1
|
Hong W, Liu Z, Zhang X, Li M, Yu Z, Wang Y, Wang M, Wu Y, Fang S, Yang B, Xu R, Zhao Z. Distance-related functional reorganization predicts motor outcome in stroke patients. BMC Med 2024; 22:247. [PMID: 38886774 PMCID: PMC11184708 DOI: 10.1186/s12916-024-03435-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/09/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Analyzing distance-dependent functional connectivity density (FCD) yields valuable insights into patterns of brain activity. Nevertheless, whether alterations of FCD in non-acute stroke patients are associated with the anatomical distance between brain regions remains unclear. This study aimed to explore the distance-related functional reorganization in non-acute stroke patients following left and right hemisphere subcortical lesions, and its relationship with clinical assessments. METHODS In this study, we used resting-state fMRI to calculate distance-dependent (i.e., short- and long-range) FCD in 25 left subcortical stroke (LSS) patients, 22 right subcortical stroke (RSS) patients, and 39 well-matched healthy controls (HCs). Then, we compared FCD differences among the three groups and assessed the correlation between FCD alterations and paralyzed motor function using linear regression analysis. RESULTS Our findings demonstrated that the left inferior frontal gyrus displayed distance-independent FCD changes, while the bilateral supplementary motor area, cerebellum, and left middle occipital gyrus exhibited distance-dependent FCD alterations in two patient subgroups compared with HCs. Furthermore, we observed a positive correlation between increased FCD in the bilateral supplementary motor area and the motor function of lower limbs, and a negative correlation between increased FCD in the left inferior frontal gyrus and the motor function of both upper and lower limbs across all stroke patients. These associations were validated by using a longitudinal dataset. CONCLUSIONS The FCD in the cerebral and cerebellar cortices shows distance-related changes in non-acute stroke patients with motor dysfunction, which may serve as potential biomarkers for predicting motor outcomes after stroke. These findings enhance our comprehension of the neurobiological mechanisms driving non-acute stroke. TRIAL REGISTRATION All data used in the present study were obtained from a research trial registered with the ClinicalTrials.gov database (NCT05648552, registered 05 December 2022, starting from 01 January 2022).
Collapse
Affiliation(s)
- Wenjun Hong
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Zaixing Liu
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Xin Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Ming Li
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Zhixuan Yu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yuxin Wang
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Minmin Wang
- School of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China
- Binjiang Institute of Zhejiang University, Hangzhou, 310014, China
| | - Yanan Wu
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Shengjie Fang
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, 210008, China
| | - Bo Yang
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Rong Xu
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Zhiyong Zhao
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310003, China.
| |
Collapse
|
2
|
Luo B, Chang L, Qiu C, Dong W, Zhao L, Lu Y, Sun J, Yan J, Wei X, Yan J, Zhang W. Reorganization of motor network in patients with Parkinson's disease after deep brain stimulation. CNS Neurosci Ther 2024; 30:e14792. [PMID: 38867393 PMCID: PMC11168969 DOI: 10.1111/cns.14792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
AIMS Parkinson's disease (PD) patients experience improvement in motor symptoms after deep brain stimulation (DBS) and before initiating stimulation. This is called the microlesion effect. However, the mechanism remains unclear. The study aims to comprehensively explore the changes in functional connectivity (FC) patterns in movement-related brain regions in PD patients during the microlesion phase through seed-based FC analysis. METHODS The study collected the resting functional magnetic resonance imaging data of 49 PD patients before and after DBS surgery (off stimulation). The cortical and subcortical areas related to motor function were selected for seed-based FC analysis. Meanwhile, their relationship with the motor scale was investigated. RESULTS The motor-related brain regions were selected as the seed point, and we observed various FC declines within the motor network brain regions. These declines were primarily in the left middle temporal gyrus, bilateral middle frontal gyrus, right supplementary motor area, left precentral gyrus, left postcentral gyrus, left inferior frontal gyrus, and right superior frontal gyrus after DBS. CONCLUSION The movement-related network was extensively reorganized during the microlesion period. The study provided new information on enhancing motor function from the network level post-DBS.
Collapse
Affiliation(s)
- Bei Luo
- Department of Functional Neurosurgery, Affiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingChina
| | - Lei Chang
- Department of Functional Neurosurgery, Affiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingChina
| | - Chang Qiu
- Department of Functional Neurosurgery, Affiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingChina
| | - Wenwen Dong
- Department of Functional Neurosurgery, Affiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingChina
| | - Liang Zhao
- Department of Functional Neurosurgery, Affiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingChina
| | - Yue Lu
- Department of Functional Neurosurgery, Affiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingChina
| | - Jian Sun
- Department of Functional Neurosurgery, Affiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingChina
| | - Jiuqi Yan
- Department of Functional Neurosurgery, Affiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingChina
| | - Xiang Wei
- Department of Functional Neurosurgery, Affiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingChina
| | - Jun Yan
- Department of Geriatric Neurology, Affiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingChina
| | - Wenbin Zhang
- Department of Functional Neurosurgery, Affiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingChina
| |
Collapse
|
3
|
Sun H, Sun Q, Li Y, Zhang J, Xing H, Wang J. Mapping individual structural covariance network in development brain with dynamic time warping. Cereb Cortex 2024; 34:bhae039. [PMID: 38342688 DOI: 10.1093/cercor/bhae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/04/2024] [Accepted: 01/21/2024] [Indexed: 02/13/2024] Open
Abstract
A conspicuous property of brain development or maturity is coupled with coordinated or synchronized brain structural co-variation. However, there is still a lack of effective approach to map individual structural covariance network. Here, we developed a novel individual structural covariance network method using dynamic time warping algorithm and applied it to delineate developmental trajectories of topological organizations of structural covariance network from childhood to early adulthood with a large sample of 655 individuals from Human Connectome Project-Development dataset. We found that the individual structural covariance network exhibited small-worldness property and the network global topological characteristics including small-worldness, global efficiency, local efficiency, and modularity linearly increase with age while the shortest path length linearly decreases with age. The nodal topological properties including betweenness and degree increased with age in language and emotion regulation related brain areas, while it decreased with age mainly in visual cortex, sensorimotor area, and hippocampus. Moreover, the topological attributes of structural covariance network as features could predict the age of each individual. Taken together, our results demonstrate that dynamic time warping can effectively map individual structural covariance network to uncover the developmental trajectories of network topology, which may facilitate future investigations to establish the links of structural co-variations with respect to cognition and disease vulnerability.
