1
|
Sommerfeld A, Herrmann M, Heldmann M, Erhard P, Münte TF. Associations Between Intertemporal Food Choice and BMI in Adult Women: An fMRI Study Using a Quasi-realistic Design. Cogn Behav Neurol 2024:00146965-990000000-00078. [PMID: 39435613 DOI: 10.1097/wnn.0000000000000377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/15/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND Impulsivity resulting in unrestrained eating has been implicated as a contributing factor for obesity. Delay discounting (DD) tasks where individuals choose between a smaller immediate reward and a larger delayed reward provide useful data to describe impulsive decision-making and to determine the extent to which delayed rewards are discounted. OBJECTIVE To study the association between body mass index(BMI) and delay discounting for food and money in adult women. METHODS We used a DD task with real food rewards to investigate impulsive decision-making as related to BMI in participants who self-identified as women. Participants in group A had a mean BMI of 21.4 (n = 14), and participants in group B had a mean BMI of 32.2 (n = 14). Each group was tested in a hungry state during a single session. We performed fMRI during a DD task requiring participants to choose between a food item (one sandwich) constituting a smaller immediate reward and multiple food items (two, three, or four sandwiches) constituting a series of larger delayed rewards available at different intervals. The steepness of the discounting curve for food was determined from these decisions. Participants then completed a monetary discounting task to facilitate a comparison of the discounting of food and monetary rewards. RESULTS Participants in group B discounted food rewards more steeply than monetary rewards. Decisions for delayed rewards led to increased activations of brain areas related to executive control on fMRI, such as the head of the caudate nucleus and the anterior cingulate cortex (ACC) in group A, but not group B participants. CONCLUSION Our findings suggest that group B had difficulty deciding against the immediate food rewards due to insufficient recruitment of cortical control areas. Therefore, impulsivity is an important target for behavioral interventions in individuals with obesity.
Collapse
Affiliation(s)
- Anne Sommerfeld
- Institute of Psychology, University of Göttingen, Göttingen, Germany
- Department of Neuropsychology and Behavioral Neurobiology, University of Bremen, Bremen, Germany
| | - Manfred Herrmann
- Department of Neuropsychology and Behavioral Neurobiology, University of Bremen, Bremen, Germany
- Center for Advanced Imaging, Universities of Bremen and Magdeburg, Bremen, Germany
| | - Marcus Heldmann
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Peter Erhard
- Center for Advanced Imaging, Universities of Bremen and Magdeburg, Bremen, Germany
| | - Thomas F Münte
- Center of Brain Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| |
Collapse
|
2
|
Meyer-Arndt L, Brasanac J, Gamradt S, Bellmann-Strobl J, Maurer L, Mai K, Steward T, Spranger J, Schmitz-Hübsch T, Paul F, Gold SM, Weygandt M. Body mass, neuro-hormonal stress processing, and disease activity in lean to obese people with multiple sclerosis. J Neurol 2024; 271:1584-1598. [PMID: 38010499 DOI: 10.1007/s00415-023-12100-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/17/2023] [Accepted: 11/05/2023] [Indexed: 11/29/2023]
Abstract
Overweight and obesity can worsen disease activity in multiple sclerosis (MS). Although psychobiological stress processing is increasingly recognized as important obesity factor that is tightly connected to proinflammatory metabolic hormones and cytokines, its role for MS obesity remains unexplored. Consequently, we investigated the interplay between body mass index (BMI), neural stress processing (functional connectivity, FC), and immuno-hormonal stress parameters (salivary cortisol and T cell glucocorticoid [GC] sensitivity) in 57 people with MS (six obese, 19 over-, 28 normal-, and four underweight; 37 females, 46.4 ± 10.6 years) using an Arterial-Spin-Labeling MRI task comprising a rest and stress stage, along with quantitative PCR. Our findings revealed significant positive connections between BMI and MS disease activity (i.e., higher BMI was accompanied by higher relapse rate). BMI was positively linked to right supramarginal gyrus and anterior insula FC during rest and negatively to right superior parietal lobule and cerebellum FC during stress. BMI showed associations with GC functioning, with higher BMI associated with lower CD8+ FKBP4 expression and higher CD8+ FKBP5 expression on T cells. Finally, the expression of CD8+ FKBP4 positively correlated with the FC of right supramarginal gyrus and left superior parietal lobule during rest. Overall, our study provides evidence that body mass is tied to neuro-hormonal stress processing in people with MS. The observed pattern of associations between BMI, neural networks, and GC functioning suggests partial overlap between neuro-hormonal and neural-body mass networks. Ultimately, the study underscores the clinical importance of understanding multi-system crosstalk in MS obesity.
Collapse
Affiliation(s)
- Lil Meyer-Arndt
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13125, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, 10117, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Jelena Brasanac
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13125, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, 10117, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203, Berlin, Germany
| | - Stefanie Gamradt
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203, Berlin, Germany
| | - Judith Bellmann-Strobl
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13125, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Lukas Maurer
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Max Rubner Center for Cardiovascular-Metabolic-Renal Research, 10117, Berlin, Germany
- Berlin Institute of Health, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany
| | - Knut Mai
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany
| | - Trevor Steward
- Melbourne School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Redmond Barry Building #817, Parkville, VIC, 3010, Australia
| | - Joachim Spranger
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Max Rubner Center for Cardiovascular-Metabolic-Renal Research, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany
| | - Tanja Schmitz-Hübsch
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13125, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, 10117, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13125, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, 10117, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Stefan M Gold
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203, Berlin, Germany
- Department of Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), Center for Molecular Neurobiology Hamburg, Universitätsklinikum Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Martin Weygandt
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany.
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13125, Berlin, Germany.
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, 10117, Berlin, Germany.
