1
|
Aksu S, Indahlastari A, O'Shea A, Marsiske M, Cohen R, Alexander GE, DeKosky ST, Hishaw GA, Dai Y, Wu SS, Woods AJ. Facilitation of working memory capacity by transcranial direct current stimulation: a secondary analysis from the augmenting cognitive training in older adults (ACT) study. GeroScience 2024; 46:4075-4110. [PMID: 38789832 PMCID: PMC11336148 DOI: 10.1007/s11357-024-01205-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Aging is a public health concern with an ever-increasing magnitude worldwide. An array of neuroscience-based approaches like transcranial direct current stimulation (tDCS) and cognitive training have garnered attention in the last decades to ameliorate the effects of cognitive aging in older adults. This study evaluated the effects of 3 months of bilateral tDCS over the frontal cortices with multimodal cognitive training on working memory capacity. Two hundred ninety-two older adults without dementia were allocated to active or sham tDCS paired with cognitive training. These participants received repeated sessions of bilateral tDCS over the bilateral frontal cortices, combined with multimodal cognitive training. Working memory capacity was assessed with the digit span forward, backward, and sequencing tests. No baseline differences between active and sham groups were observed. Multiple linear regressions indicated more improvement of the longest digit span backward from baseline to post-intervention (p = 0.021) and a trend towards greater improvement (p = 0.056) of the longest digit span backward from baseline to 1 year in the active tDCS group. No significant between-group changes were observed for digit span forward or digit span sequencing. The present results provide evidence for the potential for tDCS paired with cognitive training to remediate age-related declines in working memory capacity. These findings are sourced from secondary outcomes in a large randomized clinical trial and thus deserve future targeted investigation in older adult populations.
Collapse
Affiliation(s)
- Serkan Aksu
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA.
- Department of Physiology, Faculty of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey.
| | - Aprinda Indahlastari
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Andrew O'Shea
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Michael Marsiske
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Ronald Cohen
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Gene E Alexander
- Department of Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, and BIO5 Institute, University of Arizona and Arizona Alzheimer's Disease Consortium, Tucson, AZ, USA
- Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Steven T DeKosky
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Georg A Hishaw
- Department of Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, and BIO5 Institute, University of Arizona and Arizona Alzheimer's Disease Consortium, Tucson, AZ, USA
| | - Yunfeng Dai
- Department of Biostatistics, College of Public Health and Health Professions, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Samuel S Wu
- Department of Biostatistics, College of Public Health and Health Professions, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| |
Collapse
|
2
|
Otstavnov N, Nieto-Doval C, Galli G, Feurra M. Frontoparietal Brain Network Plays a Crucial Role in Working Memory Capacity during Complex Cognitive Task. eNeuro 2024; 11:ENEURO.0394-23.2024. [PMID: 39029954 PMCID: PMC11315429 DOI: 10.1523/eneuro.0394-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 07/21/2024] Open
Abstract
Recent neurophysiological studies provide inconsistent results of frontoparietal network (FPN) stimulation for altering working memory (WM) capacity. This study aimed to boost WM capacity by manipulating the activity of the FPN via dual-site high-definition transcranial direct current stimulation. Forty-eight participants were randomly assigned to three stimulation groups, receiving either simultaneous anodal stimulation of the frontal and parietal areas (double stimulation), or stimulation of the frontal area only (single stimulation), or the placebo stimulation (sham) to frontal and parietal areas. After the stimulation, we used an operation span task to test memory accuracy, mathematical accuracy, time of calculation and memorizing, and recall response time across the three groups. The results revealed an enhancement of memory accuracy and a reduction of time of calculation in the double stimulation group compared with that in others. In addition, recall response time was significantly decreased in the double and single stimulation groups compared with that in sham. No differences in mathematical accuracy were observed. Our results confirm the pivotal role of the FPN in WM and suggest its functional dissociation, with the frontal component more implicated in the retrieval stage and the parietal component in the processing and retention stages.
Collapse
Affiliation(s)
- Nikita Otstavnov
- Centre for Cognition and Decision making, Institute for Cognitive Neuroscience, Higher School of Economics University, Moscow 101000, Russia
| | - Carlos Nieto-Doval
- Centre for Cognition and Decision making, Institute for Cognitive Neuroscience, Higher School of Economics University, Moscow 101000, Russia
| | - Giulia Galli
- Department of Psychology, Kingston University, London KT1 2EE, United Kingdom
| | - Matteo Feurra
- Centre for Cognition and Decision making, Institute for Cognitive Neuroscience, Higher School of Economics University, Moscow 101000, Russia
| |
Collapse
|
3
|
Ue S, Nakahama K, Hayashi J, Ohgomori T. Cortical activity associated with the maintenance of balance during unstable stances. PeerJ 2024; 12:e17313. [PMID: 38708344 PMCID: PMC11067896 DOI: 10.7717/peerj.17313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
Background Humans continuously maintain and adjust posture during gait, standing, and sitting. The difficulty of postural control is reportedly increased during unstable stances, such as unipedal standing and with closed eyes. Although balance is slightly impaired in healthy young adults in such unstable stances, they rarely fall. The brain recognizes the change in sensory inputs and outputs motor commands to the musculoskeletal system. However, such changes in cortical activity associated with the maintenance of balance following periods of instability require further clarified. Methods In this study, a total of 15 male participants performed two postural control tasks and the center of pressure displacement and electroencephalogram were simultaneously measured. In addition, the correlation between amplitude of center of pressure displacement and power spectral density of electroencephalogram was analyzed. Results The movement of the center of pressure was larger in unipedal standing than in bipedal standing under both eye open and eye closed conditions. It was also larger under the eye closed condition compared with when the eyes were open in unipedal standing. The amplitude of high-frequency bandwidth (1-3 Hz) of the center of pressure displacement was larger during more difficult postural tasks than during easier ones, suggesting that the continuous maintenance of posture was required. The power spectral densities of the theta activity in the frontal area and the gamma activity in the parietal area were higher during more difficult postural tasks than during easier ones across two postural control tasks, and these correlate with the increase in amplitude of high-frequency bandwidth of the center of pressure displacement. Conclusions Taken together, specific activation patterns of the neocortex are suggested to be important for the postural maintenance during unstable stances.
Collapse
Affiliation(s)
- Shoma Ue
- Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan
| | - Kakeru Nakahama
- Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan
| | - Junpei Hayashi
- Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan
| | - Tomohiro Ohgomori
- Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan
| |
Collapse
|
4
|
Whittaker HT, Khayyat L, Fortier-Lavallée J, Laverdière M, Bélanger C, Zatorre RJ, Albouy P. Information-based rhythmic transcranial magnetic stimulation to accelerate learning during auditory working memory training: a proof-of-concept study. Front Neurosci 2024; 18:1355565. [PMID: 38638697 PMCID: PMC11024337 DOI: 10.3389/fnins.2024.1355565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Rhythmic transcranial magnetic stimulation (rhTMS) has been shown to enhance auditory working memory manipulation, specifically by boosting theta oscillatory power in the dorsal auditory pathway during task performance. It remains unclear whether these enhancements (i) persist beyond the period of stimulation, (ii) if they can accelerate learning and (iii) if they would accumulate over several days of stimulation. In the present study, we investigated the lasting behavioral and electrophysiological effects of applying rhTMS over the left intraparietal sulcus (IPS) throughout the course of seven sessions of cognitive training on an auditory working memory task. Methods A limited sample of 14 neurologically healthy participants took part in the training protocol with an auditory working memory task while being stimulated with either theta (5 Hz) rhTMS or sham TMS. Electroencephalography (EEG) was recorded before, throughout five training sessions and after the end of training to assess to effects of rhTMS on behavioral performance and on oscillatory entrainment of the dorsal auditory network. Results We show that this combined approach enhances theta oscillatory activity within the fronto-parietal network and causes improvements in auditoryworking memory performance. We show that compared to individuals who received sham stimulation, cognitive training can be accelerated when combined with optimized rhTMS, and that task performance benefits can outlast the training period by ∼ 3 days. Furthermore, we show that there is increased theta oscillatory power within the recruited dorsal auditory network during training, and that sustained EEG changes can be observed ∼ 3 days following stimulation. Discussion The present study, while underpowered for definitive statistical analyses, serves to improve our understanding of the causal dynamic interactions supporting auditory working memory. Our results constitute an important proof of concept for the potential translational impact of non-invasive brain stimulation protocols and provide preliminary data for developing optimized rhTMS and training protocols that could be implemented in clinical populations.
Collapse
Affiliation(s)
- Heather T. Whittaker
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS) - Centre for Research on Brain Language and Music (CRBLM), Montreal, QC, Canada
| | - Lina Khayyat
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | | | - Megan Laverdière
- CERVO Brain Research Centre, School of Psychology, Université Laval, Québec City, QC, Canada
| | - Carole Bélanger
- CERVO Brain Research Centre, School of Psychology, Université Laval, Québec City, QC, Canada
| | - Robert J. Zatorre
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS) - Centre for Research on Brain Language and Music (CRBLM), Montreal, QC, Canada
| | - Philippe Albouy
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS) - Centre for Research on Brain Language and Music (CRBLM), Montreal, QC, Canada
- CERVO Brain Research Centre, School of Psychology, Université Laval, Québec City, QC, Canada
| |
Collapse
|
5
|
Negrón-Oyarzo I, Dib T, Chacana-Véliz L, López-Quilodrán N, Urrutia-Piñones J. Large-scale coupling of prefrontal activity patterns as a mechanism for cognitive control in health and disease: evidence from rodent models. Front Neural Circuits 2024; 18:1286111. [PMID: 38638163 PMCID: PMC11024307 DOI: 10.3389/fncir.2024.1286111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
Cognitive control of behavior is crucial for well-being, as allows subject to adapt to changing environments in a goal-directed way. Changes in cognitive control of behavior is observed during cognitive decline in elderly and in pathological mental conditions. Therefore, the recovery of cognitive control may provide a reliable preventive and therapeutic strategy. However, its neural basis is not completely understood. Cognitive control is supported by the prefrontal cortex, structure that integrates relevant information for the appropriate organization of behavior. At neurophysiological level, it is suggested that cognitive control is supported by local and large-scale synchronization of oscillatory activity patterns and neural spiking activity between the prefrontal cortex and distributed neural networks. In this review, we focus mainly on rodent models approaching the neuronal origin of these prefrontal patterns, and the cognitive and behavioral relevance of its coordination with distributed brain systems. We also examine the relationship between cognitive control and neural activity patterns in the prefrontal cortex, and its role in normal cognitive decline and pathological mental conditions. Finally, based on these body of evidence, we propose a common mechanism that may underlie the impaired cognitive control of behavior.
Collapse
Affiliation(s)
- Ignacio Negrón-Oyarzo
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Tatiana Dib
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Lorena Chacana-Véliz
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Nélida López-Quilodrán
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Jocelyn Urrutia-Piñones
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
6
|
McDonald MA, Meckes SJ, Shires J, Berryhill ME, Lancaster CL. Augmenting Virtual Reality Exposure Therapy for Social and Intergroup Anxiety With Transcranial Direct Current Stimulation. J ECT 2024; 40:51-60. [PMID: 38009966 PMCID: PMC10920400 DOI: 10.1097/yct.0000000000000967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
OBJECTIVES Exposure therapy is a cornerstone of social anxiety treatment, yet not all patients respond. Symptoms in certain social situations, including intergroup (ie, out-group) contexts, may be particularly resistant to treatment. Exposure therapy outcomes may be improved by stimulating neural areas associated with safety learning, such as the medial prefrontal cortex (mPFC). The mPFC also plays an important role in identifying others as similar to oneself. We hypothesized that targeting the mPFC during exposure therapy would reduce intergroup anxiety and social anxiety. METHODS Participants (N = 31) with the public speaking subtype of social anxiety received active (anodal) or sham transcranial direct current stimulation (tDCS) targeting the mPFC during exposure therapy. Exposure therapy consisted of giving speeches to audiences in virtual reality. To target intergroup anxiety, half of the public speaking exposure trials were conducted with out-group audiences, defined in this study as audiences of a different ethnicity. RESULTS Contrary to hypotheses, tDCS did not facilitate symptom reduction. Some evidence even suggested that tDCS temporarily increased in-group favoritism, although these effects dissipated at 1-month follow-up. In addition, collapsing across all participants, we found reductions across time for public speaking anxiety and intergroup anxiety. CONCLUSIONS The data provide evidence that standard exposure therapy techniques for social anxiety can be adapted to target intergroup anxiety. Transcranial direct current stimulation targeting the mPFC may boost safety signaling, but only in contexts previously conditioned to signal safety, such as an in-group context.
Collapse
|
7
|
Roeder BM, She X, Dakos AS, Moore B, Wicks RT, Witcher MR, Couture DE, Laxton AW, Clary HM, Popli G, Liu C, Lee B, Heck C, Nune G, Gong H, Shaw S, Marmarelis VZ, Berger TW, Deadwyler SA, Song D, Hampson RE. Developing a hippocampal neural prosthetic to facilitate human memory encoding and recall of stimulus features and categories. Front Comput Neurosci 2024; 18:1263311. [PMID: 38390007 PMCID: PMC10881797 DOI: 10.3389/fncom.2024.1263311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Objective Here, we demonstrate the first successful use of static neural stimulation patterns for specific information content. These static patterns were derived by a model that was applied to a subject's own hippocampal spatiotemporal neural codes for memory. Approach We constructed a new model of processes by which the hippocampus encodes specific memory items via spatiotemporal firing of neural ensembles that underlie the successful encoding of targeted content into short-term memory. A memory decoding model (MDM) of hippocampal CA3 and CA1 neural firing was computed which derives a stimulation pattern for CA1 and CA3 neurons to be applied during the encoding (sample) phase of a delayed match-to-sample (DMS) human short-term memory task. Main results MDM electrical stimulation delivered to the CA1 and CA3 locations in the hippocampus during the sample phase of DMS trials facilitated memory of images from the DMS task during a delayed recognition (DR) task that also included control images that were not from the DMS task. Across all subjects, the stimulated trials exhibited significant changes in performance in 22.4% of patient and category combinations. Changes in performance were a combination of both increased memory performance and decreased memory performance, with increases in performance occurring at almost 2 to 1 relative to decreases in performance. Across patients with impaired memory that received bilateral stimulation, significant changes in over 37.9% of patient and category combinations was seen with the changes in memory performance show a ratio of increased to decreased performance of over 4 to 1. Modification of memory performance was dependent on whether memory function was intact or impaired, and if stimulation was applied bilaterally or unilaterally, with nearly all increase in performance seen in subjects with impaired memory receiving bilateral stimulation. Significance These results demonstrate that memory encoding in patients with impaired memory function can be facilitated for specific memory content, which offers a stimulation method for a future implantable neural prosthetic to improve human memory.
