1
|
Morgan AM, Devinsky O, Doyle WK, Dugan P, Friedman D, Flinker A. A magnitude-independent neural code for linguistic information during sentence production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.20.599931. [PMID: 38948730 PMCID: PMC11212956 DOI: 10.1101/2024.06.20.599931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Humans are the only species with the ability to convey an unbounded number of novel thoughts by combining words into sentences. This process is guided by complex semantic and abstract syntactic representations. Despite their centrality to human cognition, the neural mechanisms underlying these systems remain obscured by inherent limitations of non-invasive brain measures and a near total focus on comprehension paradigms. Here, we address these limitations with high-resolution neurosurgical recordings (electrocorticography) and a controlled sentence production experiment. We uncover distinct cortical networks encoding word-level, semantic, and syntactic information. These networks are broadly distributed across traditional language areas, but with focal sensitivity to syntactic structure in middle and inferior frontal gyri. In contrast to previous findings from comprehension studies, these networks are largely non-overlapping, each specialized for just one of the three linguistic constructs we investigate. Most strikingly, our data reveal an unexpected property of higher-order linguistic information: it is encoded independent of neural activity levels. We propose that this "magnitude-independent coding" scheme represents a novel mechanism for encoding information, reserved for higher-order cognition more broadly.
Collapse
Affiliation(s)
- Adam M. Morgan
- Neurology Department, NYU Grossman School of Medicine, 550 1st Ave, New York, 10016, NY, USA
| | - Orrin Devinsky
- Neurosurgery Department, NYU Grossman School of Medicine, 550 1st Ave, New York, 10016, NY, USA
| | - Werner K. Doyle
- Neurology Department, NYU Grossman School of Medicine, 550 1st Ave, New York, 10016, NY, USA
| | - Patricia Dugan
- Neurology Department, NYU Grossman School of Medicine, 550 1st Ave, New York, 10016, NY, USA
| | - Daniel Friedman
- Neurology Department, NYU Grossman School of Medicine, 550 1st Ave, New York, 10016, NY, USA
| | - Adeen Flinker
- Neurology Department, NYU Grossman School of Medicine, 550 1st Ave, New York, 10016, NY, USA
- Biomedical Engineering Department, NYU Tandon School of Engineering, 6 MetroTech Center Ave, Brooklyn, 11201, NY, USA
| |
Collapse
|
2
|
Gaskell MG. EPS mid-career prize: An integrated framework for the learning, recognition and interpretation of words. Q J Exp Psychol (Hove) 2024; 77:2365-2384. [PMID: 39257056 DOI: 10.1177/17470218241284289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
In this article, I review the evidence on the involvement of sleep and consolidation in word learning and processing during language comprehension, focusing on implications for theory. The theoretical basis for the review is a complementary systems account of word learning involving flexible (hippocampal) and stable (cortical) pathways to lexical knowledge. I argue that the accumulated data are consistent with a role for both pathways in both learning and recognition of lexical items, with sleep and consolidation supporting the transfer of recent experience between the pathways. The level of involvement of each pathway is dependent on key factors, such as consistency with prior knowledge in the case of learning, and reliance on context and/or automaticity in the case of recognition. As a consequence, the notion of a mental lexicon cannot really be restricted to just the listener's stable knowledge about words: flexible knowledge and recent experiences are also important. Furthermore, I argue that the flexible pathway plays a critical role even in the absence of new lexical items. The available evidence suggests that this pathway encodes (and potentially consolidates) recent linguistic experiences, providing potential benefits to interpretation of subsequent language and the long-term retention of knowledge. In conclusion, I propose that a dual-pathway account incorporating both flexibility and stability is necessary to explain the learning, recognition, and interpretation of words.
Collapse
|
3
|
Regev TI, Casto C, Hosseini EA, Adamek M, Ritaccio AL, Willie JT, Brunner P, Fedorenko E. Neural populations in the language network differ in the size of their temporal receptive windows. Nat Hum Behav 2024; 8:1924-1942. [PMID: 39187713 DOI: 10.1038/s41562-024-01944-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/03/2024] [Indexed: 08/28/2024]
Abstract
Despite long knowing what brain areas support language comprehension, our knowledge of the neural computations that these frontal and temporal regions implement remains limited. One important unresolved question concerns functional differences among the neural populations that comprise the language network. Here we leveraged the high spatiotemporal resolution of human intracranial recordings (n = 22) to examine responses to sentences and linguistically degraded conditions. We discovered three response profiles that differ in their temporal dynamics. These profiles appear to reflect different temporal receptive windows, with average windows of about 1, 4 and 6 words, respectively. Neural populations exhibiting these profiles are interleaved across the language network, which suggests that all language regions have direct access to distinct, multiscale representations of linguistic input-a property that may be critical for the efficiency and robustness of language processing.
Collapse
Affiliation(s)
- Tamar I Regev
- Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA, USA.
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Colton Casto
- Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA, USA.
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Program in Speech and Hearing Bioscience and Technology (SHBT), Harvard University, Boston, MA, USA.
- Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University, Allston, MA, USA.
| | - Eghbal A Hosseini
- Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Markus Adamek
- National Center for Adaptive Neurotechnologies, Albany, NY, USA
- Department of Neurosurgery, Washington University School of Medicine, St Louis, MO, USA
| | | | - Jon T Willie
- National Center for Adaptive Neurotechnologies, Albany, NY, USA
- Department of Neurosurgery, Washington University School of Medicine, St Louis, MO, USA
| | - Peter Brunner
- National Center for Adaptive Neurotechnologies, Albany, NY, USA
- Department of Neurosurgery, Washington University School of Medicine, St Louis, MO, USA
- Department of Neurology, Albany Medical College, Albany, NY, USA
| | - Evelina Fedorenko
- Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA, USA.
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Program in Speech and Hearing Bioscience and Technology (SHBT), Harvard University, Boston, MA, USA.
| |
Collapse
|
4
|
Norman-Haignere SV, Keshishian MK, Devinsky O, Doyle W, McKhann GM, Schevon CA, Flinker A, Mesgarani N. Temporal integration in human auditory cortex is predominantly yoked to absolute time, not structure duration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614358. [PMID: 39386565 PMCID: PMC11463558 DOI: 10.1101/2024.09.23.614358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Sound structures such as phonemes and words have highly variable durations. Thus, there is a fundamental difference between integrating across absolute time (e.g., 100 ms) vs. sound structure (e.g., phonemes). Auditory and cognitive models have traditionally cast neural integration in terms of time and structure, respectively, but the extent to which cortical computations reflect time or structure remains unknown. To answer this question, we rescaled the duration of all speech structures using time stretching/compression and measured integration windows in the human auditory cortex using a new experimental/computational method applied to spatiotemporally precise intracranial recordings. We observed significantly longer integration windows for stretched speech, but this lengthening was very small (~5%) relative to the change in structure durations, even in non-primary regions strongly implicated in speech-specific processing. These findings demonstrate that time-yoked computations dominate throughout the human auditory cortex, placing important constraints on neurocomputational models of structure processing.
Collapse
Affiliation(s)
- Sam V Norman-Haignere
- University of Rochester Medical Center, Department of Biostatistics and Computational Biology
- University of Rochester Medical Center, Department of Neuroscience
- University of Rochester, Department of Brain and Cognitive Sciences
- University of Rochester, Department of Biomedical Engineering
- Zuckerman Institute for Mind Brain and Behavior, Columbia University
| | - Menoua K. Keshishian
- Zuckerman Institute for Mind Brain and Behavior, Columbia University
- Department of Electrical Engineering, Columbia University
| | - Orrin Devinsky
- Department of Neurology, NYU Langone Medical Center
- Comprehensive Epilepsy Center, NYU Langone Medical Center
| | - Werner Doyle
- Comprehensive Epilepsy Center, NYU Langone Medical Center
- Department of Neurosurgery, NYU Langone Medical Center
| | - Guy M. McKhann
- Department of Neurological Surgery, Columbia University Irving Medical Center
| | | | - Adeen Flinker
- Department of Neurology, NYU Langone Medical Center
- Comprehensive Epilepsy Center, NYU Langone Medical Center
- Department of Biomedical Engineering, NYU Tandon School of Engineering
| | - Nima Mesgarani
- Zuckerman Institute for Mind Brain and Behavior, Columbia University
- Department of Electrical Engineering, Columbia University
| |
Collapse
|
5
|
Zimmermann M, Cusack R, Bedny M, Szwed M. Auditory areas are recruited for naturalistic visual meaning in early deaf people. Nat Commun 2024; 15:8035. [PMID: 39289375 PMCID: PMC11408683 DOI: 10.1038/s41467-024-52383-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/04/2024] [Indexed: 09/20/2024] Open
Abstract
Congenital deafness enhances responses of auditory cortices to non-auditory tasks, yet the nature of the reorganization is not well understood. Here, naturalistic stimuli are used to induce neural synchrony across early deaf and hearing individuals. Participants watch a silent animated film in an intact version and three versions with gradually distorted meaning. Differences between groups are observed in higher-order auditory cortices in all stimuli, with no statistically significant effects in the primary auditory cortex. Comparison between levels of scrambling revealed a heterogeneity of function in secondary auditory areas. Both hemispheres show greater synchrony in the deaf than in the hearing participants for the intact movie and high-level variants. However, only the right hemisphere shows an increased inter-subject synchrony in the deaf people for the low-level movie variants. An event segmentation validates these results: the dynamics of the right secondary auditory cortex in the deaf people consist of shorter-length events with more transitions than the left. Our results reveal how deaf individuals use their auditory cortex to process visual meaning.
