1
|
Hadar PN, Zelmann R, Salami P, Cash SS, Paulk AC. The Neurostimulationist will see you now: prescribing direct electrical stimulation therapies for the human brain in epilepsy and beyond. Front Hum Neurosci 2024; 18:1439541. [PMID: 39296917 PMCID: PMC11408201 DOI: 10.3389/fnhum.2024.1439541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024] Open
Abstract
As the pace of research in implantable neurotechnology increases, it is important to take a step back and see if the promise lives up to our intentions. While direct electrical stimulation applied intracranially has been used for the treatment of various neurological disorders, such as Parkinson's, epilepsy, clinical depression, and Obsessive-compulsive disorder, the effectiveness can be highly variable. One perspective is that the inability to consistently treat these neurological disorders in a standardized way is due to multiple, interlaced factors, including stimulation parameters, location, and differences in underlying network connectivity, leading to a trial-and-error stimulation approach in the clinic. An alternate view, based on a growing knowledge from neural data, is that variability in this input (stimulation) and output (brain response) relationship may be more predictable and amenable to standardization, personalization, and, ultimately, therapeutic implementation. In this review, we assert that the future of human brain neurostimulation, via direct electrical stimulation, rests on deploying standardized, constrained models for easier clinical implementation and informed by intracranial data sets, such that diverse, individualized therapeutic parameters can efficiently produce similar, robust, positive outcomes for many patients closer to a prescriptive model. We address the pathway needed to arrive at this future by addressing three questions, namely: (1) why aren't we already at this prescriptive future?; (2) how do we get there?; (3) how far are we from this Neurostimulationist prescriptive future? We first posit that there are limited and predictable ways, constrained by underlying networks, for direct electrical stimulation to induce changes in the brain based on past literature. We then address how identifying underlying individual structural and functional brain connectivity which shape these standard responses enable targeted and personalized neuromodulation, bolstered through large-scale efforts, including machine learning techniques, to map and reverse engineer these input-output relationships to produce a good outcome and better identify underlying mechanisms. This understanding will not only be a major advance in enabling intelligent and informed design of neuromodulatory therapeutic tools for a wide variety of neurological diseases, but a shift in how we can predictably, and therapeutically, prescribe stimulation treatments the human brain.
Collapse
Affiliation(s)
- Peter N Hadar
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Rina Zelmann
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Pariya Salami
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Angelique C Paulk
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
2
|
Li Y, Nie Y, Quan Z, Zhang H, Song R, Feng H, Cheng X, Liu W, Geng X, Sun X, Fu Y, Wang S. Brain-machine interactive neuromodulation research tool with edge AI computing. Heliyon 2024; 10:e32609. [PMID: 38975192 PMCID: PMC11225749 DOI: 10.1016/j.heliyon.2024.e32609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
Closed-loop neuromodulation with intelligence methods has shown great potentials in providing novel neuro-technology for treating neurological and psychiatric diseases. Development of brain-machine interactive neuromodulation strategies could lead to breakthroughs in precision and personalized electronic medicine. The neuromodulation research tool integrating artificial intelligent computing and performing neural sensing and stimulation in real-time could accelerate the development of closed-loop neuromodulation strategies and translational research into clinical application. In this study, we developed a brain-machine interactive neuromodulation research tool (BMINT), which has capabilities of neurophysiological signals sensing, computing with mainstream machine learning algorithms and delivering electrical stimulation pulse by pulse in real-time. The BMINT research tool achieved system time delay under 3 ms, and computing capabilities in feasible computation cost, efficient deployment of machine learning algorithms and acceleration process. Intelligent computing framework embedded in the BMINT enable real-time closed-loop neuromodulation developed with mainstream AI ecosystem resources. The BMINT could provide timely contribution to accelerate the translational research of intelligent neuromodulation by integrating neural sensing, edge AI computing and stimulation with AI ecosystems.