Collapse
Affiliation(s)
- Hui Sun
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China
| | - Qinyao Sun
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 625014, China
| | - Yuanyuan Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Jiang Zhang
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China
| | - Haoyang Xing
- Magnetic Resonance Research Center, West China Hospital, Sichuan University, Chengdu 610065, China
- School of Physics, Sichuan University, Chengdu 610065, China
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| |
Collapse
|
4
|
Li D, Xie Q, Xie J, Ni M, Wang J, Gao Y, Wang Y, Tang Q. Cerebrospinal Fluid Proteomics Identifies Potential Biomarkers for Early-Onset Alzheimer's Disease. J Alzheimers Dis 2024; 100:261-277. [PMID: 38848183 DOI: 10.3233/jad-240022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Background Early-onset Alzheimer's disease (EOAD) exhibits a notable degree of heterogeneity as compared to late-onset Alzheimer's disease (LOAD). The proteins and pathways contributing to the pathophysiology of EOAD still need to be completed and elucidated. Objective Using correlation network analysis and machine learning to analyze cerebrospinal fluid (CSF) proteomics data to identify potential biomarkers and pathways associated with EOAD. Methods We employed mass spectrometry to conduct CSF proteomic analysis using the data-independent acquisition method in a Chinese cohort of 139 CSF samples, including 40 individuals with normal cognition (CN), 61 patients with EOAD, and 38 patients with LOAD. Correlation network analysis of differentially expressed proteins was performed to identify EOAD-associated pathways. Machine learning assisted in identifying crucial proteins differentiating EOAD. We validated the results in an Western cohort and examined the proteins expression by enzyme-linked immunosorbent assay (ELISA) in additional 9 EOAD, 9 LOAD, and 9 CN samples from our cohort. Results We quantified 2,168 CSF proteins. Following adjustment for age and sex, EOAD exhibited a significantly greater number of differentially expressed proteins than LOAD compared to CN. Additionally, our data indicates that EOAD may exhibit more pronounced synaptic dysfunction than LOAD. Three potential biomarkers for EOAD were identified: SH3BGRL3, LRP8, and LY6 H, of which SH3BGRL3 also accurately classified EOAD in the Western cohort. LY6 H reduction was confirmed via ELISA, which was consistent with our proteomic results. Conclusions This study provides a comprehensive profile of the CSF proteome in EOAD and identifies three potential EOAD biomarker proteins.
Collapse
Affiliation(s)
- Dazhi Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qiang Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jikui Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ming Ni
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jinliang Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yuru Gao
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yaxin Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qiqiang Tang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
5
|
Li D, Hao J, Hao J, Cui X, Niu Y, Xiang J, Wang B. Enhanced Dynamic Laterality Based on Functional Subnetworks in Patients with Bipolar Disorder. Brain Sci 2023; 13:1646. [PMID: 38137094 PMCID: PMC10741828 DOI: 10.3390/brainsci13121646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 12/24/2023] Open
Abstract
An ocean of studies have pointed to abnormal brain laterality changes in patients with bipolar disorder (BD). Determining the altered brain lateralization will help us to explore the pathogenesis of BD. Our study will fill the gap in the study of the dynamic changes of brain laterality in BD patients and thus provide new insights into BD research. In this work, we used fMRI data from 48 BD patients and 48 normal controls (NC). We constructed the dynamic laterality time series by extracting the dynamic laterality index (DLI) at each sliding window. We then used k-means clustering to partition the laterality states and the Arenas-Fernandez-Gomez (AFG) community detection algorithm to determine the number of states. We characterized subjects' laterality characteristics using the mean laterality index (MLI) and laterality fluctuation (LF). Compared with NC, in all windows and state 1, BD patients showed higher MLI in the attention network (AN) of the right hemisphere, and AN in the left hemisphere showed more frequent laterality fluctuations. AN in the left hemisphere of BD patients showed higher MLI in all windows and state 3 compared to NC. In addition, in the AN of the right hemisphere in state 1, higher MLI in BD patients was significantly associated with patient symptoms. Our study provides new insights into the understanding of BD neuropathology in terms of brain dynamic laterality.
Collapse
Affiliation(s)
- Dandan Li
- College of Computer Science and Technology, Taiyuan University of Technology, Jinzhong 030600, China; (J.H.)
| | | | | | | | | | | | | |
Collapse
|
6
|
Diveica V, Riedel MC, Salo T, Laird AR, Jackson RL, Binney RJ. Graded functional organization in the left inferior frontal gyrus: evidence from task-free and task-based functional connectivity. Cereb Cortex 2023; 33:11384-11399. [PMID: 37833772 PMCID: PMC10690868 DOI: 10.1093/cercor/bhad373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/17/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
The left inferior frontal gyrus has been ascribed key roles in numerous cognitive domains, such as language and executive function. However, its functional organization is unclear. Possibilities include a singular domain-general function, or multiple functions that can be mapped onto distinct subregions. Furthermore, spatial transition in function may be either abrupt or graded. The present study explored the topographical organization of the left inferior frontal gyrus using a bimodal data-driven approach. We extracted functional connectivity gradients from (i) resting-state fMRI time-series and (ii) coactivation patterns derived meta-analytically from heterogenous sets of task data. We then sought to characterize the functional connectivity differences underpinning these gradients with seed-based resting-state functional connectivity, meta-analytic coactivation modeling and functional decoding analyses. Both analytic approaches converged on graded functional connectivity changes along 2 main organizational axes. An anterior-posterior gradient shifted from being preferentially associated with high-level control networks (anterior functional connectivity) to being more tightly coupled with perceptually driven networks (posterior). A second dorsal-ventral axis was characterized by higher connectivity with domain-general control networks on one hand (dorsal functional connectivity), and with the semantic network, on the other (ventral). These results provide novel insights into an overarching graded functional organization of the functional connectivity that explains its role in multiple cognitive domains.
Collapse
Affiliation(s)
- Veronica Diveica
- Department of Psychology & Cognitive Neuroscience Institute, Bangor University, Bangor, Wales LL57 2AS, United Kingdom
- Department of Neurology and Neurosurgery & Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Michael C Riedel
- Department of Physics, Florida International University, Miami, FL 33199, United States
| | - Taylor Salo
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Angela R Laird
- Department of Physics, Florida International University, Miami, FL 33199, United States
| | - Rebecca L Jackson
- Department of Psychology & York Biomedical Research Institute, University of York, York, YO10 5DD, United Kingdom
| | - Richard J Binney
- Department of Psychology & Cognitive Neuroscience Institute, Bangor University, Bangor, Wales LL57 2AS, United Kingdom
| |
Collapse
|
7
|
Yin Y, Wang F, Ma Y, Yang J, Li R, Li Y, Wang J, Liu H. Structural and functional changes in drug-naïve benign childhood epilepsy with centrotemporal spikes and their associated gene expression profiles. Cereb Cortex 2023; 33:5774-5782. [PMID: 36444721 PMCID: PMC10183734 DOI: 10.1093/cercor/bhac458] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/30/2022] Open
Abstract
Benign epilepsy with centrotemporal spikes (BECTS) is a common pediatric epilepsy syndrome that has been widely reported to show abnormal brain structure and function. However, the genetic mechanisms underlying structural and functional changes remain largely unknown. Based on the structural and resting-state functional magnetic resonance imaging data of 22 drug-naïve children with BECTS and 33 healthy controls, we conducted voxel-based morphology (VBM) and fractional amplitude of low-frequency fluctuation (fALFF) analyses to compare cortical morphology and spontaneous brain activity between the 2 groups. In combination with the Allen Human Brain Atlas, transcriptome-neuroimaging spatial correlation analyses were applied to explore gene expression profiles associated with gray matter volume (GMV) and fALFF changes in BECTS. VBM analysis demonstrated significantly increased GMV in the right brainstem and right middle cingulate gyrus in BECTS. Moreover, children with BECTS exhibited significantly increased fALFF in left temporal pole, while decreased fALFF in right thalamus and left precuneus. These brain structural and functional alterations were closely related to behavioral and cognitive deficits, and the fALFF-linked gene expression profiles were enriched in voltage-gated ion channel and synaptic activity as well as neuron projection. Our findings suggest that brain morphological and functional abnormalities in children with BECTS involve complex polygenic genetic mechanisms.