| |
Collapse
|
3
|
Mattavelli G, Gorrino I, Tornaghi D, Canessa N. Cognitive and motor impulsivity in the healthy brain, and implications for eating disorders and obesity: A coordinate-based meta-analysis and systematic review. Cortex 2024; 171:90-112. [PMID: 37984247 DOI: 10.1016/j.cortex.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/10/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023]
Abstract
Alterations in the impulse-control balance, and in its neural bases, have been reported in obesity and eating disorders (EDs). Neuroimaging studies suggest a role of fronto-parietal networks in impulsive behaviour, with evaluation and anticipatory processes additionally recruiting meso-limbic regions. However, whether distinct facets of cognitive and motor impulsivity involve common vs. specific neural correlates remains unclear. We addressed this issue through Activation Likelihood Estimation (ALE) meta-analyses of fMRI studies on delay discounting (DD) and go/no-go (GNG) tasks, alongside conjunction and subtraction analyses. We also performed systematic reviews of neuroimaging studies using the same tasks in individuals with obesity or EDs. ALE results showed consistent activations in the striatum, anterior/posterior cingulate cortex, medial/left superior frontal gyrus and left supramarginal gyrus for impulsive choices in DD, while GNG tasks elicited mainly right-lateralized fronto-parietal activations. Conjunction and subtraction analyses showed: i) common bilateral responses in the caudate nucleus; ii) DD-specific responses in the ventral striatum, anterior/posterior cingulate cortex, left supramarginal and medial frontal gyri; iii) GNG-specific activations in the right inferior parietal cortex. Altered fronto-lateral responses to both tasks are suggestive of dysfunctional cortico-striatal balance in obesity and EDs, but these findings are controversial due to the limited number of studies directly comparing patients and controls. Overall, we found evidence for distinctive neural correlates of the motor and cognitive facets of impulsivity: the right inferior parietal lobe underpins action inhibition, whereas fronto-striatal regions and the left supramarginal gyrus are related to impulsive decision-making. While showing that further research on clinical samples is required to better characterize the neural bases of their behavioural changes, these findings help refining neurocognitive model of impulsivity and highlight potential translational implications for EDs and obesity treatment.
Collapse
Affiliation(s)
- Giulia Mattavelli
- IUSS Cognitive Neuroscience (ICoN) Center, Scuola Universitaria Superiore IUSS, Pavia, Italy; Cognitive Neuroscience Laboratory of Pavia Institute, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy.
| | - Irene Gorrino
- IUSS Cognitive Neuroscience (ICoN) Center, Scuola Universitaria Superiore IUSS, Pavia, Italy
| | - Diana Tornaghi
- IUSS Cognitive Neuroscience (ICoN) Center, Scuola Universitaria Superiore IUSS, Pavia, Italy
| | - Nicola Canessa
- IUSS Cognitive Neuroscience (ICoN) Center, Scuola Universitaria Superiore IUSS, Pavia, Italy; Cognitive Neuroscience Laboratory of Pavia Institute, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| |
Collapse
|
4
|
Camacho-Barcia L, Lucas I, Miranda-Olivos R, Jiménez-Murcia S, Fernández-Aranda F. Applying psycho-behavioural phenotyping in obesity characterization. Rev Endocr Metab Disord 2023; 24:871-883. [PMID: 37261609 PMCID: PMC10492697 DOI: 10.1007/s11154-023-09810-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/14/2023] [Indexed: 06/02/2023]
Abstract
Individual differences in obesity, beyond being explained by metabolic and medical complications, are understood by alterations in eating behaviour which underlie psychological processes. From this psychological perspective, studies have identified several potential characteristic features at the psycho-behavioural level that could additionally explain the maintenance of chronic excess weight or the unsuccessful results of current treatments. To date, despite the growing evidence, the heterogeneity of the psychological evidence associated with obesity has made it challenging to generate consensus on whether these psycho-behavioural phenotypes can be a complement to improve outcomes of existing interventions. For this reason, this narrative review is an overview focused on summarizing studies describing the psycho-behavioural phenotypes associated with obesity. Based on the literature, three psychological constructs have emerged: reward dependence, cognitive control, and mood and emotion. We discuss the clinical implications of stratifying and identifying these psycho-behavioural profiles as potential target for interventions which may ensure a better response to treatment in individuals with obesity. Our conclusions pointed out a considerable overlap between these psycho-behavioural phenotypes suggesting bidirectional interactions between them. These findings endorse the complexity of the psycho-behavioural features associated with obesity and reinforce the need to consider them in order to improve treatment outcomes.
Collapse
Affiliation(s)
- Lucía Camacho-Barcia
- Clinical Psychology Unit, University Hospital of Bellvitge, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviours Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain
| | - Ignacio Lucas
- Clinical Psychology Unit, University Hospital of Bellvitge, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviours Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain
| | - Romina Miranda-Olivos
- Clinical Psychology Unit, University Hospital of Bellvitge, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviours Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain
| | - Susana Jiménez-Murcia
- Clinical Psychology Unit, University Hospital of Bellvitge, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviours Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Fernando Fernández-Aranda
- Clinical Psychology Unit, University Hospital of Bellvitge, Barcelona, Spain.
- Psychoneurobiology of Eating and Addictive Behaviours Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain.
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
5
|
Brain functional and structural magnetic resonance imaging of obesity and weight loss interventions. Mol Psychiatry 2023; 28:1466-1479. [PMID: 36918706 DOI: 10.1038/s41380-023-02025-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Obesity has tripled over the past 40 years to become a major public health issue, as it is linked with increased mortality and elevated risk for various physical and neuropsychiatric illnesses. Accumulating evidence from neuroimaging studies suggests that obesity negatively affects brain function and structure, especially within fronto-mesolimbic circuitry. Obese individuals show abnormal neural responses to food cues, taste and smell, resting-state activity and functional connectivity, and cognitive tasks including decision-making, inhibitory-control, learning/memory, and attention. In addition, obesity is associated with altered cortical morphometry, a lowered gray/white matter volume, and impaired white matter integrity. Various interventions and treatments including bariatric surgery, the most effective treatment for obesity in clinical practice, as well as dietary, exercise, pharmacological, and neuromodulation interventions such as transcranial direct current stimulation, transcranial magnetic stimulation and neurofeedback have been employed and achieved promising outcomes. These interventions and treatments appear to normalize hyper- and hypoactivations of brain regions involved with reward processing, food-intake control, and cognitive function, and also promote recovery of brain structural abnormalities. This paper provides a comprehensive literature review of the recent neuroimaging advances on the underlying neural mechanisms of both obesity and interventions, in the hope of guiding development of novel and effective treatments.
Collapse
|
6
|
Guerrero-Hreins E, Foldi CJ, Oldfield BJ, Stefanidis A, Sumithran P, Brown RM. Gut-brain mechanisms underlying changes in disordered eating behaviour after bariatric surgery: a review. Rev Endocr Metab Disord 2022; 23:733-751. [PMID: 34851508 DOI: 10.1007/s11154-021-09696-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/12/2021] [Indexed: 02/07/2023]
Abstract
Bariatric surgery results in long-term weight loss and an improved metabolic phenotype due to changes in the gut-brain axis regulating appetite and glycaemia. Neuroendocrine alterations associated with bariatric surgery may also influence hedonic aspects of eating by inducing changes in taste preferences and central reward reactivity towards palatable food. However, the impact of bariatric surgery on disordered eating behaviours (e.g.: binge eating, loss-of-control eating, emotional eating and 'addictive eating'), which are commonly present in people with obesity are not well understood. Increasing evidence suggests gut-derived signals, such as appetitive hormones, bile acid profiles, microbiota concentrations and associated neuromodulatory metabolites, can influence pathways in the brain implicated in food intake, including brain areas involved in sensorimotor, reward-motivational, emotional-arousal and executive control components of food intake. As disordered eating prevalence is a key mediator of weight-loss success and patient well-being after bariatric surgery, understanding how changes in the gut-brain axis contribute to disordered eating incidence and severity after bariatric surgery is crucial to better improve treatment outcomes in people with obesity.