Collapse
Affiliation(s)
- Yan Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yingnan Nie
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Zhaoyu Quan
- Engineering Research Center of AI & Robotics, Ministry of Education, Fudan University, Shanghai, China
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Han Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Rui Song
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Hao Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Xi Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Wei Liu
- Engineering Research Center of AI & Robotics, Ministry of Education, Fudan University, Shanghai, China
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Xinyi Geng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Xinwei Sun
- School of Data Science, Fudan University, Shanghai, China
| | - Yanwei Fu
- School of Data Science, Fudan University, Shanghai, China
| | - Shouyan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Yamada L, Oskotsky T, Nuyujukian P. A scalable platform for acquisition of high-fidelity human intracranial EEG with minimal clinical burden. PLoS One 2024; 19:e0305009. [PMID: 38870212 PMCID: PMC11175507 DOI: 10.1371/journal.pone.0305009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/08/2024] [Indexed: 06/15/2024] Open
Abstract
Human neuroscience research has been significantly advanced by neuroelectrophysiological studies from people with refractory epilepsy-the only routine clinical intervention that acquires multi-day, multi-electrode human intracranial electroencephalography (iEEG). While a sampling rate below 2 kHz is sufficient for manual iEEG review by epileptologists, computational methods and research studies may benefit from higher resolution, which requires significant technical development. At adult and pediatric Stanford hospitals, research ports of commercial clinical acquisition systems were configured to collect 10 kHz iEEG of up to 256 electrodes simultaneously with the clinical data. The research digital stream was designed to be acquired post-digitization, resulting in no loss in clinical signal quality. This novel framework implements a near-invisible research platform to facilitate the secure, routine collection of high-resolution iEEG that minimizes research hardware footprint and clinical workflow interference. The addition of a pocket-sized router in the patient room enabled an encrypted tunnel to securely transmit research-quality iEEG across hospital networks to a research computer within the hospital server room, where data was coded, de-identified, and uploaded to cloud storage. Every eligible patient undergoing iEEG clinical evaluation at both hospitals since September 2017 has been recruited; participant recruitment is ongoing. Over 350+ terabytes (representing 1000+ days) of neuroelectrophysiology were recorded across 200+ participants of diverse demographics. To our knowledge, this is the first report of such a research integration within a hospital setting. It is a promising approach to promoting equitable participant enrollment and building comprehensive data repositories with consistent, high-fidelity specifications towards new discoveries in human neuroscience.
Collapse
Affiliation(s)
- Lisa Yamada
- Department of Bioengineering, Stanford University, Stanford, CA, United States of America
- Department of Neurosurgery, Stanford University, Stanford, CA, United States of America
- Department of Electrical Engineering, Stanford University, Stanford, CA, United States of America
| | - Tomiko Oskotsky
- Department of Bioengineering, Stanford University, Stanford, CA, United States of America
- Department of Neurosurgery, Stanford University, Stanford, CA, United States of America
| | - Paul Nuyujukian
- Department of Bioengineering, Stanford University, Stanford, CA, United States of America
- Department of Neurosurgery, Stanford University, Stanford, CA, United States of America
- Department of Electrical Engineering, Stanford University, Stanford, CA, United States of America
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, United States of America
- Stanford Bio-X, Stanford University, Stanford, CA, United States of America
| | | | | |
Collapse
|
4
|
Soper DJ, Reich D, Ross A, Salami P, Cash SS, Basu I, Peled N, Paulk AC. Modular pipeline for reconstruction and localization of implanted intracranial ECoG and sEEG electrodes. PLoS One 2023; 18:e0287921. [PMID: 37418486 PMCID: PMC10328232 DOI: 10.1371/journal.pone.0287921] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/15/2023] [Indexed: 07/09/2023] Open
Abstract
Implantation of electrodes in the brain has been used as a clinical tool for decades to stimulate and record brain activity. As this method increasingly becomes the standard of care for several disorders and diseases, there is a growing need to quickly and accurately localize the electrodes once they are placed within the brain. We share here a protocol pipeline for localizing electrodes implanted in the brain, which we have applied to more than 260 patients, that is accessible to multiple skill levels and modular in execution. This pipeline uses multiple software packages to prioritize flexibility by permitting multiple different parallel outputs while minimizing the number of steps for each output. These outputs include co-registered imaging, electrode coordinates, 2D and 3D visualizations of the implants, automatic surface and volumetric localizations of the brain regions per electrode, and anonymization and data sharing tools. We demonstrate here some of the pipeline's visualizations and automatic localization algorithms which we have applied to determine appropriate stimulation targets, to conduct seizure dynamics analysis, and to localize neural activity from cognitive tasks in previous studies. Further, the output facilitates the extraction of information such as the probability of grey matter intersection or the nearest anatomic structure per electrode contact across all data sets that go through the pipeline. We expect that this pipeline will be a useful framework for researchers and clinicians alike to localize implanted electrodes in the human brain.
