1
|
Kavčič A, Borko DK, Kodrič J, Georgiev D, Demšar J, Soltirovska-Šalamon A. EEG alpha band functional brain network correlates of cognitive performance in children after perinatal stroke. Neuroimage 2024; 297:120743. [PMID: 39067554 DOI: 10.1016/j.neuroimage.2024.120743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
Mechanisms underlying cognitive impairment after perinatal stroke could be explained through brain network alterations. With aim to explore this connection, we conducted a matched test-control study to find a correlation between functional brain network properties and cognitive functions in children after perinatal stroke. First, we analyzed resting-state functional connectomes in the alpha frequency band from a 64-channel resting state EEG in 24 children with a history of perinatal stroke (12 with neonatal arterial ischemic stroke and 12 with neonatal hemorrhagic stroke) and compared them to the functional connectomes of 24 healthy controls. Next, all participants underwent cognitive evaluation. We analyzed the differences in functional brain network properties and cognitive abilities between groups and studied the correlation between network characteristics and specific cognitive functions. Functional brain networks after perinatal stroke had lower modularity, higher clustering coefficient, higher interhemispheric strength, higher characteristic path length and higher small world index. Modularity correlated positively with the IQ and processing speed, while clustering coefficient correlated negatively with IQ. Graph metrics, reflecting network segregation (clustering coefficient and small world index) correlated positively with a tendency to impulsive decision making, which also correlated positively with graph metrics, reflecting stronger functional connectivity (characteristic path length and interhemispheric strength). Our study suggests that specific cognitive functions correlate with different brain network properties and that functional network characteristics after perinatal stroke reflect poorer cognitive functioning.
Collapse
Affiliation(s)
- Alja Kavčič
- Department for Neonatology, University Children's Hospital, University Medical Center Ljubljana, Bohoričeva 20, 1000 Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Daša Kocjančič Borko
- University Children's Hospital, University Medical Center Ljubljana, Bohoričeva 20, 1000 Ljubljana, Slovenia
| | - Jana Kodrič
- University Children's Hospital, University Medical Center Ljubljana, Bohoričeva 20, 1000 Ljubljana, Slovenia
| | - Dejan Georgiev
- Department for Neurology, University Medical Center Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia; Faculty of Computer and Information Sciences, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Jure Demšar
- Faculty of Computer and Information Sciences, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia; Department of Psychology, Faculty of Arts, University of Ljubljana, Aškerčeva cesta 2, 1000 Ljubljana, Slovenia
| | - Aneta Soltirovska-Šalamon
- Department for Neonatology, University Children's Hospital, University Medical Center Ljubljana, Bohoričeva 20, 1000 Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia.
| |
Collapse
|
2
|
Van Schependom J, Baetens K, Nagels G, Olmi S, Beste C. Neurophysiological avenues to better conceptualizing adaptive cognition. Commun Biol 2024; 7:626. [PMID: 38789522 PMCID: PMC11126671 DOI: 10.1038/s42003-024-06331-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
We delve into the human brain's remarkable capacity for adaptability and sustained cognitive functioning, phenomena traditionally encompassed as executive functions or cognitive control. The neural underpinnings that enable the seamless navigation between transient thoughts without detracting from overarching goals form the core of our article. We discuss the concept of "metacontrol," which builds upon conventional cognitive control theories by proposing a dynamic balancing of processes depending on situational demands. We critically discuss the role of oscillatory processes in electrophysiological activity at different scales and the importance of desynchronization and partial phase synchronization in supporting adaptive behavior including neural noise accounts, transient dynamics, phase-based measures (coordination dynamics) and neural mass modelling. The cognitive processes focused and neurophysiological avenues outlined are integral to understanding diverse psychiatric disorders thereby contributing to a more nuanced comprehension of cognitive control and its neural bases in both health and disease.
Collapse
Affiliation(s)
- Jeroen Van Schependom
- AIMS Lab, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel, Brussels, Belgium
| | - Kris Baetens
- Brain, Body and Cognition, Vrije Universiteit Brussel, Brussels, Belgium
| | - Guy Nagels
- AIMS Lab, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
- UZ Brussel, Department of Neurology, Brussels, Belgium
- St Edmund Hall, University of Oxford, Oxford, United Kingdom
| | - Simona Olmi
- CNR-Consiglio Nazionale delle Ricerche - Istituto dei Sistemi Complessi, Sesto Fiorentino, Italy
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.
| |
Collapse
|
3
|
Qin K, Lei D, Zhu Z, Li W, Tallman MJ, Rodrigo Patino L, Fleck DE, Aghera V, Gong Q, Sweeney JA, McNamara RK, DelBello MP. Different brain functional network abnormalities between attention-deficit/hyperactivity disorder youth with and without familial risk for bipolar disorder. Eur Child Adolesc Psychiatry 2024; 33:1395-1405. [PMID: 37336861 DOI: 10.1007/s00787-023-02245-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) commonly precedes the initial onset of mania in youth with familial risk for bipolar disorder (BD). Although ADHD youth with and without BD familial risk exhibit different clinical features, associated neuropathophysiological mechanisms remain poorly understood. This study aimed to identify brain functional network abnormalities associated with ADHD in youth with and without familial risk for BD. Resting-state functional magnetic resonance imaging scans were acquired from 37 ADHD youth with a family history of BD (high-risk), 45 ADHD youth without a family history of BD (low-risk), and 32 healthy controls (HC). Individual whole-brain functional networks were constructed, and graph theory analysis was applied to estimate network topological metrics. Topological metrics, including network efficiency, small-worldness and nodal centrality, were compared across groups, and associations between topological metrics and clinical ratings were evaluated. Compared to HC, low-risk ADHD youth exhibited weaker global integration (i.e., decreased global efficiency and increased characteristic path length), while high-risk ADHD youth showed a disruption of localized network components with decreased frontoparietal and frontolimbic connectivity. Common topological deficits were observed in the medial superior frontal gyrus between low- and high-risk ADHD. Distinct network deficits were found in the inferior parietal lobule and corticostriatal circuitry. Associations between global topological metrics and externalizing symptoms differed significantly between the two ADHD groups. Different patterns of functional network topological abnormalities were found in high- as compared to low-risk ADHD, suggesting that ADHD in youth with BD familial risk may represent a phenotype that is different from ADHD alone.
Collapse
Affiliation(s)
- Kun Qin
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
- Department of Radiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Du Lei
- College of Medical Informatics, Chongqing Medical University, Chongqing, 400016, China.
| | - Ziyu Zhu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - Wenbin Li
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Maxwell J Tallman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - L Rodrigo Patino
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - David E Fleck
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - Veronica Aghera
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China.
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - Robert K McNamara
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - Melissa P DelBello
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| |
Collapse
|
4
|
Stroh A, Schweiger S, Ramirez JM, Tüscher O. The selfish network: how the brain preserves behavioral function through shifts in neuronal network state. Trends Neurosci 2024; 47:246-258. [PMID: 38485625 DOI: 10.1016/j.tins.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 04/12/2024]
Abstract
Neuronal networks possess the ability to regulate their activity states in response to disruptions. How and when neuronal networks turn from physiological into pathological states, leading to the manifestation of neuropsychiatric disorders, remains largely unknown. Here, we propose that neuronal networks intrinsically maintain network stability even at the cost of neuronal loss. Despite the new stable state being potentially maladaptive, neural networks may not reverse back to states associated with better long-term outcomes. These maladaptive states are often associated with hyperactive neurons, marking the starting point for activity-dependent neurodegeneration. Transitions between network states may occur rapidly, and in discrete steps rather than continuously, particularly in neurodegenerative disorders. The self-stabilizing, metastable, and noncontinuous characteristics of these network states can be mathematically described as attractors. Maladaptive attractors may represent a distinct pathophysiological entity that could serve as a target for new therapies and for fostering resilience.
Collapse
Affiliation(s)
- Albrecht Stroh
- Leibniz Institute for Resilience Research, Mainz, Germany; Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| | - Susann Schweiger
- Leibniz Institute for Resilience Research, Mainz, Germany; Institute of Human Genetics, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Institute of Molecular Biology (IMB), Mainz, Germany
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research at the Seattle Children's Research Institute, University of Washington, Seattle, USA
| | - Oliver Tüscher
- Leibniz Institute for Resilience Research, Mainz, Germany; Institute of Molecular Biology (IMB), Mainz, Germany; Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| |
Collapse
|
5
|
Ma K, Wen X, Zhu Q, Zhang D. Ordinal Pattern Tree: A New Representation Method for Brain Network Analysis. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:1526-1538. [PMID: 38090837 DOI: 10.1109/tmi.2023.3342047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Brain networks, describing the functional or structural interactions of brain with graph theory, have been widely used for brain imaging analysis. Currently, several network representation methods have been developed for describing and analyzing brain networks. However, most of these methods ignored the valuable weighted information of the edges in brain networks. In this paper, we propose a new representation method (i.e., ordinal pattern tree) for brain network analysis. Compared with the existing network representation methods, the proposed ordinal pattern tree (OPT) can not only leverage the weighted information of the edges but also express the hierarchical relationships of nodes in brain networks. On OPT, nodes are connected by ordinal edges which are constructed by using the ordinal pattern relationships of weighted edges. We represent brain networks as OPTs and further develop a new graph kernel called optimal transport (OT) based ordinal pattern tree (OT-OPT) kernel to measure the similarity between paired brain networks. In OT-OPT kernel, the OT distances are used to calculate the transport costs between the nodes on the OPTs. Based on these OT distances, we use exponential function to calculate OT-OPT kernel which is proved to be positive definite. To evaluate the effectiveness of the proposed method, we perform classification and regression experiments on ADHD-200, ABIDE and ADNI datasets. The experimental results demonstrate that our proposed method outperforms the state-of-the-art graph methods in the classification and regression tasks.