Collapse
Affiliation(s)
- Yu Yin
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563003, China
| | - Fuqin Wang
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563003, China
| | - Yingzi Ma
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, Yunnan, China
| | - Jia Yang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, Yunnan, China
| | - Rui Li
- School of Electrical Engineering and Electronic Information, Xihua University, Chengdu 610039, China
| | - Yuanyuan Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 625014, China
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, Yunnan, China
| | - Heng Liu
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563003, China
| |
Collapse
|
8
|
Yuan B, Xie H, Wang Z, Xu Y, Zhang H, Liu J, Chen L, Li C, Tan S, Lin Z, Hu X, Gu T, Lu J, Liu D, Wu J. The domain-separation language network dynamics in resting state support its flexible functional segregation and integration during language and speech processing. Neuroimage 2023; 274:120132. [PMID: 37105337 DOI: 10.1016/j.neuroimage.2023.120132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/05/2023] [Accepted: 04/21/2023] [Indexed: 04/29/2023] Open
Abstract
Modern linguistic theories and network science propose that language and speech processing are organized into hierarchical, segregated large-scale subnetworks, with a core of dorsal (phonological) stream and ventral (semantic) stream. The two streams are asymmetrically recruited in receptive and expressive language or speech tasks, which showed flexible functional segregation and integration. We hypothesized that the functional segregation of the two streams was supported by the underlying network segregation. A dynamic conditional correlation approach was employed to construct framewise time-varying language networks and k-means clustering was employed to investigate the temporal-reoccurring patterns. We found that the framewise language network dynamics in resting state were robustly clustered into four states, which dynamically reconfigured following a domain-separation manner. Spatially, the hub distributions of the first three states highly resembled the neurobiology of speech perception and lexical-phonological processing, speech production, and semantic processing, respectively. The fourth state was characterized by the weakest functional connectivity and was regarded as a baseline state. Temporally, the first three states appeared exclusively in limited time bins (∼15%), and most of the time (> 55%), state 4 was dominant. Machine learning-based dFC-linguistics prediction analyses showed that dFCs of the four states significantly predicted individual linguistic performance. These findings suggest a domain-separation manner of language network dynamics in resting state, which forms a dynamic "meta-network" framework to support flexible functional segregation and integration during language and speech processing.
Collapse
Affiliation(s)
- Binke Yuan
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China.
| | - Hui Xie
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China; Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Zhihao Wang
- CNRS - Centre d'Economie de la Sorbonne, Panthéon-Sorbonne University, France
| | - Yangwen Xu
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento 38123, Italy
| | - Hanqing Zhang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Jiaxuan Liu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Lifeng Chen
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Chaoqun Li
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Shiyao Tan
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Zonghui Lin
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Xin Hu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Tianyi Gu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Junfeng Lu
- Glioma Surgery Division, Neurologic Surgery Department, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Brain Function Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Dongqiang Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China; Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian, PR China.
| | - Jinsong Wu
- Glioma Surgery Division, Neurologic Surgery Department, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Brain Function Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| |
Collapse
|
9
|
Xie X, Hu P, Tian Y, Qiu B, Wang K, Bai T. Abnormal resting-state function within language network and its improvement among post-stroke aphasia. Behav Brain Res 2023; 443:114344. [PMID: 36781021 DOI: 10.1016/j.bbr.2023.114344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/30/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023]
Abstract
Several studies with resting-state magnetic resonance imaging (rs-fMRI) have examined functional impairments and plasticity within language network in patients with post-stroke aphasia (PSA). However, there is still ubiquitous inconsistency across these studies, partly due to restricted to very small sample size and the absence of validation with follow-up data. In the current study, we aimed at providing relatively strong evidence to support functional impairments and its reorganization in PSA. Here, the amplitude of low frequency fluctuations (ALFF) and functional connectivity were used to assess functional alterations of PSA with moderate sample size at baseline (thirty-five PSA patients and thirty-five healthy controls). Functional abnormalities at baseline were observed whether improved among sixteen follow-up patients. Compared with controls, PSA at baseline presented decreased ALFF in the left inferior frontal gyrus (IFG) and decreased functional connectivity of the left IFG with the bilateral supplementary motor area (SMA) and right superior temporal gyrus (STG). The decreased ALFF in IFG, decreased IFG-SMA and IFG-STG connectivity were enhanced among follow-up patients and was synchronized with language-performance improvement. Our results revealed reduced intrinsic neural activity and inter-connections within language network in PSA, which would be normalized synchronously as the improvement of language performance.
Collapse
Affiliation(s)
- Xiaohui Xie
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Panpan Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yanghua Tian
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Bensheng Qiu
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China; The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.
| | - Tongjian Bai
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
10
|
Varangot-Reille C, Sanger GJ, Andrews PLR, Herranz-Gomez A, Suso-Martí L, de la Nava J, Cuenca-Martínez F. Neural networks involved in nausea in adult humans: A systematic review. Auton Neurosci 2023; 245:103059. [PMID: 36580746 DOI: 10.1016/j.autneu.2022.103059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/20/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Nausea is a common clinical symptom, poorly managed with anti-emetic drugs. To identify potential brain regions which may be therapeutic targets we systematically reviewed brain imaging in subjects reporting nausea. The systematic review followed PRISMA statements with methodological quality (MINORS) and risk of bias (ROBINS-I) assessed. Irrespective of the nauseagenic stimulus the common (but not only) cortical structures activated were the inferior frontal gyrus (IFG), the anterior cingulate cortex (ACC) and the anterior insula (AIns) with some evidence for lateralization (Left-IFG, Right-AIns, Right-ACC). Basal ganglia structures (e.g., putamen) were also consistently activated. Inactivation was rarely reported but occurred mainly in the cerebellum and occipital lobe. During nausea, functional connectivity increased, mainly between the posterior and mid- cingulate cortex. Limitations include, a paucity of studies and stimuli, subject demographics, inconsistent definition and measurement of nausea. Structures implicated in nausea are discussed in the context of knowledge of central pathways for interoception, emotion and autonomic control. Comparisons are made between nausea and other aversive sensations as multimodal aversive conscious experiences.