Collapse
Affiliation(s)
- Brent M Roeder
- Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - Xiwei She
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Alexander S Dakos
- Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - Bryan Moore
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Robert T Wicks
- Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
- Johns Hopkins Children's Center, Baltimore, MD, United States
| | - Mark R Witcher
- Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
- Virginia Tech Carilion School of Medicine and Research Institute, Roanoke, VA, United States
| | - Daniel E Couture
- Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - Adrian W Laxton
- Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | | | - Gautam Popli
- Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - Charles Liu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
- USC Keck Memorial Hospital, Los Angeles, CA, United States
| | - Brian Lee
- USC Keck Memorial Hospital, Los Angeles, CA, United States
| | - Christianne Heck
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
- USC Keck Memorial Hospital, Los Angeles, CA, United States
| | - George Nune
- USC Keck Memorial Hospital, Los Angeles, CA, United States
| | - Hui Gong
- Rancho Los Amigos National Rehabilitation Hospital, Los Angeles, CA, United States
| | - Susan Shaw
- Rancho Los Amigos National Rehabilitation Hospital, Los Angeles, CA, United States
| | - Vasilis Z Marmarelis
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Theodore W Berger
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Sam A Deadwyler
- Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - Dong Song
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Robert E Hampson
- Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| |
Collapse
|
8
|
Ai Y, Liu Y, Yin M, Zhang L, Luo J, Zhang S, Huang L, Zhang C, Liu G, Fang J, Zheng H, Li L, Hu X. Interactions between tDCS treatment and COMT Val158Met in poststroke cognitive impairment. Clin Neurophysiol 2024; 158:43-55. [PMID: 38176157 DOI: 10.1016/j.clinph.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 11/04/2023] [Accepted: 12/10/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVE This study aimed to explore the effect of catechol-O-methyltransferase (COMT) Val158Met and brain-derived neurotrophic factor (BDNF) Val66Met to post-stroke cognitive impairment (PSCI) and the interaction with transcranial direct current stimulation (tDCS). METHODS Seventy-six patients with PSCI were randomly assigned to Group (1) (n = 38) to receive anodal tDCS of left dorsolateral prefrontal cortex or Group (2) (n = 38) to receive sham stimulation. The intensity of the tDCS was 2 mA, and the stimulations were applied over the left DLPFC for 10 sessions. The Montreal Cognitive Assessment (MoCA) and backward digit span test (BDST) were assessed before, immediately after, and one month after stimulation. RESULTS After stimulation, patients in the tDCS group showed better improvement in both MoCA and BDST than those in the sham group. The results of GLMs also supported the main effects of tDCS on general cognitive function and working memory. Then we found that COMT genotype may have a main effect on the improvement of MoCA and BDST, and there may be an interaction between COMT genotype and tDCS in enhancing BDST. In contrast, BDNF genotype showed no significant main or interaction effects on any scales. CONCLUSIONS These findings demonstrate that tDCS can improve cognition after stroke. Gene polymorphisms of COMT can affect the efficacy of tDCS on PSCI, but BDNF may not. SIGNIFICANCE This study found that COMT Val158Met has an interaction on the efficacy of prefrontal tDCS in cognitive function, which provides reference for future tDCS research and clinical application.
Collapse
Affiliation(s)
- Yinan Ai
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| | - Yuanwen Liu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| | - Mingyu Yin
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| | - Liying Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| | - Jing Luo
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| | - Shuxian Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| | - Li Huang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| | - Chanjuan Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| | - Guirong Liu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| | - Jie Fang
- Xiamen Humanity Rehabilitation Hospital, Xiamen 361009, Fujian Province, PR China.
| | - Haiqing Zheng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| | - Lili Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| | - Xiquan Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| |
Collapse
|
9
|
Guo M, Wang T, Zhang T, Zhai H, Xu G. Effects of high-frequency transcranial magnetic stimulation on theta-gamma oscillations and coupling in the prefrontal cortex of rats during working memory task. Med Biol Eng Comput 2023; 61:3209-3223. [PMID: 37828414 DOI: 10.1007/s11517-023-02940-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023]
Abstract
High-frequency rTMS has been widely used to improve working memory (WM) impairment; however, the underlying neurophysiological mechanisms are unclear. We evaluated the effect of high-frequency rTMS on behaviors relevant to WM as well as coupling between theta and gamma oscillations in the prefrontal cortex (PFC) of rats. Accordingly, Wistar rats received high-frequency rTMS daily for 14 days (5 Hz, 10 Hz, and 15 Hz stimulation; 600 pulses; n = 6 per group), whereas the control group received sham stimulation. Electrophysiological signals were recorded simultaneously to obtain the local field potential (LFP) from the PFC, while the rats performed T-maze tasks for the evaluation of WM. Phase-amplitude coupling (PAC) was utilized to determine the effect of high-frequency rTMS on the theta-gamma coupling of LFPs. We observed that rats in the rTMS groups needed a smaller number of training days to complete the WM task as compared to the control group. High-frequency rTMS reinforced the coupling connection strength in the PFC of rats. Notably, the effect of rTMS at 15 Hz was the most effective among the three frequencies, i.e., 5 Hz, 10 Hz, and 15 Hz. The results suggested that rTMS can improve WM impairment in rats by modulating the coupling of theta and gamma rhythms. Hence, the current study provides a scientific basis for the optimization of TMS models, which would be relevant for clinical application.
Collapse
Affiliation(s)
- Miaomiao Guo
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300130, China.
- School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China.
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin, 300130, China.
- Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Tian Wang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300130, China
- School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin, 300130, China
- Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, Hebei University of Technology, Tianjin, 300130, China
| | - Tianheng Zhang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300130, China
- School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin, 300130, China
- Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, Hebei University of Technology, Tianjin, 300130, China
- School of Mechanical and Electrical Engineering, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China
| | - Haodi Zhai
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300130, China
- School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin, 300130, China
- Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, Hebei University of Technology, Tianjin, 300130, China
| | - Guizhi Xu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300130, China
- School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin, 300130, China
- Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, Hebei University of Technology, Tianjin, 300130, China
| |
Collapse
|
10
|
Yin Q, Johnson EL, Ofen N. Neurophysiological mechanisms of cognition in the developing brain: Insights from intracranial EEG studies. Dev Cogn Neurosci 2023; 64:101312. [PMID: 37837918 PMCID: PMC10589793 DOI: 10.1016/j.dcn.2023.101312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/26/2023] [Accepted: 10/08/2023] [Indexed: 10/16/2023] Open
Abstract
The quest to understand how the development of the brain supports the development of complex cognitive functions is fueled by advances in cognitive neuroscience methods. Intracranial EEG (iEEG) recorded directly from the developing human brain provides unprecedented spatial and temporal resolution for mapping the neurophysiological mechanisms supporting cognitive development. In this paper, we focus on episodic memory, the ability to remember detailed information about past experiences, which improves from childhood into adulthood. We review memory effects based on broadband spectral power and emphasize the importance of isolating narrowband oscillations from broadband activity to determine mechanisms of neural coordination within and between brain regions. We then review evidence of developmental variability in neural oscillations and present emerging evidence linking the development of neural oscillations to the development of memory. We conclude by proposing that the development of oscillations increases the precision of neural coordination and may be an essential factor underlying memory development. More broadly, we demonstrate how recording neural activity directly from the developing brain holds immense potential to advance our understanding of cognitive development.
Collapse
Affiliation(s)
- Qin Yin
- Department of Psychology, Wayne State University, Detroit, MI, USA; Life-span Cognitive Neuroscience Program, Institute of Gerontology and Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI, USA
| | - Elizabeth L Johnson
- Departments of Medical Social Sciences and Pediatrics, Northwestern University, Chicago, IL, USA; Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Noa Ofen
- Department of Psychology, Wayne State University, Detroit, MI, USA; Life-span Cognitive Neuroscience Program, Institute of Gerontology and Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
11
|
Ke Y, Liu S, Chen L, Wang X, Ming D. Lasting enhancements in neural efficiency by multi-session transcranial direct current stimulation during working memory training. NPJ SCIENCE OF LEARNING 2023; 8:48. [PMID: 37919371 PMCID: PMC10622507 DOI: 10.1038/s41539-023-00200-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
The neural basis for long-term behavioral improvements resulting from multi-session transcranial direct current stimulation (tDCS) combined with working memory training (WMT) remains unclear. In this study, we used task-related electroencephalography (EEG) measures to investigate the lasting neurophysiological effects of anodal high-definition (HD)-tDCS applied over the left dorsolateral prefrontal cortex (dlPFC) during a challenging WMT. Thirty-four healthy young adults were randomized to sham or active tDCS groups and underwent ten 30-minute training sessions over ten consecutive days, preceded by a pre-test and followed by post-tests performed one day and three weeks after the last session, respectively, by performing high-load WM tasks along with EEG recording. Multi-session HD-tDCS significantly enhanced the behavioral benefits of WMT. Compared to the sham group, the active group showed facilitated increases in theta, alpha, beta, and gamma task-related oscillations at the end of training and significantly increased P300 response 3 weeks post-training. Our findings suggest that applying anodal tDCS over the left dlPFC during multi-session WMT can enhance the behavioral benefits of WMT and facilitate sustained improvements in WM-related neural efficiency.
Collapse
Affiliation(s)
- Yufeng Ke
- Academy of Medical Engineering and Translational Medicine, Tianjin International Joint Research Centre for Neural Engineering, and Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, PR China.
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, PR China.
| | - Shuang Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin International Joint Research Centre for Neural Engineering, and Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, PR China.
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, PR China.
| | - Long Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin International Joint Research Centre for Neural Engineering, and Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, PR China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, PR China
| | - Xiashuang Wang
- The Second Academy of China Aerospace Science and Industry Corporation, Beijing, PR China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin International Joint Research Centre for Neural Engineering, and Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, PR China.
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, PR China.
| |
Collapse
|
12
|
McNerney MW, Gurkoff GG, Beard C, Berryhill ME. The Rehabilitation Potential of Neurostimulation for Mild Traumatic Brain Injury in Animal and Human Studies. Brain Sci 2023; 13:1402. [PMID: 37891771 PMCID: PMC10605899 DOI: 10.3390/brainsci13101402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Neurostimulation carries high therapeutic potential, accompanied by an excellent safety profile. In this review, we argue that an arena in which these tools could provide breakthrough benefits is traumatic brain injury (TBI). TBI is a major health problem worldwide, with the majority of cases identified as mild TBI (mTBI). MTBI is of concern because it is a modifiable risk factor for dementia. A major challenge in studying mTBI is its inherent heterogeneity across a large feature space (e.g., etiology, age of injury, sex, treatment, initial health status, etc.). Parallel lines of research in human and rodent mTBI can be collated to take advantage of the full suite of neuroscience tools, from neuroimaging (electroencephalography: EEG; functional magnetic resonance imaging: fMRI; diffusion tensor imaging: DTI) to biochemical assays. Despite these attractive components and the need for effective treatments, there are at least two major challenges to implementation. First, there is insufficient understanding of how neurostimulation alters neural mechanisms. Second, there is insufficient understanding of how mTBI alters neural function. The goal of this review is to assemble interrelated but disparate areas of research to identify important gaps in knowledge impeding the implementation of neurostimulation.
Collapse
Affiliation(s)
- M. Windy McNerney
- Mental Illness Research Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA; (M.W.M.); (C.B.)
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gene G. Gurkoff
- Department of Neurological Surgery, and Center for Neuroscience, University of California, Davis, Sacramento, CA 95817, USA;
- Department of Veterans Affairs, VA Northern California Health Care System, Martinez, CA 94553, USA
| | - Charlotte Beard
- Mental Illness Research Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA; (M.W.M.); (C.B.)
- Program in Neuroscience and Behavioral Biology, Emory University, Atlanta, GA 30322, USA
| | - Marian E. Berryhill
- Programs in Cognitive and Brain Sciences, and Integrative Neuroscience, Department of Psychology, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
13
|
Soleimani G, Nitsche MA, Bergmann TO, Towhidkhah F, Violante IR, Lorenz R, Kuplicki R, Tsuchiyagaito A, Mulyana B, Mayeli A, Ghobadi-Azbari P, Mosayebi-Samani M, Zilverstand A, Paulus MP, Bikson M, Ekhtiari H. Closing the loop between brain and electrical stimulation: towards precision neuromodulation treatments. Transl Psychiatry 2023; 13:279. [PMID: 37582922 PMCID: PMC10427701 DOI: 10.1038/s41398-023-02565-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/06/2023] [Accepted: 07/20/2023] [Indexed: 08/17/2023] Open
Abstract
One of the most critical challenges in using noninvasive brain stimulation (NIBS) techniques for the treatment of psychiatric and neurologic disorders is inter- and intra-individual variability in response to NIBS. Response variations in previous findings suggest that the one-size-fits-all approach does not seem the most appropriate option for enhancing stimulation outcomes. While there is a growing body of evidence for the feasibility and effectiveness of individualized NIBS approaches, the optimal way to achieve this is yet to be determined. Transcranial electrical stimulation (tES) is one of the NIBS techniques showing promising results in modulating treatment outcomes in several psychiatric and neurologic disorders, but it faces the same challenge for individual optimization. With new computational and methodological advances, tES can be integrated with real-time functional magnetic resonance imaging (rtfMRI) to establish closed-loop tES-fMRI for individually optimized neuromodulation. Closed-loop tES-fMRI systems aim to optimize stimulation parameters based on minimizing differences between the model of the current brain state and the desired value to maximize the expected clinical outcome. The methodological space to optimize closed-loop tES fMRI for clinical applications includes (1) stimulation vs. data acquisition timing, (2) fMRI context (task-based or resting-state), (3) inherent brain oscillations, (4) dose-response function, (5) brain target trait and state and (6) optimization algorithm. Closed-loop tES-fMRI technology has several advantages over non-individualized or open-loop systems to reshape the future of neuromodulation with objective optimization in a clinically relevant context such as drug cue reactivity for substance use disorder considering both inter and intra-individual variations. Using multi-level brain and behavior measures as input and desired outcomes to individualize stimulation parameters provides a framework for designing personalized tES protocols in precision psychiatry.