Collapse
Affiliation(s)
- Daniel J. Soper
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, United States of America
- Department of Neurology, Harvard Medical School, Boston, MA, United States of America
| | - Dustine Reich
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, United States of America
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Alex Ross
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Pariya Salami
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, United States of America
- Department of Neurology, Harvard Medical School, Boston, MA, United States of America
| | - Sydney S. Cash
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, United States of America
- Department of Neurology, Harvard Medical School, Boston, MA, United States of America
| | - Ishita Basu
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Noam Peled
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Angelique C. Paulk
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, United States of America
- Department of Neurology, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
5
|
Basu I, Yousefi A, Crocker B, Zelmann R, Paulk AC, Peled N, Ellard KK, Weisholtz DS, Cosgrove GR, Deckersbach T, Eden UT, Eskandar EN, Dougherty DD, Cash SS, Widge AS. Closed-loop enhancement and neural decoding of cognitive control in humans. Nat Biomed Eng 2023; 7:576-588. [PMID: 34725508 PMCID: PMC9056584 DOI: 10.1038/s41551-021-00804-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/02/2021] [Indexed: 12/20/2022]
Abstract
Deficits in cognitive control-that is, in the ability to withhold a default pre-potent response in favour of a more adaptive choice-are common in depression, anxiety, addiction and other mental disorders. Here we report proof-of-concept evidence that, in participants undergoing intracranial epilepsy monitoring, closed-loop direct stimulation of the internal capsule or striatum, especially the dorsal sites, enhances the participants' cognitive control during a conflict task. We also show that closed-loop stimulation upon the detection of lapses in cognitive control produced larger behavioural changes than open-loop stimulation, and that task performance for single trials can be directly decoded from the activity of a small number of electrodes via neural features that are compatible with existing closed-loop brain implants. Closed-loop enhancement of cognitive control might remediate underlying cognitive deficits and aid the treatment of severe mental disorders.
Collapse
Affiliation(s)
- Ishita Basu
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ali Yousefi
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Departments of Computer Science and Neuroscience, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Britni Crocker
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Rina Zelmann
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Angelique C Paulk
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Noam Peled
- Department of Radiology, MGH/HST Martinos Center for Biomedical Imaging and Harvard Medical School, Boston, MA, USA
| | - Kristen K Ellard
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - G Rees Cosgrove
- Department of Neurological Surgery, Brigham & Womens Hospital, Boston, MA, USA
| | - Thilo Deckersbach
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Uri T Eden
- Department of Mathematics and Statistics, Boston University, Boston, MA, USA
| | - Emad N Eskandar
- Department of Neurological Surgery, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurological Surgery, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Darin D Dougherty
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Alik S Widge
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
6
|
A wearable platform for closed-loop stimulation and recording of single-neuron and local field potential activity in freely moving humans. Nat Neurosci 2023; 26:517-527. [PMID: 36804647 PMCID: PMC9991917 DOI: 10.1038/s41593-023-01260-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 01/17/2023] [Indexed: 02/22/2023]
Abstract
Advances in technologies that can record and stimulate deep brain activity in humans have led to impactful discoveries within the field of neuroscience and contributed to the development of novel therapies for neurological and psychiatric disorders. Further progress, however, has been hindered by device limitations in that recording of single-neuron activity during freely moving behaviors in humans has not been possible. Additionally, implantable neurostimulation devices, currently approved for human use, have limited stimulation programmability and restricted full-duplex bidirectional capability. In this study, we developed a wearable bidirectional closed-loop neuromodulation system (Neuro-stack) and used it to record single-neuron and local field potential activity during stationary and ambulatory behavior in humans. Together with a highly flexible and customizable stimulation capability, the Neuro-stack provides an opportunity to investigate the neurophysiological basis of disease, develop improved responsive neuromodulation therapies, explore brain function during naturalistic behaviors in humans and, consequently, bridge decades of neuroscientific findings across species.
