1
|
Saberi M, Rieck JR, Golafshan S, Grady CL, Misic B, Dunkley BT, Khatibi A. The brain selectively allocates energy to functional brain networks under cognitive control. Sci Rep 2024; 14:32032. [PMID: 39738735 PMCID: PMC11686059 DOI: 10.1038/s41598-024-83696-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025] Open
Abstract
Network energy has been conceptualized based on structural balance theory in the physics of complex networks. We utilized this framework to assess the energy of functional brain networks under cognitive control and to understand how energy is allocated across canonical functional networks during various cognitive control tasks. We extracted network energy from functional connectivity patterns of subjects who underwent fMRI scans during cognitive tasks involving working memory, inhibitory control, and cognitive flexibility, in addition to task-free scans. We found that the energy of the whole-brain network increases when exposed to cognitive control tasks compared to the task-free resting state, which serves as a reference point. The brain selectively allocates this elevated energy to canonical functional networks; sensory networks receive more energy to support flexibility for processing sensory stimuli, while cognitive networks relevant to the task, functioning efficiently, require less energy. Furthermore, employing network energy, as a global network measure, improves the performance of predictive modeling, particularly in classifying cognitive control tasks and predicting chronological age. Our results highlight the robustness of this framework and the utility of network energy in understanding brain and cognitive mechanisms, including its promising potential as a biomarker for mental conditions and neurological disorders.
Collapse
Affiliation(s)
- Majid Saberi
- Neurosciences & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada.
- Headache and Orofacial Pain Effort (H.O.P.E.) Laboratory, Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA.
| | - Jenny R Rieck
- Rotman Research Institute, Baycrest Health Sciences, Toronto, M6A 2E1, Canada
| | - Shamim Golafshan
- Department of Psychology, Florida International University, Miami, FL, USA
| | - Cheryl L Grady
- Rotman Research Institute, Baycrest Health Sciences, Toronto, M6A 2E1, Canada
- Psychology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada
- Psychiatry, University of Toronto, Toronto, M5T 1R8, Canada
| | - Bratislav Misic
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Benjamin T Dunkley
- Neurosciences & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada
- Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Ali Khatibi
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK.
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.
| |
Collapse
|
2
|
Fousek J, Rabuffo G, Gudibanda K, Sheheitli H, Petkoski S, Jirsa V. Symmetry breaking organizes the brain's resting state manifold. Sci Rep 2024; 14:31970. [PMID: 39738729 DOI: 10.1038/s41598-024-83542-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
Spontaneously fluctuating brain activity patterns that emerge at rest have been linked to the brain's health and cognition. Despite detailed descriptions of the spatio-temporal brain patterns, our understanding of their generative mechanism is still incomplete. Using a combination of computational modeling and dynamical systems analysis we provide a mechanistic description of the formation of a resting state manifold via the network connectivity. We demonstrate that the symmetry breaking by the connectivity creates a characteristic flow on the manifold, which produces the major data features across scales and imaging modalities. These include spontaneous high-amplitude co-activations, neuronal cascades, spectral cortical gradients, multistability, and characteristic functional connectivity dynamics. When aggregated across cortical hierarchies, these match the profiles from empirical data. The understanding of the brain's resting state manifold is fundamental for the construction of task-specific flows and manifolds used in theories of brain function. In addition, it shifts the focus from the single recordings towards the brain's capacity to generate certain dynamics characteristic of health and pathology.
Collapse
Affiliation(s)
- Jan Fousek
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix Marseille University, 13005, Marseille, France.
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic.
| | - Giovanni Rabuffo
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix Marseille University, 13005, Marseille, France
| | - Kashyap Gudibanda
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix Marseille University, 13005, Marseille, France
| | - Hiba Sheheitli
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Spase Petkoski
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix Marseille University, 13005, Marseille, France
| | - Viktor Jirsa
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix Marseille University, 13005, Marseille, France.
| |
Collapse
|
3
|
Allen JD, Varanasi S, Han F, Hong LE, Choa FS. Functional Connectivity Biomarker Extraction for Schizophrenia Based on Energy Landscape Machine Learning Techniques. SENSORS (BASEL, SWITZERLAND) 2024; 24:7742. [PMID: 39686279 DOI: 10.3390/s24237742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024]
Abstract
Brain connectivity represents the functional organization of the brain, which is an important indicator for evaluating neuropsychiatric disorders and treatment effects. Schizophrenia is associated with impaired functional connectivity but characterizing the complex abnormality patterns has been challenging. In this work, we used resting-state functional magnetic resonance imaging (fMRI) data to measure functional connectivity between 55 schizophrenia patients and 63 healthy controls across 246 regions of interest (ROIs) and extracted the disease-related connectivity patterns using energy landscape (EL) analysis. EL analysis captures the complexity of brain function in schizophrenia by focusing on functional brain state stability and region-specific dynamics. Age, sex, and smoker demographics between patients and controls were not significantly different. However, significant patient and control differences were found for the brief psychiatric rating scale (BPRS), auditory perceptual trait and state (APTS), visual perceptual trait and state (VPTS), working memory score, and processing speed score. We found that the brains of individuals with schizophrenia have abnormal energy landscape patterns between the right and left rostral lingual gyrus, and between the left lateral and orbital area in 12/47 regions. The results demonstrate the potential of the proposed imaging analysis workflow to identify potential connectivity biomarkers by indexing specific clinical features in schizophrenia patients.
Collapse
Affiliation(s)
- Janerra D Allen
- Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Sravani Varanasi
- Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Fei Han
- The Hilltop Institute, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - L Elliot Hong
- Department of Psychiatry, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Fow-Sen Choa
- Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
4
|
Fan L, Su C, Li Y, Guo J, Huang Z, Zhang W, Liu T, Wang J. The alterations of repetitive transcranial magnetic stimulation on the energy landscape of resting-state networks differ across the human cortex. Hum Brain Mapp 2024; 45:e70029. [PMID: 39465912 PMCID: PMC11514123 DOI: 10.1002/hbm.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 10/29/2024] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a promising intervention tool for the noninvasive modulation of brain activity and behavior in neuroscience research and clinical settings. However, the resting-state dynamic evolution of large-scale functional brain networks following rTMS has rarely been investigated. Here, using resting-state fMRI images collected from 23 healthy individuals before (baseline) and after 1 Hz rTMS of the left frontal (FRO) and occipital (OCC) lobes, we examined the different effects of rTMS on brain dynamics across the human cortex. By fitting a pairwise maximum entropy model (pMEM), we constructed an energy landscape for the baseline and poststimulus conditions by fitting a pMEM. We defined dominant brain states (local minima) in the energy landscape with synergistic activation and deactivation patterns of large-scale functional networks. We calculated state dynamics including appearance probability, transitions and duration. The results showed that 1 Hz rTMS induced increased and decreased state probability, transitions and duration when delivered to the FRO and OCC targets, respectively. Most importantly, the shortest path and minimum cost between dominant brain states were altered after stimulation. The absolute sum of the costs from the source states to the destinations was lower after OCC stimulation than after FRO stimulation. In conclusion, our study characterized the dynamic trajectory of state transitions in the energy landscape and suggested that local rTMS can induce significant dynamic perturbation involving stimulated and distant functional networks, which aligns with the modern view of the dynamic and complex brain. Our results suggest low-dimensional mapping of rTMS-induced brain adaption, which will contribute to a broader and more effective application of rTMS in clinical settings.
Collapse
Affiliation(s)
- Liming Fan
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Chunwang Su
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Youjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Jinjia Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Zi‐Gang Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Wenlong Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Tian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
- The Key Laboratory of Neuro‐informatics & Rehabilitation Engineering of Ministry of Civil AffairsXi'anShaanxiP. R. China
| |
Collapse
|
5
|
Barzon G, Ambrosini E, Vallesi A, Suweis S. EEG microstate transition cost correlates with task demands. PLoS Comput Biol 2024; 20:e1012521. [PMID: 39388512 PMCID: PMC11495555 DOI: 10.1371/journal.pcbi.1012521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 10/22/2024] [Accepted: 09/28/2024] [Indexed: 10/12/2024] Open
Abstract
The ability to solve complex tasks relies on the adaptive changes occurring in the spatio-temporal organization of brain activity under different conditions. Altered flexibility in these dynamics can lead to impaired cognitive performance, manifesting for instance as difficulties in attention regulation, distraction inhibition, and behavioral adaptation. Such impairments result in decreased efficiency and increased effort in accomplishing goal-directed tasks. Therefore, developing quantitative measures that can directly assess the effort involved in these transitions using neural data is of paramount importance. In this study, we propose a framework to associate cognitive effort during the performance of tasks with electroencephalography (EEG) activation patterns. The methodology relies on the identification of discrete dynamical states (EEG microstates) and optimal transport theory. To validate the effectiveness of this framework, we apply it to a dataset collected during a spatial version of the Stroop task, a cognitive test in which participants respond to one aspect of a stimulus while ignoring another, often conflicting, aspect. The Stroop task is a cognitive test where participants must respond to one aspect of a stimulus while ignoring another, often conflicting, aspect. Our findings reveal an increased cost linked to cognitive effort, thus confirming the framework's effectiveness in capturing and quantifying cognitive transitions. By utilizing a fully data-driven method, this research opens up fresh perspectives for physiologically describing cognitive effort within the brain.