Collapse
|
6
|
Su S, Zhao J, Dai Y, Lin L, Zhou Q, Yan Z, Qian L, Cui W, Liu M, Zhang H, Yang Z, Chen Y. Altered neurovascular coupling in the children with attention-deficit/hyperactivity disorder: a comprehensive fMRI analysis. Eur Child Adolesc Psychiatry 2024; 33:1081-1091. [PMID: 37222790 DOI: 10.1007/s00787-023-02238-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/17/2023] [Indexed: 05/25/2023]
Abstract
The coupling between resting-state cerebral blood flow (CBF) and blood oxygenation level-dependent (BOLD) signals reflects the mechanism of neurovascular coupling (NVC), which have not been illustrated in attention-deficit/hyperactivity disorder (ADHD). Fifty ADHD and 42 age- and gender-matched typically developing controls (TDs) were enrolled. The NVC imaging metrics were investigated by exploring the Pearson correlation coefficients between CBF and BOLD-derived quantitative maps (ALFF, fALFF, DCP maps). Three types of NVC metrics (CBF-ALFF, CBF-fALFF, CBF-DCP coupling) were compared between ADHD and TDs group, and the inner association between altered NVC metrics and clinical variables in ADHD group was further analyzed. Compared to TDs, ADHD showed significantly reduced whole-brain CBF-ALFF coupling (P < 0.001). Among regional level (all PFDR < 0.05), ADHD showed significantly lower CBF-ALFF coupling in bilateral thalamus, default-mode network (DMN) involving left anterior cingulate (ACG.L) and right parahippocampal gyrus (PHG.R), execution control network (ECN) involving right middle orbital frontal gyrus (ORBmid.R) and right inferior frontal triangular gyrus (IFGtriang.R), and increased CBF-ALFF coupling in attention network (AN)-related left superior temporal gyrus (STG.L) and somatosensory network (SSN))-related left rolandic operculum (ROL.L). Furthermore, increased CBF-fALFF coupling was found in the visual network (VN)-related left cuneus and negatively correlated with the concentration index of ADHD (R = - 0.299, PFDR = 0.035). Abnormal regional NVC metrics were at widespread neural networks in ADHD, mainly involved in DMN, ECN, SSN, AN, VN and bilateral thalamus. Notably, this study reinforced the insights into the neural basis and pathophysiological mechanism underlying ADHD.
Collapse
Affiliation(s)
- Shu Su
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jing Zhao
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yan Dai
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Liping Lin
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qin Zhou
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zi Yan
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Long Qian
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Wei Cui
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Meina Liu
- Department of Pediatric, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hongyu Zhang
- Department of Pediatric, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhiyun Yang
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Yingqian Chen
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
7
|
Wang XK, Yang C, Dong WQ, Zhang QR, Ma SZ, Zang YF, Yuan LX. Impaired segregation of the attention deficit hyperactivity disorder related pattern in children. J Psychiatr Res 2024; 170:111-121. [PMID: 38134720 DOI: 10.1016/j.jpsychires.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Inattention is a key characteristic of attention deficit hyperactivity disorder (ADHD). Specific brain abnormalities associated with this symptom form a discernible pattern related with ADHD in children (i.e., ADHD related pattern) in our earlier research. The developmental processes of segregation and integration may be crucial to ADHD. However, how brains reconfigure these processes of the ADHD related pattern in different subtypes of ADHD and across sexes remain unclear. METHODS Nested-spectral partition method was applied to identify effects of subtype and sex on segregation and integration of the ADHD related pattern, using 145 ADHD patients and 135 typically developing controls (TDC) aged 7-14. Relationships between the measures and inattention symptoms were also investigated. RESULTS Children with ADHD exhibited lower segregation of the ADHD related pattern (p = 1.17 × 10-8) than TDCs. Only the main effect of subtype was significant (p = 1.14 × 10-5). Both ADHD-C (p = 2.16 × 10-6) and ADHD-I (p = 2.87 × 10-6) patients had lower segregation components relative to the TDC. Moreover, segregation components were negatively correlated with inattention scores. CONCLUSIONS This study identified impaired segregation in the ADHD related pattern of children with ADHD and found shared neural bases among different subtypes and sexes.
Collapse
Affiliation(s)
- Xing-Ke Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China; Jing Hengyi School of Education, Hangzhou Normal University, Hangzhou, China
| | - Chen Yang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China; Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Wen-Qiang Dong
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China; Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Qiu-Rong Zhang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China; Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Sheng-Zhi Ma
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China; Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Yu-Feng Zang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China; Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China; TMS Center, Deqing Hospital of Hangzhou Normal University, Deqing, Zhejiang, China
| | - Li-Xia Yuan
- School of Physics, Zhejiang University, Hangzhou, China.
| |
Collapse
|
8
|
Luo L, Liao Y, Jia F, Ning G, Liu J, Li X, Chen X, Ma X, He X, Fu C, Cai X, Qu H. Altered dynamic functional and effective connectivity in drug-naive children with Tourette syndrome. Transl Psychiatry 2024; 14:48. [PMID: 38253543 PMCID: PMC10803732 DOI: 10.1038/s41398-024-02779-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Tourette syndrome (TS) is a developmental neuropsychiatric disorder characterized by repetitive, stereotyped, involuntary tics, the neurological basis of which remains unclear. Although traditional resting-state MRI (rfMRI) studies have identified abnormal static functional connectivity (FC) in patients with TS, dynamic FC (dFC) remains relatively unexplored. The rfMRI data of 54 children with TS and 46 typically developing children (TDC) were analyzed using group independent component analysis to obtain independent components (ICs), and a sliding-window approach to generate dFC matrices. All dFC matrices were clustered into two reoccurring states, the state transition metrics were obtained. We conducted Granger causality and nodal topological analyses to further investigate the brain regions that may play the most important roles in driving whole-brain switching between different states. We found that children with TS spent more time in state 2 (PFDR < 0.001), a state characterized by strong connectivity between ICs, and switched more quickly between states (PFDR = 0.025) than TDC. The default mode network (DMN) may play an important role in abnormal state transitions because the FC that changed the most between the two states was between the DMN and other networks. Additionally, the DMN had increased degree centrality, efficiency and altered causal influence on other networks. Certain alterations related to executive function (r = -0.309, P < 0.05) and tic symptom ratings (r = 0.282; 0.413, P < 0.05) may represent important aspects of the pathophysiology of TS. These findings facilitate our understanding of the neural basis for the clinical presentation of TS.
Collapse
Affiliation(s)
- Lekai Luo
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, 610021, Sichuan, PR China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610021, Sichuan, PR China
| | - Yi Liao
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, 610021, Sichuan, PR China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610021, Sichuan, PR China
| | - Fenglin Jia
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, 610021, Sichuan, PR China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610021, Sichuan, PR China
| | - Gang Ning
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, 610021, Sichuan, PR China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610021, Sichuan, PR China
| | - Jing Liu
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, 610021, Sichuan, PR China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610021, Sichuan, PR China
| | - Xuesheng Li
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, 610021, Sichuan, PR China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610021, Sichuan, PR China
| | - Xijian Chen
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, 610021, Sichuan, PR China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610021, Sichuan, PR China
| | - Xinmao Ma
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, 610021, Sichuan, PR China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610021, Sichuan, PR China
| | - Xuejia He
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, 610021, Sichuan, PR China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610021, Sichuan, PR China
| | - Chuan Fu
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, 610021, Sichuan, PR China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610021, Sichuan, PR China
| | - Xiaotang Cai
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610021, Sichuan, PR China.
- Department of Rehabilitation, West China Second University Hospital, Chengdu, 610021, Sichuan, PR China.
| | - Haibo Qu
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, 610021, Sichuan, PR China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610021, Sichuan, PR China.
| |
Collapse
|
9
|
Simpson SL, Shappell HM, Bahrami M. Statistical Brain Network Analysis. ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION 2023; 11:505-531. [PMID: 39184922 PMCID: PMC11343573 DOI: 10.1146/annurev-statistics-040522-020722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
The recent fusion of network science and neuroscience has catalyzed a paradigm shift in how we study the brain and led to the field of brain network analysis. Brain network analyses hold great potential in helping us understand normal and abnormal brain function by providing profound clinical insight into links between system-level properties and health and behavioral outcomes. Nonetheless, methods for statistically analyzing networks at the group and individual levels have lagged behind. We have attempted to address this need by developing three complementary statistical frameworks-a mixed modeling framework, a distance regression framework, and a hidden semi-Markov modeling framework. These tools serve as synergistic fusions of statistical approaches with network science methods, providing needed analytic foundations for whole-brain network data. Here we delineate these approaches, briefly survey related tools, and discuss potential future avenues of research. We hope this review catalyzes further statistical interest and methodological development in the field.