Collapse
Affiliation(s)
- Maria Zimmermann
- Institute of Psychology, Jagiellonian University, Krakow, Poland.
- Department of Psychology and Brain Sciences, Johns Hopkins University, Baltimore, USA.
| | - Rhodri Cusack
- Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland
| | - Marina Bedny
- Department of Psychology and Brain Sciences, Johns Hopkins University, Baltimore, USA
| | - Marcin Szwed
- Institute of Psychology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
6
|
Jacoby N, Landau-Wells M, Pearl J, Paul A, Falk EB, Bruneau EG, Ochsner KN. Partisans process policy-based and identity-based messages using dissociable neural systems. Cereb Cortex 2024; 34:bhae368. [PMID: 39270673 DOI: 10.1093/cercor/bhae368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Political partisanship is often conceived as a lens through which people view politics. Behavioral research has distinguished two types of "partisan lenses"-policy-based and identity-based-that may influence peoples' perception of political events. Little is known, however, about the mechanisms through which partisan discourse appealing to policy beliefs or targeting partisan identities operate within individuals. We addressed this question by collecting neuroimaging data while participants watched videos of speakers expressing partisan views. A "partisan lens effect" was identified as the difference in neural synchrony between each participant's brain response and that of their partisan ingroup vs. outgroup. When processing policy-based messaging, a partisan lens effect was observed in socio-political reasoning and affective responding brain regions. When processing negative identity-based attacks, a partisan lens effect was observed in mentalizing and affective responding brain regions. These data suggest that the processing of political discourse that appeals to different forms of partisanship is supported by related but distinguishable neural-and therefore psychological-mechanisms, which may have implications for how we characterize partisanship and ameliorate its deleterious impacts.
Collapse
Affiliation(s)
- Nir Jacoby
- Department of Psychological and Brain Sciences, Dartmouth College, Moore Hall, 3 Maynard St, Hanover, NH 03755, USA
- Department of Psychology, Columbia University, 1190 Amsterdam Ave, New York, NY 10027, USA
| | - Marika Landau-Wells
- Travers Department of Political Science, University of California-Berkeley, 210 Barrows Hall #1950, Berkeley, CA 94720, USA
| | - Jacob Pearl
- Annenberg School for Communication, University of Pennsylvania, 3620 Walnut St, Philadelphia, PA 19104, USA
| | - Alexandra Paul
- Annenberg School for Communication, University of Pennsylvania, 3620 Walnut St, Philadelphia, PA 19104, USA
| | - Emily B Falk
- Annenberg School for Communication, University of Pennsylvania, 3620 Walnut St, Philadelphia, PA 19104, USA
- Wharton School, University of Pennsylvania, 3733 Spruce St, Philadelphia, PA 19104, USA
- Department of Psychology, University of Pennsylvania, 3720 Walnut St, Philadelphia, PA 19104, USA
- Annenberg Public Policy Center, University of Pennsylvania, 202 S 36th St, Philadelphia, PA 19104, USA
| | - Emile G Bruneau
- Annenberg School for Communication, University of Pennsylvania, 3620 Walnut St, Philadelphia, PA 19104, USA
| | - Kevin N Ochsner
- Department of Psychology, Columbia University, 1190 Amsterdam Ave, New York, NY 10027, USA
| |
Collapse
|
7
|
Tuckute G, Kanwisher N, Fedorenko E. Language in Brains, Minds, and Machines. Annu Rev Neurosci 2024; 47:277-301. [PMID: 38669478 DOI: 10.1146/annurev-neuro-120623-101142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
It has long been argued that only humans could produce and understand language. But now, for the first time, artificial language models (LMs) achieve this feat. Here we survey the new purchase LMs are providing on the question of how language is implemented in the brain. We discuss why, a priori, LMs might be expected to share similarities with the human language system. We then summarize evidence that LMs represent linguistic information similarly enough to humans to enable relatively accurate brain encoding and decoding during language processing. Finally, we examine which LM properties-their architecture, task performance, or training-are critical for capturing human neural responses to language and review studies using LMs as in silico model organisms for testing hypotheses about language. These ongoing investigations bring us closer to understanding the representations and processes that underlie our ability to comprehend sentences and express thoughts in language.
Collapse
Affiliation(s)
- Greta Tuckute
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Nancy Kanwisher
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
8
|
Jamali M, Grannan B, Cai J, Khanna AR, Muñoz W, Caprara I, Paulk AC, Cash SS, Fedorenko E, Williams ZM. Semantic encoding during language comprehension at single-cell resolution. Nature 2024; 631:610-616. [PMID: 38961302 PMCID: PMC11254762 DOI: 10.1038/s41586-024-07643-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 05/31/2024] [Indexed: 07/05/2024]
Abstract
From sequences of speech sounds1,2 or letters3, humans can extract rich and nuanced meaning through language. This capacity is essential for human communication. Yet, despite a growing understanding of the brain areas that support linguistic and semantic processing4-12, the derivation of linguistic meaning in neural tissue at the cellular level and over the timescale of action potentials remains largely unknown. Here we recorded from single cells in the left language-dominant prefrontal cortex as participants listened to semantically diverse sentences and naturalistic stories. By tracking their activities during natural speech processing, we discover a fine-scale cortical representation of semantic information by individual neurons. These neurons responded selectively to specific word meanings and reliably distinguished words from nonwords. Moreover, rather than responding to the words as fixed memory representations, their activities were highly dynamic, reflecting the words' meanings based on their specific sentence contexts and independent of their phonetic form. Collectively, we show how these cell ensembles accurately predicted the broad semantic categories of the words as they were heard in real time during speech and how they tracked the sentences in which they appeared. We also show how they encoded the hierarchical structure of these meaning representations and how these representations mapped onto the cell population. Together, these findings reveal a finely detailed cortical organization of semantic representations at the neuron scale in humans and begin to illuminate the cellular-level processing of meaning during language comprehension.
Collapse
Affiliation(s)
- Mohsen Jamali
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin Grannan
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jing Cai
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Arjun R Khanna
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - William Muñoz
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Irene Caprara
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Angelique C Paulk
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ziv M Williams
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA.
- Harvard Medical School, Program in Neuroscience, Boston, MA, USA.
| |
Collapse
|
9
|
Ozernov-Palchik O, O’Brien AM, Jiachen Lee E, Richardson H, Romeo R, Lipkin B, Small H, Capella J, Nieto-Castañón A, Saxe R, Gabrieli JDE, Fedorenko E. Precision fMRI reveals that the language network exhibits adult-like left-hemispheric lateralization by 4 years of age. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594172. [PMID: 38798360 PMCID: PMC11118489 DOI: 10.1101/2024.05.15.594172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Left hemisphere damage in adulthood often leads to linguistic deficits, but many cases of early damage leave linguistic processing preserved, and a functional language system can develop in the right hemisphere. To explain this early apparent equipotentiality of the two hemispheres for language, some have proposed that the language system is bilateral during early development and only becomes left-lateralized with age. We examined language lateralization using functional magnetic resonance imaging with two large pediatric cohorts (total n=273 children ages 4-16; n=107 adults). Strong, adult-level left-hemispheric lateralization (in activation volume and response magnitude) was evident by age 4. Thus, although the right hemisphere can take over language function in some cases of early brain damage, and although some features of the language system do show protracted development (magnitude of language response and strength of inter-regional correlations in the language network), the left-hemisphere bias for language is robustly present by 4 years of age. These results call for alternative accounts of early equipotentiality of the two hemispheres for language.
Collapse
Affiliation(s)
- Ola Ozernov-Palchik
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
| | - Amanda M. O’Brien
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
- Program in Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, MA 02138, United States
| | - Elizabeth Jiachen Lee
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
| | - Hilary Richardson
- School of Philosophy, Psychology, and Language Sciences, University of Edinburgh, Edinburgh, EH8 9JZ, United Kingdom
| | - Rachel Romeo
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD 20742, United States
| | - Benjamin Lipkin
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
| | - Hannah Small
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Jimmy Capella
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | | | - Rebecca Saxe
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
| | - John D. E. Gabrieli
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
| | - Evelina Fedorenko
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
| |
Collapse
|
10
|
Sueoka Y, Paunov A, Tanner A, Blank IA, Ivanova A, Fedorenko E. The Language Network Reliably "Tracks" Naturalistic Meaningful Nonverbal Stimuli. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:385-408. [PMID: 38911462 PMCID: PMC11192443 DOI: 10.1162/nol_a_00135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/08/2024] [Indexed: 06/25/2024]
Abstract
The language network, comprised of brain regions in the left frontal and temporal cortex, responds robustly and reliably during language comprehension but shows little or no response during many nonlinguistic cognitive tasks (e.g., Fedorenko & Blank, 2020). However, one domain whose relationship with language remains debated is semantics-our conceptual knowledge of the world. Given that the language network responds strongly to meaningful linguistic stimuli, could some of this response be driven by the presence of rich conceptual representations encoded in linguistic inputs? In this study, we used a naturalistic cognition paradigm to test whether the cognitive and neural resources that are responsible for language processing are also recruited for processing semantically rich nonverbal stimuli. To do so, we measured BOLD responses to a set of ∼5-minute-long video and audio clips that consisted of meaningful event sequences but did not contain any linguistic content. We then used the intersubject correlation (ISC) approach (Hasson et al., 2004) to examine the extent to which the language network "tracks" these stimuli, that is, exhibits stimulus-related variation. Across all the regions of the language network, meaningful nonverbal stimuli elicited reliable ISCs. These ISCs were higher than the ISCs elicited by semantically impoverished nonverbal stimuli (e.g., a music clip), but substantially lower than the ISCs elicited by linguistic stimuli. Our results complement earlier findings from controlled experiments (e.g., Ivanova et al., 2021) in providing further evidence that the language network shows some sensitivity to semantic content in nonverbal stimuli.