Collapse
Affiliation(s)
- Giacomo Barzon
- Padova Neuroscience Center, University of Padova, Padova, Italy
- Fondazione Bruno Kessler, Povo, Italy
| | - Ettore Ambrosini
- Padova Neuroscience Center, University of Padova, Padova, Italy
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Antonino Vallesi
- Padova Neuroscience Center, University of Padova, Padova, Italy
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Samir Suweis
- Padova Neuroscience Center, University of Padova, Padova, Italy
- Department of Physics and Astronomy “Galileo Galilei”, University of Padova, Padova, Italy
| |
Collapse
|
6
|
Rosch RE, Burrows DRW, Lynn CW, Ashourvan A. Spontaneous Brain Activity Emerges from Pairwise Interactions in the Larval Zebrafish Brain. PHYSICAL REVIEW. X 2024; 14:physrevx.14.031050. [PMID: 39925410 PMCID: PMC7617382 DOI: 10.1103/physrevx.14.031050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Brain activity is characterized by brainwide spatiotemporal patterns that emerge from synapse-mediated interactions between individual neurons. Calcium imaging provides access to in vivo recordings of whole-brain activity at single-neuron resolution and, therefore, allows the study of how large-scale brain dynamics emerge from local activity. In this study, we use a statistical mechanics approach-the pairwise maximum entropy model-to infer microscopic network features from collective patterns of activity in the larval zebrafish brain and relate these features to the emergence of observed whole-brain dynamics. Our findings indicate that the pairwise interactions between neural populations and their intrinsic activity states are sufficient to explain observed whole-brain dynamics. In fact, the pairwise relationships between neuronal populations estimated with the maximum entropy model strongly correspond to observed structural connectivity patterns. Model simulations also demonstrated how tuning pairwise neuronal interactions drives transitions between observed physiological regimes and pathologically hyperexcitable whole-brain regimes. Finally, we use virtual resection to identify the brain structures that are important for maintaining the brain in a physiological dynamic regime. Together, our results indicate that whole-brain activity emerges from a complex dynamical system that transitions between basins of attraction whose strength and topology depend on the connectivity between brain areas.
Collapse
Affiliation(s)
- Richard E. Rosch
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Departments of Neurology and Pediatrics, Columbia University Irving Medical Center, New York City, New York, USA
- Department of Imaging Neuroscience, University College London, London, United Kingdom
| | - Dominic R. W. Burrows
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom and Department of Cognitive Science, University of California, San Diego, California, USA
| | - Christopher W. Lynn
- Department of Physics, Quantitative Biology Institute, and Wu Tsai Institute, Yale University, New Haven, Connecticut, USA
| | - Arian Ashourvan
- Department of Psychology, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
7
|
Manos T, Diaz-Pier S, Fortel I, Driscoll I, Zhan L, Leow A. Enhanced simulations of whole-brain dynamics using hybrid resting-state structural connectomes. Front Comput Neurosci 2023; 17:1295395. [PMID: 38188355 PMCID: PMC10770256 DOI: 10.3389/fncom.2023.1295395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
The human brain, composed of billions of neurons and synaptic connections, is an intricate network coordinating a sophisticated balance of excitatory and inhibitory activities between brain regions. The dynamical balance between excitation and inhibition is vital for adjusting neural input/output relationships in cortical networks and regulating the dynamic range of their responses to stimuli. To infer this balance using connectomics, we recently introduced a computational framework based on the Ising model, which was first developed to explain phase transitions in ferromagnets, and proposed a novel hybrid resting-state structural connectome (rsSC). Here, we show that a generative model based on the Kuramoto phase oscillator can be used to simulate static and dynamic functional connectomes (FC) with rsSC as the coupling weight coefficients, such that the simulated FC aligns well with the observed FC when compared with that simulated traditional structural connectome.
Collapse
Affiliation(s)
- Thanos Manos
- ETIS, ENSEA, CNRS, UMR8051, CY Cergy-Paris University, Cergy, France
- Laboratoire de Physique Théorique et Modélisation, UMR 8089, CNRS, Cergy-Pontoise, CY Cergy Paris Université, Cergy, France
| | - Sandra Diaz-Pier
- Simulation and Data Lab Neuroscience, Institute for Advanced Simulation, Jülich Supercomputing Centre (JSC), JARA, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Igor Fortel
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Ira Driscoll
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alex Leow
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
8
|
Wang H, Zhu R, Tian S, Shao J, Dai Z, Xue L, Sun Y, Chen Z, Yao Z, Lu Q. Classification of bipolar disorders using the multilayer modularity in dynamic minimum spanning tree from resting state fMRI. Cogn Neurodyn 2023; 17:1609-1619. [PMID: 37974586 PMCID: PMC10640554 DOI: 10.1007/s11571-022-09907-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 07/19/2022] [Accepted: 10/28/2022] [Indexed: 12/04/2022] Open
Abstract
The diagnosis of bipolar disorders (BD) mainly depends on the clinical history and behavior observation, while only using clinical tools often limits the diagnosis accuracy. The study aimed to create a novel BD diagnosis framework using multilayer modularity in the dynamic minimum spanning tree (MST). We collected 45 un-medicated BD patients and 47 healthy controls (HC). The sliding window approach was utilized to construct dynamic MST via resting-state functional magnetic resonance imaging (fMRI) data. Firstly, we used three null models to explore the effectiveness of multilayer modularity in dynamic MST. Furthermore, the module allegiance exacted from dynamic MST was applied to train a classifier to discriminate BD patients. Finally, we explored the influence of the FC estimator and MST scale on the performance of the model. The findings indicated that multilayer modularity in the dynamic MST was not a random process in the human brain. And the model achieved an accuracy of 83.70% for identifying BD patients. In addition, we found the default mode network, subcortical network (SubC), and attention network played a key role in the classification. These findings suggested that the multilayer modularity in dynamic MST could highlight the difference between HC and BD patients, which opened up a new diagnostic tool for BD patients. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09907-x.
Collapse
Affiliation(s)
- Huan Wang
- School of Biological Sciences & Medical Engineering, Southeast University, No.2 Sipailou, Nanjing, 210096 Jiangsu Province China
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, China
| | - Rongxin Zhu
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Shui Tian
- School of Biological Sciences & Medical Engineering, Southeast University, No.2 Sipailou, Nanjing, 210096 Jiangsu Province China
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, China
| | - Junneng Shao
- School of Biological Sciences & Medical Engineering, Southeast University, No.2 Sipailou, Nanjing, 210096 Jiangsu Province China
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, China
| | - Zhongpeng Dai
- School of Biological Sciences & Medical Engineering, Southeast University, No.2 Sipailou, Nanjing, 210096 Jiangsu Province China
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, China
| | - Li Xue
- School of Biological Sciences & Medical Engineering, Southeast University, No.2 Sipailou, Nanjing, 210096 Jiangsu Province China
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, China
| | - Yurong Sun
- School of Biological Sciences & Medical Engineering, Southeast University, No.2 Sipailou, Nanjing, 210096 Jiangsu Province China
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, China
| | - Zhilu Chen
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Zhijian Yao
- School of Biological Sciences & Medical Engineering, Southeast University, No.2 Sipailou, Nanjing, 210096 Jiangsu Province China
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029 China
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, 210093 China
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, No.2 Sipailou, Nanjing, 210096 Jiangsu Province China
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, China
| |
Collapse
|
9
|
Bollt E, Fish J, Kumar A, Roque Dos Santos E, Laurienti PJ. Fractal basins as a mechanism for the nimble brain. Sci Rep 2023; 13:20860. [PMID: 38012212 PMCID: PMC10682042 DOI: 10.1038/s41598-023-45664-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/22/2023] [Indexed: 11/29/2023] Open
Abstract
An interesting feature of the brain is its ability to respond to disparate sensory signals from the environment in unique ways depending on the environmental context or current brain state. In dynamical systems, this is an example of multi-stability, the ability to switch between multiple stable states corresponding to specific patterns of brain activity/connectivity. In this article, we describe chimera states, which are patterns consisting of mixed synchrony and incoherence, in a brain-inspired dynamical systems model composed of a network with weak individual interactions and chaotic/periodic local dynamics. We illustrate the mechanism using synthetic time series interacting on a realistic anatomical brain network derived from human diffusion tensor imaging. We introduce the so-called vector pattern state (VPS) as an efficient way of identifying chimera states and mapping basin structures. Clustering similar VPSs for different initial conditions, we show that coexisting attractors of such states reveal intricately "mingled" fractal basin boundaries that are immediately reachable. This could explain the nimble brain's ability to rapidly switch patterns between coexisting attractors.
Collapse
Affiliation(s)
- Erik Bollt
- Department of Electrical and Computer Engineering, Clarkson University, 8 Clarkson Ave., Potsdam, NY, 13699, USA.
- Clarkson Center for Complex Systems Science, Clarkson University, 8 Clarkson Ave., Potsdam, NY, 13699, USA.
| | - Jeremie Fish
- Department of Electrical and Computer Engineering, Clarkson University, 8 Clarkson Ave., Potsdam, NY, 13699, USA
- Clarkson Center for Complex Systems Science, Clarkson University, 8 Clarkson Ave., Potsdam, NY, 13699, USA
| | - Anil Kumar
- Department of Electrical and Computer Engineering, Clarkson University, 8 Clarkson Ave., Potsdam, NY, 13699, USA
- Clarkson Center for Complex Systems Science, Clarkson University, 8 Clarkson Ave., Potsdam, NY, 13699, USA
| | - Edmilson Roque Dos Santos
- Department of Electrical and Computer Engineering, Clarkson University, 8 Clarkson Ave., Potsdam, NY, 13699, USA
- Clarkson Center for Complex Systems Science, Clarkson University, 8 Clarkson Ave., Potsdam, NY, 13699, USA
- Instituto de Ciências Matemáticas e Computação, Universidade de São Paulo, Av. Trab. São Carlense, 400, São Carlos, SP, 13566-590, Brazil
| | - Paul J Laurienti
- Department of Radiology, Wake Forest University School of Medicine, 475 Vine Street, Winston-Salem, NC, 27101, USA
| |
Collapse
|
10
|
Stier AJ, Cardenas-Iniguez C, Kardan O, Moore TM, Meyer FAC, Rosenberg MD, Kaczkurkin AN, Lahey BB, Berman MG. A pattern of cognitive resource disruptions in childhood psychopathology. Netw Neurosci 2023; 7:1153-1180. [PMID: 37781141 PMCID: PMC10473262 DOI: 10.1162/netn_a_00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 05/01/2023] [Indexed: 10/03/2023] Open
Abstract
The Hurst exponent (H) isolated in fractal analyses of neuroimaging time series is implicated broadly in cognition. Within this literature, H is associated with multiple mental disorders, suggesting that H is transdimensionally associated with psychopathology. Here, we unify these results and demonstrate a pattern of decreased H with increased general psychopathology and attention-deficit/hyperactivity factor scores during a working memory task in 1,839 children. This pattern predicts current and future cognitive performance in children and some psychopathology in 703 adults. This pattern also defines psychological and functional axes associating psychopathology with an imbalance in resource allocation between fronto-parietal and sensorimotor regions, driven by reduced resource allocation to fronto-parietal regions. This suggests the hypothesis that impaired working memory function in psychopathology follows from a reduced cognitive resource pool and a reduction in resources allocated to the task at hand.