Collapse
Affiliation(s)
- C Varangot-Reille
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, Valencia, Spain
| | - G J Sanger
- Center for Neuroscience, Surgery and Trauma, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - P L R Andrews
- Division of Biomedical Sciences, St George's University of London, London, United Kingdom
| | - A Herranz-Gomez
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, Valencia, Spain
| | - L Suso-Martí
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, Valencia, Spain.
| | - J de la Nava
- Faculty of Medicine, University of Granada, Granada, Spain
| | - F Cuenca-Martínez
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, Valencia, Spain
| |
Collapse
|
11
|
Neuroplasticity enables bio-cultural feedback in Paleolithic stone-tool making. Sci Rep 2023; 13:2877. [PMID: 36807588 PMCID: PMC9938911 DOI: 10.1038/s41598-023-29994-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/14/2023] [Indexed: 02/20/2023] Open
Abstract
Stone-tool making is an ancient human skill thought to have played a key role in the bio-cultural co-evolutionary feedback that produced modern brains, culture, and cognition. To test the proposed evolutionary mechanisms underpinning this hypothesis we studied stone-tool making skill learning in modern participants and examined interactions between individual neurostructural differences, plastic accommodation, and culturally transmitted behavior. We found that prior experience with other culturally transmitted craft skills increased both initial stone tool-making performance and subsequent neuroplastic training effects in a frontoparietal white matter pathway associated with action control. These effects were mediated by the effect of experience on pre-training variation in a frontotemporal pathway supporting action semantic representation. Our results show that the acquisition of one technical skill can produce structural brain changes conducive to the discovery and acquisition of additional skills, providing empirical evidence for bio-cultural feedback loops long hypothesized to link learning and adaptive change.
Collapse
|
12
|
Diveica V, Riedel MC, Salo T, Laird AR, Jackson RL, Binney RJ. Graded functional organisation in the left inferior frontal gyrus: evidence from task-free and task-based functional connectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526818. [PMID: 36778322 PMCID: PMC9915604 DOI: 10.1101/2023.02.02.526818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The left inferior frontal gyrus (LIFG) has been ascribed key roles in numerous cognitive domains, including language, executive function and social cognition. However, its functional organisation, and how the specific areas implicated in these cognitive domains relate to each other, is unclear. Possibilities include that the LIFG underpins a domain-general function or, alternatively, that it is characterized by functional differentiation, which might occur in either a discrete or a graded pattern. The aim of the present study was to explore the topographical organisation of the LIFG using a bimodal data-driven approach. To this end, we extracted functional connectivity (FC) gradients from 1) the resting-state fMRI time-series of 150 participants (77 female), and 2) patterns of co-activation derived meta-analytically from task data across a diverse set of cognitive domains. We then sought to characterize the FC differences driving these gradients with seed-based resting-state FC and meta-analytic co-activation modelling analyses. Both analytic approaches converged on an FC profile that shifted in a graded fashion along two main organisational axes. An anterior-posterior gradient shifted from being preferentially associated with high-level control networks (anterior LIFG) to being more tightly coupled with perceptually-driven networks (posterior). A second dorsal-ventral axis was characterized by higher connectivity with domain-general control networks on one hand (dorsal LIFG), and with the semantic network, on the other (ventral). These results provide novel insights into a graded functional organisation of the LIFG underpinning both task-free and task-constrained mental states, and suggest that the LIFG is an interface between distinct large-scale functional networks.
Collapse
Affiliation(s)
- Veronica Diveica
- Cognitive Neuroscience Institute, Department of Psychology, School of Human and Behavioural Sciences, Bangor University, Wales, UK
| | - Michael C. Riedel
- Department of Physics, Florida International University, Miami, FL, USA
| | - Taylor Salo
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Angela R. Laird
- Department of Physics, Florida International University, Miami, FL, USA
| | - Rebecca L. Jackson
- Department of Psychology & York Biomedical Research Institute, University of York, UK
| | - Richard J. Binney
- Cognitive Neuroscience Institute, Department of Psychology, School of Human and Behavioural Sciences, Bangor University, Wales, UK
| |
Collapse
|
13
|
Cheng B, Xu H, Zhou H, Guo Y, Roberts N, Li N, Hu X, Chen X, Xu K, Lan Y, Ma X, Cai X, Guo Y. Connectomic disturbances in Duchenne muscular dystrophy with mild cognitive impairment. Cereb Cortex 2023:6982730. [PMID: 36627244 DOI: 10.1093/cercor/bhac542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is frequently associated with mild cognitive deficits. However, the underlying disrupted brain connectome and the neural basis remain unclear. In our current study, 38 first-episode, treatment-naive patients with DMD and 22 matched healthy controls (HC) were enrolled and received resting-sate functional magnetic resonance imaging scans. Voxel-based degree centrality (DC), seed-based functional connectivity (FC), and clinical correlation were performed. Relative to HC, DMD patients had lower height, full Intellectual Quotients (IQ), and IQ-verbal comprehension. Significant increment of DC of DMD patients were found in the left dorsolateral prefrontal cortex (DLPFC.L) and right dorsomedial prefrontal cortex (DMPFC.R), while decreased DC were found in right cerebellum posterior lobe (CPL.R), right precentral/postcentral gyrus (Pre/Postcentral G.R). DMD patients had stronger FC in CPL.R-bilateral lingual gyrus, Pre/Postcentral G.R-Insular, and DMPFC.R-Precuneus.R, had attenuated FC in DLPFC.L-Insular. These abnormally functional couplings were closely associated with the extent of cognitive impairment, suggested an over-activation of default mode network and executive control network, and a suppression of primary sensorimotor cortex and cerebellum-visual circuit. The findings collectively suggest the distributed brain connectome disturbances maybe a neuroimaging biomarker in DMD patients with mild cognitive impairment.