Collapse
Affiliation(s)
- Ghazaleh Soleimani
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Michael A Nitsche
- Department of Psychology and Neuroscience, Leibniz Research Center for Working Environment and Human Factors, Dortmund, Germany
- Bielefeld University, University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy, and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Bielefeld, Germany
| | - Til Ole Bergmann
- Neuroimaging Center, Focus Program Translational Neuroscience, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
- Leibniz Institute for Resilience Research, Mainz, Germany
| | - Farzad Towhidkhah
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Ines R Violante
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guilford, UK
| | - Romy Lorenz
- Department of Psychology, Stanford University, Stanford, CA, USA
- MRC CBU, University of Cambridge, Cambridge, UK
- Department of Neurophysics, MPI, Leipzig, Germany
| | | | | | - Beni Mulyana
- Laureate Institute for Brain Research, Tulsa, OK, USA
- School of Electrical and Computer Engineering, University of Oklahoma, Tulsa, OK, USA
| | - Ahmad Mayeli
- University of Pittsburgh Medical Center, Pittsburg, PA, USA
| | - Peyman Ghobadi-Azbari
- Department of Biomedical Engineering, Shahed University, Tehran, Iran
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Mosayebi-Samani
- Department of Psychology and Neuroscience, Leibniz Research Center for Working Environment and Human Factors, Dortmund, Germany
| | - Anna Zilverstand
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | | | | | - Hamed Ekhtiari
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
- Laureate Institute for Brain Research, Tulsa, OK, USA.
| |
Collapse
|
14
|
Lee YS, Shim M, Choi GY, Kim SH, Lim W, Jeong JW, Jung YJ, Hwang HJ. Neuromodulatory feasibility of a current limiter-based tDCS device: a resting-state electroencephalography study. Biomed Eng Lett 2023; 13:407-415. [PMID: 37519870 PMCID: PMC10382376 DOI: 10.1007/s13534-023-00269-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/02/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Recently, we introduced a current limiter-based novel transcranial direct-current stimulation (tDCS) device that does not generate significant tDCS-induced electrical artifacts, thereby facilitating simultaneous electroencephalography (EEG) measurement during tDCS application. In this study, we investigated the neuromodulatory effect of the tDCS device using resting-state EEG data measured during tDCS application in terms of EEG power spectral densities (PSD) and brain network indices (clustering coefficient and path length). Resting-state EEG data were recorded from 10 healthy subjects during both eyes-open (EO) and eyes-closed (EC) states for each of five different conditions (baseline, sham, post-sham, tDCS, and post-tDCS). In the tDCS condition, tDCS was applied for 12 min with a current intensity of 1.5 mA, whereas tDCS was applied only for the first 30 s in the sham condition. EEG PSD and brain network indices were computed for the alpha frequency band most closely associated with resting-state EEG. Both alpha PSD and network indices were found to significantly increase during and after tDCS application compared to those of the baseline condition in the EO state, but not in the EC state owing to the ceiling effect. Our results demonstrate the neuromodulatory effect of the tDCS device that does not generate significant tDCS-induced electrical artifacts, thereby allowing simultaneous measurement of electrical brain activity. We expect our novel tDCS device to be practically useful in exploring the impact of tDCS on neuromodulation more precisely using ongoing EEG data simultaneously measured during tDCS application.
Collapse
Affiliation(s)
- Yun-Sung Lee
- Department of Electronics and Information, Korea University, 30019 Sejong, Republic of Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, Republic of Korea
| | - Miseon Shim
- Department of Electronics and Information, Korea University, 30019 Sejong, Republic of Korea
| | - Ga-Young Choi
- Department of Electronics and Information, Korea University, 30019 Sejong, Republic of Korea
| | - Sang Ho Kim
- Department of Industrial Engineering, Kumoh National Institute of Technology, 39177 Gumi, Republic of Korea
| | - Wansu Lim
- Department of Aeronautics, Mechanical, and Electronic Convergence Engineering, Kumoh National Institute of Technology, 39177 Gumi, Republic of Korea
| | - Jin-Woo Jeong
- Department of Data Science, Seoul National University of Science and Technology, 01811 Seoul, Republic of Korea
| | - Young-Jin Jung
- School of Healthcare and Biomedical Engineering, Chonnam National University, 59626 Yeosu, Republic of Korea
- 50, Daehak-ro, 59626 Yeosu-si, Jeollanam-do Republic of Korea
| | - Han-Jeong Hwang
- Department of Electronics and Information, Korea University, 30019 Sejong, Republic of Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, Republic of Korea
- Sejong-ro, Jochiwon-eup, 2511, 30019 Sejong-si, Republic of Korea
| |
Collapse
|
15
|
Nakamura-Palacios EM, Falçoni Júnior AT, Anders QS, de Paula LDSP, Zottele MZ, Ronchete CF, Lirio PHC. Would frontal midline theta indicate cognitive changes induced by non-invasive brain stimulation? A mini review. Front Hum Neurosci 2023; 17:1116890. [PMID: 37520930 PMCID: PMC10375045 DOI: 10.3389/fnhum.2023.1116890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
To the best of our knowledge, neurophysiological markers indicating changes induced by non-invasive brain stimulation (NIBS) on cognitive performance, especially one of the most investigated under these procedures, working memory (WM), are little known. Here, we will briefly introduce frontal midline theta (FM-theta) oscillation (4-8 Hz) as a possible indicator for NIBS effects on WM processing. Electrophysiological recordings of FM-theta oscillation seem to originate in the medial frontal cortex and the anterior cingulate cortex, but they may be driven more subcortically. FM-theta has been acknowledged to occur during memory and emotion processing, and it has been related to WM and sustained attention. It mainly occurs in the frontal region during a delay period, in which specific information previously shown is no longer perceived and must be manipulated to allow a later (delayed) response and observed in posterior regions during information maintenance. Most NIBS studies investigating effects on cognitive performance have used n-back tasks that mix manipulation and maintenance processes. Thus, if considering FM-theta as a potential neurophysiological indicator for NIBS effects on different WM components, adequate cognitive tasks should be considered to better address the complexity of WM processing. Future research should also evaluate the potential use of FM-theta as an index of the therapeutic effects of NIBS intervention on neuropsychiatric disorders, especially those involving the ventral medial prefrontal cortex and cognitive dysfunctions.
Collapse
Affiliation(s)
| | | | - Quézia Silva Anders
- Superior School of Sciences of the Santa Casa de Misericórdia de Vitória (EMESCAM), Vitória, Brazil
| | | | | | | | | |
Collapse
|
16
|
Najera RA, Mahavadi AK, Khan AU, Boddeti U, Del Bene VA, Walker HC, Bentley JN. Alternative patterns of deep brain stimulation in neurologic and neuropsychiatric disorders. Front Neuroinform 2023; 17:1156818. [PMID: 37415779 PMCID: PMC10320008 DOI: 10.3389/fninf.2023.1156818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023] Open
Abstract
Deep brain stimulation (DBS) is a widely used clinical therapy that modulates neuronal firing in subcortical structures, eliciting downstream network effects. Its effectiveness is determined by electrode geometry and location as well as adjustable stimulation parameters including pulse width, interstimulus interval, frequency, and amplitude. These parameters are often determined empirically during clinical or intraoperative programming and can be altered to an almost unlimited number of combinations. Conventional high-frequency stimulation uses a continuous high-frequency square-wave pulse (typically 130-160 Hz), but other stimulation patterns may prove efficacious, such as continuous or bursting theta-frequencies, variable frequencies, and coordinated reset stimulation. Here we summarize the current landscape and potential clinical applications for novel stimulation patterns.
Collapse
Affiliation(s)
- Ricardo A. Najera
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anil K. Mahavadi
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anas U. Khan
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ujwal Boddeti
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Victor A. Del Bene
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Harrison C. Walker
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - J. Nicole Bentley
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
17
|
Lee EE, Adamowicz DH, Frangou S. An NIMH Workshop on Non-Affective Psychosis in Midlife and Beyond: Research Agenda on Phenomenology, Clinical Trajectories, Underlying Mechanisms, and Intervention Targets. Am J Geriatr Psychiatry 2023; 31:353-365. [PMID: 36858928 PMCID: PMC10990076 DOI: 10.1016/j.jagp.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/05/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023]
Abstract
We present a review of the state of the research in the phenomenology, clinical trajectories, biological mechanisms, aging biomarkers, and treatments for middle-aged and older people with schizophrenia (PwS) discussed at the NIMH sponsored workshop "Non-affective Psychosis in Midlife and Beyond." The growing population of PwS has specific clinical needs that require tailored and mechanistically derived interventions. Differentiating between the effects of aging and disease progression is a key challenge of studying older PwS. This review of the workshop highlights the recent findings in this understudied clinical population and the critical gaps in knowledge and consensus for research priorities. This review showcases the major challenges and opportunities for research to advance clinical care for this growing and understudied population.
Collapse
Affiliation(s)
- Ellen E Lee
- Department of Psychiatry (EEL, DA), University of California San Diego, La Jolla, CA; Sam and Rose Stein Institute for Research on Aging (EEL, DA), University of California San Diego, La Jolla, CA; Desert-Pacific Mental Illness Research Education and Clinical Center, Veterans Affairs San Diego Healthcare System (EEL), San Diego, CA.
| | - David H Adamowicz
- Department of Psychiatry (EEL, DA), University of California San Diego, La Jolla, CA; Sam and Rose Stein Institute for Research on Aging (EEL, DA), University of California San Diego, La Jolla, CA
| | - Sophia Frangou
- Department of Psychiatry (SF), University of British Columbia, Vancouver, British Columbia, Canada; Icahn School of Medicine at Mount Sinai (SF), New York, NY
| |
Collapse
|
18
|
Hunold A, Haueisen J, Nees F, Moliadze V. Review of individualized current flow modeling studies for transcranial electrical stimulation. J Neurosci Res 2023; 101:405-423. [PMID: 36537991 DOI: 10.1002/jnr.25154] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022]
Abstract
There is substantial intersubject variability of behavioral and neurophysiological responses to transcranial electrical stimulation (tES), which represents one of the most important limitations of tES. Many tES protocols utilize a fixed experimental parameter set disregarding individual anatomical and physiological properties. This one-size-fits-all approach might be one reason for the observed interindividual response variability. Simulation of current flow applying head models based on available anatomical data can help to individualize stimulation parameters and contribute to the understanding of the causes of this response variability. Current flow modeling can be used to retrospectively investigate the characteristics of tES effectivity. Previous studies examined, for example, the impact of skull defects and lesions on the modulation of current flow and demonstrated effective stimulation intensities in different age groups. Furthermore, uncertainty analysis of electrical conductivities in current flow modeling indicated the most influential tissue compartments. Current flow modeling, when used in prospective study planning, can potentially guide stimulation configurations resulting in individually effective tES. Specifically, current flow modeling using individual or matched head models can be employed by clinicians and scientists to, for example, plan dosage in tES protocols for individuals or groups of participants. We review studies that show a relationship between the presence of behavioral/neurophysiological responses and features derived from individualized current flow models. We highlight the potential benefits of individualized current flow modeling.
Collapse
Affiliation(s)
- Alexander Hunold
- Institute of Biomedical Engineering and Informatics, TU Ilmenau, Ilmenau, Germany
| | - Jens Haueisen
- Institute of Biomedical Engineering and Informatics, TU Ilmenau, Ilmenau, Germany
| | - Frauke Nees
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | - Vera Moliadze
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| |
Collapse
|
19
|
Menze I, Mueller NG, Zaehle T, Schmicker M. Individual response to transcranial direct current stimulation as a function of working memory capacity and electrode montage. Front Hum Neurosci 2023; 17:1134632. [PMID: 36968784 PMCID: PMC10034341 DOI: 10.3389/fnhum.2023.1134632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/01/2023] [Indexed: 03/11/2023] Open
Abstract
IntroductionAttempts to improve cognitive abilities via transcranial direct current stimulation (tDCS) have led to ambiguous results, likely due to the method’s susceptibility to methodological and inter-individual factors. Conventional tDCS, i.e., using an active electrode over brain areas associated with the targeted cognitive function and a supposedly passive reference, neglects stimulation effects on entire neural networks.MethodsWe investigated the advantage of frontoparietal network stimulation (right prefrontal anode, left posterior parietal cathode) against conventional and sham tDCS in modulating working memory (WM) capacity dependent transfer effects of a single-session distractor inhibition (DIIN) training. Since previous results did not clarify whether electrode montage drives this individual transfer, we here compared conventional to frontoparietal and sham tDCS and reanalyzed data of 124 young, healthy participants in a more robust way using linear mixed effect modeling.ResultsThe interaction of electrode montage and WM capacity resulted in systematic differences in transfer effects. While higher performance gains were observed with increasing WM capacity in the frontoparietal stimulation group, low WM capacity individuals benefited more in the sham condition. The conventional stimulation group showed subtle performance gains independent of WM capacity.DiscussionOur results confirm our previous findings of WM capacity dependent transfer effects on WM by a single-session DIIN training combined with tDCS and additionally highlight the pivotal role of the specific electrode montage. WM capacity dependent differences in frontoparietal network recruitment, especially regarding the parietal involvement, are assumed to underlie this observation.