Collapse
Affiliation(s)
| | | | - Omid Kardan
- Department of Psychology, University of Chicago
| | | | | | - Monica D. Rosenberg
- Department of Psychology, University of Chicago
- The Neuroscience Institute, University of Chicago
| | | | | | - Marc G. Berman
- Department of Psychology, University of Chicago
- The Neuroscience Institute, University of Chicago
| |
Collapse
|
11
|
Fortel I, Zhan L, Ajilore O, Wu Y, Mackin S, Leow A. Disrupted excitation-inhibition balance in cognitively normal individuals at risk of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554061. [PMID: 37662359 PMCID: PMC10473582 DOI: 10.1101/2023.08.21.554061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Background Sex differences impact Alzheimer's disease (AD) neuropathology, but cell-to-network level dysfunctions in the prodromal phase are unclear. Alterations in hippocampal excitation-inhibition balance (EIB) have recently been linked to early AD pathology. Objective Examine how AD risk factors (age, APOE-ɛ4, amyloid-β) relate to hippocampal EIB in cognitively normal males and females using connectome-level measures. Methods Individuals from the OASIS-3 cohort (age 42-95) were studied (N = 437), with a subset aged 65+ undergoing neuropsychological testing (N = 231). Results In absence of AD risk factors (APOE-ɛ4/Aβ+), whole-brain EIB decreases with age more significantly in males than females (p = 0.021, β = -0.007). Regression modeling including APOE-ɛ4 allele carriers (Aβ-) yielded a significant positive AGE-by-APOE interaction in the right hippocampus for females only (p = 0.013, β = 0.014), persisting with inclusion of Aβ+ individuals (p = 0.012, β = 0.014). Partial correlation analyses of neuropsychological testing showed significant associations with EIB in females: positive correlations between right hippocampal EIB with categorical fluency and whole-brain EIB with the trail-making test (p < 0.05). Conclusion Sex differences in EIB emerge during normal aging and progresses differently with AD risk. Results suggest APOE-ɛ4 disrupts hippocampal balance more than amyloid in females. Increased excitation correlates positively with neuropsychological performance in the female group, suggesting a duality in terms of potential beneficial effects prior to cognitive impairment. This underscores the translational relevance of APOE-ɛ4 related hyperexcitation in females, potentially informing therapeutic targets or early interventions to mitigate AD progression in this vulnerable population.
Collapse
Affiliation(s)
- Igor Fortel
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL
| | - Yichao Wu
- Department of Math, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL
| | - Scott Mackin
- Department of Psychiatry, University of California - San Francisco, San Francisco, CA
| | - Alex Leow
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
12
|
Manos T, Diaz-Pier S, Fortel I, Driscoll I, Zhan L, Leow A. Enhanced simulations of whole-brain dynamics using hybrid resting-state structural connectomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528836. [PMID: 36824821 PMCID: PMC9948985 DOI: 10.1101/2023.02.16.528836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The human brain, composed of billions of neurons and synaptic connections, is an intricate network coordinating a sophisticated balance of excitatory and inhibitory activity between brain regions. The dynamical balance between excitation and inhibition is vital for adjusting neural input/output relationships in cortical networks and regulating the dynamic range of their responses to stimuli. To infer this balance using connectomics, we recently introduced a computational framework based on the Ising model, first developed to explain phase transitions in ferromagnets, and proposed a novel hybrid resting-state structural connectome (rsSC). Here, we show that a generative model based on the Kuramoto phase oscillator can be used to simulate static and dynamic functional connectomes (FC) with rsSC as the coupling weight coefficients, such that the simulated FC well aligns with the observed FC when compared to that simulated with traditional structural connectome. Simulations were performed using the open source framework The Virtual Brain on High Performance Computing infrastructure.
Collapse
|
13
|
Fortel I, Zhan L, Ajilore O, Wu Y, Mackin S, Leow A. Disrupted Excitation-Inhibition Balance in Cognitively Normal Individuals at Risk of Alzheimer's Disease. J Alzheimers Dis 2023; 95:1449-1467. [PMID: 37718795 PMCID: PMC11260287 DOI: 10.3233/jad-230035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
BACKGROUND Sex differences impact Alzheimer's disease (AD) neuropathology, but cell-to-network level dysfunctions in the prodromal phase are unclear. Alterations in hippocampal excitation-inhibition balance (EIB) have recently been linked to early AD pathology. OBJECTIVE Examine how AD risk factors (age, APOEɛ4, amyloid-β) relate to hippocampal EIB in cognitively normal males and females using connectome-level measures. METHODS Individuals from the OASIS-3 cohort (age 42-95) were studied (N = 437), with a subset aged 65+ undergoing neuropsychological testing (N = 231). RESULTS In absence of AD risk factors (APOEɛ4/Aβ+), whole-brain EIB decreases with age more significantly in males than females (p = 0.021, β= -0.007). Regression modeling including APOEɛ4 allele carriers (Aβ-) yielded a significant positive AGE-by-APOE interaction in the right hippocampus for females only (p = 0.013, β= 0.014), persisting with inclusion of Aβ+ individuals (p = 0.012, β= 0.014). Partial correlation analyses of neuropsychological testing showed significant associations with EIB in females: positive correlations between right hippocampal EIB with categorical fluency and whole-brain EIB with the Trail Making Test (p < 0.05). CONCLUSIONS Sex differences in EIB emerge during normal aging and progresses differently with AD risk. Results suggest APOEɛ4 disrupts hippocampal balance more than amyloid in females. Increased excitation correlates positively with neuropsychological performance in the female group, suggesting a duality in terms of potential beneficial effects prior to cognitive impairment. This underscores the translational relevance of APOEɛ4 related hyperexcitation in females, potentially informing therapeutic targets or early interventions to mitigate AD progression in this vulnerable population.
Collapse
Affiliation(s)
- Igor Fortel
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Yichao Wu
- Department of Math, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Scott Mackin
- Department of Psychiatry, University of California – San Francisco, San Francisco, CA, USA
| | - Alex Leow
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
14
|
Ashourvan A, Pequito S, Bertolero M, Kim JZ, Bassett DS, Litt B. External drivers of BOLD signal's non-stationarity. PLoS One 2022; 17:e0257580. [PMID: 36121808 PMCID: PMC9484685 DOI: 10.1371/journal.pone.0257580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/01/2022] [Indexed: 11/19/2022] Open
Abstract
A fundamental challenge in neuroscience is to uncover the principles governing how the brain interacts with the external environment. However, assumptions about external stimuli fundamentally constrain current computational models. We show in silico that unknown external stimulation can produce error in the estimated linear time-invariant dynamical system. To address these limitations, we propose an approach to retrieve the external (unknown) input parameters and demonstrate that the estimated system parameters during external input quiescence uncover spatiotemporal profiles of external inputs over external stimulation periods more accurately. Finally, we unveil the expected (and unexpected) sensory and task-related extra-cortical input profiles using functional magnetic resonance imaging data acquired from 96 subjects (Human Connectome Project) during the resting-state and task scans. This dynamical systems model of the brain offers information on the structure and dimensionality of the BOLD signal's external drivers and shines a light on the likely external sources contributing to the BOLD signal's non-stationarity. Our findings show the role of exogenous inputs in the BOLD dynamics and highlight the importance of accounting for external inputs to unravel the brain's time-varying functional dynamics.
Collapse
Affiliation(s)
- Arian Ashourvan
- Department of Psychology, University of Kansas, Lawrence, KS, United States of America
| | - Sérgio Pequito
- Delft Center for Systems and Control, Delft University of Technology, Delft, Netherlands
| | - Maxwell Bertolero
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Jason Z. Kim
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Danielle S. Bassett
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America
- Penn Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Electrical & Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Physics & Astronomy, College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Brian Litt
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America
- Penn Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
15
|
Fan L, Li C, Huang ZG, Zhao J, Wu X, Liu T, Li Y, Wang J. The longitudinal neural dynamics changes of whole brain connectome during natural recovery from poststroke aphasia. NEUROIMAGE: CLINICAL 2022; 36:103190. [PMID: 36174256 PMCID: PMC9668607 DOI: 10.1016/j.nicl.2022.103190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/24/2022] [Accepted: 09/08/2022] [Indexed: 12/14/2022] Open
Abstract
Poststroke aphasia is one of the most dramatic functional deficits that results from direct damage of focal brain regions and dysfunction of large-scale brain networks. The reconstruction of language function depends on the hierarchical whole-brain dynamic reorganization. However, investigations into the longitudinal neural changes of large-scale brain networks for poststroke aphasia remain scarce. Here we characterize large-scale brain dynamics in left-frontal-stroke aphasia through energy landscape analysis. Using fMRI during an auditory comprehension task, we find that aphasia patients suffer serious whole-brain dynamics perturbation in the acute and subacute stages after stroke, in which the brains were restricted into two major activity patterns. Following spontaneous recovery process, the brain flexibility improved in the chronic stage. Critically, we demonstrated that the abnormal neural dynamics are correlated with the aberrant brain network coordination. Taken together, the energy landscape analysis exhibited that the acute poststroke aphasia has a constrained, low dimensional brain dynamics, which were replaced by less constrained and high dimensional dynamics at chronic aphasia. Our study provides a new perspective to profoundly understand the pathological mechanisms of poststroke aphasia.