Collapse
Affiliation(s)
- Yotaro Sueoka
- Department of Brain and Cognitive Sciences, Massachusetts Instititute of Technology, Cambridge, MA, USA
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Alexander Paunov
- Department of Brain and Cognitive Sciences, Massachusetts Instititute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Instititute of Technology, Cambridge, MA, USA
- Cognitive Neuroimaging Unit, INSERM, CEA, CNRS, Université Paris-Saclay, NeuroSpin center, Gif/Yvette, France
| | - Alyx Tanner
- McGovern Institute for Brain Research, Massachusetts Instititute of Technology, Cambridge, MA, USA
| | - Idan A. Blank
- Department of Psychology and Linguistics, University of California Los Angeles, Los Angeles, CA, USA
| | - Anna Ivanova
- School of Psychology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, Massachusetts Instititute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Instititute of Technology, Cambridge, MA, USA
- Program in Speech and Hearing Biosciences and Technology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
11
|
Shain C, Kean H, Casto C, Lipkin B, Affourtit J, Siegelman M, Mollica F, Fedorenko E. Distributed Sensitivity to Syntax and Semantics throughout the Language Network. J Cogn Neurosci 2024; 36:1427-1471. [PMID: 38683732 DOI: 10.1162/jocn_a_02164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Human language is expressive because it is compositional: The meaning of a sentence (semantics) can be inferred from its structure (syntax). It is commonly believed that language syntax and semantics are processed by distinct brain regions. Here, we revisit this claim using precision fMRI methods to capture separation or overlap of function in the brains of individual participants. Contrary to prior claims, we find distributed sensitivity to both syntax and semantics throughout a broad frontotemporal brain network. Our results join a growing body of evidence for an integrated network for language in the human brain within which internal specialization is primarily a matter of degree rather than kind, in contrast with influential proposals that advocate distinct specialization of different brain areas for different types of linguistic functions.
Collapse
Affiliation(s)
| | - Hope Kean
- Massachusetts Institute of Technology
| | | | | | | | | | | | | |
Collapse
|
12
|
Wang X, Krieger-Redwood K, Lyu B, Lowndes R, Wu G, Souter NE, Wang X, Kong R, Shafiei G, Bernhardt BC, Cui Z, Smallwood J, Du Y, Jefferies E. The Brain's Topographical Organization Shapes Dynamic Interaction Patterns That Support Flexible Behavior Based on Rules and Long-Term Knowledge. J Neurosci 2024; 44:e2223232024. [PMID: 38527807 PMCID: PMC11140685 DOI: 10.1523/jneurosci.2223-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 03/27/2024] Open
Abstract
Adaptive behavior relies both on specific rules that vary across situations and stable long-term knowledge gained from experience. The frontoparietal control network (FPCN) is implicated in the brain's ability to balance these different influences on action. Here, we investigate how the topographical organization of the cortex supports behavioral flexibility within the FPCN. Functional properties of this network might reflect its juxtaposition between the dorsal attention network (DAN) and the default mode network (DMN), two large-scale systems implicated in top-down attention and memory-guided cognition, respectively. Our study tests whether subnetworks of FPCN are topographically proximal to the DAN and the DMN, respectively, and how these topographical differences relate to functional differences: the proximity of each subnetwork is anticipated to play a pivotal role in generating distinct cognitive modes relevant to working memory and long-term memory. We show that FPCN subsystems share multiple anatomical and functional similarities with their neighboring systems (DAN and DMN) and that this topographical architecture supports distinct interaction patterns that give rise to different patterns of functional behavior. The FPCN acts as a unified system when long-term knowledge supports behavior but becomes segregated into discrete subsystems with different patterns of interaction when long-term memory is less relevant. In this way, our study suggests that the topographical organization of the FPCN and the connections it forms with distant regions of cortex are important influences on how this system supports flexible behavior.
Collapse
Affiliation(s)
- Xiuyi Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Psychology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Katya Krieger-Redwood
- Department of Psychology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Baihan Lyu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rebecca Lowndes
- Department of Psychology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Guowei Wu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nicholas E Souter
- Department of Psychology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Xiaokang Wang
- Department of Biomedical Engineering, University of California, Davis, California 95616
| | - Ru Kong
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Golia Shafiei
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Jonathan Smallwood
- Department of Psychology, Queens University, Kingston, Ontario K7L 3N6, Canada
| | - Yi Du
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Institute for Brain Research, Beijing 102206, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 200031, China
| | - Elizabeth Jefferies
- Department of Psychology, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
13
|
Fedorenko E, Ivanova AA, Regev TI. The language network as a natural kind within the broader landscape of the human brain. Nat Rev Neurosci 2024; 25:289-312. [PMID: 38609551 DOI: 10.1038/s41583-024-00802-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 04/14/2024]
Abstract
Language behaviour is complex, but neuroscientific evidence disentangles it into distinct components supported by dedicated brain areas or networks. In this Review, we describe the 'core' language network, which includes left-hemisphere frontal and temporal areas, and show that it is strongly interconnected, independent of input and output modalities, causally important for language and language-selective. We discuss evidence that this language network plausibly stores language knowledge and supports core linguistic computations related to accessing words and constructions from memory and combining them to interpret (decode) or generate (encode) linguistic messages. We emphasize that the language network works closely with, but is distinct from, both lower-level - perceptual and motor - mechanisms and higher-level systems of knowledge and reasoning. The perceptual and motor mechanisms process linguistic signals, but, in contrast to the language network, are sensitive only to these signals' surface properties, not their meanings; the systems of knowledge and reasoning (such as the system that supports social reasoning) are sometimes engaged during language use but are not language-selective. This Review lays a foundation both for in-depth investigations of these different components of the language processing pipeline and for probing inter-component interactions.
Collapse
Affiliation(s)
- Evelina Fedorenko
- Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA, USA.
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- The Program in Speech and Hearing in Bioscience and Technology, Harvard University, Cambridge, MA, USA.
| | - Anna A Ivanova
- School of Psychology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Tamar I Regev
- Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
14
|
Hosseini EA, Schrimpf M, Zhang Y, Bowman S, Zaslavsky N, Fedorenko E. Artificial Neural Network Language Models Predict Human Brain Responses to Language Even After a Developmentally Realistic Amount of Training. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:43-63. [PMID: 38645622 PMCID: PMC11025646 DOI: 10.1162/nol_a_00137] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 01/09/2024] [Indexed: 04/23/2024]
Abstract
Artificial neural networks have emerged as computationally plausible models of human language processing. A major criticism of these models is that the amount of training data they receive far exceeds that of humans during language learning. Here, we use two complementary approaches to ask how the models' ability to capture human fMRI responses to sentences is affected by the amount of training data. First, we evaluate GPT-2 models trained on 1 million, 10 million, 100 million, or 1 billion words against an fMRI benchmark. We consider the 100-million-word model to be developmentally plausible in terms of the amount of training data given that this amount is similar to what children are estimated to be exposed to during the first 10 years of life. Second, we test the performance of a GPT-2 model trained on a 9-billion-token dataset to reach state-of-the-art next-word prediction performance on the human benchmark at different stages during training. Across both approaches, we find that (i) the models trained on a developmentally plausible amount of data already achieve near-maximal performance in capturing fMRI responses to sentences. Further, (ii) lower perplexity-a measure of next-word prediction performance-is associated with stronger alignment with human data, suggesting that models that have received enough training to achieve sufficiently high next-word prediction performance also acquire representations of sentences that are predictive of human fMRI responses. In tandem, these findings establish that although some training is necessary for the models' predictive ability, a developmentally realistic amount of training (∼100 million words) may suffice.