Collapse
|
7
|
Wick ZC, Philipsberg PA, Lamsifer SI, Kohler C, Katanov E, Feng Y, Humphrey C, Shuman T. Manipulating single-unit theta phase-locking with PhaSER: An open-source tool for real-time phase estimation and manipulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529420. [PMID: 36865324 PMCID: PMC9980125 DOI: 10.1101/2023.02.21.529420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The precise timing of neuronal spiking relative to the brain's endogenous oscillations (i.e., phase-locking or spike-phase coupling) has long been hypothesized to coordinate cognitive processes and maintain excitatory-inhibitory homeostasis. Indeed, disruptions in theta phase-locking have been described in models of neurological diseases with associated cognitive deficits and seizures, such as Alzheimer's disease, temporal lobe epilepsy, and autism spectrum disorders. However, due to technical limitations, determining if phase-locking causally contributes to these disease phenotypes has not been possible until recently. To fill this gap and allow for the flexible manipulation of single-unit phase-locking to on-going endogenous oscillations, we developed PhaSER, an open-source tool that allows for phase-specific manipulations. PhaSER can deliver optogenetic stimulation at defined phases of theta in order to shift the preferred firing phase of neurons relative to theta in real-time. Here, we describe and validate this tool in a subpopulation of inhibitory neurons that express somatostatin (SOM) in the CA1 and dentate gyrus (DG) regions of the dorsal hippocampus. We show that PhaSER is able to accurately deliver a photo-manipulation that activates opsin+ SOM neurons at specified phases of theta in real-time in awake, behaving mice. Further, we show that this manipulation is sufficient to alter the preferred firing phase of opsin+ SOM neurons without altering the referenced theta power or phase. All software and hardware requirements to implement real-time phase manipulations during behavior are available online (https://github.com/ShumanLab/PhaSER).
Collapse
Affiliation(s)
| | | | | | - Cassidy Kohler
- Icahn School of Medicine at Mount Sinai, New York NY
- New York University, New York NY
| | - Elizabeth Katanov
- Icahn School of Medicine at Mount Sinai, New York NY
- Hunter College, CUNY, New York NY
| | - Yu Feng
- Icahn School of Medicine at Mount Sinai, New York NY
| | - Corin Humphrey
- Icahn School of Medicine at Mount Sinai, New York NY
- Hunter College, CUNY, New York NY
| | | |
Collapse
|
8
|
Gebodh N, Miskovic V, Laszlo S, Datta A, Bikson M. A Scalable Framework for Closed-Loop Neuromodulation with Deep Learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524615. [PMID: 36712027 PMCID: PMC9882307 DOI: 10.1101/2023.01.18.524615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Closed-loop neuromodulation measures dynamic neural or physiological activity to optimize interventions for clinical and nonclinical behavioral, cognitive, wellness, attentional, or general task performance enhancement. Conventional closed-loop stimulation approaches can contain biased biomarker detection (decoders and error-based triggering) and stimulation-type application. We present and verify a novel deep learning framework for designing and deploying flexible, data-driven, automated closed-loop neuromodulation that is scalable using diverse datasets, agnostic to stimulation technology (supporting multi-modal stimulation: tACS, tDCS, tFUS, TMS), and without the need for personalized ground-truth performance data. Our approach is based on identified periods of responsiveness - detected states that result in a change in performance when stimulation is applied compared to no stimulation. To demonstrate our framework, we acquire, analyze, and apply a data-driven approach to our open sourced GX dataset, which includes concurrent physiological (ECG, EOG) and neuronal (EEG) measures, paired with continuous vigilance/attention-fatigue tracking, and High-Definition transcranial electrical stimulation (HD-tES). Our framework's decision process for intervention application identified 88.26% of trials as correct applications, showed potential improvement with varying stimulation types, or missed opportunities to stimulate, whereas 11.25% of trials were predicted to stimulate at inopportune times. With emerging datasets and stimulation technologies, our unifying and integrative framework; leveraging deep learning (Convolutional Neural Networks - CNNs); demonstrates the adaptability and feasibility of automated multimodal neuromodulation for both clinical and nonclinical applications.
