1
|
Kardan O, Jones N, Wheelock MD, Michael C, Angstadt M, Molloy MF, Cope LM, Martz MM, McCurry KL, Hardee JE, Rosenberg MD, Weigard AS, Hyde LW, Sripada C, Heitzeg MM. Assessing neurocognitive maturation in early adolescence based on baby and adult functional brain landscapes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615215. [PMID: 39386610 PMCID: PMC11463351 DOI: 10.1101/2024.09.26.615215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Adolescence is a period of growth in cognitive performance and functioning. Recently, data-driven measures of brain-age gap, which can index cognitive decline in older populations, have been utilized in adolescent data with mixed findings. Instead of using a data-driven approach, here we assess the maturation status of the brain functional landscape in early adolescence by directly comparing an individual's resting-state functional connectivity (rsFC) to the canonical early-life and adulthood communities. Specifically, we hypothesized that the degree to which a youth's connectome is better captured by adult networks compared to infant/toddler networks is predictive of their cognitive development. To test this hypothesis across individuals and longitudinally, we utilized the Adolescent Brain Cognitive Development (ABCD) Study at baseline (9-10 years; n = 6,489) and 2-year-follow-up (Y2: 11-12 years; n = 5,089). Adjusted for demographic factors, our anchored rsFC score (AFC) was associated with better task performance both across and within participants. AFC was related to age and aging across youth, and change in AFC statistically mediated the age-related change in task performance. In conclusion, we showed that a model-fitting-free index of the brain at rest that is anchored to both adult and baby connectivity landscapes predicts cognitive performance and development in youth.
Collapse
Affiliation(s)
- Omid Kardan
- University of Michigan, Department of Psychiatry; Ann Arbor, MI
| | - Natasha Jones
- University of Michigan, Department of Psychology; Ann Arbor, MI
| | - Muriah D Wheelock
- Washington University in St. Louis, Department of Radiology; St. Louis, MO
| | | | - Mike Angstadt
- University of Michigan, Department of Psychiatry; Ann Arbor, MI
| | - M Fiona Molloy
- University of Michigan, Department of Psychiatry; Ann Arbor, MI
| | - Lora M Cope
- University of Michigan, Department of Psychiatry; Ann Arbor, MI
| | - Meghan M Martz
- University of Michigan, Department of Psychiatry; Ann Arbor, MI
| | | | | | | | | | - Luke W Hyde
- University of Michigan, Department of Psychology; Ann Arbor, MI
| | - Chandra Sripada
- University of Michigan, Department of Psychiatry; Ann Arbor, MI
| | - Mary M Heitzeg
- University of Michigan, Department of Psychiatry; Ann Arbor, MI
| |
Collapse
|
2
|
Ng C, Huang P, Cho Y, Lee P, Liu Y, Chang T. Frontoparietal and salience network synchronizations during nonsymbolic magnitude processing predict brain age and mathematical performance in youth. Hum Brain Mapp 2024; 45:e26777. [PMID: 39046114 PMCID: PMC11267564 DOI: 10.1002/hbm.26777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
The development and refinement of functional brain circuits crucial to human cognition is a continuous process that spans from childhood to adulthood. Research increasingly focuses on mapping these evolving configurations, with the aim to identify markers for functional impairments and atypical development. Among human cognitive systems, nonsymbolic magnitude representations serve as a foundational building block for future success in mathematical learning and achievement for individuals. Using task-based frontoparietal (FPN) and salience network (SN) features during nonsymbolic magnitude processing alongside machine learning algorithms, we developed a framework to construct brain age prediction models for participants aged 7-30. Our study revealed differential developmental profiles in the synchronization within and between FPN and SN networks. Specifically, we observed a linear increase in FPN connectivity, concomitant with a decline in SN connectivity across the age span. A nonlinear U-shaped trajectory in the connectivity between the FPN and SN was discerned, revealing reduced FPN-SN synchronization among adolescents compared to both pediatric and adult cohorts. Leveraging the Gradient Boosting machine learning algorithm and nested fivefold stratified cross-validation with independent training datasets, we demonstrated that functional connectivity measures of the FPN and SN nodes predict chronological age, with a correlation coefficient of .727 and a mean absolute error of 2.944 between actual and predicted ages. Notably, connectivity within the FPN emerged as the most contributing feature for age prediction. Critically, a more matured brain age estimate is associated with better arithmetic performance. Our findings shed light on the intricate developmental changes occurring in the neural networks supporting magnitude representations. We emphasize brain age estimation as a potent tool for understanding cognitive development and its relationship to mathematical abilities across the critical developmental period of youth. PRACTITIONER POINTS: This study investigated the prolonged changes in the brain's architecture across childhood, adolescence, and adulthood, with a focus on task-state frontoparietal and salience networks. Distinct developmental pathways were identified: frontoparietal synchronization strengthens consistently throughout development, while salience network connectivity diminishes with age. Furthermore, adolescents show a unique dip in connectivity between these networks. Leveraging advanced machine learning methods, we accurately predicted individuals' ages based on these brain circuits, with a more mature estimated brain age correlating with better math skills.
Collapse
Affiliation(s)
- Chan‐Tat Ng
- Department of PsychologyNational Chengchi UniversityTaipeiTaiwan
| | - Po‐Hsien Huang
- Department of PsychologyNational Chengchi UniversityTaipeiTaiwan
- Research Center for Mind, Brain & LearningNational Chengchi UniversityTaipeiTaiwan
| | - Yi‐Cheng Cho
- Department of PsychologyNational Chengchi UniversityTaipeiTaiwan
| | - Pei‐Hong Lee
- Research Center for Mind, Brain & LearningNational Chengchi UniversityTaipeiTaiwan
| | - Yi‐Chang Liu
- Research Center for Mind, Brain & LearningNational Chengchi UniversityTaipeiTaiwan
| | - Ting‐Ting Chang
- Department of PsychologyNational Chengchi UniversityTaipeiTaiwan
- Research Center for Mind, Brain & LearningNational Chengchi UniversityTaipeiTaiwan
| |
Collapse
|
3
|
Dufumier B, Gori P, Petiton S, Louiset R, Mangin JF, Grigis A, Duchesnay E. Exploring the potential of representation and transfer learning for anatomical neuroimaging: Application to psychiatry. Neuroimage 2024; 296:120665. [PMID: 38848981 DOI: 10.1016/j.neuroimage.2024.120665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/15/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024] Open
Abstract
The perspective of personalized medicine for brain disorders requires efficient learning models for anatomical neuroimaging-based prediction of clinical conditions. There is now a consensus on the benefit of deep learning (DL) in addressing many medical imaging tasks, such as image segmentation. However, for single-subject prediction problems, recent studies yielded contradictory results when comparing DL with Standard Machine Learning (SML) on top of classical feature extraction. Most existing comparative studies were limited in predicting phenotypes of little clinical interest, such as sex and age, and using a single dataset. Moreover, they conducted a limited analysis of the employed image pre-processing and feature selection strategies. This paper extensively compares DL and SML prediction capacity on five multi-site problems, including three increasingly complex clinical applications in psychiatry namely schizophrenia, bipolar disorder, and Autism Spectrum Disorder (ASD) diagnosis. To compensate for the relative scarcity of neuroimaging data on these clinical datasets, we also evaluate three pre-training strategies for transfer learning from brain imaging of the general healthy population: self-supervised learning, generative modeling and supervised learning with age. Overall, we find similar performance between randomly initialized DL and SML for the three clinical tasks and a similar scaling trend for sex prediction. This was replicated on an external dataset. We also show highly correlated discriminative brain regions between DL and linear ML models in all problems. Nonetheless, we demonstrate that self-supervised pre-training on large-scale healthy population imaging datasets (N≈10k), along with Deep Ensemble, allows DL to learn robust and transferable representations to smaller-scale clinical datasets (N≤1k). It largely outperforms SML on 2 out of 3 clinical tasks both in internal and external test sets. These findings suggest that the improvement of DL over SML in anatomical neuroimaging mainly comes from its capacity to learn meaningful and useful abstract representations of the brain anatomy, and it sheds light on the potential of transfer learning for personalized medicine in psychiatry.