Collapse
Affiliation(s)
- Eghbal A. Hosseini
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Martin Schrimpf
- The MIT Quest for Intelligence Initiative, Cambridge, MA, USA
- Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Yian Zhang
- Computer Science Department, Stanford University, Stanford, CA, USA
| | - Samuel Bowman
- Center for Data Science, New York University, New York, NY, USA
- Department of Linguistics, New York University, New York, NY, USA
- Department of Computer Science, New York University, New York, NY, USA
| | - Noga Zaslavsky
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- K. Lisa Yang Integrative Computational Neuroscience (ICoN) Center, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Language Science, University of California, Irvine, CA, USA
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- The MIT Quest for Intelligence Initiative, Cambridge, MA, USA
- Speech and Hearing Bioscience and Technology Program, Harvard University, Boston, MA, USA
| |
Collapse
|
15
|
Kauf C, Tuckute G, Levy R, Andreas J, Fedorenko E. Lexical-Semantic Content, Not Syntactic Structure, Is the Main Contributor to ANN-Brain Similarity of fMRI Responses in the Language Network. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:7-42. [PMID: 38645614 PMCID: PMC11025651 DOI: 10.1162/nol_a_00116] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/11/2023] [Indexed: 04/23/2024]
Abstract
Representations from artificial neural network (ANN) language models have been shown to predict human brain activity in the language network. To understand what aspects of linguistic stimuli contribute to ANN-to-brain similarity, we used an fMRI data set of responses to n = 627 naturalistic English sentences (Pereira et al., 2018) and systematically manipulated the stimuli for which ANN representations were extracted. In particular, we (i) perturbed sentences' word order, (ii) removed different subsets of words, or (iii) replaced sentences with other sentences of varying semantic similarity. We found that the lexical-semantic content of the sentence (largely carried by content words) rather than the sentence's syntactic form (conveyed via word order or function words) is primarily responsible for the ANN-to-brain similarity. In follow-up analyses, we found that perturbation manipulations that adversely affect brain predictivity also lead to more divergent representations in the ANN's embedding space and decrease the ANN's ability to predict upcoming tokens in those stimuli. Further, results are robust as to whether the mapping model is trained on intact or perturbed stimuli and whether the ANN sentence representations are conditioned on the same linguistic context that humans saw. The critical result-that lexical-semantic content is the main contributor to the similarity between ANN representations and neural ones-aligns with the idea that the goal of the human language system is to extract meaning from linguistic strings. Finally, this work highlights the strength of systematic experimental manipulations for evaluating how close we are to accurate and generalizable models of the human language network.
Collapse
Affiliation(s)
- Carina Kauf
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Greta Tuckute
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Roger Levy
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jacob Andreas
- Computer Science & Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Program in Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
16
|
Kim SG, De Martino F, Overath T. Linguistic modulation of the neural encoding of phonemes. Cereb Cortex 2024; 34:bhae155. [PMID: 38687241 PMCID: PMC11059272 DOI: 10.1093/cercor/bhae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 05/02/2024] Open
Abstract
Speech comprehension entails the neural mapping of the acoustic speech signal onto learned linguistic units. This acousto-linguistic transformation is bi-directional, whereby higher-level linguistic processes (e.g. semantics) modulate the acoustic analysis of individual linguistic units. Here, we investigated the cortical topography and linguistic modulation of the most fundamental linguistic unit, the phoneme. We presented natural speech and "phoneme quilts" (pseudo-randomly shuffled phonemes) in either a familiar (English) or unfamiliar (Korean) language to native English speakers while recording functional magnetic resonance imaging. This allowed us to dissociate the contribution of acoustic vs. linguistic processes toward phoneme analysis. We show that (i) the acoustic analysis of phonemes is modulated by linguistic analysis and (ii) that for this modulation, both of acoustic and phonetic information need to be incorporated. These results suggest that the linguistic modulation of cortical sensitivity to phoneme classes minimizes prediction error during natural speech perception, thereby aiding speech comprehension in challenging listening situations.
Collapse
Affiliation(s)
- Seung-Goo Kim
- Department of Psychology and Neuroscience, Duke University, 308 Research Dr, Durham, NC 27708, United States
- Research Group Neurocognition of Music and Language, Max Planck Institute for Empirical Aesthetics, Grüneburgweg 14, Frankfurt am Main 60322, Germany
| | - Federico De Martino
- Faculty of Psychology and Neuroscience, University of Maastricht, Universiteitssingel 40, 6229 ER Maastricht, Netherlands
| | - Tobias Overath
- Department of Psychology and Neuroscience, Duke University, 308 Research Dr, Durham, NC 27708, United States
- Duke Institute for Brain Sciences, Duke University, 308 Research Dr, Durham, NC 27708, United States
- Center for Cognitive Neuroscience, Duke University, 308 Research Dr, Durham, NC 27708, United States
| |
Collapse
|
17
|
Jain S, Vo VA, Wehbe L, Huth AG. Computational Language Modeling and the Promise of In Silico Experimentation. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:80-106. [PMID: 38645624 PMCID: PMC11025654 DOI: 10.1162/nol_a_00101] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 01/18/2023] [Indexed: 04/23/2024]
Abstract
Language neuroscience currently relies on two major experimental paradigms: controlled experiments using carefully hand-designed stimuli, and natural stimulus experiments. These approaches have complementary advantages which allow them to address distinct aspects of the neurobiology of language, but each approach also comes with drawbacks. Here we discuss a third paradigm-in silico experimentation using deep learning-based encoding models-that has been enabled by recent advances in cognitive computational neuroscience. This paradigm promises to combine the interpretability of controlled experiments with the generalizability and broad scope of natural stimulus experiments. We show four examples of simulating language neuroscience experiments in silico and then discuss both the advantages and caveats of this approach.
Collapse
Affiliation(s)
- Shailee Jain
- Department of Computer Science, University of Texas at Austin, Austin, TX, USA
| | - Vy A. Vo
- Brain-Inspired Computing Lab, Intel Labs, Hillsboro, OR, USA
| | - Leila Wehbe
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Alexander G. Huth
- Department of Computer Science, University of Texas at Austin, Austin, TX, USA
- Department of Neuroscience, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
18
|
Chen C, Dupré la Tour T, Gallant JL, Klein D, Deniz F. The cortical representation of language timescales is shared between reading and listening. Commun Biol 2024; 7:284. [PMID: 38454134 PMCID: PMC11245628 DOI: 10.1038/s42003-024-05909-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Language comprehension involves integrating low-level sensory inputs into a hierarchy of increasingly high-level features. Prior work studied brain representations of different levels of the language hierarchy, but has not determined whether these brain representations are shared between written and spoken language. To address this issue, we analyze fMRI BOLD data that were recorded while participants read and listened to the same narratives in each modality. Levels of the language hierarchy are operationalized as timescales, where each timescale refers to a set of spectral components of a language stimulus. Voxelwise encoding models are used to determine where different timescales are represented across the cerebral cortex, for each modality separately. These models reveal that between the two modalities timescale representations are organized similarly across the cortical surface. Our results suggest that, after low-level sensory processing, language integration proceeds similarly regardless of stimulus modality.
Collapse
Affiliation(s)
- Catherine Chen
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA.
| | - Tom Dupré la Tour
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Jack L Gallant
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Daniel Klein
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Fatma Deniz
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
- Institute of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, Berlin, Germany.
- Bernstein Center for Computational Neuroscience, Berlin, Germany.
| |
Collapse
|
19
|
Regev TI, Kim HS, Chen X, Affourtit J, Schipper AE, Bergen L, Mahowald K, Fedorenko E. High-level language brain regions process sublexical regularities. Cereb Cortex 2024; 34:bhae077. [PMID: 38494886 PMCID: PMC11486690 DOI: 10.1093/cercor/bhae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 03/19/2024] Open
Abstract
A network of left frontal and temporal brain regions supports language processing. This "core" language network stores our knowledge of words and constructions as well as constraints on how those combine to form sentences. However, our linguistic knowledge additionally includes information about phonemes and how they combine to form phonemic clusters, syllables, and words. Are phoneme combinatorics also represented in these language regions? Across five functional magnetic resonance imaging experiments, we investigated the sensitivity of high-level language processing brain regions to sublexical linguistic regularities by examining responses to diverse nonwords-sequences of phonemes that do not constitute real words (e.g. punes, silory, flope). We establish robust responses in the language network to visually (experiment 1a, n = 605) and auditorily (experiments 1b, n = 12, and 1c, n = 13) presented nonwords. In experiment 2 (n = 16), we find stronger responses to nonwords that are more well-formed, i.e. obey the phoneme-combinatorial constraints of English. Finally, in experiment 3 (n = 14), we provide suggestive evidence that the responses in experiments 1 and 2 are not due to the activation of real words that share some phonology with the nonwords. The results suggest that sublexical regularities are stored and processed within the same fronto-temporal network that supports lexical and syntactic processes.
Collapse
Affiliation(s)
- Tamar I Regev
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
| | - Hee So Kim
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
| | - Xuanyi Chen
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
- Department of Cognitive Sciences, Rice University, Houston, TX 77005, United States
| | - Josef Affourtit
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
| | - Abigail E Schipper
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
| | - Leon Bergen
- Department of Linguistics, University of California San Diego, San Diego CA 92093, United States
| | - Kyle Mahowald
- Department of Linguistics, University of Texas at Austin, Austin, TX 78712, United States
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
- The Harvard Program in Speech and Hearing Bioscience and Technology, Boston, MA 02115, United States
| |
Collapse
|
20
|
Tuckute G, Sathe A, Srikant S, Taliaferro M, Wang M, Schrimpf M, Kay K, Fedorenko E. Driving and suppressing the human language network using large language models. Nat Hum Behav 2024; 8:544-561. [PMID: 38172630 DOI: 10.1038/s41562-023-01783-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 11/10/2023] [Indexed: 01/05/2024]
Abstract
Transformer models such as GPT generate human-like language and are predictive of human brain responses to language. Here, using functional-MRI-measured brain responses to 1,000 diverse sentences, we first show that a GPT-based encoding model can predict the magnitude of the brain response associated with each sentence. We then use the model to identify new sentences that are predicted to drive or suppress responses in the human language network. We show that these model-selected novel sentences indeed strongly drive and suppress the activity of human language areas in new individuals. A systematic analysis of the model-selected sentences reveals that surprisal and well-formedness of linguistic input are key determinants of response strength in the language network. These results establish the ability of neural network models to not only mimic human language but also non-invasively control neural activity in higher-level cortical areas, such as the language network.