Collapse
Affiliation(s)
- Eva Guerrero-Hreins
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Melbourne, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia
| | - Claire J Foldi
- Department of Physiology, Monash University, Clayton, Melbourne, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Australia
| | - Brian J Oldfield
- Department of Physiology, Monash University, Clayton, Melbourne, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Australia
| | - Aneta Stefanidis
- Department of Physiology, Monash University, Clayton, Melbourne, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Australia
| | - Priya Sumithran
- Department of Medicine (St Vincent's), University of Melbourne, Melbourne, Australia
- Department of Endocrinology, Austin Health, Melbourne, Australia
| | - Robyn M Brown
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Melbourne, Australia.
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia.
| |
Collapse
|
7
|
Kozarzewski L, Maurer L, Mähler A, Spranger J, Weygandt M. Computational approaches to predicting treatment response to obesity using neuroimaging. Rev Endocr Metab Disord 2022; 23:773-805. [PMID: 34951003 PMCID: PMC9307532 DOI: 10.1007/s11154-021-09701-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/02/2021] [Indexed: 12/11/2022]
Abstract
Obesity is a worldwide disease associated with multiple severe adverse consequences and comorbid conditions. While an increased body weight is the defining feature in obesity, etiologies, clinical phenotypes and treatment responses vary between patients. These variations can be observed within individual treatment options which comprise lifestyle interventions, pharmacological treatment, and bariatric surgery. Bariatric surgery can be regarded as the most effective treatment method. However, long-term weight regain is comparably frequent even for this treatment and its application is not without risk. A prognostic tool that would help predict the effectivity of the individual treatment methods in the long term would be essential in a personalized medicine approach. In line with this objective, an increasing number of studies have combined neuroimaging and computational modeling to predict treatment outcome in obesity. In our review, we begin by outlining the central nervous mechanisms measured with neuroimaging in these studies. The mechanisms are primarily related to reward-processing and include "incentive salience" and psychobehavioral control. We then present the diverse neuroimaging methods and computational prediction techniques applied. The studies included in this review provide consistent support for the importance of incentive salience and psychobehavioral control for treatment outcome in obesity. Nevertheless, further studies comprising larger sample sizes and rigorous validation processes are necessary to answer the question of whether or not the approach is sufficiently accurate for clinical real-world application.
Collapse
Affiliation(s)
- Leonard Kozarzewski
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Clinic of Endocrinology, Diabetes and Metabolism, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Center for Cardiovascular Research, 10117, Berlin, Germany
| | - Lukas Maurer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Clinic of Endocrinology, Diabetes and Metabolism, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Center for Cardiovascular Research, 10117, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Anja Mähler
- Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center (ECRC), 13125, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, NeuroCure Clinical Research Center, 10117, Berlin, Germany
| | - Joachim Spranger
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Clinic of Endocrinology, Diabetes and Metabolism, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Center for Cardiovascular Research, 10117, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Martin Weygandt
- Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center (ECRC), 13125, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, NeuroCure Clinical Research Center, 10117, Berlin, Germany.
| |
Collapse
|
8
|
Dan O, Wertheimer EK, Levy I. A Neuroeconomics Approach to Obesity. Biol Psychiatry 2022; 91:860-868. [PMID: 34861975 PMCID: PMC8960474 DOI: 10.1016/j.biopsych.2021.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022]
Abstract
Obesity is a heterogeneous condition that is affected by physiological, behavioral, and environmental factors. Value-based decision making is a useful framework for integrating these factors at the individual level. The disciplines of behavioral economics and reinforcement learning provide tools for identifying specific cognitive and motivational processes that may contribute to the development and maintenance of obesity. Neuroeconomics complements these disciplines by studying the neural mechanisms underlying these processes. We surveyed recent literature on individual decision characteristics that are most frequently implicated in obesity: discounting the value of future outcomes, attitudes toward uncertainty, and learning from rewards and punishments. Our survey highlighted both consistent and inconsistent behavioral findings. These findings underscore the need to examine multiple processes within individuals to identify unique behavioral profiles associated with obesity. Such individual characterization will inform future studies on the neurobiology of obesity as well as the design of effective interventions that are individually tailored.
Collapse
Affiliation(s)
- Ohad Dan
- Department of Comparative Medicine, Yale University, New Haven, Connecticut
| | - Emily K Wertheimer
- Department of Comparative Medicine, Yale University, New Haven, Connecticut
| | - Ifat Levy
- Department of Comparative Medicine, Yale University, New Haven, Connecticut; Department of Neuroscience, Yale University, New Haven, Connecticut; Department of Psychology, Yale University, New Haven, Connecticut; Wu Tsai Institute, Yale University, New Haven, Connecticut.
| |
Collapse
|
9
|
Meyer-Arndt L, Kuchling J, Brasanac J, Hermann A, Asseyer S, Bellmann-Strobl J, Paul F, Gold SM, Weygandt M. Prefrontal-amygdala emotion regulation and depression in multiple sclerosis. Brain Commun 2022; 4:fcac152. [PMID: 35770132 PMCID: PMC9218780 DOI: 10.1093/braincomms/fcac152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/04/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Depression is among the most common comorbidities in multiple sclerosis and has severe psychosocial consequences. Alterations in neural emotion regulation in amygdala and prefrontal cortex have been recognized as key mechanism of depression but never been investigated in multiple sclerosis depression. In this cross-sectional observational study, we employed a functional MRI task investigating neural emotion regulation by contrasting regulated versus unregulated negative stimulus perception in 16 persons with multiple sclerosis and depression (47.9 ± 11.8 years; 14 female) and 26 persons with multiple sclerosis but without depression (47.3 ± 11.7 years; 14 female). We tested the impact of depression and its interaction with lesions in amygdala-prefrontal fibre tracts on brain activity reflecting emotion regulation. A potential impact of sex, age, information processing speed, disease duration, overall lesion load, grey matter fraction, and treatment was taken into account in these analyses. Patients with depression were less able (i) to downregulate negative emotions than those without (t = −2.25, P = 0.012, β = −0.33) on a behavioural level according to self-report data and (ii) to downregulate activity in a left amygdala coordinate (t = 3.03, PFamily-wise error [FWE]-corrected = 0.017, β = 0.39). Moreover, (iii) an interdependent effect of depression and lesions in amygdala-prefrontal tracts on activity was found in two left amygdala coordinates (t = 3.53, pFWE = 0.007, β = 0.48; t = 3.21, pFWE = 0.0158, β = 0.49) and one right amygdala coordinate (t = 3.41, pFWE = 0.009, β = 0.51). Compatible with key elements of the cognitive depression theory formulated for idiopathic depression, our study demonstrates that depression in multiple sclerosis is characterized by impaired neurobehavioural emotion regulation. Complementing these findings, it shows that the relation between neural emotion regulation and depression is affected by lesion load, a key pathological feature of multiple sclerosis, located in amygdala-prefrontal tracts.
