1
|
Lee MM, Stoodley CJ. Neural bases of reading fluency: A systematic review and meta-analysis. Neuropsychologia 2024; 202:108947. [PMID: 38964441 DOI: 10.1016/j.neuropsychologia.2024.108947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
Reading fluency, the ability to read quickly and accurately, is a critical marker of successful reading and is notoriously difficult to improve in reading disabled populations. Despite its importance to functional literacy, fluency is a relatively under-studied aspect of reading, and the neural correlates of reading fluency are not well understood. Here, we review the literature of the neural correlates of reading fluency as well as rapid automatized naming (RAN), a task that is robustly related to reading fluency. In a qualitative review of the neuroimaging literature, we evaluated structural and functional MRI studies of reading fluency in readers from a range of skill levels. This was followed by a quantitative activation likelihood estimate (ALE) meta-analysis of fMRI studies of reading speed and RAN measures. We anticipated that reading speed, relative to untimed reading and reading-related tasks, would harness ventral reading pathways that are thought to enable the fast, visual recognition of words. The qualitative review showed that speeded reading taps the entire canonical reading network. The meta-analysis indicated a stronger role of the ventral reading pathway in rapid reading and rapid naming. Both reviews identified regions outside the canonical reading network that contribute to reading fluency, such as the bilateral insula and superior parietal lobule. We suggest that fluent reading engages both domain-specific reading pathways as well as domain-general regions that support overall task performance and discuss future avenues of research to expand our understanding of the neural bases of fluent reading.
Collapse
Affiliation(s)
- Marissa M Lee
- Department of Neuroscience, American University, USA; Center for Applied Brain and Cognitive Sciences, Tufts University, USA
| | - Catherine J Stoodley
- Department of Neuroscience, American University, USA; Developing Brain Institute, Children's National Hospital, USA; Departments of Neurology and Pediatrics, The George Washington University School of Medicine and Health Sciences, USA.
| |
Collapse
|
2
|
Matchin W, Mollasaraei ZK, Bonilha L, Rorden C, Hickok G, den Ouden D, Fridriksson J. Verbal working memory and syntactic comprehension segregate into the dorsal and ventral streams. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.05.592577. [PMID: 38746328 PMCID: PMC11092776 DOI: 10.1101/2024.05.05.592577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Syntactic processing and verbal working memory are both essential components to sentence comprehension. Nonetheless, the separability of these systems in the brain remains unclear. To address this issue, we performed causal-inference analyses based on lesion and connectome network mapping using MRI and behavioral testing in 103 individuals with chronic post-stroke aphasia. We employed a rhyme judgment task with heavy working memory load without articulatory confounds, controlling for the overall ability to match auditory words to pictures and to perform a metalinguistic rhyme judgment, isolating the effect of working memory load. We assessed noncanonical sentence comprehension, isolating syntactic processing by incorporating residual rhyme judgment performance as a covariate for working memory load. Voxel-based lesion analyses and structural connectome-based lesion symptom mapping controlling for total lesion volume were performed, with permutation testing to correct for multiple comparisons (4,000 permutations). We observed that effects of working memory load localized to dorsal stream damage: posterior temporal-parietal lesions and frontal-parietal white matter disconnections. These effects were differentiated from syntactic comprehension deficits, which were primarily associated with ventral stream damage: lesions to temporal lobe and temporal-parietal white matter disconnections, particularly when incorporating the residual measure of working memory load as a covariate. Our results support the conclusion that working memory and syntactic processing are associated with distinct brain networks, largely loading onto dorsal and ventral streams, respectively.
Collapse
|
3
|
Casilio M, Kasdan AV, Schneck SM, Entrup JL, Levy DF, Crouch K, Wilson SM. Situating word deafness within aphasia recovery: A case report. Cortex 2024; 173:96-119. [PMID: 38387377 PMCID: PMC11073474 DOI: 10.1016/j.cortex.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/02/2023] [Accepted: 12/26/2023] [Indexed: 02/24/2024]
Abstract
Word deafness is a rare neurological disorder often observed following bilateral damage to superior temporal cortex and canonically defined as an auditory modality-specific deficit in word comprehension. The extent to which word deafness is dissociable from aphasia remains unclear given its heterogeneous presentation, and some have consequently posited that word deafness instead represents a stage in recovery from aphasia, where auditory and linguistic processing are affected to varying degrees and improve at differing rates. Here, we report a case of an individual (Mr. C) with bilateral temporal lobe lesions whose presentation evolved from a severe aphasia to an atypical form of word deafness, where auditory linguistic processing was impaired at the sentence level and beyond. We first reconstructed in detail Mr. C's stroke recovery through medical record review and supplemental interviewing. Then, using behavioral testing and multimodal neuroimaging, we documented a predominant auditory linguistic deficit in sentence and narrative comprehension-with markedly reduced behavioral performance and absent brain activation in the language network in the spoken modality exclusively. In contrast, Mr. C displayed near-unimpaired behavioral performance and robust brain activations in the language network for the linguistic processing of words, irrespective of modality. We argue that these findings not only support the view of word deafness as a stage in aphasia recovery but also further instantiate the important role of left superior temporal cortex in auditory linguistic processing.
Collapse
Affiliation(s)
| | - Anna V Kasdan
- Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Brain Institute, TN, USA
| | | | | | - Deborah F Levy
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kelly Crouch
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephen M Wilson
- Vanderbilt University Medical Center, Nashville, TN, USA; School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
4
|
Regev TI, Kim HS, Chen X, Affourtit J, Schipper AE, Bergen L, Mahowald K, Fedorenko E. High-level language brain regions process sublexical regularities. Cereb Cortex 2024; 34:bhae077. [PMID: 38494886 PMCID: PMC11486690 DOI: 10.1093/cercor/bhae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 03/19/2024] Open
Abstract
A network of left frontal and temporal brain regions supports language processing. This "core" language network stores our knowledge of words and constructions as well as constraints on how those combine to form sentences. However, our linguistic knowledge additionally includes information about phonemes and how they combine to form phonemic clusters, syllables, and words. Are phoneme combinatorics also represented in these language regions? Across five functional magnetic resonance imaging experiments, we investigated the sensitivity of high-level language processing brain regions to sublexical linguistic regularities by examining responses to diverse nonwords-sequences of phonemes that do not constitute real words (e.g. punes, silory, flope). We establish robust responses in the language network to visually (experiment 1a, n = 605) and auditorily (experiments 1b, n = 12, and 1c, n = 13) presented nonwords. In experiment 2 (n = 16), we find stronger responses to nonwords that are more well-formed, i.e. obey the phoneme-combinatorial constraints of English. Finally, in experiment 3 (n = 14), we provide suggestive evidence that the responses in experiments 1 and 2 are not due to the activation of real words that share some phonology with the nonwords. The results suggest that sublexical regularities are stored and processed within the same fronto-temporal network that supports lexical and syntactic processes.