Collapse
Affiliation(s)
- Benoit Dufumier
- Université Paris-Saclay, CEA, CNRS, UMR9027 Baobab, NeuroSpin, Saclay, France; LTCI, Télécom Paris, IPParis, Palaiseau, France.
| | - Pietro Gori
- LTCI, Télécom Paris, IPParis, Palaiseau, France
| | - Sara Petiton
- Université Paris-Saclay, CEA, CNRS, UMR9027 Baobab, NeuroSpin, Saclay, France
| | - Robin Louiset
- Université Paris-Saclay, CEA, CNRS, UMR9027 Baobab, NeuroSpin, Saclay, France; LTCI, Télécom Paris, IPParis, Palaiseau, France
| | | | - Antoine Grigis
- Université Paris-Saclay, CEA, CNRS, UMR9027 Baobab, NeuroSpin, Saclay, France
| | - Edouard Duchesnay
- Université Paris-Saclay, CEA, CNRS, UMR9027 Baobab, NeuroSpin, Saclay, France
| |
Collapse
|
4
|
Yu Y, Cui H, Haas SS, New F, Sanford N, Yu K, Zhan D, Yang G, Gao J, Wei D, Qiu J, Banaj N, Boomsma DI, Breier A, Brodaty H, Buckner RL, Buitelaar JK, Cannon DM, Caseras X, Clark VP, Conrod PJ, Crivello F, Crone EA, Dannlowski U, Davey CG, de Haan L, de Zubicaray GI, Di Giorgio A, Fisch L, Fisher SE, Franke B, Glahn DC, Grotegerd D, Gruber O, Gur RE, Gur RC, Hahn T, Harrison BJ, Hatton S, Hickie IB, Hulshoff Pol HE, Jamieson AJ, Jernigan TL, Jiang J, Kalnin AJ, Kang S, Kochan NA, Kraus A, Lagopoulos J, Lazaro L, McDonald BC, McDonald C, McMahon KL, Mwangi B, Piras F, Rodriguez‐Cruces R, Royer J, Sachdev PS, Satterthwaite TD, Saykin AJ, Schumann G, Sevaggi P, Smoller JW, Soares JC, Spalletta G, Tamnes CK, Trollor JN, Van't Ent D, Vecchio D, Walter H, Wang Y, Weber B, Wen W, Wierenga LM, Williams SCR, Wu M, Zunta‐Soares GB, Bernhardt B, Thompson P, Frangou S, Ge R. Brain-age prediction: Systematic evaluation of site effects, and sample age range and size. Hum Brain Mapp 2024; 45:e26768. [PMID: 38949537 PMCID: PMC11215839 DOI: 10.1002/hbm.26768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/15/2024] [Accepted: 06/10/2024] [Indexed: 07/02/2024] Open
Abstract
Structural neuroimaging data have been used to compute an estimate of the biological age of the brain (brain-age) which has been associated with other biologically and behaviorally meaningful measures of brain development and aging. The ongoing research interest in brain-age has highlighted the need for robust and publicly available brain-age models pre-trained on data from large samples of healthy individuals. To address this need we have previously released a developmental brain-age model. Here we expand this work to develop, empirically validate, and disseminate a pre-trained brain-age model to cover most of the human lifespan. To achieve this, we selected the best-performing model after systematically examining the impact of seven site harmonization strategies, age range, and sample size on brain-age prediction in a discovery sample of brain morphometric measures from 35,683 healthy individuals (age range: 5-90 years; 53.59% female). The pre-trained models were tested for cross-dataset generalizability in an independent sample comprising 2101 healthy individuals (age range: 8-80 years; 55.35% female) and for longitudinal consistency in a further sample comprising 377 healthy individuals (age range: 9-25 years; 49.87% female). This empirical examination yielded the following findings: (1) the accuracy of age prediction from morphometry data was higher when no site harmonization was applied; (2) dividing the discovery sample into two age-bins (5-40 and 40-90 years) provided a better balance between model accuracy and explained age variance than other alternatives; (3) model accuracy for brain-age prediction plateaued at a sample size exceeding 1600 participants. These findings have been incorporated into CentileBrain (https://centilebrain.org/#/brainAGE2), an open-science, web-based platform for individualized neuroimaging metrics.
Collapse
Affiliation(s)
- Yuetong Yu
- Djavad Mowafaghian Centre for Brain Health, Department of PsychiatryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Hao‐Qi Cui
- Djavad Mowafaghian Centre for Brain Health, Department of PsychiatryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Shalaila S. Haas
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Faye New
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Nicole Sanford
- Djavad Mowafaghian Centre for Brain Health, Department of PsychiatryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Kevin Yu
- Djavad Mowafaghian Centre for Brain Health, Department of PsychiatryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Denghuang Zhan
- School of Population and Public HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Guoyuan Yang
- Advanced Research Institute of Multidisciplinary Sciences, School of Medical Technology, School of Life ScienceBeijing Institute of TechnologyBeijingChina
| | - Jia‐Hong Gao
- Center for MRI ResearchPeking UniversityBeijingChina
| | - Dongtao Wei
- School of PsychologySouthwest UniversityChongqingChina
| | - Jiang Qiu
- School of PsychologySouthwest UniversityChongqingChina
| | - Nerisa Banaj
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral NeurologyIRCCS Santa Lucia FoundationRomeItaly
| | - Dorret I. Boomsma
- Department of Biological PsychologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Alan Breier
- Department of PsychiatryIndiana University School of MedicineIndianapolisIndianaUSA
| | - Henry Brodaty
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical MedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | - Randy L. Buckner
- Department of Psychology, Center for Brain ScienceHarvard UniversityBostonMassachusettsUSA
- Department of Psychiatry, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Jan K. Buitelaar
- Department of Cognitive NeuroscienceDonders Institute for Brain, Cognition and Behaviour, Radboud University Medical CenterNijmegenThe Netherlands
| | - Dara M. Cannon
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, Galway Neuroscience CentreCollege of Medicine Nursing and Health Sciences, University of GalwayGalwayIreland
| | - Xavier Caseras
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical NeurosciencesCardiff UniversityCardiffUK
| | - Vincent P. Clark
- Psychology Clinical Neuroscience Center, Department of PsychologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Patricia J. Conrod
- Department of Psychiatry and AddictionUniversité de Montréal, CHU Ste JustineMontrealQuebecCanada
| | - Fabrice Crivello
- Institut des Maladies NeurodégénérativesUniversité de BordeauxBordeauxFrance
| | - Eveline A. Crone
- Department of Psychology, Faculty of Social SciencesLeiden UniversityLeidenThe Netherlands
- Erasmus School of Social and Behavioral SciencesErasmus University RotterdamRotterdamThe Netherlands
| | - Udo Dannlowski
- Institute for Translational PsychiatryUniversity of MünsterMünsterGermany
| | | | - Lieuwe de Haan
- Department of PsychiatryAmsterdam UMCAmsterdamThe Netherlands
| | - Greig I. de Zubicaray
- Faculty of Health, School of Psychology & CounsellingQueensland University of TechnologyBrisbaneQueenslandAustralia
| | | | - Lukas Fisch
- Institute for Translational PsychiatryUniversity of MünsterMünsterGermany
| | - Simon E. Fisher
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Barbara Franke
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
- Department of Cognitive NeuroscienceRadboud University Medical CenterNijmegenThe Netherlands
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
| | - David C. Glahn
- Department of Psychiatry, Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Dominik Grotegerd
- Institute for Translational PsychiatryUniversity of MünsterMünsterGermany
| | - Oliver Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General PsychiatryHeidelberg UniversityHeidelbergGermany
| | - Raquel E. Gur
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ruben C. Gur
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Tim Hahn
- Institute for Translational PsychiatryUniversity of MünsterMünsterGermany
| | - Ben J. Harrison
- Department of PsychiatryThe University of MelbourneMelbourneVictoriaAustralia
| | - Sean Hatton
- Brain and Mind CentreThe University of SydneySydneyNew South WalesAustralia
| | - Ian B. Hickie
- Brain and Mind CentreThe University of SydneySydneyNew South WalesAustralia
| | - Hilleke E. Hulshoff Pol
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of PsychologyUtrecht UniversityUtrechtThe Netherlands
- Department of PsychiatryUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Alec J. Jamieson
- Department of PsychiatryThe University of MelbourneMelbourneVictoriaAustralia
| | - Terry L. Jernigan
- Center for Human Development, Departments of Cognitive Science, Psychiatry, and RadiologyUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Jiyang Jiang
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical MedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | - Andrew J. Kalnin
- Department of RadiologyThe Ohio State University College of MedicineColumbusOhioUSA
| | - Sim Kang
- West Region, Institute of Mental HealthSingaporeSingapore
| | - Nicole A. Kochan
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical MedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | - Anna Kraus
- Institute for Translational PsychiatryUniversity of MünsterMünsterGermany
| | - Jim Lagopoulos
- Brain and Mind CentreThe University of SydneySydneyNew South WalesAustralia
| | - Luisa Lazaro
- Department of Child and Adolescent Psychiatry and PsychologyHospital Clínic, IDIBAPS, CIBERSAM, University of BarcelonaBarcelonaSpain
| | - Brenna C. McDonald