Collapse
Affiliation(s)
- Bochao Cheng
- Department of Radiology, West China Second University Hospital, Sichuan University, South Renmin Road, Wuhou District, Chengdu, 610041, China.,Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Guoxue Street, Wuhou District, Chengdu, 610041, China
| | - Huayan Xu
- Department of Radiology, West China Second University Hospital, Sichuan University, South Renmin Road, Wuhou District, Chengdu, 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, South Renmin Road, Wuhou District, Chengdu, 610041, China
| | - Hui Zhou
- Department of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, South Renmin Road, Wuhou District, Chengdu, 610041, China
| | - Yi Guo
- Department of Radiology, West China Second University Hospital, Sichuan University, South Renmin Road, Wuhou District, Chengdu, 610041, China.,Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Guoxue Street, Wuhou District, Chengdu, 610041, China
| | - Neil Roberts
- Edinburgh Imaging Facility, School of Clinical Sciences, The Queen's Medical Research Institute (QMRI), University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| | - Na Li
- Department of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, South Renmin Road, Wuhou District, Chengdu, 610041, China
| | - Xiao Hu
- Department of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, South Renmin Road, Wuhou District, Chengdu, 610041, China
| | - Xijian Chen
- Department of Radiology, West China Second University Hospital, Sichuan University, South Renmin Road, Wuhou District, Chengdu, 610041, China
| | - Ke Xu
- Department of Radiology, West China Second University Hospital, Sichuan University, South Renmin Road, Wuhou District, Chengdu, 610041, China
| | - Yu Lan
- Department of Radiology, West China Second University Hospital, Sichuan University, South Renmin Road, Wuhou District, Chengdu, 610041, China
| | - Xuejing Ma
- Department of Radiology, The First People's Hospital of Zunyi, Zunyi Medical University, Fenghuang Road, Huichuan District, Zunyi, 563099, China
| | - Xiaotang Cai
- Department of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, South Renmin Road, Wuhou District, Chengdu, 610041, China
| | - Yingkun Guo
- Department of Radiology, West China Second University Hospital, Sichuan University, South Renmin Road, Wuhou District, Chengdu, 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, South Renmin Road, Wuhou District, Chengdu, 610041, China
| |
Collapse
|
14
|
Cheng B, Wang X, Roberts N, Zhou Y, Wang S, Deng P, Meng Y, Deng W, Wang J. Abnormal dynamics of resting-state functional activity and couplings in postpartum depression with and without anxiety. Cereb Cortex 2022; 32:5597-5608. [PMID: 35174863 DOI: 10.1093/cercor/bhac038] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
Postpartum depression (PPD) and PPD comorbid with anxiety (PPD-A) are highly prevalent and severe mental health problems in postnatal women. PPD and PPD-A share similar pathopsychological features, leading to ongoing debates regarding the diagnostic and neurobiological uniqueness. This paper aims to delineate common and disorder-specific neural underpinnings and potential treatment targets for PPD and PPD-A by characterizing functional dynamics with resting-state functional magnetic resonance imaging in 138 participants (45 first-episode, treatment-naïve PPD; 31 PDD-A patients; and 62 healthy postnatal women [HPW]). PPD-A group showed specifically increased dynamic amplitude of low-frequency fluctuation in the subgenual anterior cingulate cortex (sgACC) and increased dynamic functional connectivity (dFC) between the sgACC and superior temporal sulcus. PPD group exhibited specifically increased static FC (sFC) between the sgACC and ventral anterior insula. Common disrupted sFC between the sgACC and middle temporal gyrus was found in both PPD and PPD-A patients. Interestingly, dynamic changes in dFC between the sgACC and superior temporal gyrus could differentiate PPD, PPD-A, and HPW. Our study presents initial evidence on specifically abnormal functional dynamics of limbic, emotion regulation, and social cognition systems in patients with PDD and PPD-A, which may facilitate understanding neurophysiological mechanisms, diagnosis, and treatment for PPD and PPD-A.
Collapse
Affiliation(s)
- Bochao Cheng
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Xiuli Wang
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Neil Roberts
- Edinburgh Imaging facility, The Queen's Medical Research Institute (QMRI), School of Clinical Sciences, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Yushan Zhou
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China.,Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Pengcheng Deng
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu 610041, China
| | - Yajing Meng
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Wei Deng
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
15
|
Zhao C, Chen M, Ding Z, Liu C, Wu X. Altered functional association and couplings: Effective diagnostic neuromarkers for Alzheimer’s disease. Front Aging Neurosci 2022; 14:1009632. [PMID: 36313014 PMCID: PMC9606803 DOI: 10.3389/fnagi.2022.1009632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Alzheimer’s disease (AD) is a common neurodegenerative disorder causing dementia in the elderly population. Functional disconnection of brain is considered to be the main cause of AD. In this study, we applied a newly developed association (Asso) mapping approach to directly quantify the functional disconnections and to explore the diagnostic effects for AD with resting-state functional magnetic resonance imaging data from 36 AD patients and 42 age-, gender-, and education-matched healthy controls (HC). We found that AD patients showed decreased Asso in left dorsoanterior insula (INS) while increased functional connections of INS with right medial prefrontal cortex (MPFC) and left posterior cingulate cortex (PCC). The changed Asso and functional connections were closely associated with cognitive performances. In addition, the reduced Asso and increased functional connections could serve as effective neuromarkers to distinguish AD patients from HC. Our research provided new evidence for functional disconnections in AD and demonstrated that functional disconnections between cognition-memory networks may be potential early biomarkers for AD.
Collapse
Affiliation(s)
- Chongyi Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Department of Gynecology, The First People’s Hospital of Yunnan Province, Kunming University of Science and Technology, Kunming, China
| | - Meiling Chen
- Department of Clinical Psychology, The First People’s Hospital of Yunnan Province, Kunming University of Science and Technology, Kunming, China
| | - Zhiyong Ding
- Department of Medical Imaging, Qujing Maternal and Child Health Care Hospital, Kunming University of Science and Technology, Qujing, China
- *Correspondence: Zhiyong Ding,
| | - Chunyan Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neuromodulation, Beijing, China
- Chunyan Liu,
| | - Xiaomei Wu
- Department of Gynecology, The First People’s Hospital of Yunnan Province, Kunming University of Science and Technology, Kunming, China
- Xiaomei Wu,
| |
Collapse
|
16
|
Ge H, Yan Z, Liu D, Qi W, Chen S, Yang K, Liu H, Zou Y, Hu X, Liu Y, Chen J. Synergetic reorganization of the contralateral structure and function in patients with unilateral frontal glioma. Front Neurosci 2022; 16:1016693. [PMID: 36213734 PMCID: PMC9538327 DOI: 10.3389/fnins.2022.1016693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Objective This study aimed to investigate the contralateral structural and functional plasticity induced by frontal gliomas. Methods Patients with left (n = 49) or right (n = 52) frontal diffuse glioma were enrolled along with 35 age- matched healthy controls (HCs). The gray-matter volumes (GMVs) of the contralesional region were measured using the voxel-based morphometry (VBM) analysis. Additionally, the amplitude of low-frequency fluctuation (ALFF) of the contralesional region was calculated via resting state functional magnetic resonance imaging (MRI) to assess functional alterations. Result The GMV of the contralateral orbitofrontal cortex of the right or left frontal gliomas was significantly larger than the corresponding GMV in the controls. In the patients with right frontal glioma, the GMV and ALFF in the left inferior frontal gyrus were significantly increased compared with those in the controls. Conclusion Glioma invasion of the frontal lobe can induce contralateral structural compensation and functional compensation, which show synergy in the left inferior frontal gyrus. Our findings explain why patients with unilateral frontal glioma can have functional balance, and offer the possibility of preserving the brain function while maximizing tumor removal.
