1
|
Khan MSZ, Khan SU, Alrumaihi F, Alwanian WM, Alharbi HO, Alfifi SM, Makki LK, Sahli M, Al-Nafjan AA, Jackson M. Future of magnetic sensors applications in early prediction of cardiac health status. Curr Probl Cardiol 2025; 50:103022. [PMID: 40023205 DOI: 10.1016/j.cpcardiol.2025.103022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
The evolution of health monitoring technologies has highlighted the need for accurate and reliable sensors, particularly in the context of cardiac health. This review examines the potential of magnetic sensors as a superior alternative to optical sensors for the early prediction of cardiac health status. Optical sensors face significant challenges, especially for individuals with darker skin tones, where increased light absorption adversely affects measurement accuracy. Additionally, issues such as sensor-skin coupling and motion artifacts further compromise the performance of optical devices. In contrast, magnetic sensors offer a compelling solution by providing consistent readings irrespective of skin tone, thereby enhancing inclusivity in health monitoring. These sensors leverage magnetic fields, which do not rely on light penetration, allowing for improved coupling with the skin's surface and maintaining accuracy during motion. This paper discusses recent advancements in magnetic sensor technology and their implications for cardiac health applications, emphasizing the potential for increased accuracy and reliability in predicting cardiac outcomes. As healthcare shifts toward more personalized and precise monitoring solutions, magnetic sensors emerge as a promising frontier, addressing critical challenges in current health status prediction methods. By focusing on these innovative technologies, we aim to contribute to the ongoing discourse on enhancing cardiac health monitoring and fostering more equitable healthcare solutions.
Collapse
Affiliation(s)
- Muhammad Shah Zeb Khan
- School of Biological Science and Medical Engineering, South East University, Nanjing, PR China.
| | - Shahid Ullah Khan
- Department of Biomedical Sciences, Dubai Medical College for Girls, Dubai Medical University, Dubai 19099, United Arab Emirates.
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Wanian M Alwanian
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Hajed Obaid Alharbi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Somayah Mohammad Alfifi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Layal Khaled Makki
- Department of Radiation Therapy, Oncology Center, King Khalid University Hospital, Riyadh 12372, Saudi Arabia
| | - Majed Sahli
- Department of Medical Laboratory, Al Kharj Military Industries Corporation Hospital, Al-kharj, Saudi Arabia
| | | | - Matthew Jackson
- Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark.
| |
Collapse
|
2
|
Holmes N, Leggett J, Hill RM, Rier L, Boto E, Schofield H, Hayward T, Dawson E, Woolger D, Shah V, Taulu S, Brookes MJ, Bowtell R. Wearable Magnetoencephalography in a Lightly Shielded Environment. IEEE Trans Biomed Eng 2025; 72:609-618. [PMID: 39302788 PMCID: PMC11933739 DOI: 10.1109/tbme.2024.3465654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Wearable magnetoencephalography based on optically pumped magnetometers (OPM-MEG) offers non-invasive and high-fidelity measurement of human brain electrophysiology. The flexibility of OPM-MEG also means it can be deployed in participants of all ages and permits scanning during movement. However, the magnetic fields generated by neuronal currents - which form the basis of the OPM-MEG signal - are much smaller than environmental fields, and this means measurements are highly sensitive to interference. Further, OPMs have a low dynamic range, and should be operated in near-zero background field. Scanners must therefore be housed in specialised magnetically shielded rooms (MSRs), formed from multiple layers of shielding material. The MSR is a critical component, and current OPM-optimised shields are large (>3 m in height), heavy (>10,000 kg) and expensive (with up to 5 layers of material). This restricts the uptake of OPM-MEG technology. Here, we show that the application of the Maxwell filtering techniques signal space separation (SSS) and its spatiotemporal extension (tSSS) to OPM-MEG data can isolate small signals of interest measured in the presence of large interference. We compare phantom recordings and MEG data from a participant performing a motor task in a state-of-the-art 5-layer MSR, to similar data collected in a lightly shielded room: application of tSSS to data recorded in the lightly shielded room allowed accurate localisation of a dipole source in the phantom and neuronal sources in the brain. Our results point to future deployment of OPM-MEG in lighter, cheaper and easier-to-site MSRs which could catalyse widespread adoption of the technology.
Collapse
|
3
|
Kang S, Fan W, Lu J, Quan W. Simulation Research on Low-Frequency Magnetic Noise in Fe-Based Nanocrystalline Magnetic Shields. MATERIALS (BASEL, SWITZERLAND) 2025; 18:330. [PMID: 39859801 PMCID: PMC11766692 DOI: 10.3390/ma18020330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/01/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
Depending on high permeability, high Curie temperature, and low eddy current loss noise, nanocrystalline alloys, as the innermost layer, exhibit great potential in the construction of cylindrical magnetic shielding systems with a high shielding coefficient and low magnetic noise. This study compares a magnetic noise of 1 Hz, simulated by the finite element method (FEM), of a cylindrical nanocrystalline magnetic shield with different structural parameters based on the measured initial permeability of commercial Fe-based nanocrystalline (1K107). The simulated results demonstrate that the magnetic noise is irrelevant to the pump and probe hole diameter. The magnetic noise of a nanocrystalline cylinder with a fixed length gradually increases with the rise in aspect ratio. The radial and axial magnetic noise of a nanocrystalline cylinder with a fixed diameter can reach optimal values when the aspect ratio is 1.3 and 1.4, respectively. The layer thickness of a nanocrystalline cylinder is negatively correlated to magnetic noise. Additionally, by comparing the 1 Hz magnetic noise of a cylindrical nanocrystalline magnetic shield with varying initial permeability, it can be concluded that an increase in loss factor results in an increase in magnetic noise. These results are useful for the design of a high-performance passive magnetic shield with low magnetic noise.
Collapse
Affiliation(s)
- Shuai Kang
- Hangzhou Institute of National Extremely-Weak Magnetic Field Infrastructure, Hangzhou 310028, China
| | - Wenfeng Fan
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- The Institute of Large-Scale Scientific Facility and Centre for Zero Magnetic Field Science, Beihang University, Hangzhou 310051, China
| | - Jixi Lu
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- The Institute of Large-Scale Scientific Facility and Centre for Zero Magnetic Field Science, Beihang University, Hangzhou 310051, China
| | - Wei Quan
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- The Institute of Large-Scale Scientific Facility and Centre for Zero Magnetic Field Science, Beihang University, Hangzhou 310051, China
- Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
4
|
Ma Y, Shi M, Zhang L, Li T, Ling X, Yuan S, Wang H, Gao Y. A Novel Simulation Model of Shielding Performance Based on the Anisotropic Magnetic Property of Magnetic Shields. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5906. [PMID: 39685342 DOI: 10.3390/ma17235906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024]
Abstract
To achieve a near-zero magnetic field environment, the use of permalloy sheets with high-performance magnetic properties is essential. However, mainstream welding processes for magnetically shielded rooms (MSRs), such as argon arc welding and laser welding, can degrade the magnetic properties of the material. Additionally, neglecting the anisotropy of permalloy sheets can introduce unpredictable errors in the evaluation of MSR performance. To address this issue, this paper proposes a modified model for calculating the shielding factor (SF) of MSRs that incorporates the anisotropic magnetic characteristics of permalloy sheets. These characteristics were measured using a two-dimensional single sheet tester (2D-SST). A high-precision measurement system was developed, comprising a 2D-SST (to generate two-dimensional magnetic fields and sense the induced B and H signals) and a control system (to apply in-phase 2D excitation signals and amplify, filter, and record the B and H data). Hysteresis loops were tested at low frequencies (0.1-9 Hz) and under different magnetization states (0.1-0.6 T) in two orientations-parallel and perpendicular to the annealing magnetic field-to verify anisotropy under varying conditions. Initial permeability, near-saturation magnetization, and basic magnetization curves (BM curves) were measured across different directions to provide parameters for simulations and theoretical calculations. Based on these measurements and finite element simulations, a mathematical model was developed to adjust the empirical coefficient λ used in theoretical SF calculations. The results revealed that the ratio of empirical coefficients in different directions is inversely proportional to the ratio of magnetic permeability in the corresponding directions. A verification group was established to compare the original model and the modified model. The mean squared error (MSE) between the original model and the finite element simulation was 49.97, while the MSE between the improved model and the finite element simulation was reduced to 0.13. This indicates a substantial improvement in the computational accuracy of the modified model.
Collapse
Affiliation(s)
- Yuzheng Ma
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing 100191, China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, China
| | - Minxia Shi
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing 100191, China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, China
- Hefei National Laboratory, Hefei 230088, China
| | - Leran Zhang
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing 100191, China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, China
| | - Teng Li
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing 100191, China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, China
| | - Xuechen Ling
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing 100191, China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, China
| | - Shuai Yuan
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing 100191, China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, China
| | - Hanxing Wang
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing 100191, China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, China
| | - Yi Gao
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing 100191, China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, China
| |
Collapse
|
5
|
Liu Y, Yang J, Cao F, Zhang X, Zheng S. Enhancement of Magnetic Shielding Based on Low-Noise Materials, Magnetization Control, and Active Compensation: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5469. [PMID: 39597293 PMCID: PMC11595978 DOI: 10.3390/ma17225469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024]
Abstract
Magnetic-shielding technologies play a crucial role in the field of ultra-sensitive physical measurement, medical imaging, quantum sensing, etc. With the increasing demand for the accuracy of magnetic measurement, the performance requirements of magnetic-shielding devices are also higher, such as the extremely weak magnetic field, gradient, and low-frequency noise. However, the conventional method to improve the shielding performance by adding layers of materials is restricted by complex construction and inherent materials noise. This paper provides a comprehensive review about the enhancement of magnetic shielding in three aspects, including low-noise materials, magnetization control, and active compensation. The generation theorem and theoretical calculation of materials magnetic noise is summarized first, focusing on the development of spinel ferrites, amorphous, and nanocrystalline. Next, the principles and applications of two magnetization control methods, degaussing and magnetic shaking, are introduced. In the review of the active magnetic compensation system, the forward and inverse design methods of coil and the calculation method of the coupling effect under the ferromagnetic boundary of magnetic shield are explained in detail, and their applications, especially in magnetocardiography (MCG) and magnetoencephalogram (MEG), are also mainly described. In conclusion, the unresolved challenges of different enhancement methods in materials preparation, optimization of practical implementation, and future applications are proposed, which provide comprehensive and instructive references for corresponding research.