Collapse
Affiliation(s)
- Liming Fan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China
| | - Chenxi Li
- Department of the Psychology of Military Medicine, Air Force Medical University, Xi’an, Shaanxi 710032, PR China
| | - Zi-gang Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China
| | - Jie Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China
| | - Xiaofeng Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China
| | - Tian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China
| | - Youjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China,Corresponding authors at: The Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, PR China.
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China,The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi’an, Shaanxi 710049, PR China,Corresponding authors at: The Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, PR China.
| |
Collapse
|
16
|
Functional MRI Changes in Patients after Thyroidectomy under General Anesthesia. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1935125. [PMID: 35774279 PMCID: PMC9239812 DOI: 10.1155/2022/1935125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/18/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022]
Abstract
Cognitive changes affecting elderly patients following surgery under anesthesia have drawn significant attention and have been investigated in considerable depth. Resting-state functional magnetic resonance imaging (rs-fMRI) can be used to assess changes in brain functional connectivity (FC) associated with postoperative changes in cognition, a common complication in seniors undergoing surgery. In this study, we recruited 20 patients over 55 of age and scheduled an elective thyroidectomy under general anesthesia to assess perioperative changes in brain FC density (FCD) in patients undergoing thyroidectomy under general anesthesia using rs-fMRI. All 20 patients underwent a series of clinical, quantitative, neurological, and neuropsychological tests and fMRI examinations on the day before surgery (Day 0) and 7 days after surgery (Day 7). The following tests were conducted on all patients: the Minimental State Examination (MMSE), the digit symbol substitution test (DSST), the trail making test (part A), the verbal fluency test, and Warrington's recognition memory test (WRMT). FMRI data were acquired using a 3T MR system; the FCD values were calculated using the REST software package. We used paired t-tests to compare the FCD between Day 7 and Day 0. A value of p < 0.05 was considered to reflect statistical significance. The postoperative FCD was significantly reduced in the supplementary motor area (SMA). Analyses of the percentage changes of errors in the WRMT revealed a significant and negative correlation with the mean percentage change of FCD in the SMA (Spearman's r = −0.54, 95% CI: (-0.80, -0.12), p = 0.014). Postoperative changes in FCD in the SMA may be associated with the perioperative neurocognitive changes in patients undergoing partial thyroidectomy under general anesthesia.
Collapse
|
17
|
Fortel I, Butler M, Korthauer LE, Zhan L, Ajilore O, Sidiropoulos A, Wu Y, Driscoll I, Schonfeld D, Leow A. Inferring excitation-inhibition dynamics using a maximum entropy model unifying brain structure and function. Netw Neurosci 2022; 6:420-444. [PMID: 35733430 PMCID: PMC9205431 DOI: 10.1162/netn_a_00220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/07/2021] [Indexed: 11/04/2022] Open
Abstract
Neural activity coordinated across different scales from neuronal circuits to large-scale brain networks gives rise to complex cognitive functions. Bridging the gap between micro- and macroscale processes, we present a novel framework based on the maximum entropy model to infer a hybrid resting-state structural connectome, representing functional interactions constrained by structural connectivity. We demonstrate that the structurally informed network outperforms the unconstrained model in simulating brain dynamics, wherein by constraining the inference model with the network structure we may improve the estimation of pairwise BOLD signal interactions. Further, we simulate brain network dynamics using Monte Carlo simulations with the new hybrid connectome to probe connectome-level differences in excitation-inhibition balance between apolipoprotein E (APOE)-ε4 carriers and noncarriers. Our results reveal sex differences among APOE-ε4 carriers in functional dynamics at criticality; specifically, female carriers appear to exhibit a lower tolerance to network disruptions resulting from increased excitatory interactions. In sum, the new multimodal network explored here enables analysis of brain dynamics through the integration of structure and function, providing insight into the complex interactions underlying neural activity such as the balance of excitation and inhibition.
Collapse
Affiliation(s)
- Igor Fortel
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Mitchell Butler
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Laura E. Korthauer
- Department of Psychology, University of Wisconsin–Milwaukee, Milwaukee, WI, USA
- Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Yichao Wu
- Department of Math, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Ira Driscoll
- Department of Psychology, University of Wisconsin–Milwaukee, Milwaukee, WI, USA
| | - Dan Schonfeld
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Alex Leow
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
18
|
Yuan J, Ji S, Luo L, Lv J, Liu T. Control energy assessment of spatial interactions among
macro‐scale
brain networks. Hum Brain Mapp 2022; 43:2181-2203. [PMID: 35072300 PMCID: PMC8996365 DOI: 10.1002/hbm.25780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/04/2021] [Accepted: 01/03/2022] [Indexed: 11/19/2022] Open
Abstract
Many recent studies have revealed that spatial interactions of functional brain networks derived from fMRI data can well model functional connectomes of the human brain. However, it has been rarely explored what the energy consumption characteristics are for such spatial interactions of macro‐scale functional networks, which remains crucial for the understanding of brain organization, behavior, and dynamics. To explore this unanswered question, this article presents a novel framework for quantitative assessment of energy consumptions of macro‐scale functional brain network's spatial interactions via two main effective computational methodologies. First, we designed a novel scheme combining dictionary learning and hierarchical clustering to derive macro‐scale consistent brain network templates that can be used to define a common reference space for brain network interactions and energy assessments. Second, the control energy consumption for driving the brain networks during their spatial interactions is computed from the viewpoint of the linear network control theory. Especially, the energetically favorable brain networks were identified and their energy characteristics were comprehensively analyzed. Experimental results on the Human Connectome Project (HCP) task‐based fMRI (tfMRI) data showed that the proposed methods can reveal meaningful, diverse energy consumption patterns of macro‐scale network interactions. In particular, those networks present remarkable differences in energy consumption. The energetically least favorable brain networks are stable and consistent across HCP tasks such as motor, language, social, and working memory tasks. In general, our framework provides a new perspective to characterize human brain functional connectomes by quantitative assessment for the energy consumption of spatial interactions of macro‐scale brain networks.
Collapse
Affiliation(s)
- Jing Yuan
- College of Artificial Intelligence Nankai University Tianjin China
| | - Senquan Ji
- College of Artificial Intelligence Nankai University Tianjin China
| | - Liao Luo
- College of Artificial Intelligence Nankai University Tianjin China
| | - Jinglei Lv
- School of Biomedical Engineering The University of Sydney Sydney New South Wales Australia
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Laboratory, Department of Computer Science and Bioimaging Research Center The University of Georgia Athens Georgia USA
| |
Collapse
|
19
|
Kobeleva X, López-González A, Kringelbach ML, Deco G. Revealing the Relevant Spatiotemporal Scale Underlying Whole-Brain Dynamics. Front Neurosci 2021; 15:715861. [PMID: 34744605 PMCID: PMC8569182 DOI: 10.3389/fnins.2021.715861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/23/2021] [Indexed: 12/02/2022] Open
Abstract
The brain rapidly processes and adapts to new information by dynamically transitioning between whole-brain functional networks. In this whole-brain modeling study we investigate the relevance of spatiotemporal scale in whole-brain functional networks. This is achieved through estimating brain parcellations at different spatial scales (100-900 regions) and time series at different temporal scales (from milliseconds to seconds) generated by a whole-brain model fitted to fMRI data. We quantify the richness of the dynamic repertoire at each spatiotemporal scale by computing the entropy of transitions between whole-brain functional networks. The results show that the optimal relevant spatial scale is around 300 regions and a temporal scale of around 150 ms. Overall, this study provides much needed evidence for the relevant spatiotemporal scales and recommendations for analyses of brain dynamics.
Collapse
Affiliation(s)
- Xenia Kobeleva
- Department of Neurology, University of Bonn, Bonn, Germany
- Computational Neuroscience Group, Department of Information and Communication Technologies, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
- German Center for Neurodegenerative Diseases (DZNE) Bonn, Bonn, Germany
| | - Ane López-González
- Computational Neuroscience Group, Department of Information and Communication Technologies, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
| | - Morten L. Kringelbach
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, United Kingdom
- Department of Clinical Medicine, Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Gustavo Deco
- Computational Neuroscience Group, Department of Information and Communication Technologies, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
20
|
Klepl D, He F, Wu M, Marco MD, Blackburn DJ, Sarrigiannis PG. Characterising Alzheimer's Disease with EEG-based Energy Landscape Analysis. IEEE J Biomed Health Inform 2021; 26:992-1000. [PMID: 34406951 DOI: 10.1109/jbhi.2021.3105397] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases, with around 50 million patients worldwide. Accessible and non-invasive methods of diagnosing and characterising AD are therefore urgently required. Electroencephalography (EEG) fulfils these criteria and is often used when studying AD. Several features derived from EEG were shown to predict AD with high accuracy, e.g. signal complexity and synchronisation. However, the dynamics of how the brain transitions between stable states have not been properly studied in the case of AD and EEG. Energy landscape analysis is a method that can be used to quantify these dynamics. This work presents the first application of this method to both AD and EEG. Energy landscape assigns energy value to each possible state, i.e. pattern of activations across brain regions. The energy is inversely proportional to the probability of occurrence. By studying the features of energy landscapes of 20 AD patients and 20 age-matched healthy counterparts (HC), significant differences are found. The dynamics of AD patients' EEG are shown to be more constrained - with more local minima, less variation in basin size, and smaller basins. We show that energy landscapes can predict AD with high accuracy, performing significantly better than baseline models. Moreover, these findings are replicated in a separate dataset including 9 AD and 10 HC above 70 years old.