Collapse
Affiliation(s)
- Honglin Ge
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng Yan
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Dongming Liu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenzhang Qi
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shanshan Chen
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Kun Yang
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Hongyi Liu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yuanjie Zou
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xinhua Hu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Liu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Yong Liu,
| | - Jiu Chen
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
- Jiu Chen,
| |
Collapse
|
17
|
Yang Y, Wang F, Andrade-Machado R, De Vito A, Wang J, Zhang T, Liu H. Disrupted functional connectivity patterns of the left inferior frontal gyrus subregions in benign childhood epilepsy with centrotemporal spikes. Transl Pediatr 2022; 11:1552-1561. [PMID: 36247884 PMCID: PMC9561512 DOI: 10.21037/tp-22-270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Benign epilepsy with centrotemporal spikes (BECTS) is one of the most common pediatric epileptic syndromes. Recent studies have shown that BECTS can lead to significant language dysfunction. Although research supports the role of the left inferior frontal gyrus (LIFG) in BECTS, it is unclear whether the subregions of the LIFG show different change patterns in patients with this syndrome. METHODS Using resting-state functional magnetic resonance imaging (fMRI) data in a group of 49 BECTS patients and 49 healthy controls, we investigated whether the BECTS patients show abnormal connectivity patterns of the LIFG subregions. RESULTS Compared with healthy controls, the BECTS patients exhibited higher connectivity between the following: the inferior frontal sulcus (IFS) and the right anterior cingulate cortex (ACC), and the ventral area 44 (A44v) region and the left hippocampus/parahippocampus. Also, a decreased connectivity was found between the IFS and the left inferior temporal gyrus (ITG). No other significant differences in functional connectivity were found in the other 4 functional subregions of the LIFG in the BECTS. CONCLUSIONS These findings provide evidence for BECTS-related functional connectivity patterns of the LIFG subregions and suggest that different subregions may be involved in different neural circuits associated with language function in the BECTS.
Collapse
Affiliation(s)
- Yang Yang
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, China.,Department of Radiology, Suining Central Hospital, Suining, China
| | - Fuqin Wang
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, China
| | - René Andrade-Machado
- Epilepsy Fellow at Children Hospital of Michigan, Detroit Medical Center, Detroit, MI, USA
| | - Andrea De Vito
- Department of Neuroradiology, H. S. Gerardo Monza, Monza, Italy
| | - Jiaojian Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Tijiang Zhang
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, China
| | - Heng Liu
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, China
| |
Collapse
|
18
|
Guo Y, Lv X, Zhang J, Li C, Wei L, Zhou N, Xu J, Tian Y, Wang K. Gray matter atrophy and corresponding impairments in connectivity in patients with anti-N-methyl-D-aspartate receptor encephalitis. Brain Imaging Behav 2022; 16:2001-2010. [PMID: 35997922 DOI: 10.1007/s11682-022-00670-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2022] [Indexed: 11/02/2022]
Abstract
Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a severe autoimmune disease that is commonly accompanied by cognitive impairment and various neurological and psychiatric symptoms, advanced image analyses help explore the pathogenesis of this disease. Therefore, this study aimed to explore specific structural and functional alterations and their relationship with the clinical symptoms of anti-NMDAR encephalitis. In this study, twenty-two patients with anti-NMDAR encephalitis after the acute stage and 29 controls received cognitive assessments and magnetic resonance imaging. Grey matter atrophy was measured using voxel-based morphometry, and functional alterations in abnormal regions were subsequently investigated using resting state functional connectivity (RSFC). Finally, correlation analyses were performed to explore the associations between imaging alterations and cognitive assessments. The patients demonstrated significant gray matter atrophy in the bilateral triangle part of the inferior frontal gyrus (triIFG.L and triIFG.R) and right precuneus, decreased RSFC between triIFG.L and bilateral Heschl gyrus (HES), decreased RSFC between triIFG.R and HES.R, decreased RSFC between right precuneus and left cerebellum, and increased RSFC between triIFG.R and left superior frontal gyrus. Further correlation analyses showed that the gray matter volume in triIFG.R and decreased RSFC between triIFG.L and HES.R were associated with decreased memory scores, whereas decreased RSFC between triIFG.R and HES.R was marginally correlated with the disease course in patients. In conclusion, this study suggests that cognitive impairments in patients with anti-NMDAR encephalitis may be mainly associated with gray matter atrophy and abnormal RSFC in the triIFG. These findings provide new insights into anti-NMDAR encephalitis pathogenesis and help explore potential treatments.
Collapse
Affiliation(s)
- Yuanyuan Guo
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
| | - Xinyi Lv
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Juanjuan Zhang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
| | - Chenglong Li
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
| | - Ling Wei
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
| | - Nong Zhou
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Jinping Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Yanghua Tian
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China. .,Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China. .,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230022, China.
| | - Kai Wang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.,Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230022, China.,The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
19
|
Guo H, Wang Y, Qiu L, Huang X, He C, Zhang J, Gong Q. Structural and Functional Abnormalities in Knee Osteoarthritis Pain Revealed With Multimodal Magnetic Resonance Imaging. Front Hum Neurosci 2021; 15:783355. [PMID: 34912202 PMCID: PMC8667073 DOI: 10.3389/fnhum.2021.783355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/28/2021] [Indexed: 02/05/2023] Open
Abstract
The knee osteoarthritis (KOA) pain is the most common form of arthritis pain affecting millions of people worldwide. Long-term KOA pain causes motor impairment and affects affective and cognitive functions. However, little is known about the structural and functional abnormalities induced by long-term KOA pain. In this work, high-resolution structural magnetic resonance imaging (sMRI) and resting-state functional MRI (rs-fMRI) data were acquired in patients with KOA and age-, sex-matched healthy controls (HC). Gray matter volume (GMV) and fractional amplitude of low-frequency fluctuation (fALFF) were used to study the structural and functional abnormalities in patients with KOA. Compared with HC, patients with KOA showed reduced GMV in bilateral insula and bilateral hippocampus, and reduced fALFF in left cerebellum, precentral gyrus, and the right superior occipital gyrus. Patients with KOA also showed increased fALFF in left insula and bilateral hippocampus. In addition, the abnormal GMV in left insula and fALFF in left fusiform were closely correlated with the pain severity or disease duration. These results indicated that long KOA pain leads to brain structural and functional impairments in motor, visual, cognitive, and affective functions that related to brain areas. Our findings may facilitate to understand the neural basis of KOA pain and the future therapy to relieve disease symptoms.