Collapse
Affiliation(s)
- Yijin Liu
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, China
| | - Jianzhi Yang
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, China
| | - Fuzhi Cao
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, China
| | - Xu Zhang
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, China
| | - Shiqiang Zheng
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, China
| |
Collapse
|
6
|
Ghahremani Arekhloo N, Wang H, Parvizi H, Tanwear A, Zuo S, McKinlay M, Garcia Nuñez C, Nazarpour K, Heidari H. Motion artifact variability in biomagnetic wearable devices. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 6:1457535. [PMID: 39483990 PMCID: PMC11524837 DOI: 10.3389/fmedt.2024.1457535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/20/2024] [Indexed: 11/03/2024] Open
Abstract
Motion artifacts can be a significant noise source in biomagnetic measurements when magnetic sensors are not separated from the signal source. In ambient environments, motion artifacts can be up to ten times stronger than the desired signals, varying with environmental conditions. This study evaluates the variability of these artifacts and the effectiveness of a gradiometer in reducing them in such settings. To achieve these objectives, we first measured the single channel output in varying magnetic field conditions to observe the effect of homogeneous and gradient background fields. Our analysis revealed that the variability in motion artifact within an ambient environment is primarily influenced by the gradient magnetic field rather than the homogeneous one. Subsequently, we configured a gradiometer in parallel and vertical alignment with the direction of vibration (X-axis). Our findings indicated that in a gradient background magnetic field ranging from 1 nT/mm to 10 nT/mm, the single-channel sensor output exhibited a change of 164.97 pT per mm unit increase, while the gradiometer output showed a change of only 0.75 pT/mm within the same range. Upon repositioning the gradiometer vertically (Y direction), perpendicular to the direction of vibration, the single-channel output slope increased to 196.85 pT, whereas the gradiometer output only increased by 1.06 pT/mm for the same range. Our findings highlight the influence of ambient environments on motion artifacts and demonstrate the potential of gradiometers to mitigate these effects. In the future, we plan to record biomagnetic signals both inside and outside the shielded room to compare the efficacy of different gradiometer designs under varying environmental conditions.
Collapse
Affiliation(s)
- Negin Ghahremani Arekhloo
- Neuranics Limited, Glasgow, United Kingdom
- Microelectronics Lab, James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Huxi Wang
- Neuranics Limited, Glasgow, United Kingdom
- Microelectronics Lab, James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Hossein Parvizi
- Microelectronics Lab, James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | | | - Siming Zuo
- Neuranics Limited, Glasgow, United Kingdom
| | - Michael McKinlay
- Microelectronics Lab, James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Carlos Garcia Nuñez
- Microelectronics Lab, James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Kianoush Nazarpour
- Neuranics Limited, Glasgow, United Kingdom
- School of Informatics, The University of Edinburgh, Edinburgh, United Kingdom
| | - Hadi Heidari
- Neuranics Limited, Glasgow, United Kingdom
- Microelectronics Lab, James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
7
|
Vandewouw MM, Sato J, Safar K, Rhodes N, Taylor MJ. The development of aperiodic and periodic resting-state power between early childhood and adulthood: New insights from optically pumped magnetometers. Dev Cogn Neurosci 2024; 69:101433. [PMID: 39126820 PMCID: PMC11350249 DOI: 10.1016/j.dcn.2024.101433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/04/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024] Open
Abstract
Neurophysiological signals, comprised of both periodic (e.g., oscillatory) and aperiodic (e.g., non-oscillatory) activity, undergo complex developmental changes between childhood and adulthood. With much of the existing literature primarily focused on the periodic features of brain function, our understanding of aperiodic signals is still in its infancy. Here, we are the first to examine age-related changes in periodic (peak frequency and power) and aperiodic (slope and offset) activity using optically pumped magnetometers (OPMs), a new, wearable magnetoencephalography (MEG) technology that is particularly well-suited for studying development. We examined age-related changes in these spectral features in a sample (N=65) of toddlers (1-3 years), children (4-5 years), young adults (20-26 years), and adults (27-38 years). Consistent with the extant literature, we found significant age-related decreases in the aperiodic slope and offset, and changes in peak frequency and power that were frequency-specific; we are the first to show that the effect sizes of these changes also varied across brain regions. This work not only adds to the growing body of work highlighting the advantages of using OPMs, especially for studying development, but also contributes novel information regarding the variation of neurophysiological changes with age across the brain.
Collapse
Affiliation(s)
- Marlee M Vandewouw
- Department of Diagnostic & Interventional Radiology, Hospital for Sick Children, Toronto, Canada; Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada; Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada.
| | - Julie Sato
- Department of Diagnostic & Interventional Radiology, Hospital for Sick Children, Toronto, Canada; Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada
| | - Kristina Safar
- Department of Diagnostic & Interventional Radiology, Hospital for Sick Children, Toronto, Canada; Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada
| | - Natalie Rhodes
- Department of Diagnostic & Interventional Radiology, Hospital for Sick Children, Toronto, Canada; Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Margot J Taylor
- Department of Diagnostic & Interventional Radiology, Hospital for Sick Children, Toronto, Canada; Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada; Department of Medical Imaging, University of Toronto, Toronto, Canada; Department of Psychology, University of Toronto, Toronto, Canada
| |
Collapse
|
8
|
Schofield H, Hill RM, Feys O, Holmes N, Osborne J, Doyle C, Bobela D, Corvilain P, Wens V, Rier L, Bowtell R, Ferez M, Mullinger KJ, Coleman S, Rhodes N, Rea M, Tanner Z, Boto E, de Tiège X, Shah V, Brookes MJ. A novel, robust, and portable platform for magnetoencephalography using optically-pumped magnetometers. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:1-22. [PMID: 39502465 PMCID: PMC11533384 DOI: 10.1162/imag_a_00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/28/2024] [Accepted: 07/29/2024] [Indexed: 11/08/2024]
Abstract
Magnetoencephalography (MEG) measures brain function via assessment of magnetic fields generated by neural currents. Conventional MEG uses superconducting sensors, which place significant limitations on performance, practicality, and deployment; however, the field has been revolutionised in recent years by the introduction of optically-pumped magnetometers (OPMs). OPMs enable measurement of the MEG signal without cryogenics, and consequently the conception of "OPM-MEG" systems which ostensibly allow increased sensitivity and resolution, lifespan compliance, free subject movement, and lower cost. However, OPM-MEG is in its infancy with existing limitations on both sensor and system design. Here, we report a new OPM-MEG design with miniaturised and integrated electronic control, a high level of portability, and improved sensor dynamic range. We show that this system produces equivalent measures compared with an established OPM-MEG instrument; specifically, when measuring task-induced beta-band, gamma-band, and evoked neuro-electrical responses, source localisations from the two systems were comparable and temporal correlation of measured brain responses was >0.7 at the individual level and >0.9 for groups. Using an electromagnetic phantom, we demonstrate improved dynamic range by running the system in background fields up to 8 nT. We show that the system is effective in gathering data during free movement (including a sitting-to-standing paradigm) and that it is compatible with simultaneous electroencephalography (EEG). Finally, we demonstrate portability by moving the system between two laboratories. Overall, our new system is shown to be a significant step forward for OPM-MEG and offers an attractive platform for next generation functional medical imaging.
Collapse
Affiliation(s)
- Holly Schofield
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
- Cerca Magnetics Limited, Nottingham, United Kingdom
| | - Ryan M. Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
- Cerca Magnetics Limited, Nottingham, United Kingdom
| | - Odile Feys
- Université libre de Bruxelles, ULB Neuroscience Institute, Laboratoire de neuroanatomie et neuroimagerie translationelles, Brussels, Belgium
- Department of Neurology, Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université libre de Bruxelles, Brussels, Belgium
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
- Cerca Magnetics Limited, Nottingham, United Kingdom
| | | | - Cody Doyle
- QuSpin Inc., Louisville, CO, United States
| | | | - Pierre Corvilain
- Université libre de Bruxelles, ULB Neuroscience Institute, Laboratoire de neuroanatomie et neuroimagerie translationelles, Brussels, Belgium
| | - Vincent Wens
- Université libre de Bruxelles, ULB Neuroscience Institute, Laboratoire de neuroanatomie et neuroimagerie translationelles, Brussels, Belgium
- Department of Translational Neuroimaging, Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université libre de Bruxelles, Brussels, Belgium
| | - Lukas Rier
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Maxime Ferez
- Université libre de Bruxelles, ULB Neuroscience Institute, Laboratoire de neuroanatomie et neuroimagerie translationelles, Brussels, Belgium
| | - Karen J. Mullinger
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Sebastian Coleman
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Natalie Rhodes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Molly Rea
- Cerca Magnetics Limited, Nottingham, United Kingdom
| | - Zoe Tanner
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
- Cerca Magnetics Limited, Nottingham, United Kingdom
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
- Cerca Magnetics Limited, Nottingham, United Kingdom
| | - Xavier de Tiège
- Université libre de Bruxelles, ULB Neuroscience Institute, Laboratoire de neuroanatomie et neuroimagerie translationelles, Brussels, Belgium
- Department of Translational Neuroimaging, Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université libre de Bruxelles, Brussels, Belgium
| | | | - Matthew J. Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
- Cerca Magnetics Limited, Nottingham, United Kingdom
| |
Collapse
|
9
|
Rier L, Rhodes N, Pakenham D, Boto E, Holmes N, Hill RM, Rivero GR, Shah V, Doyle C, Osborne J, Bowtell R, Taylor MJ, Brookes MJ. The neurodevelopmental trajectory of beta band oscillations: an OPM-MEG study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.573933. [PMID: 38260246 PMCID: PMC10802362 DOI: 10.1101/2024.01.04.573933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Neural oscillations mediate the coordination of activity within and between brain networks, supporting cognition and behaviour. How these processes develop throughout childhood is not only an important neuroscientific question but could also shed light on the mechanisms underlying neurological and psychiatric disorders. However, measuring the neurodevelopmental trajectory of oscillations has been hampered by confounds from instrumentation. In this paper, we investigate the suitability of a disruptive new imaging platform - Optically Pumped Magnetometer-based magnetoencephalography (OPM-MEG) - to study oscillations during brain development. We show how a unique 192-channel OPM-MEG device, which is adaptable to head size and robust to participant movement, can be used to collect high-fidelity electrophysiological data in individuals aged between 2 and 34 years. Data were collected during a somatosensory task, and we measured both stimulus-induced modulation of beta oscillations in sensory cortex, and whole-brain connectivity, showing that both modulate significantly with age. Moreover, we show that pan-spectral bursts of electrophysiological activity drive task-induced beta modulation, and that their probability of occurrence and spectral content change with age. Our results offer new insights into the developmental trajectory of beta oscillations and provide clear evidence that OPM-MEG is an ideal platform for studying electrophysiology in neurodevelopment.