Collapse
Affiliation(s)
- Sean L Simpson
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
- Laboratory for Complex Brain Networks, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Heather M Shappell
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
- Laboratory for Complex Brain Networks, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Mohsen Bahrami
- Laboratory for Complex Brain Networks, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
10
|
Kember J, Stepien L, Panda E, Tekok-Kilic A. Resting-state EEG dynamics help explain differences in response control in ADHD: Insight into electrophysiological mechanisms and sex differences. PLoS One 2023; 18:e0277382. [PMID: 37796795 PMCID: PMC10553225 DOI: 10.1371/journal.pone.0277382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 05/12/2023] [Indexed: 10/07/2023] Open
Abstract
Reductions in response control (greater reaction time variability and commission error rate) are consistently observed in those diagnosed with attention-deficit/hyperactivity disorder (ADHD). Previous research suggests these reductions arise from a dysregulation of large-scale cortical networks. Here, we extended our understanding of this cortical-network/response-control pathway important to the neurobiology of ADHD. First, we assessed how dynamic changes in three resting-state EEG network properties thought to be relevant to ADHD (phase-synchronization, modularity, oscillatory power) related with response control during a simple perceptual decision-making task in 112 children/adolescents (aged 8-16) with and without ADHD. Second, we tested whether these associations differed in males and females who were matched in age, ADHD-status and ADHD- subtype. We found that changes in oscillatory power (as opposed to phase-synchrony and modularity) are most related with response control, and that this relationship is stronger in ADHD compared to controls. Specifically, a tendency to dwell in an electrophysiological state characterized by high alpha/beta power (8-12/13-30Hz) and low delta/theta power (1-3/4-7Hz) supported response control, particularly in those with ADHD. Time in this state might reflect an increased initiation of alpha-suppression mechanisms, recruited by those with ADHD to suppress processing unfavourable to response control. We also found marginally significant evidence that this relationship is stronger in males compared to females, suggesting a distinct etiology for response control in the female presentation of ADHD.
Collapse
Affiliation(s)
- Jonah Kember
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
- Department of Child and Youth Studies, Brock University, St. Catharine’s, Ontario, Canada
| | - Lauren Stepien
- Department of Child and Youth Studies, Brock University, St. Catharine’s, Ontario, Canada
| | - Erin Panda
- Department of Child and Youth Studies, Brock University, St. Catharine’s, Ontario, Canada
| | - Ayda Tekok-Kilic
- Department of Child and Youth Studies, Brock University, St. Catharine’s, Ontario, Canada
| |
Collapse
|
11
|
Chang SE, Lenartowicz A, Hellemann GS, Uddin LQ, Bearden CE. Variability in Cognitive Task Performance in Early Adolescence Is Associated With Stronger Between-Network Anticorrelation and Future Attention Problems. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:948-957. [PMID: 37881561 PMCID: PMC10593900 DOI: 10.1016/j.bpsgos.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/22/2022] [Accepted: 11/09/2022] [Indexed: 11/28/2022] Open
Abstract
Background Intraindividual variability (IIV) during cognitive task performance is a key behavioral index of attention and a consistent marker of attention-deficit/hyperactivity disorder. In adults, lower IIV has been associated with anticorrelation between the default mode network (DMN) and dorsal attention network (DAN)-thought to underlie effective allocation of attention. However, whether these behavioral and neural markers of attention are 1) associated with each other and 2) can predict future attention-related deficits has not been examined in a developmental, population-based cohort. Methods We examined relationships at the baseline visit between IIV on 3 cognitive tasks, DMN-DAN anticorrelation, and parent-reported attention problems using data from the Adolescent Brain Cognitive Development (ABCD) Study (N = 11,878 participants, ages 9 to 10 years, female = 47.8%). We also investigated whether behavioral and neural markers of attention at baseline predicted attention problems 1, 2, and 3 years later. Results At baseline, greater DMN-DAN anticorrelation was associated with lower IIV across all 3 cognitive tasks (B = 0.22 to 0.25). Older age at baseline was associated with stronger DMN-DAN anticorrelation and lower IIV (B = -0.005 to -0.0004). Weaker DMN-DAN anticorrelation and IIV were cross-sectionally associated with attention problems (B = 1.41 to 7.63). Longitudinally, lower IIV at baseline was associated with less severe attention problems 1 to 3 years later, after accounting for baseline attention problems (B = 0.288 to 0.77). Conclusions The results suggest that IIV in early adolescence is associated with worsening attention problems in a representative cohort of U.S. youth. Attention deficits in early adolescence may be important for understanding and predicting future cognitive and clinical outcomes.
Collapse
Affiliation(s)
- Sarah E. Chang
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Agatha Lenartowicz
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Gerhard S. Hellemann
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
- Department of Public Health, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lucina Q. Uddin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Carrie E. Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
- Department of Psychology, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
12
|
Wang X, Chang Z, Wang R. Opposite effects of positive and negative symptoms on resting-state brain networks in schizophrenia. Commun Biol 2023; 6:279. [PMID: 36932140 PMCID: PMC10023794 DOI: 10.1038/s42003-023-04637-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
Schizophrenia is a severe psychotic disorder characterized by positive and negative symptoms, but their neural bases remain poorly understood. Here, we utilized a nested-spectral partition (NSP) approach to detect hierarchical modules in resting-state brain functional networks in schizophrenia patients and healthy controls, and we studied dynamic transitions of segregation and integration as well as their relationships with clinical symptoms. Schizophrenia brains showed a more stable integrating process and a more variable segregating process, thus maintaining higher segregation, especially in the limbic system. Hallucinations were associated with higher integration in attention systems, and avolition was related to a more variable segregating process in default-mode network (DMN) and control systems. In a machine-learning model, NSP-based features outperformed graph measures at predicting positive and negative symptoms. Multivariate analysis confirmed that positive and negative symptoms had opposite effects on dynamic segregation and integration of brain networks. Gene ontology analysis revealed that the effect of negative symptoms was related to autistic, aggressive and violent behavior; the effect of positive symptoms was associated with hyperammonemia and acidosis; and the interaction effect was correlated with abnormal motor function. Our findings could contribute to the development of more accurate diagnostic criteria for positive and negative symptoms in schizophrenia.
Collapse
Affiliation(s)
- Xinrui Wang
- College of Science, Xi'an University of Science and Technology, Xi'an, Shaanxi, China
| | - Zhao Chang
- College of Science, Xi'an University of Science and Technology, Xi'an, Shaanxi, China
| | - Rong Wang
- College of Science, Xi'an University of Science and Technology, Xi'an, Shaanxi, China.
| |
Collapse
|
13
|
Sato JR, Biazoli CE, Bueno APA, Caye A, Pan PM, Santoro M, Honorato-Mauer J, Salum GA, Hoexter MQ, Bressan RA, Jackowski AP, Miguel EC, Belangero S, Rohde LA. Polygenic risk score for attention-deficit/hyperactivity disorder and brain functional networks segregation in a community-based sample. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12838. [PMID: 36811275 PMCID: PMC10067387 DOI: 10.1111/gbb.12838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/29/2022] [Accepted: 01/20/2023] [Indexed: 02/24/2023]
Abstract
Neuroimaging studies suggest that brain development mechanisms might explain at least some behavioural and cognitive attention-deficit/hyperactivity disorder (ADHD) symptoms. However, the putative mechanisms by which genetic susceptibility factors influence clinical features via alterations of brain development remain largely unknown. Here, we set out to integrate genomics and connectomics tools by investigating the associations between an ADHD polygenic risk score (ADHD-PRS) and functional segregation of large-scale brain networks. With this aim, ADHD symptoms score, genetic and rs-fMRI (resting-state functional magnetic resonance image) data obtained in a longitudinal community-based cohort of 227 children and adolescents were analysed. A follow-up was conducted approximately 3 years after the baseline, with rs-fMRI scanning and ADHD likelihood assessment in both stages. We hypothesised a negative correlation between probable ADHD and the segregation of networks involved in executive functions, and a positive correlation with the default-mode network (DMN). Our findings suggest that ADHD-PRS is correlated with ADHD at baseline, but not at follow-up. Despite not surviving for multiple comparison correction, we found significant correlations between ADHD-PRS and segregation of cingulo-opercular networks and DMN at baseline. ADHD-PRS was negatively correlated with the segregation level of cingulo-opercular networks but positively correlated with the DMN segregation. These directions of associations corroborate the proposed counter-balanced role of attentional networks and DMN in attentional processes. However, the association between ADHD-PRS and brain networks functional segregation was not found at follow-up. Our results provide evidence for specific influences of genetic factors on development of attentional networks and DMN. We found significant correlations between polygenic risk score for ADHD (ADHD-PRS) and segregation of cingulo-opercular networks and default-mode network (DMN) at baseline. ADHD-PRS was negatively correlated with the segregation level of cingulo-opercular networks but positively correlated with the DMN segregation.