Collapse
Affiliation(s)
- Inga Menze
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- *Correspondence: Inga Menze,
| | - Notger G. Mueller
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Research Group Degenerative and Chronic Diseases, Movement, Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam, Germany
| | - Tino Zaehle
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Marlen Schmicker
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| |
Collapse
|
20
|
Murray NWG, Graham PL, Sowman PF, Savage G. Theta tACS impairs episodic memory more than tDCS. Sci Rep 2023; 13:716. [PMID: 36639676 PMCID: PMC9839727 DOI: 10.1038/s41598-022-27190-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Episodic memory deficits are a common consequence of aging and are associated with a number of neurodegenerative disorders (e.g., Alzheimer's disease). Given the importance of episodic memory, a great deal of research has investigated how we can improve memory performance. Transcranial electrical stimulation (TES) represents a promising tool for memory enhancement but the optimal stimulation parameters that reliably boost memory are yet to be determined. In our double-blind, randomised, sham-controlled study, 42 healthy adults (36 females; 23.3 ± 7.7 years of age) received anodal transcranial direct current stimulation (tDCS), theta transcranial alternating current stimulation (tACS) and sham stimulation during a list-learning task, over three separate sessions. Stimulation was applied over the left temporal lobe, as encoding and recall of information is typically associated with mesial temporal lobe structures (e.g., the hippocampus and entorhinal cortex). We measured word recall within each stimulation session, as well as the average number of intrusion and repetition errors. In terms of word recall, participants recalled fewer words during tDCS and tACS, compared to sham stimulation, and significantly fewer words recalled during tACS compared with tDCS. Significantly more memory errors were also made during tACS compared with sham stimulation. Overall, our findings suggest that TES has a deleterious effect on memory processes when applied to the left temporal lobe.
Collapse
Affiliation(s)
- Nicholas W G Murray
- School of Psychological Sciences, Macquarie University, Australian Hearing Hub, Level 3, Sydney, NSW, 2109, Australia.
| | - Petra L Graham
- School of Mathematical and Physical Sciences, Macquarie University, Sydney, Australia
| | - Paul F Sowman
- School of Psychological Sciences, Macquarie University, Australian Hearing Hub, Level 3, Sydney, NSW, 2109, Australia
| | - Greg Savage
- School of Psychological Sciences, Macquarie University, Australian Hearing Hub, Level 3, Sydney, NSW, 2109, Australia
| |
Collapse
|
21
|
Aksu S, Hasırcı Bayır BR, Sayman C, Soyata AZ, Boz G, Karamürsel S. Working memory ımprovement after transcranial direct current stimulation paired with working memory training ın diabetic peripheral neuropathy. APPLIED NEUROPSYCHOLOGY. ADULT 2023:1-14. [PMID: 36630270 DOI: 10.1080/23279095.2022.2164717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Association of cognitive deficits and diabetic peripheral neuropathy (DPN) is frequent. Working memory (WM) deficits result in impairment of daily activities, diminished functionality, and treatment compliance. Mounting evidence suggests that transcranial Direct Current Stimulation (tDCS) with concurrent working memory training (WMT) ameliorates cognitive deficits. Emboldening results of tDCS were shown in DPN. The study aimed to evaluate the efficacy of anodal tDCS over the left dorsolateral prefrontal cortex (DLPFC) coupled with cathodal right DLPFC with concurrent WMT in DPN for the first time. The present randomized triple-blind parallel-group sham-controlled study evaluated the efficacy of 5 sessions of tDCS over the DLPFC concurrent with WMT in 28 individuals with painful DPN on cognitive (primary) and pain-related, psychiatric outcome measures before, immediately after, and 1-month after treatment protocol. tDCS enhanced the efficacy of WMT on working memory and yielded lower anxiety levels than sham tDCS but efficacy was not superior to sham on other cognitive domains, pain severity, quality of life, and depression. tDCS with concurrent WMT enhanced WM and ameliorated anxiety in DPN without affecting other cognitive and pain-related outcomes. Further research scrutinizing the short/long-term efficacy with larger samples is accredited.
Collapse
Affiliation(s)
- Serkan Aksu
- Department of Physiology, Faculty of Medicine, Muğla Sıtkı Koçman University, Muğla, Türkiye
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Buse Rahime Hasırcı Bayır
- Department of Neurology, Health Sciences University, Haydarpaşa Numune Education and Research Hospital, Istanbul, Türkiye
| | - Ceyhun Sayman
- Translational Neurodevelopmental Neuroscience Phd Programme, Institute of Health Science, Istanbul University, Istanbul, Türkiye
| | - Ahmet Zihni Soyata
- Psychiatry Outpatient Clinic, Başakşehir State Hospital, İstanbul, Turkey
| | - Gökalp Boz
- Department of Psychology, Istanbul University, Istanbul, Türkiye
| | - Sacit Karamürsel
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
- Department of Physiology, School of Medicine, Koc University, Istanbul, Türkiye
| |
Collapse
|
22
|
Liu S, Duan M, Sun Y, Wang L, An L, Ming D. Neural responses to social decision-making in suicide attempters with mental disorders. BMC Psychiatry 2023; 23:19. [PMID: 36624426 PMCID: PMC9830736 DOI: 10.1186/s12888-022-04422-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/24/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Decision-making deficits have been reported in suicide attempters and may be a neuropsychological trait of vulnerability to suicidal behavior. However, little is known about how neural activity is altered in decision-making. This study aimed to investigate the neural responses in suicide attempters with mental disorders during social decision-making. Electroencephalography (EEG) were recorded from 52 patients with mental disorders with past suicide attempts (SAs = 26) and without past suicide attempts (NSAs = 26), as well as from 22 age- and sex- matched healthy controls (HCs) during the Ultimatum Game (UG), which is a typical paradigm to investigate the responses to fair and unfair decision-making. METHODS MINI 5.0 interview and self report questionnaire were used to make mental diagnosis and suicide behavior assessment for individuals. Event-related potential (ERP) and phase-amplitude coupling (PAC) were extracted to quantify the neural activity. Furthermore, Spearman correlation and logistic regression analyses were conducted to identify the risk factors of suicidal behavior. RESULTS ERP analysis demonstrated that SA patients had decreased P2 amplitude and prolonged P2 latency when receiving unfair offers. Moreover, SA patients exhibited greater negative-going feedback-related negativity (FRN) to unfair offers compared to fair ones, whereas such a phenomenon was absent in NSA and HC groups. These results revealed that SA patients had a stronger fairness principle and a disregard toward the cost of punishment in social decision-making. Furthermore, theta-gamma and beta-gamma PAC were involved in decision-making, with compromised neural coordination in the frontal, central, and temporal regions in SA patients, suggesting cognitive dysfunction during social interaction. Statistically significant variables were used in logistic regression analysis. The area under receiver operating characteristic curve in the logistic regression model was 0.91 for SA/HC and 0.84 for SA/NSA. CONCLUSIONS Our findings emphasize that suicide attempts in patients with mental disorders are associated with abnormal decision-making. P2, theta-gamma PAC, and beta-gamma PAC may be neuro-electrophysiological biomarkers associated with decision-making. These results provide neurophysiological signatures of suicidal behavior.
Collapse
Affiliation(s)
- Shuang Liu
- grid.33763.320000 0004 1761 2484Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| | - Moxin Duan
- grid.33763.320000 0004 1761 2484Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| | - Yiwei Sun
- grid.33763.320000 0004 1761 2484Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| | - Lingling Wang
- grid.33763.320000 0004 1761 2484School of Education, Tianjin University, Tianjin, China
| | - Li An
- School of Education, Tianjin University, Tianjin, China.
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China. .,School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China.
| |
Collapse
|
23
|
Early adolescent psychological distress and cognition, correlates of resting-state EEG, interregional phase-amplitude coupling. Int J Psychophysiol 2023; 183:130-137. [PMID: 36436723 DOI: 10.1016/j.ijpsycho.2022.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
Delineating neurobiological markers of youth mental health is crucial for early identification and treatment. One promising marker is phase-amplitude coupling (PAC), cross-frequency coupling between the phase of slower oscillatory activity and the amplitude of faster oscillatory activity in the brain. Prior research has demonstrated that PAC is associated with both cognition and mental health and can be modulated using neurostimulation. However, to date research investigating PAC has focused primarily on adults, and only within-region theta-gamma coupling in the context of mental health. We investigated associations between interregional resting-state PAC (posterior-anterior cortex), and cognition and psychological distress in N = 77 (Mage = 12.58 years, SD = 0.31; 51 % female) 12-year-olds. Firstly, while left theta-beta PAC showed a moderate positive correlation (r = 0.529, p < .01), right theta-gamma PAC showed a weak positive correlation, with psychological distress (r = 0.283, p < .05). In terms of cognition, moderate correlations were observed between: (i) increased left theta-beta PAC and increased psychomotor speed (r = -0.367, p < .05); (ii) increased left alpha-beta PAC and decreased attention (r = 0.355, p ≤0.01); and (iii) increased left alpha-beta PAC and decreased verbal learning and memory (r = -0.352, p < .01). Whereas weak associations were observed for: (i) increased left alpha-beta PAC and decreased executive functioning scores (r = 0.284, p < .05); and (ii) increased left alpha-gamma PAC and increased attention (r = -0.272, p < .05). The overall findings of this exploratory study are encouraging, although all the correlations were in the weak-to-moderate range and require replication. Further research may confirm interregional resting-state PAC as a biomarker that can help us better understand the link between mental health and cognition in adolescents and improve treatment of cognitive related deficits in mental illness.
Collapse
|
24
|
Jones KT, Johnson EL, Gazzaley A, Zanto TP. Structural and functional network mechanisms of rescuing cognitive control in aging. Neuroimage 2022; 262:119547. [PMID: 35940423 PMCID: PMC9464721 DOI: 10.1016/j.neuroimage.2022.119547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/13/2022] [Accepted: 08/04/2022] [Indexed: 11/23/2022] Open
Abstract
Age-related declines in cognitive control, an ability critical in most daily tasks, threaten individual independence. We previously showed in both older and younger adults that transcranial alternating current stimulation (tACS) can improve cognitive control, with effects observed across neural regions distant from the stimulated site and frequencies outside the stimulated range. Here, we assess network-level changes in neural activity that extend beyond the stimulated site and evaluate anatomical pathways that subserve these effects. We investigated the potential to rescue cognitive control in aging using prefrontal (F3-F4) theta (6 Hz) or control (1 Hz) tACS while older adults engaged in a cognitive control video game intervention on three consecutive days. Functional connectivity was assessed with EEG by measuring daily changes in frontal-posterior phase-locking values (PLV) from the tACS-free baseline. Structural connectivity was measured using MRI diffusion tractography data collected at baseline. Theta tACS improved multitasking performance, and individual gains reflected a dissociation in daily PLV changes, where theta tACS strengthened PLV and control tACS reduced PLV. Strengthened alpha-beta PLV in the theta tACS group correlated positively with inferior longitudinal fasciculus and corpus callosum body integrity, and further explained multitasking gains. These results demonstrate that theta tACS can improve cognitive control in aging by strengthening functional connectivity, particularly in higher frequency bands. However, the extent of functional connectivity gains is limited by the integrity of structural white matter tracts. Given that advanced age is associated with decreased white matter integrity, results suggest that the deployment of tACS as a therapeutic is best prior to advanced age.
Collapse
Affiliation(s)
- Kevin T Jones
- Department of Neurology, University of California-San Francisco, San Francisco, California; Neuroscape, University of California-San Francisco, San Francisco, California.
| | - Elizabeth L Johnson
- Departments of Medical Social Sciences and Pediatrics, Northwestern University, Chicago, Illinois
| | - Adam Gazzaley
- Department of Neurology, University of California-San Francisco, San Francisco, California; Neuroscape, University of California-San Francisco, San Francisco, California; Departments of Physiology and Psychiatry, University of California-San Francisco, San Francisco, California
| | - Theodore P Zanto
- Department of Neurology, University of California-San Francisco, San Francisco, California; Neuroscape, University of California-San Francisco, San Francisco, California
| |
Collapse
|
25
|
Martin DM, Berryhill ME, Dielenberg V. Can brain stimulation enhance cognition in clinical populations? A critical review. Restor Neurol Neurosci 2022:RNN211230. [PMID: 36404559 DOI: 10.3233/rnn-211230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Many psychiatric and neurological conditions are associated with cognitive impairment for which there are very limited treatment options. Brain stimulation methodologies show promise as novel therapeutics and have cognitive effects. Electroconvulsive therapy (ECT), known more for its related transient adverse cognitive effects, can produce significant cognitive improvement in the weeks following acute treatment. Transcranial magnetic stimulation (TMS) is increasingly used as a treatment for major depression and has acute cognitive effects. Emerging research from controlled studies suggests that repeated TMS treatments may additionally have cognitive benefit. ECT and TMS treatment cause neurotrophic changes, although whether these are associated with cognitive effects remains unclear. Transcranial electrical stimulation methods including transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS) are in development as novel treatments for multiple psychiatric conditions. These treatments may also produce cognitive enhancement particularly when stimulation occurs concurrently with a cognitive task. This review summarizes the current clinical evidence for these brain stimulation treatments as therapeutics for enhancing cognition. Acute, or short-lasting, effects as well as longer-term effects from repeated treatments are reviewed, together with potential putative neural mechanisms. Areas of future research are highlighted to assist with optimization of these approaches for enhancing cognition.