Collapse
Affiliation(s)
- Lukas Rier
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Natalie Rhodes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Diagnostic Imaging,The Hospital for Sick Children, 555 University Avenue, Toronto, M5G 1X8, Canada
| | - Daisie Pakenham
- Clinical Neurophysiology, Nottingham University Hospitals NHS Trust, Queens Medical Centre, Derby Rd, Lenton, Nottingham NG7 2UH, UK
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| | - Ryan M. Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| | - Gonzalo Reina Rivero
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Vishal Shah
- QuSpin Inc. 331 South 104th Street, Suite 130, Louisville, Colorado, 80027, USA
| | - Cody Doyle
- QuSpin Inc. 331 South 104th Street, Suite 130, Louisville, Colorado, 80027, USA
| | - James Osborne
- QuSpin Inc. 331 South 104th Street, Suite 130, Louisville, Colorado, 80027, USA
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Margot J. Taylor
- Diagnostic Imaging,The Hospital for Sick Children, 555 University Avenue, Toronto, M5G 1X8, Canada
| | - Matthew J. Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| |
Collapse
|
10
|
Safar K, Vandewouw MM, Sato J, Devasagayam J, Hill RM, Rea M, Brookes MJ, Taylor MJ. Using optically pumped magnetometers to replicate task-related responses in next generation magnetoencephalography. Sci Rep 2024; 14:6513. [PMID: 38499615 PMCID: PMC10948796 DOI: 10.1038/s41598-024-56878-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/12/2024] [Indexed: 03/20/2024] Open
Abstract
Optically pumped magnetometers (OPMs) offer a new wearable means to measure magnetoencephalography (MEG) signals, with many advantages compared to conventional systems. However, OPMs are an emerging technology, thus characterizing and replicating MEG recordings is essential. Using OPM-MEG and SQUID-MEG, this study investigated evoked responses, oscillatory power, and functional connectivity during emotion processing in 20 adults, to establish replicability across the two technologies. Five participants with dental fixtures were included to assess the validity of OPM-MEG recordings in those with irremovable metal. Replicable task-related evoked responses were observed in both modalities. Similar patterns of oscillatory power to faces were observed in both systems. Increased connectivity was found in SQUID-versus OPM-MEG in an occipital and parietal anchored network. Notably, high quality OPM-MEG data were retained in participants with metallic fixtures, from whom no useable data were collected using conventional MEG.
Collapse
Affiliation(s)
- Kristina Safar
- Department of Diagnostic Imaging, Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Canada.
| | - Marlee M Vandewouw
- Department of Diagnostic Imaging, Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Canada
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Julie Sato
- Department of Diagnostic Imaging, Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Canada
| | - Jasen Devasagayam
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Canada
| | - Ryan M Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
- Cerca Magnetics Limited, Castlebridge Office Village, Kirtley Drive, Nottingham, UK
| | - Molly Rea
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
- Cerca Magnetics Limited, Castlebridge Office Village, Kirtley Drive, Nottingham, UK
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
- Cerca Magnetics Limited, Castlebridge Office Village, Kirtley Drive, Nottingham, UK
| | - Margot J Taylor
- Department of Diagnostic Imaging, Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Canada
- Department of Medical Imaging, University of Toronto, Toronto, Canada
- Department of Psychology, University of Toronto, Toronto, Canada
| |
Collapse
|
11
|
Schofield H, Hill RM, Feys O, Holmes N, Osborne J, Doyle C, Bobela D, Corvilian P, Wens V, Rier L, Bowtell R, Ferez M, Mullinger KJ, Coleman S, Rhodes N, Rea M, Tanner Z, Boto E, de Tiège X, Shah V, Brookes MJ. A Novel, Robust, and Portable Platform for Magnetoencephalography using Optically Pumped Magnetometers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583313. [PMID: 38558964 PMCID: PMC10979878 DOI: 10.1101/2024.03.06.583313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Magnetoencephalography (MEG) measures brain function via assessment of magnetic fields generated by neural currents. Conventional MEG uses superconducting sensors, which place significant limitations on performance, practicality, and deployment; however, the field has been revolutionised in recent years by the introduction of optically-pumped-magnetometers (OPMs). OPMs enable measurement of the MEG signal without cryogenics, and consequently the conception of 'OPM-MEG' systems which ostensibly allow increased sensitivity and resolution, lifespan compliance, free subject movement, and lower cost. However, OPM-MEG remains in its infancy with limitations on both sensor and system design. Here, we report a new OPM-MEG design with miniaturised and integrated electronic control, a high level of portability, and improved sensor dynamic range (arguably the biggest limitation of existing instrumentation). We show that this system produces equivalent measures when compared to an established instrument; specifically, when measuring task-induced beta-band, gamma-band and evoked neuro-electrical responses, source localisations from the two systems were highly comparable and temporal correlation was >0.7 at the individual level and >0.9 for groups. Using an electromagnetic phantom, we demonstrate improved dynamic range by running the system in background fields up to 8 nT. We show that the system is effective in gathering data during free movement (including a sitting-to-standing paradigm) and that it is compatible with simultaneous electroencephalography (EEG - the clinical standard). Finally, we demonstrate portability by moving the system between two laboratories. Overall, our new system is shown to be a significant step forward for OPM-MEG technology and offers an attractive platform for next generation functional medical imaging.
Collapse
Affiliation(s)
- Holly Schofield
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Cerca Magnetics Limited, 2 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| | - Ryan M. Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Cerca Magnetics Limited, 2 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| | - Odile Feys
- Université libre de Bruxelles, ULB Neuroscience Institute, Laboratoire de neuroanatomie et neuroimagerie translationelles, Brussels, Belgium
- Université libre de Bruxelles, Hôpital Universitaire de Bruxelles, Hôpital Erasme, Department of neurology, Brussels, Belgium
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Cerca Magnetics Limited, 2 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| | - James Osborne
- QuSpin Inc. 331 South 104 Street, Suite 130, Louisville, Colorado, 80027, USA
| | - Cody Doyle
- QuSpin Inc. 331 South 104 Street, Suite 130, Louisville, Colorado, 80027, USA
| | - David Bobela
- QuSpin Inc. 331 South 104 Street, Suite 130, Louisville, Colorado, 80027, USA
| | - Pierre Corvilian
- Université libre de Bruxelles, ULB Neuroscience Institute, Laboratoire de neuroanatomie et neuroimagerie translationelles, Brussels, Belgium
| | - Vincent Wens
- Université libre de Bruxelles, ULB Neuroscience Institute, Laboratoire de neuroanatomie et neuroimagerie translationelles, Brussels, Belgium
- Université libre de Bruxelles, Hôpital Universitaire de Bruxelles, Hôpital Erasme, Department of translational neuroimaging, Brussels, Belgium
| | - Lukas Rier
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Maxime Ferez
- Université libre de Bruxelles, ULB Neuroscience Institute, Laboratoire de neuroanatomie et neuroimagerie translationelles, Brussels, Belgium
| | - Karen J. Mullinger
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Centre for Human Brain Health, School of Psychology, University of Birmingham, UK
| | - Sebastian Coleman
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Natalie Rhodes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Molly Rea
- Cerca Magnetics Limited, 2 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| | - Zoe Tanner
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Cerca Magnetics Limited, 2 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Cerca Magnetics Limited, 2 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| | - Xavier de Tiège
- Université libre de Bruxelles, ULB Neuroscience Institute, Laboratoire de neuroanatomie et neuroimagerie translationelles, Brussels, Belgium
- Université libre de Bruxelles, Hôpital Universitaire de Bruxelles, Hôpital Erasme, Department of translational neuroimaging, Brussels, Belgium
| | - Vishal Shah
- QuSpin Inc. 331 South 104 Street, Suite 130, Louisville, Colorado, 80027, USA
| | - Matthew J. Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Cerca Magnetics Limited, 2 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| |
Collapse
|
12
|
Tierney TM, Seedat Z, St Pier K, Mellor S, Barnes GR. Adaptive multipole models of optically pumped magnetometer data. Hum Brain Mapp 2024; 45:e26596. [PMID: 38433646 PMCID: PMC10910270 DOI: 10.1002/hbm.26596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/14/2023] [Accepted: 12/29/2023] [Indexed: 03/05/2024] Open
Abstract
Multipole expansions have been used extensively in the Magnetoencephalography (MEG) literature for mitigating environmental interference and modelling brain signal. However, their application to Optically Pumped Magnetometer (OPM) data is challenging due to the wide variety of existing OPM sensor and array designs. We therefore explore how such multipole models can be adapted to provide stable models of brain signal and interference across OPM systems. Firstly, we demonstrate how prolate spheroidal (rather than spherical) harmonics can provide a compact representation of brain signal when sampling on the scalp surface with as few as 100 channels. We then introduce a type of orthogonal projection incorporating this basis set. The Adaptive Multipole Models (AMM), which provides robust interference rejection across systems, even in the presence of spatially structured nonlinearity errors (shielding factor is the reciprocal of the maximum fractional nonlinearity error). Furthermore, this projection is always stable, as it is an orthogonal projection, and will only ever decrease the white noise in the data. However, for array designs that are suboptimal for spatially separating brain signal and interference, this method can remove brain signal components. We contrast these properties with the more typically used multipole expansion, Signal Space Separation (SSS), which never reduces brain signal amplitude but is less robust to the effect of sensor nonlinearity errors on interference rejection and can increase noise in the data if the system is sub-optimally designed (as it is an oblique projection). We conclude with an empirical example utilizing AMM to maximize signal to noise ratio (SNR) for the stimulus locked neuronal response to a flickering visual checkerboard in a 128-channel OPM system and demonstrate up to 40 dB software shielding in real data.