Collapse
Affiliation(s)
- Tamar I Regev
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
| | - Hee So Kim
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
| | - Xuanyi Chen
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
- Department of Cognitive Sciences, Rice University, Houston, TX 77005, United States
| | - Josef Affourtit
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
| | - Abigail E Schipper
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
| | - Leon Bergen
- Department of Linguistics, University of California San Diego, San Diego CA 92093, United States
| | - Kyle Mahowald
- Department of Linguistics, University of Texas at Austin, Austin, TX 78712, United States
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
- The Harvard Program in Speech and Hearing Bioscience and Technology, Boston, MA 02115, United States
| |
Collapse
|
5
|
Levy DF, Entrup JL, Schneck SM, Onuscheck CF, Rahman M, Kasdan A, Casilio M, Willey E, Davis LT, de Riesthal M, Kirshner HS, Wilson SM. Multivariate lesion symptom mapping for predicting trajectories of recovery from aphasia. Brain Commun 2024; 6:fcae024. [PMID: 38370445 PMCID: PMC10873140 DOI: 10.1093/braincomms/fcae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/05/2023] [Accepted: 01/30/2024] [Indexed: 02/20/2024] Open
Abstract
Individuals with post-stroke aphasia tend to recover their language to some extent; however, it remains challenging to reliably predict the nature and extent of recovery that will occur in the long term. The aim of this study was to quantitatively predict language outcomes in the first year of recovery from aphasia across multiple domains of language and at multiple timepoints post-stroke. We recruited 217 patients with aphasia following acute left hemisphere ischaemic or haemorrhagic stroke and evaluated their speech and language function using the Quick Aphasia Battery acutely and then acquired longitudinal follow-up data at up to three timepoints post-stroke: 1 month (n = 102), 3 months (n = 98) and 1 year (n = 74). We used support vector regression to predict language outcomes at each timepoint using acute clinical imaging data, demographic variables and initial aphasia severity as input. We found that ∼60% of the variance in long-term (1 year) aphasia severity could be predicted using these models, with detailed information about lesion location importantly contributing to these predictions. Predictions at the 1- and 3-month timepoints were somewhat less accurate based on lesion location alone, but reached comparable accuracy to predictions at the 1-year timepoint when initial aphasia severity was included in the models. Specific subdomains of language besides overall severity were predicted with varying but often similar degrees of accuracy. Our findings demonstrate the feasibility of using support vector regression models with leave-one-out cross-validation to make personalized predictions about long-term recovery from aphasia and provide a valuable neuroanatomical baseline upon which to build future models incorporating information beyond neuroanatomical and demographic predictors.
Collapse
Affiliation(s)
- Deborah F Levy
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jillian L Entrup
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sarah M Schneck
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Caitlin F Onuscheck
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Maysaa Rahman
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Anna Kasdan
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Marianne Casilio
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Emma Willey
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - L Taylor Davis
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael de Riesthal
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Howard S Kirshner
- Vanderbilt Stroke and Cerebrovascular Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Stephen M Wilson
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
6
|
Bajracharya A, Peelle JE. A systematic review of neuroimaging approaches to mapping language in individuals. JOURNAL OF NEUROLINGUISTICS 2023; 68:101163. [PMID: 37637379 PMCID: PMC10449384 DOI: 10.1016/j.jneuroling.2023.101163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Although researchers often rely on group-level fMRI results to draw conclusions about the neurobiology of language, doing so without accounting for the complexities of individual brains may reduce the validity of our findings. Furthermore, understanding brain organization in individuals is critically important for both basic science and clinical translation. To assess the state of single-subject language localization in the functional neuroimaging literature, we carried out a systematic review of studies published through April 2020. Out of 977 papers identified through our search, 121 met our inclusion criteria for reporting single-subject fMRI results (fMRI studies of language in adults that report task-based single-subject statistics). Of these, 20 papers reported using a single-subject test-retest analysis to assess reliability. Thus, we found that a relatively modest number of papers reporting single-subject results quantified single-subject reliability. These varied substantially in acquisition parameters, task design, and reliability measures, creating significant challenges for making comparisons across studies. Future endeavors to optimize the localization of language networks in individuals will benefit from the standardization and broader reporting of reliability metrics for different tasks and acquisition parameters.
Collapse
Affiliation(s)
| | - Jonathan E Peelle
- Center for Cognitive and Brain Health, Department of Communication Sciences and Disorders, and Department of Psychology, Northeastern University
| |
Collapse
|
7
|
Brito AC, Levy DF, Schneck SM, Entrup JL, Onuscheck CF, Casilio M, de Riesthal M, Davis LT, Wilson SM. Leukoaraiosis Is Not Associated With Recovery From Aphasia in the First Year After Stroke. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2023; 4:536-549. [PMID: 37946731 PMCID: PMC10631799 DOI: 10.1162/nol_a_00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 06/28/2023] [Indexed: 11/12/2023]
Abstract
After a stroke, individuals with aphasia often recover to a certain extent over time. This recovery process may be dependent on the health of surviving brain regions. Leukoaraiosis (white matter hyperintensities on MRI reflecting cerebral small vessel disease) is one indication of compromised brain health and is associated with cognitive and motor impairment. Previous studies have suggested that leukoaraiosis may be a clinically relevant predictor of aphasia outcomes and recovery, although findings have been inconsistent. We investigated the relationship between leukoaraiosis and aphasia in the first year after stroke. We recruited 267 patients with acute left hemispheric stroke and coincident fluid attenuated inversion recovery MRI. Patients were evaluated for aphasia within 5 days of stroke, and 174 patients presented with aphasia acutely. Of these, 84 patients were evaluated at ∼3 months post-stroke or later to assess longer-term speech and language outcomes. Multivariable regression models were fit to the data to identify any relationships between leukoaraiosis and initial aphasia severity, extent of recovery, or longer-term aphasia severity. We found that leukoaraiosis was present to varying degrees in 90% of patients. However, leukoaraiosis did not predict initial aphasia severity, aphasia recovery, or longer-term aphasia severity. The lack of any relationship between leukoaraiosis severity and aphasia recovery may reflect the anatomical distribution of cerebral small vessel disease, which is largely medial to the white matter pathways that are critical for speech and language function.