Collapse
|
21
|
Zhu H, Jin W, Zhou J, Tong S, Xu X, Sun J. Nodal Memberships to Communities of Functional Brain Networks Reveal Functional Flexibility and Individualized Connectome. Cereb Cortex 2021; 31:5090-5106. [PMID: 34387312 DOI: 10.1093/cercor/bhab144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 11/12/2022] Open
Abstract
Human brain network is organized as interconnected communities for supporting cognition and behavior. Despite studies on the nonoverlapping communities of brain network, overlapping community structure and its relationship to brain function remain largely unknown. With this consideration, we employed the Bayesian nonnegative matrix factorization to decompose the functional brain networks constructed from resting-state fMRI data into overlapping communities with interdigitated mapping to functional subnetworks. By examining the heterogeneous nodal membership to communities, we classified nodes into three classes: Most nodes in somatomotor and limbic subnetworks were affiliated with one dominant community and classified as unimodule nodes; most nodes in attention and frontoparietal subnetworks were affiliated with more than two communities and classified as multimodule nodes; and the remaining nodes affiliated with two communities were classified as bimodule nodes. This three-class paradigm was highly reproducible across sessions and subjects. Furthermore, the more likely a node was classified as multimodule node, the more flexible it will be engaged in multiple tasks. Finally, the FC feature vector associated with multimodule nodes could serve as connectome "fingerprinting" to gain high subject discriminability. Together, our findings offer new insights on the flexible spatial overlapping communities that related to task-based functional flexibility and individual connectome "fingerprinting."
Collapse
Affiliation(s)
- Hong Zhu
- Shanghai Med-X Engineering Research Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Wen Jin
- Shanghai Med-X Engineering Research Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jie Zhou
- Shanghai Med-X Engineering Research Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shanbao Tong
- Shanghai Med-X Engineering Research Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiaoke Xu
- College of Information and Communication Engineering, Dalian Minzu University, Dalian 116600, China
| | - Junfeng Sun
- Shanghai Med-X Engineering Research Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
22
|
Wein S, Deco G, Tomé AM, Goldhacker M, Malloni WM, Greenlee MW, Lang EW. Brain Connectivity Studies on Structure-Function Relationships: A Short Survey with an Emphasis on Machine Learning. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2021; 2021:5573740. [PMID: 34135951 PMCID: PMC8177997 DOI: 10.1155/2021/5573740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022]
Abstract
This short survey reviews the recent literature on the relationship between the brain structure and its functional dynamics. Imaging techniques such as diffusion tensor imaging (DTI) make it possible to reconstruct axonal fiber tracks and describe the structural connectivity (SC) between brain regions. By measuring fluctuations in neuronal activity, functional magnetic resonance imaging (fMRI) provides insights into the dynamics within this structural network. One key for a better understanding of brain mechanisms is to investigate how these fast dynamics emerge on a relatively stable structural backbone. So far, computational simulations and methods from graph theory have been mainly used for modeling this relationship. Machine learning techniques have already been established in neuroimaging for identifying functionally independent brain networks and classifying pathological brain states. This survey focuses on methods from machine learning, which contribute to our understanding of functional interactions between brain regions and their relation to the underlying anatomical substrate.
Collapse
Affiliation(s)
- Simon Wein
- CIML, Biophysics, University of Regensburg, Regensburg 93040, Germany
- Experimental Psychology, University of Regensburg, Regensburg 93040, Germany
| | - Gustavo Deco
- Center for Brain and Cognition, Department of Technology and Information, University Pompeu Fabra, Carrer Tanger, 122-140, Barcelona 08018, Spain
- Institució Catalana de la Recerca i Estudis Avançats, University Barcelona, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Ana Maria Tomé
- IEETA/DETI, University de Aveiro, Aveiro 3810-193, Portugal
| | - Markus Goldhacker
- CIML, Biophysics, University of Regensburg, Regensburg 93040, Germany
- Experimental Psychology, University of Regensburg, Regensburg 93040, Germany
| | - Wilhelm M. Malloni
- Experimental Psychology, University of Regensburg, Regensburg 93040, Germany
| | - Mark W. Greenlee
- Experimental Psychology, University of Regensburg, Regensburg 93040, Germany
| | - Elmar W. Lang
- CIML, Biophysics, University of Regensburg, Regensburg 93040, Germany
| |
Collapse
|
23
|
Ashourvan A, Shah P, Pines A, Gu S, Lynn CW, Bassett DS, Davis KA, Litt B. Pairwise maximum entropy model explains the role of white matter structure in shaping emergent co-activation states. Commun Biol 2021; 4:210. [PMID: 33594239 PMCID: PMC7887247 DOI: 10.1038/s42003-021-01700-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/06/2021] [Indexed: 01/30/2023] Open
Abstract
A major challenge in neuroscience is determining a quantitative relationship between the brain's white matter structural connectivity and emergent activity. We seek to uncover the intrinsic relationship among brain regions fundamental to their functional activity by constructing a pairwise maximum entropy model (MEM) of the inter-ictal activation patterns of five patients with medically refractory epilepsy over an average of ~14 hours of band-passed intracranial EEG (iEEG) recordings per patient. We find that the pairwise MEM accurately predicts iEEG electrodes' activation patterns' probability and their pairwise correlations. We demonstrate that the estimated pairwise MEM's interaction weights predict structural connectivity and its strength over several frequencies significantly beyond what is expected based solely on sampled regions' distance in most patients. Together, the pairwise MEM offers a framework for explaining iEEG functional connectivity and provides insight into how the brain's structural connectome gives rise to large-scale activation patterns by promoting co-activation between connected structures.
Collapse
Affiliation(s)
- Arian Ashourvan
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA.
| | - Preya Shah
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Penn Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Adam Pines
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Shi Gu
- Department of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Christopher W Lynn
- Department of Physics & Astronomy, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Danielle S Bassett
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics & Astronomy, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn A Davis
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Penn Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian Litt
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Penn Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
24
|
Saberi M, Khosrowabadi R, Khatibi A, Misic B, Jafari G. Topological impact of negative links on the stability of resting-state brain network. Sci Rep 2021; 11:2176. [PMID: 33500525 PMCID: PMC7838299 DOI: 10.1038/s41598-021-81767-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 01/12/2021] [Indexed: 11/08/2022] Open
Abstract
Stability is a physical attribute that stands opposite the change. However, it is still unclear how the arrangement of links called topology affects network stability. In this study, we tackled this issue in the resting-state brain network using structural balance. Structural balance theory employs the quality of triadic associations between signed links to determine the network stability. In this study, we showed that negative links of the resting-state network make hubs to reduce balance-energy and push the network into a more stable state compared to null-networks with trivial topologies. In this regard, we created a global measure entitled 'tendency to make hub' to assess the hubness of the network. Besides, we revealed nodal degrees of negative links have an exponential distribution that confirms the existence of negative hubs. Our findings indicate that the arrangement of negative links plays an important role in the balance (stability) of the resting-state brain network.
Collapse
Affiliation(s)
- Majid Saberi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, G.C., Evin Sq., Tehran, 19839-63113, Iran
| | - Reza Khosrowabadi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, G.C., Evin Sq., Tehran, 19839-63113, Iran.
| | - Ali Khatibi
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Gholamreza Jafari
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, G.C., Evin Sq., Tehran, 19839-63113, Iran
- Physics Department, Shahid Beheshti University, G.C., Tehran, 1983969411, Iran
| |
Collapse
|
25
|
Park BY, Vos de Wael R, Paquola C, Larivière S, Benkarim O, Royer J, Tavakol S, Cruces RR, Li Q, Valk SL, Margulies DS, Mišić B, Bzdok D, Smallwood J, Bernhardt BC. Signal diffusion along connectome gradients and inter-hub routing differentially contribute to dynamic human brain function. Neuroimage 2020; 224:117429. [PMID: 33038538 DOI: 10.1016/j.neuroimage.2020.117429] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/13/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022] Open
Abstract
Human cognition is dynamic, alternating over time between externally-focused states and more abstract, often self-generated, patterns of thought. Although cognitive neuroscience has documented how networks anchor particular modes of brain function, mechanisms that describe transitions between distinct functional states remain poorly understood. Here, we examined how time-varying changes in brain function emerge within the constraints imposed by macroscale structural network organization. Studying a large cohort of healthy adults (n = 326), we capitalized on manifold learning techniques that identify low dimensional representations of structural connectome organization and we decomposed neurophysiological activity into distinct functional states and their transition patterns using Hidden Markov Models. Structural connectome organization predicted dynamic transitions anchored in sensorimotor systems and those between sensorimotor and transmodal states. Connectome topology analyses revealed that transitions involving sensorimotor states traversed short and intermediary distances and adhered strongly to communication mechanisms of network diffusion. Conversely, transitions between transmodal states involved spatially distributed hubs and increasingly engaged long-range routing. These findings establish that the structure of the cortex is optimized to allow neural states the freedom to vary between distinct modes of processing, and so provides a key insight into the neural mechanisms that give rise to the flexibility of human cognition.