Collapse
Affiliation(s)
- João Ricardo Sato
- Center of Mathematics, Computing, and Cognition, Universidade Federal do ABC, Santo André, Brazil.,Laboratory of Integrative Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil.,Department of Radiology, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), Sao Paulo, Brazil.,Big Data, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Claudinei Eduardo Biazoli
- Center of Mathematics, Computing, and Cognition, Universidade Federal do ABC, Santo André, Brazil.,Department of Experimental and Biological Psychology, Queen Mary University of London, London, UK
| | - Ana Paula Arantes Bueno
- Center of Mathematics, Computing, and Cognition, Universidade Federal do ABC, Santo André, Brazil
| | - Arthur Caye
- National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), Sao Paulo, Brazil.,Hospital de Clínicas de Porto Alegre and Department of Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Pedro Mario Pan
- Laboratory of Integrative Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), Sao Paulo, Brazil
| | - Marcos Santoro
- Laboratory of Integrative Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), Sao Paulo, Brazil.,Department of Biochemistry, Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Jessica Honorato-Mauer
- Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Giovanni Abrahão Salum
- National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), Sao Paulo, Brazil.,Hospital de Clínicas de Porto Alegre and Department of Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcelo Queiroz Hoexter
- Laboratory of Integrative Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), Sao Paulo, Brazil.,Department of Psychiatry, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Rodrigo Affonseca Bressan
- Laboratory of Integrative Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), Sao Paulo, Brazil
| | - Andrea Parolin Jackowski
- Laboratory of Integrative Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil.,Department of Education, ICT and Learning, Østfold University College, Halden, Norway
| | - Euripedes Constantino Miguel
- National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), Sao Paulo, Brazil.,Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Sintia Belangero
- Laboratory of Integrative Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), Sao Paulo, Brazil.,Department of Biochemistry, Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Luis Augusto Rohde
- National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), Sao Paulo, Brazil.,Hospital de Clínicas de Porto Alegre and Department of Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,UniEduK, Jaguariúna, Brazil.,ADHD Outpatient Program & Developmental Psychiatry Program, Hospital de Clinica de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
14
|
Luo L, Chen L, Wang Y, Li Q, He N, Li Y, You W, Wang Y, Long F, Guo L, Luo K, Sweeney JA, Gong Q, Li F. Patterns of brain dynamic functional connectivity are linked with attention-deficit/hyperactivity disorder-related behavioral and cognitive dimensions. Psychol Med 2023; 53:1-12. [PMID: 36748350 PMCID: PMC10600939 DOI: 10.1017/s0033291723000089] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 11/20/2022] [Accepted: 01/09/2023] [Indexed: 02/08/2023]
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) is a clinically heterogeneous neurodevelopmental disorder defined by characteristic behavioral and cognitive features. Abnormal brain dynamic functional connectivity (dFC) has been associated with the disorder. The full spectrum of ADHD-related variation of brain dynamics and its association with behavioral and cognitive features remain to be established. METHODS We sought to identify patterns of brain dynamics linked to specific behavioral and cognitive dimensions using sparse canonical correlation analysis across a cohort of children with and without ADHD (122 children in total, 63 with ADHD). Then, using mediation analysis, we tested the hypothesis that cognitive deficits mediate the relationship between brain dynamics and ADHD-associated behaviors. RESULTS We identified four distinct patterns of dFC, each corresponding to a specific dimension of behavioral or cognitive function (r = 0.811-0.879). Specifically, the inattention/hyperactivity dimension was positively associated with dFC within the default mode network (DMN) and negatively associated with dFC between DMN and the sensorimotor network (SMN); the somatization dimension was positively associated with dFC within DMN and SMN; the inhibition and flexibility dimension and fluency and memory dimensions were both positively associated with dFC within DMN and between DMN and SMN, and negatively associated with dFC between DMN and the fronto-parietal network. Furthermore, we observed that cognitive functions of inhibition and flexibility mediated the relationship between brain dynamics and behavioral manifestations of inattention and hyperactivity. CONCLUSIONS These findings document the importance of distinct patterns of dynamic functional brain activity for different cardinal behavioral and cognitive features related to ADHD.
Collapse
Affiliation(s)
- Lekai Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, P.R. China
| | - Lizhou Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
- Functional and Molecular Imaging Key Laboratory of Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Yuxia Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, P.R. China
| | - Qian Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, P.R. China
| | - Ning He
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Yuanyuan Li
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Wanfang You
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, P.R. China
| | - Yaxuan Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, P.R. China
| | - Fenghua Long
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, P.R. China
| | - Lanting Guo
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - John A. Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen 361021, Fujian, P.R China
| | - Fei Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, P.R. China
| |
Collapse
|
15
|
Zhu Z, Wang H, Bi H, Lv J, Zhang X, Wang S, Zou L. Dynamic functional connectivity changes of resting-state brain network in attention-deficit/hyperactivity disorder. Behav Brain Res 2023; 437:114121. [PMID: 36162641 DOI: 10.1016/j.bbr.2022.114121] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022]
Abstract
Patients with attention-deficit/hyperactivity disorder (ADHD) have shown abnormal functional connectivity and network disruptions at the whole-brain static level. However, the changes in brain networks in ADHD patients from dynamic functional connectivity (DFC) perspective have not been fully understood. Accordingly, we executed DFC analysis on resting-state fMRI data of 25 ADHD patients and 27 typically developing (TD) children. A sliding window and Pearson correlation were used to construct the dynamic brain network of all subjects. The k-means+ + clustering method was used to recognize three recurring DFC states, and finally, the mean dwell time, the fraction of time spent for each state, and graph theory metrics were quantified for further analysis. Our results showed that ADHD patients had abnormally increased mean dwell time and the fraction of time spent in state 2, which reached a significant level (p < 0.05). In addition, a weak correlation between the default mode network was associated in three states, and the positive correlations between visual network and attention network were smaller than TD in three states. Finally, the integration of each network node of ADHD in state 2 is more potent than that of TD, and the degree of node segregation is smaller than that of TD. These findings provide new evidence for the DFC study of ADHD; dynamic changes may better explain the developmental delay of ADHD and have particular significance for studying neurological mechanisms and adjuvant therapy of ADHD.
Collapse
Affiliation(s)
- Zhihao Zhu
- The School of Microelectronics and Control Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Hongwei Wang
- The School of Computer Science and Artificial Intelligence, Aliyun School of Big Data, School of Software, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Hui Bi
- The School of Computer Science and Artificial Intelligence, Aliyun School of Big Data, School of Software, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Jidong Lv
- The School of Microelectronics and Control Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Xiaotong Zhang
- The College of Electrical Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310000, China
| | - Suhong Wang
- Clinical Psychology, The Third Affiliated Hospital of Soochow University, Juqian Road No. 185, Changzhou, Jiangsu 213164, China.
| | - Ling Zou
- The School of Microelectronics and Control Engineering, Changzhou University, Changzhou, Jiangsu 213164, China; The Key Laboratory of Brain Machine Collaborative Intelligence Foundation of Zhejiang Province, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
16
|
Chang Z, Wang X, Wu Y, Lin P, Wang R. Segregation, integration and balance in resting-state brain functional networks associated with bipolar disorder symptoms. Hum Brain Mapp 2023; 44:599-611. [PMID: 36161679 PMCID: PMC9842930 DOI: 10.1002/hbm.26087] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/19/2022] [Accepted: 09/02/2022] [Indexed: 01/25/2023] Open
Abstract
Bipolar disorder (BD) is a serious mental disorder involving widespread abnormal interactions between brain regions, and it is believed to be associated with imbalanced functions in the brain. However, how this brain imbalance underlies distinct BD symptoms remains poorly understood. Here, we used a nested-spectral partition (NSP) method to study the segregation, integration, and balance in resting-state brain functional networks in BD patients and healthy controls (HCs). We first confirmed that there was a high deviation in the brain functional network toward more segregation in BD patients than in HCs and that the limbic system had the largest alteration. Second, we demonstrated a network balance of segregation and integration that corresponded to lower anxiety in BD patients but was not related to other symptoms. Subsequently, based on a machine-learning approach, we identified different system-level mechanisms underlying distinct BD symptoms and found that the features related to the brain network balance could predict BD symptoms better than graph theory analyses. Finally, we studied attention-deficit/hyperactivity disorder (ADHD) symptoms in BD patients and identified specific patterns that distinctly predicted ADHD and BD scores, as well as their shared common domains. Our findings supported an association of brain imbalance with anxiety symptom in BD patients and provided a potential network signature for diagnosing BD. These results contribute to further understanding the neuropathology of BD and to screening ADHD in BD patients.