Collapse
Affiliation(s)
- Tim M. Tierney
- Department of Imaging NeuroscienceUCL Queen Square Institute of Neurology, University College LondonLondonUK
| | | | - Kelly St Pier
- Diagnostic Suite, Young Epilepsy, St Piers LaneSurreyUK
| | - Stephanie Mellor
- Department of Imaging NeuroscienceUCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - Gareth R. Barnes
- Department of Imaging NeuroscienceUCL Queen Square Institute of Neurology, University College LondonLondonUK
| |
Collapse
|
13
|
Yang J, Shi M, Zhang X, Ma Y, Liu Y, Yuan S, Han B. Demagnetization Parameters Evaluation of Magnetic Shields Based on Anhysteretic Magnetization Curve. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5238. [PMID: 37569942 PMCID: PMC10420144 DOI: 10.3390/ma16155238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023]
Abstract
To achieve the nearly zero-field environment, demagnetization is an indispensable step for magnetic shields composed of high-permeability material, which adjusts the magnetization of the material to establish magnetic equilibrium with the environmental field and improve the shielding performance. The ideal demagnetization can make the high-permeability material on the anhysteretic magnetization curve to have a higher permeability than on the initial magnetization curve. However, inappropriate parameters of degaussing field cause the magnetization state to deviate from the anhysteretic magnetization curve. Therefore, this article proposes a new assessment criterion to analyze and evaluate the parameters of degaussing field based on the difference between the final magnetization state after demagnetization and theoretical anhysteretic state of the shielding material. By this way, the magnetization states after demagnetizations with different initial amplitude, frequency, period number and envelope attenuation function are calculated based on the dynamic Jiles-Atherton (J-A) model, and their magnetization curves under these demagnetization conditions are also measured and compared, respectively. The lower frequency, appropriate amplitude, sufficient period number and logarithmic envelope attenuation function can make the magnetization state after demagnetization closer to the ideal value, which is also consistent with the static magnetic-shielding performance of a booth-type magnetically shielded room (MSR) under different demagnetization condition.
Collapse
Affiliation(s)
- Jianzhi Yang
- Institute of Large-Scale Scientific Facility and Centre for Zero Magnetic Field Science, Beihang University, Beijing 100191, China; (J.Y.)
- National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou 310051, China
| | - Minxia Shi
- Institute of Large-Scale Scientific Facility and Centre for Zero Magnetic Field Science, Beihang University, Beijing 100191, China; (J.Y.)
- National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou 310051, China
| | - Xu Zhang
- Institute of Large-Scale Scientific Facility and Centre for Zero Magnetic Field Science, Beihang University, Beijing 100191, China; (J.Y.)
- National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou 310051, China
| | - Yuzheng Ma
- Institute of Large-Scale Scientific Facility and Centre for Zero Magnetic Field Science, Beihang University, Beijing 100191, China; (J.Y.)
- National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou 310051, China
| | - Yijin Liu
- National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou 310051, China
| | - Shuai Yuan
- Institute of Large-Scale Scientific Facility and Centre for Zero Magnetic Field Science, Beihang University, Beijing 100191, China; (J.Y.)
- National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou 310051, China
| | - Bangcheng Han
- Institute of Large-Scale Scientific Facility and Centre for Zero Magnetic Field Science, Beihang University, Beijing 100191, China; (J.Y.)
- National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou 310051, China
| |
Collapse
|
14
|
Holmes N, Rea M, Hill RM, Leggett J, Edwards LJ, Hobson PJ, Boto E, Tierney TM, Rier L, Rivero GR, Shah V, Osborne J, Fromhold TM, Glover P, Brookes MJ, Bowtell R. Enabling ambulatory movement in wearable magnetoencephalography with matrix coil active magnetic shielding. Neuroimage 2023; 274:120157. [PMID: 37149237 PMCID: PMC10465235 DOI: 10.1016/j.neuroimage.2023.120157] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/13/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023] Open
Abstract
The ability to collect high-quality neuroimaging data during ambulatory participant movement would enable a wealth of neuroscientific paradigms. Wearable magnetoencephalography (MEG) based on optically pumped magnetometers (OPMs) has the potential to allow participant movement during a scan. However, the strict zero magnetic field requirement of OPMs means that systems must be operated inside a magnetically shielded room (MSR) and also require active shielding using electromagnetic coils to cancel residual fields and field changes (due to external sources and sensor movements) that would otherwise prevent accurate neuronal source reconstructions. Existing active shielding systems only compensate fields over small, fixed regions and do not allow ambulatory movement. Here we describe the matrix coil, a new type of active shielding system for OPM-MEG which is formed from 48 square unit coils arranged on two planes which can compensate magnetic fields in regions that can be flexibly placed between the planes. Through the integration of optical tracking with OPM data acquisition, field changes induced by participant movement are cancelled with low latency (25 ms). High-quality MEG source data were collected despite the presence of large (65 cm translations and 270° rotations) ambulatory participant movements.
Collapse
Affiliation(s)
- Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; Cerca Magnetics Limited, Unit 2 Castlebridge Office Village, Kirtley Drive, Nottingham NG7 1LD, UK.
| | - Molly Rea
- Cerca Magnetics Limited, Unit 2 Castlebridge Office Village, Kirtley Drive, Nottingham NG7 1LD, UK; Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Ryan M Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; Cerca Magnetics Limited, Unit 2 Castlebridge Office Village, Kirtley Drive, Nottingham NG7 1LD, UK
| | - James Leggett
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Lucy J Edwards
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Peter J Hobson
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Elena Boto
- Cerca Magnetics Limited, Unit 2 Castlebridge Office Village, Kirtley Drive, Nottingham NG7 1LD, UK; Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Tim M Tierney
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Lukas Rier
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Gonzalo Reina Rivero
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; Cerca Magnetics Limited, Unit 2 Castlebridge Office Village, Kirtley Drive, Nottingham NG7 1LD, UK
| | - Vishal Shah
- QuSpin Inc., 331 South 104th Street, Suite 130, Louisville, CO 80027, USA
| | - James Osborne
- QuSpin Inc., 331 South 104th Street, Suite 130, Louisville, CO 80027, USA
| | - T Mark Fromhold
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Paul Glover
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; Cerca Magnetics Limited, Unit 2 Castlebridge Office Village, Kirtley Drive, Nottingham NG7 1LD, UK
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
15
|
Rhodes N, Rea M, Boto E, Rier L, Shah V, Hill RM, Osborne J, Doyle C, Holmes N, Coleman SC, Mullinger K, Bowtell R, Brookes MJ. Measurement of Frontal Midline Theta Oscillations using OPM-MEG. Neuroimage 2023; 271:120024. [PMID: 36918138 PMCID: PMC10465234 DOI: 10.1016/j.neuroimage.2023.120024] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/10/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023] Open
Abstract
Optically pumped magnetometers (OPMs) are an emerging lightweight and compact sensor that can measure magnetic fields generated by the human brain. OPMs enable construction of wearable magnetoencephalography (MEG) systems, which offer advantages over conventional instrumentation. However, when trying to measure signals at low frequency, higher levels of inherent sensor noise, magnetic interference and movement artefact introduce a significant challenge. Accurate characterisation of low frequency brain signals is important for neuroscientific, clinical, and paediatric MEG applications and consequently, demonstrating the viability of OPMs in this area is critical. Here, we undertake measurement of theta band (4-8 Hz) neural oscillations and contrast a newly developed 174 channel triaxial wearable OPM-MEG system with conventional (cryogenic-MEG) instrumentation. Our results show that visual steady state responses at 4 Hz, 6 Hz and 8 Hz can be recorded using OPM-MEG with a signal-to-noise ratio (SNR) that is not significantly different to conventional MEG. Moreover, we measure frontal midline theta oscillations during a 2-back working memory task, again demonstrating comparable SNR for both systems. We show that individual differences in both the amplitude and spatial signature of induced frontal-midline theta responses are maintained across systems. Finally, we show that our OPM-MEG results could not have been achieved without a triaxial sensor array, or the use of postprocessing techniques. Our results demonstrate the viability of OPMs for characterising theta oscillations and add weight to the argument that OPMs can replace cryogenic sensors as the fundamental building block of MEG systems.