Collapse
Affiliation(s)
- Bo-Yong Park
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada.
| | - Reinder Vos de Wael
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Casey Paquola
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Oualid Benkarim
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Raul R Cruces
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Qiongling Li
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Sofie L Valk
- Institute of Neuroscience and Medicine (INM-7: Brain & Behaviour), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Daniel S Margulies
- Frontlab, Institut du Cerveau et de la Moelle épinière, UPMC UMRS 1127, Inserm U 1127, CNRS UMR 7225, Paris, France
| | - Bratislav Mišić
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Danilo Bzdok
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada; Mila - Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
| | - Jonathan Smallwood
- Department of Psychology, York Neuroimaging Centre, University of York, New York, United Kingdom
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
26
|
Garcia JO, Ashourvan A, Thurman SM, Srinivasan R, Bassett DS, Vettel JM. Reconfigurations within resonating communities of brain regions following TMS reveal different scales of processing. Netw Neurosci 2020; 4:611-636. [PMID: 32885118 PMCID: PMC7462427 DOI: 10.1162/netn_a_00139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/23/2020] [Indexed: 11/23/2022] Open
Abstract
An overarching goal of neuroscience research is to understand how heterogeneous neuronal ensembles cohere into networks of coordinated activity to support cognition. To investigate how local activity harmonizes with global signals, we measured electroencephalography (EEG) while single pulses of transcranial magnetic stimulation (TMS) perturbed occipital and parietal cortices. We estimate the rapid network reconfigurations in dynamic network communities within specific frequency bands of the EEG, and characterize two distinct features of network reconfiguration, flexibility and allegiance, among spatially distributed neural sources following TMS. Using distance from the stimulation site to infer local and global effects, we find that alpha activity (8–12 Hz) reflects concurrent local and global effects on network dynamics. Pairwise allegiance of brain regions to communities on average increased near the stimulation site, whereas TMS-induced changes to flexibility were generally invariant to distance and stimulation site. In contrast, communities within the beta (13–20 Hz) band demonstrated a high level of spatial specificity, particularly within a cluster comprising paracentral areas. Together, these results suggest that focal magnetic neurostimulation to distinct cortical sites can help identify both local and global effects on brain network dynamics, and highlight fundamental differences in the manifestation of network reconfigurations within alpha and beta frequency bands. TMS may be used to probe the causal link between local regional activity and global brain dynamics. Using simultaneous TMS-EEG and dynamic community detection, we introduce what we call “resonating communities” or frequency band-specific clusters in the brain, as a way to index local and global processing. These resonating communities within the alpha and beta bands display both global (or integrating) behavior and local specificity, highlighting fundamental differences in the manifestation of network reconfigurations.
Collapse
Affiliation(s)
- Javier O Garcia
- U.S. Army CCDC Army Research Laboratory, Aberdeen Proving Ground, MD, USA
| | - Arian Ashourvan
- U.S. Army CCDC Army Research Laboratory, Aberdeen Proving Ground, MD, USA
| | - Steven M Thurman
- U.S. Army CCDC Army Research Laboratory, Aberdeen Proving Ground, MD, USA
| | - Ramesh Srinivasan
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA
| | - Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean M Vettel
- U.S. Army CCDC Army Research Laboratory, Aberdeen Proving Ground, MD, USA
| |
Collapse
|
27
|
MacDowell CJ, Buschman TJ. Low-Dimensional Spatiotemporal Dynamics Underlie Cortex-wide Neural Activity. Curr Biol 2020; 30:2665-2680.e8. [PMID: 32470366 DOI: 10.1016/j.cub.2020.04.090] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/07/2020] [Accepted: 04/30/2020] [Indexed: 01/04/2023]
Abstract
Cognition arises from the dynamic flow of neural activity through the brain. To capture these dynamics, we used mesoscale calcium imaging to record neural activity across the dorsal cortex of awake mice. We found that the large majority of variance in cortex-wide activity (∼75%) could be explained by a limited set of ∼14 "motifs" of neural activity. Each motif captured a unique spatiotemporal pattern of neural activity across the cortex. These motifs generalized across animals and were seen in multiple behavioral environments. Motif expression differed across behavioral states, and specific motifs were engaged by sensory processing, suggesting the motifs reflect core cortical computations. Together, our results show that cortex-wide neural activity is highly dynamic but that these dynamics are restricted to a low-dimensional set of motifs, potentially allowing for efficient control of behavior.
Collapse
Affiliation(s)
- Camden J MacDowell
- Princeton Neuroscience Institute, Princeton University, Washington Rd., Princeton, NJ 08540, USA; Department of Molecular Biology, Princeton University, Washington Rd., Princeton, NJ 08540, USA; Rutgers Robert Wood Johnson Medical School, 125 Paterson St., New Brunswick, NJ 08901, USA.
| | - Timothy J Buschman
- Princeton Neuroscience Institute, Princeton University, Washington Rd., Princeton, NJ 08540, USA; Department of Psychology, Princeton University, Washington Rd., Princeton, NJ 08540, USA.
| |
Collapse
|
28
|
Vohryzek J, Deco G, Cessac B, Kringelbach ML, Cabral J. Ghost Attractors in Spontaneous Brain Activity: Recurrent Excursions Into Functionally-Relevant BOLD Phase-Locking States. Front Syst Neurosci 2020; 14:20. [PMID: 32362815 PMCID: PMC7182014 DOI: 10.3389/fnsys.2020.00020] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/25/2020] [Indexed: 12/20/2022] Open
Abstract
Functionally relevant network patterns form transiently in brain activity during rest, where a given subset of brain areas exhibits temporally synchronized BOLD signals. To adequately assess the biophysical mechanisms governing intrinsic brain activity, a detailed characterization of the dynamical features of functional networks is needed from the experimental side to constrain theoretical models. In this work, we use an open-source fMRI dataset from 100 healthy participants from the Human Connectome Project and analyze whole-brain activity using Leading Eigenvector Dynamics Analysis (LEiDA), which serves to characterize brain activity at each time point by its whole-brain BOLD phase-locking pattern. Clustering these BOLD phase-locking patterns into a set of k states, we demonstrate that the cluster centroids closely overlap with reference functional subsystems. Borrowing tools from dynamical systems theory, we characterize spontaneous brain activity in the form of trajectories within the state space, calculating the Fractional Occupancy and the Dwell Times of each state, as well as the Transition Probabilities between states. Finally, we demonstrate that within-subject reliability is maximized when including the high frequency components of the BOLD signal (>0.1 Hz), indicating the existence of individual fingerprints in dynamical patterns evolving at least as fast as the temporal resolution of acquisition (here TR = 0.72 s). Our results reinforce the mechanistic scenario that resting-state networks are the expression of erratic excursions from a baseline synchronous steady state into weakly-stable partially-synchronized states - which we term ghost attractors. To better understand the rules governing the transitions between ghost attractors, we use methods from dynamical systems theory, giving insights into high-order mechanisms underlying brain function.
Collapse
Affiliation(s)
- Jakub Vohryzek
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | - Bruno Cessac
- Biovision Team, Université Côte d’Azur, Inria, France
| | - Morten L. Kringelbach
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Joana Cabral
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
| |
Collapse
|
29
|
Krzemiński D, Masuda N, Hamandi K, Singh KD, Routley B, Zhang J. Energy landscape of resting magnetoencephalography reveals fronto-parietal network impairments in epilepsy. Netw Neurosci 2020; 4:374-396. [PMID: 32537532 PMCID: PMC7286306 DOI: 10.1162/netn_a_00125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/07/2020] [Indexed: 12/13/2022] Open
Abstract
Juvenile myoclonic epilepsy (JME) is a form of idiopathic generalized epilepsy. It is yet unclear to what extent JME leads to abnormal network activation patterns. Here, we characterized statistical regularities in magnetoencephalograph (MEG) resting-state networks and their differences between JME patients and controls by combining a pairwise maximum entropy model (pMEM) and novel energy landscape analyses for MEG. First, we fitted the pMEM to the MEG oscillatory power in the front-oparietal network (FPN) and other resting-state networks, which provided a good estimation of the occurrence probability of network states. Then, we used energy values derived from the pMEM to depict an energy landscape, with a higher energy state corresponding to a lower occurrence probability. JME patients showed fewer local energy minima than controls and had elevated energy values for the FPN within the theta, beta, and gamma bands. Furthermore, simulations of the fitted pMEM showed that the proportion of time the FPN was occupied within the basins of energy minima was shortened in JME patients. These network alterations were highlighted by significant classification of individual participants employing energy values as multivariate features. Our findings suggested that JME patients had altered multistability in selective functional networks and frequency bands in the fronto-parietal cortices.
Collapse
Affiliation(s)
- Dominik Krzemiński
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, United Kingdom
| | - Naoki Masuda
- Department of Engineering Mathematics, University of Bristol, United Kingdom
| | - Khalid Hamandi
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, United Kingdom
| | - Krish D Singh
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, United Kingdom
| | - Bethany Routley
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, United Kingdom
| | - Jiaxiang Zhang
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, United Kingdom
| |
Collapse
|
30
|
Bahrami M, Lyday RG, Casanova R, Burdette JH, Simpson SL, Laurienti PJ. Using Low-Dimensional Manifolds to Map Relationships Between Dynamic Brain Networks. Front Hum Neurosci 2019; 13:430. [PMID: 31920590 PMCID: PMC6914694 DOI: 10.3389/fnhum.2019.00430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/21/2019] [Indexed: 01/12/2023] Open
Abstract
As the field of dynamic brain networks continues to expand, new methods are needed to allow for optimal handling and understanding of this explosion in data. We propose here a novel approach that embeds dynamic brain networks onto a two-dimensional (2D) manifold based on similarities and differences in network organization. Each brain network is represented as a single point on the low dimensional manifold with networks of similar topology being located in close proximity. The rich spatio-temporal information has great potential for visualization, analysis, and interpretation of dynamic brain networks. The fact that each network is represented by a single point makes it possible to switch between the low-dimensional space and the full connectivity of any given brain network. Thus, networks in a specific region of the low-dimensional space can be examined to identify network features, such as the location of brain network hubs or the interconnectivity between brain circuits. In this proof-of-concept manuscript, we show that these low dimensional manifolds contain meaningful information, as they were able to successfully discriminate between cognitive tasks and study populations. This work provides evidence that embedding dynamic brain networks onto low dimensional manifolds has the potential to help us better visualize and understand dynamic brain networks with the hope of gaining a deeper understanding of normal and abnormal brain dynamics.