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| | - Colm McDonald
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, Galway Neuroscience CentreCollege of Medicine Nursing and Health Sciences, University of GalwayGalwayIreland
| | - Katie L. McMahon
- School of Clinical Sciences, Centre for Biomedical TechnologiesQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Benson Mwangi
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral SciencesThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral NeurologyIRCCS Santa Lucia FoundationRomeItaly
| | | | - Jessica Royer
- McConnell Brain Imaging CentreMcGill UniversityMontrealQuebecCanada
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical MedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | | | - Andrew J. Saykin
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| | - Gunter Schumann
- Department of PsychiatryCCM, Charite Universitaetsmedizin BerlinBerlinGermany
- Centre for Population Neuroscience and Stratified Medicine (PONS), ISTBIFudan UniversityShanghaiChina
| | - Pierluigi Sevaggi
- Department of Translational Biomedicine and NeuroscienceUniversity of Bari Aldo MoroBariItaly
| | - Jordan W. Smoller
- Department of Psychiatry, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Center for Genomic MedicineMassachusetts General HospitalBostonMassachusettsUSA
- Center for Precision PsychiatryMassachusetts General HospitalBostonMassachusettsUSA
| | - Jair C. Soares
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral SciencesThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral NeurologyIRCCS Santa Lucia FoundationRomeItaly
| | - Christian K. Tamnes
- PROMENTA Research Center, Department of PsychologyUniversity of OsloOsloNorway
| | - Julian N. Trollor
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical MedicineUniversity of New South WalesSydneyNew South WalesAustralia
- Department of Developmental Disability Neuropsychiatry, School of Clinical MedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | - Dennis Van't Ent
- Department of Biological PsychologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Daniela Vecchio
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral NeurologyIRCCS Santa Lucia FoundationRomeItaly
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin BerlinCorporate Member of FU Berlin and Humboldt Universität zu BerlinBerlinGermany
| | - Yang Wang
- Department of RadiologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Bernd Weber
- Institute for Experimental Epileptology and Cognition ResearchUniversity of Bonn and University Hospital BonnBonnGermany
| | - Wei Wen
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical MedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | - Lara M. Wierenga
- Department of Psychology, Faculty of Social SciencesLeiden UniversityLeidenThe Netherlands
| | - Steven C. R. Williams
- Department of NeuroimagingInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Mon‐Ju Wu
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral SciencesThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Giovana B. Zunta‐Soares
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral SciencesThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Boris Bernhardt
- McConnell Brain Imaging CentreMcGill UniversityMontrealQuebecCanada
| | - Paul Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Sophia Frangou
- Djavad Mowafaghian Centre for Brain Health, Department of PsychiatryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ruiyang Ge
- Djavad Mowafaghian Centre for Brain Health, Department of PsychiatryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | | |
Collapse
|
5
|
Iyer KK, Roberts JA, Waak M, Vogrin SJ, Kevat A, Chawla J, Haataja LM, Lauronen L, Vanhatalo S, Stevenson NJ. A growth chart of brain function from infancy to adolescence based on EEG. EBioMedicine 2024; 102:105061. [PMID: 38537603 PMCID: PMC11026939 DOI: 10.1016/j.ebiom.2024.105061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND In children, objective, quantitative tools that determine functional neurodevelopment are scarce and rarely scalable for clinical use. Direct recordings of cortical activity using routinely acquired electroencephalography (EEG) offer reliable measures of brain function. METHODS We developed and validated a measure of functional brain age (FBA) using a residual neural network-based interpretation of the paediatric EEG. In this cross-sectional study, we included 1056 children with typical development ranging in age from 1 month to 18 years. We analysed a 10- to 15-min segment of 18-channel EEG recorded during light sleep (N1 and N2 states). FINDINGS The FBA had a weighted mean absolute error (wMAE) of 0.85 years (95% CI: 0.69-1.02; n = 1056). A two-channel version of the FBA had a wMAE of 1.51 years (95% CI: 1.30-1.73; n = 1056) and was validated on an independent set of EEG recordings (wMAE = 2.27 years, 95% CI: 1.90-2.65; n = 723). Group-level maturational delays were also detected in a small cohort of children with Trisomy 21 (Cohen's d = 0.36, p = 0.028). INTERPRETATION A FBA, based on EEG, is an accurate, practical and scalable automated tool to track brain function maturation throughout childhood with accuracy comparable to widely used physical growth charts. FUNDING This research was supported by the National Health and Medical Research Council, Australia, Helsinki University Diagnostic Center Research Funds, Finnish Academy, Finnish Paediatric Foundation, and Sigrid Juselius Foundation.
Collapse
Affiliation(s)
- Kartik K Iyer
- Brain Modelling Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia; Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| | - James A Roberts
- Brain Modelling Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Michaela Waak
- Faculty of Medicine, The University of Queensland, Brisbane, Australia; Queensland Children's Hospital, Brisbane, Australia
| | | | - Ajay Kevat
- Faculty of Medicine, The University of Queensland, Brisbane, Australia; Queensland Children's Hospital, Brisbane, Australia
| | - Jasneek Chawla
- Faculty of Medicine, The University of Queensland, Brisbane, Australia; Queensland Children's Hospital, Brisbane, Australia
| | - Leena M Haataja
- Departments of Physiology and Clinical Neurophysiology, BABA Center, Paediatric Research Center, Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Leena Lauronen
- Departments of Physiology and Clinical Neurophysiology, BABA Center, Paediatric Research Center, Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Sampsa Vanhatalo
- Departments of Physiology and Clinical Neurophysiology, BABA Center, Paediatric Research Center, Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Nathan J Stevenson
- Brain Modelling Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| |
Collapse
|
6
|
Guan S, Jiang R, Meng C, Biswal B. Brain age prediction across the human lifespan using multimodal MRI data. GeroScience 2024; 46:1-20. [PMID: 37733220 PMCID: PMC10828281 DOI: 10.1007/s11357-023-00924-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
Measuring differences between an individual's age and biological age with biological information from the brain have the potential to provide biomarkers of clinically relevant neurological syndromes that arise later in human life. To explore the effect of multimodal brain magnetic resonance imaging (MRI) features on the prediction of brain age, we investigated how multimodal brain imaging data improved age prediction from more imaging features of structural or functional MRI data by using partial least squares regression (PLSR) and longevity data sets (age 6-85 years). First, we found that the age-predicted values for each of these ten features ranged from high to low: cortical thickness (R = 0.866, MAE = 7.904), all seven MRI features (R = 0.8594, MAE = 8.24), four features in structural MRI (R = 0.8591, MAE = 8.24), fALFF (R = 0.853, MAE = 8.1918), gray matter volume (R = 0.8324, MAE = 8.931), three rs-fMRI feature (R = 0.7959, MAE = 9.744), mean curvature (R = 0.7784, MAE = 10.232), ReHo (R = 0.7833, MAE = 10.122), ALFF (R = 0.7517, MAE = 10.844), and surface area (R = 0.719, MAE = 11.33). In addition, the significance of the volume and size of brain MRI data in predicting age was also studied. Second, our results suggest that all multimodal imaging features, except cortical thickness, improve brain-based age prediction. Third, we found that the left hemisphere contributed more to the age prediction, that is, the left hemisphere showed a greater weight in the age prediction than the right hemisphere. Finally, we found a nonlinear relationship between the predicted age and the amount of MRI data. Combined with multimodal and lifespan brain data, our approach provides a new perspective for chronological age prediction and contributes to a better understanding of the relationship between brain disorders and aging.
Collapse
Affiliation(s)
- Sihai Guan
- College of Electronic and Information, Southwest Minzu University, Chengdu, 610041, China.
- Key Laboratory of Electronic and Information Engineering, State Ethnic Affairs Commission, Chengdu, 610041, China.
| | - Runzhou Jiang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
- Medical Equipment Department, Xiangyang No. 1 People's Hospital, Xiangyang, 441000, China
| | - Chun Meng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Bharat Biswal
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China.