Collapse
Affiliation(s)
- Hua Guo
- Department of Rehabilitative Medicine, West China Hospital, Sichuan University, Chengdu, China
| | | | - Lihua Qiu
- Radiology Department, The Second People's Hospital of Yibin, Yibin, China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Chengqi He
- Department of Rehabilitative Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Junran Zhang
- School of Electrical Engineering, Sichuan University, Chengdu, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Cheng B, Zhou Y, Kwok VPY, Li Y, Wang S, Zhao Y, Meng Y, Deng W, Wang J. Altered Functional Connectivity Density and Couplings in Postpartum Depression with and Without Anxiety. Soc Cogn Affect Neurosci 2021; 17:756-766. [PMID: 34904174 PMCID: PMC9340108 DOI: 10.1093/scan/nsab127] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/28/2021] [Accepted: 12/13/2021] [Indexed: 02/05/2023] Open
Abstract
Postpartum depression (PPD) is the most common psychological health issue among women, which often comorbids with anxiety (PPD-A). PPD and PPD-A showed highly overlapping clinical symptoms. Identifying disorder-specific neurophysiological markers of PDD and PPD-A is important for better clinical diagnosis and treatments. Here, we performed functional connectivity density (FCD) and resting-state functional connectivity (rsFC) analyses in 138 participants (45 unmedicated patients with first-episode PPD, 31 PDD-A patients and 62 healthy postnatal women, respectively). FCD mapping revealed specifically weaker long-range FCD in right lingual gyrus (LG.R) for PPD patients and significantly stronger long-range FCD in left ventral striatum (VS.L) for PPD-A patients. The follow-up rsFC analyses further revealed reduced functional connectivity between dorsomedial prefrontal cortex (dmPFC) and VS.L in both PPD and PPD-A. PPD showed specific changes of rsFC between LG.R and dmPFC, right angular gyrus and left precentral gyrus, while PPD-A represented specifically abnormal rsFC between VS.L and left ventrolateral prefrontal cortex. Moreover, the altered FCD and rsFC were closely associated with depression and anxiety symptoms load. Taken together, our study is the first to identify common and disorder-specific neural circuit disruptions in PPD and PPD-A, which may facilitate more effective diagnosis and treatments.
Collapse
Affiliation(s)
- Bochao Cheng
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu 610041, China.,Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yushan Zhou
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Veronica P Y Kwok
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen 518057, China
| | - Yuanyuan Li
- Key Laboratory for NeuroInformation of the Ministry of Education, School of life Science and technology, University of Electronic Science and Technology of China, Chengdu 625014, China
| | - Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yajun Zhao
- School of Sociality and Psychology, Southwest Minzu University, Chengdu, China
| | - Yajing Meng
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Wei Deng
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
21
|
Sun H, He Y, Cao H. Functional magnetic resonance imaging research in China. CNS Neurosci Ther 2021; 27:1259-1267. [PMID: 34492160 PMCID: PMC8504522 DOI: 10.1111/cns.13725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 01/11/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) non-invasively measures the activity of the human brain and provides a unique technological tool for investigating aspects of the human brain including cognition, development, and disorders. As one of the main funding agencies for basic research in China, the National Natural Scientific Foundation of China (NSFC) has initiated various research programs during the last two decades that are related to fMRI research. In this review, we collected and analyzed the metadata of the projects and published studies in research fields using fMRI that were funded by the NSFC. We observed a trend of increasing funding amounts from the NSFC for fMRI research, typically from the General Program and Key Program. Leading research institutes from economically developed municipalities and provinces received the most support and formed close collaboration relationships. Finally, we reviewed several representative achievements from research institutions in china, involving data analysis methods, brain connectomes, and computational platforms in addition to their applications in brain disorders.
Collapse
Affiliation(s)
- Hongzan Sun
- Department of RadiologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and ConnectomicsBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
- Chinese Institute for Brain ResearchBeijingChina
| | - Heqi Cao
- Department of Health SciencesNational Natural Science Foundation of ChinaBeijingChina
| |
Collapse
|
22
|
Cheng L, Zhang Y, Li G, Wang J, Sherwood C, Gong G, Fan L, Jiang T. Connectional asymmetry of the inferior parietal lobule shapes hemispheric specialization in humans, chimpanzees, and rhesus macaques. eLife 2021; 10:e67600. [PMID: 34219649 PMCID: PMC8257252 DOI: 10.7554/elife.67600] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/22/2021] [Indexed: 11/23/2022] Open
Abstract
The inferior parietal lobule (IPL) is one of the most expanded cortical regions in humans relative to other primates. It is also among the most structurally and functionally asymmetric regions in the human cerebral cortex. Whether the structural and connectional asymmetries of IPL subdivisions differ across primate species and how this relates to functional asymmetries remain unclear. We identified IPL subregions that exhibited positive allometric in both hemispheres, scaling across rhesus macaque monkeys, chimpanzees, and humans. The patterns of IPL subregions asymmetry were similar in chimpanzees and humans, but no IPL asymmetries were evident in macaques. Among the comparative sample of primates, humans showed the most widespread asymmetric connections in the frontal, parietal, and temporal cortices, constituting leftward asymmetric networks that may provide an anatomical basis for language and tool use. Unique human asymmetric connectivity between the IPL and primary motor cortex might be related to handedness. These findings suggest that structural and connectional asymmetries may underlie hemispheric specialization of the human brain.
Collapse
Affiliation(s)
- Luqi Cheng
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina
- Brainnetome Center, Institute of Automation, Chinese Academy of SciencesBeijingChina
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of SciencesBeijingChina
| | - Yuanchao Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina
| | - Gang Li
- Brainnetome Center, Institute of Automation, Chinese Academy of SciencesBeijingChina
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jiaojian Wang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina
- Center for Language and Brain, Shenzhen Institute of NeuroscienceShenzhenChina
| | - Chet Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington UniversityWashingtonUnited States
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal UniversityBeijingChina
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of SciencesBeijingChina
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of SciencesBeijingChina
| | - Tianzi Jiang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina
- Brainnetome Center, Institute of Automation, Chinese Academy of SciencesBeijingChina
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
23
|
Seitz RJ. Beliefs: A challenge in neuropsychological disorders. J Neuropsychol 2021; 16:21-37. [PMID: 33969626 DOI: 10.1111/jnp.12249] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/11/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Beliefs have recently been defined as the neural product of perception of objects and events in the external world and of an affirmative internal affective state reflecting personal meaning. It is, however, undetermined in which way diseases of the brain affect these integrative processes. METHODS Here, the formation and updating of abnormal beliefs in cerebral disorders are described. RESULTS It will be shown that well-defined neuropsychological syndromes resulting from brain lesions also interfere with the neural processes that enable the formation, up-dating and communication of beliefs. Similarly, in neuropsychiatric disorders abnormal and delusional beliefs appear to be caused by altered perception and/or misattribution of aversive meaning. CONCLUSION Given the importance of beliefs for ordinary social behaviour, abnormal beliefs are a challenge in neuropsychological disorders.