Collapse
Affiliation(s)
- Donel M. Martin
- Sydney Neurostimulation Centre, Discipline of Psychiatry and Mental Health UNSW, Black Dog Institute, Sydney, New South Wales, Australia
| | - Marian E. Berryhill
- Memory and Brain Lab, Programs in Cognitive and Brain Sciences, and Integrative Neuroscience, University of Nevada, Reno, NV, USA
| | - Victoria Dielenberg
- Sydney Neurostimulation Centre, Discipline of Psychiatry and Mental Health UNSW, Black Dog Institute, Sydney, New South Wales, Australia
| |
Collapse
|
26
|
Zhang Y, Zhou Z, Zhou J, Qian Z, Lü J, Li L, Liu Y. Temporal interference stimulation targeting right frontoparietal areas enhances working memory in healthy individuals. Front Hum Neurosci 2022; 16:918470. [PMID: 36393981 PMCID: PMC9650295 DOI: 10.3389/fnhum.2022.918470] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
Background Temporal interference (TI) stimulation is a novel technique that enables the non-invasive modulation of deep brain regions. However, the implementation of this technology in humans has not been well-characterized or examined, including its safety and feasibility. Objective We aimed to examine the feasibility, safety, and blinding of using TI on human participants in this pilot study. Materials and methods In a randomized, single-blinded, and sham-controlled pilot study, healthy young participants were randomly divided into four groups [TI and transcranial alternating current stimulation (tACS) targeting the right frontoparietal region, TI-sham, and tACS-sham]. Each participant was asked to complete N-back (N = 1 to 3) tasks before, during, and after one session of stimulation to assess their working memory (WM). The side effects and blinding efficacy were carefully assessed. The accuracy, reaction time (RT), and inverse efficiency score (IES, reaction time/accuracy) of the N-back tasks were measured. Results No severe side effects were reported. Only mild-to-moderate side effects were observed in those who received TI, which was similar to those observed in participants receiving tACS. The blinding efficacy was excellent, and there was no correlation between the severity of the reported side effects and the predicted type of stimulation that the participants received. WM appeared to be only marginally improved by TI compared to tACS-sham, and this improvement was only observed under high-load cognitive tasks. WM seemed to have improved a little in the TI-sham group. However, it was not observed significant differences between TI and TI-sham or TI and tACS in all N-back tests. Conclusion Our pilot study suggests that TI is a promising technique that can be safely implemented in human participants. Studies are warranted to confirm the findings of this study and to further examine the effects of TI-sham stimulation as well as the effects of TI on deeper brain regions.
Collapse
Affiliation(s)
- Yufeng Zhang
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Zhining Zhou
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Junhong Zhou
- Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research and Harvard Medical School, Boston, MA, United States
| | - Zhenyu Qian
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Jiaojiao Lü
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
- *Correspondence: Jiaojiao Lü,
| | - Lu Li
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
- Lu Li,
| | - Yu Liu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
27
|
Duan M, Meng Z, Yuan D, Zhang Y, Tang T, Chen Z, Fu Y. Anodal and cathodal transcranial direct current stimulations of prefrontal cortex in a rodent model of Alzheimer’s disease. Front Aging Neurosci 2022; 14:968451. [PMID: 36081893 PMCID: PMC9446483 DOI: 10.3389/fnagi.2022.968451] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a leading cause of dementia in the elderly, with no effective treatment currently available. Transcranial direct current stimulation (tDCS), a non-drug and non-invasive therapy, has been testified efficient in cognitive enhancement. This study aims to examine the effects of tDCS on brain function in a mouse model of AD. The amyloid precursor protein (APP) and presenilin 1 (PS1) transgenic mice (7–8 months old) were subjected to 20-min anodal and cathodal tDCS (atDCS and ctDCS; 300 μA, 3.12 mA/cm2) for continuous five days. tDCS was applied on the left frontal skull of the animals, targeting on their prefrontal cortex (PFC). Behavioral performances were assessed by open-field, Y-maze, Barnes maze and T-maze paradigms; and their PFC electroencephalogram (EEG) activities were recorded under spontaneous state and during Y-maze performance. Behaviorally, atDCS and ctDCS improved spatial learning and/or memory in AD mice without affecting their general locomotion and anxiety-like behaviors, but the effects depended on the testing paradigms. Interestingly, the memory improvements were accompanied by decreased PFC EEG delta (2–4 Hz) and increased EEG gamma (20–100 Hz) activities when the animals needed memory retrieval during task performance. The decreased EEG delta activities could also be observed in animals under spontaneous state. Specifically, atDCS increased PFC EEG activity in the alpha band (8–12 Hz) for spontaneous state, whereas ctDCS increased that in alpha-beta band (8–20 Hz) for task-related state. In addition, some EEG changes after ctDCS could be found in other cortical regions except PFC. These data indicate that tDCS can reverse the situation of slower brain activity in AD mice, which may further lead to cognitive improvement. Our work highlights the potential clinical use of tDCS to restore neural network activity and improve cognition in AD.
Collapse
Affiliation(s)
- Mengsi Duan
- Medical School, Kunming University of Science & Technology, Kunming, China
| | - Zhiqiang Meng
- Shenzhen Key Laboratory of Drug Addiction, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Dong Yuan
- Medical School, Kunming University of Science & Technology, Kunming, China
| | - Yunfan Zhang
- Medical School, Kunming University of Science & Technology, Kunming, China
| | - Tao Tang
- Medical School, Kunming University of Science & Technology, Kunming, China
| | - Zhuangfei Chen
- Medical School, Kunming University of Science & Technology, Kunming, China
| | - Yu Fu
- Medical School, Kunming University of Science & Technology, Kunming, China
- *Correspondence: Yu Fu,
| |
Collapse
|
28
|
Zhu P, Liu S, Tian Y, Chen Y, Chen W, Wang P, Du L, Wu C. Odor-induced modification of oscillations and related theta-higher gamma coupling in olfactory bulb neurons of awake and anesthetized rats. Front Chem 2022; 10:865006. [PMID: 35978860 PMCID: PMC9376862 DOI: 10.3389/fchem.2022.865006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Olfactory gamma oscillations (40–100 Hz) are generated spontaneously in animals and represent the activity of local olfactory bulb (OB) networks, which play important roles in cognitive mechanisms. In addition, high-frequency oscillations (HFO, 130–180 Hz) have attracted widespread attention and are novel neuronal oscillations with a frequency range closer to high gamma oscillations (60–100 Hz, HGOs). Both HGOs and HFOs are distinctly regulated by θ rhythm in the hippocampus. To understand their mediation mechanisms in the OB, we investigated whether local field potential (LFP) oscillations including HGOs and HFOs and even their coupling with theta rhythm are modified by odor stimulation in both freely moving and anesthetized rats. Therefore, we combined electrophysiological technology and cross-frequency coupling analysis approaches to determine the difference in the odor-modulated LFP oscillations between awake and anesthetized rats. The obtained results indicate that LFP oscillations including HGOs and HFOs were differently modified by odor stimulation in animals of both states. However, θ-HGO and θ-HFO coupling were modified in only awake animals. It is suggested that these oscillations and their interactions with theta oscillations may play crucial roles in olfactory network activity. This could pave the way for further understanding the underlying mechanisms of oscillations in OB neurons towards odor sensation.
Collapse
Affiliation(s)
- Ping Zhu
- Department of Biophysics, Health Science Center, Institute of Medical Engineering, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an, China
| | - Shuge Liu
- Department of Biophysics, Health Science Center, Institute of Medical Engineering, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an, China
| | - Yulan Tian
- Department of Biophysics, Health Science Center, Institute of Medical Engineering, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an, China
| | - Yating Chen
- Department of Biophysics, Health Science Center, Institute of Medical Engineering, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an, China
| | - Wei Chen
- Department of Biophysics, Health Science Center, Institute of Medical Engineering, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an, China
| | - Ping Wang
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Liping Du
- Department of Biophysics, Health Science Center, Institute of Medical Engineering, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an, China
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
- *Correspondence: Liping Du, ; Chunsheng Wu,
| | - Chunsheng Wu
- Department of Biophysics, Health Science Center, Institute of Medical Engineering, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Liping Du, ; Chunsheng Wu,
| |
Collapse
|
29
|
Li Y, Fu W, Zhang Q, Chen X, Li X, Du B, Deng X, Ji F, Dong Q, Jaeggi SM, Chen C, Li J. Effects of forward and backward span trainings on working memory: Evidence from a randomized controlled trial. Psychophysiology 2022; 60:e14154. [PMID: 35894226 DOI: 10.1111/psyp.14154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 11/27/2022]
Abstract
Both forward and backward working memory span tasks have been used in cognitive training, but no study has been conducted to test whether the two types of trainings are equally effective. Based on data from a randomized controlled trial, this study (N = 60 healthy college students) tested the effects of backward span training, forward span training, and no intervention. Event-related potential (ERP) signals were recorded at the pre-, mid-, and post-tests while the subjects were performing a distractor version of the change detection task, which included three conditions (2 targets and 0 distractor [2T0D]; 4 targets and 0 distractor [4T0D]; and 2 targets and 2 distractors [2T2D]). Behavioral data were collected from two additional tasks: a multi-object version of the change detection task, and a suppress task. Compared to no intervention, both forward and backward span trainings led to significantly greater improvement in working memory maintenance, based on indices from both behavioral (Kmax) and ERP data (CDA_2T0D and CDA_4T0D). Backward span training also improved interference control based on the ERP data (CDA_filtering efficiency) to a greater extent than did forward span training and no intervention, but the three groups did not differ in terms of behavioral indices of interference control. These results have potential implications for optimizing the current cognitive training on working memory.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P.R. China
| | - Wenjin Fu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P.R. China
| | - Qiumei Zhang
- School of Mental Health, Jining Medical University, Jining, P.R. China
| | - Xiongying Chen
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & The Advanced Innovation Center for Human Brain Protection, Beijing Anding Hospital, School of Mental Health, Capital Medical University, Beijing, P.R. China
| | - Xiaohong Li
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & The Advanced Innovation Center for Human Brain Protection, Beijing Anding Hospital, School of Mental Health, Capital Medical University, Beijing, P.R. China
| | - Boqi Du
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P.R. China
| | - Xiaoxiang Deng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P.R. China
| | - Feng Ji
- School of Mental Health, Jining Medical University, Jining, P.R. China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P.R. China
| | - Susanne M Jaeggi
- School of Education & Department for Cognitive Sciences, University of California, Irvine, California, USA
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, California, USA
| | - Jun Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P.R. China
| |
Collapse
|
30
|
Roeder BM, Riley MR, She X, Dakos AS, Robinson BS, Moore BJ, Couture DE, Laxton AW, Popli G, Munger Clary HM, Sam M, Heck C, Nune G, Lee B, Liu C, Shaw S, Gong H, Marmarelis VZ, Berger TW, Deadwyler SA, Song D, Hampson RE. Patterned Hippocampal Stimulation Facilitates Memory in Patients With a History of Head Impact and/or Brain Injury. Front Hum Neurosci 2022; 16:933401. [PMID: 35959242 PMCID: PMC9358788 DOI: 10.3389/fnhum.2022.933401] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
Rationale: Deep brain stimulation (DBS) of the hippocampus is proposed for enhancement of memory impaired by injury or disease. Many pre-clinical DBS paradigms can be addressed in epilepsy patients undergoing intracranial monitoring for seizure localization, since they already have electrodes implanted in brain areas of interest. Even though epilepsy is usually not a memory disorder targeted by DBS, the studies can nevertheless model other memory-impacting disorders, such as Traumatic Brain Injury (TBI). Methods: Human patients undergoing Phase II invasive monitoring for intractable epilepsy were implanted with depth electrodes capable of recording neurophysiological signals. Subjects performed a delayed-match-to-sample (DMS) memory task while hippocampal ensembles from CA1 and CA3 cell layers were recorded to estimate a multi-input, multi-output (MIMO) model of CA3-to-CA1 neural encoding and a memory decoding model (MDM) to decode memory information from CA3 and CA1 neuronal signals. After model estimation, subjects again performed the DMS task while either MIMO-based or MDM-based patterned stimulation was delivered to CA1 electrode sites during the encoding phase of the DMS trials. Each subject was sorted (post hoc) by prior experience of repeated and/or mild-to-moderate brain injury (RMBI), TBI, or no history (control) and scored for percentage successful delayed recognition (DR) recall on stimulated vs. non-stimulated DMS trials. The subject’s medical history was unknown to the experimenters until after individual subject memory retention results were scored. Results: When examined compared to control subjects, both TBI and RMBI subjects showed increased memory retention in response to both MIMO and MDM-based hippocampal stimulation. Furthermore, effects of stimulation were also greater in subjects who were evaluated as having pre-existing mild-to-moderate memory impairment. Conclusion: These results show that hippocampal stimulation for memory facilitation was more beneficial for subjects who had previously suffered a brain injury (other than epilepsy), compared to control (epilepsy) subjects who had not suffered a brain injury. This study demonstrates that the epilepsy/intracranial recording model can be extended to test the ability of DBS to restore memory function in subjects who previously suffered a brain injury other than epilepsy, and support further investigation into the beneficial effect of DBS in TBI patients.