Collapse
Affiliation(s)
- Nigel Gebodh
- The Department of Biomedical Engineering, The City College of New York, The City University of New York, New York USA
| | | | | | | | - Marom Bikson
- The Department of Biomedical Engineering, The City College of New York, The City University of New York, New York USA
| |
Collapse
|
9
|
Mercier MR, Dubarry AS, Tadel F, Avanzini P, Axmacher N, Cellier D, Vecchio MD, Hamilton LS, Hermes D, Kahana MJ, Knight RT, Llorens A, Megevand P, Melloni L, Miller KJ, Piai V, Puce A, Ramsey NF, Schwiedrzik CM, Smith SE, Stolk A, Swann NC, Vansteensel MJ, Voytek B, Wang L, Lachaux JP, Oostenveld R. Advances in human intracranial electroencephalography research, guidelines and good practices. Neuroimage 2022; 260:119438. [PMID: 35792291 PMCID: PMC10190110 DOI: 10.1016/j.neuroimage.2022.119438] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/23/2022] [Accepted: 06/30/2022] [Indexed: 12/11/2022] Open
Abstract
Since the second-half of the twentieth century, intracranial electroencephalography (iEEG), including both electrocorticography (ECoG) and stereo-electroencephalography (sEEG), has provided an intimate view into the human brain. At the interface between fundamental research and the clinic, iEEG provides both high temporal resolution and high spatial specificity but comes with constraints, such as the individual's tailored sparsity of electrode sampling. Over the years, researchers in neuroscience developed their practices to make the most of the iEEG approach. Here we offer a critical review of iEEG research practices in a didactic framework for newcomers, as well addressing issues encountered by proficient researchers. The scope is threefold: (i) review common practices in iEEG research, (ii) suggest potential guidelines for working with iEEG data and answer frequently asked questions based on the most widespread practices, and (iii) based on current neurophysiological knowledge and methodologies, pave the way to good practice standards in iEEG research. The organization of this paper follows the steps of iEEG data processing. The first section contextualizes iEEG data collection. The second section focuses on localization of intracranial electrodes. The third section highlights the main pre-processing steps. The fourth section presents iEEG signal analysis methods. The fifth section discusses statistical approaches. The sixth section draws some unique perspectives on iEEG research. Finally, to ensure a consistent nomenclature throughout the manuscript and to align with other guidelines, e.g., Brain Imaging Data Structure (BIDS) and the OHBM Committee on Best Practices in Data Analysis and Sharing (COBIDAS), we provide a glossary to disambiguate terms related to iEEG research.
Collapse
Affiliation(s)
- Manuel R Mercier
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix-Marseille University, Marseille, France.
| | | | - François Tadel
- Signal & Image Processing Institute, University of Southern California, Los Angeles, CA United States of America
| | - Pietro Avanzini
- Institute of Neuroscience, National Research Council of Italy, Parma, Italy
| | - Nikolai Axmacher
- Department of Neuropsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Universitätsstraße 150, Bochum 44801, Germany; State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, 19 Xinjiekou Outer St, Beijing 100875, China
| | - Dillan Cellier
- Department of Cognitive Science, University of California, La Jolla, San Diego, United States of America
| | - Maria Del Vecchio
- Institute of Neuroscience, National Research Council of Italy, Parma, Italy
| | - Liberty S Hamilton
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States of America; Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States of America; Department of Speech, Language, and Hearing Sciences, Moody College of Communication, The University of Texas at Austin, Austin, TX, United States of America
| | - Dora Hermes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States of America
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Robert T Knight
- Department of Psychology and the Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States of America
| | - Anais Llorens
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
| | - Pierre Megevand
- Department of Clinical neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lucia Melloni
- Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, Grüneburgweg 14, Frankfurt am Main 60322, Germany; Department of Neurology, NYU Grossman School of Medicine, 145 East 32nd Street, Room 828, New York, NY 10016, United States of America
| | - Kai J Miller
- Department of Neurosurgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Vitória Piai
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands; Department of Medical Psychology, Radboudumc, Donders Centre for Medical Neuroscience, Nijmegen, the Netherlands
| | - Aina Puce
- Department of Psychological & Brain Sciences, Programs in Neuroscience, Cognitive Science, Indiana University, Bloomington, IN, United States of America
| | - Nick F Ramsey
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, UMC Utrecht, the Netherlands
| | - Caspar M Schwiedrzik
- Neural Circuits and Cognition Lab, European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Göttingen, Germany; Perception and Plasticity Group, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Sydney E Smith
- Neurosciences Graduate Program, University of California, La Jolla, San Diego, United States of America
| | - Arjen Stolk
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands; Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States of America
| | - Nicole C Swann
- University of Oregon in the Department of Human Physiology, United States of America
| | - Mariska J Vansteensel
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, UMC Utrecht, the Netherlands
| | - Bradley Voytek
- Department of Cognitive Science, University of California, La Jolla, San Diego, United States of America; Neurosciences Graduate Program, University of California, La Jolla, San Diego, United States of America; Halıcıoğlu Data Science Institute, University of California, La Jolla, San Diego, United States of America; Kavli Institute for Brain and Mind, University of California, La Jolla, San Diego, United States of America
| | - Liang Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jean-Philippe Lachaux
- Lyon Neuroscience Research Center, EDUWELL Team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon F-69000, France
| | - Robert Oostenveld
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands; NatMEG, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Mainieri G, Loddo G, Castelnovo A, Balella G, Cilea R, Mondini S, Manconi M, Provini F. EEG Activation Does Not Differ in Simple and Complex Episodes of Disorders of Arousal: A Spectral Analysis Study. Nat Sci Sleep 2022; 14:1097-1111. [PMID: 35698590 PMCID: PMC9188335 DOI: 10.2147/nss.s360120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Disorders of arousal (DoA) are characterized by incomplete awakening from NREM sleep, with the admixture of both deep sleep and wake EEG activity. Previous observations suggested that changes in EEG activity could be detected in the seconds preceding DoA episodes. The aims of this work were to characterize the topography of EEG spectral changes prior to DoA episodes and to investigate whether or not behavioral complexity could be predicted by changes in EEG immediately preceding behavioral onsets. Patients and Methods We collected 103 consecutive video-polysomnographic recordings of 53 DoA adult patients and classified all episodes as simple, rising and complex arousal movements. For each episode, a 5-second window preceding its motor onset ("pre-event") and a 60-second window from 2 to 3 minutes before the episodes ("baseline") were compared. Subsequently, a between-group comparison was performed for the pre-event of simpler versus the more complex episodes. Results Spectral analysis over 325 DoA episodes showed an absolute significant increase prior to DoA episodes in all frequency bands excluding sigma, which displayed the opposite effect. In normalized maps, the increase was relatively higher over the central/anterior areas for both slow and fast frequency bands. No significant differences emerged from the comparison between simpler and more complex episodes. Conclusion Taken together, these results show that deep sleep and wake-like EEG rhythms coexist over overlapping areas before DoA episodes, suggesting an alteration of local sleep mechanisms. Episodes of different complexity are preceded by a similar EEG activation, implying that they possibly share a similar pathophysiology.