Collapse
Affiliation(s)
- Greta Tuckute
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Aalok Sathe
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shashank Srikant
- Computer Science & Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- MIT-IBM Watson AI Lab, Cambridge, MA, USA
| | - Maya Taliaferro
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mingye Wang
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Martin Schrimpf
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Quest for Intelligence, Massachusetts Institute of Technology, Cambridge, MA, USA
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Kendrick Kay
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Program in Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
21
|
Olson HA, Chen EM, Lydic KO, Saxe RR. Left-Hemisphere Cortical Language Regions Respond Equally to Observed Dialogue and Monologue. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2023; 4:575-610. [PMID: 38144236 PMCID: PMC10745132 DOI: 10.1162/nol_a_00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/20/2023] [Indexed: 12/26/2023]
Abstract
Much of the language we encounter in our everyday lives comes in the form of conversation, yet the majority of research on the neural basis of language comprehension has used input from only one speaker at a time. Twenty adults were scanned while passively observing audiovisual conversations using functional magnetic resonance imaging. In a block-design task, participants watched 20 s videos of puppets speaking either to another puppet (the dialogue condition) or directly to the viewer (the monologue condition), while the audio was either comprehensible (played forward) or incomprehensible (played backward). Individually functionally localized left-hemisphere language regions responded more to comprehensible than incomprehensible speech but did not respond differently to dialogue than monologue. In a second task, participants watched videos (1-3 min each) of two puppets conversing with each other, in which one puppet was comprehensible while the other's speech was reversed. All participants saw the same visual input but were randomly assigned which character's speech was comprehensible. In left-hemisphere cortical language regions, the time course of activity was correlated only among participants who heard the same character speaking comprehensibly, despite identical visual input across all participants. For comparison, some individually localized theory of mind regions and right-hemisphere homologues of language regions responded more to dialogue than monologue in the first task, and in the second task, activity in some regions was correlated across all participants regardless of which character was speaking comprehensibly. Together, these results suggest that canonical left-hemisphere cortical language regions are not sensitive to differences between observed dialogue and monologue.
Collapse
|
22
|
Chen C, Dupré la Tour T, Gallant JL, Klein D, Deniz F. The Cortical Representation of Language Timescales is Shared between Reading and Listening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.06.522601. [PMID: 37577530 PMCID: PMC10418083 DOI: 10.1101/2023.01.06.522601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Language comprehension involves integrating low-level sensory inputs into a hierarchy of increasingly high-level features. Prior work studied brain representations of different levels of the language hierarchy, but has not determined whether these brain representations are shared between written and spoken language. To address this issue, we analyzed fMRI BOLD data recorded while participants read and listened to the same narratives in each modality. Levels of the language hierarchy were operationalized as timescales, where each timescale refers to a set of spectral components of a language stimulus. Voxelwise encoding models were used to determine where different timescales are represented across the cerebral cortex, for each modality separately. These models reveal that between the two modalities timescale representations are organized similarly across the cortical surface. Our results suggest that, after low-level sensory processing, language integration proceeds similarly regardless of stimulus modality.
Collapse
Affiliation(s)
- Catherine Chen
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, USA
| | - Tom Dupré la Tour
- Helen Wills Neuroscience Institute, University of California, Berkeley, USA
| | - Jack L. Gallant
- Helen Wills Neuroscience Institute, University of California, Berkeley, USA
| | - Dan Klein
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, USA
| | - Fatma Deniz
- Helen Wills Neuroscience Institute, University of California, Berkeley, USA
- Institute of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| |
Collapse
|
23
|
Ryskin R, Nieuwland MS. Prediction during language comprehension: what is next? Trends Cogn Sci 2023; 27:1032-1052. [PMID: 37704456 PMCID: PMC11614350 DOI: 10.1016/j.tics.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 09/15/2023]
Abstract
Prediction is often regarded as an integral aspect of incremental language comprehension, but little is known about the cognitive architectures and mechanisms that support it. We review studies showing that listeners and readers use all manner of contextual information to generate multifaceted predictions about upcoming input. The nature of these predictions may vary between individuals owing to differences in language experience, among other factors. We then turn to unresolved questions which may guide the search for the underlying mechanisms. (i) Is prediction essential to language processing or an optional strategy? (ii) Are predictions generated from within the language system or by domain-general processes? (iii) What is the relationship between prediction and memory? (iv) Does prediction in comprehension require simulation via the production system? We discuss promising directions for making progress in answering these questions and for developing a mechanistic understanding of prediction in language.
Collapse
Affiliation(s)
- Rachel Ryskin
- Department of Cognitive and Information Sciences, University of California Merced, 5200 Lake Road, Merced, CA 95343, USA.
| | - Mante S Nieuwland
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
24
|
Zhang G, Xu Y, Wang X, Li J, Shi W, Bi Y, Lin N. A social-semantic working-memory account for two canonical language areas. Nat Hum Behav 2023; 7:1980-1997. [PMID: 37735521 DOI: 10.1038/s41562-023-01704-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023]
Abstract
Language and social cognition are traditionally studied as separate cognitive domains, yet accumulative studies reveal overlapping neural correlates at the left ventral temporoparietal junction (vTPJ) and the left lateral anterior temporal lobe (lATL), which have been attributed to sentence processing and social concept activation. We propose a common cognitive component underlying both effects: social-semantic working memory. We confirmed two key predictions of our hypothesis using functional MRI. First, the left vTPJ and lATL showed sensitivity to sentences only when the sentences conveyed social meaning; second, these regions showed persistent social-semantic-selective activity after the linguistic stimuli disappeared. We additionally found that both regions were sensitive to the socialness of non-linguistic stimuli and were more tightly connected with the social-semantic-processing areas than with the sentence-processing areas. The converging evidence indicates the social-semantic working-memory function of the left vTPJ and lATL and challenges the general-semantic and/or syntactic accounts for the neural activity of these regions.
Collapse
Affiliation(s)
- Guangyao Zhang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Yangwen Xu
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| | - Xiuyi Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jixing Li
- Department of Linguistics and Translation, City University of Hong Kong, Hong Kong SAR, China
| | - Weiting Shi
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yanchao Bi
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Nan Lin
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
25
|
Tuckute G, Sathe A, Srikant S, Taliaferro M, Wang M, Schrimpf M, Kay K, Fedorenko E. Driving and suppressing the human language network using large language models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.16.537080. [PMID: 37090673 PMCID: PMC10120732 DOI: 10.1101/2023.04.16.537080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Transformer models such as GPT generate human-like language and are highly predictive of human brain responses to language. Here, using fMRI-measured brain responses to 1,000 diverse sentences, we first show that a GPT-based encoding model can predict the magnitude of brain response associated with each sentence. Then, we use the model to identify new sentences that are predicted to drive or suppress responses in the human language network. We show that these model-selected novel sentences indeed strongly drive and suppress activity of human language areas in new individuals. A systematic analysis of the model-selected sentences reveals that surprisal and well-formedness of linguistic input are key determinants of response strength in the language network. These results establish the ability of neural network models to not only mimic human language but also noninvasively control neural activity in higher-level cortical areas, like the language network.
Collapse
Affiliation(s)
- Greta Tuckute
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Aalok Sathe
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Shashank Srikant
- Computer Science & Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- MIT-IBM Watson AI Lab, Cambridge, MA 02142, USA
| | - Maya Taliaferro
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Mingye Wang
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Martin Schrimpf
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Quest for Intelligence, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Kendrick Kay
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455 USA
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- The Program in Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, MA 02138 USA
| |
Collapse
|
26
|
Kauf C, Tuckute G, Levy R, Andreas J, Fedorenko E. Lexical semantic content, not syntactic structure, is the main contributor to ANN-brain similarity of fMRI responses in the language network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539646. [PMID: 37205405 PMCID: PMC10187317 DOI: 10.1101/2023.05.05.539646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Representations from artificial neural network (ANN) language models have been shown to predict human brain activity in the language network. To understand what aspects of linguistic stimuli contribute to ANN-to-brain similarity, we used an fMRI dataset of responses to n=627 naturalistic English sentences (Pereira et al., 2018) and systematically manipulated the stimuli for which ANN representations were extracted. In particular, we i) perturbed sentences' word order, ii) removed different subsets of words, or iii) replaced sentences with other sentences of varying semantic similarity. We found that the lexical semantic content of the sentence (largely carried by content words) rather than the sentence's syntactic form (conveyed via word order or function words) is primarily responsible for the ANN-to-brain similarity. In follow-up analyses, we found that perturbation manipulations that adversely affect brain predictivity also lead to more divergent representations in the ANN's embedding space and decrease the ANN's ability to predict upcoming tokens in those stimuli. Further, results are robust to whether the mapping model is trained on intact or perturbed stimuli, and whether the ANN sentence representations are conditioned on the same linguistic context that humans saw. The critical result-that lexical-semantic content is the main contributor to the similarity between ANN representations and neural ones-aligns with the idea that the goal of the human language system is to extract meaning from linguistic strings. Finally, this work highlights the strength of systematic experimental manipulations for evaluating how close we are to accurate and generalizable models of the human language network.