Collapse
Affiliation(s)
| | - Deborah F. Levy
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sarah M. Schneck
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jillian L. Entrup
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Caitlin F. Onuscheck
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marianne Casilio
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael de Riesthal
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - L. Taylor Davis
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephen M. Wilson
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, USA
- School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, Australia
| |
Collapse
|
8
|
Thomas G, McMahon KL, Finch E, Copland DA. Interindividual variability and consistency of language mapping paradigms for presurgical use. BRAIN AND LANGUAGE 2023; 243:105299. [PMID: 37413742 DOI: 10.1016/j.bandl.2023.105299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/08/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023]
Abstract
Most functional MRI studies of language processing have focussed on group-level inference, but for clinical use, the aim is to predict outcomes at an individual patient level. This requires being able to identify atypical activation and understand how differences relate to language outcomes. A language mapping paradigm that selectively activates left hemisphere language regions in healthy individuals allows atypical activation in a patient to be more easily identified. We investigated the interindividual variability and consistency of language activation in 12 healthy participants using three tasks-verb generation, responsive naming, and sentence comprehension-for future presurgical use. Responsive naming produced the most consistent left-lateralised activation across participants in frontal and temporal regions that postsurgical voxel-based lesion-symptom mapping studies suggest are most critical for language outcomes. Studies with a long-term clinical aim of predicting language outcomes in neurosurgical patients and stroke patients should first establish paradigm validity at an individual level in healthy participants.
Collapse
Affiliation(s)
- Georgia Thomas
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia; Queensland Aphasia Research Centre, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia.
| | - Katie L McMahon
- School of Clinical Sciences, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia; Herston Imaging Research Facility, The University of Queensland, Brisbane, Australia
| | - Emma Finch
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia; Research and Innovation, West Moreton Health, Ipswich, Australia; Speech Pathology Department, Princess Alexandra Hospital, Brisbane, Australia
| | - David A Copland
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia; Queensland Aphasia Research Centre, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia; Surgical Treatment and Rehabilitation Service (STARS) Education and Research Alliance, The University of Queensland and Metro North Health, Queensland, Australia
| |
Collapse
|
9
|
Lu D, Wang X, Wei Y, Cui Y, Wang Y. Neural pathways of attitudes toward foreign languages predict academic performance. Front Psychol 2023; 14:1181989. [PMID: 37564316 PMCID: PMC10410274 DOI: 10.3389/fpsyg.2023.1181989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Learning attitude is thought to impact students' academic achievement and success, but the underlying neurocognitive mechanisms of learning attitudes remain unclear. The purpose of the present study was to investigate the neural markers linked to attitudes toward foreign languages and how they contribute to foreign-language performance. Forty-one Chinese speakers who hold differentiated foreign language (English) attitudes were asked to complete an English semantic judgment task during a functional magnetic resonance imaging (fMRI) experiment. Multimethod brain imaging analyses showed that, compared with the positive attitude group (PAG), the negative attitude group (NAG) showed increased brain activation in the left STG and functional connectivity between the left STG and the right precentral gyrus (PCG), as well as changed functional segregation and integration of brain networks under the English reading task, after controlling for English reading scores. Mediation analysis further revealed that left STG activity and STG-PCG connectivity mediated the relationships between English attitudes and English reading performance. Taken together, these findings suggest that objective neural markers related to subjective foreign language attitudes (FLAs) exist and that attitude-related neural pathways play important roles in determining students' academic performance. Our findings provide new insights into the neurobiological mechanisms by which attitudes regulate academic performance.
Collapse
Affiliation(s)
- Di Lu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Xin Wang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yaozhen Wei
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yue Cui
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yapeng Wang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
10
|
Levy DF, Silva AB, Scott TL, Liu JR, Harper S, Zhao L, Hullett PW, Kurteff G, Wilson SM, Leonard MK, Chang EF. Apraxia of speech with phonological alexia and agraphia following resection of the left middle precentral gyrus: illustrative case. JOURNAL OF NEUROSURGERY. CASE LESSONS 2023; 5:CASE22504. [PMID: 37014023 PMCID: PMC10550577 DOI: 10.3171/case22504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/23/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND Apraxia of speech is a disorder of speech-motor planning in which articulation is effortful and error-prone despite normal strength of the articulators. Phonological alexia and agraphia are disorders of reading and writing disproportionately affecting unfamiliar words. These disorders are almost always accompanied by aphasia. OBSERVATIONS A 36-year-old woman underwent resection of a grade IV astrocytoma based in the left middle precentral gyrus, including a cortical site associated with speech arrest during electrocortical stimulation mapping. Following surgery, she exhibited moderate apraxia of speech and difficulty with reading and spelling, both of which improved but persisted 6 months after surgery. A battery of speech and language assessments was administered, revealing preserved comprehension, naming, cognition, and orofacial praxis, with largely isolated deficits in speech-motor planning and the spelling and reading of nonwords. LESSONS This case describes a specific constellation of speech-motor and written language symptoms-apraxia of speech, phonological agraphia, and phonological alexia in the absence of aphasia-which the authors theorize may be attributable to disruption of a single process of "motor-phonological sequencing." The middle precentral gyrus may play an important role in the planning of motorically complex phonological sequences for production, independent of output modality.