Collapse
Affiliation(s)
- Brent M. Roeder
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Mitchell R. Riley
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Xiwei She
- Department Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Alexander S. Dakos
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Brian S. Robinson
- Department Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Bryan J. Moore
- Department Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Daniel E. Couture
- Department of Neurosurgery, Wake Forest School of Medicine/Atrium Health Wake Forest Baptist, Winston-Salem, NC, United States
| | - Adrian W. Laxton
- Department of Neurosurgery, Wake Forest School of Medicine/Atrium Health Wake Forest Baptist, Winston-Salem, NC, United States
| | - Gautam Popli
- Department of Neurology, Wake Forest School of Medicine/Atrium Health Wake Forest Baptist, Winston-Salem, NC, United States
| | - Heidi M. Munger Clary
- Department of Neurology, Wake Forest School of Medicine/Atrium Health Wake Forest Baptist, Winston-Salem, NC, United States
| | - Maria Sam
- Department of Neurology, Wake Forest School of Medicine/Atrium Health Wake Forest Baptist, Winston-Salem, NC, United States
| | - Christi Heck
- Department of Neurology, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - George Nune
- Department of Neurology, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Brian Lee
- Department of Neurosurgery, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Charles Liu
- Department of Neurosurgery, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Susan Shaw
- Department of Neurology, Rancho Los Amigos National Rehabilitation Hospital, Los Angeles, CA, United States
| | - Hui Gong
- Department of Neurology, Rancho Los Amigos National Rehabilitation Hospital, Los Angeles, CA, United States
| | - Vasilis Z. Marmarelis
- Department Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Theodore W. Berger
- Department Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Sam A. Deadwyler
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Dong Song
- Department Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Robert E. Hampson
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
- Department of Neurology, Wake Forest School of Medicine/Atrium Health Wake Forest Baptist, Winston-Salem, NC, United States
| |
Collapse
|
31
|
Nasimova M, Huang Y. Applications of open-source software ROAST in clinical studies: A review. Brain Stimul 2022; 15:1002-1010. [PMID: 35843597 PMCID: PMC9378654 DOI: 10.1016/j.brs.2022.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/09/2022] [Accepted: 07/10/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Transcranial electrical stimulation (TES) is broadly investigated as a therapeutic technique for a wide range of neurological disorders. The electric fields induced by TES in the brain can be estimated by computational models. A realistic and volumetric approach to simulate TES (ROAST) has been recently released as an open-source software package and has been widely used in TES research and its clinical applications. Rigor and reproducibility of TES studies have recently become a concern, especially in the context of computational modeling. METHODS Here we reviewed 94 clinical TES studies that leveraged ROAST for computational modeling. When reviewing each study, we pay attention to details related to the rigor and reproducibility as defined by the locations of stimulation electrodes and the dose of stimulating current. Specifically, we compared across studies the electrode montages, stimulated brain areas, achieved electric field strength, and the relations between modeled electric field and clinical outcomes. RESULTS We found that over 1800 individual heads have been modeled by ROAST for more than 30 different clinical applications. Similar electric field intensities were found to be reproducible by ROAST across different studies at the same brain area under same or similar stimulation montages. CONCLUSION This article reviews the use cases of ROAST and provides an overview of how ROAST has been leveraged to enhance the rigor and reproducibility of TES research and its applications.
Collapse
Affiliation(s)
- Mohigul Nasimova
- Department of Biomedical Engineering, City College of the City University of New York, New York, NY, 10031, USA
| | - Yu Huang
- Department of Biomedical Engineering, City College of the City University of New York, New York, NY, 10031, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
32
|
Westwood SJ, Bozhilova N, Criaud M, Lam SL, Lukito S, Wallace-Hanlon S, Kowalczyk OS, Kostara A, Mathew J, Wexler BE, Kadosh RC, Asherson P, Rubia K. The effect of transcranial direct current stimulation (tDCS) combined with cognitive training on EEG spectral power in adolescent boys with ADHD: A double-blind, randomized, sham-controlled trial. IBRO Neurosci Rep 2022; 12:55-64. [PMID: 35746969 PMCID: PMC9210460 DOI: 10.1016/j.ibneur.2021.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/19/2021] [Indexed: 12/19/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a possible alternative to psychostimulants in Attention-Deficit/Hyperactivity Disorder (ADHD), but its mechanisms of action in children and adolescents with ADHD are poorly understood. We conducted the first 15-session, sham-controlled study of anodal tDCS over right inferior frontal cortex (rIFC) combined with cognitive training (CT) in 50 children/adolescents with ADHD. We investigated the mechanisms of action on resting and Go/No-Go Task-based QEEG measures in a subgroup of 23 participants with ADHD (n, sham = 10; anodal tDCS = 13). We failed to find a significant sham versus anodal tDCS group differences in QEEG spectral power during rest and Go/No-Go Task performance, a correlation between QEEG and Go/No-Go Task performance, and changes in clinical and cognitive measures. These findings extend the non-significant clinical and cognitive effects in our sample of 50 children/adolescents with ADHD. Given that the subgroup of 23 participants would have been underpowered, the interpretation of our findings is limited and should be used as a foundation for future investigations. Larger, adequately powered randomized controlled trials should explore different protocols titrated to the individual and using comprehensive measures to assess cognitive, clinical, and neural effects of tDCS and its underlying mechanisms of action in ADHD.
Collapse
Affiliation(s)
- Samuel J. Westwood
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AB, UK
- School of Psychology, University of Wolverhampton, Wolverhampton WV1 1LY UK
- Department of Psychology, School of Social Science, University of Westminster, London W1W 6UW, UK
| | - Natali Bozhilova
- Social Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AB, UK
- School of Psychology, University of Surrey, Guildford GU2 7XH, UK
| | - Marion Criaud
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AB, UK
| | - Sheut-Ling Lam
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AB, UK
| | - Steve Lukito
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AB, UK
| | - Sophie Wallace-Hanlon
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AB, UK
- School of Psychology, University of Surrey, Guildford GU2 7XH, UK
| | - Olivia S. Kowalczyk
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AB, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AB, UK
| | - Afroditi Kostara
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AB, UK
| | - Joseph Mathew
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AB, UK
| | - Bruce E. Wexler
- Department of Psychiatry, Yale University School of Medicine, 06520–8096, USA
| | - Roi Cohen Kadosh
- School of Psychology, University of Surrey, Guildford GU2 7XH, UK
| | - Philip Asherson
- Social Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AB, UK
| | - Katya Rubia
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AB, UK
| |
Collapse
|
33
|
Farcy C, Moliadze V, Nees F, Hartwigsen G, Guggisberg AG. Identifying neural targets for enhancing phonological processing with transcranial alternate current stimulation. Brain Stimul 2022; 15:789-791. [PMID: 35561959 DOI: 10.1016/j.brs.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/08/2022] [Indexed: 11/02/2022] Open
Affiliation(s)
- Camille Farcy
- Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospital of Geneva, Av. de Beau-Séjour 26, 1211, Geneva, Switzerland
| | - Vera Moliadze
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | - Frauke Nees
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
| | - Adrian G Guggisberg
- Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospital of Geneva, Av. de Beau-Séjour 26, 1211, Geneva, Switzerland; Universitäre Neurorehabilitation, Universitätsklinik für Neurologie, Inselspital, University Hospital of Berne, 1010, Berne, Switzerland.
| |
Collapse
|
34
|
Senkowski D, Sobirey R, Haslacher D, Soekadar SR. Boosting working memory: Uncovering the differential effects of tDCS and tACS. Cereb Cortex Commun 2022; 3:tgac018. [PMID: 35592391 PMCID: PMC9113288 DOI: 10.1093/texcom/tgac018] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Working memory (WM) is essential for reasoning, decision making and problem solving. Recently, there has been an increasing effort in improving WM through non-invasive brain stimulation, especially transcranial direct and alternating current stimulation (tDCS/tACS). Studies suggest that tDCS and tACS can modulate WM performance, but large variability in research approaches hinders identification of optimal stimulation protocols and interpretation of study results. Moreover, it is unclear whether tDCS and tACS differentially affect WM. Here, we summarize and compare studies examining the effects of tDCS and tACS on WM performance in healthy adults. Following PRISMA-selection criteria, our systematic review resulted in 43 studies (29 tDCS, 11 tACS, 3 both) with a total of 1826 adult participants. For tDCS, only 4 out of 23 single-session studies reported effects on WM, while 7 out of 9 multi-session experiments showed positive effects on WM training. For tACS, 10 out of 14 studies demonstrated effects on WM, which were frequency dependent and robust for frontoparietal stimulation. Our review revealed no reliable effect of single-session tDCS on WM, but moderate effects of multi-session tDCS and single-session tACS. We discuss implications of these findings and future directions in the emerging research field of non-invasive brain stimulation and WM.
Collapse
Affiliation(s)
- Daniel Senkowski
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences, Charité Campus Mitte (CCM), Charitéplatz 1, 10117 Berlin
| | - Rabea Sobirey
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences, Charité Campus Mitte (CCM), Charitéplatz 1, 10117 Berlin
| | - David Haslacher
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences, Charité Campus Mitte (CCM), Charitéplatz 1, 10117 Berlin
| | - Surjo R Soekadar
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences, Charité Campus Mitte (CCM), Charitéplatz 1, 10117 Berlin
| |
Collapse
|
35
|
Assecondi S, Villa-Sánchez B, Shapiro K. Event-Related Potentials as Markers of Efficacy for Combined Working Memory Training and Transcranial Direct Current Stimulation Regimens: A Proof-of-Concept Study. Front Syst Neurosci 2022; 16:837979. [PMID: 35547238 PMCID: PMC9083230 DOI: 10.3389/fnsys.2022.837979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/28/2022] [Indexed: 11/14/2022] Open
Abstract
Our brains are often under pressure to process a continuous flow of information in a short time, therefore facing a constantly increasing demand for cognitive resources. Recent studies have highlighted that a lasting improvement of cognitive functions may be achieved by exploiting plasticity, i.e., the brain’s ability to adapt to the ever-changing cognitive demands imposed by the environment. Transcranial direct current stimulation (tDCS), when combined with cognitive training, can promote plasticity, amplify training gains and their maintenance over time. The availability of low-cost wearable devices has made these approaches more feasible, albeit the effectiveness of combined training regimens is still unclear. To quantify the effectiveness of such protocols, many researchers have focused on behavioral measures such as accuracy or reaction time. These variables only return a global, non-specific picture of the underlying cognitive process. Electrophysiology instead has the finer grained resolution required to shed new light on the time course of the events underpinning processes critical to cognitive control, and if and how these processes are modulated by concurrent tDCS. To the best of our knowledge, research in this direction is still very limited. We investigate the electrophysiological correlates of combined 3-day working memory training and non-invasive brain stimulation in young adults. We focus on event-related potentials (ERPs), instead of other features such as oscillations or connectivity, because components can be measured on as little as one electrode. ERP components are, therefore, well suited for use with home devices, usually equipped with a limited number of recording channels. We consider short-, mid-, and long-latency components typically elicited by working memory tasks and assess if and how the amplitude of these components are modulated by the combined training regimen. We found no significant effects of tDCS either behaviorally or in brain activity, as measured by ERPs. We concluded that either tDCS was ineffective (because of the specific protocol or the sample under consideration, i.e., young adults) or brain-related changes, if present, were too subtle. Therefore, we suggest that other measures of brain activity may be more appropriate/sensitive to training- and/or tDCS-induced modulations, such as network connectivity, especially in young adults.
Collapse
Affiliation(s)
- Sara Assecondi
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
- Visual Experience Laboratory, School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Center for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
- *Correspondence: Sara Assecondi, ,
| | | | - Kim Shapiro
- Visual Experience Laboratory, School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Center for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
36
|
Johnson EL, Arciniega H, Jones KT, Kilgore-Gomez A, Berryhill ME. Individual predictors and electrophysiological signatures of working memory enhancement in aging. Neuroimage 2022; 250:118939. [PMID: 35104647 PMCID: PMC8923157 DOI: 10.1016/j.neuroimage.2022.118939] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/25/2022] [Indexed: 12/21/2022] Open
Abstract
A primary goal of translational neuroscience is to identify the neural mechanisms of age-related cognitive decline and develop protocols to maximally improve cognition. Here, we demonstrate how interventions that apply noninvasive neurostimulation to older adults improve working memory (WM). We found that one session of sham-controlled transcranial direct current stimulation (tDCS) selectively improved WM in older adults with more education, extending earlier work and underscoring the importance of identifying individual predictors of tDCS responsivity. Improvements in WM were associated with two distinct electrophysiological signatures. First, a broad enhancement of theta network synchrony tracked improvements in behavioral accuracy, with tDCS effects moderated by education level. Further analysis revealed that accuracy dynamics reflected an anterior-posterior network distribution regardless of cathode placement. Second, specific enhancements of theta-gamma phase-amplitude coupling (PAC) reflecting tDCS current flow tracked improvements in reaction time (RT). RT dynamics further explained inter-individual variability in WM improvement independent of education. These findings illuminate theta network synchrony and theta-gamma PAC as distinct but complementary mechanisms supporting WM in aging. Both mechanisms are amenable to intervention, the effectiveness of which can be predicted by individual demographic factors.
Collapse
Affiliation(s)
- Elizabeth L Johnson
- Departments of Medical Social Sciences and Pediatrics, Northwestern University, Chicago, IL, 60611, United States.
| | - Hector Arciniega
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, United States
| | - Kevin T Jones
- Department of Neurology, Neuroscape, University of California-San Francisco, San Francisco, CA, 94158, United States
| | - Alexandrea Kilgore-Gomez
- Department of Psychology, Program in Cognitive and Brain Sciences, Program in Integrative Neuroscience, University of Nevada, Reno, 89557, United States
| | - Marian E Berryhill
- Department of Psychology, Program in Cognitive and Brain Sciences, Program in Integrative Neuroscience, University of Nevada, Reno, 89557, United States.
| |
Collapse
|
37
|
Brooks H, Mirjalili M, Wang W, Kumar S, Goodman MS, Zomorrodi R, Blumberger DM, Bowie CR, Daskalakis ZJ, Fischer CE, Flint AJ, Herrmann N, Lanctôt KL, Mah L, Mulsant BH, Pollock BG, Voineskos AN, Rajji TK. Assessing the Longitudinal Relationship between Theta-Gamma Coupling and Working Memory Performance in Older Adults. Cereb Cortex 2022; 32:1653-1667. [PMID: 34519333 PMCID: PMC9016289 DOI: 10.1093/cercor/bhab295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/28/2022] Open
Abstract
Theta-gamma coupling (TGC) is a neurophysiologic mechanism that supports working memory (WM). TGC is associated with N-back performance, a WM task. Similar to TGC, theta and alpha event-related synchronization (ERS) and desynchronization (ERD) are also associated with WM. Few studies have examined the longitudinal relationship between WM performance and TGC, ERS, or ERD. This study aimed to determine if changes in WM performance are associated with changes in TGC (primary aim), as well as theta and alpha ERS or ERD over 6 to 12 weeks. Participants included 62 individuals aged 60 and older with no neuropsychiatric conditions or with remitted Major Depressive Disorder (MDD) and no cognitive disorders. TGC, ERS, and ERD were assessed using electroencephalography (EEG) during the N-back task (3-back condition). There was an association between changes in 3-back performance and changes in TGC, alpha ERD and ERS, and theta ERS in the control group. In contrast, there was only a significant association between changes in 3-back performance and changes in TGC in the subgroup with remitted MDD. Our results suggest that the relationship between WM performance and TGC is stable over time, while this is not the case for changes in theta and alpha ERS and ERD.