Collapse
Affiliation(s)
- Carina Kauf
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
- McGovern Institute for Brain Research, Massachusetts Institute of Technology
| | - Greta Tuckute
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
- McGovern Institute for Brain Research, Massachusetts Institute of Technology
| | - Roger Levy
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | - Jacob Andreas
- Computer Science & Artificial Intelligence Laboratory, Massachusetts Institute of Technology
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
- McGovern Institute for Brain Research, Massachusetts Institute of Technology
- Program in Speech and Hearing Bioscience and Technology, Harvard University
| |
Collapse
|
27
|
Shain C, Blank IA, Fedorenko E, Gibson E, Schuler W. Robust Effects of Working Memory Demand during Naturalistic Language Comprehension in Language-Selective Cortex. J Neurosci 2022; 42:7412-7430. [PMID: 36002263 PMCID: PMC9525168 DOI: 10.1523/jneurosci.1894-21.2022] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
To understand language, we must infer structured meanings from real-time auditory or visual signals. Researchers have long focused on word-by-word structure building in working memory as a mechanism that might enable this feat. However, some have argued that language processing does not typically involve rich word-by-word structure building, and/or that apparent working memory effects are underlyingly driven by surprisal (how predictable a word is in context). Consistent with this alternative, some recent behavioral studies of naturalistic language processing that control for surprisal have not shown clear working memory effects. In this fMRI study, we investigate a range of theory-driven predictors of word-by-word working memory demand during naturalistic language comprehension in humans of both sexes under rigorous surprisal controls. In addition, we address a related debate about whether the working memory mechanisms involved in language comprehension are language specialized or domain general. To do so, in each participant, we functionally localize (1) the language-selective network and (2) the "multiple-demand" network, which supports working memory across domains. Results show robust surprisal-independent effects of memory demand in the language network and no effect of memory demand in the multiple-demand network. Our findings thus support the view that language comprehension involves computationally demanding word-by-word structure building operations in working memory, in addition to any prediction-related mechanisms. Further, these memory operations appear to be primarily conducted by the same neural resources that store linguistic knowledge, with no evidence of involvement of brain regions known to support working memory across domains.SIGNIFICANCE STATEMENT This study uses fMRI to investigate signatures of working memory (WM) demand during naturalistic story listening, using a broad range of theoretically motivated estimates of WM demand. Results support a strong effect of WM demand in the brain that is distinct from effects of word predictability. Further, these WM demands register primarily in language-selective regions, rather than in "multiple-demand" regions that have previously been associated with WM in nonlinguistic domains. Our findings support a core role for WM in incremental language processing, using WM resources that are specialized for language.
Collapse
Affiliation(s)
- Cory Shain
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02478
| | - Idan A Blank
- University of California, Los Angeles, Los Angeles, California 90095
| | - Evelina Fedorenko
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02478
| | - Edward Gibson
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02478
| | | |
Collapse
|
28
|
Curtis AJ, Mak MH, Chen S, Rodd JM, Gaskell MG. Word-meaning priming extends beyond homonyms. Cognition 2022; 226:105175. [DOI: 10.1016/j.cognition.2022.105175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 11/03/2022]
|
29
|
Lipkin B, Tuckute G, Affourtit J, Small H, Mineroff Z, Kean H, Jouravlev O, Rakocevic L, Pritchett B, Siegelman M, Hoeflin C, Pongos A, Blank IA, Struhl MK, Ivanova A, Shannon S, Sathe A, Hoffmann M, Nieto-Castañón A, Fedorenko E. Probabilistic atlas for the language network based on precision fMRI data from >800 individuals. Sci Data 2022; 9:529. [PMID: 36038572 PMCID: PMC9424256 DOI: 10.1038/s41597-022-01645-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Two analytic traditions characterize fMRI language research. One relies on averaging activations across individuals. This approach has limitations: because of inter-individual variability in the locations of language areas, any given voxel/vertex in a common brain space is part of the language network in some individuals but in others, may belong to a distinct network. An alternative approach relies on identifying language areas in each individual using a functional 'localizer'. Because of its greater sensitivity, functional resolution, and interpretability, functional localization is gaining popularity, but it is not always feasible, and cannot be applied retroactively to past studies. To bridge these disjoint approaches, we created a probabilistic functional atlas using fMRI data for an extensively validated language localizer in 806 individuals. This atlas enables estimating the probability that any given location in a common space belongs to the language network, and thus can help interpret group-level activation peaks and lesion locations, or select voxels/electrodes for analysis. More meaningful comparisons of findings across studies should increase robustness and replicability in language research.
Collapse
Affiliation(s)
- Benjamin Lipkin
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Greta Tuckute
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Josef Affourtit
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hannah Small
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, USA
| | - Zachary Mineroff
- Human-computer Interaction Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Hope Kean
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Olessia Jouravlev
- Department of Cognitive Science, Carleton University, Ottawa, ON, Canada
| | - Lara Rakocevic
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brianna Pritchett
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Caitlyn Hoeflin
- Harris School of Public Policy, University of Chicago, Chicago, IL, USA
| | - Alvincé Pongos
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Idan A Blank
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - Melissa Kline Struhl
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anna Ivanova
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Steven Shannon
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aalok Sathe
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Malte Hoffmann
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Cambridge, MA, USA
| | - Alfonso Nieto-Castañón
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA, USA
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Speech, Hearing, Bioscience, and Technology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
30
|
Russo AG, De Martino M, Elia A, Di Salle F, Esposito F. Negative correlation between word-level surprisal and intersubject neural synchronization during narrative listening. Cortex 2022; 155:132-149. [DOI: 10.1016/j.cortex.2022.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 02/10/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022]
|
31
|
Paunov AM, Blank IA, Jouravlev O, Mineroff Z, Gallée J, Fedorenko E. Differential Tracking of Linguistic vs. Mental State Content in Naturalistic Stimuli by Language and Theory of Mind (ToM) Brain Networks. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2022; 3:413-440. [PMID: 37216061 PMCID: PMC10158571 DOI: 10.1162/nol_a_00071] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 04/11/2022] [Indexed: 05/24/2023]
Abstract
Language and social cognition, especially the ability to reason about mental states, known as theory of mind (ToM), are deeply related in development and everyday use. However, whether these cognitive faculties rely on distinct, overlapping, or the same mechanisms remains debated. Some evidence suggests that, by adulthood, language and ToM draw on largely distinct-though plausibly interacting-cortical networks. However, the broad topography of these networks is similar, and some have emphasized the importance of social content / communicative intent in the linguistic signal for eliciting responses in the language areas. Here, we combine the power of individual-subject functional localization with the naturalistic-cognition inter-subject correlation approach to illuminate the language-ToM relationship. Using functional magnetic resonance imaging (fMRI), we recorded neural activity as participants (n = 43) listened to stories and dialogues with mental state content (+linguistic, +ToM), viewed silent animations and live action films with mental state content but no language (-linguistic, +ToM), or listened to an expository text (+linguistic, -ToM). The ToM network robustly tracked stimuli rich in mental state information regardless of whether mental states were conveyed linguistically or non-linguistically, while tracking a +linguistic / -ToM stimulus only weakly. In contrast, the language network tracked linguistic stimuli more strongly than (a) non-linguistic stimuli, and than (b) the ToM network, and showed reliable tracking even for the linguistic condition devoid of mental state content. These findings suggest that in spite of their indisputably close links, language and ToM dissociate robustly in their neural substrates-and thus plausibly cognitive mechanisms-including during the processing of rich naturalistic materials.
Collapse
Affiliation(s)
- Alexander M. Paunov
- Department of Brain and Cognitive Sciences, MIT, Cambridge, USA
- Cognitive Neuroimaging Unit, INSERM, CEA, CNRS, Université Paris-Saclay, NeuroSpin Center, 91191Gif/Yvette, France
| | - Idan A. Blank
- Department of Brain and Cognitive Sciences, MIT, Cambridge, USA
- Department of Psychology, UCLA, Los Angeles, CA, USA
| | - Olessia Jouravlev
- Department of Brain and Cognitive Sciences, MIT, Cambridge, USA
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
- Institute for Cognitive Science, Carleton University, Ottawa, ON, Canada
| | - Zachary Mineroff
- Department of Brain and Cognitive Sciences, MIT, Cambridge, USA
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
- Eberly Center for Teaching Excellence & Educational Innovation, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jeanne Gallée
- Program in Speech and Hearing Bioscience and Technology, Harvard University, Boston, MA, USA
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, MIT, Cambridge, USA
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
- Program in Speech and Hearing Bioscience and Technology, Harvard University, Boston, MA, USA
| |
Collapse
|
32
|
Matchin W, Basilakos A, Ouden DBD, Stark BC, Hickok G, Fridriksson J. Functional differentiation in the language network revealed by lesion-symptom mapping. Neuroimage 2022; 247:118778. [PMID: 34896587 PMCID: PMC8830186 DOI: 10.1016/j.neuroimage.2021.118778] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/17/2021] [Accepted: 12/02/2021] [Indexed: 12/18/2022] Open
Abstract
Theories of language organization in the brain commonly posit that different regions underlie distinct linguistic mechanisms. However, such theories have been criticized on the grounds that many neuroimaging studies of language processing find similar effects across regions. Moreover, condition by region interaction effects, which provide the strongest evidence of functional differentiation between regions, have rarely been offered in support of these theories. Here we address this by using lesion-symptom mapping in three large, partially-overlapping groups of aphasia patients with left hemisphere brain damage due to stroke (N = 121, N = 92, N = 218). We identified multiple measure by region interaction effects, associating damage to the posterior middle temporal gyrus with syntactic comprehension deficits, damage to posterior inferior frontal gyrus with expressive agrammatism, and damage to inferior angular gyrus with semantic category word fluency deficits. Our results are inconsistent with recent hypotheses that regions of the language network are undifferentiated with respect to high-level linguistic processing.