Collapse
Affiliation(s)
- Deborah F. Levy
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California
| | - Alexander B. Silva
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California
- University of California Berkeley - University of California San Francisco Graduate Program in Bioengineering, Berkeley, California
- Medical Scientist Training Program, University of California, San Francisco, California
| | - Terri L. Scott
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California
| | - Jessie R. Liu
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California
- University of California Berkeley - University of California San Francisco Graduate Program in Bioengineering, Berkeley, California
| | - Sarah Harper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California
| | - Lingyun Zhao
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California
| | - Patrick W. Hullett
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California
| | - Garret Kurteff
- Department of Speech, Language, and Hearing Sciences, University of Texas Austin, Austin, Texas; and
| | - Stephen M. Wilson
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, Tennessee
| | - Matthew K. Leonard
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California
| | - Edward F. Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California
| |
Collapse
|
11
|
Wilson SM, Entrup JL, Schneck SM, Onuscheck CF, Levy DF, Rahman M, Willey E, Casilio M, Yen M, Brito AC, Kam W, Davis LT, de Riesthal M, Kirshner HS. Recovery from aphasia in the first year after stroke. Brain 2023; 146:1021-1039. [PMID: 35388420 PMCID: PMC10169426 DOI: 10.1093/brain/awac129] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/02/2022] [Accepted: 03/27/2022] [Indexed: 11/13/2022] Open
Abstract
Most individuals who experience aphasia after a stroke recover to some extent, with the majority of gains taking place in the first year. The nature and time course of this recovery process is only partially understood, especially its dependence on lesion location and extent, which are the most important determinants of outcome. The aim of this study was to provide a comprehensive description of patterns of recovery from aphasia in the first year after stroke. We recruited 334 patients with acute left hemisphere supratentorial ischaemic or haemorrhagic stroke and evaluated their speech and language function within 5 days using the Quick Aphasia Battery (QAB). At this initial time point, 218 patients presented with aphasia. Individuals with aphasia were followed longitudinally, with follow-up evaluations of speech and language at 1 month, 3 months, and 1 year post-stroke, wherever possible. Lesions were manually delineated based on acute clinical MRI or CT imaging. Patients with and without aphasia were divided into 13 groups of individuals with similar, commonly occurring patterns of brain damage. Trajectories of recovery were then investigated as a function of group (i.e. lesion location and extent) and speech/language domain (overall language function, word comprehension, sentence comprehension, word finding, grammatical construction, phonological encoding, speech motor programming, speech motor execution, and reading). We found that aphasia is dynamic, multidimensional, and gradated, with little explanatory role for aphasia subtypes or binary concepts such as fluency. Patients with circumscribed frontal lesions recovered well, consistent with some previous observations. More surprisingly, most patients with larger frontal lesions extending into the parietal or temporal lobes also recovered well, as did patients with relatively circumscribed temporal, temporoparietal, or parietal lesions. Persistent moderate or severe deficits were common only in patients with extensive damage throughout the middle cerebral artery distribution or extensive temporoparietal damage. There were striking differences between speech/language domains in their rates of recovery and relationships to overall language function, suggesting that specific domains differ in the extent to which they are redundantly represented throughout the language network, as opposed to depending on specialized cortical substrates. Our findings have an immediate clinical application in that they will enable clinicians to estimate the likely course of recovery for individual patients, as well as the uncertainty of these predictions, based on acutely observable neurological factors.
Collapse
Affiliation(s)
- Stephen M Wilson
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jillian L Entrup
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sarah M Schneck
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Caitlin F Onuscheck
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Deborah F Levy
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Maysaa Rahman
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Emma Willey
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Marianne Casilio
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Melodie Yen
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Wayneho Kam
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Stroke and Cerebrovascular Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - L Taylor Davis
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael de Riesthal
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Howard S Kirshner
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Stroke and Cerebrovascular Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
12
|
Correspondence between cognitive and neural representations for phonology, orthography, and semantics in supramarginal compared to angular gyrus. Brain Struct Funct 2023; 228:255-271. [PMID: 36326934 DOI: 10.1007/s00429-022-02590-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/23/2022] [Indexed: 11/05/2022]
Abstract
The angular and supramarginal gyri (AG and SMG) together constitute the inferior parietal lobule (IPL) and have been associated with cognitive functions that support reading. How those functions are distributed across the AG and SMG is a matter of debate, the resolution of which is hampered by inconsistencies across stereotactic atlases provided by the major brain image analysis software packages. Schematic results from automated meta-analyses suggest primarily semantic (word meaning) processing in the left AG, with more spatial overlap among phonological (auditory word form), orthographic (visual word form), and semantic processing in the left SMG. To systematically test for correspondence between patterns of neural activation and phonological, orthographic, and semantic representations, we re-analyze a functional magnetic resonance imaging data set of participants reading aloud 465 words. Using representational similarity analysis, we test the hypothesis that within cytoarchitecture-defined subregions of the IPL, phonological representations are primarily associated with the SMG, while semantic representations are primarily associated with the AG. To the extent that orthographic representations can be de-correlated from phonological representations, they will be associated with cortex peripheral to the IPL, such as the intraparietal sulcus. Results largely confirmed these hypotheses, with some nuanced exceptions, which we discuss in terms of neurally inspired computational cognitive models of reading that learn mappings among distributed representations for orthography, phonology, and semantics. De-correlating constituent representations making up complex cognitive processes, such as reading, by careful selection of stimuli, representational formats, and analysis techniques, are promising approaches for bringing additional clarity to brain structure-function relationships.
Collapse
|
13
|
Silva AB, Liu JR, Zhao L, Levy DF, Scott TL, Chang EF. A Neurosurgical Functional Dissection of the Middle Precentral Gyrus during Speech Production. J Neurosci 2022; 42:8416-8426. [PMID: 36351829 PMCID: PMC9665919 DOI: 10.1523/jneurosci.1614-22.2022] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Classical models have traditionally focused on the left posterior inferior frontal gyrus (Broca's area) as a key region for motor planning of speech production. However, converging evidence suggests that it is not critical for either speech motor planning or execution. Alternative cortical areas supporting high-level speech motor planning have yet to be defined. In this review, we focus on the precentral gyrus, whose role in speech production is often thought to be limited to lower-level articulatory muscle control. In particular, we highlight neurosurgical investigations that have shed light on a cortical region anatomically located near the midpoint of the precentral gyrus, hence called the middle precentral gyrus (midPrCG). The midPrCG is functionally located between dorsal hand and ventral orofacial cortical representations and exhibits unique sensorimotor and multisensory functions relevant for speech processing. This includes motor control of the larynx, auditory processing, as well as a role in reading and writing. Furthermore, direct electrical stimulation of midPrCG can evoke complex movements, such as vocalization, and selective injury can cause deficits in verbal fluency, such as pure apraxia of speech. Based on these findings, we propose that midPrCG is essential to phonological-motoric aspects of speech production, especially syllabic-level speech sequencing, a role traditionally ascribed to Broca's area. The midPrCG is a cortical brain area that should be included in contemporary models of speech production with a unique role in speech motor planning and execution.