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|
7
|
Wu Y, Chen Y, Yang Y, Lin C, Su S, Zhao J, Wu S, Wu G, Liu H, Liu X, Yang Z, Zhang J, Huang B. Predicting brain age using partition modeling strategy and atlas-based attentional enhancement in the Chinese population. Cereb Cortex 2024; 34:bhae030. [PMID: 38342684 DOI: 10.1093/cercor/bhae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 02/13/2024] Open
Abstract
As a biomarker of human brain health during development, brain age is estimated based on subtle differences in brain structure from those under typical developmental. Magnetic resonance imaging (MRI) is a routine diagnostic method in neuroimaging. Brain age prediction based on MRI has been widely studied. However, few studies based on Chinese population have been reported. This study aimed to construct a brain age predictive model for the Chinese population across its lifespan. We developed a partition prediction method based on transfer learning and atlas attention enhancement. The participants were separated into four age groups, and a deep learning model was trained for each group to identify the brain regions most critical for brain age prediction. The Atlas attention-enhancement method was also used to help the models focus only on critical brain regions. The proposed method was validated using 354 participants from domestic datasets. For prediction performance in the testing sets, the mean absolute error was 2.218 ± 1.801 years, and the Pearson correlation coefficient (r) was 0.969, exceeding previous results for wide-range brain age prediction. In conclusion, the proposed method could provide brain age estimation to assist in assessing the status of brain health.
Collapse
Affiliation(s)
- Yingtong Wu
- Medical AI Lab, School of Biomedical Engineering, Medical School, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen 518060, Guangdong Province, China
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen 518060, Guangdong Province, China
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, Guangdong Province, China
| | - Yingqian Chen
- Department of Radiology, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Second Road, Guangzhou 510080, Guangdong Province, China
| | - Yang Yang
- Department of Radiology, Suining Central Hospital, 127 Desheng West Road, Suining 629099, Sichuan Province, China
- Medical Imaging Center of Guizhou Province, Department of Radiology, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi 563000, Guizhou Province, China
| | - Chuxuan Lin
- Medical AI Lab, School of Biomedical Engineering, Medical School, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen 518060, Guangdong Province, China
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen 518060, Guangdong Province, China
| | - Shu Su
- Department of Radiology, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Second Road, Guangzhou 510080, Guangdong Province, China
| | - Jing Zhao
- Department of Radiology, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Second Road, Guangzhou 510080, Guangdong Province, China
| | - Songxiong Wu
- Radiology Department, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen 518060, Guangdong Province, China
| | - Guangyao Wu
- Radiology Department, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen 518060, Guangdong Province, China
| | - Heng Liu
- Medical Imaging Center of Guizhou Province, Department of Radiology, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi 563000, Guizhou Province, China
| | - Xia Liu
- Department of Radiology, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, 1080 Cuizhu Road, Shenzhen 518118, Guangdong Province, China
| | - Zhiyun Yang
- Department of Radiology, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Second Road, Guangzhou 510080, Guangdong Province, China
| | - Jian Zhang
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, 1068 Xueyuan Avenue, Shenzhen 518055, Guangdong Province, China
- School of Pharmaceutical Sciences, Medical School, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen 518060, Guangdong Province, China
| | - Bingsheng Huang
- Medical AI Lab, School of Biomedical Engineering, Medical School, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen 518060, Guangdong Province, China
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen 518060, Guangdong Province, China
| |
Collapse
|
8
|
Kalyakulina A, Yusipov I, Moskalev A, Franceschi C, Ivanchenko M. eXplainable Artificial Intelligence (XAI) in aging clock models. Ageing Res Rev 2024; 93:102144. [PMID: 38030090 DOI: 10.1016/j.arr.2023.102144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
XAI is a rapidly progressing field of machine learning, aiming to unravel the predictions of complex models. XAI is especially required in sensitive applications, e.g. in health care, when diagnosis, recommendations and treatment choices might rely on the decisions made by artificial intelligence systems. AI approaches have become widely used in aging research as well, in particular, in developing biological clock models and identifying biomarkers of aging and age-related diseases. However, the potential of XAI here awaits to be fully appreciated. We discuss the application of XAI for developing the "aging clocks" and present a comprehensive analysis of the literature categorized by the focus on particular physiological systems.
Collapse
Affiliation(s)
- Alena Kalyakulina
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod 603022, Russia; Research Center for Trusted Artificial Intelligence, The Ivannikov Institute for System Programming of the Russian Academy of Sciences, Moscow 109004, Russia; Department of Applied Mathematics, Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod 603022, Russia.
| | - Igor Yusipov
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod 603022, Russia; Research Center for Trusted Artificial Intelligence, The Ivannikov Institute for System Programming of the Russian Academy of Sciences, Moscow 109004, Russia; Department of Applied Mathematics, Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod 603022, Russia
| | - Alexey Moskalev
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod 603022, Russia
| | - Claudio Franceschi
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod 603022, Russia
| | - Mikhail Ivanchenko
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod 603022, Russia; Department of Applied Mathematics, Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod 603022, Russia
| |
Collapse
|
9
|
Griffiths-King D, Wood AG, Novak J. Predicting 'Brainage' in late childhood to adolescence (6-17yrs) using structural MRI, morphometric similarity, and machine learning. Sci Rep 2023; 13:15591. [PMID: 37730747 PMCID: PMC10511546 DOI: 10.1038/s41598-023-42414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023] Open
Abstract
Brain development is regularly studied using structural MRI. Recently, studies have used a combination of statistical learning and large-scale imaging databases of healthy children to predict an individual's age from structural MRI. This data-driven, predicted 'Brainage' typically differs from the subjects chronological age, with this difference a potential measure of individual difference. Few studies have leveraged higher-order or connectomic representations of structural MRI data for this Brainage approach. We leveraged morphometric similarity as a network-level approach to structural MRI to generate predictive models of age. We benchmarked these novel Brainage approaches using morphometric similarity against more typical, single feature (i.e., cortical thickness) approaches. We showed that these novel methods did not outperform cortical thickness or cortical volume measures. All models were significantly biased by age, but robust to motion confounds. The main results show that, whilst morphometric similarity mapping may be a novel way to leverage additional information from a T1-weighted structural MRI beyond individual features, in the context of a Brainage framework, morphometric similarity does not provide more accurate predictions of age. Morphometric similarity as a network-level approach to structural MRI may be poorly positioned to study individual differences in brain development in healthy participants in this way.
Collapse
Affiliation(s)
- Daniel Griffiths-King
- Aston Institute of Health and Neurodevelopment, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Amanda G Wood
- Aston Institute of Health and Neurodevelopment, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK
- School of Psychology, Faculty of Health, Melbourne Burwood Campus, Deakin University, Geelong, VIC, Australia
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Jan Novak
- Aston Institute of Health and Neurodevelopment, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
10
|
Zhou Z, Li H, Srinivasan D, Abdulkadir A, Nasrallah IM, Wen J, Doshi J, Erus G, Mamourian E, Bryan NR, Wolk DA, Beason-Held L, Resnick SM, Satterthwaite TD, Davatzikos C, Shou H, Fan Y. Multiscale functional connectivity patterns of the aging brain learned from harmonized rsfMRI data of the multi-cohort iSTAGING study. Neuroimage 2023; 269:119911. [PMID: 36731813 PMCID: PMC9992322 DOI: 10.1016/j.neuroimage.2023.119911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/06/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023] Open
Abstract
To learn multiscale functional connectivity patterns of the aging brain, we built a brain age prediction model of functional connectivity measures at seven scales on a large fMRI dataset, consisting of resting-state fMRI scans of 4186 individuals with a wide age range (22 to 97 years, with an average of 63) from five cohorts. We computed multiscale functional connectivity measures of individual subjects using a personalized functional network computational method, harmonized the functional connectivity measures of subjects from multiple datasets in order to build a functional brain age model, and finally evaluated how functional brain age gap correlated with cognitive measures of individual subjects. Our study has revealed that functional connectivity measures at multiple scales were more informative than those at any single scale for the brain age prediction, the data harmonization significantly improved the brain age prediction performance, and the data harmonization in the functional connectivity measures' tangent space worked better than in their original space. Moreover, brain age gap scores of individual subjects derived from the brain age prediction model were significantly correlated with clinical and cognitive measures. Overall, these results demonstrated that multiscale functional connectivity patterns learned from a large-scale multi-site rsfMRI dataset were informative for characterizing the aging brain and the derived brain age gap was associated with cognitive and clinical measures.