Collapse
Affiliation(s)
- Zhao Chang
- College of ScienceXi'an University of Science and TechnologyXi'anChina
| | - Xinrui Wang
- College of ScienceXi'an University of Science and TechnologyXi'anChina
| | - Ying Wu
- State Key Laboratory for Strength and Vibration of Mechanical StructuresSchool of Aerospace Engineering, Xi'an Jiaotong UniversityXi'anChina
- National Demonstration Center for Experimental Mechanics EducationXi'an Jiaotong UniversityXi'anChina
| | - Pan Lin
- Center for Mind & Brain Sciences and Cognition and Human Behavior Key Laboratory of Hunan ProvinceHunan Normal UniversityChangshaHunanChina
| | - Rong Wang
- College of ScienceXi'an University of Science and TechnologyXi'anChina
- State Key Laboratory for Strength and Vibration of Mechanical StructuresSchool of Aerospace Engineering, Xi'an Jiaotong UniversityXi'anChina
- National Demonstration Center for Experimental Mechanics EducationXi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
17
|
Norman LJ, Sudre G, Price J, Shastri GG, Shaw P. Evidence from "big data" for the default-mode hypothesis of ADHD: a mega-analysis of multiple large samples. Neuropsychopharmacology 2023; 48:281-289. [PMID: 36100657 PMCID: PMC9751118 DOI: 10.1038/s41386-022-01408-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/10/2022] [Accepted: 07/16/2022] [Indexed: 12/26/2022]
Abstract
We sought to identify resting-state characteristics related to attention deficit/hyperactivity disorder, both as a categorical diagnosis and as a trait feature, using large-scale samples which were processed according to a standardized pipeline. In categorical analyses, we considered 1301 subjects with diagnosed ADHD, contrasted against 1301 unaffected controls (total N = 2602; 1710 males (65.72%); mean age = 10.86 years, sd = 2.05). Cases and controls were 1:1 nearest neighbor matched on in-scanner motion and key demographic variables and drawn from multiple large cohorts. Associations between ADHD-traits and resting-state connectivity were also assessed in a large multi-cohort sample (N = 10,113). ADHD diagnosis was associated with less anticorrelation between the default mode and salience/ventral attention (B = 0.009, t = 3.45, p-FDR = 0.004, d = 0.14, 95% CI = 0.004, 0.014), somatomotor (B = 0.008, t = 3.49, p-FDR = 0.004, d = 0.14, 95% CI = 0.004, 0.013), and dorsal attention networks (B = 0.01, t = 4.28, p-FDR < 0.001, d = 0.17, 95% CI = 0.006, 0.015). These results were robust to sensitivity analyses considering comorbid internalizing problems, externalizing problems and psychostimulant medication. Similar findings were observed when examining ADHD traits, with the largest effect size observed for connectivity between the default mode network and the dorsal attention network (B = 0.0006, t = 5.57, p-FDR < 0.001, partial-r = 0.06, 95% CI = 0.0004, 0.0008). We report significant ADHD-related differences in interactions between the default mode network and task-positive networks, in line with default mode interference models of ADHD. Effect sizes (Cohen's d and partial-r, estimated from the mega-analytic models) were small, indicating subtle group differences. The overlap between the affected brain networks in the clinical and general population samples supports the notion of brain phenotypes operating along an ADHD continuum.
Collapse
Affiliation(s)
- Luke J Norman
- Office of the Clinical Director, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA.
- Section on Neurobehavioral and Clinical Research, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Gustavo Sudre
- Section on Neurobehavioral and Clinical Research, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jolie Price
- Section on Neurobehavioral and Clinical Research, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Gauri G Shastri
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Philip Shaw
- Office of the Clinical Director, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
- Section on Neurobehavioral and Clinical Research, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
18
|
Henry TR, Fogleman ND, Nugiel T, Cohen JR. Effect of methylphenidate on functional controllability: a preliminary study in medication-naïve children with ADHD. Transl Psychiatry 2022; 12:518. [PMID: 36528602 PMCID: PMC9759578 DOI: 10.1038/s41398-022-02283-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Methylphenidate (MPH) is the recommended first-line treatment for attention-deficit/hyperactivity disorder (ADHD). While MPH's mechanism of action as a dopamine and noradrenaline transporter blocker is well known, how this translates to ADHD-related symptom mitigation is still unclear. As functional connectivity is reliably altered in ADHD, with recent literature indicating dysfunctional connectivity dynamics as well, one possible mechanism is through altering brain network dynamics. In a double-blind, placebo-controlled MPH crossover trial, 19 medication-naïve children with ADHD underwent two functional MRI scanning sessions (one on MPH and one on placebo) that included a resting state scan and two inhibitory control tasks; 27 typically developing (TD) children completed the same protocol without medication. Network control theory, which quantifies how brain activity reacts to system inputs based on underlying connectivity, was used to assess differences in average and modal functional controllability during rest and both tasks between TD children and children with ADHD (on and off MPH) and between children with ADHD on and off MPH. Children with ADHD on placebo exhibited higher average controllability and lower modal controllability of attention, reward, and somatomotor networks than TD children. Children with ADHD on MPH were statistically indistinguishable from TD children on almost all controllability metrics. These findings suggest that MPH may stabilize functional network dynamics in children with ADHD, both reducing reactivity of brain organization and making it easier to achieve brain states necessary for cognitively demanding tasks.
Collapse
Affiliation(s)
- Teague R Henry
- Department of Psychology and School of Data Science, University of Virginia, Charlottesville, VA, USA.
| | - Nicholas D Fogleman
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tehila Nugiel
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jessica R Cohen
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
19
|
Yin W, Li T, Mucha PJ, Cohen JR, Zhu H, Zhu Z, Lin W. Altered neural flexibility in children with attention-deficit/hyperactivity disorder. Mol Psychiatry 2022; 27:4673-4679. [PMID: 35869272 PMCID: PMC9734048 DOI: 10.1038/s41380-022-01706-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 12/14/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders of childhood, and is often characterized by altered executive functioning. Executive function has been found to be supported by flexibility in dynamic brain reconfiguration. Thus, we applied multilayer community detection to resting-state fMRI data in 180 children with ADHD and 180 typically developing children (TDC) to identify alterations in dynamic brain reconfiguration in children with ADHD. We specifically evaluated MR derived neural flexibility, which is thought to underlie cognitive flexibility, or the ability to selectively switch between mental processes. Significantly decreased neural flexibility was observed in the ADHD group at both the whole brain (raw p = 0.0005) and sub-network levels (p < 0.05, FDR corrected), particularly for the default mode network, attention-related networks, executive function-related networks, and primary networks. Furthermore, the subjects with ADHD who received medication exhibited significantly increased neural flexibility (p = 0.025, FDR corrected) when compared to subjects with ADHD who were medication naïve, and their neural flexibility was not statistically different from the TDC group (p = 0.74, FDR corrected). Finally, regional neural flexibility was capable of differentiating ADHD from TDC (Accuracy: 77% for tenfold cross-validation, 74.46% for independent test) and of predicting ADHD severity using clinical measures of symptom severity (R2: 0.2794 for tenfold cross-validation, 0.156 for independent test). In conclusion, the present study found that neural flexibility is altered in children with ADHD and demonstrated the potential clinical utility of neural flexibility to identify children with ADHD, as well as to monitor treatment responses and disease severity.
Collapse
Affiliation(s)
- Weiyan Yin
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tengfei Li
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Peter J Mucha
- Department of Mathematics, Dartmouth College, Hanover, NH, USA
- Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jessica R Cohen
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hongtu Zhu
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ziliang Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Weili Lin
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
20
|
Vazquez-Trejo V, Nardos B, Schlaggar BL, Fair DA, Miranda-Dominguez O. Use of connectotyping on task functional MRI data reveals dynamic network level cross talking during task performance. Front Neurosci 2022; 16:951907. [DOI: 10.3389/fnins.2022.951907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Task-based functional MRI (fMRI) has greatly improved understanding of brain functioning, enabling the identification of brain areas associated with specific cognitive operations. Traditional analyses are limited to associating activation patterns in particular regions with specific cognitive operation, largely ignoring regional cross-talk or dynamic connectivity, which we propose is crucial for characterization of brain function in the context of task fMRI. We use connectotyping, which efficiently models functional brain connectivity to reveal the progression of temporal brain connectivity patterns in task fMRI. Connectotyping was employed on data from twenty-four participants (12 male, mean age 24.8 years, 2.57 std. dev) who performed a widely spaced event-related fMRI word vs. pseudoword decision task, where stimuli were presented every 20 s. After filtering for movement, we ended up with 15 participants that completed each trial and had enough usable data for our analyses. Connectivity matrices were calculated per participant across time for each stimuli type. A Repeated Measures ANOVA applied on the connectotypes was used to characterize differences across time for words and pseudowords. Our group level analyses found significantly different dynamic connectivity patterns during word vs. pseudoword processing between the Fronto-Parietal and Cingulo-Parietal Systems, areas involved in cognitive task control, memory retrieval, and semantic processing. Our findings support the presence of dynamic changes in functional connectivity during task execution and that such changes can be characterized using connectotyping but not with traditional Pearson’s correlations.
Collapse
|
21
|
Xu XP, Wang W, Wan S, Xiao CF. Convergence mechanism of mindfulness intervention in treating attention deficit hyperactivity disorder: Clues from current evidence. World J Clin Cases 2022; 10:9219-9227. [PMID: 36159418 PMCID: PMC9477656 DOI: 10.12998/wjcc.v10.i26.9219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/26/2022] [Accepted: 07/29/2022] [Indexed: 02/05/2023] Open
Abstract
This paper reviews the underlying evidence for various aspects of the convergence mechanism of mindfulness intervention in attention deficit hyperactivity disorder (ADHD). There may be compatibility among various ADHD remission models and the therapeutic mechanism of mindfulness intervention in ADHD may be mainly via the convergence mechanism. However, neuroimaging-based analysis of the mechanisms of mindfulness intervention in treating ADHD is lacking. Differences in the efficacy of various subtypes of mindfulness intervention, and corresponding specific imaging changes need further investigation. Future research may focus on the neuroimaging features of specific mindfulness intervention subtypes.