Collapse
Affiliation(s)
- Mohsen Bahrami
- Laboratory for Complex Brain Networks, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Biomedical Engineering, Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem, NC, United States
| | - Robert G Lyday
- Laboratory for Complex Brain Networks, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Ramon Casanova
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jonathan H Burdette
- Laboratory for Complex Brain Networks, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Sean L Simpson
- Laboratory for Complex Brain Networks, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Paul J Laurienti
- Laboratory for Complex Brain Networks, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
31
|
Khambhati AN, Kahn AE, Costantini J, Ezzyat Y, Solomon EA, Gross RE, Jobst BC, Sheth SA, Zaghloul KA, Worrell G, Seger S, Lega BC, Weiss S, Sperling MR, Gorniak R, Das SR, Stein JM, Rizzuto DS, Kahana MJ, Lucas TH, Davis KA, Tracy JI, Bassett DS. Functional control of electrophysiological network architecture using direct neurostimulation in humans. Netw Neurosci 2019; 3:848-877. [PMID: 31410383 PMCID: PMC6663306 DOI: 10.1162/netn_a_00089] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/14/2019] [Indexed: 01/30/2023] Open
Abstract
Chronically implantable neurostimulation devices are becoming a clinically viable option for treating patients with neurological disease and psychiatric disorders. Neurostimulation offers the ability to probe and manipulate distributed networks of interacting brain areas in dysfunctional circuits. Here, we use tools from network control theory to examine the dynamic reconfiguration of functionally interacting neuronal ensembles during targeted neurostimulation of cortical and subcortical brain structures. By integrating multimodal intracranial recordings and diffusion-weighted imaging from patients with drug-resistant epilepsy, we test hypothesized structural and functional rules that predict altered patterns of synchronized local field potentials. We demonstrate the ability to predictably reconfigure functional interactions depending on stimulation strength and location. Stimulation of areas with structurally weak connections largely modulates the functional hubness of downstream areas and concurrently propels the brain towards more difficult-to-reach dynamical states. By using focal perturbations to bridge large-scale structure, function, and markers of behavior, our findings suggest that stimulation may be tuned to influence different scales of network interactions driving cognition. Brain stimulation devices capable of perturbing the physiological state of neural systems are rapidly gaining popularity for their potential to treat neurological and psychiatric disease. A root problem is that underlying dysfunction spans a large-scale network of brain regions, requiring the ability to control the complex interactions between multiple brain areas. Here, we use tools from network control theory to examine the dynamic reconfiguration of functionally interacting neuronal ensembles during targeted neurostimulation of cortical and subcortical brain structures. We demonstrate the ability to predictably reconfigure patterns of interactions between functional brain areas by modulating the strength and location of stimulation. Our findings have high significance for designing stimulation protocols capable of modulating distributed neural circuits in the human brain.
Collapse
Affiliation(s)
- Ankit N Khambhati
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ari E Kahn
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Julia Costantini
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Youssef Ezzyat
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ethan A Solomon
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University Hospital, Atlanta, GA, USA
| | - Barbara C Jobst
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Kareem A Zaghloul
- Surgical Neurology Branch, National Institutes of Health, Bethesda, MD, USA
| | | | - Sarah Seger
- Department of Neurosurgery, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Bradley C Lega
- Department of Neurosurgery, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Shennan Weiss
- Department of Neurology, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Michael R Sperling
- Department of Neurology, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Richard Gorniak
- Department of Radiology, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Sandhitsu R Das
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Joel M Stein
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel S Rizzuto
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy H Lucas
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn A Davis
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph I Tracy
- Department of Neurology, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
32
|
Cooper N, Garcia JO, Tompson SH, O’Donnell MB, Falk EB, Vettel JM. Time-evolving dynamics in brain networks forecast responses to health messaging. Netw Neurosci 2018; 3:138-156. [PMID: 30793078 PMCID: PMC6372021 DOI: 10.1162/netn_a_00058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/09/2018] [Indexed: 01/04/2023] Open
Abstract
Neuroimaging measures have been used to forecast complex behaviors, including how individuals change decisions about their health in response to persuasive communications, but have rarely incorporated metrics of brain network dynamics. How do functional dynamics within and between brain networks relate to the processes of persuasion and behavior change? To address this question, we scanned 45 adult smokers by using functional magnetic resonance imaging while they viewed anti-smoking images. Participants reported their smoking behavior and intentions to quit smoking before the scan and 1 month later. We focused on regions within four atlas-defined networks and examined whether they formed consistent network communities during this task (measured as allegiance). Smokers who showed reduced allegiance among regions within the default mode and fronto-parietal networks also demonstrated larger increases in their intentions to quit smoking 1 month later. We further examined dynamics of the ventromedial prefrontal cortex (vmPFC), as activation in this region has been frequently related to behavior change. The degree to which vmPFC changed its community assignment over time (measured as flexibility) was positively associated with smoking reduction. These data highlight the value in considering brain network dynamics for understanding message effectiveness and social processes more broadly.
Collapse
Affiliation(s)
- Nicole Cooper
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, PA, USA
- U.S. Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, MD, USA
| | - Javier O. Garcia
- U.S. Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, MD, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Steven H. Tompson
- U.S. Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, MD, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew B. O’Donnell
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily B. Falk
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean M. Vettel
- U.S. Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, MD, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, USA
| |
Collapse
|
33
|
Frässle S, Lomakina EI, Kasper L, Manjaly ZM, Leff A, Pruessmann KP, Buhmann JM, Stephan KE. A generative model of whole-brain effective connectivity. Neuroimage 2018; 179:505-529. [DOI: 10.1016/j.neuroimage.2018.05.058] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/16/2018] [Accepted: 05/24/2018] [Indexed: 12/17/2022] Open
|
34
|
Heitmann S, Breakspear M. Putting the "dynamic" back into dynamic functional connectivity. Netw Neurosci 2018; 2:150-174. [PMID: 30215031 PMCID: PMC6130444 DOI: 10.1162/netn_a_00041] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 12/30/2017] [Indexed: 01/17/2023] Open
Abstract
The study of fluctuations in time-resolved functional connectivity is a topic of substantial current interest. As the term "dynamic functional connectivity" implies, such fluctuations are believed to arise from dynamics in the neuronal systems generating these signals. While considerable activity currently attends to methodological and statistical issues regarding dynamic functional connectivity, less attention has been paid toward its candidate causes. Here, we review candidate scenarios for dynamic (functional) connectivity that arise in dynamical systems with two or more subsystems; generalized synchronization, itinerancy (a form of metastability), and multistability. Each of these scenarios arises under different configurations of local dynamics and intersystem coupling: We show how they generate time series data with nonlinear and/or nonstationary multivariate statistics. The key issue is that time series generated by coupled nonlinear systems contain a richer temporal structure than matched multivariate (linear) stochastic processes. In turn, this temporal structure yields many of the phenomena proposed as important to large-scale communication and computation in the brain, such as phase-amplitude coupling, complexity, and flexibility. The code for simulating these dynamics is available in a freeware software platform, the Brain Dynamics Toolbox.
Collapse
|
35
|
Kim J, Kang I, Chung YA, Kim TS, Namgung E, Lee S, Oh JK, Jeong HS, Cho H, Kim MJ, Kim TD, Choi SH, Lim SM, Lyoo IK, Yoon S. Altered attentional control over the salience network in complex regional pain syndrome. Sci Rep 2018; 8:7466. [PMID: 29748588 PMCID: PMC5945627 DOI: 10.1038/s41598-018-25757-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 04/12/2018] [Indexed: 12/13/2022] Open
Abstract
The degree and salience of pain have been known to be constantly monitored and modulated by the brain. In the case of maladaptive neural responses as reported in centralized pain conditions such as complex regional pain syndrome (CRPS), the perception of pain is amplified and remains elevated even without sustained peripheral pain inputs. Given that the attentional state of the brain greatly influences the perception and interpretation of pain, we investigated the role of the attention network and its dynamic interactions with other pain-related networks of the brain in CRPS. We examined alterations in the intra- and inter-network functional connectivities in 21 individuals with CRPS and 49 controls. CRPS-related reduction in intra-network functional connectivity was found in the attention network. Individuals with CRPS had greater inter-network connectivities between the attention and salience networks as compared with healthy controls. Furthermore, individuals within the CRPS group with high levels of pain catastrophizing showed greater inter-network connectivities between the attention and salience networks. Taken together, the current findings suggest that these altered connectivities may be potentially associated with the maladaptive pain coping as found in CRPS patients.