Collapse
Affiliation(s)
- Lil Meyer-Arndt
- Experimental and Clinical Research Center, a Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin , Berlin , Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center , Lindenberger Weg 80, 13125 Berlin , Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center , 10117 Berlin , Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology , 10117 Berlin , Germany
| | - Joseph Kuchling
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center , 10117 Berlin , Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology , 10117 Berlin , Germany
| | - Jelena Brasanac
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center , 10117 Berlin , Germany
| | - Andrea Hermann
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen , Germany
- Bender Institute of Neuroimaging, Justus Liebig University Giessen , Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen , Germany
| | - Susanna Asseyer
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center , 10117 Berlin , Germany
| | - Judith Bellmann-Strobl
- Experimental and Clinical Research Center, a Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin , Berlin , Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center , Lindenberger Weg 80, 13125 Berlin , Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center , 10117 Berlin , Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, a Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin , Berlin , Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center , Lindenberger Weg 80, 13125 Berlin , Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center , 10117 Berlin , Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology , 10117 Berlin , Germany
| | - Stefan M Gold
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Medical Department - Section of Psychosomatic Medicine , Campus Benjamin Franklin, 12203 Berlin , Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, 12203 Berlin , Germany
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), Center for Molecular Neurobiology Hamburg, Universitätsklinikum Hamburg-Eppendorf , 20251 Hamburg , Germany
| | - Martin Weygandt
- Experimental and Clinical Research Center, a Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin , Berlin , Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center , Lindenberger Weg 80, 13125 Berlin , Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center , 10117 Berlin , Germany
| |
Collapse
|
10
|
Brasanac J, Hetzer S, Asseyer S, Kuchling J, Bellmann-Strobl J, Ritter K, Gamradt S, Scheel M, Haynes JD, Brandt AU, Paul F, Gold SM, Weygandt M. Central stress processing, T cell responsivity to stress hormones, and disease severity in multiple sclerosis. Brain Commun 2022; 4:fcac086. [PMID: 35441135 PMCID: PMC9014535 DOI: 10.1093/braincomms/fcac086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 11/18/2021] [Accepted: 03/31/2022] [Indexed: 12/03/2022] Open
Abstract
Epidemiological, clinical and neuroscientific studies support a link between psychobiological stress and multiple sclerosis. Neuroimaging suggests that blunted central stress processing goes along with higher multiple sclerosis severity, neuroendocrine studies suggest that blunted immune system sensitivity to stress hormones is linked to stronger neuroinflammation. Until now, however, no effort has been made to elucidate whether central stress processing and immune system sensitivity to stress hormones are related in a disease-specific fashion, and if so, whether this relation is clinically meaningful. Consequently, we conducted two functional MRI analyses based on a total of 39 persons with multiple sclerosis and 25 healthy persons. Motivated by findings of an altered interplay between neuroendocrine stress processing and T-cell glucocorticoid sensitivity in multiple sclerosis, we searched for neural networks whose stress task-evoked activity is differentially linked to peripheral T-cell glucocorticoid signalling in patients versus healthy persons as a potential indicator of disease-specific CNS–immune crosstalk. Subsequently, we tested whether this activity is simultaneously related to disease severity. We found that activity of a network comprising right anterior insula, right fusiform gyrus, left midcingulate and lingual gyrus was differentially coupled to T-cell glucocorticoid signalling across groups. This network’s activity was simultaneously linked to patients’ lesion volume, clinical disability and information-processing speed. Complementary analyses revealed that T-cell glucocorticoid signalling was not directly linked to disease severity. Our findings show that alterations in the coupling between central stress processing and T-cell stress hormone sensitivity are related to key severity measures of multiple sclerosis.
Collapse
Affiliation(s)
- Jelena Brasanac
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, 10117 Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, 12203 Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Stefan Hetzer
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin Center for Advanced Neuroimaging, 10117 Berlin, Germany
| | - Susanna Asseyer
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, 10117 Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Joseph Kuchling
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, 10117 Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, 10117 Berlin, Germany
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Judith Bellmann-Strobl
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, 10117 Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Kristin Ritter
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Stefanie Gamradt
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Michael Scheel
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, 10117 Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neuroradiology, 10117 Berlin, Germany
| | - John-Dylan Haynes
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, 10117 Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin Center for Advanced Neuroimaging, 10117 Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Bernstein Center for Computational Neuroscience, 10117, Berlin, Germany
| | - Alexander U. Brandt
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, 10117 Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Department of Neurology, University of California, Irvine, CA, USA
| | - Friedemann Paul
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, 10117 Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, 10117 Berlin, Germany
| | - Stefan M. Gold
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, 12203 Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychosomatic Medicine, 10117 Berlin, Germany
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), Center for Molecular Neurobiology Hamburg, Universitätsklinikum Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Martin Weygandt
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, 10117 Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| |
Collapse
|
11
|
Meyer-Arndt L, Schmitz-Hübsch T, Bellmann-Strobl J, Brandt AU, Haynes JD, Gold SM, Paul F, Weygandt M. Neural Processes of Psychological Stress and Relaxation Predict the Future Evolution of Quality of Life in Multiple Sclerosis. Front Neurol 2021; 12:753107. [PMID: 34887828 PMCID: PMC8650716 DOI: 10.3389/fneur.2021.753107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/26/2021] [Indexed: 01/10/2023] Open
Abstract
Health-related quality of life (HRQoL) is an essential complementary parameter in the assessment of disease burden and treatment outcome in multiple sclerosis (MS) and can be affected by neuropsychiatric symptoms, which in turn are sensitive to psychological stress. However, until now, the impact of neurobiological stress and relaxation on HRQoL in MS has not been investigated. We thus evaluated whether the activity of neural networks triggered by mild psychological stress (elicited in an fMRI task comprising mental arithmetic with feedback) or by stress termination (i.e., relaxation) at baseline (T0) predicts HRQoL variations occurring between T0 and a follow-up visit (T1) in 28 patients using a robust regression and permutation testing. The median delay between T0 and T1 was 902 (range: 363–1,169) days. We assessed HRQoL based on the Hamburg Quality of Life Questionnaire in MS (HAQUAMS) and accounted for the impact of established HRQoL predictors and the cognitive performance of the participants. Relaxation-triggered activity of a widespread neural network predicted future variations in overall HRQoL (t = 3.68, pfamily−wise error [FWE]-corrected = 0.008). Complementary analyses showed that relaxation-triggered activity of the same network at baseline was associated with variations in the HAQUAMS mood subscale on an αFWE = 0.1 level (t = 3.37, pFWE = 0.087). Finally, stress-induced activity of a prefronto-limbic network predicted future variations in the HAQUAMS lower limb mobility subscale (t = −3.62, pFWE = 0.020). Functional neural network measures of psychological stress and relaxation contain prognostic information for future HRQoL evolution in MS independent of clinical predictors.