Collapse
Affiliation(s)
- Xin-Peng Xu
- Universal Scientific Education and Research Network, Beijing 100088, China
| | - Wei Wang
- Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Song Wan
- Universal Scientific Education and Research Network, Beijing 100088, China
| | - Chun-Feng Xiao
- Universal Scientific Education and Research Network, Beijing 100088, China
| |
Collapse
|
22
|
Wang R, Fan Y, Wu Y, Zang YF, Zhou C. Lifespan associations of resting-state brain functional networks with ADHD symptoms. iScience 2022; 25:104673. [PMID: 35832890 PMCID: PMC9272385 DOI: 10.1016/j.isci.2022.104673] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/26/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is increasingly being diagnosed in both children and adults, but the neural mechanisms that underlie its distinct symptoms and whether children and adults share the same mechanism remain poorly understood. Here, we used a nested-spectral partition approach to study resting-state brain networks of ADHD patients (n = 97) and healthy controls (HCs, n = 97) across the lifespan (7-50 years). Compared to the linear lifespan associations of brain segregation and integration with age in HCs, ADHD patients have a quadratic association in the whole-brain and in most functional systems, whereas the limbic system dominantly affected by ADHD has a linear association. Furthermore, the limbic system better predicts hyperactivity, and the salient attention system better predicts inattention. These predictions are shared in children and adults with ADHD. Our findings reveal a lifespan association of brain networks with ADHD and provide potential shared neural bases of distinct ADHD symptoms in children and adults.
Collapse
Affiliation(s)
- Rong Wang
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- Department of Physics, Centre for Nonlinear Studies, Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Hong Kong
- College of Science, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Yongchen Fan
- College of Science, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Ying Wu
- College of Science, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Yu-Feng Zang
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Changsong Zhou
- Department of Physics, Centre for Nonlinear Studies, Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Hong Kong
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
23
|
Fateh AA, Huang W, Mo T, Wang X, Luo Y, Yang B, Smahi A, Fang D, Zhang L, Meng X, Zeng H. Abnormal Insular Dynamic Functional Connectivity and Its Relation to Social Dysfunctioning in Children With Attention Deficit/Hyperactivity Disorder. Front Neurosci 2022; 16:890596. [PMID: 35712452 PMCID: PMC9197452 DOI: 10.3389/fnins.2022.890596] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022] Open
Abstract
Anomalies in large-scale cognitive control networks impacting social attention abilities are hypothesized to be the cause of attention deficit hyperactivity disorder (ADHD). The precise nature of abnormal brain functional connectivity (FC) dynamics including other regions, on the other hand, is unknown. The concept that insular dynamic FC (dFC) among distinct brain regions is dysregulated in children with ADHD was evaluated using Insular subregions, and we studied how these dysregulations lead to social dysfunctioning. Data from 30 children with ADHD and 28 healthy controls (HCs) were evaluated using dynamic resting state functional magnetic resonance imaging (rs-fMRI). We evaluated the dFC within six subdivisions, namely both left and right dorsal anterior insula (dAI), ventral anterior insula (vAI), and posterior insula (PI). Using the insular sub-regions as seeds, we performed group comparison between the two groups. To do so, two sample t-tests were used, followed by post-hoc t-tests. Compared to the HCs, patients with ADHD exhibited decreased dFC values between right dAI and the left middle frontal gyrus, left postcentral gyrus and right of cerebellum crus, respectively. Results also showed a decreased dFC between left dAI and thalamus, left vAI and left precuneus and left PI with temporal pole. From the standpoint of the dynamic functional connectivity of insular subregions, our findings add to the growing body of evidence on brain dysfunction in ADHD. This research adds to our understanding of the neurocognitive mechanisms behind social functioning deficits in ADHD. Future ADHD research could benefit from merging the dFC approach with task-related fMRI and non-invasive brain stimulation, which could aid in the diagnosis and treatment of the disorder.
Collapse
Affiliation(s)
- Ahmed Ameen Fateh
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China
| | - Wenxian Huang
- Children's Healthcare, Mental Health Center, Shenzhen Children's Hospital, Shenzhen, China
| | - Tong Mo
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China
| | - Xiaoyu Wang
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China
| | - Yi Luo
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China
| | - Binrang Yang
- Children's Healthcare, Mental Health Center, Shenzhen Children's Hospital, Shenzhen, China
| | - Abla Smahi
- Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Diangang Fang
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China
| | - Linlin Zhang
- Children's Healthcare, Mental Health Center, Shenzhen Children's Hospital, Shenzhen, China
| | - Xianlei Meng
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China
| | - Hongwu Zeng
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China
| |
Collapse
|
24
|
Rebello K, Moura LM, Bueno APA, Picon FA, Pan PM, Gadelha A, Miguel EC, Bressan RA, Rohde LA, Sato JR. Associations between Family Functioning and Maternal Behavior on Default Mode Network Connectivity in School-Age Children. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19106055. [PMID: 35627592 PMCID: PMC9141331 DOI: 10.3390/ijerph19106055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/16/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023]
Abstract
Background: Most early children's experiences will occur in a family context; therefore, the quality of this environment is critical for development outcomes. Not many studies have assessed the correlations between brain functional connectivity (FC) in important areas such as the default mode network (DMN) and the quality of parent-child relationships in school-age children and early adolescence. The quality of family relationships and maternal behavior have been suggested to modulate DMN FC once they act as external regulators of children's affect and behavior. Objective: We aimed to test the associations between the quality of family environment/maternal behavior and FC within the DMN of school-age children. Method: Resting-state, functional magnetic resonance imaging data, were collected from 615 children (6-12 age range) enrolled in the Brazilian High-Risk Cohort (HRC) study. We assessed DMN intra-connectivity between the medial prefrontal cortex (mPFC), posterior cingulate cortex (PCC), and inferior parietal lobule (IPL-bilateral) regions. The family functioning was assessed by levels of family cohesiveness and conflict and by maternal behavior styles such as maternal responsiveness, maternal stimulus to the child's autonomy, and maternal overprotection. The family environment was assessed with the Family Environment Scale (FES), and maternal behavior was assessed by the mother's self-report. Results: We found that the quality of the family environment was correlated with intra-DMN FC. The more conflicting the family environment was, the greater the FC between the mPFC-left IPL (lIPL), while a more cohesive family functioning was negatively correlated with FC between the PCC-lIPL. On the other hand, when moderated by a positive maternal behavior, cohesive family functioning was associated with increased FC in both regions of the DMN (mPFC-lIPL and PCC-lIPL). Conclusions: Our results highlight that the quality of the family environment might be associated with differences in the intrinsic DMN FC.
Collapse
Affiliation(s)
- Keila Rebello
- Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, Santo André 09210-580, Brazil; (K.R.); (L.M.M.); (A.P.A.B.)
| | - Luciana Monteiro Moura
- Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, Santo André 09210-580, Brazil; (K.R.); (L.M.M.); (A.P.A.B.)
- Interdisciplinary Lab for Clinical Neurosciences, Universidade Federal de São Paulo, São Paulo 04021-001, Brazil; (P.M.P.); (A.G.); (R.A.B.)
- National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo 01060-970, Brazil; (F.A.P.); (E.C.M.); (L.A.R.)
| | - Ana Paula Arantes Bueno
- Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, Santo André 09210-580, Brazil; (K.R.); (L.M.M.); (A.P.A.B.)
| | - Felipe Almeida Picon
- National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo 01060-970, Brazil; (F.A.P.); (E.C.M.); (L.A.R.)
- ADHD Outpatient Program & Developmental Psychiatry Program, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre 90010-150, Brazil
| | - Pedro Mario Pan
- Interdisciplinary Lab for Clinical Neurosciences, Universidade Federal de São Paulo, São Paulo 04021-001, Brazil; (P.M.P.); (A.G.); (R.A.B.)
- National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo 01060-970, Brazil; (F.A.P.); (E.C.M.); (L.A.R.)
| | - Ary Gadelha
- Interdisciplinary Lab for Clinical Neurosciences, Universidade Federal de São Paulo, São Paulo 04021-001, Brazil; (P.M.P.); (A.G.); (R.A.B.)
- National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo 01060-970, Brazil; (F.A.P.); (E.C.M.); (L.A.R.)
| | - Euripedes Constatino Miguel
- National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo 01060-970, Brazil; (F.A.P.); (E.C.M.); (L.A.R.)
- Department of Psychiatry, School of Medicine, University of São Paulo, São Paulo 05508-070, Brazil
| | - Rodrigo Affonseca Bressan
- Interdisciplinary Lab for Clinical Neurosciences, Universidade Federal de São Paulo, São Paulo 04021-001, Brazil; (P.M.P.); (A.G.); (R.A.B.)