Collapse
Affiliation(s)
- William Matchin
- Department of Communication Sciences and Disorders, University of South Carolina, Discovery 1, Room 202D, 915 Greene St., Columbia, SC 29208, United States.
| | - Alexandra Basilakos
- Department of Communication Sciences and Disorders, University of South Carolina, Discovery 1, Room 202D, 915 Greene St., Columbia, SC 29208, United States
| | - Dirk-Bart den Ouden
- Department of Communication Sciences and Disorders, University of South Carolina, Discovery 1, Room 202D, 915 Greene St., Columbia, SC 29208, United States
| | - Brielle C Stark
- Department of Speech and Hearing Sciences, Program in Neuroscience, Indiana University Bloomington, Bloomington, Indiana, United States
| | - Gregory Hickok
- Department of Cognitive Sciences, Department of Language Science, University of California, Irvine, California, United States
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Discovery 1, Room 202D, 915 Greene St., Columbia, SC 29208, United States
| |
Collapse
|
33
|
Martin KC, Ketchabaw WT, Turkeltaub PE. Plasticity of the language system in children and adults. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:397-414. [PMID: 35034751 PMCID: PMC10149040 DOI: 10.1016/b978-0-12-819410-2.00021-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The language system is perhaps the most unique feature of the human brain's cognitive architecture. It has long been a quest of cognitive neuroscience to understand the neural components that contribute to the hierarchical pattern processing and advanced rule learning required for language. The most important goal of this research is to understand how language becomes impaired when these neural components malfunction or are lost to stroke, and ultimately how we might recover language abilities under these circumstances. Additionally, understanding how the language system develops and how it can reorganize in the face of brain injury or dysfunction could help us to understand brain plasticity in cognitive networks more broadly. In this chapter we will discuss the earliest features of language organization in infants, and how deviations in typical development can-but in some cases, do not-lead to disordered language. We will then survey findings from adult stroke and aphasia research on the potential for recovering language processing in both the remaining left hemisphere tissue and in the non-dominant right hemisphere. Altogether, we hope to present a clear picture of what is known about the capacity for plastic change in the neurobiology of the human language system.
Collapse
Affiliation(s)
- Kelly C Martin
- Department of Neurology, Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC, United States
| | - W Tyler Ketchabaw
- Department of Neurology, Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC, United States
| | - Peter E Turkeltaub
- Department of Neurology, Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC, United States; Research Division, MedStar National Rehabilitation Hospital, Washington, DC, United States.
| |
Collapse
|
34
|
Finn ES, Glerean E, Hasson U, Vanderwal T. Naturalistic imaging: The use of ecologically valid conditions to study brain function. Neuroimage 2021; 247:118776. [PMID: 34864153 DOI: 10.1016/j.neuroimage.2021.118776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
35
|
Wehbe L, Blank IA, Shain C, Futrell R, Levy R, von der Malsburg T, Smith N, Gibson E, Fedorenko E. Incremental Language Comprehension Difficulty Predicts Activity in the Language Network but Not the Multiple Demand Network. Cereb Cortex 2021. [PMID: 33895807 DOI: 10.1101/2020.04.15.043844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
What role do domain-general executive functions play in human language comprehension? To address this question, we examine the relationship between behavioral measures of comprehension and neural activity in the domain-general "multiple demand" (MD) network, which has been linked to constructs like attention, working memory, inhibitory control, and selection, and implicated in diverse goal-directed behaviors. Specifically, functional magnetic resonance imaging data collected during naturalistic story listening are compared with theory-neutral measures of online comprehension difficulty and incremental processing load (reading times and eye-fixation durations). Critically, to ensure that variance in these measures is driven by features of the linguistic stimulus rather than reflecting participant- or trial-level variability, the neuroimaging and behavioral datasets were collected in nonoverlapping samples. We find no behavioral-neural link in functionally localized MD regions; instead, this link is found in the domain-specific, fronto-temporal "core language network," in both left-hemispheric areas and their right hemispheric homotopic areas. These results argue against strong involvement of domain-general executive circuits in language comprehension.
Collapse
Affiliation(s)
- Leila Wehbe
- Carnegie Mellon University, Machine Learning Department PA 15213, USA
| | - Idan Asher Blank
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences MA 02139, USA
- University of California Los Angeles, Department of Psychology CA 90095, USA
| | - Cory Shain
- Ohio State University, Department of Linguistics OH 43210, USA
| | - Richard Futrell
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences MA 02139, USA
- University of California Irvine, Department of Linguistics CA 92697, USA
| | - Roger Levy
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences MA 02139, USA
- University of California San Diego, Department of Linguistics CA 92161, USA
| | - Titus von der Malsburg
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences MA 02139, USA
- University of Stuttgart, Institute of Linguistics, 70049 Stuttgart, Germany
| | - Nathaniel Smith
- University of California San Diego, Department of Linguistics CA 92161, USA
| | - Edward Gibson
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences MA 02139, USA
| | - Evelina Fedorenko
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences MA 02139, USA
- Massachusetts Institute of Technology, McGovern Institute for Brain ResearchMA 02139, USA
| |
Collapse
|
36
|
Wehbe L, Blank IA, Shain C, Futrell R, Levy R, von der Malsburg T, Smith N, Gibson E, Fedorenko E. Incremental Language Comprehension Difficulty Predicts Activity in the Language Network but Not the Multiple Demand Network. Cereb Cortex 2021; 31:4006-4023. [PMID: 33895807 PMCID: PMC8328211 DOI: 10.1093/cercor/bhab065] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 01/15/2021] [Accepted: 02/21/2021] [Indexed: 12/28/2022] Open
Abstract
What role do domain-general executive functions play in human language comprehension? To address this question, we examine the relationship between behavioral measures of comprehension and neural activity in the domain-general "multiple demand" (MD) network, which has been linked to constructs like attention, working memory, inhibitory control, and selection, and implicated in diverse goal-directed behaviors. Specifically, functional magnetic resonance imaging data collected during naturalistic story listening are compared with theory-neutral measures of online comprehension difficulty and incremental processing load (reading times and eye-fixation durations). Critically, to ensure that variance in these measures is driven by features of the linguistic stimulus rather than reflecting participant- or trial-level variability, the neuroimaging and behavioral datasets were collected in nonoverlapping samples. We find no behavioral-neural link in functionally localized MD regions; instead, this link is found in the domain-specific, fronto-temporal "core language network," in both left-hemispheric areas and their right hemispheric homotopic areas. These results argue against strong involvement of domain-general executive circuits in language comprehension.
Collapse
Affiliation(s)
- Leila Wehbe
- Carnegie Mellon University, Machine Learning Department PA 15213, USA
| | - Idan Asher Blank
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences MA 02139, USA
- University of California Los Angeles, Department of Psychology CA 90095, USA
| | - Cory Shain
- Ohio State University, Department of Linguistics OH 43210, USA
| | - Richard Futrell
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences MA 02139, USA
- University of California Irvine, Department of Linguistics CA 92697, USA
| | - Roger Levy
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences MA 02139, USA
- University of California San Diego, Department of Linguistics CA 92161, USA
| | - Titus von der Malsburg
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences MA 02139, USA
- University of Stuttgart, Institute of Linguistics, 70049 Stuttgart, Germany
| | - Nathaniel Smith
- University of California San Diego, Department of Linguistics CA 92161, USA
| | - Edward Gibson
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences MA 02139, USA
| | - Evelina Fedorenko
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences MA 02139, USA
- Massachusetts Institute of Technology, McGovern Institute for Brain ResearchMA 02139, USA
| |
Collapse
|
37
|
Har-shai Yahav P, Zion Golumbic E. Linguistic processing of task-irrelevant speech at a cocktail party. eLife 2021; 10:e65096. [PMID: 33942722 PMCID: PMC8163500 DOI: 10.7554/elife.65096] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 04/26/2021] [Indexed: 01/05/2023] Open
Abstract
Paying attention to one speaker in a noisy place can be extremely difficult, because to-be-attended and task-irrelevant speech compete for processing resources. We tested whether this competition is restricted to acoustic-phonetic interference or if it extends to competition for linguistic processing as well. Neural activity was recorded using Magnetoencephalography as human participants were instructed to attend to natural speech presented to one ear, and task-irrelevant stimuli were presented to the other. Task-irrelevant stimuli consisted either of random sequences of syllables, or syllables structured to form coherent sentences, using hierarchical frequency-tagging. We find that the phrasal structure of structured task-irrelevant stimuli was represented in the neural response in left inferior frontal and posterior parietal regions, indicating that selective attention does not fully eliminate linguistic processing of task-irrelevant speech. Additionally, neural tracking of to-be-attended speech in left inferior frontal regions was enhanced when competing with structured task-irrelevant stimuli, suggesting inherent competition between them for linguistic processing.