Collapse
Affiliation(s)
- Alexander B Silva
- Department of Neurological Surgery, University of California, San Francisco, California, 94158
- Weill Institute for Neurosciences, University of California, San Francisco, California, 94158
- Medical Scientist Training Program, University of California, San Francisco, California, 94158
- Graduate Program in Bioengineering, University of California, Berkeley, California 94720, & University of California, San Francisco, California, 94158
| | - Jessie R Liu
- Department of Neurological Surgery, University of California, San Francisco, California, 94158
- Weill Institute for Neurosciences, University of California, San Francisco, California, 94158
- Graduate Program in Bioengineering, University of California, Berkeley, California 94720, & University of California, San Francisco, California, 94158
| | - Lingyun Zhao
- Department of Neurological Surgery, University of California, San Francisco, California, 94158
- Weill Institute for Neurosciences, University of California, San Francisco, California, 94158
| | - Deborah F Levy
- Department of Neurological Surgery, University of California, San Francisco, California, 94158
- Weill Institute for Neurosciences, University of California, San Francisco, California, 94158
| | - Terri L Scott
- Department of Neurological Surgery, University of California, San Francisco, California, 94158
- Weill Institute for Neurosciences, University of California, San Francisco, California, 94158
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, California, 94158
- Weill Institute for Neurosciences, University of California, San Francisco, California, 94158
- Graduate Program in Bioengineering, University of California, Berkeley, California 94720, & University of California, San Francisco, California, 94158
| |
Collapse
|
14
|
Liu S, Cheng C, Wu P, Zhang L, Wang Z, Wei W, Chen Y, Zhao J. Phonological Processing, Visuospatial Skills, and Pattern Understanding in Chinese Developmental Dyscalculia. JOURNAL OF LEARNING DISABILITIES 2022; 55:499-512. [PMID: 34905999 DOI: 10.1177/00222194211063650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A number of previous studies have identified cognitive deficits in developmental dyscalculia (DD). Yet, most of these studies were in alphabetic languages, whereas few of them examined Chinese DD. Here, we conducted a study aiming to determine the cognitive factors associated with DD in Chinese children. Five candidate cognitive factors of DD-phonological retrieval, phonological awareness, visual-spatial attention, spatial thinking, and pattern understanding-were examined in the present study. A total of 904 Chinese children ages 8 to 11 years participated in this study. From the sample, 97 children were identified with DD through tests of arithmetic ability, and 93 age- and IQ-matched typically developing children were selected as controls. Logistic regression analysis revealed that phonological retrieval, pattern understanding, visual-spatial attention, and phonological awareness significantly predicted DD, whereas spatial thinking failed to do so. Results of logistic relative weights analysis showed that all five factors explained statistically significant amounts of variance in arithmetic scores. Phonological retrieval had the most influence on DD, followed by pattern understanding, visual-spatial attention, phonological awareness, and spatial thinking. These findings have important clinical implications for diagnosis and intervention of Chinese DD.
Collapse
Affiliation(s)
| | | | - Peiqian Wu
- Erasmus University Rotterdam, The Netherlands
| | | | | | | | - Yuan Chen
- Shaanxi Normal University, Xi'an, China
- Xihua University, Chengdu, China
| | | |
Collapse
|
15
|
Hu X, Jiang P, Gao Y, Sun J, Zhou X, Zhang L, Qiu H, Li H, Cao L, Liu J, Gong Q, Huang X. Brain morphometric abnormalities and their associations with affective symptoms in males with methamphetamine use disorder during abstinence. Front Psychiatry 2022; 13:1003889. [PMID: 36299549 PMCID: PMC9588977 DOI: 10.3389/fpsyt.2022.1003889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Background Methamphetamine (METH) use induces neurotoxic effects in brain structures and affective symptoms that persist during abstinence. However, the brain morphometry of individuals with METH use disorder (MUD) remains unclear, as well as their associations with affective symptoms during abstinence. Methods Forty-eight abstinent males with MUD and 66 age-, sex-, and education-matched healthy controls (HCs) underwent high-resolution T1-weighted magnetic resonance imaging. Cortical thickness, surface area, volume, local gyrification index (LGI), and subcortical volume were obtained with FreeSurfer software. Brain morphometry differences between groups and their associations with affective symptoms and drug abuse history within the males with MUD were examined, with intracranial volume, age, and years of education as covariates. Results Compared with the HCs, the individuals with MUD showed a significantly higher LGI in the right cuneus gyrus, left lingual gyrus, bilateral supramarginal gyrus, right inferior parietal gyrus (IPG), and right dorsal anterior cingulate cortex (clusterwise p < 0.05, Monte Carlo-corrected), as well as a smaller volume of the left nucleus accumbens (NAcc) (p < 0.05, FDR-corrected). However, there were no significant group differences in cortical thickness, area or volume. In addition, the LGI in the right IPG was positively associatedwith the severity of depression and anxiety symptoms in MUDs (p < 0.05, FDR-corrected). Conclusion Brain morphometric abnormalities in abstinent males with MUD were characterized by hypergyrification across multiple mid-posterior brain regions anda smaller volume of the left NAcc.Gyrification of the right IPG may be a potential neural substrate underlying the affective symptoms experienced by MUDs during abstinence.
Collapse
Affiliation(s)
- Xinyue Hu
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, Huaxi Magnetic Resonance Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
- Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China
| | - Ping Jiang
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, Huaxi Magnetic Resonance Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
- Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China
- West China Medical Publishers, West China Hospital of Sichuan University, Chengdu, China
| | - Yingxue Gao
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, Huaxi Magnetic Resonance Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
- Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China
| | - Jiayu Sun
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaobo Zhou
- Department of Psychosomatics, Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Lianqing Zhang
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, Huaxi Magnetic Resonance Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
- Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China
| | - Hui Qiu
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, Huaxi Magnetic Resonance Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
- Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China
| | - Hailong Li
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, Huaxi Magnetic Resonance Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
- Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China
| | - Lingxiao Cao
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, Huaxi Magnetic Resonance Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
- Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China
| | - Jing Liu
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, Huaxi Magnetic Resonance Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
- Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China
| | - Qiyong Gong
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, Huaxi Magnetic Resonance Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
- Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoqi Huang
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, Huaxi Magnetic Resonance Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
- Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Diachek E, Morgan VL, Wilson SM. Adaptive Language Mapping Paradigms for Presurgical Language Mapping. AJNR Am J Neuroradiol 2022; 43:1453-1459. [PMID: 36137653 PMCID: PMC9575518 DOI: 10.3174/ajnr.a7629] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/12/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND PURPOSE Functional MR imaging is widely used for preoperative language assessment in candidates for resective neurosurgery. Language mapping paradigms that are adaptive to participant performance have the potential to engage the language network more robustly and consistently, resulting in more accurate functional maps. The aim of the current study was to compare two adaptive paradigms with the recommended language mapping paradigms that constitute the current standard of care. MATERIALS AND METHODS Seventy-three patients undergoing fMRI for language lateralization and/or localization completed an adaptive semantic matching paradigm, an adaptive phonological judgment paradigm, and two standard paradigms: sentence completion and word generation. The paradigms were compared in terms of the degree to which they yielded lateralized language maps and the extent of activation in frontal, temporal, and parietal language regions. RESULTS The adaptive semantic paradigm resulted in the most strongly lateralized activation maps, the greatest extent of frontal and temporal activations, and the greatest proportion of overall satisfactory language maps. The adaptive phonological paradigm identified anterior inferior parietal phonological encoding regions in most patients, unlike any of the other paradigms. CONCLUSIONS The adaptive language mapping paradigms investigated have several psychometric advantages compared with currently recommended paradigms. Adoption of these paradigms could increase the likelihood of obtaining satisfactory language maps in each individual patient.