- National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo 01060-970, Brazil; (F.A.P.); (E.C.M.); (L.A.R.)
| | - Luis Augusto Rohde
- National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo 01060-970, Brazil; (F.A.P.); (E.C.M.); (L.A.R.)
- ADHD Outpatient Program & Developmental Psychiatry Program, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre 90010-150, Brazil
| | - João Ricardo Sato
- Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, Santo André 09210-580, Brazil; (K.R.); (L.M.M.); (A.P.A.B.)
- Interdisciplinary Lab for Clinical Neurosciences, Universidade Federal de São Paulo, São Paulo 04021-001, Brazil; (P.M.P.); (A.G.); (R.A.B.)
- National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo 01060-970, Brazil; (F.A.P.); (E.C.M.); (L.A.R.)
- ADHD Outpatient Program & Developmental Psychiatry Program, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre 90010-150, Brazil
- Correspondence:
| |
Collapse
|
25
|
Miller RL, Vergara VM, Pearlson GD, Calhoun VD. Multiframe Evolving Dynamic Functional Connectivity (EVOdFNC): A Method for Constructing and Investigating Functional Brain Motifs. Front Neurosci 2022; 16:770468. [PMID: 35516809 PMCID: PMC9063321 DOI: 10.3389/fnins.2022.770468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/24/2022] [Indexed: 11/28/2022] Open
Abstract
The study of brain network connectivity as a time-varying property began relatively recently and, to date, has remained primarily concerned with capturing a handful of discrete static states that characterize connectivity as measured on a timescale shorter than that of the full scan. Capturing group-level representations of temporally evolving patterns of connectivity is a challenging and important next step in fully leveraging the information available in large resting state functional magnetic resonance imaging (rs-fMRI) studies. We introduce a flexible, extensible data-driven framework for the stable identification of group-level multiframe (movie-style) dynamic functional network connectivity (dFNC) states. Our approach employs uniform manifold approximation and embedding (UMAP) to produce a continuity-preserving planar embedding of high-dimensional time-varying measurements of whole-brain functional network connectivity. Planar linear exemplars summarizing dominant dynamic trends across the population are computed from local linear approximations to the two-dimensional 2D embedded trajectories. A high-dimensional representation of each 2D exemplar segment is obtained by averaging the dFNC observations corresponding to the n planar nearest neighbors of τ evenly spaced points along the 2D line segment representation (where n is the UMAP number-of-neighbors parameter and τ is the temporal duration of trajectory segments being approximated). Each of the 2D exemplars thus “lifts” to a multiframe high-dimensional dFNC trajectory of length τ. The collection of high-dimensional temporally evolving dFNC representations (EVOdFNCs) derived in this manner are employed as dynamic basis objects with which to characterize observed high-dimensional dFNC trajectories, which are then expressed as weighted combination of these basis objects. Our approach yields new insights into anomalous patterns of fluidly varying whole-brain connectivity that are significantly associated with schizophrenia as a broad diagnosis as well as with certain symptoms of this serious disorder. Importantly, we show that relative to conventional hidden Markov modeling with single-frame unvarying dFNC summary states, EVOdFNCs are more sensitive to positive symptoms of schizophrenia including hallucinations and delusions, suggesting that a more dynamic characterization is needed to help illuminate such a complex brain disorder.
Collapse
Affiliation(s)
- Robyn L. Miller
- The Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): Georgia State University, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- *Correspondence: Robyn L. Miller,
| | - Victor M. Vergara
- The Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): Georgia State University, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | | | - Vince D. Calhoun
- The Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): Georgia State University, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| |
Collapse
|
26
|
Yu Y, Oh Y, Kounios J, Beeman M. Dynamics of hidden brain states when people solve verbal puzzles. Neuroimage 2022; 255:119202. [PMID: 35427772 DOI: 10.1016/j.neuroimage.2022.119202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/10/2022] [Accepted: 04/08/2022] [Indexed: 11/19/2022] Open
Abstract
When people try to solve a problem, they go through distinct steps (encoding, ideation, evaluation, etc.) recurrently and spontaneously. To disentangle different cognitive processes that unfold throughout a trial, we applied an unsupervised machine learning method to electroencephalogram (EEG) data continuously recorded while 39 participants attempted 153 Compound Remote Associates problems (CRA). CRA problems are verbal puzzles that can be solved in either insight-leaning or analysis-leaning manner. We fitted a Hidden Markov Model to the time-frequency transformed EEG signals and decoded each trial as a time-resolved state sequence. The model characterizes hidden brain states with spectrally resolved power topography. Seven states were identified with distinct activation patterns in the theta (4-7 Hz), alpha (8-9 Hz and 10-13 Hz), and gamma (25-50 Hz) bands. Notably, a state featuring widespread activation only in alpha-band frequency emerged, from this data-driven approach, which exhibited dynamic characteristics associated with specific temporal stages and outcomes (whether solved with insight or analysis) of the trials. The state dynamics derived from the model overlap and extend previous literature on the cognitive function of alpha oscillation: the "alpha-state" probability peaks before stimulus onset and decreases before response. In trials solved with insight, relative to solved with analysis, the alpha-state is more likely to be visited and maintained during preparation and solving periods, and its probability declines more sharply immediately preceding a response. This novel paradigm provides a way to extract dynamic features that characterize problem-solving stages and potentially provide a novel window into the nature of the underlying cognitive processes.
Collapse
Affiliation(s)
- Yuhua Yu
- Department of Psychology, Northwestern University, Evanston, IL, USA.
| | - Yongtaek Oh
- Department of Psychology, Drexel University, Philadelphia, PA, USA
| | - John Kounios
- Department of Psychology, Drexel University, Philadelphia, PA, USA
| | - Mark Beeman
- Department of Psychology, Northwestern University, Evanston, IL, USA
| |
Collapse
|
27
|
Zhao Y, Nebel MB, Caffo BS, Mostofsky SH, Rosch KS. Beyond Massive Univariate Tests: Covariance Regression Reveals Complex Patterns of Functional Connectivity Related to Attention-Deficit/Hyperactivity Disorder, Age, Sex, and Response Control. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 2:8-16. [PMID: 35528865 PMCID: PMC9074810 DOI: 10.1016/j.bpsgos.2021.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Studies of brain functional connectivity (FC) typically involve massive univariate tests, performing statistical analysis on each individual connection. In this study, we apply a novel whole-matrix regression approach referred to as covariate assisted principal regression to identify resting-state FC brain networks associated with attention-deficit/hyperactivity disorder (ADHD) and response control. Methods Participants included 8- to 12-year-old children with ADHD (n = 115; 29 girls) and typically developing control children (n = 102; 35 girls) who completed a resting-state functional magnetic resonance imaging scan and a Go/NoGo task. We modeled three sets of covariates to identify resting-state networks associated with an ADHD diagnosis, sex, and response inhibition (commission errors) and variability (ex-Gaussian parameter tau). Results The first network includes FC between striatal-cognitive control (CC) network subregions and thalamic-default mode network (DMN) subregions and is positively related to age. The second consists of FC between CC-visual-somatomotor regions and between CC-DMN subregions and is positively associated with response variability in boys with ADHD. The third consists of FC within the DMN and between DMN-CC-visual regions and differs between boys with and without ADHD. The fourth consists of FC between visual-somatomotor regions and between visual-DMN regions and differs between girls and boys with ADHD and is associated with response inhibition and variability in boys with ADHD. Unique networks were also identified in each of the three models, suggesting some specificity to the covariates of interest. Conclusions These findings demonstrate the utility of our novel covariance regression approach to studying functional brain networks relevant for development, behavior, and psychopathology.
Collapse
|
28
|
Martin CG, He BJ, Chang C. State-related neural influences on fMRI connectivity estimation. Neuroimage 2021; 244:118590. [PMID: 34560268 PMCID: PMC8815005 DOI: 10.1016/j.neuroimage.2021.118590] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 12/01/2022] Open
Abstract
The spatiotemporal structure of functional magnetic resonance imaging (fMRI) signals has provided a valuable window into the network underpinnings of human brain function and dysfunction. Although some cross-regional temporal correlation patterns (functional connectivity; FC) exhibit a high degree of stability across individuals and species, there is growing acknowledgment that measures of FC can exhibit marked changes over a range of temporal scales. Further, FC can covary with experimental task demands and ongoing neural processes linked to arousal, consciousness and perception, cognitive and affective state, and brain-body interactions. The increased recognition that such interrelated neural processes modulate FC measurements has raised both challenges and new opportunities in using FC to investigate brain function. Here, we review recent advances in the quantification of neural effects that shape fMRI FC and discuss the broad implications of these findings in the design and analysis of fMRI studies. We also discuss how a more complete understanding of the neural factors that shape FC measurements can resolve apparent inconsistencies in the literature and lead to more interpretable conclusions from fMRI studies.