Collapse
Affiliation(s)
- Natalie Rhodes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Molly Rea
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Elena Boto
- Cerca Magnetics Ltd. 2, Castlebridge Office Village, Kirtley Dr, Nottingham NG7 1LD; Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Lukas Rier
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Vishal Shah
- QuSpin Inc. 331 South 104th Street, Suite 130, Louisville, Colorado, 80027, USA
| | - Ryan M Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK; Cerca Magnetics Ltd. 2, Castlebridge Office Village, Kirtley Dr, Nottingham NG7 1LD
| | - James Osborne
- QuSpin Inc. 331 South 104th Street, Suite 130, Louisville, Colorado, 80027, USA
| | - Cody Doyle
- QuSpin Inc. 331 South 104th Street, Suite 130, Louisville, Colorado, 80027, USA
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK; Cerca Magnetics Ltd. 2, Castlebridge Office Village, Kirtley Dr, Nottingham NG7 1LD
| | - Sebastian C Coleman
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Karen Mullinger
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK; Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK; Cerca Magnetics Ltd. 2, Castlebridge Office Village, Kirtley Dr, Nottingham NG7 1LD.
| |
Collapse
|
16
|
Schofield H, Boto E, Shah V, Hill RM, Osborne J, Rea M, Doyle C, Holmes N, Bowtell R, Woolger D, Brookes MJ. Quantum enabled functional neuroimaging: the why and how of magnetoencephalography using optically pumped magnetometers. CONTEMPORARY PHYSICS 2023; 63:161-179. [PMID: 38463461 PMCID: PMC10923587 DOI: 10.1080/00107514.2023.2182950] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 03/12/2024]
Abstract
Non-invasive imaging has transformed neuroscientific discovery and clinical practice, providing a non-invasive window into the human brain. However, whilst techniques like MRI generate ever more precise images of brain structure, in many cases, it's the function within neural networks that underlies disease. Here, we review the potential for quantum-enabled magnetic field sensors to shed light on such activity. Specifically, we describe how optically pumped magnetometers (OPMs) enable magnetoencephalographic (MEG) recordings with higher accuracy and improved practicality compared to the current state-of-the-art. The paper is split into two parts: first, we describe the work to date on OPM-MEG, detailing why this novel biomagnetic imaging technique is proving disruptive. Second, we explain how fundamental physics, including quantum mechanics and electromagnetism, underpins this developing technology. We conclude with a look to the future, outlining the potential for OPM-MEG to initiate a step change in the understanding and management of brain health.
Collapse
Affiliation(s)
- Holly Schofield
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
- Cerca Magnetics Limited, Nottingham, UK
| | - Elena Boto
- Cerca Magnetics Limited, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | | | - Ryan M Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
- Cerca Magnetics Limited, Nottingham, UK
| | | | - Molly Rea
- Cerca Magnetics Limited, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | | | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
- Cerca Magnetics Limited, Nottingham, UK
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | | | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
- Cerca Magnetics Limited, Nottingham, UK
| |
Collapse
|
17
|
Homo sapiens—A Species Not Designed for Space Flight: Health Risks in Low Earth Orbit and Beyond, Including Potential Risks When Traveling beyond the Geomagnetic Field of Earth. Life (Basel) 2023; 13:life13030757. [PMID: 36983912 PMCID: PMC10051707 DOI: 10.3390/life13030757] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Homo sapiens and their predecessors evolved in the context of the boundary conditions of Earth, including a 1 g gravity and a geomagnetic field (GMF). These variables, plus others, led to complex organisms that evolved under a defined set of conditions and define how humans will respond to space flight, a circumstance that could not have been anticipated by evolution. Over the past ~60 years, space flight and living in low Earth orbit (LEO) have revealed that astronauts are impacted to varying degrees by such new environments. In addition, it has been noted that astronauts are quite heterogeneous in their response patterns, indicating that such variation is either silent if one remained on Earth, or the heterogeneity unknowingly contributes to disease development during aging or in response to insults. With the planned mission to deep space, humans will now be exposed to further risks from radiation when traveling beyond the influence of the GMF, as well as other potential risks that are associated with the actual loss of the GMF on the astronauts, their microbiomes, and growing food sources. Experimental studies with model systems have revealed that hypogravity conditions can influence a variety biological and physiological systems, and thus the loss of the GMF may have unanticipated consequences to astronauts’ systems, such as those that are electrical in nature (i.e., the cardiovascular system and central neural systems). As astronauts have been shown to be heterogeneous in their responses to LEO, they may require personalized countermeasures, while others may not be good candidates for deep-space missions if effective countermeasures cannot be developed for long-duration missions. This review will discuss several of the physiological and neural systems that are affected and how the emerging variables may influence astronaut health and functioning.
Collapse
|
18
|
Gutteling TP, Bonnefond M, Clausner T, Daligault S, Romain R, Mitryukovskiy S, Fourcault W, Josselin V, Le Prado M, Palacios-Laloy A, Labyt E, Jung J, Schwartz D. A New Generation of OPM for High Dynamic and Large Bandwidth MEG: The 4He OPMs-First Applications in Healthy Volunteers. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23052801. [PMID: 36905007 PMCID: PMC10006929 DOI: 10.3390/s23052801] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 06/06/2023]
Abstract
MagnetoEncephaloGraphy (MEG) provides a measure of electrical activity in the brain at a millisecond time scale. From these signals, one can non-invasively derive the dynamics of brain activity. Conventional MEG systems (SQUID-MEG) use very low temperatures to achieve the necessary sensitivity. This leads to severe experimental and economical limitations. A new generation of MEG sensors is emerging: the optically pumped magnetometers (OPM). In OPM, an atomic gas enclosed in a glass cell is traversed by a laser beam whose modulation depends on the local magnetic field. MAG4Health is developing OPMs using Helium gas (4He-OPM). They operate at room temperature with a large dynamic range and a large frequency bandwidth and output natively a 3D vectorial measure of the magnetic field. In this study, five 4He-OPMs were compared to a classical SQUID-MEG system in a group of 18 volunteers to evaluate their experimental performances. Considering that the 4He-OPMs operate at real room temperature and can be placed directly on the head, our assumption was that 4He-OPMs would provide a reliable recording of physiological magnetic brain activity. Indeed, the results showed that the 4He-OPMs showed very similar results to the classical SQUID-MEG system by taking advantage of a shorter distance to the brain, despite having a lower sensitivity.
Collapse
Affiliation(s)
- Tjerk P. Gutteling
- CERMEP-Imagerie du Vivant, MEG Departement, 69000 Lyon, France
- CRNL, UMR_S 1028, HCL, Université Lyon 1, 69000 Lyon, France
| | | | - Tommy Clausner
- CRNL, UMR_S 1028, HCL, Université Lyon 1, 69000 Lyon, France
| | | | | | | | - William Fourcault
- CEA LETI, Minatec Campus, Université Grenoble Alpes, 38000 Grenoble, France
| | - Vincent Josselin
- CEA LETI, Minatec Campus, Université Grenoble Alpes, 38000 Grenoble, France
| | | | | | | | - Julien Jung
- CRNL, UMR_S 1028, HCL, Université Lyon 1, 69000 Lyon, France
| | - Denis Schwartz
- CERMEP-Imagerie du Vivant, MEG Departement, 69000 Lyon, France
- CRNL, UMR_S 1028, HCL, Université Lyon 1, 69000 Lyon, France
| |
Collapse
|
19
|
Aslam N, Zhou H, Urbach EK, Turner MJ, Walsworth RL, Lukin MD, Park H. Quantum sensors for biomedical applications. NATURE REVIEWS. PHYSICS 2023; 5:157-169. [PMID: 36776813 PMCID: PMC9896461 DOI: 10.1038/s42254-023-00558-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 05/09/2023]
Abstract
Quantum sensors are finding their way from laboratories to the real world, as witnessed by the increasing number of start-ups in this field. The atomic length scale of quantum sensors and their coherence properties enable unprecedented spatial resolution and sensitivity. Biomedical applications could benefit from these quantum technologies, but it is often difficult to evaluate the potential impact of the techniques. This Review sheds light on these questions, presenting the status of quantum sensing applications and discussing their path towards commercialization. The focus is on two promising quantum sensing platforms: optically pumped atomic magnetometers, and nitrogen-vacancy centres in diamond. The broad spectrum of biomedical applications is highlighted by four case studies ranging from brain imaging to single-cell spectroscopy.
Collapse
Affiliation(s)
- Nabeel Aslam
- Department of Physics, Harvard University, Cambridge, MA USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA USA
- Institute of Condensed Matter Physics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Hengyun Zhou
- Department of Physics, Harvard University, Cambridge, MA USA
| | - Elana K. Urbach
- Department of Physics, Harvard University, Cambridge, MA USA
| | - Matthew J. Turner
- Quantum Technology Center, University of Maryland, College Park, MD USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD USA
| | - Ronald L. Walsworth
- Quantum Technology Center, University of Maryland, College Park, MD USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD USA
- Department of Physics, University of Maryland, College Park, MD USA
| | | | - Hongkun Park
- Department of Physics, Harvard University, Cambridge, MA USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA USA
| |
Collapse
|
20
|
Chen Y, Zhao L, Ma Y, Yu M, Wang Y, Zhang N, Wei K, Jiang Z. Spin exchange optically pumped nuclear spin self compensation system for moving magnetoencephalography measurement. BIOMEDICAL OPTICS EXPRESS 2022; 13:5937-5951. [PMID: 36733752 PMCID: PMC9872881 DOI: 10.1364/boe.474862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 05/25/2023]
Abstract
Recording moving magnetoencephalograms (MEGs ), in which a person's head can move freely as the brain's magnetic field is recorded, has been a key subject in recent years. Here, we describe a method based on an optically pumped atomic co-magnetometer (OPACM) for recording moving MEGs. In the OPACM, hyper-polarized nuclear spins produce a magnetic field that blocks the background fluctuation low-frequency magnetic field noise while the rapidly changing MEG signal is recorded. In this study, the magnetic field compensation was studied theoretically, and we found that the compensation is closely related to several parameters such as the electron spin magnetic field, nuclear spin magnetic field, and holding magnetic field. Furthermore, the magnetic field compensation was optimized based on a theoretical model . We also experimentally studied the magnetic field compensation and measured the responses of the OPACM to different magnetic field frequencies. We show that the OPACM clearly suppresses low-frequency (under 1 Hz) magnetic fields. However, the OPACM responses to magnetic field frequencies around the band of the MEG. A magnetic field sensitivity of 3 fT/Hz1/2 was achieved. Finally, we performed a simulation of the OPACM during utilization for moving MEG recording. For comparison, the traditional compensation system for moving MEG recording is based on a coil that is around 2 m in dimension , while our compensation system is only 2 mm in dimension .