Collapse
Affiliation(s)
- Lil Meyer-Arndt
- Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Experimental and Clinical Research Center, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, Berlin, Germany
| | - Tanja Schmitz-Hübsch
- Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Experimental and Clinical Research Center, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany
| | - Judith Bellmann-Strobl
- Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Experimental and Clinical Research Center, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany
| | - Alexander U Brandt
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany.,Department of Neurology, University of California, Irvine, Irvine, CA, United States
| | - John-Dylan Haynes
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin Center for Advanced Neuroimaging, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Stefan M Gold
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychosomatic Medicine, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Berlin, Germany.,Universitätsklinikum Hamburg-Eppendorf, Institute of Neuroimmunology and Multiple Sclerosis (INIMS), Center for Molecular Neurobiology Hamburg, Hamburg, Germany
| | - Friedemann Paul
- Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Experimental and Clinical Research Center, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, Berlin, Germany
| | - Martin Weygandt
- Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Experimental and Clinical Research Center, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany
| |
Collapse
|
12
|
Shearrer GE, Sadler JR, Papantoni A, Burger KS. Earlier onset of menstruation is related to increased body mass index in adulthood and altered functional correlations between visual, task control and somatosensory brain networks. J Neuroendocrinol 2020; 32:e12891. [PMID: 32939874 PMCID: PMC8045982 DOI: 10.1111/jne.12891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 06/26/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022]
Abstract
Later onset of puberty has been associated with lower body mass index (BMI) in adulthood independent of childhood BMI. However, how the relationship between time of onset of puberty and BMI in adulthood is associated with neurocognitive outcomes is largely unstudied. In the present study, women were sampled from the Human Connectome Project 1200 parcellation, timeseries and netmats1 release (PTN) release. Inclusion criteria were: four (15 minutes) resting state fMRI scans, current measured BMI, self-reported age at onset of menstruation (a proxy of age at onset of puberty) and no endocrine complications (eg, polycystic ovarian syndrome). The effect of age at onset of menstruation, measured BMI at scan date and the interaction of age at onset of menstruation by BMI on brain functional correlation was modelled using fslnets (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets) controlling for race and age at scan. Corrected significance was set at a family-wise error probability (pFWE) < 0.05. A final sample of n = 510 (age 29.5 years ± 3.6, BMI at scan 25.9 ± 5.6 and age at onset of menstruation 12.7 ± 1.6 were included. Age at onset of menstruation was negatively associated with BMI at scan (r = - 0.19, P < 0.001). The interaction between age at onset of menstruation and BMI at scan was associated with stronger correlation between a somatosensory and visual network (t = 3.45, pFWE = 0.026) and a visual network and cingulo-opercular task control network (t = 4.74, pFWE = 0.0002). Post-hoc analyses of behavioural/cognitive measures showed no effect of the interaction between BMI and age at onset of menstruation on behavioural/cognitive measures. However, post-hoc analyses of heritability showed adult BMI and the correlation between the visual and somatosensory networks have high heritability. In sum, we report increased correlation between visual, taste-associated and self-control brain regions in women at high BMI with later age at onset of menstruation.
Collapse
Affiliation(s)
- Grace E Shearrer
- Department of Nutritional Science, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Institute, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Jennifer R Sadler
- Department of Nutritional Science, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Afroditi Papantoni
- Department of Nutritional Science, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Kyle S Burger
- Department of Nutritional Science, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Institute, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
13
|
Meyer-Arndt L, Hetzer S, Asseyer S, Bellmann-Strobl J, Scheel M, Stellmann JP, Heesen C, Engel AK, Brandt AU, Haynes JD, Paul F, Gold SM, Weygandt M. Blunted neural and psychological stress processing predicts future grey matter atrophy in multiple sclerosis. Neurobiol Stress 2020; 13:100244. [PMID: 33344700 PMCID: PMC7739031 DOI: 10.1016/j.ynstr.2020.100244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 05/27/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is characterized by two neuropathological key aspects: inflammation and neurodegeneration. Clinical studies support a prospective link between psychological stress and subsequent inflammatory disease activity. However, it is unknown if a similar link exists for grey matter (GM) degeneration as the key driver of irreversible disability. METHODS We tested whether neural network activity triggered in a psychological fMRI stress paradigm (a mental arithmetic task including social evaluation) conducted at a baseline time point predicts future GM atrophy in 25 persons with MS (14 females). Atrophy was determined between the baseline and a follow-up time point with a median delay of 1012 (Rg: 717-1439) days. Additionally, atrophy was assessed in 22 healthy subjects (13 females; median delay 771 [Rg: 740-908] days between baseline and follow-up) for comparison. RESULTS An analysis of longitudinal atrophy in patients revealed GM loss in frontal, parietal, and cerebellar areas. Cerebellar atrophy was more pronounced in patients than controls. Future parietal and cerebellar atrophy could be predicted based on activity of two networks. Perceived psychological stress was negatively related to future parietal atrophy in patients and activity of the network predictive of parietal atrophy was positively linked to perceived stress. CONCLUSIONS We have shown that blunted neural and psychological stress processing have a detrimental effect on the course of MS and are interrelated. Together with research showing that psychological and neural stress processing can be altered through interventions, our findings suggest that stress processing might constitute an important modifiable disease factor.