Collapse
Affiliation(s)
- Zhen Zhou
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Hongming Li
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dhivya Srinivasan
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ahmed Abdulkadir
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ilya M Nasrallah
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Junhao Wen
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jimit Doshi
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Guray Erus
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Elizabeth Mamourian
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nick R Bryan
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Diagnostic Medicine, University of Texas at Austin, Austin, TX, 78705, USA
| | - David A Wolk
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Neurology and Penn Memory Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lori Beason-Held
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, 20892, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, 20892, USA
| | - Theodore D Satterthwaite
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Penn Statistic in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Brain Behavior Laboratory and Penn-CHOP Lifespan Brain Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Haochang Shou
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Penn Statistic in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yong Fan
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
11
|
Griffiths-King DJ, Wood AG, Novak J. Predicting 'Brainage' in the Developmental Period using Structural MRI, Morphometric Similarity, and Machine Learning. RESEARCH SQUARE 2023:rs.3.rs-2583936. [PMID: 36909598 PMCID: PMC10002817 DOI: 10.21203/rs.3.rs-2583936/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Brain development is regularly studied using structural MRI. Recently, studies have used a combination of statistical learning and large-scale imaging databases of healthy-children to predict an individual's age from structural MRI. This data-driven, 'brainage' typically differs from the subjects chronological age, with this difference a potential measure of individual difference. Few studies have leveraged higher-order or connectomic representations of structural MRI data for this brainage approach. We leveraged morphometric similarity as a network-level approach to structural MRI to generate predictive models of age. We benchmarked these novel brain-age approaches using morphometric similarity against more typical, single feature (i.e. cortical thickness) approaches. We showed that these novel methods did not outperform cortical thickness or cortical volume measures. All models were significantly biased by age, but robust to motion confounds. The main results show that, whilst morphometric similarity mapping may be a novel way to leverage additional information from a T1-weighted structural MRI beyond individual features, in the context of a brain-age framework, morphometric similarity does not explain more variance than individual structural features. Morphometric similarity as a network-level approach to structural MRI may be poorly positioned to study individual differences in brain development in healthy individuals.
Collapse
|
12
|
Ballester PL, Suh JS, Ho NCW, Liang L, Hassel S, Strother SC, Arnott SR, Minuzzi L, Sassi RB, Lam RW, Milev R, Müller DJ, Taylor VH, Kennedy SH, Reilly JP, Palaniyappan L, Dunlop K, Frey BN. Gray matter volume drives the brain age gap in schizophrenia: a SHAP study. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:3. [PMID: 36624107 PMCID: PMC9829754 DOI: 10.1038/s41537-022-00330-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023]
Abstract
Neuroimaging-based brain age is a biomarker that is generated by machine learning (ML) predictions. The brain age gap (BAG) is typically defined as the difference between the predicted brain age and chronological age. Studies have consistently reported a positive BAG in individuals with schizophrenia (SCZ). However, there is little understanding of which specific factors drive the ML-based brain age predictions, leading to limited biological interpretations of the BAG. We gathered data from three publicly available databases - COBRE, MCIC, and UCLA - and an additional dataset (TOPSY) of early-stage schizophrenia (82.5% untreated first-episode sample) and calculated brain age with pre-trained gradient-boosted trees. Then, we applied SHapley Additive Explanations (SHAP) to identify which brain features influence brain age predictions. We investigated the interaction between the SHAP score for each feature and group as a function of the BAG. These analyses identified total gray matter volume (group × SHAP interaction term β = 1.71 [0.53; 3.23]; pcorr < 0.03) as the feature that influences the BAG observed in SCZ among the brain features that are most predictive of brain age. Other brain features also presented differences in SHAP values between SCZ and HC, but they were not significantly associated with the BAG. We compared the findings with a non-psychotic depression dataset (CAN-BIND), where the interaction was not significant. This study has important implications for the understanding of brain age prediction models and the BAG in SCZ and, potentially, in other psychiatric disorders.
Collapse
Affiliation(s)
- Pedro L. Ballester
- grid.25073.330000 0004 1936 8227Neuroscience Graduate Program, McMaster University, Hamilton, ON Canada
| | - Jee Su Suh
- grid.25073.330000 0004 1936 8227Neuroscience Graduate Program, McMaster University, Hamilton, ON Canada
| | - Natalie C. W. Ho
- grid.17063.330000 0001 2157 2938Faculty of Arts & Science, University of Toronto, Toronto, ON Canada ,grid.415502.7Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, Canada
| | - Liangbing Liang
- grid.39381.300000 0004 1936 8884Graduate Program in Neuroscience, Western University, London, ON Canada ,grid.39381.300000 0004 1936 8884Robarts Research Institute, Western University, London, ON Canada
| | - Stefanie Hassel
- grid.22072.350000 0004 1936 7697Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB Canada
| | - Stephen C. Strother
- grid.17063.330000 0001 2157 2938Rotman Research Institute, Baycrest, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Institute of Medical Science, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
| | - Stephen R. Arnott
- grid.17063.330000 0001 2157 2938Rotman Research Institute, Baycrest, Toronto, ON Canada
| | - Luciano Minuzzi
- Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, Hamilton, ON Canada ,grid.416721.70000 0001 0742 7355Women’s Health Concerns Clinic, St. Joseph’s Healthcare Hamilton, Hamilton, ON Canada
| | - Roberto B. Sassi
- grid.17091.3e0000 0001 2288 9830Department of Psychiatry, University of British Columbia, Vancouver, BC Canada
| | - Raymond W. Lam
- grid.17091.3e0000 0001 2288 9830Department of Psychiatry, University of British Columbia, Vancouver, BC Canada
| | - Roumen Milev
- grid.410356.50000 0004 1936 8331Departments of Psychiatry and Psychology, Queen’s University, and Providence Care, Kingston, ON Canada
| | - Daniel J. Müller
- grid.17063.330000 0001 2157 2938Department of Psychiatry, University of Toronto, Toronto, ON Canada ,grid.155956.b0000 0000 8793 5925Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON Canada
| | - Valerie H. Taylor
- grid.22072.350000 0004 1936 7697Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB Canada
| | - Sidney H. Kennedy
- grid.17063.330000 0001 2157 2938Institute of Medical Science, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Psychiatry, University of Toronto, Toronto, ON Canada ,grid.231844.80000 0004 0474 0428Centre for Mental Health, University Health Network, Toronto, ON Canada ,grid.231844.80000 0004 0474 0428Krembil Research Institute, University Health Network, Toronto, ON Canada ,grid.415502.7Centre for Depression and Suicide Studies, and Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON Canada
| | - James P. Reilly
- grid.25073.330000 0004 1936 8227Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON Canada
| | - Lena Palaniyappan
- grid.39381.300000 0004 1936 8884Robarts Research Institute, Western University, London, ON Canada ,grid.39381.300000 0004 1936 8884Department of Medical Biophysics, Western University, London, ON Canada ,grid.415847.b0000 0001 0556 2414Lawson Health Research Institute, London, ON Canada ,grid.39381.300000 0004 1936 8884Department of Psychiatry, Western University, London, ON Canada ,grid.14709.3b0000 0004 1936 8649Department of Psychiatry, Douglas Mental Health University Institute, McGill, Douglas, QC Canada
| | - Katharine Dunlop
- grid.415502.7Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, Canada ,grid.17063.330000 0001 2157 2938Institute of Medical Science, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Psychiatry, University of Toronto, Toronto, ON Canada ,Centre for Depression & Suicide Studies, Unity Health Toronto, Toronto, ON Canada
| | - Benicio N. Frey
- Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, Hamilton, ON Canada ,grid.416721.70000 0001 0742 7355Women’s Health Concerns Clinic, St. Joseph’s Healthcare Hamilton, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON Canada
| |
Collapse
|
13
|
Soehner AM, Hayes RA, Franzen PL, Goldstein TR, Hasler BP, Buysse DJ, Siegle GJ, Dahl RE, Forbes EE, Ladouceur CD, McMakin DL, Ryan ND, Silk JS, Jalbrzikowski M. Naturalistic Sleep Patterns are Linked to Global Structural Brain Aging in Adolescence. J Adolesc Health 2023; 72:96-104. [PMID: 36270890 PMCID: PMC9881228 DOI: 10.1016/j.jadohealth.2022.08.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE We examined whether interindividual differences in naturalistic sleep patterns correlate with any deviations from typical brain aging. METHODS Our sample consisted of 251 participants without current psychiatric diagnoses (9-25 years; mean [standard deviation] = 17.4 ± 4.52 yr; 58% female) drawn from the Neuroimaging and Pediatric Sleep Databank. Participants completed a T1-weighted structural magnetic resonance imaging scan and 5-7 days of wrist actigraphy to assess naturalistic sleep patterns (duration, timing, continuity, and regularity). We estimated brain age from extracted structural magnetic resonance imaging indices and calculated brain age gap (estimated brain age-chronological age). Robust regressions tested cross-sectional associations between brain age gap and sleep patterns. Exploratory models investigated moderating effects of age and biological gender and, in a subset of the sample, links between sleep, brain age gap, and depression severity (Patient-Reported Outcomes Measurement Information System Depression). RESULTS Later sleep timing (midsleep) was associated with more advanced brain aging (larger brain age gap), β = 0.1575, puncorr = .0042, pfdr = .0167. Exploratory models suggested that this effect may be driven by males, although the interaction of gender and brain age gap did not survive multiple comparison correction (β = 0.2459, puncorr = .0336, pfdr = .1061). Sleep duration, continuity, and regularity were not significantly associated with brain age gap. Age did not moderate any brain age gap-sleep relationships. In this psychiatrically healthy sample, depression severity was also not associated with brain age gap or sleep. DISCUSSION Later midsleep may be one behavioral cause or correlate of more advanced brain aging, particularly among males. Future studies should examine whether advanced brain aging and individual differences in sleep precede the onset of suboptimal cognitive-emotional outcomes in adolescents.