Collapse
Affiliation(s)
- Heather Brooks
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
- Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
| | - Mina Mirjalili
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
- Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
| | - Wei Wang
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
| | - Sanjeev Kumar
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
- Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto M5T 1R8, Canada
- Toronto Dementia Research Alliance, University of Toronto, Toronto M6J 1H4, Canada
| | - Michelle S Goodman
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
| | - Reza Zomorrodi
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
| | - Daniel M Blumberger
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
- Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto M5T 1R8, Canada
| | - Christopher R Bowie
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
- Department of Psychology, Queen’s University, Kingston K7L 3N6, Canada
| | - Zafiris J Daskalakis
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto M5T 1R8, Canada
| | - Corinne E Fischer
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto M5T 1R8, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto M5B 1W8, Canada
| | - Alastair J Flint
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto M5T 1R8, Canada
- Centre for Mental Health, University Health Network, Toronto, M5G 2C4, Canada
| | - Nathan Herrmann
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto M5T 1R8, Canada
- Sunnybrook Health Sciences Centre, Toronto M4N 3M5, Canada
| | - Krista L Lanctôt
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto M5T 1R8, Canada
- Sunnybrook Health Sciences Centre, Toronto M4N 3M5, Canada
| | - Linda Mah
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto M5T 1R8, Canada
- Rotman Research Institute, Baycrest Health Sciences Centre, Toronto M6A 2X8, Canada
| | - Benoit H Mulsant
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
- Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto M5T 1R8, Canada
- Toronto Dementia Research Alliance, University of Toronto, Toronto M6J 1H4, Canada
| | - Bruce G Pollock
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
- Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto M5T 1R8, Canada
- Toronto Dementia Research Alliance, University of Toronto, Toronto M6J 1H4, Canada
| | - Aristotle N Voineskos
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
- Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto M5T 1R8, Canada
| | - Tarek K Rajji
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
- Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto M5T 1R8, Canada
- Toronto Dementia Research Alliance, University of Toronto, Toronto M6J 1H4, Canada
| |
Collapse
|
38
|
The Functional Interactions between Cortical Regions through Theta-Gamma Coupling during Resting-State and a Visual Working Memory Task. Brain Sci 2022; 12:brainsci12020274. [PMID: 35204038 PMCID: PMC8869925 DOI: 10.3390/brainsci12020274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/17/2022] Open
Abstract
Theta phase-gamma amplitude coupling (TGC) plays an important role in several different cognitive processes. Although spontaneous brain activity at the resting state is crucial in preparing for cognitive performance, the functional role of resting-state TGC remains unclear. To investigate the role of resting-state TGC, electroencephalogram recordings were obtained for 56 healthy volunteers while they were in the resting state, with their eyes closed, and then when they were engaged in a retention interval period in the visual memory task. The TGCs of the two different conditions were calculated and compared. The results indicated that the modulation index of TGC during the retention interval of the visual working memory (VWM) task was not higher than that during the resting state; however, the topographical distribution of TGC during the resting state was negatively correlated with TGC during VWM task at the local level. The topographical distribution of TGC during the resting state was negatively correlated with TGC coordinates’ engagement of brain areas in local and large-scale networks and during task performance at the local level. These findings support the view that TGC reflects information-processing and signal interaction across distant brain areas. These results demonstrate that TGC could explain the efficiency of competing brain networks.
Collapse
|
39
|
Rezayat E, Clark K, Dehaqani MRA, Noudoost B. Dependence of Working Memory on Coordinated Activity Across Brain Areas. Front Syst Neurosci 2022; 15:787316. [PMID: 35095433 PMCID: PMC8792503 DOI: 10.3389/fnsys.2021.787316] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/06/2021] [Indexed: 11/15/2022] Open
Abstract
Neural signatures of working memory (WM) have been reported in numerous brain areas, suggesting a distributed neural substrate for memory maintenance. In the current manuscript we provide an updated review of the literature focusing on intracranial neurophysiological recordings during WM in primates. Such signatures of WM include changes in firing rate or local oscillatory power within an area, along with measures of coordinated activity between areas based on synchronization between oscillations. In comparing the ability of various neural signatures in any brain area to predict behavioral performance, we observe that synchrony between areas is more frequently and robustly correlated with WM performance than any of the within-area neural signatures. We further review the evidence for alteration of inter-areal synchrony in brain disorders, consistent with an important role for such synchrony during behavior. Additionally, results of causal studies indicate that manipulating synchrony across areas is especially effective at influencing WM task performance. Each of these lines of research supports the critical role of inter-areal synchrony in WM. Finally, we propose a framework for interactions between prefrontal and sensory areas during WM, incorporating a range of experimental findings and offering an explanation for the observed link between intra-areal measures and WM performance.
Collapse
Affiliation(s)
- Ehsan Rezayat
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Kelsey Clark
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
| | - Mohammad-Reza A. Dehaqani
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Cognitive Systems Laboratory, Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Behrad Noudoost
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
- *Correspondence: Behrad Noudoost,
| |
Collapse
|
40
|
Hosseinian T, Yavari F, Kuo MF, Nitsche MA, Jamil A. Phase synchronized 6 Hz transcranial electric and magnetic stimulation boosts frontal theta activity and enhances working memory. Neuroimage 2021; 245:118772. [PMID: 34861393 DOI: 10.1016/j.neuroimage.2021.118772] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 10/30/2021] [Accepted: 11/29/2021] [Indexed: 11/26/2022] Open
Abstract
Network-level synchronization of theta oscillations in the cerebral cortex is linked to many vital cognitive functions across daily life, such as executive functions or regulation of arousal and consciousness. However, while neuroimaging has uncovered the ubiquitous functional relevance of theta rhythms in cognition, there remains a limited set of techniques for externally enhancing and stabilizing theta in the human brain non-invasively. Here, we developed and employed a new phase-synchronized low-intensity electric and magnetic stimulation technique to induce and stabilize narrowband 6-Hz theta oscillations in a group of healthy human adult participants, and then demonstrated how this technique also enhances cognitive processing by assaying working memory. Our findings demonstrate a technological advancement of brain stimulation methods, while also validating the causal link between theta activity and concurrent cognitive behavior, which may ultimately help to not only explain mechanisms, but offer perspectives for restoring deficient theta-band network activity observed in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Tiam Hosseinian
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Ardeystrasse 67, Dortmund 44139, Germany
| | - Fatemeh Yavari
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Ardeystrasse 67, Dortmund 44139, Germany
| | - Min-Fang Kuo
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Ardeystrasse 67, Dortmund 44139, Germany
| | - Michael A Nitsche
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Ardeystrasse 67, Dortmund 44139, Germany; Department Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany.
| | - Asif Jamil
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Ardeystrasse 67, Dortmund 44139, Germany; Laboratory for Neuropsychiatry and Neuromodulation, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Boston, MA, USA.
| |
Collapse
|
41
|
Li Z, Chen J, Feng Y, Zhong S, Tian S, Dai Z, Lu Q, Guan Y, Shan Y, Jia Y. Differences in verbal and spatial working memory in patients with bipolar II and unipolar depression: an MSI study. BMC Psychiatry 2021; 21:568. [PMID: 34781922 PMCID: PMC8594073 DOI: 10.1186/s12888-021-03595-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/08/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Depressive symptoms could be similarly expressed in bipolar and unipolar disorder. However, changes in cognition and brain networks might be quite distinct. We aimed to find out the difference in the neural mechanism of impaired working memory in patients with bipolar and unipolar disorder. METHOD According to diagnostic criteria of bipolar II disorder of the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) and assessments, 13 bipolar II depression (BP II), 8 unipolar depression (UD) patients and 15 healthy controls (HC) were recruited in the study. We used 2-back tasks and magnetic source imaging (MSI) to test working memory functions and get the brain reactions of the participants. RESULTS Compared with HC, only spatial working memory tasks accuracy was significantly worse in both UD and BP II (p = 0.001). Pearson correlation showed that the stronger the FCs' strength of MFG-IPL and IPL-preSMA, the higher accuracy of SWM task within left FPN in patients with UD (r = 0.860, p = 0.006; r = 0.752, p = 0.031). However, the FC strength of IFG-IPL was negatively correlated with the accuracy of SWM task within left FPN in patients with BP II (r = - 0.591, p = 0.033). CONCLUSIONS Our study showed that the spatial working memory of patients with whether UD or BP II was impaired. The patterns of FCs within these two groups of patients were different when performing working memory tasks.
Collapse
Affiliation(s)
- Zhinan Li
- grid.412601.00000 0004 1760 3828Psychiatric Department, The First Affiliated Hospital of Jinan University, 613 West Huangpu Avenue, Guangzhou, 510630 China ,grid.412558.f0000 0004 1762 1794Psychiatric Department, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Junhao Chen
- grid.412601.00000 0004 1760 3828Psychiatric Department, The First Affiliated Hospital of Jinan University, 613 West Huangpu Avenue, Guangzhou, 510630 China
| | - Yigang Feng
- grid.490151.8Department of Electrophysiology, the Guangdong 999 brain Hospital, Guangzhou, China
| | - Shuming Zhong
- grid.412601.00000 0004 1760 3828Psychiatric Department, The First Affiliated Hospital of Jinan University, 613 West Huangpu Avenue, Guangzhou, 510630 China
| | - Shui Tian
- grid.263826.b0000 0004 1761 0489School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China ,grid.263826.b0000 0004 1761 0489Key Laboratory of Child Development and Learning Science, Southeast University, Nanjing, China
| | - Zhongpeng Dai
- grid.263826.b0000 0004 1761 0489School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China ,grid.263826.b0000 0004 1761 0489Key Laboratory of Child Development and Learning Science, Southeast University, Nanjing, China
| | - Qing Lu
- grid.263826.b0000 0004 1761 0489School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China ,grid.263826.b0000 0004 1761 0489Key Laboratory of Child Development and Learning Science, Southeast University, Nanjing, China
| | - Yufang Guan
- grid.490151.8Department of Electrophysiology, the Guangdong 999 brain Hospital, Guangzhou, China
| | - Yanyan Shan
- grid.412601.00000 0004 1760 3828Psychiatric Department, The First Affiliated Hospital of Jinan University, 613 West Huangpu Avenue, Guangzhou, 510630 China
| | - Yanbin Jia
- Psychiatric Department, The First Affiliated Hospital of Jinan University, 613 West Huangpu Avenue, Guangzhou, 510630, China.
| |
Collapse
|
42
|
Abubaker M, Al Qasem W, Kvašňák E. Working Memory and Cross-Frequency Coupling of Neuronal Oscillations. Front Psychol 2021; 12:756661. [PMID: 34744934 PMCID: PMC8566716 DOI: 10.3389/fpsyg.2021.756661] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/14/2021] [Indexed: 11/28/2022] Open
Abstract
Working memory (WM) is the active retention and processing of information over a few seconds and is considered an essential component of cognitive function. The reduced WM capacity is a common feature in many diseases, such as schizophrenia, attention deficit hyperactivity disorder (ADHD), mild cognitive impairment (MCI), and Alzheimer's disease (AD). The theta-gamma neural code is an essential component of memory representations in the multi-item WM. A large body of studies have examined the association between cross-frequency coupling (CFC) across the cerebral cortices and WM performance; electrophysiological data together with the behavioral results showed the associations between CFC and WM performance. The oscillatory entrainment (sensory, non-invasive electrical/magnetic, and invasive electrical) remains the key method to investigate the causal relationship between CFC and WM. The frequency-tuned non-invasive brain stimulation is a promising way to improve WM performance in healthy and non-healthy patients with cognitive impairment. The WM performance is sensitive to the phase and rhythm of externally applied stimulations. CFC-transcranial-alternating current stimulation (CFC-tACS) is a recent approach in neuroscience that could alter cognitive outcomes. The studies that investigated (1) the association between CFC and WM and (2) the brain stimulation protocols that enhanced WM through modulating CFC by the means of the non-invasive brain stimulation techniques have been included in this review. In principle, this review can guide the researchers to identify the most prominent form of CFC associated with WM processing (e.g., theta/gamma phase-amplitude coupling), and to define the previously published studies that manipulate endogenous CFC externally to improve WM. This in turn will pave the path for future studies aimed at investigating the CFC-tACS effect on WM. The CFC-tACS protocols need to be thoroughly studied before they can be considered as therapeutic tools in patients with WM deficits.
Collapse
Affiliation(s)
- Mohammed Abubaker
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Wiam Al Qasem
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Eugen Kvašňák
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| |
Collapse
|
43
|
Mendes AJ, Pacheco-Barrios K, Lema A, Gonçalves ÓF, Fregni F, Leite J, Carvalho S. Modulation of the cognitive event-related potential P3 by transcranial direct current stimulation: Systematic review and meta-analysis. Neurosci Biobehav Rev 2021; 132:894-907. [PMID: 34742723 DOI: 10.1016/j.neubiorev.2021.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/16/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
Transcranial direct current stimulation (tDCS) has been widely used to modulate cognition and behavior. However, only a few studies have been probing the brain mechanism underlying the effects of tDCS on cognitive processing, especially throughout electrophysiological markers, such as the P3. This meta-analysis assessed the effects of tDCS in P3 amplitude and latency during an oddball, n-back, and Go/No-Go tasks, as well as during emotional processing. A total of 36 studies were identified, but only 23 were included in the quantitative analysis. The results show that the parietal P3 amplitude increased during oddball and n-back tasks, mostly after anodal stimulation over the left dorsolateral prefrontal cortex (p = 0.018, SMD = 0.4) and right inferior frontal gyrus (p < 0.001, SMD = 0.669) respectively. These findings suggest the potential usefulness of the parietal P3 ERP as a marker of tDCS-induced effects during task performance. Nonetheless, this study had a low number of studies and the presence of considerable risk of bias, highlighting issues to be addressed in the future.