Collapse
Affiliation(s)
- Lil Meyer-Arndt
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, NeuroCure Clinical Research Center, 10117, Berlin, Germany
| | - Stefan Hetzer
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, Berlin Center for Advanced Neuroimaging, 10117, Berlin, Germany
| | - Susanna Asseyer
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, NeuroCure Clinical Research Center, 10117, Berlin, Germany
| | - Judith Bellmann-Strobl
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, NeuroCure Clinical Research Center, 10117, Berlin, Germany
- Max Delbrück Center for Molecular Medicine and Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, Experimental and Clinical Research Center, 13125, Berlin, Germany
| | - Michael Scheel
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, NeuroCure Clinical Research Center, 10117, Berlin, Germany
| | - Jan-Patrick Stellmann
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
- Aix-Marseille Univ, CNRS, CRMBM, UMR, 7339, Marseille Cedex, France
- APHM, Hopital de la Timone, CEMEREM, Marseille, France
| | - Christoph Heesen
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Andreas K. Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Alexander U. Brandt
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, NeuroCure Clinical Research Center, 10117, Berlin, Germany
- Department of Neurology, University of California, Irvine, CA, USA
| | - John-Dylan Haynes
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, NeuroCure Clinical Research Center, 10117, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, Berlin Center for Advanced Neuroimaging, 10117, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Bernstein Center for Computational Neuroscience, 10117, Berlin, Germany
| | - Friedemann Paul
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, NeuroCure Clinical Research Center, 10117, Berlin, Germany
- Max Delbrück Center for Molecular Medicine and Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, Experimental and Clinical Research Center, 13125, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, Department of Neurology, 10117, Berlin, Germany
| | - Stefan M. Gold
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, 12203, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, Department of Psychosomatic Medicine, 10117, Berlin, Germany
| | - Martin Weygandt
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, NeuroCure Clinical Research Center, 10117, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, Berlin Center for Advanced Neuroimaging, 10117, Berlin, Germany
| |
Collapse
|
14
|
Hu Y, Ji G, Li G, Manza P, Zhang W, Wang J, Lv G, He Y, Zhang Z, Yuan K, von Deneen KM, Chen A, Cui G, Wang H, Wiers CE, Volkow ND, Nie Y, Zhang Y, Wang GJ. Brain Connectivity, and Hormonal and Behavioral Correlates of Sustained Weight Loss in Obese Patients after Laparoscopic Sleeve Gastrectomy. Cereb Cortex 2020; 31:1284-1295. [PMID: 33037819 DOI: 10.1093/cercor/bhaa294] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022] Open
Abstract
The biological mediators that support cognitive-control and long-term weight-loss after laparoscopic sleeve gastrectomy (LSG) remain unclear. We measured peripheral appetitive hormones and brain functional-connectivity (FC) using magnetic-resonance-imaging with food cue-reactivity task in 25 obese participants at pre, 1 month, and 6 month after LSG, and compared with 30 normal weight controls. We also used diffusion-tensor-imaging to explore whether LSG increases brain structural-connectivity (SC) of regions involved in food cue-reactivity. LSG significantly decreased BMI, craving for high-calorie food cues, ghrelin, insulin, and leptin levels, and increased self-reported cognitive-control of eating behavior. LSG increased FC between the right dorsolateral prefrontal cortex (DLPFC) and the pregenual anterior cingulate cortex (pgACC) and increased SC between DLPFC and ACC at 1 month and 6 month after LSG. Reduction in BMI correlated negatively with increased FC of right DLPFC-pgACC at 1 month and with increased SC of DLPFC-ACC at 1 month and 6 month after LSG. Reduction in craving for high-calorie food cues correlated negatively with increased FC of DLPFC-pgACC at 6 month after LSG. Additionally, SC of DLPFC-ACC mediated the relationship between lower ghrelin levels and greater cognitive control. These findings provide evidence that LSG improved functional and structural connectivity in prefrontal regions, which contribute to enhanced cognitive-control and sustained weight-loss following surgery.
Collapse
Affiliation(s)
- Yang Hu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Gang Ji
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Guanya Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Wenchao Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Jia Wang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Ganggang Lv
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Yang He
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Zhida Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Kai Yuan
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Karen M von Deneen
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Antao Chen
- Department of Psychology, Southwest University, Chongqing 400715, China
| | - Guangbin Cui
- Department of Radiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Corinde E Wiers
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| |
Collapse
|
15
|
Wakonig K, Eitel F, Ritter K, Hetzer S, Schmitz-Hübsch T, Bellmann-Strobl J, Haynes JD, Brandt AU, Gold SM, Paul F, Weygandt M. Altered Coupling of Psychological Relaxation and Regional Volume of Brain Reward Areas in Multiple Sclerosis. Front Neurol 2020; 11:568850. [PMID: 33117263 PMCID: PMC7574404 DOI: 10.3389/fneur.2020.568850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/19/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Psychological stress can influence the severity of multiple sclerosis (MS), but little is known about neurobiological factors potentially counteracting these effects. Objective: To identify gray matter (GM) brain regions related to relaxation after stress exposure in persons with MS (PwMS). Methods: 36 PwMS and 21 healthy controls (HCs) reported their feeling of relaxation during a mild stress task. These markers were related to regional GM volumes, heart rate, and depressive symptoms. Results: Relaxation was differentially linked to heart rate in both groups (t = 2.20, p = 0.017), i.e., both markers were only related in HCs. Relaxation was positively linked to depressive symptoms across all participants (t = 1.99, p = 0.045) although this link differed weakly between groups (t = 1.62, p = 0.108). Primarily, the volume in medial temporal gyrus was negatively linked to relaxation in PwMS (t = -5.55, pfamily-wise-error(FWE)corrected = 0.018). A group-specific coupling of relaxation and GM volume was found in ventromedial prefrontal cortex (VMPFC) (t = -4.89, pFWE = 0.039). Conclusion: PwMS appear unable to integrate peripheral stress signals into their perception of relaxation. Together with the group-specific coupling of relaxation and VMPFC volume, a key area of the brain reward system for valuation of affectively relevant stimuli, this finding suggests a clinically relevant misinterpretation of stress-related affective stimuli in MS.