Collapse
Affiliation(s)
- Yao Chen
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies,Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- Xi’an Jiaotong University Suzhou Institute, Suzhou 215123, China
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies,Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yintao Ma
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies,Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Mingzhi Yu
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies,Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yanbin Wang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies,Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Ning Zhang
- Research Center for Quantum Sensing, Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou 310000, China
| | - Kai Wei
- School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing, 100191, China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies,Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
21
|
Rea M, Boto E, Holmes N, Hill R, Osborne J, Rhodes N, Leggett J, Rier L, Bowtell R, Shah V, Brookes MJ. A 90-channel triaxial magnetoencephalography system using optically pumped magnetometers. Ann N Y Acad Sci 2022; 1517:107-124. [PMID: 36065147 PMCID: PMC9826099 DOI: 10.1111/nyas.14890] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Magnetoencephalography (MEG) measures the small magnetic fields generated by current flow in neural networks, providing a noninvasive metric of brain function. MEG is well established as a powerful neuroscientific and clinical tool. However, current instrumentation is hampered by cumbersome cryogenic field-sensing technologies. In contrast, MEG using optically pumped magnetometers (OPM-MEG) employs small, lightweight, noncryogenic sensors that provide data with higher sensitivity and spatial resolution, a natural scanning environment (including participant movement), and adaptability to any age. However, OPM-MEG is new and the optimum way to design a system is unknown. Here, we construct a novel, 90-channel triaxial OPM-MEG system and use it to map motor function during a naturalistic handwriting task. Results show that high-precision magnetic field control reduced background fields to ∼200 pT, enabling free participant movement. Our triaxial array offered twice the total measured signal and better interference rejection compared to a conventional (single-axis) design. We mapped neural oscillatory activity to the sensorimotor network, demonstrating significant differences in motor network activity and connectivity for left-handed versus right-handed handwriting. Repeatability across scans showed that we can map electrophysiological activity with an accuracy ∼4 mm. Overall, our study introduces a novel triaxial OPM-MEG design and confirms its potential for high-performance functional neuroimaging.
Collapse
Affiliation(s)
- Molly Rea
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | - Ryan Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | | | - Natalie Rhodes
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | - James Leggett
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | - Lukas Rier
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | | | - Matthew J. Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| |
Collapse
|
22
|
Fang X, Ma D, Sun B, Xu X, Quan W, Xiao Z, Zhai Y. A High-Performance Magnetic Shield with MnZn Ferrite and Mu-Metal Film Combination for Atomic Sensors. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15196680. [PMID: 36234022 PMCID: PMC9570902 DOI: 10.3390/ma15196680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 05/14/2023]
Abstract
This study proposes a high-performance magnetic shielding structure composed of MnZn ferrite and mu-metal film. The use of the mu-metal film with a high magnetic permeability restrains the decrease in the magnetic shielding coefficient caused by the magnetic leakage between the gap of magnetic annuli. The 0.1-0.5 mm thickness of mu-metal film prevents the increase of magnetic noise of composite structure. The finite element simulation results show that the magnetic shielding coefficient and magnetic noise are almost unchanged with the increase in the gap width. Compared with conventional ferrite magnetic shields with multiple annuli structures under the gap width of 0.5 mm, the radial shielding coefficient increases by 13.2%, and the magnetic noise decreases by 21%. The axial shielding coefficient increases by 22.3 times. Experiments verify the simulation results of the shielding coefficient of the combined magnetic shield. The shielding coefficient of the combined magnetic shield is 16.5%. It is 91.3% higher than the conventional ferrite magnetic shield. The main difference is observed between the actual and simulated relative permeability of mu-metal films. The combined magnetic shielding proposed in this study is of great significance to further promote the performance of atomic sensors sensitive to magnetic field.
Collapse
Affiliation(s)
- Xiujie Fang
- School of Physics, Beihang University, Beijing 100191, China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute of Beihang University, Hangzhou 310000, China
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Danyue Ma
- School of Physics, Beihang University, Beijing 100191, China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute of Beihang University, Hangzhou 310000, China
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Correspondence: (D.M.); (Y.Z.)
| | - Bowen Sun
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute of Beihang University, Hangzhou 310000, China
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Xueping Xu
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute of Beihang University, Hangzhou 310000, China
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Wei Quan
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute of Beihang University, Hangzhou 310000, China
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Zhisong Xiao
- School of Physics, Beihang University, Beijing 100191, China
| | - Yueyang Zhai
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute of Beihang University, Hangzhou 310000, China
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Correspondence: (D.M.); (Y.Z.)
| |
Collapse
|
23
|
Holmes N, Rea M, Chalmers J, Leggett J, Edwards LJ, Nell P, Pink S, Patel P, Wood J, Murby N, Woolger D, Dawson E, Mariani C, Tierney TM, Mellor S, O'Neill GC, Boto E, Hill RM, Shah V, Osborne J, Pardington R, Fierlinger P, Barnes GR, Glover P, Brookes MJ, Bowtell R. A lightweight magnetically shielded room with active shielding. Sci Rep 2022; 12:13561. [PMID: 35945239 PMCID: PMC9363499 DOI: 10.1038/s41598-022-17346-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022] Open
Abstract
Magnetically shielded rooms (MSRs) use multiple layers of materials such as MuMetal to screen external magnetic fields that would otherwise interfere with high precision magnetic field measurements such as magnetoencephalography (MEG). Optically pumped magnetometers (OPMs) have enabled the development of wearable MEG systems which have the potential to provide a motion tolerant functional brain imaging system with high spatiotemporal resolution. Despite significant promise, OPMs impose stringent magnetic shielding requirements, operating around a zero magnetic field resonance within a dynamic range of ± 5 nT. MSRs developed for OPM-MEG must therefore effectively shield external sources and provide a low remnant magnetic field inside the enclosure. Existing MSRs optimised for OPM-MEG are expensive, heavy, and difficult to site. Electromagnetic coils are used to further cancel the remnant field inside the MSR enabling participant movements during OPM-MEG, but present coil systems are challenging to engineer and occupy space in the MSR limiting participant movements and negatively impacting patient experience. Here we present a lightweight MSR design (30% reduction in weight and 40-60% reduction in external dimensions compared to a standard OPM-optimised MSR) which takes significant steps towards addressing these barriers. We also designed a 'window coil' active shielding system, featuring a series of simple rectangular coils placed directly onto the walls of the MSR. By mapping the remnant magnetic field inside the MSR, and the magnetic field produced by the coils, we can identify optimal coil currents and cancel the remnant magnetic field over the central cubic metre to just |B|= 670 ± 160 pT. These advances reduce the cost, installation time and siting restrictions of MSRs which will be essential for the widespread deployment of OPM-MEG.
Collapse
Affiliation(s)
- Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Molly Rea
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - James Chalmers
- Magnetic Shields Limited, Headcorn Road, Staplehurst, Tonbridge, Kent, TN12 0DS, UK
| | - James Leggett
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Lucy J Edwards
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Paul Nell
- Magnetic Shields Limited, Headcorn Road, Staplehurst, Tonbridge, Kent, TN12 0DS, UK
| | - Stephen Pink
- Magnetic Shields Limited, Headcorn Road, Staplehurst, Tonbridge, Kent, TN12 0DS, UK
| | - Prashant Patel
- Magnetic Shields Limited, Headcorn Road, Staplehurst, Tonbridge, Kent, TN12 0DS, UK
| | - Jack Wood
- Magnetic Shields Limited, Headcorn Road, Staplehurst, Tonbridge, Kent, TN12 0DS, UK
| | - Nick Murby
- Magnetic Shields Limited, Headcorn Road, Staplehurst, Tonbridge, Kent, TN12 0DS, UK
| | - David Woolger
- Magnetic Shields Limited, Headcorn Road, Staplehurst, Tonbridge, Kent, TN12 0DS, UK
| | - Eliot Dawson
- Cerca Magnetics Limited, Headcorn Road, Staplehurst, Tonbridge, Kent, TN12 0DS, UK
| | - Christopher Mariani
- Cerca Magnetics Limited, Headcorn Road, Staplehurst, Tonbridge, Kent, TN12 0DS, UK
| | - Tim M Tierney
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, WC1N 3AR, UK
| | - Stephanie Mellor
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, WC1N 3AR, UK
| | - George C O'Neill
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, WC1N 3AR, UK
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Ryan M Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Vishal Shah
- QuSpin Inc., 331 South 104th Street, Suite 130, Louisville, CO, 80027, USA
| | - James Osborne
- QuSpin Inc., 331 South 104th Street, Suite 130, Louisville, CO, 80027, USA
| | | | - Peter Fierlinger
- Department of Physics, Technical University Munich, 85748, Garching, Germany
| | - Gareth R Barnes
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, WC1N 3AR, UK
| | - Paul Glover
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
24
|
Brookes MJ, Leggett J, Rea M, Hill RM, Holmes N, Boto E, Bowtell R. Magnetoencephalography with optically pumped magnetometers (OPM-MEG): the next generation of functional neuroimaging. Trends Neurosci 2022; 45:621-634. [PMID: 35779970 PMCID: PMC10465236 DOI: 10.1016/j.tins.2022.05.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/06/2022] [Accepted: 05/24/2022] [Indexed: 10/17/2022]
Abstract
Magnetoencephalography (MEG) measures human brain function via assessment of the magnetic fields generated by electrical activity in neurons. Despite providing high-quality spatiotemporal maps of electrophysiological activity, current MEG instrumentation is limited by cumbersome field sensing technologies, resulting in major barriers to utility. Here, we review a new generation of MEG technology that is beginning to lift many of these barriers. By exploiting quantum sensors, known as optically pumped magnetometers (OPMs), 'OPM-MEG' has the potential to dramatically outperform the current state of the art, promising enhanced data quality (better sensitivity and spatial resolution), adaptability to any head size/shape (from babies to adults), motion robustness (participants can move freely during scanning), and a less complex imaging platform (without reliance on cryogenics). We discuss the current state of this emerging technique and describe its far-reaching implications for neuroscience.