Collapse
Affiliation(s)
- Adriane M Soehner
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Rebecca A Hayes
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, Massachusetts
| | - Peter L Franzen
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Tina R Goldstein
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brant P Hasler
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania; Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Daniel J Buysse
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Greg J Siegle
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania; Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ronald E Dahl
- School of Public Health, University of California, Berkeley, Berkeley, California
| | - Erika E Forbes
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania; Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Cecile D Ladouceur
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Dana L McMakin
- Department of Psychology, Florida International University, Miami, Florida
| | - Neal D Ryan
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jennifer S Silk
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Maria Jalbrzikowski
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
14
|
Cai H, Li A, Yu G, Yang X, Liu M. Brain Age Prediction in Developing Childhood with Multimodal Magnetic Resonance Images. Neuroinformatics 2023; 21:5-19. [PMID: 35962180 DOI: 10.1007/s12021-022-09596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2022] [Indexed: 11/30/2022]
Abstract
It is well known that brain development is very fast and complex in the early childhood with age-based neurological and physiological changes of brain structure and function. The brain maturity is an important indicator for evaluating the normal development of children. In this paper, we propose a multimodal regression framework to combine the features from structural magnetic resonance imaging (sMRI) and diffusion tensor imaging (DTI) data for age prediction of children. First, three types of features are extracted from sMRI and DTI data. Second, we propose to combine the sparse coding and Q-Learning for feature selection from each modality. Finally, the ensemble regression is performed by random forest based on proximity measures to fuse multimodal features for age prediction. The proposed method is evaluated on 212 participants, including 76 young children less than 2 years old and 136 children aged from 2-15 years old recruited from Shanghai Children's Hospital. The results show that integrating multimodal features has achieved the highest accuracies with the root mean squared error (RMSE) of 0.208 years and mean absolute error (MAE) of 0.150 years for age prediction of young children (0-2), and RMSE of 1.666 years and MAE of 1.087 years for older children (2-15). We have shown that the selected features by Q-Learning can consistently improve the prediction accuracy. The comparison of prediction results demonstrates that the proposed method performs better than other competing methods.
Collapse
Affiliation(s)
- Hongjie Cai
- School of EIEE, Shanghai Jiao Tong University, Shanghai, China
| | - Aojie Li
- School of EIEE, Shanghai Jiao Tong University, Shanghai, China
| | - Guangjun Yu
- Department of Child Health Care, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
| | - Xiujun Yang
- Department of Radiology, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China.
| | - Manhua Liu
- School of EIEE, Shanghai Jiao Tong University, Shanghai, China. .,MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
15
|
Abram SV, Roach BJ, Hua JPY, Han LKM, Mathalon DH, Ford JM, Fryer SL. Advanced brain age correlates with greater rumination and less mindfulness in schizophrenia. Neuroimage Clin 2022; 37:103301. [PMID: 36586360 PMCID: PMC9830317 DOI: 10.1016/j.nicl.2022.103301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Individual variation in brain aging trajectories is linked with several physical and mental health outcomes. Greater stress levels, worry, and rumination correspond with advanced brain age, while other individual characteristics, like mindfulness, may be protective of brain health. Multiple lines of evidence point to advanced brain aging in schizophrenia (i.e., neural age estimate > chronological age). Whether psychological dimensions such as mindfulness, rumination, and perceived stress contribute to brain aging in schizophrenia is unknown. METHODS We estimated brain age from high-resolution anatomical scans in 54 healthy controls (HC) and 52 individuals with schizophrenia (SZ) and computed the brain predicted age difference (BrainAGE-diff), i.e., the delta between estimated brain age and chronological age. Emotional well-being summary scores were empirically derived to reflect individual differences in trait mindfulness, rumination, and perceived stress. Core analyses evaluated relationships between BrainAGE-diff and emotional well-being, testing for slopes differences across groups. RESULTS HC showed higher emotional well-being (greater mindfulness and less rumination/stress), relative to SZ. We observed a significant group difference in the relationship between BrainAge-diff and emotional well-being, explained by BrainAGE-diff negatively correlating with emotional well-being scores in SZ, and not in HC. That is, SZ with younger appearing brains (predicted age < chronological age) had emotional summary scores that were more like HC, a relationship that endured after accounting for several demographic and clinical variables. CONCLUSIONS These data reveal clinically relevant aspects of brain age heterogeneity among SZ and point to case-control differences in the relationship between advanced brain aging and emotional well-being.
Collapse
Affiliation(s)
- Samantha V Abram
- Sierra Pacific Mental Illness Research Education and Clinical Centers, San Francisco Veterans Affairs Medical Center, and the University of California, San Francisco, CA, United States; Mental Health Service, Veterans Affairs San Francisco Healthcare System, San Francisco, CA, United States; Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Brian J Roach
- Mental Health Service, Veterans Affairs San Francisco Healthcare System, San Francisco, CA, United States
| | - Jessica P Y Hua
- Sierra Pacific Mental Illness Research Education and Clinical Centers, San Francisco Veterans Affairs Medical Center, and the University of California, San Francisco, CA, United States; Mental Health Service, Veterans Affairs San Francisco Healthcare System, San Francisco, CA, United States; Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Laura K M Han
- Orygen, Parkville, VIC, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Daniel H Mathalon
- Mental Health Service, Veterans Affairs San Francisco Healthcare System, San Francisco, CA, United States; Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Judith M Ford
- Mental Health Service, Veterans Affairs San Francisco Healthcare System, San Francisco, CA, United States; Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Susanna L Fryer
- Mental Health Service, Veterans Affairs San Francisco Healthcare System, San Francisco, CA, United States; Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
16
|
Modabbernia A, Whalley HC, Glahn DC, Thompson PM, Kahn RS, Frangou S. Systematic evaluation of machine learning algorithms for neuroanatomically-based age prediction in youth. Hum Brain Mapp 2022; 43:5126-5140. [PMID: 35852028 PMCID: PMC9812239 DOI: 10.1002/hbm.26010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/25/2022] [Accepted: 06/27/2022] [Indexed: 01/15/2023] Open
Abstract
Application of machine learning (ML) algorithms to structural magnetic resonance imaging (sMRI) data has yielded behaviorally meaningful estimates of the biological age of the brain (brain-age). The choice of the ML approach in estimating brain-age in youth is important because age-related brain changes in this age-group are dynamic. However, the comparative performance of the available ML algorithms has not been systematically appraised. To address this gap, the present study evaluated the accuracy (mean absolute error [MAE]) and computational efficiency of 21 machine learning algorithms using sMRI data from 2105 typically developing individuals aged 5-22 years from five cohorts. The trained models were then tested in two independent holdout datasets, one comprising 4078 individuals aged 9-10 years and another comprising 594 individuals aged 5-21 years. The algorithms encompassed parametric and nonparametric, Bayesian, linear and nonlinear, tree-based, and kernel-based models. Sensitivity analyses were performed for parcellation scheme, number of neuroimaging input features, number of cross-validation folds, number of extreme outliers, and sample size. Tree-based models and algorithms with a nonlinear kernel performed comparably well, with the latter being especially computationally efficient. Extreme Gradient Boosting (MAE of 1.49 years), Random Forest Regression (MAE of 1.58 years), and Support Vector Regression (SVR) with Radial Basis Function (RBF) Kernel (MAE of 1.64 years) emerged as the three most accurate models. Linear algorithms, with the exception of Elastic Net Regression, performed poorly. Findings of the present study could be used as a guide for optimizing methodology when quantifying brain-age in youth.