Collapse
Affiliation(s)
- Rüdiger J Seitz
- Department of Neurology, Centre of Neurology and Neuropsychiatry, LVR-Klinikum Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany.,Florey Neuroscience Institutes, Melbourne, Victoria, Australia
| |
Collapse
|
24
|
Ma X, Tan J, Jiang L, Wang X, Cheng B, Xie P, Li Y, Wang J, Li S. Aberrant Structural and Functional Developmental Trajectories in Children With Intellectual Disability. Front Psychiatry 2021; 12:634170. [PMID: 33927652 PMCID: PMC8076543 DOI: 10.3389/fpsyt.2021.634170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/11/2021] [Indexed: 12/21/2022] Open
Abstract
Intellectual disability (ID) is associated with aberrant structural and functional development of the brain, yet how the dynamical developmental changes of the structure and function of ID from childhood to around puberty remains unknown. To explore the abnormal developmental trajectories of structure and function, 40 children with ID aged 6-13 years and 30 sex-, age-, and educational level-matched healthy controls (HC) with age range from 6 to 13 were recruited. The automatic voxel-based morphometry (VBM) and resting-state functional connectivity (FC) analyses were adopted to delineate the structural and functional differences. Significantly decreased total gray matter volume (GMV) and white matter volume (WMV) in children with ID were found, and the developmental trajectories of GMV and WMV in children with ID showed an opposite direction as compared with HC. The voxel-wise VMB analysis further revealed significantly increased GMV in the dorsal medial prefrontal cortex (dmPFC), bilateral orbital part of the inferior frontal gyrus (orb_IFG.L, orb_IFG.R), right cuneus (cuneus.R), and bilateral middle frontal gyrus (MFG.L, MFG.R) in children with ID. The following seed-based whole-brain functional connectivity analyses of the brain areas with changed GMV found decreased FCs between the cuneus.R and left intraparietal sulcus (IPS.L) and between the MFG.R and anterior cingulate cortex (ACC) in children with ID. Moreover, negative correlations between GMV values in the dmPFC, orb_IFG.L, cuneus.R, and intelligence quotient (IQ) scores and positive correlations between the FCs of the cuneus.R with IPS.L and MFG.R with ACC and IQ scores were found in children with ID and HC. Our findings provide evidence for the abnormal structural and functional development in children with ID and highlight the important role of frontoparietal network in the typical development. The abnormal development of GMV and functional couplings found in this study may be the neuropathological bases of children with ID.
Collapse
Affiliation(s)
- Xuejin Ma
- Department of Radiology, The First People's Hospital of Zunyi, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jianxia Tan
- Department of Radiology, The First People's Hospital of Zunyi, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lin Jiang
- Department of Radiology, The First People's Hospital of Zunyi, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xuqin Wang
- Department of Child Health, The First People's Hospital of Zunyi, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Bochao Cheng
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Peng Xie
- Department of Critical Care Medicine, The First People's Hospital of Zunyi, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuanyuan Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiaojian Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Shiguang Li
- Department of Radiology, The First People's Hospital of Zunyi, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
25
|
Shen D, Li Q, Liu J, Liao Y, Li Y, Gong Q, Huang X, Li T, Li J, Qiu C, Hu J. The Deficits of Individual Morphological Covariance Network Architecture in Schizophrenia Patients With and Without Violence. Front Psychiatry 2021; 12:777447. [PMID: 34867559 PMCID: PMC8634443 DOI: 10.3389/fpsyt.2021.777447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/18/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Schizophrenia is associated with a significant increase in the risk of violence, which constitutes a public health concern and contributes to stigma associated with mental illness. Although previous studies revealed structural and functional abnormalities in individuals with violent schizophrenia (VSZ), the neural basis of psychotic violence remains controversial. Methods: In this study, high-resolution structural magnetic resonance imaging (MRI) data were acquired from 18 individuals with VSZ, 23 individuals with non-VSZ (NSZ), and 22 age- and sex-matched healthy controls (HCs). Whole-brain voxel-based morphology and individual morphological covariance networks were analysed to reveal differences in gray matter volume (GMV) and individual morphological covariance network topology. Relationships among abnormal GMV, network topology, and clinical assessments were examined using correlation analyses. Results: GMV in the hypothalamus gradually decreased from HCs and NSZ to VSZ and showed significant differences between all pairs of groups. Graph theory analyses revealed that morphological covariance networks of HCs, NSZ, and VSZ exhibited small worldness. Significant differences in network topology measures, including global efficiency, shortest path length, and nodal degree, were found. Furthermore, changes in GMV and network topology were closely related to clinical performance in the NSZ and VSZ groups. Conclusions: These findings revealed the important role of local structural abnormalities of the hypothalamus and global network topological impairments in the neuropathology of NSZ and VSZ, providing new insight into the neural basis of and markers for VSZ and NSZ to facilitate future accurate clinical diagnosis and targeted treatment.
Collapse
Affiliation(s)
- Danlin Shen
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Li
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | | | - Yi Liao
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuanyuan Li
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
| | - Tao Li
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China.,Affiliated Mental Health Center, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Li
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Changjian Qiu
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Junmei Hu
- School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
26
|
Zhang Y, Chen H, Zeng M, He J, Qi G, Zhang S, Liu R. Abnormal Whole Brain Functional Connectivity Pattern Homogeneity and Couplings in Migraine Without Aura. Front Hum Neurosci 2020; 14:619839. [PMID: 33362498 PMCID: PMC7759668 DOI: 10.3389/fnhum.2020.619839] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/18/2020] [Indexed: 02/05/2023] Open
Abstract
Previous studies have reported abnormal amplitude of low-frequency fluctuation and regional homogeneity in patients with migraine without aura using resting-state functional magnetic resonance imaging. However, how whole brain functional connectivity pattern homogeneity and its corresponding functional connectivity changes in patients with migraine without aura is unknown. In the current study, we employed a recently developed whole brain functional connectivity homogeneity (FcHo) method to identify the voxel-wise changes of functional connectivity patterns in 21 patients with migraine without aura and 21 gender and age matched healthy controls. Moreover, resting-state functional connectivity analysis was used to reveal the changes of corresponding functional connectivities. FcHo analyses identified significantly decreased FcHo values in the posterior cingulate cortex (PCC), thalamus (THA), and left anterior insula (AI) in patients with migraine without aura compared to healthy controls. Functional connectivity analyses further found decreased functional connectivities between PCC and medial prefrontal cortex (MPFC), between AI and anterior cingulate cortex, and between THA and left precentral gyrus (PCG). The functional connectivities between THA and PCG were negatively correlated with pain intensity. Our findings indicated that whole brain FcHo and connectivity abnormalities of these regions may be associated with functional impairments in pain processing in patients with migraine without aura.
Collapse
Affiliation(s)
- Yingxia Zhang
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Department of Radiology, The Third Affiliated Hospital of Chengdu Medical College, Pidu District People's Hospital, Chengdu, China
| | - Hong Chen
- Department of Radiology, The Third Affiliated Hospital of Chengdu Medical College, Pidu District People's Hospital, Chengdu, China
| | - Min Zeng
- Department of Radiology, The Third Affiliated Hospital of Chengdu Medical College, Pidu District People's Hospital, Chengdu, China
| | - Junwei He
- Department of Radiology, The Third Affiliated Hospital of Chengdu Medical College, Pidu District People's Hospital, Chengdu, China
| | - Guiqiang Qi
- Department of Radiology, The Third Affiliated Hospital of Chengdu Medical College, Pidu District People's Hospital, Chengdu, China
| | - Shaojin Zhang
- Department of Radiology, The Third Affiliated Hospital of Chengdu Medical College, Pidu District People's Hospital, Chengdu, China
| | - Rongbo Liu
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|