Collapse
Affiliation(s)
- Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - James Leggett
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Molly Rea
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Ryan M Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
25
|
Wu KY, Chen SY, Sun GA, Peng SM, Peng M, Yan H. Experimental Limits on Exotic Spin and Velocity Dependent Interactions Using Rotationally Modulated Source Masses and an Atomic-Magnetometer Array. PHYSICAL REVIEW LETTERS 2022; 129:051802. [PMID: 35960570 DOI: 10.1103/physrevlett.129.051802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Various theories beyond the standard model predict new interactions mediated by new light particles with very weak couplings to ordinary matter. Interactions between polarized electrons and unpolarized nucleons proportional to g_{V}^{N}g_{A}^{e}σ[over →]·v[over →] and g_{A}^{N}g_{A}^{e}σ[over →]·v[over →]×r[over →] are two such examples, where σ[over →] is the spin of the electrons, r[over →] and v[over →] are position and relative velocity between the polarized electrons and nucleons, g_{V}^{N}/g_{A}^{N} is the vector or axial-vector coupling constant of the nucleon, and g_{A}^{e} is the axial-vector coupling constant of the electron. Such interactions involving a vector or axial-vector coupling g_{V}^{N}/g_{A}^{N} at one vertex and an axial-vector coupling g_{A}^{e} at the polarized electron vertex can be induced by the exchange of spin-1 bosons. We report new experimental upper limits on such exotic spin-velocity-dependent interactions of the electron with nucleons from dedicated experiments based on a recently proposed scheme. We rotationally modulated two ∼6 Kg source masses at a frequency of 20 Hz. We used four identical atomic magnetometers in an array form to increase the statistics and cancel the common-mode noise. We applied a data processing method based on high precision numerical integration for the four harmonic frequencies of the signal. We reverse the rotation direction of the source masses to flip the signal due to the new interactions; thus, we can apply the [+1,-3,+3,-1] weighting method to remove possible slow drifting. Our constraint on the product of vector and axial-vector couplings is |g_{V}^{N}g_{A}^{e}|<2.1×10^{-34} and on the product of axial-vector and axial-vector couplings is |g_{A}^{N}g_{A}^{e}|<2.4×10^{-22} for an interaction range of 10 m. The new constraints on vector-axial-vector interaction improved by as much as more than 4 orders of magnitude and on axial-axial interaction by as much as 2 orders of magnitude in the corresponding interaction range, respectively.
Collapse
Affiliation(s)
- K Y Wu
- Institute of Nuclear Physics and Chemistry, CAEP, Mianyang, Sichuan 621900, China
| | - S Y Chen
- Institute of Nuclear Physics and Chemistry, CAEP, Mianyang, Sichuan 621900, China
| | - G A Sun
- Institute of Nuclear Physics and Chemistry, CAEP, Mianyang, Sichuan 621900, China
| | - S M Peng
- Institute of Nuclear Physics and Chemistry, CAEP, Mianyang, Sichuan 621900, China
| | - M Peng
- Institute of Nuclear Physics and Chemistry, CAEP, Mianyang, Sichuan 621900, China
| | - H Yan
- Key Laboratory of Neutron Physics, Institute of Nuclear Physics and Chemistry, CAEP, Mianyang, Sichuan 621900, China and Institute of Nuclear Physics and Chemistry, CAEP, Mianyang, Sichuan 621900, China
| |
Collapse
|
26
|
Bespoke magnetic field design for a magnetically shielded cold atom interferometer. Sci Rep 2022; 12:10520. [PMID: 35732872 PMCID: PMC9217970 DOI: 10.1038/s41598-022-13979-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
Quantum sensors based on cold atoms are being developed which produce measurements of unprecedented accuracy. Due to shifts in atomic energy levels, quantum sensors often have stringent requirements on their internal magnetic field environment. Typically, background magnetic fields are attenuated using high permeability magnetic shielding, with the cancelling of residual and introduction of quantisation fields implemented with coils inside the shield. The high permeability shield, however, distorts all magnetic fields, including those generated inside the sensor. Here, we demonstrate a solution by designing multiple coils overlaid on a 3D-printed former to generate three uniform and three constant linear gradient magnetic fields inside the capped cylindrical magnetic shield of a cold atom interferometer. The fields are characterised in-situ and match their desired forms to high accuracy. For example, the uniform transverse field, Bx, deviates by less than 0.2% over more than 40% of the length of the shield. We also map the field directly using the cold atoms and investigate the potential of the coil system to reduce bias from the quadratic Zeeman effect. This coil design technology enables targeted field compensation over large spatial volumes and has the potential to reduce systematic shifts and noise in numerous cold atom systems.
Collapse
|
27
|
Feys O, Corvilain P, Aeby A, Sculier C, Holmes N, Brookes M, Goldman S, Wens V, De Tiège X. On-Scalp Optically Pumped Magnetometers versus Cryogenic Magnetoencephalography for Diagnostic Evaluation of Epilepsy in School-aged Children. Radiology 2022; 304:429-434. [PMID: 35503013 DOI: 10.1148/radiol.212453] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Magnetoencephalography (MEG) is an established method used to detect and localize focal interictal epileptiform discharges (IEDs). Current MEG systems house hundreds of cryogenic sensors in a rigid, one-size-fits-all helmet, which results in several limitations, particularly in children. Purpose To determine if on-scalp MEG based on optically pumped magnetometers (OPMs) alleviates the main limitations of cryogenic MEG. Materials and Methods In this prospective single-center study conducted in a tertiary university teaching hospital, participants underwent cryogenic (102 magnetometers, 204 planar gradiometers) and on-scalp (32 OPMs) MEG. The two modalities for the detection and localization of IEDs were compared. The t test was used to compare IED amplitude and signal-to-noise ratio (SNR). Distributed source modeling was performed on OPM-based and cryogenic MEG data. Results Five children (median age, 9.4 years [range, 5-11 years]; four girls) with self-limited idiopathic (n = 3) or refractory (n = 2) focal epilepsy were included. IEDs were identified in all five children with comparable sensor topographies for both MEG devices. IED amplitudes were 2.3 (7.2 of 3.1) to 4.6 (3.2 of 0.7) times higher (P < .001) with on-scalp MEG, and the SNR was 27% (16.7 of 13.2) to 60% (12.8 of 8.0) higher (P value range: .001-.009) with on-scalp MEG in all but one participant (P = .93), whose head movements created pronounced motion artifacts. The neural source of averaged IEDs was located at approximately 5 mm (n = 3) or higher (8.3 mm, n = 1; 15.6 mm, n = 1) between on-scalp and cryogenic MEG. Conclusion Despite the limited number of sensors and scalp coverage, on-scalp magnetoencephalography (MEG) based on optically pumped magnetometers helped detect interictal epileptiform discharges in school-aged children with epilepsy with a higher amplitude, higher signal-to-noise ratio, and similar localization value compared with conventional cryogenic MEG. Online supplemental material is available for this article. © RSNA, 2022 See also the editorial by Widjaja in this issue.
Collapse
Affiliation(s)
- Odile Feys
- From the Departments of Neurology (O.F.), Pediatric Neurology (C.S., F.C.), Nuclear Medicine (S.G.), and Translational Neuroimaging (V.W., X.D.T.), CUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium; Laboratory of Translational Neuroimaging and Neuroanatomy (Laboratoire de Neuroimagerie et Neuroanatomie translationnelles) (LNT), ULB Neuroscience Institute, Université Libre de Bruxelles, 808 Lennik St, Brussels, Belgium (O.F., P.C., S.G., V.W., X.D.T.); Department of Pediatric Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium (A.A.); and Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom (N.H., M.B.)
| | - Pierre Corvilain
- From the Departments of Neurology (O.F.), Pediatric Neurology (C.S., F.C.), Nuclear Medicine (S.G.), and Translational Neuroimaging (V.W., X.D.T.), CUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium; Laboratory of Translational Neuroimaging and Neuroanatomy (Laboratoire de Neuroimagerie et Neuroanatomie translationnelles) (LNT), ULB Neuroscience Institute, Université Libre de Bruxelles, 808 Lennik St, Brussels, Belgium (O.F., P.C., S.G., V.W., X.D.T.); Department of Pediatric Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium (A.A.); and Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom (N.H., M.B.)
| | - Alec Aeby
- From the Departments of Neurology (O.F.), Pediatric Neurology (C.S., F.C.), Nuclear Medicine (S.G.), and Translational Neuroimaging (V.W., X.D.T.), CUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium; Laboratory of Translational Neuroimaging and Neuroanatomy (Laboratoire de Neuroimagerie et Neuroanatomie translationnelles) (LNT), ULB Neuroscience Institute, Université Libre de Bruxelles, 808 Lennik St, Brussels, Belgium (O.F., P.C., S.G., V.W., X.D.T.); Department of Pediatric Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium (A.A.); and Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom (N.H., M.B.)
| | - Claudine Sculier
- From the Departments of Neurology (O.F.), Pediatric Neurology (C.S., F.C.), Nuclear Medicine (S.G.), and Translational Neuroimaging (V.W., X.D.T.), CUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium; Laboratory of Translational Neuroimaging and Neuroanatomy (Laboratoire de Neuroimagerie et Neuroanatomie translationnelles) (LNT), ULB Neuroscience Institute, Université Libre de Bruxelles, 808 Lennik St, Brussels, Belgium (O.F., P.C., S.G., V.W., X.D.T.); Department of Pediatric Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium (A.A.); and Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom (N.H., M.B.)