Collapse
Affiliation(s)
| | - Heather C. Whalley
- Division of PsychiatryUniversity of Edinburgh, Kennedy Tower, Royal Edinburgh HospitalEdinburghUK
| | - David C. Glahn
- Boston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Rene S. Kahn
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Sophia Frangou
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
17
|
Han J, Kim SY, Lee J, Lee WH. Brain Age Prediction: A Comparison between Machine Learning Models Using Brain Morphometric Data. SENSORS (BASEL, SWITZERLAND) 2022; 22:8077. [PMID: 36298428 PMCID: PMC9608785 DOI: 10.3390/s22208077] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Brain structural morphology varies over the aging trajectory, and the prediction of a person's age using brain morphological features can help the detection of an abnormal aging process. Neuroimaging-based brain age is widely used to quantify an individual's brain health as deviation from a normative brain aging trajectory. Machine learning approaches are expanding the potential for accurate brain age prediction but are challenging due to the great variety of machine learning algorithms. Here, we aimed to compare the performance of the machine learning models used to estimate brain age using brain morphological measures derived from structural magnetic resonance imaging scans. We evaluated 27 machine learning models, applied to three independent datasets from the Human Connectome Project (HCP, n = 1113, age range 22-37), the Cambridge Centre for Ageing and Neuroscience (Cam-CAN, n = 601, age range 18-88), and the Information eXtraction from Images (IXI, n = 567, age range 19-86). Performance was assessed within each sample using cross-validation and an unseen test set. The models achieved mean absolute errors of 2.75-3.12, 7.08-10.50, and 8.04-9.86 years, as well as Pearson's correlation coefficients of 0.11-0.42, 0.64-0.85, and 0.63-0.79 between predicted brain age and chronological age for the HCP, Cam-CAN, and IXI samples, respectively. We found a substantial difference in performance between models trained on the same data type, indicating that the choice of model yields considerable variation in brain-predicted age. Furthermore, in three datasets, regularized linear regression algorithms achieved similar performance to nonlinear and ensemble algorithms. Our results suggest that regularized linear algorithms are as effective as nonlinear and ensemble algorithms for brain age prediction, while significantly reducing computational costs. Our findings can serve as a starting point and quantitative reference for future efforts at improving brain age prediction using machine learning models applied to brain morphometric data.
Collapse
Affiliation(s)
| | | | | | - Won Hee Lee
- Department of Software Convergence, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|
18
|
Sanford N, Ge R, Antoniades M, Modabbernia A, Haas SS, Whalley HC, Galea L, Popescu SG, Cole JH, Frangou S. Sex differences in predictors and regional patterns of brain age gap estimates. Hum Brain Mapp 2022; 43:4689-4698. [PMID: 35790053 PMCID: PMC9491279 DOI: 10.1002/hbm.25983] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 11/11/2022] Open
Abstract
The brain-age-gap estimate (brainAGE) quantifies the difference between chronological age and age predicted by applying machine-learning models to neuroimaging data and is considered a biomarker of brain health. Understanding sex differences in brainAGE is a significant step toward precision medicine. Global and local brainAGE (G-brainAGE and L-brainAGE, respectively) were computed by applying machine learning algorithms to brain structural magnetic resonance imaging data from 1113 healthy young adults (54.45% females; age range: 22-37 years) participating in the Human Connectome Project. Sex differences were determined in G-brainAGE and L-brainAGE. Random forest regression was used to determine sex-specific associations between G-brainAGE and non-imaging measures pertaining to sociodemographic characteristics and mental, physical, and cognitive functions. L-brainAGE showed sex-specific differences; in females, compared to males, L-brainAGE was higher in the cerebellum and brainstem and lower in the prefrontal cortex and insula. Although sex differences in G-brainAGE were minimal, associations between G-brainAGE and non-imaging measures differed between sexes with the exception of poor sleep quality, which was common to both. While univariate relationships were small, the most important predictor of higher G-brainAGE was self-identification as non-white in males and systolic blood pressure in females. The results demonstrate the value of applying sex-specific analyses and machine learning methods to advance our understanding of sex-related differences in factors that influence the rate of brain aging and provide a foundation for targeted interventions.
Collapse
Affiliation(s)
- Nicole Sanford
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Ruiyang Ge
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Mathilde Antoniades
- Center for Biomedical Image Computing and Analytics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Shalaila S. Haas
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | - Liisa Galea
- Department of Psychology, Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | | | - James H. Cole
- Centre for Medical Image ComputingUniversity College LondonLondonUK
- Dementia Research Centre, Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Sophia Frangou
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
19
|
Accelerated functional brain aging in major depressive disorder: evidence from a large scale fMRI analysis of Chinese participants. Transl Psychiatry 2022; 12:397. [PMID: 36130921 PMCID: PMC9492670 DOI: 10.1038/s41398-022-02162-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/12/2022] Open
Abstract
Major depressive disorder (MDD) is one of the most common mental health conditions that has been intensively investigated for its association with brain atrophy and mortality. Recent studies suggest that the deviation between the predicted and the chronological age can be a marker of accelerated brain aging to characterize MDD. However, current conclusions are usually drawn based on structural MRI information collected from Caucasian participants. The universality of this biomarker needs to be further validated by subjects with different ethnic/racial backgrounds and by different types of data. Here we make use of the REST-meta-MDD, a large scale resting-state fMRI dataset collected from multiple cohort participants in China. We develop a stacking machine learning model based on 1101 healthy controls, which estimates a subject's chronological age from fMRI with promising accuracy. The trained model is then applied to 1276 MDD patients from 24 sites. We observe that MDD patients exhibit a +4.43 years (p < 0.0001, Cohen's d = 0.31, 95% CI: 2.23-3.88) higher brain-predicted age difference (brain-PAD) compared to controls. In the MDD subgroup, we observe a statistically significant +2.09 years (p < 0.05, Cohen's d = 0.134525) brain-PAD in antidepressant users compared to medication-free patients. The statistical relationship observed is further checked by three different machine learning algorithms. The positive brain-PAD observed in participants in China confirms the presence of accelerated brain aging in MDD patients. The utilization of functional brain connectivity for age estimation verifies existing findings from a new dimension.
Collapse
|
20
|
Ran C, Yang Y, Ye C, Lv H, Ma T. Brain age vector: A measure of brain aging with enhanced neurodegenerative disorder specificity. Hum Brain Mapp 2022; 43:5017-5031. [PMID: 36094058 PMCID: PMC9582375 DOI: 10.1002/hbm.26066] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/31/2022] [Accepted: 08/23/2022] [Indexed: 11/14/2022] Open
Abstract
Neuroimaging‐driven brain age estimation has become popular in measuring brain aging and identifying neurodegenerations. However, the single estimated brain age (gap) compromises regional variations of brain aging, losing spatial specificity across diseases which is valuable for early screening. In this study, we combined brain age modeling with Shapley Additive Explanations to measure brain aging as a feature contribution vector underlying spatial pathological aging mechanism. Specifically, we regressed age with volumetric brain features using machine learning to construct the brain age model, and model‐agnostic Shapley values were calculated to attribute regional brain aging for each subject's age estimation, forming the brain age vector. Spatial specificity of the brain age vector was evaluated among groups of normal aging, prodromal Parkinson disease (PD), stable mild cognitive impairment (sMCI), and progressive mild cognitive impairment (pMCI). Machine learning methods were adopted to examine the discriminability of the brain age vector in early disease screening, compared with the other two brain aging metrics (single brain age gap, regional brain age gaps) and brain volumes. Results showed that the proposed brain age vector accurately reflected disorder‐specific abnormal aging patterns related to the medial temporal and the striatum for prodromal AD (sMCI vs. pMCI) and PD (healthy controls [HC] vs. prodromal PD), respectively, and demonstrated outstanding performance in early disease screening, with area under the curves of 83.39% and 72.28% in detecting pMCI and prodromal PD, respectively. In conclusion, the proposed brain age vector effectively improves spatial specificity of brain aging measurement and enables individual screening of neurodegenerative diseases.