Collapse
Affiliation(s)
- E Diachek
- From the Departments of Psychology and Human Development (E.D., S.M.W.)
| | - V L Morgan
- Biomedical Engineering (V.L.M.), Vanderbilt University, Nashville, Tennessee
- Departments of Radiology and Radiological Sciences (V.L.M., S.M.W.)
- Neurological Surgery (V.L.M.)
| | - S M Wilson
- From the Departments of Psychology and Human Development (E.D., S.M.W.)
- Departments of Radiology and Radiological Sciences (V.L.M., S.M.W.)
- Hearing and Speech Sciences (S.M.W.), Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
17
|
Li A, Yang R, Qu J, Dong J, Gu L, Mei L. Neural representation of phonological information during Chinese character reading. Hum Brain Mapp 2022; 43:4013-4029. [PMID: 35545935 PMCID: PMC9374885 DOI: 10.1002/hbm.25900] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/04/2022] [Accepted: 04/26/2022] [Indexed: 11/12/2022] Open
Abstract
Previous studies have revealed that phonological processing of Chinese characters elicited activation in the left prefrontal cortex, bilateral parietal cortex, and occipitotemporal regions. However, it is controversial what role the left middle frontal gyrus plays in Chinese character reading, and whether the core regions (e.g., the left superior temporal gyrus and supramarginal gyrus) for phonological processing of alphabetic languages are also involved in Chinese character reading. To address these questions, the present study used both univariate and multivariate analysis (i.e., representational similarity analysis, RSA) to explore neural representations of phonological information during Chinese character reading. Participants were scanned while performing a reading aloud task. Univariate activation analysis revealed a widely distributed network for word reading, including the bilateral inferior frontal gyrus, middle frontal gyrus, lateral temporal cortex, and occipitotemporal cortex. More importantly, RSA showed that the left prefrontal (i.e., the left middle frontal gyrus and left inferior frontal gyrus) and bilateral occipitotemporal areas (i.e., the left inferior and middle temporal gyrus and bilateral fusiform gyrus) represented phonological information of Chinese characters. These results confirmed the importance of the left middle frontal gyrus and regions in ventral pathway in representing phonological information of Chinese characters.
Collapse
Affiliation(s)
- Aqian Li
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents, South China Normal University, Ministry of Education, Guangzhou, China.,School of Psychology, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Rui Yang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents, South China Normal University, Ministry of Education, Guangzhou, China.,School of Psychology, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Jing Qu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents, South China Normal University, Ministry of Education, Guangzhou, China.,School of Psychology, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Jie Dong
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents, South China Normal University, Ministry of Education, Guangzhou, China.,School of Psychology, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Lala Gu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents, South China Normal University, Ministry of Education, Guangzhou, China.,School of Psychology, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Leilei Mei
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents, South China Normal University, Ministry of Education, Guangzhou, China
| |
Collapse
|
18
|
Regional Alteration within the Cerebellum and the Reorganization of the Cerebrocerebellar System following Poststroke Aphasia. Neural Plast 2022; 2022:3481423. [PMID: 35360259 PMCID: PMC8964230 DOI: 10.1155/2022/3481423] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/24/2022] [Indexed: 12/26/2022] Open
Abstract
Recently, an increasing number of studies have highlighted the role of the cerebellum in language processing. However, the role of neural reorganization within the cerebellum as well as within the cerebrocerebellar system caused by poststroke aphasia remains unknown. To solve this problem, in the present study, we investigated regional alterations of the cerebellum as well as the functional reorganization of the cerebrocerebellar circuit by combining structural and resting-state functional magnetic resonance imaging (fMRI) techniques. Twenty patients diagnosed with aphasia following left-hemispheric stroke and 20 age-matched healthy controls (HCs) were recruited in this study. The Western Aphasia Battery (WAB) test was used to assess the participants' language ability. Gray matter volume, spontaneous brain activity, functional connectivity, and effective connectivity were examined in each participant. We discovered that gray matter volumes in right cerebellar lobule VI and right Crus I were significantly lower in the patient group, and the brain activity within these regions was significantly correlated with WAB scores. We also discovered decreased functional connectivity within the crossed cerebrocerebellar circuit, which was significantly correlated with WAB scores. Moreover, altered information flow between the cerebellum and the contralateral cerebrum was found. Together, our findings provide evidence for regional alterations within the cerebellum and the reorganization of the cerebrocerebellar system following poststroke aphasia and highlight the important role of the cerebellum in language processing within aphasic individuals after stroke.
Collapse
|
19
|
Tansey R, Graff K, Rohr CS, Dimond D, Ip A, Dewey D, Bray S. Inattentive and hyperactive traits differentially associate with inter-individual functional synchrony during video viewing in young children without ADHD. Cereb Cortex Commun 2022; 3:tgac011. [PMID: 35291396 PMCID: PMC8919299 DOI: 10.1093/texcom/tgac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/02/2022] Open
Abstract
Inattention and hyperactivity present on a spectrum and may influence the way children perceive and interact with the world. We investigated whether normative variation in inattentive and hyperactive traits was associated with differences in brain function, while children watched clips from an age-appropriate television program. Functional magnetic resonance imaging (fMRI) data and parent reports of inattention and hyperactivity traits were collected from 81 children 4–7 years of age with no parent-reported diagnoses. Data were analyzed using intersubject correlations (ISCs) in mixed effects models to determine if inattentive and hyperactive traits were associated with idiosyncrasy of fMRI response to the video. We hypothesized that pairs of children with higher average inattention and hyperactivity scores would show less interindividual brain synchrony to one another than pairs with lower average scores on these traits. Video watching engaged widespread visual, auditory, default mode and dorsal prefrontal regions. Inattention and hyperactivity were separably associated with ISC in many of these regions. Our findings suggest that the spectrum of inattention and hyperactivity traits in children without ADHD are differentially associated with neural processing of naturalistic video stimuli, which may have implications for understanding how children with different levels of these traits process audiovisual information in unconstrained conditions.