| | - Niall Holmes
- From the Departments of Neurology (O.F.), Pediatric Neurology (C.S., F.C.), Nuclear Medicine (S.G.), and Translational Neuroimaging (V.W., X.D.T.), CUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium; Laboratory of Translational Neuroimaging and Neuroanatomy (Laboratoire de Neuroimagerie et Neuroanatomie translationnelles) (LNT), ULB Neuroscience Institute, Université Libre de Bruxelles, 808 Lennik St, Brussels, Belgium (O.F., P.C., S.G., V.W., X.D.T.); Department of Pediatric Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium (A.A.); and Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom (N.H., M.B.)
| | - Matthew Brookes
- From the Departments of Neurology (O.F.), Pediatric Neurology (C.S., F.C.), Nuclear Medicine (S.G.), and Translational Neuroimaging (V.W., X.D.T.), CUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium; Laboratory of Translational Neuroimaging and Neuroanatomy (Laboratoire de Neuroimagerie et Neuroanatomie translationnelles) (LNT), ULB Neuroscience Institute, Université Libre de Bruxelles, 808 Lennik St, Brussels, Belgium (O.F., P.C., S.G., V.W., X.D.T.); Department of Pediatric Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium (A.A.); and Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom (N.H., M.B.)
| | - Serge Goldman
- From the Departments of Neurology (O.F.), Pediatric Neurology (C.S., F.C.), Nuclear Medicine (S.G.), and Translational Neuroimaging (V.W., X.D.T.), CUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium; Laboratory of Translational Neuroimaging and Neuroanatomy (Laboratoire de Neuroimagerie et Neuroanatomie translationnelles) (LNT), ULB Neuroscience Institute, Université Libre de Bruxelles, 808 Lennik St, Brussels, Belgium (O.F., P.C., S.G., V.W., X.D.T.); Department of Pediatric Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium (A.A.); and Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom (N.H., M.B.)
| | - Vincent Wens
- From the Departments of Neurology (O.F.), Pediatric Neurology (C.S., F.C.), Nuclear Medicine (S.G.), and Translational Neuroimaging (V.W., X.D.T.), CUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium; Laboratory of Translational Neuroimaging and Neuroanatomy (Laboratoire de Neuroimagerie et Neuroanatomie translationnelles) (LNT), ULB Neuroscience Institute, Université Libre de Bruxelles, 808 Lennik St, Brussels, Belgium (O.F., P.C., S.G., V.W., X.D.T.); Department of Pediatric Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium (A.A.); and Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom (N.H., M.B.)
| | - Xavier De Tiège
- From the Departments of Neurology (O.F.), Pediatric Neurology (C.S., F.C.), Nuclear Medicine (S.G.), and Translational Neuroimaging (V.W., X.D.T.), CUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium; Laboratory of Translational Neuroimaging and Neuroanatomy (Laboratoire de Neuroimagerie et Neuroanatomie translationnelles) (LNT), ULB Neuroscience Institute, Université Libre de Bruxelles, 808 Lennik St, Brussels, Belgium (O.F., P.C., S.G., V.W., X.D.T.); Department of Pediatric Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium (A.A.); and Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom (N.H., M.B.)
| |
Collapse
|
28
|
Calibration and Localization of Optically Pumped Magnetometers Using Electromagnetic Coils. SENSORS 2022; 22:s22083059. [PMID: 35459044 PMCID: PMC9024658 DOI: 10.3390/s22083059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/10/2022]
Abstract
In this paper, we propose a method to estimate the position, orientation, and gain of a magnetic field sensor using a set of (large) electromagnetic coils. We apply the method for calibrating an array of optically pumped magnetometers (OPMs) for magnetoencephalography (MEG). We first measure the magnetic fields of the coils at multiple known positions using a well-calibrated triaxial magnetometer, and model these discreetly sampled fields using vector spherical harmonics (VSH) functions. We then localize and calibrate an OPM by minimizing the sum of squared errors between the model signals and the OPM responses to the coil fields. We show that by using homogeneous and first-order gradient fields, the OPM sensor parameters (gain, position, and orientation) can be obtained from a set of linear equations with pseudo-inverses of two matrices. The currents that should be applied to the coils for approximating these low-order field components can be determined based on the VSH models. Computationally simple initial estimates of the OPM sensor parameters follow. As a first test of the method, we placed a fluxgate magnetometer at multiple positions and estimated the RMS position, orientation, and gain errors of the method to be 1.0 mm, 0.2°, and 0.8%, respectively. Lastly, we calibrated a 48-channel OPM array. The accuracy of the OPM calibration was tested by using the OPM array to localize magnetic dipoles in a phantom, which resulted in an average dipole position error of 3.3 mm. The results demonstrate the feasibility of using electromagnetic coils to calibrate and localize OPMs for MEG.
Collapse
|
29
|
Using OPM-MEG in contrasting magnetic environments. Neuroimage 2022; 253:119084. [PMID: 35278706 PMCID: PMC9135301 DOI: 10.1016/j.neuroimage.2022.119084] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/21/2022] Open
Abstract
Magnetoencephalography (MEG) has been revolutionised by optically pumped magnetometers (OPMs). "OPM-MEG" offers higher sensitivity, better spatial resolution, and lower cost than conventional instrumentation based on superconducting quantum interference devices (SQUIDs). Moreover, because OPMs are small, lightweight, and portable they offer the possibility of lifespan compliance and (with control of background field) motion robustness, dramatically expanding the range of MEG applications. However, OPM-MEG remains nascent technology; it places stringent requirements on magnetic shielding, and whilst a number of viable systems exist, most are custom made and there have been no cross-site investigations showing the reliability of data. In this paper, we undertake the first cross-site OPM-MEG comparison, using near identical commercial systems scanning the same participant. The two sites are deliberately contrasting, with different magnetic environments: a "green field" campus university site with an OPM-optimised shielded room (low interference) and a city centre hospital site with a "standard" (non-optimised) MSR (higher interference). We show that despite a 20-fold difference in background field, and a 30-fold difference in low frequency interference, using dynamic field control and software-based suppression of interference we can generate comparable noise floors at both sites. In human data recorded during a visuo-motor task and a face processing paradigm, we were able to generate similar data, with source localisation showing that brain regions could be pinpointed with just ∼10 mm spatial discrepancy and temporal correlations of > 80%. Overall, our study demonstrates that, with appropriate field control, OPM-MEG systems can be sited even in city centre hospital locations. The methods presented pave the way for wider deployment of OPM-MEG.
Collapse
|
30
|
Triaxial detection of the neuromagnetic field using optically-pumped magnetometry: feasibility and application in children. Neuroimage 2022; 252:119027. [PMID: 35217205 PMCID: PMC9135302 DOI: 10.1016/j.neuroimage.2022.119027] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/11/2022] [Accepted: 02/21/2022] [Indexed: 12/02/2022] Open
Abstract
Optically-pumped magnetometers (OPMs) are an established alternative to superconducting sensors for magnetoencephalography (MEG), offering significant advantages including flexibility to accommodate any head size, uniform coverage, free movement during scanning, better data quality and lower cost. However, OPM sensor technology remains under development; there is flexibility regarding OPM design and it is not yet clear which variant will prove most effective for MEG. Most OPM-MEG implementations have either used single-axis (equivalent to conventional MEG) or dual-axis magnetic field measurements. Here we demonstrate use of a triaxial OPM formulation, able to characterise the full 3D neuromagnetic field vector. We show that this novel sensor is able to characterise magnetic fields with high accuracy and sensitivity that matches conventional (dual-axis) OPMs. We show practicality via measurement of biomagnetic fields from both the heart and the brain. Using simulations, we demonstrate how triaxial measurement offers improved cortical coverage, especially in infants. Finally, we introduce a new 3D-printed child-friendly OPM-helmet and demonstrate feasibility of triaxial measurement in a five-year-old. In sum, the data presented demonstrate that triaxial OPMs offer a significant improvement over dual-axis variants and are likely to become the sensor of choice for future MEG systems, particularly for deployment in paediatric populations.
Collapse
|
31
|
Seymour RA, Alexander N, Mellor S, O'Neill GC, Tierney TM, Barnes GR, Maguire EA. Interference suppression techniques for OPM-based MEG: Opportunities and challenges. Neuroimage 2022; 247:118834. [PMID: 34933122 PMCID: PMC8803550 DOI: 10.1016/j.neuroimage.2021.118834] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/23/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
One of the primary technical challenges facing magnetoencephalography (MEG) is that the magnitude of neuromagnetic fields is several orders of magnitude lower than interfering signals. Recently, a new type of sensor has been developed - the optically pumped magnetometer (OPM). These sensors can be placed directly on the scalp and move with the head during participant movement, making them wearable. This opens up a range of exciting experimental and clinical opportunities for OPM-based MEG experiments, including paediatric studies, and the incorporation of naturalistic movements into neuroimaging paradigms. However, OPMs face some unique challenges in terms of interference suppression, especially in situations involving mobile participants, and when OPMs are integrated with electrical equipment required for naturalistic paradigms, such as motion capture systems. Here we briefly review various hardware solutions for OPM interference suppression. We then outline several signal processing strategies aimed at increasing the signal from neuromagnetic sources. These include regression-based strategies, temporal filtering and spatial filtering approaches. The focus is on the practical application of these signal processing algorithms to OPM data. In a similar vein, we include two worked-through experiments using OPM data collected from a whole-head sensor array. These tutorial-style examples illustrate how the steps for suppressing external interference can be implemented, including the associated data and code so that researchers can try the pipelines for themselves. With the popularity of OPM-based MEG rising, there will be an increasing need to deal with interference suppression. We hope this practical paper provides a resource for OPM-based MEG researchers to build upon.
Collapse
Affiliation(s)
- Robert A Seymour
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK.
| | - Nicholas Alexander
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Stephanie Mellor
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - George C O'Neill
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Tim M Tierney
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Gareth R Barnes
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Eleanor A Maguire
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK.
| |
Collapse
|