Collapse
Affiliation(s)
- Jungyoon Kim
- Ewha Brain Institute, Ewha Womnans University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Ilhyang Kang
- Ewha Brain Institute, Ewha Womnans University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Yong-An Chung
- Department of Radiology, Incheon St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, South Korea
| | - Tae-Suk Kim
- Department of Psychiatry, The Catholic University of Korea College of Medicine, Seoul, South Korea
| | - Eun Namgung
- Ewha Brain Institute, Ewha Womnans University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Suji Lee
- Ewha Brain Institute, Ewha Womnans University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Jin Kyoung Oh
- Department of Radiology, Incheon St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, South Korea
| | - Hyeonseok S Jeong
- Department of Radiology, Incheon St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, South Korea
| | - Hanbyul Cho
- Ewha Brain Institute, Ewha Womnans University, Seoul, South Korea
| | - Myeong Ju Kim
- Ewha Brain Institute, Ewha Womnans University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Tammy D Kim
- Ewha Brain Institute, Ewha Womnans University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Soo Hyun Choi
- School of Science and Engineering, Tulane University, New Orleans, USA
| | - Soo Mee Lim
- Department of Radiology, Ewha Womans University College of Medicine, Seoul, South Korea
| | - In Kyoon Lyoo
- Ewha Brain Institute, Ewha Womnans University, Seoul, South Korea. .,Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea. .,College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea.
| | - Sujung Yoon
- Ewha Brain Institute, Ewha Womnans University, Seoul, South Korea. .,Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
36
|
Yu Q, Du Y, Chen J, Sui J, Adali T, Pearlson G, Calhoun VD. Application of Graph Theory to Assess Static and Dynamic Brain Connectivity: Approaches for Building Brain Graphs. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2018; 106:886-906. [PMID: 30364630 PMCID: PMC6197492 DOI: 10.1109/jproc.2018.2825200] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Human brain connectivity is complex. Graph theory based analysis has become a powerful and popular approach for analyzing brain imaging data, largely because of its potential to quantitatively illuminate the networks, the static architecture in structure and function, the organization of dynamic behavior over time, and disease related brain changes. The first step in creating brain graphs is to define the nodes and edges connecting them. We review a number of approaches for defining brain nodes including fixed versus data-driven nodes. Expanding the narrow view of most studies which focus on static and/or single modality brain connectivity, we also survey advanced approaches and their performances in building dynamic and multi-modal brain graphs. We show results from both simulated and real data from healthy controls and patients with mental illnesse. We outline the advantages and challenges of these various techniques. By summarizing and inspecting recent studies which analyzed brain imaging data based on graph theory, this article provides a guide for developing new powerful tools to explore complex brain networks.
Collapse
Affiliation(s)
- Qingbao Yu
- Mind Research Network, Albuquerque NM 87106 USA
| | - Yuhui Du
- Mind Research Network, Albuquerque NM 87106 USA. And also with School of Computer & Information Technology, Shanxi University, Taiyuan, 030006, China
| | - Jiayu Chen
- Mind Research Network, Albuquerque NM 87106 USA
| | - Jing Sui
- University of Chinese Academy of Sciences, Beijing 100049 China. And also with CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Science (CAS), University of CAS, Beijing 100190 China
| | - Tulay Adali
- Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Godfrey Pearlson
- Olin Neuropsychiatry Research Center, Hartford, CT 06106, USA. And also with Departments of Psychiatry and Neurobiology, Yale University, New Haven, CT 06520, USA
| | - Vince D Calhoun
- Mind Research Network, Albuquerque NM 87106 USA. And also with Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
37
|
Linson A, Clark A, Ramamoorthy S, Friston K. The Active Inference Approach to Ecological Perception: General Information Dynamics for Natural and Artificial Embodied Cognition. Front Robot AI 2018; 5:21. [PMID: 33500908 PMCID: PMC7805975 DOI: 10.3389/frobt.2018.00021] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/16/2018] [Indexed: 01/01/2023] Open
Abstract
The emerging neurocomputational vision of humans as embodied, ecologically embedded, social agents—who shape and are shaped by their environment—offers a golden opportunity to revisit and revise ideas about the physical and information-theoretic underpinnings of life, mind, and consciousness itself. In particular, the active inference framework (AIF) makes it possible to bridge connections from computational neuroscience and robotics/AI to ecological psychology and phenomenology, revealing common underpinnings and overcoming key limitations. AIF opposes the mechanistic to the reductive, while staying fully grounded in a naturalistic and information-theoretic foundation, using the principle of free energy minimization. The latter provides a theoretical basis for a unified treatment of particles, organisms, and interactive machines, spanning from the inorganic to organic, non-life to life, and natural to artificial agents. We provide a brief introduction to AIF, then explore its implications for evolutionary theory, ecological psychology, embodied phenomenology, and robotics/AI research. We conclude the paper by considering implications for machine consciousness.
Collapse
Affiliation(s)
- Adam Linson
- Department of Computing Science and Mathematics, University of Stirling, Stirling, United Kingdom.,Department of Philosophy, University of Stirling, Stirling, United Kingdom.,Institute for Advanced Studies in the Humanities, University of Edinburgh, Edinburgh, United Kingdom
| | - Andy Clark
- School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, United Kingdom.,Department of Philosophy, Macquarie University, Sydney, NSW, Australia
| | - Subramanian Ramamoorthy
- School of Informatics, University of Edinburgh, Edinburgh, United Kingdom.,Edinburgh Centre for Robotics, Edinburgh, United Kingdom
| | - Karl Friston
- The Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
| |
Collapse
|
38
|
Braun U, Schaefer A, Betzel RF, Tost H, Meyer-Lindenberg A, Bassett DS. From Maps to Multi-dimensional Network Mechanisms of Mental Disorders. Neuron 2018; 97:14-31. [PMID: 29301099 PMCID: PMC5757246 DOI: 10.1016/j.neuron.2017.11.007] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 12/31/2022]
Abstract
The development of advanced neuroimaging techniques and their deployment in large cohorts has enabled an assessment of functional and structural brain network architecture at an unprecedented level of detail. Across many temporal and spatial scales, network neuroscience has emerged as a central focus of intellectual efforts, seeking meaningful descriptions of brain networks and explanatory sets of network features that underlie circuit function in health and dysfunction in disease. However, the tools of network science commonly deployed provide insight into brain function at a fundamentally descriptive level, often failing to identify (patho-)physiological mechanisms that link system-level phenomena to the multiple hierarchies of brain function. Here we describe recently developed techniques stemming from advances in complex systems and network science that have the potential to overcome this limitation, thereby contributing mechanistic insights into neuroanatomy, functional dynamics, and pathology. Finally, we build on the Research Domain Criteria framework, highlighting the notion that mental illnesses can be conceptualized as dysfunctions of neural circuitry present across conventional diagnostic boundaries, to sketch how network-based methods can be combined with pharmacological, intermediate phenotype, genetic, and magnetic stimulation studies to probe mechanisms of psychopathology.
Collapse
Affiliation(s)
- Urs Braun
- Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg, 68159 Mannheim, Germany
| | - Axel Schaefer
- Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg, 68159 Mannheim, Germany
| | - Richard F Betzel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Heike Tost
- Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg, 68159 Mannheim, Germany
| | - Andreas Meyer-Lindenberg
- Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg, 68159 Mannheim, Germany
| | - Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
39
|
Khambhati AN, Mattar MG, Wymbs NF, Grafton ST, Bassett DS. Beyond modularity: Fine-scale mechanisms and rules for brain network reconfiguration. Neuroimage 2017; 166:385-399. [PMID: 29138087 DOI: 10.1016/j.neuroimage.2017.11.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/18/2017] [Accepted: 11/07/2017] [Indexed: 11/15/2022] Open
Abstract
The human brain is in constant flux, as distinct areas engage in transient communication to support basic behaviors as well as complex cognition. The collection of interactions between cortical and subcortical areas forms a functional brain network whose topology evolves with time. Despite the nontrivial dynamics that are germane to this networked system, experimental evidence demonstrates that functional interactions organize into putative brain systems that facilitate different facets of cognitive computation. We hypothesize that such dynamic functional networks are organized around a set of rules that constrain their spatial architecture - which brain regions may functionally interact - and their temporal architecture - how these interactions fluctuate over time. To objectively uncover these organizing principles, we apply an unsupervised machine learning approach called non-negative matrix factorization to time-evolving, resting state functional networks in 20 healthy subjects. This machine learning approach automatically groups temporally co-varying functional interactions into subgraphs that represent putative topological modes of dynamic functional architecture. We find that subgraphs are stratified based on both the underlying modular organization and the topographical distance of their strongest interactions: while many subgraphs are largely contained within modules, others span between modules and are expressed differently over time. The relationship between dynamic subgraphs and modular architecture is further highlighted by the ability of time-varying subgraph expression to explain inter-individual differences in module reorganization. Collectively, these results point to the critical role that subgraphs play in constraining the topography and topology of functional brain networks. More broadly, this machine learning approach opens a new door for understanding the architecture of dynamic functional networks during both task and rest states, and for probing alterations of that architecture in disease.
Collapse
Affiliation(s)
- Ankit N Khambhati
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marcelo G Mattar
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas F Wymbs
- Department of Physical Medicine and Rehabilitation, Johns Hopkins Medical Institution, Baltimore, MD 21205, USA
| | - Scott T Grafton
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106, USA
| | - Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104 USA.
| |
Collapse
|
40
|
Betzel RF, Bassett DS. Generative models for network neuroscience: prospects and promise. J R Soc Interface 2017; 14:20170623. [PMID: 29187640 PMCID: PMC5721166 DOI: 10.1098/rsif.2017.0623] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/06/2017] [Indexed: 12/22/2022] Open
Abstract
Network neuroscience is the emerging discipline concerned with investigating the complex patterns of interconnections found in neural systems, and identifying principles with which to understand them. Within this discipline, one particularly powerful approach is network generative modelling, in which wiring rules are algorithmically implemented to produce synthetic network architectures with the same properties as observed in empirical network data. Successful models can highlight the principles by which a network is organized and potentially uncover the mechanisms by which it grows and develops. Here, we review the prospects and promise of generative models for network neuroscience. We begin with a primer on network generative models, with a discussion of compressibility and predictability, and utility in intuiting mechanisms, followed by a short history on their use in network science, broadly. We then discuss generative models in practice and application, paying particular attention to the critical need for cross-validation. Next, we review generative models of biological neural networks, both at the cellular and large-scale level, and across a variety of species including Caenorhabditis elegans, Drosophila, mouse, rat, cat, macaque and human. We offer a careful treatment of a few relevant distinctions, including differences between generative models and null models, sufficiency and redundancy, inferring and claiming mechanism, and functional and structural connectivity. We close with a discussion of future directions, outlining exciting frontiers both in empirical data collection efforts as well as in method and theory development that, together, further the utility of the generative network modelling approach for network neuroscience.
Collapse
Affiliation(s)
- Richard F Betzel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
41
|
Dynamics of large-scale fMRI networks: Deconstruct brain activity to build better models of brain function. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2017. [DOI: 10.1016/j.cobme.2017.09.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|