Collapse
Affiliation(s)
- Ryann Tansey
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Kirk Graff
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Christiane S Rohr
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Dennis Dimond
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Amanda Ip
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Deborah Dewey
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Community Health Science, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Signe Bray
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
20
|
Kaestner E, Wu X, Friedman D, Dugan P, Devinsky O, Carlson C, Doyle W, Thesen T, Halgren E. The Precentral Gyrus Contributions to the Early Time-Course of Grapheme-to-Phoneme Conversion. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2022; 3:18-45. [PMID: 37215328 PMCID: PMC10158576 DOI: 10.1162/nol_a_00047] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 06/16/2021] [Indexed: 05/24/2023]
Abstract
As part of silent reading models, visual orthographic information is transduced into an auditory phonological code in a process of grapheme-to-phoneme conversion (GPC). This process is often identified with lateral temporal-parietal regions associated with auditory phoneme encoding. However, the role of articulatory phonemic representations and the precentral gyrus in GPC is ambiguous. Though the precentral gyrus is implicated in many functional MRI studies of reading, it is not clear if the time course of activity in this region is consistent with the precentral gyrus being involved in GPC. We recorded cortical electrophysiology during a bimodal match/mismatch task from eight patients with perisylvian subdural electrodes to examine the time course of neural activity during a task that necessitated GPC. Patients made a match/mismatch decision between a 3-letter string and the following auditory bi-phoneme. We characterized the distribution and timing of evoked broadband high gamma (70-170 Hz) as well as phase-locking between electrodes. The precentral gyrus emerged with a high concentration of broadband high gamma responses to visual and auditory language as well as mismatch effects. The pars opercularis, supramarginal gyrus, and superior temporal gyrus were also involved. The precentral gyrus showed strong phase-locking with the caudal fusiform gyrus during letter-string presentation and with surrounding perisylvian cortex during the bimodal visual-auditory comparison period. These findings hint at a role for precentral cortex in transducing visual into auditory codes during silent reading.
Collapse
Affiliation(s)
- Erik Kaestner
- Center for Multimodal Imaging and Genetics, University of California, San Diego, USA
| | - Xiaojing Wu
- Department of Neurology, NYU Langone School of Medicine, New York, USA
| | - Daniel Friedman
- Department of Neurology, NYU Langone School of Medicine, New York, USA
| | - Patricia Dugan
- Department of Neurology, NYU Langone School of Medicine, New York, USA
| | - Orrin Devinsky
- Department of Neurology, NYU Langone School of Medicine, New York, USA
| | - Chad Carlson
- Department of Neurology, Medical College of Wisconsin, Milwaukee, USA
| | - Werner Doyle
- Department of Neurology, NYU Langone School of Medicine, New York, USA
- Department of Neurosurgery, NYU Langone School of Medicine, New York, USA
| | - Thomas Thesen
- Department of Neurology, NYU Langone School of Medicine, New York, USA
| | - Eric Halgren
- Department of Neurosciences, University of California at San Diego, La Jolla, USA
- Department of Radiology, University of California at San Diego, La Jolla, USA
| |
Collapse
|
21
|
Ekert JO, Lorca-Puls DL, Gajardo-Vidal A, Crinion JT, Hope TMH, Green DW, Price CJ. A functional dissociation of the left frontal regions that contribute to single word production tasks. Neuroimage 2021; 245:118734. [PMID: 34793955 PMCID: PMC8752962 DOI: 10.1016/j.neuroimage.2021.118734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/06/2021] [Accepted: 11/14/2021] [Indexed: 11/02/2022] Open
Abstract
Controversy surrounds the interpretation of higher activation for pseudoword compared to word reading in the left precentral gyrus and pars opercularis. Specifically, does activation in these regions reflect: (1) the demands on sublexical assembly of articulatory codes, or (2) retrieval effort because the combinations of articulatory codes are unfamiliar? Using fMRI, in 84 neurologically intact participants, we addressed this issue by comparing reading and repetition of words (W) and pseudowords (P) to naming objects (O) from pictures or sounds. As objects do not provide sublexical articulatory cues, we hypothesis that retrieval effort will be greater for object naming than word repetition/reading (which benefits from both lexical and sublexical cues); while the demands on sublexical assembly will be higher for pseudoword production than object naming. We found that activation was: (i) highest for pseudoword reading [P>O&W in the visual modality] in the anterior part of the ventral precentral gyrus bordering the precentral sulcus (vPCg/vPCs), consistent with the sublexical assembly of articulatory codes; but (ii) as high for object naming as pseudoword production [P&O>W] in dorsal precentral gyrus (dPCg) and the left inferior frontal junction (IFJ), consistent with retrieval demands and cognitive control. In addition, we dissociate the response properties of vPCg/vPCs, dPCg and IFJ from other left frontal lobe regions that are activated during single word speech production. Specifically, in both auditory and visual modalities: a central part of vPCg (head and face area) was more activated for verbal than nonverbal stimuli [P&W>O]; and the pars orbitalis and inferior frontal sulcus were most activated during object naming [O>W&P]. Our findings help to resolve a previous discrepancy in the literature, dissociate three functionally distinct parts of the precentral gyrus, and refine our knowledge of the functional anatomy of speech production in the left frontal lobe.
Collapse
Affiliation(s)
- Justyna O Ekert
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, 12 Queen Square, London WC1N 3AR, United Kingdom.
| | - Diego L Lorca-Puls
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, 12 Queen Square, London WC1N 3AR, United Kingdom; Department of Speech, Language and Hearing Sciences, Faculty of Medicine, Universidad de Concepcion, Concepcion, Chile
| | - Andrea Gajardo-Vidal
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, 12 Queen Square, London WC1N 3AR, United Kingdom; Faculty of Health Sciences, Universidad del Desarrollo, Concepcion, Chile
| | - Jennifer T Crinion
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Thomas M H Hope
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, 12 Queen Square, London WC1N 3AR, United Kingdom
| | - David W Green
- Department of Experimental Psychology, University College London, London, United Kingdom
| | - Cathy J Price
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, 12 Queen Square, London WC1N 3AR, United Kingdom
| |
Collapse
|
22
|
Schneck SM, Entrup JL, Duff MC, Wilson SM. Unexpected absence of aphasia following left temporal hemorrhage: a case study with functional neuroimaging to characterize the nature of atypical language localization. Neurocase 2021; 27:97-105. [PMID: 33666124 PMCID: PMC8026574 DOI: 10.1080/13554794.2021.1886309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Unexpected absence of aphasia after left-hemisphere perisylvian damage is often assumed to reflect right-hemisphere language lateralization, but other potential explanations include bilateral language representation, or sparing of critical left-hemisphere regions due to individual variability. We describe the case of a left-handed gentleman who presented with no aphasia after a left temporal hemorrhage. We used functional neuroimaging to determine how his language network had been spared. In this case, we observed unequivocal right-hemisphere lateralization of language function, explaining his lack of aphasia. We discuss the variability of language organization and highlight outstanding questions about the implications of damage in different scenarios.