Collapse
Affiliation(s)
- Greta Mainieri
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Giuseppe Loddo
- Department of Primary Care, Azienda AUSL di Bologna, Bologna, Italy
| | - Anna Castelnovo
- Sleep Medicine Unit, Neurocenter of Southern Switzerland, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Giulia Balella
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Rosalia Cilea
- Neurology Unit, “Morgagni-Pierantoni” Hospital, AUSL Romagna, Forlì, Italy
| | - Susanna Mondini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italia
| | - Mauro Manconi
- Sleep Medicine Unit, Neurocenter of Southern Switzerland, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
- Department of Neurology, University Hospital, Inselspital, Bern, Switzerland
| | - Federica Provini
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italia
| |
Collapse
|
11
|
Rezaei MR, Hadjinicolaou AE, Cash SS, Eden UT, Yousefi A. Direct Discriminative Decoder Models for Analysis of High-Dimensional Dynamical Neural Data. Neural Comput 2022; 34:1100-1135. [PMID: 35344988 DOI: 10.1162/neco_a_01491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/08/2022] [Indexed: 11/04/2022]
Abstract
With the accelerated development of neural recording technology over the past few decades, research in integrative neuroscience has become increasingly reliant on data analysis methods that are scalable to high-dimensional recordings and computationally tractable. Latent process models have shown promising results in estimating the dynamics of cognitive processes using individual models for each neuron's receptive field. However, scaling these models to work on high-dimensional neural recordings remains challenging. Not only is it impractical to build receptive field models for individual neurons of a large neural population, but most neural data analyses based on individual receptive field models discard the local history of neural activity, which has been shown to be critical in the accurate inference of the underlying cognitive processes. Here, we propose a novel, scalable latent process model that can directly estimate cognitive process dynamics without requiring precise receptive field models of individual neurons or brain nodes. We call this the direct discriminative decoder (DDD) model. The DDD model consists of (1) a discriminative process that characterizes the conditional distribution of the signal to be estimated, or state, as a function of both the current neural activity and its local history, and (2) a state transition model that characterizes the evolution of the state over a longer time period. While this modeling framework inherits advantages of existing latent process modeling methods, its computational cost is tractable. More important, the solution can incorporate any information from the history of neural activity at any timescale in computing the estimate of the state process. There are many choices in building the discriminative process, including deep neural networks or gaussian processes, which adds to the flexibility of the framework. We argue that these attributes of the proposed methodology, along with its applicability to different modalities of neural data, make it a powerful tool for high-dimensional neural data analysis. We also introduce an extension of these methods, called the discriminative-generative decoder (DGD). The DGD includes both discriminative and generative processes in characterizing observed data. As a result, we can combine physiological correlates like behavior with neural data to better estimate underlying cognitive processes. We illustrate the methods, including steps for inference and model identification, and demonstrate applications to multiple data analysis problems with high-dimensional neural recordings. The modeling results demonstrate the computational and modeling advantages of the DDD and DGD methods.
Collapse
Affiliation(s)
- Mohammad R Rezaei
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9.,Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8.,KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada
| | - Alex E Hadjinicolaou
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114.,Harvard Medical School, Boston, MA 02115, U.S.A.
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114.,Harvard Medical School, Boston, MA 02115, U.S.A.
| | - Uri T Eden
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215, U.S.A.
| | - Ali Yousefi
- Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA 01609, U.S.A.
| |
Collapse
|
12
|
Toolkit for Oscillatory Real-time Tracking and Estimation (TORTE). J Neurosci Methods 2022; 366:109409. [PMID: 34788695 PMCID: PMC9287843 DOI: 10.1016/j.jneumeth.2021.109409] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/13/2021] [Accepted: 11/03/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND Closing the loop between brain activity and behavior is one of the most active areas of development in neuroscience. There is particular interest in developing closed-loop control of neural oscillations. Many studies report correlations between oscillations and functional processes. Oscillation-informed closed-loop experiments might determine whether these relationships are causal and would provide important mechanistic insights which may lead to new therapeutic tools. These closed-loop perturbations require accurate estimates of oscillatory phase and amplitude, which are challenging to compute in real time. NEW METHOD We developed an easy to implement, fast and accurate Toolkit for Oscillatory Real-time Tracking and Estimation (TORTE). TORTE operates with the open-source Open Ephys GUI (OEGUI) system, making it immediately compatible with a wide range of acquisition systems and experimental preparations. RESULTS TORTE efficiently extracts oscillatory phase and amplitude from a target signal and includes a variety of options to trigger closed-loop perturbations. Implementing these tools into existing experiments is easy and adds minimal latency to existing protocols. COMPARISON WITH EXISTING METHODS Most labs use in-house lab-specific approaches, limiting replication and extension of their experiments by other groups. Accuracy of the extracted analytic signal and accuracy of oscillation-informed perturbations with TORTE match presented results by these groups. However, TORTE provides access to these tools in a flexible, easy to use toolkit without requiring proprietary software. CONCLUSION We hope that the availability of a high-quality, open-source, and broadly applicable toolkit will increase the number of labs able to perform oscillatory closed-loop experiments, and will improve the replicability of protocols and data across labs.