Collapse
Affiliation(s)
- Paz Har-shai Yahav
- The Gonda Center for Multidisciplinary Brain Research, Bar Ilan UniversityRamat GanIsrael
| | - Elana Zion Golumbic
- The Gonda Center for Multidisciplinary Brain Research, Bar Ilan UniversityRamat GanIsrael
| |
Collapse
|
38
|
The many timescales of context in language processing. PSYCHOLOGY OF LEARNING AND MOTIVATION 2021. [DOI: 10.1016/bs.plm.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Luo C, Ding N. Cortical encoding of acoustic and linguistic rhythms in spoken narratives. eLife 2020; 9:60433. [PMID: 33345775 PMCID: PMC7775109 DOI: 10.7554/elife.60433] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/20/2020] [Indexed: 11/13/2022] Open
Abstract
Speech contains rich acoustic and linguistic information. Using highly controlled speech materials, previous studies have demonstrated that cortical activity is synchronous to the rhythms of perceived linguistic units, for example, words and phrases, on top of basic acoustic features, for example, the speech envelope. When listening to natural speech, it remains unclear, however, how cortical activity jointly encodes acoustic and linguistic information. Here we investigate the neural encoding of words using electroencephalography and observe neural activity synchronous to multi-syllabic words when participants naturally listen to narratives. An amplitude modulation (AM) cue for word rhythm enhances the word-level response, but the effect is only observed during passive listening. Furthermore, words and the AM cue are encoded by spatially separable neural responses that are differentially modulated by attention. These results suggest that bottom-up acoustic cues and top-down linguistic knowledge separately contribute to cortical encoding of linguistic units in spoken narratives.
Collapse
Affiliation(s)
- Cheng Luo
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou, China
| | - Nai Ding
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou, China.,Research Center for Advanced Artificial Intelligence Theory, Zhejiang Lab, Hangzhou, China
| |
Collapse
|
40
|
Ivanova AA, Srikant S, Sueoka Y, Kean HH, Dhamala R, O'Reilly UM, Bers MU, Fedorenko E. Comprehension of computer code relies primarily on domain-general executive brain regions. eLife 2020; 9:e58906. [PMID: 33319744 PMCID: PMC7738192 DOI: 10.7554/elife.58906] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/06/2020] [Indexed: 12/22/2022] Open
Abstract
Computer programming is a novel cognitive tool that has transformed modern society. What cognitive and neural mechanisms support this skill? Here, we used functional magnetic resonance imaging to investigate two candidate brain systems: the multiple demand (MD) system, typically recruited during math, logic, problem solving, and executive tasks, and the language system, typically recruited during linguistic processing. We examined MD and language system responses to code written in Python, a text-based programming language (Experiment 1) and in ScratchJr, a graphical programming language (Experiment 2); for both, we contrasted responses to code problems with responses to content-matched sentence problems. We found that the MD system exhibited strong bilateral responses to code in both experiments, whereas the language system responded strongly to sentence problems, but weakly or not at all to code problems. Thus, the MD system supports the use of novel cognitive tools even when the input is structurally similar to natural language.
Collapse
Affiliation(s)
- Anna A Ivanova
- Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
- McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Shashank Srikant
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Yotaro Sueoka
- Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
- McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Hope H Kean
- Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
- McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Riva Dhamala
- Eliot-Pearson Department of Child Study and Human Development, Tufts UniversityMedfordUnited States
| | - Una-May O'Reilly
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Marina U Bers
- Eliot-Pearson Department of Child Study and Human Development, Tufts UniversityMedfordUnited States
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
- McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
41
|
Fedorenko E, Blank IA, Siegelman M, Mineroff Z. Lack of selectivity for syntax relative to word meanings throughout the language network. Cognition 2020; 203:104348. [PMID: 32569894 DOI: 10.1101/477851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 05/14/2020] [Accepted: 05/31/2020] [Indexed: 05/25/2023]
Abstract
To understand what you are reading now, your mind retrieves the meanings of words and constructions from a linguistic knowledge store (lexico-semantic processing) and identifies the relationships among them to construct a complex meaning (syntactic or combinatorial processing). Do these two sets of processes rely on distinct, specialized mechanisms or, rather, share a common pool of resources? Linguistic theorizing, empirical evidence from language acquisition and processing, and computational modeling have jointly painted a picture whereby lexico-semantic and syntactic processing are deeply inter-connected and perhaps not separable. In contrast, many current proposals of the neural architecture of language continue to endorse a view whereby certain brain regions selectively support syntactic/combinatorial processing, although the locus of such "syntactic hub", and its nature, vary across proposals. Here, we searched for selectivity for syntactic over lexico-semantic processing using a powerful individual-subjects fMRI approach across three sentence comprehension paradigms that have been used in prior work to argue for such selectivity: responses to lexico-semantic vs. morpho-syntactic violations (Experiment 1); recovery from neural suppression across pairs of sentences differing in only lexical items vs. only syntactic structure (Experiment 2); and same/different meaning judgments on such sentence pairs (Experiment 3). Across experiments, both lexico-semantic and syntactic conditions elicited robust responses throughout the left fronto-temporal language network. Critically, however, no regions were more strongly engaged by syntactic than lexico-semantic processing, although some regions showed the opposite pattern. Thus, contra many current proposals of the neural architecture of language, syntactic/combinatorial processing is not separable from lexico-semantic processing at the level of brain regions-or even voxel subsets-within the language network, in line with strong integration between these two processes that has been consistently observed in behavioral and computational language research. The results further suggest that the language network may be generally more strongly concerned with meaning than syntactic form, in line with the primary function of language-to share meanings across minds.
Collapse
Affiliation(s)
- Evelina Fedorenko
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA.
| | - Idan Asher Blank
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Department of Psychology, UCLA, Los Angeles, CA 90095, USA
| | - Matthew Siegelman
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Department of Psychology, Columbia University, New York, NY 10027, USA
| | - Zachary Mineroff
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Eberly Center for Teaching Excellence & Educational Innovation, CMU, Pittsburgh, PA 15213, USA
| |
Collapse
|
42
|
Fedorenko E, Blank IA, Siegelman M, Mineroff Z. Lack of selectivity for syntax relative to word meanings throughout the language network. Cognition 2020; 203:104348. [PMID: 32569894 PMCID: PMC7483589 DOI: 10.1016/j.cognition.2020.104348] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 05/14/2020] [Accepted: 05/31/2020] [Indexed: 12/31/2022]
Abstract
To understand what you are reading now, your mind retrieves the meanings of words and constructions from a linguistic knowledge store (lexico-semantic processing) and identifies the relationships among them to construct a complex meaning (syntactic or combinatorial processing). Do these two sets of processes rely on distinct, specialized mechanisms or, rather, share a common pool of resources? Linguistic theorizing, empirical evidence from language acquisition and processing, and computational modeling have jointly painted a picture whereby lexico-semantic and syntactic processing are deeply inter-connected and perhaps not separable. In contrast, many current proposals of the neural architecture of language continue to endorse a view whereby certain brain regions selectively support syntactic/combinatorial processing, although the locus of such "syntactic hub", and its nature, vary across proposals. Here, we searched for selectivity for syntactic over lexico-semantic processing using a powerful individual-subjects fMRI approach across three sentence comprehension paradigms that have been used in prior work to argue for such selectivity: responses to lexico-semantic vs. morpho-syntactic violations (Experiment 1); recovery from neural suppression across pairs of sentences differing in only lexical items vs. only syntactic structure (Experiment 2); and same/different meaning judgments on such sentence pairs (Experiment 3). Across experiments, both lexico-semantic and syntactic conditions elicited robust responses throughout the left fronto-temporal language network. Critically, however, no regions were more strongly engaged by syntactic than lexico-semantic processing, although some regions showed the opposite pattern. Thus, contra many current proposals of the neural architecture of language, syntactic/combinatorial processing is not separable from lexico-semantic processing at the level of brain regions-or even voxel subsets-within the language network, in line with strong integration between these two processes that has been consistently observed in behavioral and computational language research. The results further suggest that the language network may be generally more strongly concerned with meaning than syntactic form, in line with the primary function of language-to share meanings across minds.
Collapse
Affiliation(s)
- Evelina Fedorenko
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA.
| | - Idan Asher Blank
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Department of Psychology, UCLA, Los Angeles, CA 90095, USA
| | - Matthew Siegelman
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Department of Psychology, Columbia University, New York, NY 10027, USA
| | - Zachary Mineroff
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Eberly Center for Teaching Excellence & Educational Innovation, CMU, Pittsburgh, PA 15213, USA
| |
Collapse
|