Collapse
Affiliation(s)
- Caroline G Martin
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Biyu J He
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA; Departments of Neurology, Neuroscience & Physiology, and Radiology, New York University School of Medicine, New York, NY 10016, USA
| | - Catie Chang
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
29
|
Jeong SO, Kang J, Pae C, Eo J, Park SM, Son J, Park HJ. Empirical Bayes estimation of pairwise maximum entropy model for nonlinear brain state dynamics. Neuroimage 2021; 244:118618. [PMID: 34571159 DOI: 10.1016/j.neuroimage.2021.118618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
The pairwise maximum entropy model (pMEM) has recently gained widespread attention to exploring the nonlinear characteristics of brain state dynamics observed in resting-state functional magnetic resonance imaging (rsfMRI). Despite its unique advantageous features, the practical application of pMEM for individuals is limited as it requires a much larger sample than conventional rsfMRI scans. Thus, this study proposes an empirical Bayes estimation of individual pMEM using the variational expectation-maximization algorithm (VEM-MEM). The performance of the VEM-MEM is evaluated for several simulation setups with various sample sizes and network sizes. Unlike conventional maximum likelihood estimation procedures, the VEM-MEM can reliably estimate the individual model parameters, even with small samples, by effectively incorporating the group information as the prior. As a test case, the individual rsfMRI of children with attention deficit hyperactivity disorder (ADHD) is analyzed compared to that of typically developed children using the default mode network, executive control network, and salient network, obtained from the Healthy Brain Network database. We found that the nonlinear dynamic properties uniquely established on the pMEM differ for each group. Furthermore, pMEM parameters are more sensitive to group differences and are better associated with the behavior scores of ADHD compared to the Pearson correlation-based functional connectivity. The simulation and experimental results suggest that the proposed method can reliably estimate the individual pMEM and characterize the dynamic properties of individuals by utilizing empirical information of the group brain state dynamics.
Collapse
Affiliation(s)
- Seok-Oh Jeong
- Department of Statistics, Hankuk University of Foreign Studies, Yong-In, Republic of Korea
| | - Jiyoung Kang
- Center for Systems and Translational Brain Science, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea; Department of Nuclear Medicine, Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chongwon Pae
- Center for Systems and Translational Brain Science, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea; Department of Nuclear Medicine, Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jinseok Eo
- Center for Systems and Translational Brain Science, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea; Department of Nuclear Medicine, Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea; Graduate School of Medical Science, Yonsei University College of Medicine, Brain Korea 21 Project, Seoul, Republic of Korea
| | - Sung Min Park
- Center for Systems and Translational Brain Science, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea
| | - Junho Son
- Center for Systems and Translational Brain Science, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea; Department of Nuclear Medicine, Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea; Graduate School of Medical Science, Yonsei University College of Medicine, Brain Korea 21 Project, Seoul, Republic of Korea
| | - Hae-Jeong Park
- Center for Systems and Translational Brain Science, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea; Department of Nuclear Medicine, Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea; Graduate School of Medical Science, Yonsei University College of Medicine, Brain Korea 21 Project, Seoul, Republic of Korea; Department of Cognitive Science, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
30
|
Park HJ, Eo J, Pae C, Son J, Park SM, Kang J. State-Dependent Effective Connectivity in Resting-State fMRI. Front Neural Circuits 2021; 15:719364. [PMID: 34776875 PMCID: PMC8579116 DOI: 10.3389/fncir.2021.719364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/22/2021] [Indexed: 01/02/2023] Open
Abstract
The human brain at rest exhibits intrinsic dynamics transitioning among the multiple metastable states of the inter-regional functional connectivity. Accordingly, the demand for exploring the state-specific functional connectivity increases for a deeper understanding of mental diseases. Functional connectivity, however, lacks information about the directed causal influences among the brain regions, called effective connectivity. This study presents the dynamic causal modeling (DCM) framework to explore the state-dependent effective connectivity using spectral DCM for the resting-state functional MRI (rsfMRI). We established the sequence of brain states using the hidden Markov model with the multivariate autoregressive coefficients of rsfMRI, summarizing the functional connectivity. We decomposed the state-dependent effective connectivity using a parametric empirical Bayes scheme that models the effective connectivity of consecutive windows with the time course of the discrete states as regressors. We showed the plausibility of the state-dependent effective connectivity analysis in a simulation setting. To test the clinical applicability, we applied the proposed method to characterize the state- and subtype-dependent effective connectivity of the default mode network in children with combined-type attention deficit hyperactivity disorder (ADHD-C) compared with age-matched, typically developed children (TDC). All 88 children were subtyped according to the occupation times (i.e., dwell times) of the three dominant functional connectivity states, independently of clinical diagnosis. The state-dependent effective connectivity differences between ADHD-C and TDC according to the subtypes and those between the subtypes of ADHD-C were expressed mainly in self-inhibition, magnifying the importance of excitation inhibition balance in the subtyping. These findings provide a clear motivation for decomposing the state-dependent dynamic effective connectivity and state-dependent analysis of the directed coupling in exploring mental diseases.
Collapse
Affiliation(s)
- Hae-Jeong Park
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Department of Psychiatry, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 Project, Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Center for Systems and Translational Brain Science, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, South Korea.,Department of Cognitive Science, Yonsei University, Seoul, South Korea
| | - Jinseok Eo
- Brain Korea 21 Project, Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Center for Systems and Translational Brain Science, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, South Korea
| | - Chongwon Pae
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Department of Psychiatry, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 Project, Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Center for Systems and Translational Brain Science, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, South Korea
| | - Junho Son
- Brain Korea 21 Project, Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Center for Systems and Translational Brain Science, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, South Korea
| | - Sung Min Park
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Department of Psychiatry, Yonsei University College of Medicine, Seoul, South Korea
| | - Jiyoung Kang
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Department of Psychiatry, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 Project, Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Center for Systems and Translational Brain Science, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, South Korea
| |
Collapse
|
31
|
Neuroimaging in Attention-Deficit/Hyperactivity Disorder: Recent Advances. AJR. AMERICAN JOURNAL OF ROENTGENOLOGY 2021; 218:321-332. [PMID: 34406053 DOI: 10.2214/ajr.21.26316] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental condition, leading to impaired attention and impulsive behaviors diagnosed in, but not limited to, children. ADHD can cause symptoms throughout life. This article summarizes structural (conventional, volumetric, and diffusion tensor imaging MRI) and functional [task-based functional MRI (fMRI), resting state fMRI, PET, and MR spectroscopy] brain findings in patients with ADHD. Consensus is lacking regarding altered anatomic or functional imaging findings of the brain in children with ADHD, likely because of the disorder's heterogeneity. Most anatomic studies report abnormalities in the frontal lobes, basal ganglia, and corpus callosum; decreased surface area in the left ventral frontal and right prefrontal cortex; thinner medial temporal lobes; and smaller caudate nuclei. Using fMRI, researchers have focused on the prefrontal and temporal regions, reflecting perception-action mapping alterations. Artificial intelligence models evaluating brain anatomy have highlighted changes in cortical thickness and shape of the inferior frontal cortex, bilateral sensorimotor cortex, left temporal lobe, and insula. Early intervention and/or normal brain maturation can alter imaging patterns and convert functional imaging studies to a normal pattern. While the imaging findings provide insight into the disease's neuropathophysiology, no definitive structural or functional pattern defines the disorder from a neuroradiologic perspective.
Collapse
|
32
|
Duffy KA, Rosch KS, Nebel MB, Seymour KE, Lindquist MA, Pekar JJ, Mostofsky SH, Cohen JR. Increased integration between default mode and task-relevant networks in children with ADHD is associated with impaired response control. Dev Cogn Neurosci 2021; 50:100980. [PMID: 34252881 PMCID: PMC8278154 DOI: 10.1016/j.dcn.2021.100980] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/03/2021] [Accepted: 06/17/2021] [Indexed: 01/22/2023] Open
Abstract
Default mode network (DMN) dysfunction is theorized to play a role in attention lapses and task errors in children with attention-deficit/hyperactivity disorder (ADHD). In ADHD, the DMN is hyperconnected to task-relevant networks, and both increased functional connectivity and reduced activation are related to poor task performance. The current study extends existing literature by considering interactions between the DMN and task-relevant networks from a brain network perspective and by assessing how these interactions relate to response control. We characterized both static and time-varying functional brain network organization during the resting state in 43 children with ADHD and 43 age-matched typically developing (TD) children. We then related aspects of network integration to go/no-go performance. We calculated participation coefficient (PC), a measure of a region’s inter-network connections, for regions of the DMN, canonical cognitive control networks (fronto-parietal, salience/cingulo-opercular), and motor-related networks (somatomotor, subcortical). Mean PC was higher in children with ADHD as compared to TD children, indicating greater integration across networks. Further, higher and less variable PC was related to greater commission error rate in children with ADHD. Together, these results inform our understanding of the role of the DMN and its interactions with task-relevant networks in response control deficits in ADHD. The DMN is more integrated with task-relevant networks in children with ADHD. Higher and less variable DMN integration relates to poorer response control in ADHD. DMN dysfunction may play a key role in response control deficits in ADHD.
Collapse
Affiliation(s)
- Kelly A Duffy
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Keri S Rosch
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Mary Beth Nebel
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Karen E Seymour
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA; Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Martin A Lindquist
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - James J Pekar
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
| | - Stewart H Mostofsky
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Jessica R Cohen
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|