Collapse
Affiliation(s)
- Sarah M Schneck
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jillian L Entrup
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Melissa C Duff
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephen M Wilson
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
23
|
Quillen IA, Yen M, Wilson SM. Distinct neural correlates of linguistic demand and non-linguistic demand. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2021; 2:202-225. [PMID: 34585141 PMCID: PMC8475781 DOI: 10.1162/nol_a_00031] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
In this study, we investigated how the brain responds to task difficulty in linguistic and non-linguistic contexts. This is important for the interpretation of functional imaging studies of neuroplasticity in post-stroke aphasia, because of the inherent difficulty of matching or controlling task difficulty in studies with neurological populations. Twenty neurologically normal individuals were scanned with fMRI as they performed a linguistic task and a non-linguistic task, each of which had two levels of difficulty. Critically, the tasks were matched across domains (linguistic, non-linguistic) for accuracy and reaction time, such that the differences between the easy and difficult conditions were equivalent across domains. We found that non-linguistic demand modulated the same set of multiple demand (MD) regions that have been identified in many prior studies. In contrast, linguistic demand modulated MD regions to a much lesser extent, especially nodes belonging to the dorsal attention network. Linguistic demand modulated a subset of language regions, with the left inferior frontal gyrus most strongly modulated. The right hemisphere region homotopic to Broca's area was also modulated by linguistic but not non-linguistic demand. When linguistic demand was mapped relative to non-linguistic demand, we also observed domain by difficulty interactions in temporal language regions as well as a widespread bilateral semantic network. In sum, linguistic and non-linguistic demand have strikingly different neural correlates. These findings can be used to better interpret studies of patients recovering from aphasia. Some reported activations in these studies may reflect task performance differences, while others can be more confidently attributed to neuroplasticity.
Collapse
Affiliation(s)
- Ian A Quillen
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Melodie Yen
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephen M Wilson
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
24
|
Wilson SM, Schneck SM. Neuroplasticity in post-stroke aphasia: A systematic review and meta-analysis of functional imaging studies of reorganization of language processing. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2020; 2:22-82. [PMID: 33884373 PMCID: PMC8057712 DOI: 10.1162/nol_a_00025] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 09/11/2020] [Indexed: 04/23/2023]
Abstract
Recovery from aphasia is thought to depend on neural plasticity, that is, functional reorganization of surviving brain regions such that they take on new or expanded roles in language processing. We carried out a systematic review and meta-analysis of all articles published between 1995 and early 2020 that have described functional imaging studies of six or more individuals with post-stroke aphasia, and have reported analyses bearing on neuroplasticity of language processing. Each study was characterized and appraised in detail, with particular attention to three critically important methodological issues: task performance confounds, contrast validity, and correction for multiple comparisons. We identified 86 studies describing a total of 561 relevant analyses. We found that methodological limitations related to task performance confounds, contrast validity, and correction for multiple comparisons have been pervasive. Only a few claims about language processing in individuals with aphasia are strongly supported by the extant literature: first, left hemisphere language regions are less activated in individuals with aphasia than neurologically normal controls, and second, in cohorts with aphasia, activity in left hemisphere language regions, and possibly a temporal lobe region in the right hemisphere, is positively correlated with language function. There is modest, equivocal evidence for the claim that individuals with aphasia differentially recruit right hemisphere homotopic regions, but no compelling evidence for differential recruitment of additional left hemisphere regions or domain-general networks. There is modest evidence that left hemisphere language regions return to function over time, but no compelling longitudinal evidence for dynamic reorganization of the language network.
Collapse
Affiliation(s)
- Stephen M. Wilson
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sarah M. Schneck
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
25
|
Wilson SM, Eriksson DK, Yen M, Demarco AT, Schneck SM, Lucanie JM. Language Mapping in Aphasia. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2019; 62:3937-3946. [PMID: 31756153 PMCID: PMC7203526 DOI: 10.1044/2019_jslhr-l-rsnp-19-0031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Purpose Recovery from aphasia is thought to depend on neural plasticity, that is, functional reorganization of surviving brain regions such that they take on new or expanded roles in language processing. To make progress in characterizing the nature of this process, we need feasible, reliable, and valid methods for identifying language regions of the brain in individuals with aphasia. This article reviews 3 recent studies from our lab in which we have developed and validated several novel functional magnetic resonance imaging paradigms for language mapping in aphasia. Method In the 1st study, we investigated the reliability and validity of 4 language mapping paradigms in neurologically normal older adults. In the 2nd study, we developed a novel adaptive semantic matching paradigm and assessed its feasibility, reliability, and validity in individuals with and without aphasia. In the 3rd study, we developed and evaluated 2 additional adaptive paradigms-rhyme judgment and syllable counting-for mapping phonological encoding regions. Results We found that the adaptive semantic matching paradigm could be performed by most individuals with aphasia and yielded reliable and valid maps of core perisylvian language regions in each individual participant. The psychometric properties of this paradigm were superior to those of other commonly used paradigms such as narrative comprehension and picture naming. The adaptive rhyme judgment paradigm was capable of identifying fronto-parietal phonological encoding regions in individual participants. Conclusion Adaptive language mapping paradigms offer a promising approach for future research on the neural basis of recovery from aphasia. Presentation Video https://doi.org/10.23641/asha.10257584.
Collapse
Affiliation(s)
- Stephen M. Wilson
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Dana K. Eriksson
- Department of Speech, Language, and Hearing Sciences, University of Arizona, Tucson
| | - Melodie Yen
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
| | | | - Sarah M. Schneck
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Jillian M. Lucanie
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Aphasia is often characterized in terms of subtype and severity, yet these constructs have limited explanatory power, because aphasia is inherently multifactorial both in its neural substrates and in its symptomatology. The purpose of this review is to survey current and emerging multivariate approaches to understanding aphasia. RECENT FINDINGS Techniques such as factor analysis and principal component analysis have been used to define latent underlying factors that can account for performance on batteries of speech and language tests, and for characteristics of spontaneous speech production. Multivariate lesion-symptom mapping has been shown to outperform univariate approaches to lesion-symptom mapping for identifying brain regions where damage is associated with specific speech and language deficits. It is increasingly clear that structural damage results in functional changes in wider neural networks, which mediate speech and language outcomes. Multivariate statistical approaches are essential for understanding the complex relationships between the neural substrates of aphasia, and resultant profiles of speech and language function.
Collapse
Affiliation(s)
- Stephen M Wilson
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - William D Hula
- Audiology and Speech Pathology Program, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|