Collapse
|
13
|
Liu W, Chang S, Wang J, Liu C. A Real-time Hardware Experiment Platform for Closed-loop Electrophysiology. IEEE Trans Neural Syst Rehabil Eng 2022; 30:380-389. [DOI: 10.1109/tnsre.2022.3150325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Firfilionis D, Hutchings F, Tamadoni R, Walsh D, Turnbull M, Escobedo-Cousin E, Bailey RG, Gausden J, Patel A, Haci D, Liu Y, LeBeau FEN, Trevelyan A, Constandinou TG, O'Neill A, Kaiser M, Degenaar P, Jackson A. A Closed-Loop Optogenetic Platform. Front Neurosci 2021; 15:718311. [PMID: 34566564 PMCID: PMC8462298 DOI: 10.3389/fnins.2021.718311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 08/16/2021] [Indexed: 01/11/2023] Open
Abstract
Neuromodulation is an established treatment for numerous neurological conditions, but to expand the therapeutic scope there is a need to improve the spatial, temporal and cell-type specificity of stimulation. Optogenetics is a promising area of current research, enabling optical stimulation of genetically-defined cell types without interfering with concurrent electrical recording for closed-loop control of neural activity. We are developing an open-source system to provide a platform for closed-loop optogenetic neuromodulation, incorporating custom integrated circuitry for recording and stimulation, real-time closed-loop algorithms running on a microcontroller and experimental control via a PC interface. We include commercial components to validate performance, with the ultimate aim of translating this approach to humans. In the meantime our system is flexible and expandable for use in a variety of preclinical neuroscientific applications. The platform consists of a Controlling Abnormal Network Dynamics using Optogenetics (CANDO) Control System (CS) that interfaces with up to four CANDO headstages responsible for electrical recording and optical stimulation through custom CANDO LED optrodes. Control of the hardware, inbuilt algorithms and data acquisition is enabled via the CANDO GUI (Graphical User Interface). Here we describe the design and implementation of this system, and demonstrate how it can be used to modulate neuronal oscillations in vitro and in vivo.
Collapse
Affiliation(s)
- Dimitrios Firfilionis
- Neuroprosthesis Lab, School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Frances Hutchings
- Digital Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Reza Tamadoni
- Neuroprosthesis Lab, School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Darren Walsh
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mark Turnbull
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Enrique Escobedo-Cousin
- Emerging Technologies and Materials Group, School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Richard G. Bailey
- Emerging Technologies and Materials Group, School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Johannes Gausden
- Emerging Technologies and Materials Group, School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Aaliyah Patel
- Emerging Technologies and Materials Group, School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Dorian Haci
- Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom
| | - Yan Liu
- Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom
- Department of Micro-Nano Electronics, Shanghai Jiaotong University, Shanghai, China
| | - Fiona E. N. LeBeau
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew Trevelyan
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Timothy G. Constandinou
- Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom
- Care Research and Technology Centre, UK Dementia Research Institute, London, United Kingdom
| | - Anthony O'Neill
- Emerging Technologies and Materials Group, School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Marcus Kaiser
- School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Rui Jin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Patrick Degenaar
- Neuroprosthesis Lab, School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew Jackson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
15
|
Chang S, Wang J, Liu C, Yi G, Lu M, Che Y, Wei X. A Data Driven Experimental System for Individualized Brain Stimulation Design and Validation. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1848-1857. [PMID: 34478377 DOI: 10.1109/tnsre.2021.3110275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Deep brain stimulation (DBS) is an effective clinical treatment for epilepsy. However, the individualized setting and adaptive adjustment of DBS parameters are still facing great challenges. This paper investigates a data-driven hardware-in-the-loop (HIL) experimental system for closed-loop brain stimulation system individualized design and validation. The unscented Kalman filter (UKF) is utilized to estimate critical parameters of neural mass model (NMM) from the electroencephalogram recordings to reconstruct individual neural activity. Based on the reconstructed NMM, we build a digital signal processor (DSP) based virtual brain platform with real time scale and biological signal level scale. Then, the corresponding hardware parts of signal amplification detection and closed-loop controller are designed to form the HIL experimental system. Based on the designed experimental system, the proportional-integral controller for different individual NMM is designed and validated, which proves the effectiveness of the experimental system. This experimental system provides a platform to explore neural activity under brain stimulation and the effects of various closed-loop stimulation paradigms.
Collapse
|