Collapse
Affiliation(s)
- Katharina Wakonig
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany
| | - Fabian Eitel
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Department of Psychiatry and Psychotherapy, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin Center for Advanced Neuroimaging, Berlin, Germany
| | - Kerstin Ritter
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Department of Psychiatry and Psychotherapy, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin Center for Advanced Neuroimaging, Berlin, Germany
| | - Stefan Hetzer
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin Center for Advanced Neuroimaging, Berlin, Germany
| | - Tanja Schmitz-Hübsch
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany
- Max Delbrück Center for Molecular Medicine and Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Experimental and Clinical Research Center, Berlin, Germany
| | - Judith Bellmann-Strobl
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany
- Max Delbrück Center for Molecular Medicine and Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Experimental and Clinical Research Center, Berlin, Germany
| | - John-Dylan Haynes
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin Center for Advanced Neuroimaging, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Alexander U. Brandt
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany
- Department of Neurology, University of California, Irvine, CA, United States
| | - Stefan M. Gold
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg Eppendorf, Hamburg, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychosomatic Medicine, Berlin, Germany
| | - Friedemann Paul
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany
- Max Delbrück Center for Molecular Medicine and Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Experimental and Clinical Research Center, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, Berlin, Germany
| | - Martin Weygandt
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany
- Max Delbrück Center for Molecular Medicine and Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Experimental and Clinical Research Center, Berlin, Germany
| |
Collapse
|
16
|
The ENGAGE-2 study: Engaging self-regulation targets to understand the mechanisms of behavior change and improve mood and weight outcomes in a randomized controlled trial (Phase 2). Contemp Clin Trials 2020; 95:106072. [PMID: 32621905 DOI: 10.1016/j.cct.2020.106072] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/02/2020] [Accepted: 06/12/2020] [Indexed: 01/07/2023]
Abstract
Despite evidence for effective integrated behavior therapy for treating comorbid obesity and depression, treatment response is highly variable and the underlying neurobiological mechanisms remain unknown. This hampers efforts to identify mechanistic targets in order to optimize treatment precision and potency. Funded within the NIH Science of Behavior Change (SOBC) Research Network, the 2-phased ENGAGE research project applies an experimental precision medicine approach to address this gap. The Phase 1 study focused on demonstrating technical feasibility, target engagement and potential neural mechanisms of responses to an integrated behavior therapy. This therapy combines a video-based behavioral weight loss program and problem-solving therapy for depression, with as-needed intensification of antidepressant medications, and its clinical effectiveness was demonstrated within a parent randomized clinical trial. Here, we describe the ENGAGE Phase 2 (ENGAGE-2) study protocol which builds on Phase 1 in 2 ways: (1) pilot testing of an motivational interviewing-enhanced, integrated behavior therapy in an independent, primarily minority patient sample, and (2) evaluation of a priori defined neural targets, specifically the negative affect (threat and sadness) circuits which demonstrated engagement and malleability in Phase 1, as mediators of therapeutic outcomes. Additionally, the Phase 2 study includes a conceptual and methodological extension to explore the role of microbiome-gut-brain and systemic immunological pathways in integrated behavioral treatment of obesity and depression. This protocol paper documents the conceptualization, design and the transdisciplinary methodologies in ENGAGE-2, which can inform future clinical and translational research in experimental precision medicine for behavior change and chronic disease management. Trial registration: ClinicalTrials.gov #NCT 03,841,682.
Collapse
|
17
|
Westwater ML, Vilar-López R, Ziauddeen H, Verdejo-García A, Fletcher PC. Combined effects of age and BMI are related to altered cortical thickness in adolescence and adulthood. Dev Cogn Neurosci 2019; 40:100728. [PMID: 31751856 PMCID: PMC6913515 DOI: 10.1016/j.dcn.2019.100728] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 10/31/2019] [Accepted: 11/03/2019] [Indexed: 12/17/2022] Open
Abstract
Overweight and obesity are associated with functional and structural alterations in the brain, but how these associations change across critical developmental periods remains unknown. Here, we examined the relationship between age, body mass index (BMI) and cortical thickness (CT) in healthy adolescents (n = 70; 14-19 y) and adults (n = 75; 25-45 y). We also examined the relationship between adiposity, impulsivity, measured by delay discounting (DD), and CT of the inferior frontal gyrus (IFG), a region key to impulse control. A significant age-by-BMI interaction was observed in both adolescents and adults; however, the direction of this relationship differed between age groups. In adolescents, increased age-adjusted BMI Z-score attenuated age-related CT reductions globally and in frontal, temporal and occipital regions. In adults, increased BMI augmented age-related CT reductions, both globally and in bilateral parietal cortex. Although DD was unrelated to adiposity in both groups, increased DD and adiposity were both associated with reduced IFG thickness in adolescents and adults. Our findings suggest that the known age effects on CT in adolescence and adulthood are moderated by adiposity. The association between weight, cortical development and its functional implications would suggest that future studies of adolescent and adult brain development take adiposity into account.
Collapse
Affiliation(s)
- Margaret L Westwater
- Department of Psychiatry, University of Cambridge, Herchel Smith Building, Addenbrooke's Hospital, Cambridge CB2 0SZ, UK.
| | - Raquel Vilar-López
- Mind, Brain and Behavior Research Center, Universidad de Granada, Granada, Spain
| | - Hisham Ziauddeen
- Department of Psychiatry, University of Cambridge, Herchel Smith Building, Addenbrooke's Hospital, Cambridge CB2 0SZ, UK; Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; Cambridgeshire and Peterborough Foundation Trust, Cambridge, CB21 5EF, UK
| | - Antonio Verdejo-García
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, Australia
| | - Paul C Fletcher
- Department of Psychiatry, University of Cambridge, Herchel Smith Building, Addenbrooke's Hospital, Cambridge CB2 0SZ, UK; Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; Cambridgeshire and Peterborough Foundation Trust, Cambridge, CB21 5EF, UK
| |
Collapse
|
18
|
Maurer L, Mai K, Krude H, Haynes JD, Weygandt M, Spranger J. Interaction of circulating GLP-1 and the response of the dorsolateral prefrontal cortex to food-cues predicts body weight development. Mol Metab 2019; 29:136-144. [PMID: 31668385 PMCID: PMC6812034 DOI: 10.1016/j.molmet.2019.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES This study evaluated the impact of the interaction between the anorexigenic incretin hormone glucagon-like peptide-1 (GLP-1) and reward-related brain activity in the dorsolateral prefrontal cortex (DLPFC), a key area of behavioral control, on future weight loss in obese individuals. METHODS We performed a weight loss-weight maintenance intervention study over 27 months. We applied an fMRI food-cue reactivity paradigm during which the participants were passively exposed to food pictures to evaluate neuronal activity in the DLPFC. Additionally, we measured concentrations of circulating GLP-1 levels during a standard oral glucose tolerance test. Phenotyping was performed consecutively before and after a 3-month low-calorie diet as well as after a randomized 12-month trial, investigating the effect of a combined behavioral intervention on body weight maintenance. Participants were then followed-up for another 12 months without further intervention. RESULTS Using voxel-wise linear mixed-effects regression analyses, we evaluated 56 measurements and identified a strong interaction between circulating, endogenous GLP-1 levels and DLPFC activity predicting body weight change over the total observation period (t = -6.17, p = 1.6 · 10-7). While neither the GLP-1 nor the DLPFC response individually predicted the subsequent weight change, participants achieved body weight loss when the GLP-1 and the DLPFC responses occurred concurrently. CONCLUSIONS Our data demonstrate an interaction between a peripheral hormonal signal and central nervous activity as robust predictor of body weight change throughout the different periods of a long-term life-style intervention. The preeminent role of their interdependency compared to the partly ambivalent effects of the single components argues for integrative approaches to improve sensitivity and reliability of weight prediction conventionally based on individual biomarkers.