Collapse
Affiliation(s)
- Chen Ran
- Department of Electronic and Information Engineering, Harbin Institute of Technology at Shenzhen, Shenzhen, China
| | - Yanwu Yang
- Department of Electronic and Information Engineering, Harbin Institute of Technology at Shenzhen, Shenzhen, China.,Peng Cheng Laboratory, Shenzhen, China
| | - Chenfei Ye
- International Research Institute for Artificial Intelligence, Harbin Institute of Technology at Shenzhen, Shenzhen, China
| | - Haiyan Lv
- MindsGo Shenzhen Life Science Co. Ltd, Shenzhen, China
| | - Ting Ma
- Department of Electronic and Information Engineering, Harbin Institute of Technology at Shenzhen, Shenzhen, China.,Peng Cheng Laboratory, Shenzhen, China.,International Research Institute for Artificial Intelligence, Harbin Institute of Technology at Shenzhen, Shenzhen, China
| |
Collapse
|
21
|
Gozal D. Brain structure-function relationships in sleep apnea among obese children: no time to waste! Sleep 2022; 45:zsac055. [PMID: 35554580 DOI: 10.1093/sleep/zsac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Affiliation(s)
- David Gozal
- Department of Child Health and the Child Health Research Institute, and the Comprehensive Sleep Medicine Program, University of Missouri School of Medicine, Columbia, MO 65201, USA
| |
Collapse
|
22
|
Jawinski P, Markett S, Drewelies J, Düzel S, Demuth I, Steinhagen-Thiessen E, Wagner GG, Gerstorf D, Lindenberger U, Gaser C, Kühn S. Linking Brain Age Gap to Mental and Physical Health in the Berlin Aging Study II. Front Aging Neurosci 2022; 14:791222. [PMID: 35936763 PMCID: PMC9355695 DOI: 10.3389/fnagi.2022.791222] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
From a biological perspective, humans differ in the speed they age, and this may manifest in both mental and physical health disparities. The discrepancy between an individual's biological and chronological age of the brain ("brain age gap") can be assessed by applying machine learning techniques to Magnetic Resonance Imaging (MRI) data. Here, we examined the links between brain age gap and a broad range of cognitive, affective, socioeconomic, lifestyle, and physical health variables in up to 335 adults of the Berlin Aging Study II. Brain age gap was assessed using a validated prediction model that we previously trained on MRI scans of 32,634 UK Biobank individuals. Our statistical analyses revealed overall stronger evidence for a link between higher brain age gap and less favorable health characteristics than expected under the null hypothesis of no effect, with 80% of the tested associations showing hypothesis-consistent effect directions and 23% reaching nominal significance. The most compelling support was observed for a cluster covering both cognitive performance variables (episodic memory, working memory, fluid intelligence, digit symbol substitution test) and socioeconomic variables (years of education and household income). Furthermore, we observed higher brain age gap to be associated with heavy episodic drinking, higher blood pressure, and higher blood glucose. In sum, our results point toward multifaceted links between brain age gap and human health. Understanding differences in biological brain aging may therefore have broad implications for future informed interventions to preserve mental and physical health in old age.
Collapse
Affiliation(s)
- Philippe Jawinski
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sebastian Markett
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johanna Drewelies
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany.,Lise Meitner Group for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany
| | - Sandra Düzel
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Ilja Demuth
- Division of Lipid Metabolism, Department of Endocrinology and Metabolic Diseases, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BCRT-Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Elisabeth Steinhagen-Thiessen
- Division of Lipid Metabolism, Department of Endocrinology and Metabolic Diseases, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gert G Wagner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,German Socio-Economic Panel Study (SOEP), Berlin, Germany.,Federal Institute for Population Research (BiB), Berlin, Germany
| | - Denis Gerstorf
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,German Socio-Economic Panel Study (SOEP), Berlin, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Christian Gaser
- Structural Brain Mapping Group, Department of Psychiatry and Neurology, Jena University Hospital, Jena, Germany
| | - Simone Kühn
- Lise Meitner Group for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany.,Department of Psychiatry and Psychotherapy, University Clinic Hamburg Eppendorf, Hamburg, Germany
| |
Collapse
|
23
|
Kelly C, Ball G, Matthews LG, Cheong JL, Doyle LW, Inder TE, Thompson DK, Anderson PJ. Investigating brain structural maturation in children and adolescents born very preterm using the brain age framework. Neuroimage 2021; 247:118828. [PMID: 34923131 DOI: 10.1016/j.neuroimage.2021.118828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/15/2021] [Accepted: 12/15/2021] [Indexed: 11/29/2022] Open
Abstract
Very preterm (VP) birth is associated with an increased risk for later neurodevelopmental and behavioural challenges. Although the neurobiological underpinnings of such challenges continue to be explored, previous studies have reported brain volume and morphology alterations in children and adolescents born VP compared with full-term (FT)-born controls. How these alterations relate to the trajectory of brain maturation, with potential implications for later brain ageing, remains unclear. In this longitudinal study, we investigate the relationship between VP birth and brain development during childhood and adolescence. We construct a normative 'brain age' model to predict age over childhood and adolescence based on measures of brain cortical and subcortical volumes and cortical morphology from structural MRI of a dataset of typically developing children aged 3-21 years (n = 768). Using this model, we examined deviations from normative brain development in a separate dataset of children and adolescents born VP (<30 weeks' gestation) at two timepoints (ages 7 and 13 years) compared with FT-born controls (120 VP and 29 FT children at age 7 years; 140 VP and 47 FT children at age 13 years). Brain age delta (brain-predicted age minus chronological age) was, on average, higher in the VP group at both timepoints compared with controls, however this difference had a small to medium effect size and was not statistically significant. Variance in brain age delta was higher in the VP group compared with controls; this difference was significant at the 13-year timepoint. Within the VP group, there was little evidence of associations between brain age delta and perinatal risk factors or cognitive and motor outcomes. Under the brain age framework, our results may suggest that children and adolescents born VP have similar brain structural developmental trajectories to term-born peers between 7 and 13 years of age.
Collapse
Affiliation(s)
- Claire Kelly
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia; Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia.
| | - Gareth Ball
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Lillian G Matthews
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia; Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Jeanie Ly Cheong
- Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Newborn Research, The Royal Women's Hospital, Melbourne, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Australia
| | - Lex W Doyle
- Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia; Newborn Research, The Royal Women's Hospital, Melbourne, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Australia
| | - Terrie E Inder
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Deanne K Thompson
- Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Peter J Anderson
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia; Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia
| |
Collapse
|
24
|
Ferschmann L, Bos MGN, Herting MM, Mills KL, Tamnes CK. Contextualizing adolescent structural brain development: Environmental determinants and mental health outcomes. Curr Opin Psychol 2021; 44:170-176. [PMID: 34688028 DOI: 10.1016/j.copsyc.2021.09.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 01/04/2023]
Abstract
The spatiotemporal group-level patterns of brain macrostructural development are relatively well-documented. Current research emphasizes individual variability in brain development, including its causes and consequences. Although genetic factors and prenatal and perinatal events play critical roles, calls are now made to also study brain development in transactional interplay with the different aspects of an individual's physical and social environment. Such focus is highly relevant for research on adolescence, a period involving a multitude of contextual changes paralleled by continued refinement of complex cognitive and affective neural systems. Here, we discuss associations between selected aspects of an individual's physical and social environment and adolescent brain structural development and possible links to mental health. We also touch on methodological considerations for future research.
Collapse
Affiliation(s)
- Lia Ferschmann
- PROMENTA Research Center, Department of Psychology, University of Oslo, Norway.
| | - Marieke G N Bos
- Institute of Psychology, Leiden University, the Netherlands; Leiden Institute for Brain and Cognition, Leiden University, the Netherlands
| | - Megan M Herting
- Department of Population and Public Health Sciences, University of Southern California, USA
| | - Kathryn L Mills
- PROMENTA Research Center, Department of Psychology, University of Oslo, Norway; Department of Psychology, University of Oregon, USA
| | - Christian K Tamnes
- PROMENTA Research Center, Department of Psychology, University of Oslo, Norway; NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| |
Collapse
|