Collapse
Affiliation(s)
- Augusto J Mendes
- Psychological Neuroscience Laboratory, CIPsi, School of Psychology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA; Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru
| | - Alberto Lema
- Psychological Neuroscience Laboratory, CIPsi, School of Psychology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Óscar F Gonçalves
- Proaction Laboratory - CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Jorge Leite
- INPP, Portucalense University, Porto, Portugal
| | - Sandra Carvalho
- Psychological Neuroscience Laboratory, CIPsi, School of Psychology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; Department of Education and Psychology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal.
| |
Collapse
|
44
|
Au J, Katz B, Moon A, Talati S, Abagis TR, Jonides J, Jaeggi SM. Post-training stimulation of the right dorsolateral prefrontal cortex impairs working memory training performance. J Neurosci Res 2021; 99:2351-2363. [PMID: 33438297 PMCID: PMC8273206 DOI: 10.1002/jnr.24784] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 12/23/2020] [Indexed: 11/08/2022]
Abstract
Research investigating transcranial direct current stimulation (tDCS) to enhance cognitive training augments both our understanding of its long-term effects on cognitive plasticity as well as potential applications to strengthen cognitive interventions. Previous work has demonstrated enhancement of working memory training while applying concurrent tDCS to the dorsolateral prefrontal cortex (DLPFC). However, the optimal stimulation parameters are still unknown. For example, the timing of tDCS delivery has been shown to be an influential variable that can interact with task learning. In the present study, we used tDCS to target the right DLPFC while participants trained on a visuospatial working memory task. We sought to compare the relative efficacy of online stimulation delivered during training to offline stimulation delivered either immediately before or afterwards. We were unable to replicate previously demonstrated benefits of online stimulation; however, we did find evidence that offline stimulation delivered after training can actually be detrimental to training performance relative to sham. We interpret our results in light of evidence suggesting a role of the right DLPFC in promoting memory interference, and conclude that while tDCS may be a promising tool to influence the results of cognitive training, more research and an abundance of caution are needed before fully endorsing its use for cognitive enhancement. This work suggests that effects can vary substantially in magnitude and direction between studies, and may be heavily dependent on a variety of intervention protocol parameters such as the timing and location of stimulation delivery, about which our understanding is still nascent.
Collapse
Affiliation(s)
- Jacky Au
- School of Education, University of California, Irvine, Irvine, CA, 92697, USA
| | - Benjamin Katz
- Department of Human Development and Family Science, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Austin Moon
- School of Education, University of California, Irvine, Irvine, CA, 92697, USA
| | - Sheebani Talati
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tessa R. Abagis
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - John Jonides
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Susanne M. Jaeggi
- School of Education, University of California, Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
45
|
Zanto TP, Jones KT, Ostrand AE, Hsu WY, Campusano R, Gazzaley A. Individual differences in neuroanatomy and neurophysiology predict effects of transcranial alternating current stimulation. Brain Stimul 2021; 14:1317-1329. [PMID: 34481095 DOI: 10.1016/j.brs.2021.08.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Noninvasive transcranial electrical stimulation (tES) research has been plagued with inconsistent effects. Recent work has suggested neuroanatomical and neurophysiological variability may alter tES efficacy. However, direct evidence is limited. OBJECTIVE We have previously replicated effects of transcranial alternating current stimulation (tACS) on improving multitasking ability in young adults. Here, we attempt to assess whether these stimulation parameters have comparable effects in older adults (aged 60-80 years), which is a population known to have greater variability in neuroanatomy and neurophysiology. It is hypothesized that this variability in neuroanatomy and neurophysiology will be predictive of tACS efficacy. METHODS We conducted a pre-registered study where tACS was applied above the prefrontal cortex (between electrodes F3-F4) while participants were engaged in multitasking. Participants were randomized to receive either 6-Hz (theta) tACS for 26.67 min daily for three days (80 min total; Long Exposure Theta group), 6-Hz tACS for 5.33 min daily (16-min total; Short Exposure Theta group), or 1-Hz tACS for 26.67 min (80 min total; Control group). To account for neuroanatomy, magnetic resonance imaging data was used to form individualized models of the tACS-induced electric field (EF) within the brain. To account for neurophysiology, electroencephalography data was used to identify individual peak theta frequency. RESULTS Results indicated that only in the Long Theta group, performance change was correlated with modeled EF and peak theta frequency. Together, modeled EF and peak theta frequency accounted for 54%-65% of the variance in tACS-related performance improvements, which sustained for a month. CONCLUSION These results demonstrate the importance of individual differences in neuroanatomy and neurophysiology in tACS research and help account for inconsistent effects across studies.
Collapse
Affiliation(s)
- Theodore P Zanto
- Department of Neurology, University of California-San Francisco, San Francisco, CA, USA; Neuroscape, University of California-San Francisco, San Francisco, CA, USA.
| | - Kevin T Jones
- Department of Neurology, University of California-San Francisco, San Francisco, CA, USA; Neuroscape, University of California-San Francisco, San Francisco, CA, USA
| | - Avery E Ostrand
- Department of Neurology, University of California-San Francisco, San Francisco, CA, USA; Neuroscape, University of California-San Francisco, San Francisco, CA, USA
| | - Wan-Yu Hsu
- Department of Neurology, University of California-San Francisco, San Francisco, CA, USA
| | - Richard Campusano
- Department of Neurology, University of California-San Francisco, San Francisco, CA, USA; Neuroscape, University of California-San Francisco, San Francisco, CA, USA
| | - Adam Gazzaley
- Department of Neurology, University of California-San Francisco, San Francisco, CA, USA; Neuroscape, University of California-San Francisco, San Francisco, CA, USA; Departments of Physiology and Psychiatry, University of California-San Francisco, San Francisco, CA, USA
| |
Collapse
|
46
|
Davoudi S, Parto Dezfouli M, Knight RT, Daliri MR, Johnson EL. Prefrontal Lesions Disrupt Posterior Alpha-Gamma Coordination of Visual Working Memory Representations. J Cogn Neurosci 2021; 33:1798-1810. [PMID: 34375418 DOI: 10.1162/jocn_a_01715] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
How does the human brain prioritize different visual representations in working memory (WM)? Here, we define the oscillatory mechanisms supporting selection of "where" and "when" features from visual WM storage and investigate the role of pFC in feature selection. Fourteen individuals with lateral pFC damage and 20 healthy controls performed a visuospatial WM task while EEG was recorded. On each trial, two shapes were presented sequentially in a top/bottom spatial orientation. A retro-cue presented mid-delay prompted which of the two shapes had been in either the top/bottom spatial position or first/second temporal position. We found that cross-frequency coupling between parieto-occipital alpha (α; 8-12 Hz) oscillations and topographically distributed gamma (γ; 30-50 Hz) activity tracked selection of the distinct cued feature in controls. This signature of feature selection was disrupted in patients with pFC lesions, despite intact α-γ coupling independent of feature selection. These findings reveal a pFC-dependent parieto-occipital α-γ mechanism for the rapid selection of visual WM representations.
Collapse
Affiliation(s)
- Saeideh Davoudi
- University of Montréal, Quebec, Canada.,CHU Sainte-Justine Research Center, Montréal, Quebec, Canada.,Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Mohsen Parto Dezfouli
- Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran.,School of Cognitive Sciences (SCS), Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | | | - Mohammad Reza Daliri
- Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran.,School of Cognitive Sciences (SCS), Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Elizabeth L Johnson
- University of California, Berkeley.,Wayne State University, Detroit, Michigan
| |
Collapse
|
47
|
Johnson EL, Jones KT. Longitudinal indices of human cognition and brain structure. J Neurosci Res 2021; 99:2323-2326. [PMID: 34328671 DOI: 10.1002/jnr.24938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/14/2021] [Indexed: 11/08/2022]
Affiliation(s)
- Elizabeth L Johnson
- Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, CA, USA.,Institute of Gerontology, Life-Span Cognitive Neuroscience Program, Wayne State University, Detroit, MI, USA
| | - Kevin T Jones
- Department of Neurology, University of California-San Francisco, San Francisco, CA, USA.,Neuroscape, University of California-San Francisco, San Francisco, CA, USA
| |
Collapse
|
48
|
Schmicker M, Menze I, Schneider C, Taubert M, Zaehle T, Mueller NG. Making the rich richer: Frontoparietal tDCS enhances transfer effects of a single-session distractor inhibition training on working memory in high capacity individuals but reduces them in low capacity individuals. Neuroimage 2021; 242:118438. [PMID: 34332042 DOI: 10.1016/j.neuroimage.2021.118438] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/07/2021] [Accepted: 07/28/2021] [Indexed: 10/20/2022] Open
Abstract
Working memory (WM) performance depends on the ability to extract relevant while inhibiting irrelevant information from entering the WM storage. This distractor inhibition ability can be trained and is known to induce transfer effects on WM performance. Here we asked whether transfer on WM can be boosted by transcranial direct current stimulation (tDCS) during a single-session distractor inhibition training. As WM performance is ascribed to the frontoparietal network, in which prefrontal areas are associated with inhibiting distractors and posterior parietal areas with storing information, we placed the anode over the prefrontal and the cathode over the posterior parietal cortex during a single-session distractor inhibition training. This network-oriented stimulation protocol should enhance inhibition processes by shifting the neural activity from posterior to prefrontal regions. WM improved after a single-session distractor inhibition training under verum stimulation but only in subjects with a high WM capacity. In subjects with a low WM capacity, verum tDCS reduced the transfer effects on WM. We assume tDCS to strengthen the frontostriatal pathway in individuals with a high WM capacity leading to efficient inhibition of distractors. In contrast, the cathodal stimulation of the posterior parietal cortex might have hindered usual compensational mechanism in low capacity subjects, i.e. maintaining also irrelevant information in memory. Our results thus stress the need to adjust tDCS protocols to well-founded knowledge about neural networks and individual cognitive differences.
Collapse
Affiliation(s)
- Marlen Schmicker
- Neuroprotection Lab, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.
| | - Inga Menze
- Neuroprotection Lab, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Christine Schneider
- Neuroprotection Lab, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Marco Taubert
- Chair for Training Science, Faculty for Humanities, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Tino Zaehle
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Notger G Mueller
- Neuroprotection Lab, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
49
|
Riding the slow wave: Exploring the role of entrained low-frequency oscillations in memory formation. Neuropsychologia 2021; 160:107962. [PMID: 34284040 DOI: 10.1016/j.neuropsychologia.2021.107962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/01/2021] [Accepted: 07/09/2021] [Indexed: 11/22/2022]
Abstract
Neural oscillations are proposed to support a variety of behaviors, including long-term memory, yet their functional significance remains an active area of research. Here, we explore a potential functional role of low-frequency cortical oscillations in episodic memory formation. Recent theories suggest that low-frequency oscillations orchestrate rhythmic attentional sampling of the environment by dynamically modulating neural excitability across time. When these oscillations entrain to low-frequency rhythms present in the environment, such as speech or music, the brain can build temporal predictions about the onset of relevant events so that these events can be more efficiently processed. Building upon this literature, we propose that entrained low-frequency oscillations may similarly influence the temporal dynamics of episodic memory by rhythmically modulating encoding across time (mnemonic sampling). Central to this proposal is the phenomenon of cross-frequency phase-amplitude coupling, whereby the amplitudes of faster (higher frequency) rhythms, such as gamma oscillations, couple to the phase of slower (lower-frequency) rhythms entrained to environmental stimuli. By imposing temporal structure on higher-frequency oscillatory activity previously linked to memory formation, entrained low-frequency oscillations could dynamically orchestrate memory formation and optimize encoding at specific moments in time. We discuss prior experimental and theoretical work relevant to this proposal.
Collapse
|
50
|
Mariscal MG, Levin AR, Gabard-Durnam LJ, Xie W, Tager-Flusberg H, Nelson CA. EEG Phase-Amplitude Coupling Strength and Phase Preference: Association with Age over the First Three Years after Birth. eNeuro 2021; 8:ENEURO.0264-20.2021. [PMID: 34049989 PMCID: PMC8225408 DOI: 10.1523/eneuro.0264-20.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 04/26/2021] [Accepted: 05/10/2021] [Indexed: 01/11/2023] Open
Abstract
Phase-amplitude coupling (PAC), the coupling of the phase of slower electrophysiological oscillations with the amplitude of faster oscillations, is thought to facilitate dynamic integration of neural activity in the brain. Although the brain undergoes dramatic change and development during the first few years of life, how PAC changes through this developmental period has not been extensively studied. Here, we examined PAC through electroencephalography (EEG) data collected during an awake, eyes-open EEG collection paradigm in 98 children between the ages of three months and three years. We employed non-parametric clustering methods to identify areas of significant PAC across a range of frequency pairs and electrode locations, and examined how PAC strength and phase preference develops in these areas. We found that PAC, primarily between the α-β and γ frequencies, was positively correlated with age from early infancy to early childhood (p = 2.035 × 10-6). Additionally, we found γ over anterior electrodes coupled with the rising phase of the α-β waveform, while γ over posterior electrodes coupled with the falling phase of the α-β waveform; this regionalized phase preference became more prominent with age. This opposing trend may reflect each region's specialization toward feedback or feedforward processing, respectively, suggesting opportunities for back translation in future studies.
Collapse
Affiliation(s)
- Michael G Mariscal
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - April R Levin
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Laurel J Gabard-Durnam
- Division of Developmental Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215
| | - Wanze Xie
- Division of Developmental Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215
| | - Helen Tager-Flusberg
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215
| | - Charles A Nelson
- Division of Developmental Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215
- Harvard Graduate School of Education, Cambridge, MA 02138
| |
Collapse
|