygenation level-dependent (BOLD) fMRI. However, its spatial accuracy is reduced due to its sensitivity to draining vessels, including pial veins, whereas spin-echo (SE) BOLD signal is expected to have higher spatial accuracy, albeit with lower sensitivity than the GE-BOLD signal. Here, we introduce a new double spin-echo (dSE) echo-planar imaging (EPI) method to improve the sensitivity of SE-BOLD contrast by averaging two spin-echoes using three radiofrequency pulses. Human fMRI experiments were performed with slices perpendicular to the central sulcus between motor and sensory cortices at 7 T during fist-clenching with touching. First, we evaluated the feasibility of single-shot dSE-EPI for BOLD fMRI with 1.5 mm isotropic resolution and found that dSE-BOLD fMRI has higher signal-to-noise ratio (SNR), temporal SNR (tSNR), and higher functional sensitivity than conventional SE-BOLD fMRI. Second, to investigate the laminar specificity of dSE-BOLD fMRI, we implemented a multi-shot approach to achieve 0.8-mm isotropic resolution with sliding-window reconstruction. Unlike GE-BOLD fMRI, the cortical profile of dSE-BOLD fMRI peaked at ~ 1.0 mm from the surface of the primary motor and sensory cortices, demonstrating an improvement of laminar specificity in humans over GE-BOLD fMRI. The proposed multi-shot dSE-EPI method is viable for high spatial resolution UHF-fMRI studies in the pursuit of resolving mesoscopic functional units.
Collapse
Affiliation(s)
- SoHyun Han
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea.
| | - Seulgi Eun
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - HyungJoon Cho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Kâmil Uludaǧ
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea; Techna Institute & Koerner Scientist in MR Imaging, University Health Network, Toronto, Canada
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
49
|
Yang J, Huber L, Yu Y, Bandettini PA. Linking cortical circuit models to human cognition with laminar fMRI. Neurosci Biobehav Rev 2021; 128:467-478. [PMID: 34245758 DOI: 10.1016/j.neubiorev.2021.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
Laboratory animal research has provided significant knowledge into the function of cortical circuits at the laminar level, which has yet to be fully leveraged towards insights about human brain function on a similar spatiotemporal scale. The use of functional magnetic resonance imaging (fMRI) in conjunction with neural models provides new opportunities to gain important insights from current knowledge. During the last five years, human studies have demonstrated the value of high-resolution fMRI to study laminar-specific activity in the human brain. This is mostly performed at ultra-high-field strengths (≥ 7 T) and is known as laminar fMRI. Advancements in laminar fMRI are beginning to open new possibilities for studying questions in basic cognitive neuroscience. In this paper, we first review recent methodological advances in laminar fMRI and describe recent human laminar fMRI studies. Then, we discuss how the use of laminar fMRI can help bridge the gap between cortical circuit models and human cognition.
Collapse
Affiliation(s)
- Jiajia Yang
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan; Section on Functional Imaging Methods, National Institute of Mental Health, Bethesda, MD, USA.
| | - Laurentius Huber
- MR-Methods Group, Faculty of Psychology and Neuroscience, University of Maastricht, Maastricht, the Netherlands
| | - Yinghua Yu
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan; Section on Functional Imaging Methods, National Institute of Mental Health, Bethesda, MD, USA
| | - Peter A Bandettini
- Section on Functional Imaging Methods, National Institute of Mental Health, Bethesda, MD, USA; Functional MRI Core Facility, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
50
|
Abstract
Functional magnetic resonance imaging (fMRI) has become one of the most powerful tools for investigating the human brain. Ultrahigh magnetic field (UHF) of 7 Tesla has played a critical role in enabling higher resolution and more accurate (relative to the neuronal activity) functional maps. However, even with these gains, the fMRI approach is challenged relative to the spatial scale over which brain function is organized. Therefore, going forward, significant advances in fMRI are still needed. Such advances will predominantly come from magnetic fields significantly higher than 7 Tesla, which is the most commonly used UHF platform today, and additional technologies that will include developments in pulse sequences, image reconstruction, noise suppression, and image analysis in order to further enhance and augment the gains than can be realized by going to higher magnetic fields.
Collapse
Affiliation(s)
- Kamil Uğurbil
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, 2021 6 Street SE, Minneapolis, MN 55456
| |
Collapse
|