Collapse
Affiliation(s)
- Lukas Maurer
- Charité - Universitätsmedizin Berlin, Clinic of Endocrinology, Diabetes and Metabolism, Berlin, Germany; Charité - Universitätsmedizin Berlin, Charité Center for Cardiovascular Research, Berlin, Germany; Berlin Institute of Health, Berlin, Germany; Charité - Universitätsmedizin Berlin, DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
| | - Knut Mai
- Charité - Universitätsmedizin Berlin, Clinic of Endocrinology, Diabetes and Metabolism, Berlin, Germany; Charité - Universitätsmedizin Berlin, DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Heiko Krude
- Charité - Universitätsmedizin Berlin, Clinic of Pediatric Endocrinology and Diabetology, Berlin, Germany
| | - John-Dylan Haynes
- Charité - Universitätsmedizin Berlin, Excellence Cluster NeuroCure, Berlin, Germany; Charité - Universitätsmedizin Berlin, Berlin Center for Advanced Neuroimaging, Department of Neurology, Berlin, Germany
| | - Martin Weygandt
- Charité - Universitätsmedizin Berlin, Excellence Cluster NeuroCure, Berlin, Germany; Charité - Universitätsmedizin Berlin, Berlin Center for Advanced Neuroimaging, Department of Neurology, Berlin, Germany
| | - Joachim Spranger
- Charité - Universitätsmedizin Berlin, Clinic of Endocrinology, Diabetes and Metabolism, Berlin, Germany; Charité - Universitätsmedizin Berlin, Charité Center for Cardiovascular Research, Berlin, Germany; Charité - Universitätsmedizin Berlin, DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
19
|
Viscoelasticity of striatal brain areas reflects variations in body mass index of lean to overweight male adults. Brain Imaging Behav 2019; 14:2477-2487. [PMID: 31512097 DOI: 10.1007/s11682-019-00200-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although a variety of MRI studies investigated the link between body mass index (BMI) and parameters of neural gray matter (GM), the technique applied in most of these studies, voxel-based morphometry (VBM), focusses on the regional GM volume, a macroscopic tissue property. Thus, the studies were not able to exploit the BMI-related information contained in the GM microstructure although PET studies suggest that these factors are important. Here, we used cerebral MR Elastography (MRE) to characterize features of tissue microstructure by evaluating the propagation of shear waves applied to the skull and to assess local tissue viscoelasticity to test the link between this parameter and BMI in 22 lean to overweight males. Unlike the majority of existing MRE studies investigating neural viscoelasticity signals averaged across large brain regions, we used the viscoelasticity of individual voxels for our experiment. Our technique revealed a negative link between BMI and viscoelasticity of two areas of the striatal reward system, i.e., right putamen (t = -8.2; pFWE-corrected = 0.005) and left globus pallidus (t = -7.1; pFWE = 0.037) which was independent of GM volume at these coordinates. Finally, comparison of BMI models based on individual voxels vs. on signals averaged across brain atlas regions demonstrates that voxel-based models explain a significantly higher proportion of variance. Consequently, our findings show that cerebral MRE is suitable to identify medically relevant microstructural tissue properties. Using a voxel-wise analysis approach, we were able to utilize the high spatial resolution of MRE for mapping BMI-related information in the brain.
Collapse
|
20
|
Weygandt M, Behrens J, Brasanac J, Söder E, Meyer-Arndt L, Wakonig K, Ritter K, Brandt AU, Bellmann-Strobl J, Gold SM, Haynes JD, Paul F. Neural mechanisms of perceptual decision-making and their link to neuropsychiatric symptoms in multiple sclerosis. Mult Scler Relat Disord 2019; 33:139-145. [PMID: 31195338 DOI: 10.1016/j.msard.2019.05.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 05/17/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Decision-making (DM) capabilities are impaired in multiple sclerosis (MS). A variety of researchers hypothesized that this impairment is associated with reduced quality of life (QoL) and neuropsychiatric symptoms. Studies explicitly testing this hypothesis, however, are rare, provided inconclusive results, or evaluated only a limited selection of DM domains. Consequently, we conducted the first MS study on perceptual DM (e.g. deciding whether a car will fit into a parking lot based on a visual percept) to test this assumption. METHODS Specifically, we used an fMRI task that measured brain activity in 30 MS patients and 19 healthy controls (HCs) while the participants repeatedly decided whether objects referenced indirectly via their written object names would fit into a shoebox to investigate neural mechanisms of perceptual DM. The objects varied in size and thus decision difficulty. From these data, we determined voxel-wise brain activity parameters reflecting (i) decision difficulty and (ii) decision speed and related them to behavioral DM performance, QoL, mild to moderate depressive symptoms, and fatigue. RESULTS Patients showed reduced DM performance. Activity reflecting decision difficulty in the middle temporal gyrus was negatively related to DM performance across MS patients and HCs; activity reflecting decision speed in MS patients was associated with depressive symptoms and fatigue in areas of the dorsal visual stream. CONCLUSION The study shows that the perceptual DM capacity is reduced in MS. Moreover, the link between neural mechanisms of perceptual DM and neuropsychiatric symptoms suggests that an impairment in this domain is clinically relevant.
Collapse
Affiliation(s)
- Martin Weygandt
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Excellence Cluster NeuroCure, Berlin 10117, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin Center for Advanced Neuroimaging, Department of Neurology, Berlin 10117, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Bernstein Center for Computational Neuroscience, Berlin 10117, Germany.
| | - Janina Behrens
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Excellence Cluster NeuroCure, Berlin 10117, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Berlin 10117, Germany
| | - Jelena Brasanac
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Excellence Cluster NeuroCure, Berlin 10117, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Berlin 12203, Germany
| | - Eveline Söder
- Department of Clinical Psychology and Psychotherapy, Institute of Psychology, University of Hamburg, Hamburg, Germany
| | - Lil Meyer-Arndt
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Excellence Cluster NeuroCure, Berlin 10117, Germany
| | - Katharina Wakonig
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Excellence Cluster NeuroCure, Berlin 10117, Germany
| | - Kerstin Ritter
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin Center for Advanced Neuroimaging, Department of Neurology, Berlin 10117, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Bernstein Center for Computational Neuroscience, Berlin 10117, Germany
| | - Alexander U Brandt
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Excellence Cluster NeuroCure, Berlin 10117, Germany
| | - Judith Bellmann-Strobl
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Excellence Cluster NeuroCure, Berlin 10117, Germany; Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin 13125, Germany
| | - Stefan M Gold
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Berlin 12203, Germany; Institute of Neuroimmunology and Multiple Sclerosis (INIMS), Center for Molecular Neurobiology, University Medical Center, Hamburg 20251, Germany
| | - John-Dylan Haynes
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Excellence Cluster NeuroCure, Berlin 10117, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin Center for Advanced Neuroimaging, Department of Neurology, Berlin 10117, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Bernstein Center for Computational Neuroscience, Berlin 10117, Germany
| | - Friedemann Paul
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Excellence Cluster NeuroCure, Berlin 10117, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Berlin 10117, Germany; Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin 13125, Germany
| |
Collapse
|